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Summary

Climate research contributes to the direction of understanding the complex climate

system. Research questions are commonly related to either climate projection or

climate change attribution. Climate projection aims at forecasting future states of

the variables in the various ecosystems, typically over the next decades. On the

other hand, climatic attribution studies focus on identifying and quantifying causal

relationships between climate variables and natural or anthropogenic factors (e.g.,

fires, deforestation). Standard modelling approaches in the field of climate science

involve the use of mechanistic climate models. Climate models consist of sets of

equations and derivations that mathematically represent climate systems. This

kind of models rely on prior knowledge and physical laws and they do not directly

take observational data into account (i.e., data coming from satellites and/or

in situ measurements). On the contrary, due to the ever increasing amount of

observational data, data-driven models become more and more popular in the field

of climate science. Data-driven models are not based on conceptual information

nor predefined hypothesis; they are applied directly to the data. Their main goal

is to explore the data and discover (or confirm) knowledge related to the climate

system.

In this thesis, the relationship between climate and vegetation is investigated

by using data-driven approaches. Specifically, methods coming from the fields

of machine learning and data mining are introduced in order to model complex

relationships between climatic variables, such as temperature, precipitation, ra-

diation, and vegetation. Our work focuses on understanding climate–vegetation

interactions due to the crucial role of vegetation, which characterizes the different

ecosystems. Therefore, by investigating vegetation, one can measure the response

of a given ecosystem to the climate variability. Hence, a better understanding of the

relationship of climate–vegetation dynamics can lead to a better understanding of

the effect of the projected climate change on the different ecosystems. To this end,

methods that are able to model cause-effect relationships between variables can

be applied. The use of these methods is investigated throughout this dissertation.

Given this general view, the following research objectives are outlined:

1. Climate–vegetation interactions are characterized by complexity and thus,

they are highly non-linear. Because of that, a first research objective is

the development of a causality framework that takes into account these

non-linearities, by extending existing methods and by incorporating machine

learning algorithms into the new framework.

2. A second research objective concerns the physical interpretation of the analysis

obtained by the proposed framework. This analysis allows for investigating

xi
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(i) the effect of climate on global vegetation, (ii) the most important climatic

drivers for each region, (iii) the role of extremes in different ecosystems and

(iv) the lagged effect of the climate on vegetation.

3. In the third research objective, we aim for developing an approach that detects

coherent regions with similar climate–vegetation dynamics. For the first two

research objectives, the analysis is performed for each location separately,

without considering any spatial interaction between the different locations.

In the third research objective, the spatial interactions between the different

regions are investigated.

4. For the last objective, we analyze the effect of climate on ‘browning events’,

i.e., periods of anomalously low vegetation greenness. In particular, we aim

to detect regions where vegetation response is sensitive to climate extremes.

Chapters 3 to 8 tackle these four research objectives. After a general introduction

about basic concepts and approaches in machine learning (Chapter 2), we start

Chapter 3 by discussing the data sets used in this study. Since we apply a data-

driven approach to investigate climate–vegetation dynamics, the construction of

the database is of great importance. The database consists of the most important

climatic variables. A variable that measures vegetation greenness is also included.

Specifically, in this chapter, we provide the data resources and we describe the

preprocessing steps followed before their use. In addition, we describe the con-

struction of extreme indices and other features from the raw data, which encode

complex patterns, forming a more expressive representation. We also perform

an exploratory pre-analysis on the created database. Subsequently, in Chapter 4,

we introduce our novel non-linear Granger-causality framework, which is applied

on the climate–vegetation database. This framework extends traditional linear

Granger-causality approaches by using more complex (non-linear) machine learning

algorithms. Our results indicate that this approach is able to detect non-linear

relationships between climate and vegetation that are much less visible with other

simpler (and linear) approaches.

An application of the proposed framework is presented in Chapter 5. In this

application, we focus on the importance of each climatic variable separately in

order to find the most important climatic factor with respect to vegetation for each

region. We find that in most of the global vegetated surface, water availability is

the most important driver for vegetation. Our results also reveal a prolonged effect

of water-related variables on vegetation. Meanwhile, the impacts of temperature

and radiation are shown to be more immediate, indicating a higher resilience of

vegetation to these factors. Concerning the impact of hydro-climatic extreme events

(e.g., extremes in precipitation and temperature), even though they are infrequent

by definition, we find that they do have an impact on vegetation variability during

the study period, particularly in water-limited ecosystems.

In Chapter 6, we explore the spatial coherence of the response of vegetation to
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climate. Our goal is to detect regions with similar climate–vegetation dynamics.

To this end, we apply a multi-task learning technique by considering the different

locations as different tasks. This approach models the global spatio-temporal data

set in a multi-task learning setting without taking into account any prior knowledge

about the similarity between the different tasks. Therefore, the spatial structure

is learned in a purely data-driven way. We also combine this technique with a

clustering algorithm in order to form regions where vegetation responds to climate

in a similar way. Experimental results using our global observation-based data sets

indicate that our method is able to identify regions of coherent climate-vegetation

interactions, which agree well with the expectations derived from traditional global

land cover maps. These regions, called ‘hydro-climatic biomes’, can be used in

other applications, such as the exploration of the anomalous behaviour of specific

ecosystems in response to climate extremes.

This last potential application is addressed in Chapter 7. We begin Chapter 7

by discussing the different definitions of browning events, which may constitute

anomalous behaviour in response to climate extreme events. These definitions are

applied directly to the vegetation data streams. As there are various definitions of

this kind in the literature, we discuss their possible limitations and we propose some

alternatives. In addition, we extend the non-linear Granger-causality framework,

introduced in Chapter 4, in order to investigate the response of vegetation extremes

to climate. The main conclusions of this chapter mostly include the benefits/limi-

tations of the various modelling settings. The physical interpretation of the results

will be the subject of future investigations. In the same direction, Chapter 8

elaborates on the same problem of understanding vegetation extremes with the use

of time series classification algorithms. Specifically, we examine the potential of

time series classification algorithms to automatically extract informative patterns

from the time series.

Finally, in Chapter 9, we summarize the general conclusions and present some

ideas for future research.
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Nederlandse samenvatting

Klimaatonderzoek draagt bij tot het begrijpen van het complexe klimaatsysteem.

Onderzoeksvragen in die context gaan meestal over klimaatprojecties en de toeschrij-

ving van klimaatverandering. Klimaatprojecties streven er naar om, meestal in de

volgende decennia, de waarden van variabelen van verschillende ecosystemen te

voorspellen. Anderzijds concentreren studies voor attributie zich op de identificatie

en de kwantificatie van de betrekkingen tussen klimaatvariabelen en antropogene

factoren (zoals bosbranden en ontbossing). Traditionele benaderingen voor het mod-

elleren maken gebruik van mechanistische klimaatmodellen. Deze modellen bestaan

uit een verzameling van vergelijkingen en afleidingen die klimaatsystemen wiskundig

voorstellen. Ze steunen op voorkennis en natuurkundige wetten, maar ze houden

slechts indirect rekening met waargenomen data, zoals de data van satellieten en

in situ metingen. Data-gebaseerde modellen gebruiken daarentegen waarnemingen,

zonder zich te baseren op conceptuele informatie of vooraf gedefinieerde hypothe-

sen. Door de steeds toenemende hoeveelheid verzamelde waarnemingen, worden

data-gedreven modellen steeds populairder in klimaatwetenschap.

Dit werk concentreert zich op het begrijpen van de wisselwerkingen tussen klimaat

en vegetatie, vanwege de belangrijke rol die vegetatie speelt in het karakteriseren

van verschillende ecosystemen. Door het bestuderen van vegetatie kunnen we de

reactie van een bepaald ecosysteem meten wanneer het klimaat verandert. Dus, een

beter begrip van het verband tussen klimaat en vegetatie kan leiden tot een beter

van het effect van de voorspelde klimaatverandering op verschillende ecosystemen.

Hiertoe kunnen we modellen gebruiken die de oorzaak-gevolg wisselwerkingen

tussen variabelen modelleren. In dit doctoraat bestuderen we het verband tussen

klimaat en vegetatie door het gebruik van machine learning methoden. In het

bijzonder introduceren we methoden om de ingewikkelde verbanden tussen vegetatie

en klimaatvariabelen, zoals temperatuur, neerslag en straling te modelleren. Meer

specifiek bestuderen we de volgende onderzoeksdoelen:

1. De wisselwerkingen tussen klimaat en vegetatie zijn ingewikkeld, dus ze zijn

ze niet-lineair. Ons eerste doel is de ontwikkeling van een wetenschappelijk

kader voor causaliteit, rekening houdend met niet-linieariteiten, door het

uitbreiden van bestaande modellen en door het gebruik van machine learning

algoritmes.

