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Abstract— The accurate detection of cracks in paintings, which
generally portray rich and varying content, is a challenging task.
Furthermore, traditional crack detection methods are often not
well suited for recent acquisitions of paintings as they are not
designed for high-resolution images and do not fully exploit the
information from the different imaging modalities at hand. In
this work, we propose a fast crack detection framework that al-
leviates the aforementioned challenges. The method consists of a
morphological filtering operation followed by a classification step
by means of a convolutional neural network architecture. The
proposed online method is capable of continuously learning from
newly acquired visual data, thus further improving classification
results as more data becomes available.

1 Introduction

Paint cracking (or craquelure) is the most common type of
deterioration encountered in old master paintings. Generally
speaking, cracks appear in paint layers when pressure devel-
ops within or on it through the influence of various factors and
cause the material to break [1]. The automatic detection of
crack patterns is desirable for many reason. Most importantly,
crack patterns can offer insights on the structural condition and
conservation history of a painting [1]. Crack detection is also
used as a preprocessing step for the digital restoration of paint-
ings [2].

Many crack detection methods have been developed over the
recent years, see e.g. [2–6] and the reference therein. Still,
some important challenges remain especially in terms of fea-
ture selection, which often has to be adapted for different paint-
ings, parameter tuning, and complexity, which limit practical
applicability.

In this paper, we propose a new deep learning based ap-
proach for crack detection in paintings. The method consists
of two processing stages: (i) a morphological filtering stage,
and (ii) a classification stage. The morphological filtering es-
sentially ensures that the amount of pixels to be classified by
the CNN in the second stage is strongly reduced as only those
pixels that are similar in structure to cracks are selected. In the
classification stage, we employ a convolutional neural network
(CNN). CNNs demonstrated recent success in many applica-
tion where they have outperformed, often by a substantial mar-
gin, traditional machine learning algorithms [7–10]. We are not
aware of any reported works that apply CNNs to crack detec-
tion in paintings. Some recent works applied CNN to detect
cracks in roads [11, 12]. Our problem is, however, much more
challenging not only because of the huge variability of cracks in
paintings but also due to complex background and the fact that
some painted details can closely resemble cracks. Therefore,

our approach needs to incorporate multimodal data, which to-
gether with huge spatial resolution of digitized paintings poses
additional challenges for the classifier.

2 Proposed approach
The first step in the proposed method is morphological filtering
of the available modalities. This operation creates a preliminary
crack map in a similar way as in [4, 5]. Each filtered result is
followed by a thresholding step, producing binary images. The
threshold is set based on the method of Otsu [13]. The binary
maps are then combined into a single one using the logical OR
operation. The morphological filtering step improves greatly
the classification speed. The classifier is run only on pixels
marked as crack in this first stage.

The input of our classification network consists of tensors of
size m × m × N . These tensors are formed by concatenating
m×m sized patches extracted from the N considered modali-
ties (the three color channels of the visual macro-photographs,
the single-channel infrared macro-photographs and X-ray im-
ages, along with their grayscale morphologically filtered results
add up to N = 9 modalities.1). An input sample is represented
by the tensor x(u1, u2, υ0) ∈ Rm×m×N , where u1, u2 are spa-
tial coordinates and υ0 is the index that identifies the chosen
modality. For our experiments, we fix m = 8, resulting in ten-
sors with dimensions of 8 × 8 × 9. The convolutions over υ0
are calculated in the first layer of the CNN as follows:

x1(u1, u2, υ1) = ρ
�
x(u1, u2, υ0) ∗ wυ1

(u1, u2, υ0)
�
, (1)

where x1(u1, u2, υ1) is the feature map obtained by the convo-
lution of x(u1, u2, υ0) with wυ1

(u1, u2, υ0), indexed by υ1 (in
our architecture 1 ≤ υ1 ≤ 12 for the first, 1 ≤ υ2 ≤ 24 for
second and 1 ≤ υ2 ≤ 48 for the third convolution layers), and
where ρ is an activation function. We choose the well-known
rectified linear unit (ReLU) [7], defined as ρ = max(0, x). All
kernels are initialised randomly in the beginning of the train-
ing procedure. The core of our CNN architecture consists of
performing a cascade of convolutions at each layer j ≥ 2 as
follows:

xj(u1, u2, υj) = ρ
�
xj−1(·, υj−1) ∗ wυj

(·)
�
, (2)

where, as we navigate through the subsequent layers, the reso-
lution of xj(u1, u2, υj) progressively reduces [14,15]. The last
layer of the architecture consist of a softmax function, which
ensures that all class probabilities sum up to 1.

1A disk-shaped structuring element with a diameter of 5 pixels was used for
all experiments.
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Figure 1: Left: A fragment of the panel Virgin Annunciate. Right: Results
of the proposed method in comparison with BCTF. Blue: cracks identified by
both methods; red: cracks detected by BCTF only; green: cracks detected by
the proposed method only.

