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A comprehensive overview of genomic imprinting
in breast and its deregulation in cancer
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Genomic imprinting plays an important role in growth and development. Loss of imprinting

(LOI) has been found in cancer, yet systematic studies are impeded by data-analytical

challenges. We developed a methodology to detect monoallelically expressed loci without

requiring genotyping data, and applied it on The Cancer Genome Atlas (TCGA, discovery)

and Genotype-Tissue expression project (GTEx, validation) breast tissue RNA-seq data.

Here, we report the identification of 30 putatively imprinted genes in breast. In breast cancer

(TCGA), HM13 is featured by LOI and expression upregulation, which is linked to DNA

demethylation. Other imprinted genes typically demonstrate lower expression in cancer,

often associated with copy number variation and aberrant DNA methylation. Downregulation

in cancer frequently leads to higher relative expression of the (imperfectly) silenced allele, yet

this is not considered canonical LOI given the lack of (absolute) re-expression. In summary,

our novel methodology highlights the massive deregulation of imprinting in breast cancer.
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Breast cancer is the most common type of cancer in women1.
It is a very heterogeneous disease with major differences in
incidence, clinical outcome, prognosis and response to

therapy2,3. Gene expression profiling led to the division of breast
cancer in five different molecular subtypes: Luminal A, Luminal
B, HER2-enriched, Basal-like and Normal-like2,4. These subtypes
differ amongst others in expression of the oestrogen receptor,
progesterone receptor, human epidermal growth factor receptor 2
(HER2) and in histological grade3.

An early occurring aberration in cancer is loss of imprinting
(LOI)5. Imprinting refers to the monoallelic expression of genes
in a parent-of-origin-specific manner. In diploid eukaryotic
organisms, the maternal and paternal copies of most genes are
expressed at similar levels. For imprinted genes, however, only a
single allele is transcriptionally active6–8. Imprinting patterns may
vary between tissues9. Imprinted genes are mostly clustered and
regulated by imprinting control regions, which are typically under
DNA methylation control, though also H3K27me3 was demon-
strated to be involved10,11. Imprinted genes play an important
role in development and placental biology12. Furthermore, as
dosage of imprinted genes is crucial, disruption of imprinting can
result in a number of human imprinting syndromes and may
predispose to cancer by promoting tumourigenic or suppressing
antitumour mechanisms13–16. Some well-known diseases are
Angelman Syndrome (functional loss of the maternal, active allele
of UBE3A), Prader–Willi Syndrome (loss of the paternal, active
allele of SNRPN) and Beckwith–Wiedemann Syndrome (LOI on
chromosome 11)14,17.

LOI results in biallelic expression due to activation of the silent
allele. Indeed, experiments in mice demonstrated that demethy-
lation at imprinted genes leading to LOI made cells susceptible to
cellular transformation and tumourigenesis18. For instance,
aberrant biallelic expression of the imprinted IGF2 locus is
thought to promote tumourigenesis by inhibiting apoptosis in
colorectal cancer19 and to lead to over-proliferation defects in
lung, colon and ovarian cancer20. LOI of other imprinted genes,
such as H19, PEG3, MEST and PLAGL1, was also discovered in
varying cancers21.

However, several studies suggest a far more complicated story,
where LOI is associated with silencing of the normally active
allele5. Indeed, recent studies identified major expression down-
regulation of reportedly imprinted genes in cancer22,23. More-
over, in oesophageal cancer, LOI of IGF2 was specifically
associated with expression downregulation, and improved survi-
val24. Also in prostate cancer, no increased expression was found
for IGF2 despite LOI25. Notwithstanding the major relevance of
LOI in cancer, this fragmentary evidence demonstrates that the
current paradigm of the role of LOI in cancer (i.e. growth &
tumour promoting expression) requires additional evaluation. A
recent study by Ribaraska et al. found downregulation of several
imprinted genes in prostate cancer, but stable DNA methyla-
tion23. These results suggest the existence of an imprinted gene
network in which these genes are co-regulated, as was also
observed in mice26. Recently, also copy number variation (CNV)
was identified as an important cause of imprinting deregulation
in cancer27.

Systematic analyses of LOI are still lacking. Indeed, although
monoallelic expression is a well-investigated topic, only few
regions are well-characterised in humans, and only a single study
thoroughly evaluated tissue-specific imprinting patterns9. To
date, the impact of aberrant monoallelic expression on cancer has
typically been studied at single imprinted loci18. Moreover, the
practical applicability of existing high-throughput methods is
greatly hampered by the necessity for genotyping next to (typi-
cally) RNA-seq data. Thus, there is a need to systematically
profile (i) monoallelically expressed/imprinted loci and (ii) their

deregulation (LOI) in cancer, preferably solely based on RNA-seq
data.

Here, such a methodology is presented and—given indications
for massive differential expression of imprinted genes in this
tumour22—applied on breast control (TCGA28, GTEx29) and
cancer data (TCGA), leading to the identification of 30 putatively
imprinted genes in breast of which 8 are featured by increased
biallelic expression in at least one breast cancer subtype. Com-
parison with whole-exome sequencing (WES) data demonstrate
that (i) the RNA-seq-based results are generally reliable, and (ii)
that avoiding the use of WES data leads to a far higher genome-
wide character. Intriguingly, the results indicate that the increased
frequency of biallelic expression is far more often associated with
lower expression than higher expression of the corresponding
locus, though exceptions exist (e.g. HM13). Therefore, this study
demonstrates that deregulation of imprinting is an important
feature in (breast) cancer but is not automatically associated with
canonical LOI. Furthermore, these results underline the efficacy
of the proposed strategy for the identification of imprinted
regions and their deregulation.

Results
Detection of imprinting in healthy breast tissue. First, a
methodology was developed and applied to screen for imprinted
loci in RNA-seq data, using single nucleotide polymorphisms
(SNPs) to discriminate between alleles. Contrasting previous
genome-wide methods, no DNA genotyping data is required, as
we solely rely on genotyping of RNA-seq data. The basic rationale
is that in case of 100% imprinting, no heterozygous samples can
be found in RNA-seq data, as they perfectly resemble homo-
zygous samples (only a single allele is expressed) (see Methods
section and Steyaert et al.30). The novel imprinting model
describes the data for each SNP as a mixture of homozygous and
heterozygous samples, more specifically as a mixture of genotype-
dependent binomial distributions, with weights derived from
Hardy–Weinberg equilibrium. The model allows for sequencing
errors and partial imprinting. Indeed, one parameter describes
the degree of imprinting, and it can be evaluated whether its
estimate is significantly higher than 0 using a likelihood ratio test.

Upon application on 113 TCGA breast control samples, 127
SNPs were considered to be possibly imprinted (false discovery
rate (FDR) ≤ 0.05), and dbSNP annotation was found for 125
SNPs. The 125 possibly imprinted SNPs corresponded with
approximately 35 genes, the majority already known to be
imprinted (Supplementary Note 1–3). Note that annotation of the
SNPs to specific genes was often difficult as many overlapping
genes were found (Supplementary Note 1). For example,MCTS2P
is a retrogene copy and located in HM13, making it uncertain in
which gene the detected SNP was located31. Similarly, for
MTRNR2L1, imprinted SNPs with Ensembl annotation for this
locus were found upstream of the gene, making correct
annotation uncertain. Upon validation in GTEx healthy breast
data, 121 SNPs corresponding to 30 genes remained (96.8% SNP
validation rate). Table 1 lists the identified SNP loci and
corresponding genes. As examples, the resulting mixture
distributions of IGF2 and SNRPN are shown in Fig. 1a, b,
respectively. The distributions show that these loci are clearly
depleted of samples featured by biallelic expression. In Fig. 1c a
non-imprinted SNP with a distinct heterozygous peak is shown.
Moreover, Fig. 1a indicates that IGF2 imprinting is only partial
(97% imprinted), underscoring the suitability of the flexible
distribution model used here. Similar figures for the other genes
can be found in Supplementary Figs. 1–11. In general, imprinting
could be verified using TCGA WES data, yet for many SNPs this
was technically infeasible due to too low coverages—supporting
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Fig. 1 Mixture distributions of (non-)imprinted SNPs. Observed (red) and modelled (blue) fraction of alternative alleles for two significantly imprinted SNP
positions, i.e. a IGF2 (rs2585, adj. p-value < detection limit (LRT), î= 0.97) b SNRPN (rs705, adj. p-value= 1.81E-71 (LRT), î= 0.99), and a non-imprinted
SNP, i.e. c CHMP6 (rs1128687, î= 0)

