
Accepted Manuscript

Reduction of Eu3+ to Eu2+ in α-Y2Si2O7 and X1-Y2SiO5 and their luminescent
properties

Azucena Arias Martínez, Rubén Arroyo-Murillo, Katleen Korthout, Dirk Poelman

PII: S0925-8388(18)31361-6

DOI: 10.1016/j.jallcom.2018.04.069

Reference: JALCOM 45707

To appear in: Journal of Alloys and Compounds

Received Date: 14 February 2018

Accepted Date: 6 April 2018

Please cite this article as: A.A. Martínez, Rubé. Arroyo-Murillo, K. Korthout, D. Poelman, Reduction of
Eu3+ to Eu2+ in α-Y2Si2O7 and X1-Y2SiO5 and their luminescent properties, Journal of Alloys and
Compounds (2018), doi: 10.1016/j.jallcom.2018.04.069.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.jallcom.2018.04.069


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Reduction of Eu3+ to Eu2+ in α-Y2Si2O7 and X1-Y2SiO5 and their 

luminescent properties 

 

Azucena Arias- Martíneza,*, Rubén Arroyo-Murilloa, Katleen Korthoutb, 

Dirk Poelmanb 

 

a Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa 

(UAM-I), San Rafael Atlixco 186, Col. Vicentina, Ciudad de México 09340, 

México 
b LumiLab, Department of Solid State Sciences, Ghent University, Krijgslaan 

281, S1, B-9000 Ghent, Belgium 

 

*  Corresponding author 
Email: aamar@xanum.uam.mx 

 

Abstract 

Due to its bright tunable emission, Eu-doped yttrium silicates are very interesting materials 

for LED applications. The microparticles of α-Y1.98 Eu0.02 Si2O7 and the low-temperature 

phase of Y1.98 Eu0.02 SiO5 (X1) were prepared by sol gel technique. Then, the samples were 

reduced at high temperatures using pure hydrogen as reduction agent. The materials 

obtained were characterized by X-Ray diffraction, Scanning Electron Microscopy, Energy 

Dispersive X-Ray and Photoluminescence spectroscopy. The presence of Eu2+ in the 

materials after the reduction was confirmed by the blue-green band emission and the wide 

absorption band, observed only in the excitation spectra of the reduced samples. These 
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bands are congruent with the information previously reported in the literature. A red shift of 

the broadband emission of Eu2+ doped α-Y2Si2O7 system was observed compared to 

previously reported results. Also, the luminescent properties of Eu2+ host in X1-Y2SiO5 are 

presented for first time. The relative contribution of Eu2+ and Eu3+ depends on the 

excitation wavelength leading to a tunable emission phosphor with potential application in 

white LEDs. Summarizing, the reduction of Eu ions in yttrium silicates is presented in this 

work, leading to a tunable emission phosphor with potential application in white LEDs. 

Keywords: Inorganic materials; Phosphors; Optical properties; Rare earth; Sol-gel 

processes; Optical spectroscopy. 

1. Introduction  

In recent years, the interest in single compound phosphors has increased since they simplify 

the LED production process, overcome the drawbacks of self-absorption and facilitate the 

adjustment of the color [1–3]. Usually, white-light emission from a single host can be 

obtained by codoping with multiple activators or using different luminescent centers from 

the same ion [3–8]. Recently, mixing valences of Eu ions in inorganic compounds have 

been studied as an interesting alternative. The spectra of Eu2+ and Eu3+ codoped phosphors 

have been explored in host lattices like Ba1-xSrxGd1-yYyB9O16, Ca2NaSiO4F, 

Ca2Tb8(SiO4)6O2, LaF3, BaZnSiO4, Na5Al(PO4)2F2 [9–14]. These compound have the 

presence of alkali or alkaline earth metals in common, whit the purpose to successfully 

reduce Eu3+ ions to Eu2+. 

Among the silicate compounds, the different compositions of yttrium silicates have been 

highlighted due to their excellent properties as host lattice for rare earth elements [15–20]. 
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While Y2Si2O7:Ce3+ has potential as scintillation material and Y2Si2O7:Eu3+ as red phosphor 

[21,22]; Y2SiO5 is widely used as cathodoluminescent material and, doped with Eu3+, is a 

promising candidate for coherent time-domain optical memory and red phosphor for lamps 

and display applications [23–27]. Although yttrium silicates are not considered suitable for 

Eu2+ ions, they are an interesting option to study.  

Only one investigation has reported the reduction of Eu3+ in this kind of materials [28]. 

Sokolnicki prepared Eu3+ doped α-Y2Si2O7 by reaction of nanostructured Y2O3:Ln3+ (Ln3+ 

= Eu3+, Tb3+ and Ce3+) and colloidal SiO2 at high temperatures for later treatment of the 

samples at different temperatures applying a reducing atmosphere (75%N2+25%H2). The 

presence of Eu2+ was confirmed by electron paramagnetic resonance (EPR) and it was 

shown that synthesis conditions influenced the spectroscopic properties. 

