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Abstract

The computational demands of virtual experiments for modern product development 
processes can get out of control due to fine resolution and detail incorporation in simu‐
lation packages. These demands for appropriate approximation strategies and reliable 
selection of evaluations to keep the amount of required evaluations were limited, without 
compromising on quality and requirements specified upfront. Surrogate models provide 
an appealing data‐driven strategy to accomplish these goals for applications including 
design space exploration, optimization, visualization or sensitivity analysis. Extended 
with sequential design, satisfactory solutions can be identified quickly, greatly motivat‐
ing the adoption of this technology into the design process.

Keywords: surrogate modelling, sequential design, optimization, sensitivity analysis, 
active learning

1. Introduction

Amongst the countless research domains and the fields of research revolutionized by the mer‐
its of computer simulation, the field of engineering is a prime example as it continues to ben‐
efit greatly from the introduction of computer simulations. During product design, engineers 
encounter several complex input/output systems, which need to be designed and optimized. 
Traditionally, several prototypes were required to assure quality criteria that were met or to 
obtain optimal solutions for design choices and to evaluate the behaviour of products and com‐
ponents under varying conditions. Typically, a single prototype is not sufficient, and lessons 
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learnt are used to improve the design, back at the drawing table. Therefore, the development 
process used involves building several prototypes in order to gain more confidence in the solu‐
tions. A direct consequence of this approach is that the development process is both slow and 
not cost effective.

The introduction of computer simulations caused revolution: by bundling implementations 
of material, mechanical and physical properties into a software package, simulating the 
desired aspects of a system and performing the tests and experiments virtually; the num‐
ber of required prototypes can be drastically reduced to only a few at the very end of the 
design process. These prototypes can be regarded purely as a validation of the simulations. 
The simulation itself can be interpreted as a model and serves as an abstract layer between the 
engineer and the real world. Performing a virtual experiment is faster and is very inexpensive. 
A direct consequence was an acceleration of development and system design, contributing to 
a shorter time‐to‐market and a more effective process in general. In addition, it was also pos‐
sible to perform more virtual experiments, providing a way to achieve better products and 
design optimality.

However, as simulation software became more precise and gained accuracy over the years, 
its computational cost grew tremendously. In fact, the growth of computational cost was so 
fast it has beaten the growth in computational power resulting in very lengthy simulations 
on state‐of‐the‐art machines and high performance computing environments, mainly due to 
the never ending drive for finer time scales, more detail and general algorithmic complexity. 
For instance, a computational fluid dynamics (CFD) simulation of a cooling system can take 
several days to complete [1], or a simulation of a single crash test was reported to take up to 
36 hours to complete [2]. This introduces a new problem: large‐scale parameter sweeping and 
direct use of this type of computationally expensive simulations for evaluation intensive tasks 
such as optimization and sensitivity analysis are impractical and should be avoided.

To counter this enormous growth in computational cost however, an additional layer of 
abstraction between the complex system in the real world and the engineer was proposed, 
more specifically between the simulation and the engineer. Rather than interacting directly 
with the simulator, a cheaper approximation is constructed. Roughly three approaches to 
obtain this approximation exist:

• Model driven (known as model order reduction) takes a top‐down approach by applying 
mathematic techniques to derive approximations directly from the original simulator. This, 
however, exploits information about the application domain and is therefore problem specific.

• Data driven assumes absolutely nothing is known about the inner workings of the simu‐
lator. It is assumed to be a black‐box and information about the response is collected from 
evaluations. From these data, an approximation is derived. Because this approach is very 
general, it is not bound to a specific domain.

• Hybrid is the overlap zone between both model driven and data driven. Attempts to incor‐
porate domain‐specific knowledge into a data‐driven process to obtain better traceability 
and reach accuracy with less evaluations.
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In this chapter, the focus is on a data‐driven approach: the response of a simulator as a func‐
tion of its inputs is mimicked by surrogate models (metamodels, emulators or response surface 
models are often encountered as synonyms). These cheap‐to‐evaluate mathematical expres‐
sions can be evaluated efficiently and can replace the simulator. A more extensive overview of 
usage scenarios and a formal description of surrogate modelling are given in Section 2. Before 
the surrogate model can be used, it must first be constructed and trained during the surrogate 
modelling process on a number of well‐chosen evaluations (samples) to be evaluated by the 
simulator in order to satisfy the requirements specified upfront. The problem of selecting an 
appropriate set of samples is further explored in Section 3. Section 4 briefly introduces an 
integrated platform for surrogate modelling with sequential design. Finally, these techniques 
are demonstrated on three use‐cases in Section 5.