2. Een tweede onderzoeksdoel gaat over de fysieke interpretatie van de analyse

die we in het voorgestelde kader hebben bekomen. Met de hulp van deze

analyse kunnen we de volgende punten onderzoeken: (a) het effect van klimaat

op de globale vegetatie, (b) de belangrijkste klimaatfactoren voor elke regio,

(c) de rol van de extreme waarden in verschillende ecosystemen, en (d) het
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vertraagde effect van het klimaat op de vegetatie.

3. In het derde onderzoeksdoel streven we er naar om een aanpak te ontwikkelen

die coherent de interactie tussen klimaat en vegetatie kan opsporen. Voor

de eerste twee onderzoeksdoelen wordt de analyse afzonderlijk voor elke

locatie uitgevoerd, zonder de ruimtelijke wisselwerkingen tussen de verschil-

lende locaties te beschouwen. In dit onderzoeksdoel worden de ruimtelijke

wisselwerkingen tussen de verschillende locaties onderzocht.

4. Voor het laatste doel analyseren we het effect van klimaat op ‘browning’

gebeurtenissen. ‘Browning’ gebeurtenissen zijn periodes met abnormale lage

vegetatiegroenheid. In het bijzonder streven we ernaar om regio’s op te

sporen waar de reactie gevoelig is voor klimaatextremen.

Hoofdstukken 3 tot 8 pakken deze vier onderzoeksdoelen aan. In Hoofdstuk 2 geven

we een overzicht van enkele fundamentele concepten met betrekking tot machine

learning. In Hoofdstuk 3 bespreken we de gegevens die we voor ons onderzoek

gebruiken. Doordat we een datagebaseerde aanpak toepassen om de dynamica

tussen klimaat en vegetatie te bestuderen, is de constructie van de gegevens van

groot belang. De gegevens bestaat uit de belangrijkste klimaatsvariabelen. Een

variabele de groenheid van vegetatie beschrijft is ook opgenomen. Bovendien

beschrijven we de constructie van extreme indices en andere kenmerken van de

ruwe data. Wij voeren ook een verkennende analyse uit op de gecreëerde dataset.

Vervolgens introduceren we in Hoofdstuk 4 een nieuw niet-lineair kader voor

Granger-causaliteit. Dit kader breidt traditionele lineaire Granger-causaliteit uit

door het gebruik van complexe (niet-lineaire) machine learning algoritmen. Onze

resultaten tonen aan dat deze aanpak niet-lineaire relaties tussen klimaat en

vegetatie kan opsporen. Deze relaties zijn minder zichtbaar als we traditionele

lineaire modellen gebruiken.

Een toepassing van het voorgestelde kader wordt in Hoofdstuk 5 gepresenteerd.

In deze toepassing besteden we afzonderlijk aandacht aan het belang van elke

klimaatvariabele, zodat we voor elke regio de belangrijkste klimaatfactor voor

vegetatie kunnen vinden. Wij tonen aan dat, in de meeste gebieden met normale

begroeiing, de beschikbaarheid van water de belangrijkste factor voor vegetatie is.

Onze resultaten tonen ook aan dat er een verlengd effect van watergerelateerde

variabelen op vegetatie bestaat. De impact van temperatuur en straling daarentegen

is onmiddellijker en snel uitdovend over tijd. Dus vegetatie heeft een grotere

weerstand tegen deze factoren. In het geval van de impact van extreme hydrologische

gebeurtenissen (extrema in neerslag en temperatuur), illustreren we dat deze

gebeurtenissen een impact hebben op de veranderlijkheid van de vegetatie tijdens

de onderzoeksperiode, hoewel deze gebeurtenissen zeldzaam zijn.

In Hoofdstuk 6, onderzoeken we de ruimtelijke samenhang van de reactie van

vegetatie ten gevolge van klimaat. Ons doel is om regio’s met vergelijkbare

klimaat-vegetatie interacties op te sporen. Hiervoor passen we multi-task learning
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methoden toe, door de verschillende locaties te zien als verschillende taken. Onze

aanpak modelleert de ruimtelijk-temporele dataset zonder rekening te houden met

enige voorafgaande kennis over de gelijkheid tussen de verschillende taken. De

ruimtelijke structuur wordt dus geleerd puur op een data-gebaseerde manier. We

combineren deze techniek met een clusteralgoritme, zodat we regio’s kunnen vormen

waar klimaat-vegetatie interacties vergelijkbaar zijn. Experimentele resultaten,

die bekomen werden door het gebruik van onze wereldwijde data, tonen aan dat

onze methode regio’s met coherente wisselwerking tussen klimaat en vegetatie kan

opsporen. Deze regio’s, die ‘hydro-climatic biomes’ genoemd worden, kloppen met

de verwachtingen die bekomen worden via traditionele globale vegetatiekaarten

en klimaatzone’s. Ze kunnen in andere toepassingen worden gebruikt, zoals het

onderzoek van het abnormaal gedrag van bepaalde ecosystemen als reactie op

klimaatextrema.

Deze toepassing wordt in Hoofdstuk 7 bediscussieerd. We bespreken de verschil-

lende definities van ‘browning’ gebeurtenissen die abnormaal gedrag als reactie op

klimaatextremen vertegenwoordigen. Deze definities worden direct toegepast op

data van vegetatie. Doordat er verschillende definities in de literatuur bestaan,

bespreken we hun mogelijke beperkingen en we stellen een aantal alternatieven

voor. Verder breiden we ons niet-lineair Granger-causaliteitskader uit Hoofdstuk 4

uit om de reactie van extrema in vegetatie op het klimaat te bestuderen. De

hoofdconclusie van dit hoofdstuk handelt over de voordelen en beperkingen van de

modellen. De fysieke interpretatie van de resultaten is een piste voor toekomstig on-

derzoek. Daarnaast wordt dit hoofdstuk uitgebreid met algoritmes die automatisch

informatieve patronen uit tijdreeksen halen.

Finaal vatten we in Hoofdstuk 9 enkele algemene conclusies samen en presenteren

we ideeën voor toekomstig onderzoek.
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1 Introduction

‘What is needed is the development of data-driven methodologies that are guided by

theory to constrain search, discover more meaningful patterns, and produce more

accurate models.’

Faghmous and Kumar (2014)

1.1. Assessing causality in geosciences

The field of geosciences consists of various disciplines such as biology, geology,

hydrology, geophysics, ecology and aims to understand the complex and dynamic

system of our planet. The term ‘geosciences’ is often conflated with the arguably

broader ‘climate science’. In this thesis we use these terms interchangeably, since

both fields focus on the study of the Earth system. The importance of a better

understanding of Earth’s system is crucial, since there are several problems related

to humanity that require solutions. Some of these problems include research

questions that are also related to climate. Climate research studies contribute to

the direction of understanding and addressing these problems by facing challenges

which are related to either climate projection or climate change attribution. Climate

projection or forecasting aims at predicting the future state of the climatic system,

typically over the next decades. The goal of climatic attribution, on the other hand,

is to identify and quantify cause-effect relationships between climate variables and

natural or anthropogenic factors. Particularly, one can think of specific challenges,

such as the effect of human greenhouse gas emissions on global temperature, the

prediction of water and food availability, the detection of factors responsible for

extreme events, etc. (Karpatne et al., 2017).

With the development of satellite and sensor technology, climate science has

become one of the most data-rich domains. Thus, machine learning and data

mining techniques are able to contribute in the direction of unraveling complex

relationships in climate, by extracting useful information from the data, modelling

important variables and providing tools for causal inference (Lary et al., 2016;

Srivastava et al., 2017). However, the use of these techniques on geoscientific data

is not straightforward, since this kind of data is commonly organized in spatio-

temporal structures and characterized by high auto-correlation, non-stationarity,

non-linearity, small sample size, incompleteness and uncertainty. In addition,

climate data are characterized by heterogeneity due to the fact that the raw data

are coming from various resources in multiple spatial and temporal resolutions and

formats. These challenges become a barrier to most data science techniques, in
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which assumptions such as independence or stationarity are held. On top of these

challenges, the general idea behind data science techniques is not directly applicable

in geoscientific applications, since phenomena such as a hurricane cannot be

represented by a single observation in a data set. Therefore, collecting, preprocessing

and forming a database that can be handled by data science methods is already a

big challenge. However, we should stress that in climate science, there are research

questions in which machine learning and data mining techniques offer the means

to provide the answers. In light of this rationale, these means should be used in

combination with the prior domain knowledge and the laws underlying climate

processes. That way, these methods are able to produce physically interpretable

results leading to significant contributions to our understanding of the climate

system (Faghmous and Kumar, 2014).