In this work α-Y1.98Eu0.02Si2O7 and the low-temperature phase of Y1.98Eu0.02SiO5 (X1 type) 

were synthesized by sol-gel technique and then Eu3+ ions were partially reduced to Eu2+ 

using pure hydrogen as reduction agent, as confirmed by photoluminescence 

measurements.  

2. Experimental 

2.1 Synthesis 

Samples Y 2(1-x) Eu 2x Si2O7 and Y 2(1-x) Eu 2x SiO5 (x = 0.01) were prepared by the sol gel 

technique using Na2SiO3 (J. T. Baker Reagent), Y2O3 (Sigma Aldrich Reagent) and Eu 

(NO3)3 (Sigma Aldrich Reagent) as precursors. First, a mixture of Y2O3 and 25 mL of water 

was heated with constant stirring until reaching 92°C. Then, concentrated nitric acid (J. T. 

Baker, 65.9%) was added drop by drop until the solution was observed transparent. The 
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heating was stopped and europium nitrate was added. Finally, the solution was cooled to 

room temperature. Meanwhile, a stoichiometric amount of Na2SiO3 was dissolved in 50 mL 

of water. The acidic solution was incorporated in the basic one and the pH was adjusted to 

9 using a 1M solution of sodium hydroxide (Riedel-de Haën, 99%). The formed precipitate 

was recovered by vacuum filtration and it was washed ten times with warm water. The wet 

samples Y1.98 Eu0.02 Si2O7 and Y1.98 Eu0.02 SiO5 were dried at 120°C for 4h, ground in an 

agate mortar and thermally treated in air at 950°C and 1100°C respectively for 24h using a 

heating rate of 10°C/min. The powders recovered were ground in an agate mortar for their 

use in the reduction process.   

2.2 Reduction process  

Approximately 200 mg of each sample, Y1.98 Eu0.02 Si2O7 and Y1.98 Eu0.02 SiO5, was 

annealed under a reducing atmosphere at 850°C for 36h and 900°C for 78h respectively. At 

longer periods no significant changes in the emission spectra were observed. A flow of pure 

hydrogen was used as reduction agent (~ 0.001L/s).  

2.3 Structural and optical analysis 

Crystal structure of the recovered powders was determined using X-ray diffraction 

technique with Cu Kα radiation (λ = 1.5045 Å) on a Siemens D5000 X-ray diffractometer 

(40kV, 40mA). SEM images and EDX analysis were obtained using a FEI Quanta-FEG 

200 microscope at 25.0 kV. Photoluminescence excitation and emission spectra were 

measured at room temperature using an Edinburgh Instruments FS920 spectrometer, 

equipped with a monochromated 450 W Xe-arc lamp as the excitation source. Finally the 

quantum efficiency (QE) was measured with an integrating sphere [29]. 
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3. Results and discussion 

3.1 Structural characterization 

Fig.1 shows the XRD patterns of the samples before and after the reduction process, it is 

observed that there were no significant differences between them. The patterns obtained for 

Y1.98 Eu0.02 Si2O7 are displayed on Fig. 1(a). The principal diffraction peaks are indexed 

with the standard card JCPDS (38-0223) indicating the majority phase is α-Y2Si2O7. Some 

extra peaks (*) were identified as the monoclinic X1-Y2SiO5. In Fig. 1(b) the 

diffractograms of Y1.98 Eu0.02 SiO5 system are presented. According to the standard card 

JCPDS (41-0004) the principal phase is X1- Y2SiO5. Peaks not related (°) are observed 

owing to the presence of a second phase, which is identified with the standard pattern 

JCPDS (30-1457) as Y4.67 (SiO4)3O. The peaks between 27-29° in the first diffractogram 

and those three that protrude between 35-39° in the second one could not be identified due 

to the lack of information.  

FIGURE 1 ABOUT HERE 

The morphology of the reduced samples was studied using SEM. The micrographs (Fig. 2 

(a) and (b)) display microparticles with irregular shape and different sizes, the bigger ones 

with a magnitude of approximately 50µm. Furthermore, EDX elemental color mapping 

measurements were performed to explore the element composition and distribution. For 

both reduced samples, yttrium, silicon and europium are homogenously distributed in the 

host lattice. Table 1 shows the average valued of the atomic percentage of each element 

over the area shows in Fig. 2, excluding the contribution of oxygen, which is difficult to 

quantify using EDX. They provide an overview of the proportions of the elements in the 

lattice. The values are congruent with the stoichiometric ratio for both systems.  
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FIGURE 2 ABOUT HERE 

TABLE 1 ABOUT HERE 

3.2 Luminescence properties  

Fig. 3 shows the emission and excitation spectra of the samples before and after the 

reduction process at different excitation and monitoring wavelengths. Emission spectra of 

the non-reduced samples (Fig.3 (a) and (c)) exhibit spectral lines corresponding to the 

transitions 5D0-
7FJ (J = 0, 1, 2, 3, 4) of the typical red-orange emission of Eu3+[30,31]. 