2. Surrogate modelling

The introduction of this chapter highlighted the global idea of approximation and the benefits 
of introducing an additional layer of abstraction when simulations are expensive. Now, the 
data‐driven approach (surrogate modelling) is discussed more in depth, both from a usability 
point of view and a more formal description of the technique.

2.1. Goals and usage scenarios

The most direct implementation of surrogate modelling is training a globally accurate model 
over the entire design space. This approximation can then replace the expensive simulation 
evaluations for a variety of engineering tasks such as design space exploration, parameteriza‐
tion of simulations or visualization.

A different use‐case of surrogate models is sensitivity analysis of the complex system. 
Especially when many input parameters are present, it is very difficult to achieve global 
accuracy due to the exponential growth of the input space (known as the curse of dimensional‐
ity). Fortunately, not all input parameters contribute equally to the output variability, in fact 
some might not have any impact at all [3]. The surrogate models can be used directly for 
evaluation‐based sensitivity analysis methods such as Sobol indices [4], Interaction indices 
[5] or gradient‐based methods. For some kernel‐based modelling methods, analytical com‐
putation of sensitivity measures is possibly resulting in faster and more reliable estimation 
schemes, even before global accuracy is achieved [6].

Another task at which surrogates excel is the optimization of expensive objective functions. 
This discipline is often referred to as surrogate‐based optimization (SBO). A globally accurate 
surrogate model can be built and optimized using traditional optimization methods such as 
gradient descent, or metaheuristics such as particle swarm optimization [7]. Although this 
approach is correct and works faster than simulating each call of the objective function, it is 
not necessarily the most efficient methodology: when seeking a minimum, less samples can 
be devoted to the regions that are clearly shown to be the opposite. This results in  specific 
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 methodologies, which explore the search space for optima and exploit the available  knowledge 
to refine optima. This is a difficult trade‐off and will be discussed in detail in Section 3.2.

All tasks described so far were forward tasks, mapping samples from a design space to the 
output or objective space. It is also possible to do the opposite: this is referred to as inverse 
surrogate modelling. This can be interpreted as identifying the areas of the design space cor‐
responding to a certain desired or feasible output range. Typical approaches involve training 
a (forward) surrogate model first, then optimizing the model using an error function between 
the output and the desired output as objective function. This optimization is often preferred to 
be a robust optimization to account for the error of the forward surrogate model [8]. Specific 
sampling schemes to identify these regions directly were also proposed [9]. Finally, it is also 
possible to translate the inverse problem into a forward problem involving discretizing the 
output (feasible/infeasible point) and learning the class boundaries.

Because the concept of surrogate modelling is both flexible as well as generic, allowing several 
modifications tailored for the task at hand, it has been applied in wide range of fields includ‐
ing metallurgy, economics, operations research, robotics, electronics, physics, automotive, 
biology, geology, etc.

2.2. Formalism

Formally, the surrogate modelling process can be described as follows. Given an expensive 
function  f  and a collection of data samples with corresponding evaluations represented by  D , 
we seek to find an approximation function   f ̃   :

   
 arg max  t∈T     arg min  θ∈Θ   − Λ  (  κ,     f ̃    t,ϑ  , D )   

    
subject to Λ  (  κ,     f ̃    t,ϑ  , D )    ≤ τ.

    (1)

It is clear that the selection of the approximation function is a complex interaction of sev‐
eral aspects, more specifically:  κ  represents an error function such as the popular root‐mean‐
square error (RMSE),  τ  the target value for the quality as expressed by the error function, all 
under the operation of the model quality estimator  Λ . The quality estimator drives the optimi‐
zation of both the model type  t  out of the set of available model types  T  and its hyperparam‐
eters  θ . Typical examples of surrogate model types are Artificial Neural Networks (ANNs), 
Support Vector Machines (SVMs), Radial Basis Functions (RBFs), rational and polynomial 
models, Kriging and Gaussian Process (GP) models. Examples of hyperparameter optimiza‐
tion include tuning kernel parameters or regularization constants or identifying the optimal 
order of a polynomial or the most appropriate architecture for a neural network.