3 Experimental Results

All experiments are performed on a high-resolution multi-
modal dataset of the Ghent Altarpiece, publicly available on the
Closer to Van Eyck website2. In particular, we focus on three
panels of the polyptych, named Virgin Annunciate, Singing An-
gels and John Evangelist. For comparsion we use the Bayesian
Conditional Tensor Factorisation (BCTF) method from [3],
which was also evaluated and compared to other methods in [6].

Figure 1(Left) shows crack detection results on a part of the
panel Virgin Annunciate which is particularly challenging be-
cause some painted features resemble cracks. The results dis-
played in Fig. 1(Right) show that BCTF falsely labels a signif-
icant amount of pixels (such as the decorative elements around
the big letter “P”), while our method successfully differentiates
true cracks from those painted features. It should be noted that
both methods use the same image modalities.

Similar conclusions follow from the results on the panel
Singing Angels displayed in Fig. 2(Top). In general, the pro-
posed method detects more cracks while reducing false detec-
tions. Furthermore, the proposed method can be trained in an
online fashion, i.e. without re-training the whole network, con-
tinuously improving detection results (Fig. 2(Bottom)). An im-
portant asset is also rapid processing, especially once the net-
work is trained. This makes our framework integrable in a fast
and interactive tool that can be used by art professionals.

Figure 3 depicts results on a small area from the panel of
John the Evangelist. For this example, only one modality
was considered, namely the color photograph, for both meth-
ods. The BCTF method was trained specifically for this image,
while the proposed method was pre-trained on other panels and
only a small fraction of labels (approximately 3,000 patches of
two types) from the present panel were used to re-train the net-
work. This experiment indicates that the proposed method can
be deployed for a variety of paintings, with relative little effort.

In general, the proposed method demonstrates potential to
improve upon the current state-of-the-art methods by detecting
more cracks while also reducing false detections. Furthermore,
the proposed method can be trained in an online fashion, i.e.
without re-training the whole network, continuously improving
detection results. An important asset is also rapid processing,
especially once the network is trained. This makes our frame-
work integrable in a fast and interactive tool that can be used
by art professionals.

2Link: http://closertovaneyck.kikirpa.be/

Figure 2: Top: A fragment of the panel Singing Angels. Bottom: Results
of the proposed method in comparison with BCTF. Blue: cracks identified by
both methods; red: cracks detected by BCTF only; green: cracks detected by
the proposed method only.

4 Conclusion

In this paper, we propose a novel crack detection framework
capable of handling acquisitions from different modalities. In
a first step, we apply morphological filtering for a coarse initial
identification of crack pixels. This step substantially reduces
the amount of data to be processed later on. We then train a
CNN architecture with user labelled data to further refine the
results obtained in the first step. We show that our method im-
proves upon the current state-of-the-art in this application. An
additional advantage is the possibility of re-training the net-
work using newly available data. This feature allows to im-
prove the already obtained result without significant time costs.

Figure 3: Left: A fragment of the panel John Evangelist. Right: Results of the
proposed method (pre-trained on other panels and re-trained with few labels
from the present panel) in comparison with BCTF (trained for this particular
image). Blue: cracks identified by both methods, red: cracks detected by BCTF
only, and green: cracks detected by the proposed method only.
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M. Martens, H. Dubois, B. Devolder, M. De Mey, and
I. Daubechies, “Digital image processing of the Ghent al-
tarpiece: supporting the painting’s study and conservation
treatment,” Signal Processing Magazine, IEEE , vol. 32,
2015.

[7] A. Krizhevsky and I. Sutskever and G. Hinton, “Imagenet
classification with deep convolutional neural networks,”
Advances in Neural Information Processing Systems, pp.
1097–1105, 2012.

[8] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke,
and Andrew Rabinovich, “Going deeper with convolu-
tions,” CoRR, vol. abs/1409.4842, 2014.

[9] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” CoRR, vol.
abs/1409.1556, 2014.

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Deep
residual learning for image recognition,” CoRR, vol.
abs/1512.03385, 2015.

[11] Z. Lei, Y. Fan, D.Z. Yimin, and J. Z. Ying, “Road
crack detection using deep convolutional neural,” Image
Processing (ICIP), 2016 IEEE International Conference,
2016.

[12] Y.-Jin Cha, W. Choi, and O. Büyüköztürk, “Deep
learning-based crack damage detection using convolu-
tional neural networks,” Comput.-Aided Civ. Infrastruct.
Eng., vol. 32, pp. 361–378, 2017.

[13] N. Otsu, “A threshold selection method from gray-level
histogram,” IEEE Transaction on Systems, Man, and Cy-
bernatics, vol. SMC-9, no. 1, pp. 62–66, 1979.

[14] S. Mallat, “Understanding deep convolutional networks,”
Phil. Trans. R. Soc. A, vol. 374(2065):20150203, 2016.

[15] J. H. Jacobsen, E. Oyallon, S. Mallat, and A. W. M.
Smeulders, “Multiscale hierarchical convolutional net-
works,” CoRR, vol. abs/1703.04140, 2017.