Table 1 Genes featured by monoallelic expression/imprinting in breast tissuea

Gene symbol SNPs Gene symbol SNPs Gene symbol SNPs

MTCO1P12c rs112232512 (1.42E-75) MEG3 rs3087918 (5.47E-27) SNHG14 rs4344720 (7.48E-20)
LINC01139 rs61746209 (6.14E-29) MEG3 rs3087917 (1.64E-30) SNHG14 rs3863396 (2.68E-19)
ZDBF2 rs7582864 (1.02E-21) MEG3 rs3742391 (2.13E-19) SNHG14 rs62002013 (3.83E-12)
ZDBF2 rs3732084 (6.54E-26) MEG3 rs12897172 (2.31E-17) SNHG14 rs2356294 (4.96E-24)
ZDBF2 rs1975597 (7.97E-30) MEG3 rs1884540 (1.78E-26) SNHG14 rs1043164 (6.41E-12)
ZDBF2 rs1448902 (2.02E-17) MEG3 rs2400941 (1.64E-29) SNHG14 rs691 (6.11E-33)
ZDBF2 rs4673350 (2.56E-23) MEG3 rs77658190 (2.45E-17) SNHG14 rs13526 (3.74E-29)
PAX8-AS1 rs7585510 (0.0068) MEG3 rs10132552 (4.26E-17) PLIN1b rs4578621 (3.29E-06)
PTX3b rs73158510 (5.44E-07) MEG3 rs3194464 (1.43E-23) ZNF597 rs37822 (1.47E-18)
NAP1L5 rs8605 (3.77E-22) MEG3 rs11160606 (1.53E-23) ZNF597 rs37823 (3.08E-18)
NAP1L5 rs710834 (9.10E-21) MEG3 rs1950628 (1.01E-26) ZNF597 rs11639510 (3.42E-25)
ZNF300P1 rs17800987 (4.87E-11) MEG3 rs1053900 (4.91E-34) ZNF597 rs37824 (3.21E-18)
PLAGL1 rs2328535 (3.09E-10) MEG3 rs1054000 (7.58E-27) ZNF597 rs12737 (1.01E-21)
PLAGL1 rs9373409 (1.40E-27) MEG3 rs8013873 (6.63E-27) USP32P2b rs141915702 (0.0093)
PLAGL1 rs73006222 (2.41E-15) MEG3 rs11859 (2.17E-25) MTRNR2L1c rs3931649 (3.16E-28)
PLAGL1 rs17615967 (1.76E-14) MEG3 rs74080162 (1.15E-24) MTRNR2L1c rs113014658 (6.82E-09)
PLAGL1 rs77203559 (3.76E-15) MEG3 rs4378559 (8.76E-25) MTRNR2L1c rs113626706 (5.74E-12)
PLAGL1 rs9321953 (1.48E-21) MEG3 rs12890215 (8.74E-25) MTRNR2L1c rs3931650 (7.67E-29)
LOC100294145 rs241407 (2.71E-07) MEG3 rs55996894 (5.63E-21) ZNF331 rs113983639 (1.99E-13)
PEG10 rs35237090 (1.69E-17) MEG3 rs3742390 (6.24E-31) ZNF331 rs8110350 (4.12E-106)
PEG10 rs13073 (3.35E-13) MEG3 rs4906022 (8.42E-204) ZNF331 rs8110538 (1.74E-109)
PEG10 rs7810469 (6.18E-29) SNRPN rs2554426 (9.39E-16) ZNF331 rs8109631 (8.52E-175)
MEST rs10863 ( < detection limit) SNRPN rs705 (1.81E-71) PEG3 rs4801386 (0.00011)
HOTAIRM1 rs706018 (5.67E-36) SNHG14 rs2732028 (3.33E-15) PEG3 rs1558355 (0.00027)
H19 rs2075745 (6.63E-34) SNHG14 rs74335291 (5.12E-24) PEG3 rs723082 (1.62E-31)
H19 rs2075744 (3.21E-27) SNHG14 rs2732029 (6.71E-28) PEG3 rs3143 (7.86E-06)
H19 rs2839698 (3.18E-57) SNHG14 rs765438 (1.96E-28) PEG3 rs1055359 (9.07E-20)
H19 rs2067051 (1.94E-57) SNHG14 rs2732030 (9.43E-12) PEG3 rs11666110 (8.06E-28)
H19 rs2839701 (3.29E-61) SNHG14 rs10451029 (6.14E-22) PEG3 rs1860565 (1.02E-21)
H19 rs2839704 (1.40E-44) SNHG14 rs2052723 (1.14E-25) PEG3 rs33931963 (6.73E-28)
H19 rs2839702 (2.94E-50) SNHG14 rs2554419 (7.96E-31) HM13 rs6058058 (1.33E-10)
H19 rs2839703 (1.10E-46) SNHG14 rs719704 (3.32E-22) HM13 rs6059869 (4.04E-14)
H19 rs10840159 (2.28E-50) SNHG14 rs34316840 (1.13E-25) HM13 rs6059873 (1.29E-19)
H19 rs3741219 (1.01E-107) SNHG14 rs2732031 (1.23E-26) HM13 rs6059874 (4.88E-14)
RP11-109L13.1b rs201284359 (4.97E-10) PWAR6 rs2732041 (1.60E-12) HM13 (MCTS2P) rs1115713 (7.94E-09)
IGF2 rs7873 (1.08E-268) PWAR6 rs2732043 (1.78E-13) GNAS/GNAS-AS1 rs1800900 (5.02E-16)
IGF2 rs2585 (< detection limit) PWAR6 rs2732044 (1.42E-26) BCR rs550197 (7.93E-50)
DLK1 rs1802710 (2.68E-28) PWAR6 rs1030389 (1.68E-28) CPHL1P rs12497062 (0.00027)
MEG3 rs78793760 (4.16E-21) PWAR6 rs62001981 (1.41E-26) ATP8A1 rs11940243 (3.21E-08)
MEG3 rs35458454 (5.16E-21) PWAR6 rs62001982 (1.09E-19) GLIPR1/KRR1 rs1056905 (1.20E-06)
MEG3 rs35431412 (1.62E-29) PWAR6 rs1045935 (6.76E-29) TPSB2 rs77309587 (1.52E-08)
MEG3 rs10147988 (1.07E-26) SNHG14 rs11637436 (1.44E-11)

aThe columns show the gene symbol (Gene symbol) and the ID of significantly imprinted SNP locus falling in these genes (SNPs) with its LRT FDR-adjusted p-value between brackets. Genes which are
known to be imprinted or for which there is prior evidence of imprinting are marked in bold. Genes eliminated from our set of imprinted genes upon unsuccessful validation in GTEx are underlined.
bCandidate imprinted genes due to limited coverage/allele frequency in GTEx or inconsistent results per exon
cCandidate imprinted pseudogenes, involvement original mitochondrial genes could not be fully excluded (Supplementary Note 3e)
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the value of the genotyping-free approach introduced here
(Supplementary Note 3c).

Next to imprinting, the model detects random monoallelic
expression, as this can only be discriminated from imprinting by
means of family data, unavailable in TCGA. As a consequence,
several HLA, HLA-DR and HLA-DQ genes—important players in
immune reactions known to be regulated by random monoallelic
expression9—were also picked up, but were excluded from further
analyses. The remaining genes (Table 1) represent the final list of
putatively imprinted loci in normal human breast tissue further
analysed throughout this manuscript.

As typically only few putatively imprinted SNPs per gene were
found, we evaluated the other SNPs in identified genes. Often
SNPs were located in intronic regions or 5′-UTRs with too low
coverage for accurate detection of imprinting. Other undetected
SNPs in exons or 3’-UTRs were typically featured by a high
sequencing error rate, low minor allele frequency or inferior
goodness-of-fit to the model (Supplementary Data 1–2). As a
result, most of these missed SNPs were filtered out prior to
application of the imprinting likelihood ratio test, or exhibited
non-significant results due to aforementioned problems. In
Supplementary Data 1 all SNPs in HM13 are shown, which
clearly demonstrates that indeed mostly intronic SNPs with low
coverages are missed. However, some genes showed evidence
(ZNF300P1, LOC100294145, ZNF331 and GNAS-AS1/GNAS) or
indications (HOTAIRM1) of transcript-specific imprinting with
more complex mixture distributions and consistent differences
between exons (Supplementary Figs. 16–17 and Supplementary
Data 2). On the other hand, for PTX3, RP11-109L13.1, PLIN1 and
USP32P, inconsistent imprinting patterns could not be readily
explained by gene isoforms, and these loci are denoted as
candidate imprinted (Supplementary Fig. 15 and Supplementary
Data 2). Known possibly imprinted genes were clearly not
imprinted in breast tissue independent of overlapping transcripts
(Supplementary Figs. 18–19). For possible pseudogenes, we
evaluated misalignment as possible explanation. For MTRNR2L1
and MTCO1P12, this additional curation step did not lead to
unequivocal results, leading us to also designate these loci as
candidate imprinted (Table 1, Supplementary Note 3e).