The choice of  Λ  is therefore crucial to obtain a satisfying surrogate model at the end of the 
process as it is the metric driving the search for  θ . This aspect is often overlooked at first, 
requiring several iterations of the process to obtain satisfactory results. Consulting the users 
of the surrogate model and defining what is expected from the model and what is not, is a 
good starting point. These requirements can then be formally translated into a good qual‐
ity estimator. Unfortunately, defining  Λ  does not end with casting user requirements. Often, 
hyperparameters have a direct impact on the model complexity or penalization thereof, thus 
tuning them is tricky due to the bias‐variance trade‐off [10].
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For instance, a straightforward approach is minimizing the error between the surrogate 
model response and the true responses for the samples used to train the surrogate. This is 
often referred to as training error or sample error and pushes the hyperparameter optimiza‐
tion to favour complex models interpolating the data points perfectly. Although this solution 
might be considered satisfactory at first sight, in reality this rarely provides a good model 
as the optimization problems do not consider model quality at other, unobserved samples 
in the design space. This approach inevitably leads to very unreliable responses when these 
unobserved samples are to be predicted, hence the model is said to be overfitting or to have 
poor generalization performance. Popular quality estimators accounting for generalization per‐
formance include crossvalidation and validation sets.

3. Experimental design

A typical requirement for the surrogate model is to be accurate, hence the objective of the mod‐
elling process is the ability to obtain accuracy with only a small number of (expensive) simula‐
tor evaluations. A different kind of requirement is optimizing the response of the simulator. 
This requires fast discovery of promising regions and fast exploitation thereof to identify the 
(global) optimum. Hence, a different strategy for selecting the samples is required as the accu‐
racy of the surrogate in non‐optimal is of lesser importance. A refined set of model require‐
ments and the goal of the process are required, as they greatly affect the choice of samples to 
be evaluated. The choice of samples is referred to as the experimental design.

3.1. One‐shot design

The traditional approaches to generate an experimental design are the one‐shot designs. Prior 
to any evaluation, all samples are selected in a space‐filling manner: at this point, no fur‐
ther information is available due to the black‐box assumption on the simulator itself (as 
part of the data‐driven approach). Therefore, the information density should be approxi‐
mately equal over the entire design space and the samples are to be distributed uniformly. 
To this end, several approaches related to Design of Experiments (DoEs) have been devel‐
oped. However, only the space‐filling aspect has an impact within in the context of com‐
puter experiments, as other criteria such as blocking and replication lose their relevance 
[11]. This led to the transition and extension of these existing statistical methods to computer 
experiments [11, 12]. Widely applied are the factorial designs (grid‐based) [13] and optimal 
(maximin) Latin Hypercube designs (LHDs) [14]. Both are illustrated in Figures 1 and 2, 
respectively, for a two‐dimensional input space and 16 samples. An LHD avoids collapsing 
points should the input space be projected into a lower dimensional space. Other approaches 
include maximin and minimax designs, Box and Behken [15], central composite designs [16] 
and (quasi‐)Monte Carlo methods [17–19].

Despite their widespread usage, these standard approaches to generate experimental designs 
come with a number of disadvantages. First and foremost: the most qualitative designs (with 
the best space‐filling properties) can be extremely complex to generate (especially for problems 
with a high‐dimensional input space) due to their geometric properties. For instance, gener‐
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ating an LHD with optimal maximin distance is very time‐consuming process. In fact, the 
generation of an optimal LHD is almost a field of its own, with several different methods for 
faster and reliable generation [14, 20]. Fortunately, once a design is generated, it can be reused. 

Figure 1. Two‐dimensional factorial design with four levels per dimension.

Figure 2. Two‐dimensional optimal maximin Latin Hybercube design of size 16.
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For some other design methodologies, it is not possible to generate them for an arbitrary size. 
Given the expensive nature of each evaluation, this can result in an unacceptable growth of 
required simulation time. Factorial designs for instance always have size   k   d   with level  k  and 
dimension  d , making them infeasible choises for problems with many input parameters.