While for Y1.98Eu0.02Si2O7 and Y1.98Eu0.02SiO5 reduced (Fig.3 (b) and (d)), it is possible to 

observe a broad band emission in addition to the spectral lines related with Eu3+ ions, 

located between 400-560 nm and 475-600 nm respectively. It is unlikely that these bands 

are related with transitions from higher energy levels of Eu3+ (5D1, 
5D2) because the 

multiphonon relaxation due to the vibration of silicate groups [32]. Since the bands are not 

observed in the non-reduced sample it is safe to associate these bands with the presence of 

Eu2+ ions. Therefore, the partial reduction of Eu3+ ions to Eu2+ was carried out despite the 

difference in the charge between Y3+ and Eu2+. The charge compensation is expected to 

occur through the formation of oxygen vacancies, which are common in a reducing 

atmosphere[14,28].In addition, it has been widely reported that this band is related with the 

5�	 → 4� allowed transition of Eu2+ ions. The reduction of europium in matrixes formed by 

trivalent cations and even the presence of a similar band due to Eu2+ in the Y2Si2O7 lattice 

is found in literature [14,28,33].  

Excited at 362 nm, the band emission observed for Y1.98Eu0.02Si2O7 system presents a 

maximum peak at 509 nm. The band is wider and exhibit a red shift compared with the 

band reported by Sokolnicky, which shows a maximum value of intensity at 480 nm [28]. 
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The presence of Eu2+ ions with different environment due to the presence of more than one 

phase in the samples and the possible deformation of the local structure for the differences 

in size between Eu3+ and Eu2+, could lead a combination of different emission spectra.  

The relative contribution of Eu2+ and Eu3+ in the total emission of reduced samples depends 

on the excitation wavelength. Upon excitation at 254 nm, only the Eu3+ red emission is 

significantly visible, while at 325 nm (Y1.98 Eu0.02 Si2O7) and 330 nm (Y1.98 Eu0.02 SiO5) the 

Eu2+ related blue-green emission is predominant. The large width of the excitation bands of 

the blue-green emission is a confirmation of the assignment to Eu2+, since in this case; both 

excitation and emission spectra are expected to be broad.  

The excitation spectra of all samples monitored for the red Eu3+ related emission exhibit a 

wide band between 225-300 nm. This band is characteristic of the charge transfer (CT) 

transition of ��	 − ���[30,34–37].  Also, sharp weak peaks at longer wavelength are 

observed, corresponding to the 4� → 4� absorption transitions in Eu3+. Monitored at 530 

nm, only the reduced materials display a wide excitation band between 225-450 nm for 

Y1.98 Eu0.02 Si2O7 and 225-500 nm for Y1.98 Eu0.02 SiO5, both bands with two centers. These 

bands are congruent with the pattern observed for 4f – 5d transition absorption of Eu2+ 

hosted in matrixes based on  silicates and others compounds like aluminates[9,38–41]. 

FIGURE 3 ABOUT HERE 

In order to characterize the color of the total emission for each material, the corresponding 

chromaticity coordinates was obtained at different excitation wavelengths. The coordinates 

were calculated from the luminescence spectral data for reduced samples and plotted in the 

1931chromaticity diagram in Fig. 4. The respective values for the coordinates, CCT 
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(correlated color temperature), CRI (color rendering index Ra) and deviation from the 

planckian locus (Du’v’) are shown in Table 2. It is observed that coordinate values strongly 

depend on the excitation wavelength. For reduced Y1.98 Eu0.02 Si2O7, the coordinates lie in a 

wide range of the white region near the blackbody locus, and for some excitation 

wavelength, their values are close to the standard  white light ( x = 0.33 and y = 

0.33)[42,43].  The CCT values for each pair of coordinates range from 2584 K to 9202 K. 

Most of the values of Du’v’ are above of the blackbody locus indicating that the white 

emission has a greenish tint. The coordinates of Y1.98Eu0.02SiO5 after the reduction process 

are located in the green-yellow region and their CCT values are between 1900 K and 4500 

K.  According with these values the total emission of the sample has a lack of blue light. 

Finally, the internal quantum efficiency of both materials was measured. The values 

obtained were 20.8% for Y1.98 Eu0.02 Si2O7 and 5.06% for Y1.98 Eu0.02 SiO5. 