As an additional validation step, we examined whether DNA
methylation levels were skewed towards putative monoallelic
methylation for the imprinted loci. For the 18 genes represented
in the TCGA Infinium HumanMethylation data, at least one
putative monoallelically-methylated probe was found (median
methylation in between 33.3 and 66.7%) (Supplementary Data 3).
Moreover, 46% of all probes for these loci were found to be
featured by putative monoallelic methylation, a major enrichment
compared to expected (all probes, 14%, p= 1.84E-175, χ² test).
However, monoallelic methylation is only a crude proxy for the
presence of imprinting associated differentially methylated
regions (DMR). We therefore analysed methylation in known
DMR locations, provided in Table 1 of Court et al.32. As
summarised in Supplementary Data 3, DMRs were found for all
identified imprinted loci, except for PTX3, PLIN1 and BCR, which
may be regulated in a different manner. Typically, each of these
DMRs featured multiple putatively monoallelically-methylated
probes in the control samples, and often even largely coincided
with putatively monoallelically-methylated regions (e.g. PEG10,
PLAGL1 and HM13). For ZDBF2 and DLK1, the DMR
methylation status could not be evaluated since no probes were
present.

Differential imprinting in breast cancer. To examine possible
deregulation of imprinting in breast cancer, alterations in allelic
expression patterns of imprinted genes were investigated.

Differential imprinting (DI) is defined here as different relative
expression of both alleles in cancer vs controls. We reserve the
term LOI solely for DI caused by re-expression of the silenced
allele (i.e. absolute higher expression). We determine biallelic
expression per sample by the allelic ratio (allele count with lowest
expression/allele count with highest expression), which varies
from 0 (perfect monoallelic expression) to 1 (perfect biallelic
expression) and is independent of expression level differences in
cancer. For these analyses, it should be noted that power is
compromised by the fact that DI cannot be observed in homo-
zygous individuals, which constitutes the majority for each locus.
We try to compensate this by allowing more false positives in the
results (FDR of 10%), but also by enriching for likely hetero-
zygous samples. As samples with a high allelic ratio represent
heterozygotes, looking at the 2PAPT highest fraction of samples
(cf. Hardy–Weinberg theorem) allows us to only take the most
likely heterozygotes into account. DI in cancer for a specific SNP
was thus defined as a significant difference of the allelic ratios
between putative heterozygous cancer and control samples (see
Methods, section Detection of differential imprinting). Though
only technically feasible for a limited set of the data, this allelic
ratio was verified to be a good measure for DI using WES data
(Supplementary Fig. 14).

When considering the full set of 506 breast cancer samples,
four SNP loci with significant DI, i.e. higher relative expression of
the silenced allele, could be identified (FDR ≤ 0.1; Table 2). These
SNPs correspond to three genes, namely MEST, H19 and HM13.
Figure 2 shows the mixture distributions of these genes for both
control and tumour samples. The plots demonstrate that for
MEST (and to a minor extent for HM13) also some control
samples are featured by residual biallelic expression. This may
suggest that this locus is less stringently imprinted and further
lost its imprinting signature in breast cancer. Alternatively, this
may be due to the fact that a mixture of imprinted and non-
imprinted transcripts is present, with a shift towards expression
of the latter in cancer.

Subsequently, the different breast cancer subtypes, namely
basal-like (BL), HER2-enriched (HER2), luminal A (LumA) and
luminal B (LumB), were analysed individually for DI compared to
normal samples (Table 2, significant results are shown in bold).
The normal-like (NL) subtype was not considered due to a too
low number of samples. Compared to the results for all tumour
samples, significant DI of MEST was detected at the same SNP
position in all subtypes except for BL, whereas HM13 and H19
were significantly deregulated in all but LumA. In summary, most
deregulation was found in HER2 and BL. The deregulated loci
corresponded to eight genes, i.e. ZDBF2, PEG10, MEST, H19,
IGF2, MEG3, ZNF331 and HM13. For each of these genes, the
frequency of samples featuring biallelic expression in cancer was
estimated, going up to 100% for MEST in LumB and HER2
(Supplementary Table 5). For LumB, DI was found in MEST,
H19, HM13, IGF2, ZNF331 and PEG10, whereas for LumA only
one DI locus was identified (Fig. 3). Distributions of the other loci
featured by DI in cancer subtypes are displayed in Supplementary
Figs. 20–23. Particularly the H19/IGF2 locus showed striking
evidence for DI in HER2 and BL samples: all 12 SNPs were found
to be deregulated in BL, whereas for HER2 10 SNPs were DI. DI
was not associated with survival, except for two SNPs in ZDBF2,
nor with age (Fig. 4, Supplementary Note 4c).

Though most often the case, SNPs in the same imprinted gene
did not always show consistent (in)significant results (Supple-
mentary Data 4). This can typically be attributed to technical/
power associated causes, such as lower coverage, though also
transcript-specific effects may be present. For example, for
ZNF331, two DI SNPs were found in the 3’-UTR, and one non-
DI SNP in the first exon. Again, verification of DI by comparison
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of RNA- and DNA-based genotypes was successful (i.e. re-
expressed allele agreed with DNA-based genotype), though
complicated due to the low coverage WES data (Supplementary
Fig. 14).

Differential expression of imprinted genes. In 2015, Kim et al.
found 21 of their 23 (91%) analysed putatively imprinted genes to
be differentially expressed in breast cancer22. As they had com-
piled imprinted genes from literature irrespective of tissue type,
we performed differential expression (DE) analysis in control vs
tumour and control vs breast cancer subtypes for the here
detected imprinted SNPs and genes. Significant DE was found in
almost all (92%) of the imprinted SNPs for all tumour samples.
Imprinting is thus indeed heavily deregulated in breast cancer
(Supplementary Tables 7 and 9). Far more loci were down-
regulated than upregulated: 87% were detected with a negative
log-fold change. The FDR-adjusted p-values and log-fold changes
of all SNPs showing DI can be found in Table 2 (Supplementary
Data 5 and Supplementary Table 8 show results for all SNPs and
genes, respectively).

One would expect that DI, i.e. relative higher expression of the
silenced allele, implies upregulation of the imprinted gene as in
canonical LOI. However, at least in breast cancer, DI was not
associated with overexpression of the corresponding gene. The
only clear exception was HM13, for which DI implied higher
expression in most subtypes (and IGF2 in BL and PEG10 in
LumB to a lesser extent, Table 2) in line with canonical LOI. For
most other SNPs, DI was associated with expression
downregulation.

We verified these results in heterozygous samples, as DI cannot
be observed in homozygotes (Supplementary Note 5). Only for 5
SNPs (located in ZNF331, HM13, USP32P2, ZDBF2 and H19)
sufficient WES data were available to accurately evaluate DI and
DE results. In ZNF331, significant downregulation was found in
biallelically expressing tumour samples compared to monoalle-
lically expressing control samples, but also when compared to
monoallelically expressing tumour samples. HM13, on the other
hand, was significantly upregulated in biallelically expressing
samples (compared to monoallelically expressing tumours as well
as monoallelically expressing controls), further confirming the
results presented above. For the other SNPs no differences were

detected, particularly due to low power (insufficient WES
coverage).

Residual biallelic expression as potential cause of DI. Previous
studies suggested that the basic concept of LOI in which re-
expression of the imprinted allele leads to higher expression of
imprinted genes is incomplete. Also here we found that DI is
particularly associated with expression downregulation.

We hypothesise that DI/apparent LOI may also be caused by
the presence of residual biallelic expression, i.e. incomplete
silencing of the imprinted allele, cf. IGF2 Fig. 1a. If expression of
the normally active allele is downregulated, expression levels for
both alleles become more similar, which can be incorrectly
perceived as LOI. To evaluate this hypothesis, the expression of
the normally silenced allele (i.e. allele with least expression) was
used as a measure for LOI. Results indicated no significant DE
between cancer and controls of the silenced allele, supporting the
hypothesis that the perceived LOI in breast cancer is particularly
a by-product of the silencing of the active allele. Nevertheless, also
the low number of biallelically expressing samples and thus
decreased power may have an impact. It should be noted that for
HM13—clearest example of an upregulated imprinted gene—a
significant (unadjusted) p-value was observed for SNP rs6059873
(higher expression of the silenced allele) whereas this was not the
case for the other imprinted loci (Supplementary Table 14).