Another disadvantage of one‐shot methodologies is the arbitrary choice of size of the design. 
The choice should depend entirely on the nature of the problem (i.e. larger design spaces with 
more complex behaviour require more evaluations). However, this information is unavailable 
at the time the design is generated. Hence, one‐shot approaches risk selecting too few data 
points resulting in an underfitted model, or selecting too much data points causing loss of 
time and computational resources.

3.2. Sequential experimental design

As a solution, sequential design was adopted [21]. This methodology starts from a very small 
one‐shot design to initiate the process. After evaluation of these samples a model is built, and 
a loop is initiated which is only exited when either one of the specified stopping criteria is 
met. Within the loop, an adaptive sampling algorithm is run to select additional data points for 
evaluation which are used to update the model. Figure 3 displays this process graphically.

This approach has a number of advantages. First of all, constraints on the surrogate modelling 
process can be explicitly imposed through the stopping criteria. Typical criteria include how 
well the model satisfied the model requirements, a maximum number of allowed evaluations, or 
a maximum runtime. Second, the adaptive sampling method can be designed to select new data 
points specifically in terms of the requirements. Sampling to obtain a globally accurate model 
will differ from sampling to discover class boundaries or sampling to obtain optima. These 
choices can also be guided by all information available about the input‐output behaviour: when  n  
samples have been selected, a history of intermediate models and all simulator responses is avail‐

Figure 3. Surrogate modelling with sequential design.
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able to guide the selection of new samples. Because of the information available, this selection no 
longer has to be purely based on a black‐box approach, and information can be exploited.

Roughly, all methods for adaptive sampling are based on any of the following criteria (dis‐
cussed more in detail below):

• Distance to neighbouring points (space‐filling designs)

• Identification of optima

• Model uncertainty

• Non‐linearity of the response

• Feasibility of the candidate point w.r.t. constraints

Depending on the goal and model requirements, a strategy can be designed involving a com‐
plex combination of these criteria. Fundamentally, each approach will involve two competing 
objectives:

1. Exploration: sampling regions of the design space where proportionally only little infor‐
mation has been acquired.

2. Exploitation: sampling promising (w.r.t to the goal) regions of the design space.

It is clear, however, that a good strategy strikes a balance between these goals as both are 
required to obtain satisfactory results.

Exploration‐based algorithms are typically less involved with the goal of the process. They 
are crucial to assure that no relevant parts of the response surface are completely missed. 
Roughly the space‐filling and model uncertainty criteria focus mostly on exploration. Space‐
filling sequential experimental design usually involves distance to neighbouring points, 
e.g. the maximin/minimax criteria, potentially complemented with projective properties 
[22]. Model uncertainty is either explicitly available, or must be derived somehow. Bayesian 
model types represent the former type of models, e.g. the prediction variance of Kriging and 
Gaussian Process models, which can be applied directly for maximum variance sampling 
[23, 24] or maximum entropy designs [25]. For these kinds of models, a better way is express‐
ing the uncertainty on the model hyperparameters resulting in approaches to reduce this 
uncertainty and hence, enhancing the overall model confidence [26]. Model uncertainty can 
also be derived by training several models and comparing their responses. Areas with most 
disagreements are then marked for additional samples. This can be a very effective approach 
in combination with ensemble modelling.

On the other hand, exploitation methods clearly pursue the goal of the process. In case 
a global accurate model is required, a very effective approach is raising the information 
density in regions with non‐linear response behaviour (e.g. LOLA‐Voronoi [27], FLOLA‐
Voronoi [28]). The latter approach does not even require intermediate models as it oper‐
ates on local linear interpolations. For optimization purposes, specific adaptive sampling 
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methodologies can be applied, depending on the specific tasks. For single‐objective opti‐
mization examples of such sampling methods include CORS [29] and Bayesian optimi‐
zation acquisition functions such as Expected Improvement [30] (combined with Kriging 
models this corresponds to the well‐known Efficient Global Optimization approach [31]), 
the Knowledge Gradient [32] and Predictive Entropy Search [33]. Many of these methods 
for optimization can also be used in combination with a method, which learns about the 
feasibility of input regions of the design space: during the iterative process an additional 
model learns the feasibility from the samples (as reflected by the simulation thereof). This 
information is then used during the selection of new samples with specific criteria such as 
the Probability of Feasibility (PoF) [34].