1.1.1. Approaches based on climate models

The standard modelling approach in the field of climate science is based on simu-

lation studies with mechanistic climate models (IPCC, Intergovernmental Panel

on Climate Change, 2007; Moss et al., 2008). Climate models provide a huge

amount of data by either simulating future climate or reconstructing past climate.

This kind of models is based on conceptual representations of the global water,

atmospheric and biological systems, mathematically formalized through compli-

cated differential equations. In the simulation process, observational data are used

only for initialization purposes. Since the data are produced by simulations, the

outcomes are continuous, without gaps in space and time. However, they highly

depend on the different parameters and initializations. In addition, the model

outputs suffer from uncertainties, due to incomplete physical understanding of

certain processes. To reduce the variance and the uncertainties of a single model,

an ensemble approach is commonly used. This approach is based on the averaged

result of multiple models, which are initialized in various conditions with different

parameter values.

To illustrate the way that physically-based frameworks are used for climate at-

tribution studies, we present the basic steps of a case study. Let us focus on

disentangling the effect of anthropogenic greenhouse emissions on the occurrence of

a particular climatic event, e.g., a hurricane. At a first step, the climate model runs

without the use of information about the emissions. Then, the climate model runs

again, considering the emissions. Finally, the difference in likelihood of occurrence

of the climatic event in the two scenarios (with and without the emissions) is

assessed. That way, one can draw conclusions such as, in our case, that the CO2

emissions doubled the chance of experiencing a storm. The same framework is

commonly followed to attribute climate trends. As such, conclusions which involve,

e.g., that the probability of temperature increase based on a particular factor, are

also possible.
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1.1.2. Data-driven approaches

In contrast to concept-based models that rely on strong assumptions (i.e., prior

knowledge, physical laws), data-driven models do not follow any kind of predefined

hypothesis for the climate system. Specifically, the relationships between different

variables are modeled by learning functions based on observational data. Thus,

these statistical and machine learning models are directly applied on the input

data. Note that in data-driven approaches, the underlying assumptions of every

modelling approach, i.e., linear – non-linear assumptions, representation of reality

based on data etc., are still valid. As already mentioned above, there are recent

improvements in the field of satellite and in situ technology resulting in an ever

increasing amount of fine resolution input data. As such, data-driven models can

exploit the available data sets to answer research questions related to climate. The

main challenges remain (a) the adaptation of data-driven models to the complexity

of the climate data sets, as well as (b) the interpretability of their results. In this

dissertation, we focus on the choice of data-driven models in climate science.

Similar research questions to the one described in Sect. 1.1.1 have been addressed

by a large number of recent studies with the use of data-driven approaches. In

these studies, simple linear regression models have been commonly used to model

relationships between variables (Attanasio, 2012; Attanasio et al., 2012). However,

recently, with the development of more complicated algorithms, other non-linear

methods (such as neural networks) have been applied to climate data (Pasini et al.,

2017; Attanasio and Triacca, 2011). Particularly, in this dissertation, we investigate

the relationship between climate and vegetation by using machine learning methods.

We introduce approaches that are able to model complex relationships between

climatic variables, such as, temperature, precipitation, radiation, and vegetation.

Our work is focused on understanding the climate–vegetation interactions due to

the crucial role of vegetation in the different ecosystems (Bonan, 2008; Nemani et al.,

2003). This is due to the fact that by investigating vegetation, one can measure the

way that the different ecosystems respond to climate variability. Hence, a better

understanding of climate–vegetation interactions can lead to a better understanding

of the effect of climate change on the ecosystems. This valuable information can

be extracted by methods that are able to model cause-effect relationships between

variables. This kind of methods is used throughout this thesis.

1.1.3. Causal inference

The goal of statistical causality is to understand complex systems (i.e., climate

dynamics, biological systems) by using observational data to detect causal relation-

ships between variables. Although the definition for causality seems rather intuitive,

it is a complex concept that can be mathematically formulated. However, this kind

of mathematical models cannot be directly applied without first introducing some
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strong assumptions. One of the most important assumptions is causal sufficiency.

According to causal sufficiency, all the necessary observational data are included in

the analysis (i.e., there are no hidden causes or other unobserved relevant variables).

This implies that the analysis for a particular causal relation is subject to the

inferred variables. Any hypothetical change in the observed variables (e.g., addition

of a newly-observed variable) affects the resulting causal relationships, since other

possible causes can emerge. In climate studies, it comes natural that the causal

sufficiency assumption is never satisfied. For instance, climate systems are highly

complex and thus there might be hidden interactions due to unobserved variables.

Therefore, conclusions can be drawn based on the analysis of specific data sets.

Note that expert view/knowledge on the field is necessary for the evaluation of

the causal relationships that can be detected. This means that causal frameworks

can confirm relations that can be physically explained, or detect new hypothetical

relations, which should be further investigated. Yet, new undiscovered relations

can also be identified, contributing to our knowledge about the complex climate

system.

In the previous section (Sect. 1.1.2), we stress that discovering relationships between

climate variables is of a great importance. Instead of just detecting correlations

among climate variables, research questions also include the investigation of causal

relationships between them. Arguably, the most commonly used approaches

for detecting causality are: (i) Granger causality (Granger, 1969) (Granger was

awarded the Nobel prize for this method), (ii) probabilistic graphical model ap-

proaches (Koller and Friedman, 2009), (iii) independence-based methods (e.g.,

see Runge et al. (2017)) and (iv) non-linear state-space methods (e.g., see Sugihara

et al. (2012)). Each of the aforementioned approaches has its own advantages

and limitations. For instance, Granger causality (Granger, 1969) is based on the

predictive performance of the involved variables and is defined under the following

assumptions: (a) The past and the present might cause the future but the future

cannot cause the past and (b) there is no redundant information in the examined

system (e.g., there is no need including both degrees in Fahrenheit and Celcius

for a temperature variable). In climate studies, Granger causality has been used

in the bivariate and multivariate setting (Triacca, 2005; Attanasio, 2012). For

instance, Sun and Wang (1996) analyzed time series of global CO2 emissions and

global temperature anomalies, concluding that there is a positive cause-effect rela-

tion between them. The main strengths of Granger-causality approaches include

the simplicity, scalability and interpretability of the method, whereas the main

limitations are due to the causal sufficiency assumption and the causal loop be-

tween the involved variables. Probabilistic graphical models have also been used

in detecting causal relations (Koller and Friedman, 2009). They use a graphical

representation of the causes between the variables, in which the nodes represent the

variables and the edges represent the relations between them. In climate studies,

this kind of models has rarely been used, due to their increased complexity, espe-
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cially for large scale data (Ebert-Uphoff and Deng, 2012). However, there are some

climate applications in which probabilistic graphical models have been successfully

used, see e.g., Cano et al. (2004); Monteleoni et al. (2011). In the category of

independence-based approaches, there are methods which combine concepts from

both categories described above. For instance, Runge et al. (2017) estimate the

causal time series graph using conditional independence tests for time series, while

Sun et al. (2015) investigate the usage of causation entropy as a measure to discover

the direct parents of a given node. In climate science, these approaches have been

only recently applied (Runge et al., 2014; Yi and Imme, 2014). Note that these

approaches also suffer from the causal loop between the involved variables. Finally,

non-linear state-space methods (Sugihara et al., 2012) assess causation by using

the convergent cross-mapping method, which tests whether the historical records

of one variable can reliably reconstruct the values of another variable. Examples of

applications in climate science that use this kind of approaches include the studies

of Van Nes et al. (2015); Ye et al. (2015). Scalability to high-dimensional data is

the main issue of these approaches. Undoubtedly, there are other methods which

have been used in discovery of causal relationships. Other approaches include the

use of penalization methods (Lozano et al., 2009a; Shojaie and Michailidis, 2010)

and other causality algorithms (Spirtes et al., 2000).

1.2. Overview of the research objectives and achieve-

ments

In this thesis, we investigate the relationship between climate and vegetation

by using data-driven methods. Specifically, we combine the concept of Granger

causality with feature construction techniques and machine learning algorithms to

investigate climate–vegetation interactions based on spatio-temporal observational

data at global scale. With the proposed framework, we are able to detect the

main vegetation drivers of each region and/or to assess the importance of climatic

extremes and lagged-values of climate variables for vegetation. We also explore the

spatial coherence of the response of vegetation to climate and the occurrence of

global vegetation extremes (browning events). Finally, in the last part of the thesis,

we study the link between climate and browning events detected on observational

data. In particular, we investigate the different definitions of vegetation extremes,

existing in the literature, and we introduce some alternatives. Based on these

definitions, we reformulate our causality framework in order to explore the main

climatic factors that affect browning events in the different regions of the world.