Subsequently, we evaluated whether CNV aberrations may
explain imprinted gene silencing (and thus DI) in breast cancer.
Contrasting controls, significant associations were found between
imprinted gene expression and CNV in cancer samples for 17 of
the 23 genes present in TCGA CNV data (Supplementary Fig. 24,
Supplementary Table 12 and Supplementary Data 6). For
example, in cancer, GNAS, BCR and SNRPN showed both
expression downregulation and CNV losses, while for HM13,
gains were linked with overexpression. As we did not observe this
for all loci and samples, we also evaluated DNA methylation. For
most imprinted genes downregulated in cancer (15 of the 16
covered in TCGA), probes differentially methylated between
cancer and controls were found. However, though these included
many probes located in known DMRs and/or featured by putative
monoallelic methylation in controls (particularly in MEG3 and
MEST loci, over 25% methylation difference in DMRs), there was
no clear enrichment for putative imprinting regulating loci

Table 2 SNPs with significant differential imprinting in control samples versus breast cancer and the different subtypesa

SNP Gene Tumour HER2-enriched Basal-like Luminal A Luminal B

DI_p logFC DE_p DI_p logFC DE_p DI_p logFC DE_p DI_p logFC DE_p DI_p logFC DE_p

rs1053900 MEG3 0.49 −2.4 6.6E-45 0.07 −2.2 5.6E-18 1.00 −3.0 1.8E-37 0.90 −2.2 1.6E-29 0.46 −2.7 1.1E-35
rs4378559 MEG3 0.49 −1.7 2.8E-27 0.04 −1.0 2.0E-08 1.00 −2.4 6.8E-26 0.92 −1.4 1.6E-16 0.46 −2.2 2.2E-26
rs12890215 MEG3 0.47 −1.7 5.1E-29 0.10 −1.0 5.7E-09 0.76 −2.3 8.0E-27 0.87 −1.4 9.1E-18 0.44 −2.2 6.7E-28
rs10863 MEST 0.02 −1.6 1.3E-31 0.00 −1.7 3.0E-13 0.70 −0.9 6.5E-15 0.03 −1.9 5.4E-31 0.00 −1.7 2.7E-19
rs3741219 H19 0.17 −0.9 1.4E-02 0.00 −1.1 1.4E-03 0.03 −0.8 4.5E-04 0.77 −0.7 3.5E-01 0.38 −1.3 7.8E-04
rs2839704 H19 0.07 −0.9 2.1E-02 0.01 −1.2 8.1E-04 0.02 −0.8 9.7E-04 0.40 −0.7 4.5E-01 0.03 −1.2 8.3E-04
rs2839703 H19 0.08 −0.9 2.7E-02 0.01 −1.3 9.8E-04 0.02 −0.8 1.4E-03 0.56 −0.8 4.7E-01 0.03 −1.3 9.8E-04
rs10840159 H19 0.17 −1.0 3.4E-02 0.01 −1.4 2.3E-03 0.02 −0.9 1.3E-03 0.85 −0.8 4.8E-01 0.27 −1.3 1.3E-03
rs2839702 H19 0.17 −0.7 3.3E-02 0.01 −1.0 7.0E-03 0.02 −0.5 4.9E-04 0.65 −0.5 4.1E-01 0.16 −1.0 4.2E-03
rs2839701 H19 0.17 −0.6 6.4E-02 0.01 −0.9 9.5E-03 0.03 −0.5 1.1E-03 0.76 −0.5 4.9E-01 0.22 −0.9 8.7E-03
rs2067051 H19 0.19 −0.3 4.8E-01 0.05 −0.6 4.8E-01 0.02 −0.2 1.1E-01 0.91 0.0 4.7E-03 0.20 −0.6 1.9E-01
rs2075745 H19 0.17 −0.4 8.6E-01 0.04 −0.8 3.3E-01 0.02 −0.4 6.1E-02 0.78 −0.2 2.6E-02 0.16 −0.7 1.4E-01
rs2075744 H19 0.27 −0.2 4.1E-01 0.17 −0.6 2.8E-01 0.02 −0.3 1.9E-01 0.92 0.0 1.7E-02 0.57 −0.4 3.6E-01
rs2839698 H19 0.23 −0.3 4.5E-01 0.08 −0.7 3.8E-01 0.02 −0.4 1.4E-01 0.90 −0.1 1.4E-02 0.38 −0.5 3.7E-01
rs7582864 ZDBF2 0.49 −1.7 2.7E-25 0.75 −2.8 1.1E-21 0.10 −1.5 8.5E-14 0.87 −1.6 2.1E-18 0.75 −1.4 7.1E-16
rs3732084 ZDBF2 0.17 −1.6 1.2E-28 0.14 −2.3 1.9E-19 0.02 −1.5 5.7E-17 0.53 −1.6 2.0E-21 0.46 −1.5 3.8E-19
rs1975597 ZDBF2 0.27 −1.5 3.6E-29 0.08 −2.2 4.0E-19 0.15 −1.5 9.9E-17 0.52 −1.4 5.4E-22 0.57 −1.3 1.2E-19
rs2585 IGF2 0.17 −1.1 5.9E-33 0.02 −2.3 3.0E-22 0.08 0.2 1.3E-35 0.44 −1.3 7.3E-15 0.10 −2.3 6.1E-29
rs7873 IGF2 0.43 −1.2 2.9E-33 0.14 −2.4 3.9E-22 0.03 0.1 5.3E-36 0.78 −1.4 2.1E-15 0.92 −2.3 1.8E-28
rs6059869 HM13 0.17 0.3 8.3E-02 0.10 0.0 3.8E-01 0.13 0.2 4.0E-01 0.68 0.3 3.1E-02 0.03 0.6 7.2E-03
rs6059873 HM13 0.06 0.4 3.2E-03 0.02 0.2 2.8E-01 0.02 0.4 9.1E-02 0.33 0.4 1.5E-03 0.02 0.6 5.6E-04
rs8110538 ZNF331 0.27 −0.9 3.2E-25 0.63 −1.1 9.1E-18 0.08 −1.0 4.5E-16 0.75 −0.9 4.3E-19 0.08 −0.8 3.3E-15
rs8110350 ZNF331 0.30 −0.9 3.5E-25 0.44 −1.0 5.8E-18 0.08 −1.0 1.0E-15 0.81 −0.9 1.4E-19 0.10 −0.7 2.1E-14
rs7810469 PEG10 0.19 1.0 8.3E-03 0.04 0.9 1.2E-01 0.58 1.2 1.2E-01 0.53 1.0 2.8E-04 0.10 0.9 8.3E-04

aFDR-adjusted p-values are listed in column DI_p with significant results (FDR ≤ 0.1) shown in bold. Also log-fold changes (logFC) and FDR adjusted p-values of differential expression analysis (DE_p) are
listed with significant results (FDR ≤ 0.05) shown in bold
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among differentially methylated probes (Supplementary Data 3).
These results suggest that imprinted gene silencing in breast
cancer is common and often associated with CNV and
deregulated methylation, and is the most likely cause of DI in
cancer (rather than its consequence).

LOI, DE, CNV and differential methylation of HM13/
MCTS2P. HM13 is the only gene in which both DI and higher
expression in cancer was identified (Table 2), indicating LOI.
However, not all SNPs in this gene showed consistent DI and DE
results. 80 SNPs were initially analysed in the full HM13 gene, yet

only 5 SNPs were maintained upon initial data filtering (see
Methods, section Detection of imprinting and Supplementary
Data 1). Of all SNPs detected to be imprinted, 4 located in exon 3
of HM13 transcript 4, and a 5th one intronic in HM13 but exonic
in MCTS2P retrogene (Supplementary Fig. 27). Of the 4 detected
imprinted SNPs in exon 3 of transcript 4, 3 demonstrated DE and
2 also DI (particularly in LumB), whereas the 5th SNP (exonic in
MCTS2P) did exhibit DE but no DI. For SNPs featured by sig-
nificant DI, we estimated that over 50% of all samples may be
affected (Supplementary Table 5). Moreover, HM13 DI was
independent of lymphocyte infiltration (Supplementary Note 8).
Subsequently, it was evaluated whether there was evidence for
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transcript-specific DE, as the other exons lack the informative
SNPs required to evaluate DI directly. All exons were significantly
upregulated in breast cancer (subtypes), suggesting no transcript-
specific effects (Supplementary Table 15).