Surrogate‐based optimization has also been extended to problems with two or more (poten‐
tially conflicting) objectives. The goal of this type of multi‐objective optimization is the 
identification of a Pareto front of solutions, which presents the trade‐off between these objec‐
tives. Existing approaches include hypervolume‐based methods such as the Hypervolume 
Probability of Improvement (HvPoI) [35, 36], the Hypervolume Expected Improvement [37] 
or multi‐objective Predictive Entropy Search [38].

4. SUMO Toolbox

Designed as a research platform for sequential sampling and adaptive modelling using 
MATLAB, the SUMO Toolbox [39, 40] has grown into a mature design tool for surrogate mod‐
elling, offering a large variety of algorithms for approximation of simulators with continuous 
and discrete output. The software design is fully object oriented allowing high‐extensibility of 
its capabilities. By default, the platform follows the integrated modelling flow with sequential 
design but can also be configured to approximate data sets, use a one‐shot design, etc.

The design goals of the SUMO Toolbox support approximation of expensive computer simu‐
lations of complex black‐box systems with several design parameters by cheap‐to‐evaluate 
models, both in a regression and a classification context. To obtain these goals, the SUMO 
Toolbox offers sequential sampling and adaptive modelling in a highly configurable environ‐
ment, which is easy to extend due to the microkernel design. Distributed computing support 
for evaluations of data points is also available, as well as multi‐threading to support the usage 
of multi‐core architectures for regression modelling and classification. Many different plugins 
are available for each of the different sub‐problems, including many of the algorithms and 
methods mentioned in this chapter.

The behaviour of each software component is configurable through a central XML file, and 
components can easily be added, removed or replaced by custom implementations. The 
SUMO Toolbox is free for academic use and is available for download at http://sumo.intec.
ugent.be. It can be installed on any platform supported by MATLAB. In addition, a link can 
be found to the available documentation and tutorials to install and configure the toolbox 
including some of its more advanced features.
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5. Illustrations

To illustrate the flexibility of the surrogate modelling framework with sequential design, 
some example cases are considered. The SUMO Toolbox was used for each case.

5.1. Low‐noise amplifier

This test case consists of a real world problem from electronics. A low‐noise amplifier (LNA), a 
simple radio frequency circuit, is the typical first stage of a receiver, providing the gain to sup‐
press noise of subsequent stages. The performance of an LNA can be determined by means 
of computer simulations where the underlying physical behaviour is taken into account. For 
this experiment, we chose to model the input noise‐current, in function of two (normalized) 
parameters: the inductance and the MOSFET width. The response to the inputs for this test 
case is smooth with a steep ridge in the middle. This type of strong non‐linear behaviour is 
difficult to approximate.

The model type for this problem is an ANN, trained with Levenberg‐Marquard backpropa‐
gation with Bayesian regularization (300 epochs). The network topology and initial weights 
are optimized by a genetic algorithm, with a maximum of two layers. The process initiates by 
combining a 10‐point LHD with a two‐level factorial design (the corner points). As adaptive 
sampling methodology, the FLOLA‐Voronoi algorithm was chosen to select a single‐point 
iteration. Once the steep ridge has been discovered, the information density in this area will 
be increased. As model quality estimator, crossvalidation was used, with the root relative 
square error (RRSE) function:

  RRSE  (  x,  x ˜   )    =  √ 
__________

   
 ∑  i=1  n    ( x  i   −   x ˜    i   )   2  __________  ∑  i=1  n    ( x  i   −   x ¯¯   )   2     .  (2)

The stopping criterion was set to an RRSE score below 0.05. This was achieved after evaluat‐
ing a total of 51 samples. A plot of the model is shown in Figure 4. Additionally, the distribu‐
tion of the samples in the two‐dimensional input space is shown in Figure 5. The focus on the 
ridge can be clearly observed. In comparison, repeating the experiment in a one‐shot setting 
with an LHD of 51 points and keeping all other settings results in an RRSE score of only 0.11. 
This is mostly caused by an inadequate detection of the non‐linearity (only a few samples are 
near the non‐linearity), whereas a lot of samples are on the smoothly varying surfaces.