FIGURE 4 ABOUT HERE 

TABLE 2 ABOUT HERE 

4. Conclusions  

Microparticles of different sizes of α-Y1.98 Eu0.02 Si2O7 and the low-temperature phase of 

Y1.98 Eu0.02 SiO5 were prepared by sol gel technique, and then, reduced at high temperatures 

using pure hydrogen as reduction agent. With the synthesis method used, single phase Y-

Si-O compounds were not obtained, but depending on the conditions, Y2Si2O7 or Y2SiO5 

could be synthesized as a majority phase, with a small contribution from a minority phase. 

After synthesis, all Eu was found in a 3+ oxidation state. 

The presence of Eu2+ in the materials after the reduction process was confirmed by the 

blue-green band emission and the wide absorption band, observed only in the excitation 
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spectra of the reduced samples. These bands are congruent with the information previously 

report in the literature and their large width is the expected for the characteristic bands of 

Eu2+ ions. There was no significant change in their excitation and emission spectra after 

treatment of the powders at high temperature under reducing atmosphere during times 

longer than 36h for α-Y1.98 Eu0.02 Si2O7 and 78h for X1- Y1.98 Eu0.02 SiO5, indicating that 

Eu3+ ions only can be partially reduced in these matrixes even when pure hydrogen is used. 

The relative contribution of Eu2+ and Eu3+ in the total emission of both materials depends 

on the excitation wavelength, leading to a tunable emission phosphor with potential 

application in white LEDs. 
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Figure captions 

Fig. 1 Diffractograms of (a) Y1.98 Eu0.02 Si2 O7 and (b) Y1.98 Eu0.02 Si O5 before and after the 

reduction process with the respective reference patterns (red lines). The additional marks 

point the presence of a second phase (*) X1-Y2SiO5 and (°) Y 4.67(SiO4)3O.  

Fig. 2 SEM (a, b) and EDX elemental color mapping of (c) Y1.98 Eu0.02 Si2 O7 and (d) Y1.98 

Eu0.02 Si O5. 

Fig. 3 Emission and excitation spectra of Y1.98 Eu0.02 Si2 O7 (upper) and Y1.98 Eu0.02 Si O5 

(down), before (a, c) and after (b, d) the reduction process. Excitation wavelengths for the 

emission spectra and monitoring wavelengths for the excitation spectra are indicated in the 

graphs. 

Fig. 4 CIE diagram (1931) of (a) Y1.98 Eu0.02 Si2 O7 and (b) Y1.98 Eu0.02 Si O5, reduced for 

36h and 78h respectively, excited at different wavelengths.  
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Table 1 

Atomic percentage (excluding oxygen) of the different metals in the reduced samples. The expected 
values are presented in brackets. 

 Y1.98 Eu0.02 Si2O7 Y1.98 Eu0.02 SiO5 
Element Atom % 

Y 47.2 [49.5] 64.2 [66.2] 
Si 52.2 [50.0] 34.8 [33.3] 
Eu 0.64 [0.50] 0.96 [0.67] 

 

 

Table 2 

CIE coordinates, CCT (in kelvin), CRI (Ra) and deviation from planckian locus Du’v’ of emission 
spectra of the reduced samples excited at different wavelengths. For very large values of Du’v’, 
CCT was not calculated since this becomes meaningless in this case.  

Excitation 
Wavelength 

(nm) 

Y1.98Eu0.02Si2O7 Y1.98Eu0.02SiO5 
CIE coordinates 

CCT CRI 
Deviation from 
planckian locus 

(Du’v’) 

CIE coordinates 
CCT CRI 

Deviation from 
planckian locus 

(Du’v’) x y x y 

319 0.2737 0.3204 9202 87 0.0226 0.4371 0.4703 3466 83 0.0348 
350 0.2785 0.3439 8239 81 0.0320 0.3620 0.4943 - 68 0.0666 
362 0.3100 0.3568 6453 89 0.0216      
366 0.3073 0.3838 6417 80 0.0373 0.3692 0.5078 - 65 0.0698 
373      0.3888 0.5007 4434 70 0.0611 
383 0.3614 0.3897 4616 89 0.0158 0.4245 0.4806 3729 80 0.0426 
393 0.4543 0.3863 2584 80 -0.0129 0.5369 0.4195 1956 75 0.0034 
402 0.3969 0.4453 4043 80 0.0332 0.4251 0.4864 3751 77 0.0452 
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Highlights  

- Eu3+ doped yttrium silicate powders were annealed under pure hydrogen 

atmosphere. 

- A blue-green band emission was observed only in the spectra of reduced samples. 

- Eu3+ ions only can be partially reduced. 

- The relative contribution of Eu2+ and Eu3+ depends on the excitation wavelength. 

- Tunable emission phosphors were obtained. 

 