Given that HM13 is located on the 20q locus, often gained in
cancer, we also evaluated whether CNV gains may explain DI, but
DI appeared independent from CNV for all imprinted HM13
SNPs (Supplementary Table 13). Subsequently, ten Infinium
HumanMethylation450k probes demonstrating approximately
50% methylation (see Joshi et al. Table S2 and MEXPRESS33,34,
Supplementary Fig. 28) and located in the HM13 DMR (32, except
for cg18471488) were analysed in TCGA. Methylation was
significantly lower for two probes (cg18471488—located near
HM13 promoter region—and cg24607140—located near
MCTS2P and already associated with imprinting control of the
latter gene33) in tumour compared to control samples (Supple-
mentary Table 16). Also in the subtypes, methylation of
cg18471488 was significantly lower. HER2 and LumB did not
show any other differential methylation, while in BL methylation
levels were lower for almost all probes (Supplementary Table 16).
Only in LumA significantly higher methylation was found, which
concurs with results mentioned higher (i.e. DE but no DI was
found in LumA). Methylation of probe cg18471488 was
significantly correlated with expression of the last exon of
transcript 4 (possibly the UTR of this transcript) but also the full
HM13 gene in the whole dataset (control and tumour data,
Supplementary Table 17). In summary, these results show that
LOI of the HM13/MCTS2P locus is linked to DNA methylation
aberrations, but that a more precise description is hampered by
the resolution of the data at hand.

Discussion
Genomic imprinting is important for normal development and
growth. The genome-wide evaluation of imprinting deregulation
in cancer and diseases is currently hampered by a lack of
appropriate data-analytical strategies. We hence developed a new
methodology for the genome-wide detection of imprinting and its
deregulation. After application on breast tissue, we were able to
detect many imprinted genes and confirm major deregulation of
imprinted genes in breast cancer and the varying subtypes.
Imprinted genes exhibited clear differential expression, particu-
larly downregulation, in tumour samples. Strikingly, in HER2 and
BL tumours, downregulation was associated with massive
induction of biallelic expression. A similar pattern has been
described earlier for individual genes, e.g. for IGF2 in oesophageal
cancer24. However, most likely, this is merely the result of a
higher relative expression of the (not completely silenced)

imprinted allele due to downregulation of the expressed allele.
Given that the imprinted allele itself is not affected, we refrain
from using the term LOI, and proposed the more generic term
differential imprinting to indicate a relative shift in allelic
expression independent of the underlying cause. The sole exam-
ple where DI could be attributed to LOI was HM13, which
exhibited overexpression in cancer, particularly in LumB
tumours, due to re-expression of the normally silenced allele.

We analysed RNA-seq data of 113 breast tissue samples and
127 putatively imprinted SNPs in approximately 35 genes were
identified and used for further analysis. For 2 SNPs no dbSNP
annotation could be retrieved, though later manual curation
suggested rs2269621 to be located in the known imprinted gene
L3MBTL1 (Supplementary Fig. 11b). Validation in GTEx data
was possible for 121 SNPs corresponding to 30 genes. Although
our methodology cannot assess whether the expression status of
each allele is indeed determined by the parent of origin (which
would require unavailable trio data), visual evaluation of the
different mixture distribution plots as well as the clearly sig-
nificant adjusted p-values strongly support at least monoallelic
expression. Also, note that all genes demonstrating relevance in
breast cancer had been associated with imprinting before.
Moreover, the observation that newly identified putatively
imprinted genes demonstrate similar differential expression pat-
terns as known ones provides more evidence for their imprinting
status. Finally, the identified loci largely featured known
imprinting associated DMRs32.

Compared to the study by Baran et al., which only used 27
breast samples, 13 genes were detected by both Baran’s and our
method9. One gene (PPIEL) was not evaluated by our metho-
dology due to low coverage, whereas imprinted SNPs for the
second gene (SNURF) were detected yet annotated as the over-
lapping gene (SNRPN). Of the 19 genes detected by our method
only, at least 7 are known imprinted genes, also detected by Joshi
et al.33, or genes located in the neighbourhood of imprinted
genes. It should be noted that accuracy of these results largely
depends on the accuracy of the underlying annotation. Never-
theless, inconsistent results between SNPs in the same gene were
evaluated, and appeared to be mainly caused by technical reasons,
i.e. low coverage of intronic SNPs, low goodness-of-fit to the
model or low allele frequency, as demonstrated for HM13 in
Supplementary Data 1. On the other hand, interestingly, for
ZNF300P1, LOC100294145, ZNF331 and GNAS-AS1/GNAS, we
observed transcript-specific imprinting to be a more likely
explanation.

Subsequently, we analysed 506 breast cancer samples for DI.
One gene, MEST, showed significant DI and two genes, H19 and
HM13, were borderline significant. MEST is already known to
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show DI in varying cancers, including breast cancer21,35–37.
Aberrant H19 imprinting is often seen in cancer as well and is
thought to have an important role in cancer development21,38,39.
When taking into account the different tumour subtypes, we
detected 24 SNPs (in eight genes: ZDBF2, PEG10, MEST, H19,
IGF2, MEG3, ZNF331 and HM13) exhibiting DI in at least one
subtype compared to the normal tissue samples. DI was particu-
larly present in BL and HER2 tumours. Many of these genes had
been linked with DI and cancer development before21,35,40–43. DI
was typically not associated with survival, except for 2 SNPs in
ZDBF2, a zinc finger-containing protein, yet this finding requires
additional validation.

We found most of the imprinted genes to be downregulated in
tumour samples, often leading to DI (but not canonical LOI). As
recently demonstrated, particularly CNV was associated with
expression deregulation of imprinted genes27. Methylation was
also found to be significantly different between tumours and
controls, though without clear enrichment for imprinting asso-
ciated DMRs. For these loci, DI is thus most likely the con-
sequence of transcriptional silencing. Previously, studies in
murine and human prostate tissue and cancer detected a tran-
scriptional network of co-regulated imprinted genes26,44, with
PLAGL1 as putative key player26,45–47. Results from preliminary
analyses (Supplementary Note 7) are compatible with the pre-
sence of an imprinted gene network in cancer as well, but an
elaborated co-expression analysis is required to formally test this.

Contrasting other loci, HM13 clearly exhibited canonical LOI,
i.e. re-expression of the normally silenced allele leading to over-
expression in cancer, particularly in the LumB subtype. Both
significant SNPs appear to be present in the third (and last) exon
of transcript variant 4, possibly the UTR of this transcript.
Though other evidence for imprinting of HM13 exists, only little
information is available on its function—a signal peptide pepti-
dase involved in the immune system48,49. Importantly, dereg-
ulation of HM13—located on 20q—has been revealed in
colorectal carcinoma: the often observed 20q gain in this tumour
is associated with higher HM13 expression, which was demon-
strated to lead to accelerated growth of the tumour50. Also in the
study at hand, CNV gain led to increased HM13 expression, yet
this was independent of LOI. Interestingly, in an imprinting study
in normal blood samples by our group, HM13 also appeared to be
featured by LOI and higher expression in a subset of samples,
particularly in older individuals (unpublished results, https://bit.
ly/2oCR6eD). With respect to the mechanism of HM13 dereg-
ulation in breast cancer, we demonstrated that aberrant methy-
lation in the neighbourhood of the HM13 promoter was linked to
deregulation of its expression. Differential methylation may lead
to different polyadenylation (as described in mice51) and hence
varying transcripts, yet we found differential expression of all
exons in HM13. Our methodology also did not allow to exclude
promoter switching from an imprinted promoter to a non-
imprinted one, as already described for IGF2 and MEST27,36, as
cause of HM13 LOI in cancer. Further research is, therefore,
necessary to unravel the exact mechanism(s) and consequences of
(de)regulation of HM13 in breast cancer.

Throughout the manuscript, results were verified by compar-
ison with available WES-based genotyping data. However, low or
absent coverage of WES for the corresponding loci led to a
massive loss of imprinted SNPs that could be evaluated. This
further underscores the benefits and more general applicability of
the introduced methodology, which solely focuses on RNA-seq
data. Also, this may explain why novel imprinted loci were found
in our analysis, compared to methods where genotyping data is
used to identify heterozygous samples prior to detecting imbal-
anced allelic expression in the latter, e.g. Baran et al.9. Some
methodological improvements could however further increase

sensitivity and specificity. For example, the current method relies
on Hardy–Weinberg equilibrium, but could be modified to take
into account population substructure. Additionally, the current
mixture of binomial distributions could be updated to a mixture
of beta-binomial distributions, as the latter captures more natural
variation in expression between alleles. Nevertheless, the current
study (cf. Figure 1 and Supplementary Figs. 1–11) clearly
demonstrates that the proposed methodology is sufficiently
robust. Another putative limitation of this study is the fact that
tumour impurity, e.g. by infiltrating lymphocytes, may lead to the
erroneous conclusion of LOI. This may be particularly relevant
for HM13, given that HM13 is expressed in blood and that
admixture of biallelically expressed HM13 could theoretically lead
to both higher HM13 expression and LOI in cancer. Nevertheless,
we have previously found imprinting of HM13 in blood
(unpublished results, https://bit.ly/2oCR6eD), and could not find
a significant correlation between infiltrating lymphocytes and
HM13 LOI, thereby rejecting confounding due to lymphocyte
infiltration. As a final limitation, it is important to note that no
distinction between primary and secondary imprints is possible
with our methodology.