5.2. Optimization: gas cyclone

The next illustration is more involved and is a joint modelling process aiming both at design 
optimality as well as feasibility. The goal is to optimize the seven‐dimensional geometry of 
a gas cyclone. These components are widely used in air pollution control, gas‐solid separa‐
tion for aerosol sampling and industrial applications aiming to catch large particles such as 
vacuum cleaners. An illustration is given in Figure 6. In cyclone separators, a strongly swirl‐
ing turbulent flow is used to separate phases with different densities. A tangential inlet gen‐
erates a complex swirling motion of the gas stream, which forces particles toward the outer 
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Figure 4. LNA: final surrogate model for the LNA illustration. The sharp peak is clearly present.

Figure 5. LNA: sample distribution as constructed sequentially by the FLOLA‐Voronoi adaptive sampling algorithm.
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wall where they spiral in the downward direction. Eventually, the particles are collected in 
the dustbin (or flow out through a dipleg) located at the bottom of the conical section of the 
cyclone body. The cleaned gas leaves through the exit pipe at the top. The cyclone geometry 
[41] is described by seven geometrical parameters: the inlet height  a , width  b , the vortex finder 
diameter   D  x   , and length  S , cylinder height  h , cyclone total height   H  t    and cone‐tip diameter   B  c   .  
Modifying these parameters has an impact on the performance and behaviour of the gas 
cyclone itself.

Figure 6. Cyclone: illustration of a gas cyclone.
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Design optimality for the gas cyclone, however, is not represented by a unique and optimal 
number. In fact, it is represented by two different aspects: the pressure loss (expressed by the 
Euler number) and the cut‐off diameter, which is expressed by the Stokes number. Both aspects 
represent a trade‐off, and the proper scaling to sum both into a single objective is unknown. 
Hence, the correct way to proceed is to identify a set of Pareto optimal solutions representing 
the trade‐off inherent to this problem, rather than a single solution. Presented with this trade‐
off, the designer has to make the final decision on what the optimal design should be. The 
shape of the Pareto front is informative and of great value for the designer (w.r.t. robustness of 
the solution for example). For the optimization, the two outputs of a simulation corresponding 
to these objectives are approximated with the built‐in Kriging models [22].

In addition, geometry optimization usually involves constraints as some configurations are 
not feasible, or result in gas cyclones, which do not work according to specifications. In addi‐
tion to the Euler and Stokes objectives, the simulation of a sample also emits four binary 
values indicating if their corresponding constraint was satisfied or not (denoted as c1, c2, c3 
and c4). As each evaluation is computationally demanding, this additional knowledge should 
be included in order to maximize the probability of selecting feasible solutions. Each of the 
constraint outputs will therefore be approximated by a probabilistic SVM. For selecting new 
samples, both the Pareto optimality and the feasibility need to be considered. To this end, the 
HvPoI and PoF criteria are used, respectively. The PoF score is not computed explicitly (as it 
would be for a Gaussian Process) but interpreted as the SVM probability for the class repre‐
senting feasible samples. This results in the following joint criterion:

  α  (  x )    = HvPoI  (  x )     ∏  
 {   c  1  , c  2  , c  3  , c  4   }  

    PoF  c  (x )  (3)

For each iteration of the sequential design, this criterion is optimized resulting in a new 
sample maximizing the probability of a more feasible and more optimal solution. To start, 
an LHD is constructed in seven dimensions. The kernel bandwidth and regularization con‐
stant hyperparameters for the SVMs are optimized with the DIRECT optimization algo‐
rithm [42], using crossvalidation with the popular   F  

1
   ‐score of the positive class as error 

function. The hyperparameters for the Kriging models are optimized with maximum‐likeli‐
hood estimation. The sampling criterion is first optimized randomly with a dense set of ran‐
dom points, then the best solution serves as a starting point for applying gradient descent 
locally to refine the solution. The stopping criterion was set to a maximum of 120 evaluated 
data points.