To this end, we formulate several research questions to guide our investigations,

which are elaborated and motivated in subsequent chapters:

1. Is climate an important factor to determine the state of vegetation? If yes,

in which regions does it play a more important role?
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2. Which are the most important climatic drivers for each region?

3. Which climate extremes are important for vegetation?

4. Which is the lagged effect of the climatic variables on vegetation?

5. In which regions does vegetation respond to climate in a similar way?

6. How can we define browning events based on vegetation data?

7. In which regions does climate affect vegetation extremes the most?

These research questions are studied through the use of satellite and in situ data

sets.

The contribution of this thesis is summarized as follows:

� We have developed a Granger-causality framework that combines the steps

of data collection and pre-analysis, time series decomposition techniques,

feature construction and predictive modelling approaches. This is the first

time that a framework, which uses the aforementioned techniques, is applied

in the context of understanding climate–vegetation interactions.

� We have also explored the use of multi-task learning modelling to exploit

the spatial dependencies on our spatio-temporal climate–vegetation data sets.

This modelling approach is also novel with respect to the application domain.

� We have extended the Granger-causality framework in a classification setting

in order to investigate the effect of the climatic drivers on the browning events.

This is also a new approach in the study of climate–vegetation interactions.

� We have performed a comparative study on the ability of various machine

learning algorithms to extract useful patterns from climatic time series. This

study is a new approach in the application domain.

� Finally, we have analysed and discussed the results of our analysis with the

selected modelling approaches, giving new insights in the understanding of

climate–vegetation dynamics.

� Note also that the proposed methodology can be applied, with some modifi-

cations if needed, in other application domains to address similar research

questions.

1.3. Structure of the thesis

In Chapter 2, we provide some basic background knowledge about machine learning.

Specifically, we discuss in more detail some basic concepts and commonly used

methods that are also used in this thesis. We then outline some basic terminology
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about time series, as climate data collected by sensors have the form of time series.

We also describe various machine learning applications in geosciences.

In Chapter 3, we discuss the data sets collected for this thesis. We provide the

data resources, as well as their original spatio-temporal resolution, and we describe

the preprocessing steps followed before their use. We also explain the construction

of extremes indices and other information from the raw data and we perform an

exploratory pre-analysis on the created database.

In Chapter 4, we introduce a novel non-linear Granger-causality framework, which is

able to detect non-linear relationships between climate and vegetation. We compare

the results with traditional Granger-causality methodologies and we experimentally

prove that complex relationships can be revealed by the use of more complex

predictive modelling techniques.

An application of the framework explained in Chapter 4 is described in Chapter 5.

In this application, we focus on the importance of each climatic variable separately

in order to find the most important climatic factor with respect to vegetation for

each region. We also investigate the importance of climatic extremes and the past

variability of the climatic factors for the global vegetation.

In Chapter 6, we explore the spatial coherence of vegetation response to climate.

More particularly, we apply a multi-task learning technique which is able to reveal

common predictive structures among the different locations. We then describe the

way of forming coherent regions based on these characteristic structures.

We begin Chapter 7 by discussing the different definitions of vegetation extremes

(i.e., browning events) that exist in the literature. We then propose some alternative

definitions of vegetation extremes based on vegetation data. We also extend the non-

linear Granger-causality framework introduced in Chapter 4 in order to investigate

the relationships between climate and vegetation extremes.

In the same direction, Chapter 8 elaborates the same problem of understanding

vegetation extremes with the use of time series classification algorithms. Specifically,

we examine the potential of time series classification algorithms to automatically

extract informative patterns from the time series.

Finally, in Chapter 9, we summarize the modelling studies described in this thesis,

as well as their conclusions, and discuss their implications for the field of climate

science. We also outline the promising research avenues opened by the work

contained in this thesis.
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2 Machine learning background

In this chapter, we present a brief overview of machine learning to introduce the

basic concepts and methods used in this thesis. Therefore, the provided explanations

are in an introductory level. For a more detailed description of machine learning,

the reader is directed to Hastie et al. (2001); Bishop (2007); James et al. (2014).

In the next sections, some important concepts of machine learning are discussed:

train-test splitting, cross-validation and over-fitting. A basic notation is also defined.

Afterwards, some of the most simple, but effective, linear and non-linear machine

learning methods are introduced. Then, as climate data are mostly represented as

spatio-temporal data sets, basic concepts and modelling techniques for time series

and spatial data are described. Finally, some examples of common challenges and

machine learning applications in geosciences are presented.

2.1. Introduction

Machine learning is the field of study which focuses on algorithms that are able

to learn from data. A learning algorithm can be defined according to a famous

statement:

‘A computer program is said to learn from experience E with respect to some class of

tasks T and performance measure P, if its performance at tasks in T, as measured

by P, improves with experience E.’

Mitchell (1997), Machine Learning

This kind of algorithms has been successfully applied on various problems, such

as in weather forecasting, computer vision, bioinformatics, etc. But what can one

consider as task T, experience E, and performance measure P? In the application of

weather forecasting, the task T can be defined as the prediction of temperature (or

another climatic variable) for the next day (days) of a specific area, the experience

E can be gained by using the daily temperature values of this particular location

of the last 30 years and the performance measure P can be specified as the average

error between the observed and the predicted temperature value. Considering

an application from computer vision, such as the classification of an image to a

specific category according to its theme, the task T is the application itself, the

experience E is a set of images already classified in a particular category (e.g., by

a human annotator) and the performance measure P can be the percentage of

the correctly classified images. Therefore, it is obvious that based on the goal of

each application, the definition of these three concepts varies, often making these

decisions for researchers and practitioners not straightforward.
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Based on the way that this experience is gained, machine learning methods are

typically divided in three main categories: supervised methods, unsupervised

methods and reinforcement learning approaches. In supervised methods, there are

always (historical or annotated) data available to train the model on them (such as

in the two applications of weather forecasting and image classification mentioned

in the previous paragraph). Unsupervised methods are typically used to discover

the structure of the data, to cluster the data in different groups based on their

characteristics or reduce the dimensionality of the data. Thus, this kind of models

is not based on labelled data sets. Finally, reinforcement learning is mainly used

in robotics where agents learn to interact with their environment by using a trial

and error strategy. In these systems, there is a reward function which indicates

whether the moves of an agent led to a successful attempt or not. The methods

used in this thesis are supervised and unsupervised algorithms.

2.2. Basic concepts

In supervised learning, algorithms build a mathematical model from the given input

data. We symbolize with X the space of the input data objects, i.e., the space of the

representation of the objects. An instance of this space is denoted with x and it is

usually a vector of features, i.e., x � px1, ..., xdq, with d being the dimension of the

input space. In addition to this space, in supervised methods there is another space,

commonly symbolized as Y, which refers to the experience used by the learning

algorithm. Based on the type of the space Y, supervised learning problems are

separated into the following main categories: classification and regression problems.

In classification problems, the variable to predict is a categorical variable, i.e.,

each object is classified to one category (or label). A special case of this type of

problems is binary classification, where the target variable can take only two values

Y � t0, 1u, i.e., the data objects can be assigned to one out of the two categories.

In regression problems the target variable takes continuous numerical values, i.e.,

Y � R. In practice, the instances of a data set are often denoted as pairs of an

input vector x and the corresponding answer label or scalar y, i.e., px, yq. As such,

a data set can be denoted as a set of pairs: D � tpx1, y1q, px2, y2q, ..., pxN, yN qu,
with N being the number of instances (observations).

The input data is commonly split into three parts, namely training set, validation

set and test set. Each part is used in different phases of the model development.

The model is initially fit on the training data set. In the most common scenario,

the trained model contains parameters that should be adjusted based on the data.

So in this case, the validation data set is used in order to compare the performances

of the models for different parameter values. That way, one can decide about the

most appropriate parameter values for the model. Finally, the test data set is

used to provide an unbiased evaluation of a final model fit on the training data
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set (which also includes this time the validation set). An important note is that

the observations in both the test data set and the validation data set should follow

the same probability distribution as the training data set. The partition of a given

data set to two different parts is known as the hold-out method and common

proportions of the total number of instances are 70%/30% for the training and the

test set, respectively.

However, when the given data set is small, the hold-out method is not feasible.

The solution to this problem is K-fold cross-validation. In K-fold cross-validation,

the data set is divided into K parts. In each of the K folds, one part is used for

testing, while the remaining parts are used for training. Figure 2.1 illustrates a

five-fold cross-validation procedure. The K-fold cross-validation error is calculated

as:
1

N

Ķ

k�1

¸
iPDk

Ipfpxi;D �Dkq � yiq (2.1)

where D�Dk is the data set minus the observations of the k-th fold and fpxi;D�
Dkq is the model prediction for the observations xi P Dk. The model f is learned

on D � Dk and I is an indicator function, which can be substituted with any

other function that measures the deviation from the true values yi. This error

is an unbiased estimate of the error of our learning algorithm when given N K�1
K

observations.