In conclusion, this study demonstrates that imprinting is
indeed heavily deregulated in breast cancer, though the
mechanism of its deregulation is complex. Many imprinted genes
are downregulated in cancer, likely leading to DI without actual
higher expression of the silenced allele. One clear exception was
found, HM13, with LOI and upregulation in cancer samples. We
were able to detect these putatively imprinted genes and their
deregulation with a newly developed method solely based on
RNA-seq data. The effectiveness of our novel methodology and
the advantage of solely using RNA-seq data was hence also
confirmed.

Methods
Data. RNA-seq data of 113 human healthy control and 506 diseased samples (only
those for which a PAM50 subtype was available) of the TCGA breast invasive
carcinoma dataset were used in this study52. RNA-seq BAM-files were downloaded
from the prior TCGA data portal (https://portal.gdc.cancer.gov/legacy-archive/
search/f). Invasive ductal carcinoma, which starts in the milk ducts of the breast,
and invasive lobular carcinoma, which originates in the lobules, were both stu-
died28. For all cancer samples, additional expression subtypes based on the PAM50
classifier were obtained from the UCSC cancer genome browser (8 NL, 92 BL, 228
LumA, 121 LumB and 57 HER2)52. In all of these samples, variants were called
using Samtools mpileup/bcftools (v0.1.19)53. Female breast samples (92 samples)
from GTEx data (in dbGaP under accessions phs000424.v6.p1) were used for
validation29.

Significance threshold. Throughout the manuscript, the Benjamini–Hochberg
procedure was used for false discovery rate estimation54. For detection of
imprinting and differential expression analysis, an FDR of 5% was used as sig-
nificance threshold. For analyses where loss of power is anticipated due to non-
informative homozygous samples (e.g. differential imprinting detection), an FDR
of 10% was used.

Genotype calling. Genotype probabilities and corresponding nucleotide-read/
sequencing error rates were calculated from RNA-seq data using SeqEM (v1.0)55, a
fast Bayesian genotype-calling algorithm based on the expectation maximisation
(EM) algorithm to estimate the prior allele frequencies and the nucleotide-read
error rate in an iterative way. Note that imprinting biases RNA-seq-based geno-
typing (i.e. less heterozygous samples will be detected), yet that allele frequency
estimates are unbiased as both alleles have an equal chance to be imprinted.
Genotyping with SeqEM was done without the HWE option, only for estimation of
the number of biallelically expressing samples in RNA-seq data HWE was assumed
(Supplementary Note 4b).

Detection of imprinting. Rationale: The rationale behind the proposed metho-
dology is that biallelic expression yields RNA-seq data (or other similar sequencing
data) that is in HWE for each locus, i.e. if SNPs are present for a locus, both
homozygous and heterozygous subjects will be detected at a predictable rate (under
HWE assumptions)56. However, in case of monoallelic expression, heterozygous
samples will no longer be detected in RNA-seq data resulting in deviation from the
HWE, which can be measured (Fig. 5a). So for imprinted loci, no distinction can be
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made between homozygous and heterozygous samples. Throughout the Methods
section, we assume a locus with two alleles, A and T (with allele frequencies PA and
PT, respectively), yet this of course applies to all possible nucleotides.

Note that the same is true for enrichment-based sequencing data. Indeed,
monoallelic histone modifications, as well as monoallelic DNA methylation, lead to
ChIPseq and MethylCap-seq data, respectively, that is no longer in HWE, e.g.30.

To enable screening for loci featuring imprinting, a probability mass function
(PMF) describing the probability of observing specific coverages for each allele for a
specific SNP locus was developed. As the probabilities depend on the underlying
genotypes, the PMF was created as a mixture model of genotype-dependent
binomial distributions with weights corresponding to the probabilities under
Hardy–Weinberg (Fig. 5b)56. Sequencing error rates (median per chromosome) are
here taken into account. Subsequently, maximum likelihood estimation was used to
estimate the degree of imprinting (i) and a likelihood ratio test was constructed to
detect significant imprinting. A detailed discussion of the different elements of this
PMF and the analytical framework can be found in the following subsections. All
analyses were performed in R (v3.3.2)57, scripts are available upon reasonable
request.

Data filtering using an empirical Bayes approach: After SNP calling, for each
SNP position samples were filtered and corrected to obtain nucleotide sequences
containing a maximum of two alleles. Using a maximum of two alleles per locus

ensures high-quality sequences, but was also a prerequisite for the genotype calling
step later on (by SeqEM). As dbSNP was used for SNP calling, the dbSNP alleles
were chosen as the two standard alleles. In case dbSNP contained three or more
alleles for a particular SNP position, the standard alleles were chosen as the two
dbSNP alleles with the highest mean allele frequencies for that locus over all
samples. A quality filtering procedure was included to retain only those samples
featuring one (homozygous) or both (heterozygous) standard alleles (= reference
alleles defined by dbSNP for that particular SNP position). By default, samples
already containing the two standard alleles as most frequent alleles were retained,
whereas samples for which the allele with the highest frequency was not a standard
allele were filtered out. However, for samples characterised by a non-standard allele
as the second most abundant allele, an empirical Bayes approach was implemented
to filter out putative heterozygous samples (one standard allele and one non-
standard allele) yet keeping homozygous samples (one standard allele and
sequencing errors). This procedure goes as follows:

i. The posterior probability of obtaining a specific observation given a
heterozygous sample was determined using a multinomial distribution:

P datajheterozygousð Þ ¼ M data; x1; x2; x3; x4ð Þ ð1Þ

with both x1 and x2 equal to the sum of the two highest allele frequencies of the

PAPT PAPT
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PT
2 PT PT + PAPTPA

2 2 2 2 2PA PA + PAPTPAPT + PAPT
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Fig. 5 Graphical representation of rationale of the PMF. a The PMF is defined as a mixture model of genotype-dependent binomial distributions and
describes the probability of observing specific RNA-seq coverages for each allele for a specific SNP locus. In these binomial probabilities, sequencing error
rates, degree of imprinting (i) as well as the specific genotype are taken into account. For non-imprinted loci, the PMF results in two homozygous peaks and
one heterozygous peak. For imprinting, on the other hand, no heterozygous can be detected on RNA-level and this peak is hence eliminated.
Heterogeneous data leads to the detection of partial imprinting. b PMF for different degrees of imprinting. In this mixture model, the genotype-dependent
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sample divided by two, and x3 and x4 are equal to the sum of the two lowest
sample allele frequencies divided by two. Note that the two alleles
corresponding to these latter two frequencies could only be obtained due to
sequencing errors.

● The probability that the sample is heterozygous is calculated as:

P heterozygousð Þ ¼ 2pq ð2Þ

with p and q the mean allele frequencies over all samples of the standard and
non-standard allele, respectively.

ii. Similar to the approach for heterozygous samples, the posterior probability of
the obtained nucleotide sequence in case of a homozygous sample is again
defined with a multinomial distribution:

P datajhomozygousð Þ ¼ M data; x1; x2; x3; x4ð Þ ð3Þ

However, here only one allele is genuine while the other three are the result of
sequencing errors. Therefore, x2, x3, x4 are determined as the sum of the
lowest three allele frequencies divided by three, while x1 represents the allele
frequency of the ‘true’, standard allele (having the highest sample allele
frequency).

● The probability of the sample originally being homozygous is next defined as:

P homozygousð Þ ¼ p2 ð4Þ

as in Eq. (2) p again represents the mean allele frequency of the standard allele
over all samples.

iii. Finally, following criterion was used to identify putative heterozygous
samples:

P heterozygotejdatað Þ � P homozygotejdatað Þ ð5Þ

Using Bayes’ theorem and knowing that P(data) is equal for both
P(heterozygote|data) and P(homozygote|data), this can also be written as:

P datajheterozygousð Þ � P heterozygousð Þ � P datajhomozygousð Þ
�P homozygousð Þ ð6Þ

Next, identified putative heterozygous samples that include non-standard
alleles are removed from the dataset for the locus under study.

Genotype calling and filtering: Calculation of genotype probabilities and
corresponding nucleotide-read/sequencing error rate was done using SeqEM
(v1.0), a fast Bayesian genotype-calling algorithm based on the expectation
maximisation (EM) algorithm to estimate the prior genotype frequencies and the
nucleotide-read error rate in an iterative way.