Figure 7 shows the scores for all evaluated samples on both objectives. The bullets and squares 
represent the samples forming the Pareto front. The black‐box constraints were learned as the 
optimization was proceeding, hence many evaluated samples do not satisfy the constraints (as 
this was unknown at that time): 8% of the evaluated samples however satisfy the constraints. 
Fortunately, four of them are Pareto optimal and represent valid optimal configurations. The 
exact optimal Pareto front was unknown upfront: in order to provide a comparison and verify 
the integrity of the identified solutions the traditional NSGA‐II [43] multi‐objective optimiza‐
tion algorithm was applied directly on the CFD simulations for a total of 10,000 evaluations. 
Clearly, the Pareto optimal solutions found by the surrogate‐based approach form a similar 
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front. Our approach was able to identify these solutions with significantly fewer evaluations 
and hence significantly faster. Therefore, the identified Pareto front is a very good approxima‐
tion given the budget constraint of 120 evaluations.

5.3. Satellite braking system

Finally, we demonstrate the use of surrogate models for performing analysis into the rel‐
evance of input parameters. A simulation of a braking system of the Aalto‐1 student satel‐
lite [44, 45] was modelled with sequential design. The brake consists of a small mass  m  
attached to a tether, which is extended at a constant speed   v  feed   . The satellite is spinning 
around with an angular velocity   ω  sat   , which is also the angular velocity of the mass at 
the beginning of the deployment. As the distance of the tip of the tether to the satellite 
increases, the angular velocity of the tip,   ω  tip   , decreases. This results in a displacement 
angle  γ  of the tether from its initial balance position. This causes a tangential force nega‐
tive to the rotational direction of the satellite, causing it to spin around slower. The same 
tangential force accelerates the tip, which results in a decrease of the angle, until the tether 
has extended sufficiently again to further decrease the rotation of the satellite. Figure 8 
illustrates the setup graphically.

Although the displacement angle effectively causes the braking effect, it must remain within 
an acceptable range to prevent a range of undesired effects and issues. To this end, a simula‐
tion for  γ  was developed with five input parameters (the time after deployment time, initial 
angular velocity of the satellite, the mass of the tip, the deployment speed of the tether and 

Figure 7. Cyclone: Pareto front obtained after 120 evaluations for the gas cyclone optimization. The plot also 
distinguishes between feasible and infeasible points and shows the Pareto front obtained by NSGA‐II after an extensive 
10,000 evaluations.
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the width of the satellite). Using surrogate models, the aim is to find the parameters, which 
influence the displacement angle the most.

To approach this problem, the process starts from a LHD of 20 points. Iteratively, a space‐
filling sequential design selects 10 additional samples for evaluation on the simulator. The 
space‐filling approach incorporates both the maximin distance and projective properties as 
described in Ref. [46]. The model type selected is a GP with the Matérn  3 / 2  covariance func‐
tion with Automated Relevance Determination (ARD). When 300 samples were evaluated, the 
process was terminated and the analytical approach presented in Ref. [6] was used to compute 
the first‐order Sobol indices, as well as the total Sobol indices (first‐order indices augmented 
with all indices of higher order interactions containing this parameter) [4]. Both indices are 
plotted in Figure 9.

From the results, it can be clearly observed that the mass of the tip has no impact at all on the 
displacement angle. It can therefore be disregarded from any further design decisions. All 
other parameters do have some impact, as expected. The deployment speed clearly has the 

Figure 8. Satellite: illustration of the breaking system.

Figure 9. Satellite: Sobol indices for the final GP model.

Surrogate Modelling with Sequential Design for Expensive Simulation Applications
http://dx.doi.org/10.5772/67739

187



highest impact. This is intuitive, as faster deployment results in more significant differences 
between the angular velocities of the satellite and the tip.

6. Conclusion

The benefits of surrogate modelling techniques have proven to be successful to work with 
expensive simulations and expensive objectives in general. Within this flexible methodol‐
ogy, and complemented with intelligent sequential sampling (sequential design) several 
tasks ranging from design space exploration, sensitivity analysis to (multi‐objective) optimi‐
zation with constraints can be accomplished efficiently with only a small number of evalu‐
ations. This greatly enhances the capabilities to virtually design complex systems, reducing 
the time and costs of product development cycles resulting in a shorter time‐to‐market. The 
strengths and possibilities were demonstrated on a few real world examples from different 
domains.
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