Another basic concept in machine learning is the concept of over-fitting, which is

related to the ability of the model to generalise well on unseen data. A perfect

performance on the training data is useless and easy, since the algorithm can only

memorise all the observations in the training set with their corresponding values

of the target variable. However, this kind of memorization is not considered as

learning, because the model will perform poorly on unseen data. This scenario,

where the error on the training data is very low, but the error on unseen data

is high, is called over-fitting. On the other hand, under-fitting occurs when the

Figure 2.1: Illustration of a five-fold cross-validation procedure. The data set is split
into five parts. One part serves as test data set in each iteration, while the other four are
concatenated to constitute the training set. The final result is obtained by averaging the
performance results of the five runs.
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model is too simple to even model the training data. In this case, both the training

and the testing errors are high. As the model complexity increases, the model

starts to perform well on both the train and test data. However, once the model

becomes too complex, the testing error increases, while the training error continues

to decrease and the model is over-fitting. This phenomenon is illustrated in Fig. 2.2.

In the next chapter, we discuss about a well-known term for controlling the model

complexity and a commonly used way to fine-tune this term.

Figure 2.2: The train and the test error as a function of the model complexity (Goodfellow
et al., 2016).

2.3. Linear models

2.3.1. Linear regression

We start with the simplest and the most well-known model for regression problems,

the linear model. In a linear model, it is assumed that the target variable y can be

expressed as a linear combination of the input features x. By denoting with f the

function that takes as input a vector x and gives a predicted value fpxq (denoted

also as ŷ) for the target variable, the linear model is written as:

fpxq � w1x1 � ...� wdxd � w0 �
ḑ

i�1

wixi � w0, (2.2)

with the function f : X Ñ R, the vector w � pw1, w2, ..., wdq being the weight

parameters and w0 being the bias term. By using a simpler notation, the above

equation is represented as:

fpxq � wTx. (2.3)

In this case, the constant bias term can be included in the feature vector x as

an additional constant value of 1 to introduce the model offset, so that w �
pw0, w1, w2, ..., wdq. Note that the underlying relationship between y and x is
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expressed involving an error term ε by:

y � fpxq � ε � ŷ � ε. (2.4)

It is assumed that the errors in the regression are normally distributed.

In order to learn the function f , one should actually learn the weight vector w P Rd.
This weight vector is learned by using a training data set such as the one described

in Sect. 2.2. A commonly used method to do so, is the least squares method. By

using as loss function the mean squared error, one solves the following optimization

problem:

min
w

1

N

Ņ

i�1

pyi �wTxiq2. (2.5)

This problem comes with an analytical solution due to the convexity of the objective

function.

2.3.2. Ridge regression

As it has been mentioned in Sect. 2.2, over-fitting is a common phenomenon in

machine learning, and it is related to the complexity of the model. Specifically,

when there are more model parameters than training observations, the model

perfectly learns the training set, while it is not capable of making good predictions

on the test data set.

A common way for controlling the model complexity is called regularization. Regu-

larization is an extra term that is added to a loss function. This term serves as

a penalty to the complexity of the function and often comes with a parameter λ,

which is tuned during the training phase. The goal of regularization is to keep a

balance between a small error in the training set and over-fitting. In this thesis, we

use a well-known regularization method called ridge regression (Tikhonov, 1963).

In ridge regression, the mean squared error is used as loss function and the L2-norm

of w is used as regularization term, as it is known that the model complexity

in least squares regression is related to the magnitude of the weights. The ridge

regression optimization problem is defined as:

min
w

1

N

Ņ

i�1

pyi �wTxiq2 � λ||w||2. (2.6)

The above optimization problem has two objectives; to learn a function f that well-

fits the training observations and keep the function f simple to avoid over-fitting.

This trade-off is controlled by the λ parameter. An explanation about the way

that the different values of the parameter λ affect the learning model is coming

from statistics by using the concepts of bias and variance. A low value of λ leads
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to a better fit of the model to the training set, resulting in a more complex model.

Thus, the bias of the model is low, since the error in the training set decreases. At

the same time, the variance is increasing, as small changes in the training set lead

to large changes in the parameter values. On the other hand, a high value of the

parameter λ leads to a simpler model that possibly is not expressive enough to

model the training data. Therefore, the opposite scenario happens in terms of bias

and variance; the bias of the parameters is high, while the variance is low. And

when the model is too simple, then its generalization ability is low, leading to low

performance on a test data set. As such, we conclude that properly tuning the

λ parameter is crucial. The tuning of the parameter is commonly done by using

K-fold cross-validation or a validation set.

2.3.3. Least Absolute Shrinkage and Selection Operator

(LASSO) regression

LASSO (Tibshirani, 1996) is an alternative (to ridge regression) commonly-used

method which penalizes the regression coefficients in order to improve estimation.

The difference between the ridge regression and the LASSO comes from the penalty

term that each method uses, i.e., LASSO uses the L1-norm of w while ridge

regression uses the L2-norm of w. The advantage of the L1-penalty term is that it

can lead to sparse estimation of regression coefficients, and therefore, LASSO is able

to automatically perform variable selection. Mathematically, LASSO regression is

formulated as:

min
w

1

N

Ņ

i�1

pyi �wTxiq2 � λ||w||1. (2.7)

In this thesis, LASSO regression has been used only in some early experiments.

However, there are some references in this well-known method throughout the next

chapters.

2.3.4. Logistic regression

In the case of classification problems, the data samples are assigned to one of a

fixed number of categories (classes). In Sect. 2.2, we introduced a special case

of classification problems where the target variable y can take only two possible

values. There are many classification algorithms that have been proposed in the

literature for this binary classification problem. These algorithms can be extended

into multi-class classification problems where more that two classes are considered.

Here, we describe one of the most well-known methods of the field called logistic

regression.

Despite its misleading name, logistic regression is a probabilistic approach for
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classification, which returns a probability estimate to a given sample for each class.

The values of the two classes in the binary classification case are typically notated

as 0 (negative) and 1 (positive). That way, one can assess the correctness of the

model response based on the following probability measures:

Pi1 � Prtyi � 1|xiu, (2.8)

Pi0 � Prtyi � 0|xiu, (2.9)

for i � 1, ..., N . So, one can observe that the equality Pi0 � Pi1 � 1 should hold

for each i. Logistic regression represents the log-odds or logit function of the above

probabilities as a linear model of the input feature vectors, i.e.,

log

�
Pi1

1� Pi1

�
� wTxi, (2.10)

in which the model function corresponds to a hyperplane that separates the data

samples into the different classes (Cox, 1958).

As in linear regression, a loss function is minimized also for logistic regression. The

loss function in logistic regression is called logistic loss and is defined as:

Lpfpxq, yq � �yfpxq � lnp1� exppfpxqqq. (2.11)

with fpxq being the model function.

2.4. Non-linear models

2.4.1. Non-linear regression methods

In Sect. 2.3.1, we presented the linear regression model, which is a simple and

well-interpreted model. However, the expressiveness of this model is rather limited,

since it takes into account only linear combinations of the input variables. In

machine learning, a common way of extending a linear method to a non-linear

one is by using linear combinations of non-linear functions, applied on the input

variables. This simple idea leads to a model formulated as:

fpxq �
d�¸
m�1

wmφmpxq � wTφpxq (2.12)

with φm : X Ñ R being non-linear functions usually called as basis functions (Waege-
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man, 2009). Considering a set of d� basis functions, the weight vector w is a

d�-dimensional vector. These parameters are learned based on the training obser-

vations, as in the case of linear regression. A simple way to denote the mapping of

the features of a d-dimensional space to a (usually higher) d�-dimensional space is

the following:

φ : X Ñ Rd
�

(2.13)

This new d�-dimensional space is also called the feature space and the individual

values are called features. Thus, one can apply the linear regression model as

described in Sect. 2.3.1 on this new feature representation. As such, the model

becomes more expressive compared to linear regression on the original feature

space, since it can capture possible non-linear relationships in the data. Moreover,

the interpretability and the easy implementation of the linear regression model are

retained.

In the machine learning literature there are several examples of basis functions

that are used in various applications. For a simple example, one can think of the

polynomial basis function, in which for a one-dimensional input variable x, the

basis function φm returns a polynomial of degree m, i.e.,

φmpxq � xm (2.14)

That way, in the model of Eq. 2.12, polynomials up to degree d� will be included.

Alternatively, basis functions, such as Gaussian basis functions, sigmoidal basis

functions, etc., are also commonly applied. For more details about basis functions,

see Scholkopf and Smola (2001).