As model-based approaches (such as SeqEM) are prone to false positives due to
pre-processing induced artefacts (e.g. alignment errors), only reliable loci were used
for further analysis. The standard approach of filtering is based on HWE and not
applicable here, leading to the necessity to use a combination of alternative criteria.
Therefore, after obtaining estimates of both the allele frequencies and sequencing
error rate, the SNP loci were subjected to extra filtering steps: (i) minor allele
frequency > 0.1, (ii) median coverage > 4, (iii) estimated sequencing error rate ≤
0.035 and finally, (iv) the number of samples covering the specific locus had to be
at least 75. Loci which successfully passed these previous filters were subsequently
tested with two final quality checks based on ‘goodness-of -fit’ criteria.

Additional data filtering using a goodness of fit procedure: SNPs that already
passed the basic filtering steps were subjected to two final checks based on two
methods assessing their goodness-of-fit in the model, independent of the presence
of (partial) imprinting. This approach is particularly aimed to remove loci
exhibiting good sequencing characteristics, yet with properties that indicate
deviation from the standard genetic models. This may be due to technical (e.g.
mismapping) but also biological (e.g. presence of SNP dependent expression
differences) reasons.

As a first control, the χ² test is used for goodness-of-fit. Though the exact
distribution depends on the level of imprinting, this is not the case for the fractions
of samples with respectively a higher reference allele (expected P2

A þ PAPT) resp.
variant allele count (expected P2

T þ PAPT). Upon comparison of the observed and
expected sample counts using the χ² test, only loci with a resulting p-value > 0.05
were retained.

Next to a χ² test, likelihoods are also a benchmark for goodness-of-fit. As
likelihoods strongly depend on coverage (e.g. impact binomial coefficient), the
likelihood of each individual measurement was multiplied by its coverage+1. The
mean of these corrected log-likelihoods was next used as measure for the goodness-
of-fit: loci with a mean ≤ 1.2 were filtered out. Though empirical in nature, this

filter setting largely removed remaining loci featured by aberrant allelic
distributions.

After prior filtering of the data, the remaining SNPs were screened for
imprinted regions by a likelihood ratio test (LRT).

PMF calculation: First, the probability mass function describing the probability
of observing specific coverages for each allele for a specific SNP locus was
established. As the probabilities depend on the underlying genotypes, we
established the PMF as a mixture model of genotype-dependent binomial
distributions with weights given by the expected probabilities under
Hardy–Weinberg equilibrium (Fig. 5a). Importantly, in these binomial
probabilities, sequencing error rates, degree of imprinting as well as the specific
genotypes are taken into account. Ultimately this leads to the following PMF for
e.g. a locus with two alleles A and T (equivalent for any other combination of two
alleles) (Fig. 5b):

PMF x; ið Þ ¼ P2
AB x; pA ¼ 1� SE; pT ¼ SEð Þ þ P2

TB x; pA ¼ SE; pT ¼ 1� SEð Þ
þPAPTB x; pA ¼ 0:5�i=2

1�i=2 1� SEð Þ þ 0:5
1�i=2 SE; pT ¼ 0:5

1�i=2 ð1� SEÞ þ 0:5�i=2
1�i=2 SE

� �

þPAPTB x; pA ¼ 0:5
1�i=2 ð1� SEÞ þ 0:5�i=2

1�i=2 SE; pT ¼ 0:5�i=2
1�i=2 1� SEð Þ þ 0:5

1�i=2 SE
� �

ð7Þ

With

x the coverages for alleles A and T, i.e. x = (nA, nT)
PA and PT the estimated population allele frequencies for a specific locus over
all samples (obtained by SeqEM)
SE the estimated sequencing error rate (median per chromosome, obtained by
SeqEM)
i the degree of imprinting (varying from not (i = 0) to fully (i = 1) imprinted)
B(x; pA, pT) the binomial probability for x given the probabilities for each allele,
i.e. pA and pT, which depend on the specific genotype, SE and imprinting factor i

One already familiar with binomial distributions will notice that this is a
somewhat alternative representation than typically used. However, it is simple to
see that here, the chance of ‘success’ is represented by pA (indeed, pA + pT = 1)
whereas the ‘total number of trials’ equals nA+ nT.

Note that this PMF can be easily extended towards four alleles by considering a
mixture of multinomial instead of binomial distributions. However, for simplicity -
and as SeqEM can only handle two alleles per locus—we considered only two
alleles.

From a practical point of view, the binomial coefficient is identical for each
binomial distribution (within a sample, not between samples) and expressed as:

b ¼ ðnA þ nTÞ!
nA!nT!

ð8Þ

As ideally only a single allele is observed for homozygous samples, potential
imprinting cannot be deduced from the allelic coverages. Here, the binomial
probability will depend only on the SE - which is obtained by SeqEM. Because this
error rate is assumed to be equal for all loci but can be ill-estimated when
imprinting is present, the median SE over all loci is used. For homozygote AA, for
example, the chance of observing allele A (= pA) is 1-SE, while the chance of
observing allele T (= pT) is equal to SE, as T can only be present in the data due to
a sequencing error.

P(nA, nT) then becomes:

P nA; nTð Þ ¼ B x; pA ¼ 1� SE; pT ¼ SEð Þ
¼ bpnAA pnTT
¼ bð1� SEÞnA SEnT

ð9Þ

In the PMF this value of P(nA, nT) is multiplied by the probability of the sample
being homozygous AA. Assuming Hardy–Weinberg equilibrium (HWE), this
equals the respective population allele frequency squared, i.e. PA².

For heterozygotes, for example AT, potential imprinting has to be taken into
account. This is done by including an imprinting factor i that can vary between 0
(no imprinting) and 1 (fully imprinted) and is estimated using Maximum
Likelihood Estimation (MLE, see below). Without imprinting, in theory both alleles
A and T will be expressed to a similar extent so that pA and pT can be set to 0.5.
However, when imprinting is present, the probability of observing the imprinted
allele diminishes with a factor i/2. As the probabilities for both alleles need to
sum to one, both probabilities are normalised by dividing them by a factor 1−i/2
(= 0.5+ 0.5−i/2). Also sequencing error rates have to be taken into account, as a
fraction SE of the normalised probability of one allele will be observed as the other
allele and vice versa. Thus, when allele A is imprinted, the probability of observing
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allele A (= pA) equals:

0:5� i=2
1� i=2

1� SEð Þ þ 0:5
1� i=2

SE ð10Þ

While for the probability of pT this becomes:

0:5
1� i=2

1� SEð Þ þ 0:5� i=2
1� i=2

SE ð11Þ

Leading to the following formula:

P nA; nTjA imprintedð Þ ¼ b
0:5� i=2
1� i=2

1� SEð Þ þ 0:5
1� i=2

SE

� �nA 0:5
1� i=2

1� SEð Þ þ 0:5� i=2
1� i=2

SE

� �nT

ð12Þ

However, the possibility of imprinting of allele T also has to be taken into
account:

P nA; nTjT imprintedð Þ ¼ b
0:5

1� i=2
1� SEð Þ þ 0:5� i=2

1� i=2
SE

� �nA 0:5� i=2
1� i=2

1� SEð Þ þ 0:5
1� i=2

SE

� �nT

ð13Þ

Likewise as for homozygotes, the binomial probability for the heterozygous
fraction has to be multiplied by the genotype frequency 2PAPT. As from the
underlying biology both alleles can be assumed to have an equal chance of
imprinting (= 50%), this ultimately leads to the mixture PMF denoted in Eq. (7).

Imprinting factor: In a next step, the degree of imprinting (or imprinting factor)
i for a specific SNP locus is estimated using MLE. The likelihoods are calculated as
the sum of the logarithmic values of the PMF-derived probabilities (Eq. (7)) over all
samples. In summary, for each locus, i is varied from 0 to 1 (step size= 0.01),
retaining the value of i corresponding to the highest likelihood

ι̂ ¼ ArgMaxi
Qn
a¼1

PMFðxa;iÞ ¼ ArgMaxi
Pn
a¼1

log PMF xa;i
� �� �� �

. Hence, for every

SNP locus a degree of imprinting is obtained.
Likelihood ratio test: Finally, in order to screen for imprinted loci a likelihood

ratio test is performed. The respective null and alternative hypotheses for a locus
are:

H0: the locus is not imprinted
H1: the locus is imprinted

With the previous definitions this translates into:
H0: i= 0
H0: i > 0

Thus, the null hypothesis of no imprinting (i= 0) is compared to the alternative
hypothesis that the locus is imprinted (i > 0). Practically, in a first step, the PMF
(Eq. (7)) for the locus under study is calculated with i equal to 0. Next, the PMF is
determined with the estimated value of i as explained in the previous section. The
obtained PMFs are then used in a LRT:

Λ Xð Þ ¼ f XjH0ð Þ
f XjH1ð Þ ¼ L H0 jXð Þ

L H1 jXð Þ ¼ PMF x1 ;i¼0ð ÞPMF x2 ;i¼0ð Þ¼ PMFðxn ;i¼0Þ
PMF x1 ;i¼̂ιð ÞPMF x2 ;i¼̂ιð Þ¼ PMFðxn ;i¼̂ιÞ

¼
Qn

a¼1
PMFðxa ;i¼0ÞQn

a¼1
PMFðxa ;i¼̂ιÞ

ð14Þ

As the null hypothesis is a special case of the alternative hypothesis, the test
statistic for nested models �2lnðΛÞ can be used. This test statistic is χ² distributed
and H0 will be rejected if its value is greater than χ2α. However, because we are
testing at the border of a constrained parameter space (i equal to 0), a mixture of χ²
distributions is used: under the null hypothesis, the test statistic is distributed as an
equal mixture of two χ² distributions, namely χ20 and χ21 with 0 and 1 degrees of
freedom, respectively58. Finally, a locus is called imprinted if the corresponding
FDR-corrected p-value was smaller than the nominal FDR level of 0.05
(Benjamini–Hochberg correction for multiple testing).