In machine learning applications, the predictive performance of the model heavily

relies on the feature representation of the data samples. If the feature space is

expressive enough, the model can successfully detect the important patterns in the

data, leading to a high predictive power. To this end, in the different application

domains there are specialized methods, which can select well-fit basis functions.

An alternative way of obtaining an expressive representation is by using the prior

knowledge of the study area. Specifically, in application domains, such as in

bioinformatics, relevant features can be obtained by the experts of the field. This

latter approach is the one that we adopt for the experimental analysis of this thesis.

Finding the appropriate basis function or creating a relevant feature representation

is a task that is usually performed during a preprocessing phase.

2.4.2. Random forests

An alternative approach for non-linear regression (or classification) problems is

to subdivide the space into smaller areas. This can be managed by a machine

learning algorithm which is known as decision trees. Decision trees can be applied
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in classification and regression problems. In this section we refer to the way that

a regression tree models the data, but the extension to the classification case is

straightforward, since the steps of the algorithm and the basic idea behind remain

the same in both cases.

A regression tree is constructed based on a binary recursive partitioning pro-

cess (Breiman et al., 1984; Hastie et al., 2001; Bishop, 2007). This process itera-

tively splits the initial training data set into two partitions, constructing that way

the branches of a tree. The data which belong to a specific branch are further

split into two partitions. Specifically, the algorithm is initialized by considering

the training samples as a whole. In a next step, it tries to break up the training

data set by evaluating every possible binary split based on the values of each input

variable. The evaluation of the different binary splits is performed according to a

specific criterion, such as the minimization of the sum of the squared deviations

from the mean value of the target variable in the two partitions. This splitting and

evaluating step is repeated for each partition and afterwards sub-partition of the

data. This process continues until each node reaches a minimum node size (usually

a parameter) and becomes a terminal node. Following these recursive steps, the

algorithm splits the initial training data set into multiple partitions, forming a tree

structure. In a mathematical formulation the model can be written as:

fpxq �
M̧

m�1

cmIpx P Pmq (2.15)

with M being the different partitions P1, ..., PM , cm the constant response in

partition Pm and I an indicator function that returns 1 when its argument is true

and 0 otherwise.

By adopting as minimization criterion the mean squared error, i.e.,
°N
i�1pyi�fpxiqq2

the best value for the cm constants is the average of the values yi of the target

variable in region Pm, i.e.,

cm � 1

|Pm|
|Pm|¸
i�1

yi. (2.16)

The problem of finding the best binary partition can be seen as a minimization

problem of the loss function. However, this kind of approach is computationally

intractable. Thus, the most common way to do so, is to proceed with a greedy

algorithm. Different implementations of the algorithm use different criteria for eval-

uating the splits. These criteria involve metric calculations that generally measure

the homogeneity of the target variable within the data partitions. Specifically, this

kind of metrics are applied to each candidate partition, resulting in a value that

reflects the quality of the split. A well-known criterion is the variance reduction

which is defined in one node of the tree as the total variance reduction of the target

variable y due to the split at this node.
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Decision trees have been proven effective in modelling data with input variables

interacting in a non-linear way. However, they become even more popular when

they are used as base models in ensemble methods, such as in Random Forests

(RF). RF algorithm developed by Breiman (2001), is an ensemble learning method

for classification, regression and other tasks. It works by forming a combination

of multiple decision trees, where each tree contributes with a single vote to the

final output, which is the most frequent class for classification and the average for

regression problems, respectively. The model averaging approach that RF applies

is called bootstrap aggregating (or bagging). The basic steps can be summarized

in the following paragraph.

Given a training set as described in Sect. 2.2, bagging randomly selects data samples

with replacement of the training set and fits trees to these constructed sub-data sets

of the initial training set. This procedure is repeated several times, e.g., B times,

resulting in a set of decision trees. Specifically, in each iteration b � 1, ..., B the

algorithm selects n training samples denoted as pXb,Ybq. In the sequel, a decision

tree fb is trained based on this sub-data set. Hence, in the end of this iterative

procedure, the model consists of B decision trees trained on the different sub-data

sets. In the prediction phase, given a test observation x1, the model response equals

the average predicted value of the individual regression trees, i.e.,

fpx1q � 1

B

B̧

b�1

fbpx1q, (2.17)

or to the most popular class based on majority voting among the classification

trees.

Except for resampling the data with replacement, the diversity among the different

trees in RF increases due to the random selection of the input variables. Each

tree is trained based on this bootstrapped sample from the initial training data

set and in each node the splitting is performed by using the input variables of a

specific random subset. In terms of bias-variance trade-off, one should take into

account the way that these terms are related with the decision trees. Decision trees

tend to overfit the data, since they can capture complex relationships in them. So,

they are characterized by low bias. On the other hand, they usually show a high

variability when they are trained on different samples of the training data set. This

means that the models have high variance. Thus, the rationale behind RF is that

it combines a set of high-variance, low-bias models, resulting in a learner which

has both low variance and low bias. The low variance of the RF model is managed

by the output aggregation of the individual trees. As such, the variance decreases,

since the RF model gives smoothed predictions, which are more likely to be near

the true values.

In RF the number of trees is a parameter that is commonly tuned during training.
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In most cases, when the number of trees increases, the predictions of the RF become

more robust, improving the model performance. However, a large number of trees

increases the computational time of RF. In practice, a large enough number of

trees, e.g. 100-200, is adequate to achieve a high predictive performance. Other

parameters, such as the number of features per tree or the maximum depth, usually

do not have a high impact on the predictive performance of the algorithm especially

in the regression setting.

To sum up about the basic characteristics of the RF algorithm, we conclude

that RF is a simple method that scales well on big data sets (it constructs the

trees in parallel). Moreover, it can detect non-linear complex relationships and it

hardly overfits.

2.5. Time series data

In some applications such as in climate or finance, the data sets are characterized

by an extra factor, ‘time’. For example, in climate, the data sets usually come

from sensors which produce data measurements every minute or even every second,

while in financial applications, one can think of the values in the stock market or

the companies which write down their sells every day. It is clear that time is a

common characteristic of these data sets, since one observation is time-dependent

from the previous one or the previous ones.

Data of this type are called time series data. A time series is a sequence of

measurements for the same variable over different timestamps. The time interval

between the different observations can vary, i.e., it can be seconds, hours, months,

years, etc. In this thesis, we have collected multiple climate data sets, such as

temperature data sets, precipitation data sets, etc. These data sets have the form

of time series. So, the input variables, mentioned in the previous sections are in

our case, time series. As such, for this section, we denote with z a variable which

is measured as time series. As an example, we will use monthly measurements of a

temperature time series in a particular location for a time period of N months. We

denote the vector of the time series as z � pzt1 , zt2 , ..., ztN q. In the following sections

we explain the basic concept of stationarity in time series and we describe simple

time series forecasting methods which are used as baselines in this thesis.

2.5.1. Stationarity

A basic concept in time series analysis is stationarity. Intuitively, one can speak

of a stationary time series if the following criteria are fulfilled: (1) the mean of

the time series is not a function of time but it has a constant value over time,

e.g., Fig.2.3a shows a time series which satisfies this condition while in Fig.2.3b
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the mean value is time-dependent, (2) the variance of the time series is not a

function of time, e.g., in Fig.2.3c, the variance of the time series is time-dependent,

(3) the covariance between the tth observation and the pt� P qth observation is a

constant, e.g., in Fig.2.3d the covariance between the observations is not constant

over time (Shumway and Stoffer, 2000).

In mathematical notation, if z is a time series, one can speak of a strictly stationary

or strong stationary process if:

pzt1 , zt2 , ..., ztP q (2.18)

and

pzt1�τ , zt2�τ , ..., ztP�τ q (2.19)

have the same distributions for all timestamps t1, t2, ..., tP and all the constants

τ .

Except for strong stationarity there is also weak stationarity, in which the mean

value of the time series is constant, while its covariance depends on the distance

between the observations only and not on time. In this thesis, when we refer to

stationary times series, we mean strong stationary time series. Since most of the

methods in the literature for time series modelling are applied on stationary time

series and because, in machine learning the data distribution should be the same

for the test and the training observations, the transformation of a non-stationary

time series to stationary is necessary. There are multiple ways of bringing this

stationarity. Some of them are called de-trending processes, differentiation, time

series decomposition methods, etc. In climate, the time series data are highly

non-stationary. In the next chapter, where we describe the data set, we explain in

detail the time series decomposition method that we apply.