Median imprinting: A robust measure for degree of imprinting, called median
imprinting, was developed to enable the identification of a robust set of imprinted
loci from the significant set identified higher. For each SNP locus, sample-specific
ratios (= Ri,s for SNP i and sample s) are calculated as the lowest allele count over
the highest allele count, yielding values between 0 (only one allele expressed) and 1
(both alleles expressed to an equal extent). Next, the values of these ratios are
sorted over all samples and the value of the ‘median putatively heterozygous
sample (sm)’ is calculated. This sample corresponds with rank round(samplesize*
(1−PA−PT−PAPT)) = round(samplesize*(PAPT)). The median imprinting value is
then calculated as 2* (0.5−Ri,sm). In a last step, SNP positions with a median
imprinting level ≥ 0.8 were considered as robust (TCGA). For GTEx (validation),
we used a median imprinting level of 0.4 as cut-off, given that typical artefacts had
already been eliminated.

Detection of differential imprinting. Next to the detection of imprinted loci, we
also examined possible deregulation of imprinting in cancer. This was done by
testing for different relative expression of both alleles, here termed DI. When
associated with absolute re-expression of the originally silenced allele, this is coined
LOI. Briefly, ratios of the lowest allele count over the highest allele count (i.e. Ri,s)
are calculated for each single SNP, over all samples. These ratios are sorted per SNP
in an ascending order separately for control and tumour samples. As the lowest
ratios are expected for homozygous samples (ratios theoretically equal to 0, yet
slightly higher due to the presence of sequencing errors), one can consider samples
with the highest 2PAPT ratios as putative heterozygous samples for that specific
locus. In practice: samples with rank higher than sample_size*(PA2+PT2) are
considered as the heterozygous samples for a specific locus. After determining the
mean ratio of these heterozygotes (Ri,stumour and Ri,control), parameter Ri,diff is cal-
culated as the difference between these values, i.e. Ri,diff= Ri,stumour − Ri,scontrol.
Upon random assignment of the tumour and control labels to the present samples
by permutation, 10,000 random values of Ri,diff are simulated to generate a null
distribution. Loci with an FDR-adjusted p-value smaller than the nominal 10%
FDR level were concluded to be differentially imprinted between control and
tumour samples. We were solely interested in DI in cancer and hence we exclu-
sively tested for higher ratios in tumour compared to control data. The different
breast cancer subtypes were also tested for DI (though the Normal-like subtype was
not studied here, as only 8 samples were available) in which the p-value was
corrected over all samples. Here, it should be noted that considering the ratios
allows for detecting differences independent of alterations in expression levels of
imprinted genes, which are also prominent in breast cancer59.

Subsequently, for loci featured by DI, the latter was linked to survival. A
continuous DI variable, which was defined as the allelic ratio (allele count least
expressed allele/allele count most expressed allele), was associated with survival and
adjusted for age with a Cox proportional hazard model. To anticipate assumption
violations, a null distribution was constructed by 10,000 permutations by randomly
shuffling the ratios over the samples. Loci with an FDR-adjusted p-value ≤ 0.1 were
called significant. The analysis was also performed on solely the putative
heterozygous samples, meaning that the 2PAPT fraction of samples with the highest
allelic ratios were used (see higher).

Differential expression of the silenced (lowest expressed) allele was analysed as
well to assess whether expression of the normally silenced allele was higher in
tumour data. Here, counts per million (CPM) reads of the least expressed allele
count were calculated as described in the next paragraph. The same permutation
test as mentioned higher yet based on the logCPM-values rather than ratios, was
performed on the SNPs showing significant DI.

Detection of differential expression. DE analysis was performed to further
evaluate deregulation of imprinted genes in cancer. EdgeR normalisation factors
were calculated from the breast cancer RNA-seq expression count file downloaded
from firebrowse.org60. Afterwards, CPM-values for the imprinted SNPs were
computed with these normalisation factors and library sizes (available for 100
control samples and 469 tumour samples: 87 BL, 54 HER2, 210 LumA, 111 LumB
and 7 NL). EdgeR-based DE analysis was developed to increase power, at the cost
of several assumptions. As the sample size and thus power is sufficiently high in the
case at hand, we opted to use more robust standard non-parametric methods.
Differential expression in control versus tumour samples was analysed with a
Wilcoxon Rank Sum test for detected SNPs as well as the corresponding genes
(sum of the CPM-values of the matching SNPs were used). To test for DE in the
different breast cancer subtypes, a Kruskal-Wallis test and Dunn’s post-hoc test
were performed on the CPM-values of the varying subtypes.

To study transcript-specific effects in HM13, logCPM-values of exonic
expression data (of 14 exons, downloaded from firebrowse.org60) were normalised
and analysed for DE between control and tumour samples as described in the
previous paragraph. Exon data were available for 468 tumour samples (85 BL, 54
HER2, 211 LumA, 111 LumA and 7 NL) and 100 control samples. Exonic RPKM
values, available from firebrowse.org as well, were used for additional verification
and consistently yielded the same conclusions.

CNV and methylation analyses. Infinium HumanMethylation450k data were
downloaded from firebrowse.org60 and CNV data from the GDC portal of TCGA.
Infinium methylation data (450k) could be retrieved for 84 control and 207 tumour
samples (35 BL, 14 HER2, 107 LumA, 46 LumB and 5 NL), whereas CNV data was
available for 92 control and 506 tumour samples. A Wilcoxon Rank Sum test was
performed to screen for significant differential methylation in probes located in
imprinted genes. In the CNV data, gains and losses were called as segment mean >
0.2 and <−0.2, cf.61. A linear model was constructed to model expression (gene-
based logCPM counts) as a function of CNV (factor), adjusting for breast cancer
subtype.

For HM13, also the link between CNV and LOI was of interest. A χ² test
comparing LOI/not LOI (based on genotype calling with SeqEM on RNA-seq data,
see Supplementary Note 4c and Supplementary Table 5) with CNV was performed
for all imprinted HM13 SNPs. Subsequently, methylation of 10 probes (listed in
Joshi et al., with additionally cg18471488 as identified using MEXPRESS in the
breast cancer population33,34) and exonic expression data (see Methods, section
Detection of differential expression) were correlated to identify which methylated
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locus might control expression. Both expression and methylation data were
available for only 72 control and 192 tumour samples. A Spearman correlation test
was performed for detecting correlation between the β-values of the 10 probes and
(i) logCPM-values of the whole HM13 gene (gene counts obtained from firebrowse.
org60 and normalised with EdgeR) and (ii) logCPM-values of the 3rd exon of
transcript 4 (as most of the imprinted SNPs were located in the neighbourhood of
this exon). Again, RPKM values were successfully used for verification.

Quality control. To additionally verify the imprinting and deregulation results,
corresponding WES data (BAM files) were downloaded from TCGA to obtain the
underlying genotypes. However, only for 93 control samples and 464 tumour
samples WES data were available. Concordance between WES and RNA genotypes
was examined to validate the quality of genotyping with RNA-seq data (Supple-
mentary Note 3c).

Code availability. The scripts are available from the authors upon reasonable
request.

Data availability
The authors declare that all data supporting the findings of this study are available within
the Article and its Supplementary Information or from the corresponding author on
reasonable request. Access to controlled GTEx (phs000424) and TCGA (phs000178) data
was obtained through the database of Genotypes and Phenotypes (dbGaP). The TCGA
data were accessed through the Genomic Data Commons portal (https://portal.gdc.
cancer.gov/ and https://portal.gdc.cancer.gov/legacy-archive/search/f) and Broad Insti-
tute’s Firebrowse data portal (http://firebrowse.org/). GTEx data were obtained from the
dbGaP database directly (https://dbgap.ncbi.nlm.nih.gov/).
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