(a) (b) (c) (d)

Figure 2.3: Illustration of stationary and non-stationary time series. (a) A stationary
time series. (b) A non-stationary time series in which the mean value is time-dependent. (c)
A non-stationary time series in which the variance is time-dependent. (d) A non-stationary
time series in which the covariance is time-dependent.
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2.5.2. Autocorrelation

Another basic concept in times series is the autocorrelation. Autocorrelation is a

coefficient of correlation of a time series with a lagged copy of itself, i.e., it is a

similarity between observations of the same times series as a function of the time

lag between them. For example, the autocorrelation function for a given stationary

time series zt is given by:

Corrpzt, zt�Pq � Erpzt � µqpzt�P � µqs
σ2

(2.20)

with µ and σ2 being the mean and the variance of the time series. The value

of P indicates the time distance between the values of the two time series, i.e.,

the time lag. In other words, the above autocorrelation function is calculated

as a correlation between the time series zt � pzt1 , zt2 , ...q and its lagged version

zt�P � pzt1�P , zt2�P , ...q. An autocorrelation for P � 1 is the correlation between

values that are one timestamp apart.

2.5.3. Time series forecasting

Many processes produce data that are characterized by high autocorrelation. For

example, in climate, one can think of the temperature measurements in which the

temperature of the current month depends on the temperature of the previous

month, etc. Therefore, approaches that are typically used for time series prediction

use this property in order to well-model time series observations. These approaches

are known as autoregressive methods and the models as autoregressive models. In an

autoregressive model, the values of a time series are regressed on the corresponding

lagged-values of the same time series. The value zt in timestamp t of a time series

z is modeled based on the value of the previous timestamp zt�1, i.e.,

zt � w0 � w1zt�1 � εt. (2.21)

As one can observe, in an autoregressive model the lagged-value of the target

variable becomes predictor (input variable) for the next value of the target variable.

An error term ε is usually added to model the random noise in the data. In

addition, in the preceding model, 1-lagged values are used each time as predictors

for the forecast of the current ones. In this case the model is called a first-order

autoregressive model. If one wanted to predict the temperature of the current

month (zt) by using the temperatures of the last two months (zt�1, zt�2), the

autoregressive model would become:

zt � w0 � w1zt�1 � w2zt�2 � εt. (2.22)
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This model is a second-order autoregressive model since the 1- and 2-lagged values

are used as predictors for the forecast of the current month t. Hence, in general a

P th order autoregressive model is a linear regression model, which uses the values

at times t� 1, t� 2, ..., t� P as predictors for the forecast of the value at a time

t. In our application, the time lag plays an important role, since future values

of climatic and vegetation time series highly rely on their past values. Therefore

the time window P should be carefully selected based on tuning and assessing

the predictive performance of the model. In specific applications, prior knowledge

about the impact of the past values is also used.

For other traditional and more advanced time series forecasting methods, the reader

is referred to the analytical review papers (Gooijer and Hyndman, 2006; Gamboa,

2017).

2.5.4. Performance evaluation

Hold-out approaches are commonly used in the evaluation of time series prediction

algorithms. Specifically, the model is trained on the past data and its performance

is evaluated on the last block of the data observations. So in this case, one splits

the initial data set in two sets, the training set, which includes the first block of the

observations, and the test set, which consists of the last block of the observations,

see Fig. 2.4a. This kind of evaluation process assumes that the data are stationary

and follow the same distribution throughout their entire length. In climate data,

where the data are highly non-stationary and scenarios, such as sensors’ failure or

replacement typically occur, hold-out methods lead to poor model performance.

(a) (c)

(b) (d)

Figure 2.4: Illustration of the different evaluation procedures. (a) Train/test splitting
in a hold-out approach. (b) Train/test splitting of one fold from a random three-fold
cross-validation approach. (c) Two sequential steps of an online learning approach. (d)
Block three-fold cross-validation.
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Another approach is based on the evaluation of the learning models where a model

is trained in past observations and predicts the observation value of the next

timestamp. Then, the model is updated or re-trained by using the new observation

as training example, see for example Fig. 2.4b. This kind of models, known as

online learning models, needs many observations (thousands or millions) in order to

reach a performance convergence. The process of sequential evaluation and model

update is computationally intensive even for small data sets. The data set used in

this thesis consists of time series of few-hundred points long.

In Sect. 2.2, we discussed about the K-fold cross-validation approach as evaluation

method. In this case, randomly selected samples are assigned to the different folds.

In times series analysis, this kind of evaluation approach is not commonly used.

This is due to the fact that it does not come natural that future observations

are used for the prediction of past observations. On top of that, the training

and the test data set are not independent due to the autocorrelation between

the observations. For instance, two consecutive observations are quite likely to

have similar values, see Fig. 2.4c. However, since the selection of the training

and the test observations is randomly performed, consecutive observations can be

assigned to different training/test sets. For this reason, a more strict K-fold cross

validation method has been proposed (specifically) for the time series prediction

task, called the block K-fold cross-validation approach. Based on this approach,

the observations are not randomly assigned to the different folds, but blocks of

observations are used as folds in a cross-validation procedure. More specifically,

the entire time series interval is separated in K parts in a way that consecutive

observations are assigned to the same part, see Fig. 2.4d. For example, if one

applies a block five-fold cross-validation in a monthly time series of 30 years, each

fold will include observations from six consecutive years, i.e., the first fold will

include observations from the first six years, the second one from the next six years

and so on. Although this approach fits better with time series data, it cannot

model well non-stationary data.

2.6. Spatial data

Except for time, space is another dimension that characterizes climate data. As

mentioned in the previous chapter, climate data are coming from multiple sensors,

so they might be more accurate for some regions, while they might be very noisy

for others. There are several preprocessing techniques (e.g., interpolation) that are

applied on the raw data. These techniques are employed in order to form gridded

data sets of consistent spatial resolutions (for more details see Chapter 3).

A basic concept in spatial data sets is the one of spatial autocorrelation which

is an extension of temporal autocorrelation. However, spatial autocorrelation is

a bit more complicated, since time is one-dimensional, and only evolves in one
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direction, ever forward. Spatial objects have (at least) two dimensions and complex

shapes. Therefore, it is not always straightforward to define what is considered

as adjacency between locations. Measures of spatial autocorrelation quantify at

which extent two observations (values) at different spatial locations, are similar

to each other. Hence, one needs two things in order to calculate this kind of

correlations; observations and locations. A commonly used statistic that describes

spatial autocorrelation is Moran’s index (Moran, 1950), which is formulated as a

correlation coefficient.

Finally, it is worth mentioning the different types of evaluation techniques in

spatial data. In most studies, learning models are trained on a part of the whole

spatial data set and they are evaluated on a test set which includes the rest of the

observations (locations). The situation becomes more complicated if there are time

series data in a spatial data set. Assuming that there are N timestamps and L

different locations at a given data set; one can think of the following train/test

splitting strategies: (i) all the available data of particular timestamps for all the

locations are omitted for testing (Fig. 2.5a) (ii) all the available data of particular

locations (for all the timestamps) are omitted (Fig. 2.5b), or (iii) finally, there

is a combination of the previous strategies, in which a cross-time cross-location

validation is performed, where at each time, a single time-location observation

is tested, while all the corresponding time and location observations are omitted

during training (Fig. 2.5c). In this thesis, we use the first approach to form our

cross-validation data sets.

(a) (b) (c)

Figure 2.5: Illustration of the different train/test splitting strategies in spatio-temporal
data sets. The rows demonstrate the different locations and the columns the different
timestamps. (a) A cross-time train/test splitting. (b) A cross-location train/test splitting.
(c) A cross-time cross-location train/test splitting. Concurrent observations in time or
space are excluded for both data sets (train/test).

2.7. Current applications of machine learning in

geosciences

Machine learning approaches can be exploited for the effective prediction of geosci-

entific variables. For instance, extreme weather events such a floods and tornadoes
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can be predicted by using climate data (Wang and Ding, 2015; Zhuang et al.,

2016). So, forecasting and predicting future values of the Earth system (e.g., water

availability) can be beneficial in deciding upfront about resource consumption. In

machine learning, this problem can be modeled as a time series regression problem,

in which the future values of a geoscientific variable depend on the past values

of the variable itself. The most well-known approaches for this kind of problems

are the autoregressive models, such as autoregressive integrated moving average

(ARIMA) and vector autoregressive moving average models (VARMA), to name

only a few.

However, all the aforementioned methods have been proven effective only for

short-term forecasting. This is due to the fact that geoscientific variables are

highly non-stationary and thus long-term predictions lead to error propagation.

As a consequence, the long-term forecasts suffer from uncertainty, degrading the

accuracy of the predictions. To tackle this kind of problems, researchers have

exploited a recent machine learning method, namely transfer learning. The core

idea of transfer learning can be used to train models for tasks which refer to present

conditions, and transfer this knowledge to future tasks, which may have a small

number of samples. Non-stationary geoscience data sets can be also handled by

online learning algorithms. In machine learning, an online algorithm is a method

that performs a model update for each training example, since the whole data

set is not available at once. In other words, this kind of methods performs one

update at a time, i.e., each new example is used to evaluate and update the current

model. Interesting applications of online learning methods in climate data can

be found in the works of Monteleoni et al. (2011) and McQuade and Monteleoni

(2012). In these works, the goal is to produce robust estimates of climate variables,

such as temperature, based on the outputs of climate models. Specifically, at each

step the weights of the climate models’ outputs are updated, taking into account

the time and the space structure. Thus, at each timestep, the contribution of the

climate models (which are considered as experts) at the final value of the target

variable are adapted. This technique outperforms the baseline, in which an average

value across the climate models is calculated at each time step without any kind of

adaptation.

As mentioned in the previous sections, except for the non-stationarity, heterogeneity

across space is another challenge, considering the various geoscientific variables.

Machine learning techniques such as multi-task learning have been used in order

to address this issue. The idea behind multi-task learning is that similar tasks are

learned simultaneously, while they are able to share information between each other.

Therefore, tasks with limited training examples benefit from this kind of modelling.

For instance, in the work of Karpatne et al. (2014), multi-task learning modelling

is applied in order to predict forest cover in Brazil. In this work, a different task is

defined for each vegetation type, and based on the similarity between the different

vegetation types, information between the learning tasks is shared. That way, one
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model is able to learn from each homogeneous part of the data and also share

information with other models trained in other homogeneous parts, improving the

generalization performance. Multi-task learning approaches have been also used in

prediction of climate variables. Xu et al. (2016) use a multi-task learning approach

in which one model is trained based on the data of a particular station (location).

The models share a common representation, based on the spatial autocorrelation

between the different locations.

The large number of geoscientific variables in combination with the small sample

sizes is another challenge for the machine learning community. The complex Earth

system includes plenty of variables with strong dependencies between them. So,

techniques, which are able to model high-dimensional data are necessary for this

kind of data. Conveniently, in machine learning there are several methods that can

work in these scenarios, which are known as feature selection methods. Some of

them, such as the LASSO regularizer and wrapper methods, have been already

applied successfully in geoscience applications (Chatterjee et al., 2012; Ma et al.,

2017). In many geoscience problems, the lack of high quality ground-truth labels

becomes an additional burden. In machine learning, there is a family of methods

which is specialized on this kind of problems where labeled data are limited, while

the unlabeled ones can be easily accessed. These approaches are known as semi-

supervised methods and typically are based on the discovery of a hidden structure

in the unlabeled data, which can lead to performance improvement for a given

task (Zhu, 2005). Other methods, such as active learning approaches, which involve

the presence of an expert to annotate and inspect the whole modelling process,

have been also used in the context of geosciences (Vatsavai et al., 2005; Tuia et al.,

2009). Finally, in geoscience applications one can encounter various scenarios where

ground-truth labels are not available at all. In these cases, unsupervised methods,

which attempt to find a structure that underlines a data set or a process, have

been successfully applied. This kind of methods includes clustering techniques,

dimensionality reduction approaches or breakpoint detection methods. Some

applications that use the aforementioned methods are related to discovery of

breakpoints on vegetation data due to fires, deforestation, etc. (Verbesselt et al.,

2010b; Mithal et al., 2011), or detection of land cover classes based on climate

and/or biome characteristics (Zscheischler et al., 2012).

Detecting relations between geoscientific variables is also very crucial in understand-

ing the Earth system. For instance, the relation between the El Niño phenomenon

and other extreme phenomena, such as floods or droughts, has been extensively

studied (Siegert et al., 2001; Ward et al., 2014). Teleconnections are relationships

that occur between variables of distant region pairs. These pairs are known as

dipoles. Data-driven approaches for the discovery of such patterns typically in-

volve graph-based representations (Steinbach et al., 2003; Runge et al., 2014). In

these models, each node represents a specific location and each edge represents

the correlation between the climate variables of the connected locations. Other
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approaches include the representation of climate graphs as complex networks for

the investigation of the climate system (Donges et al., 2009), hurricane activity,

etc.
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3 Database creation and variable

construction

Satellite Earth observation has led to the creation of global climate data records of

many important environmental and climatic variables. These come in the form

of multivariate time series with different spatial and temporal resolutions. Data

of this kind provide new means to further unravel the influence of climate on

vegetation dynamics. In this chapter, we present the data set compiled during

this PhD thesis, in the context of the SAT-EX project. We describe in detail the

products that we have assembled (Sect. 3.2), the techniques that we have used to

transform the data into a common spatial and temporal resolution (Sect. 3.2) and

the preprossessing methodology that we have followed in order to form the final

data set of our application (Sect. 3.2.1 and 3.2.2). In addition, we also present an

extended exploratory analysis on the formed data set (Sect. 3.3).

This chapter is based on the content of:

Papagiannopoulou, C., Miralles, D. G., Decubber, S., Demuzere, M., Verhoest,

N. E. C., Dorigo, W. A., and Waegeman, W.: A non-linear Granger-causality

framework to investigate climate–vegetation dynamics, Geosci. Model Dev., 10,

1945-1960, https://doi.org/10.5194/gmd-10-1945-2017, 2017.

Decubber, S. : Spatio-temporal optimization of Granger causality methods for

climate change attribution., Master thesis (tutored by C. Papagiannopoulou),

Ghent University, 2017.

3.1. Introduction

Observational data in geosciences are collected by various acquisition methods such

as local sensors (in situ measurements) or via instruments mounted on satellites

(remote sensing data). These observations, in most cases, are not simultaneously

available for all locations on the Earth at each timestamp. Specifically, in the case of

in situ sensors, large regions remain unsampled due to the non-uniform distribution

of sensors in space. Therefore, it is necessary to perform a preprocessing step to

convert the raw data from sensors into fixed spatial grids. To this end, several

techniques are used, such as simple linear interpolation methods, aggregation and

reanalysis techniques (mentioned in the next paragraph). On the other hand, in

the case of satellite remote sensors, continuous measurements at the same time

over all locations are also unavailable, due to the orbital track of satellites around

the Earth. As such, satellite data also need a number of additional preprocessing
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steps, such as calibration, orbital correction, quality control, and conversion to

regular grids.

Another category of observational data is based on climate model reanalysis, where

model simulations are corrected by assimilating in situ and satellite observations.

Specifically, possible values for different variables over large areas are calculated

by combining data from (i) physical models and (ii) observed sensor recordings.

As such, this type of observational data are adjusted into acceptable uncertainty

levels and noise (due to the restrictions of physical models).

As one can observe, analysis of observational data poses several unique challenges,

such as (i) the uncertainty and incompleteness of the data and (ii) the multiple

spatial and temporal resolution. Therefore, this kind of data should be treated

with caution in the different applications due to their special characteristics. To

this end, techniques that are able to appropriately handle observational data have

been recently developed both by geoscientists and machine learning experts. In

this dissertation, we also develop techniques that are applied on observational data

in order to investigate the relationship between climate and vegetation.

3.2. Global data sets

For this thesis, climate data sets of observational nature – mostly based on satellite

and in situ observations – have been assembled to construct time series (see Sect.

3.2.2) that are then used to predict levels of vegetation greenness. Data sets

have been selected from the current pool of satellite and in situ observations

on the basis of meeting a series of spatio-temporal requirements: (a) expected

relevance of the variable for driving vegetation dynamics, (b) multi-decadal record

and global coverage available, and (c) adequate spatial and temporal resolution.

The selected data sets can be classified into three different categories: water

availability (including precipitation, snow water equivalent and soil moisture data

sets), temperature (both for the land surface and the near-surface atmosphere),

and radiation (considering different radiative fluxes independently). Rather than

using a single data set for each variable, we have collected all data sets meeting

the above requirements. This has led to a total of twenty-one different data sets

which are listed in Table 3.1. They span the study period 1981–2010 at the global

scale, and have been converted to a common monthly temporal resolution and

1� � 1� latitude-longitude spatial resolution. To do so, we have used averages to

resample original data sets found at finer native resolution, and linear interpolation

to resample coarser-resolution ones. Here, we should note that other variables that

include data for CO2 emissions or other greenhouse gases, wind speed, vapour

pressure deficit, fire and irrigation information, nutrient availability and land use

change, are also relevant to our study. However, in this thesis we focus only on the

climatic variables that may affect global vegetation dynamics.
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For temperature we consider seven different products based on in situ and satellite

data: Climate Research Unit (CRU-HR) (Harris et al., 2014), University of Delaware

(UDel) (Willmott et al., 2001), NASA Goddard Institute for Space Studies (GISS)

(Hansen et al., 2010), Merged Land-Ocean Surface Temperature (MLOST) (Smith

et al., 2008), International Satellite Cloud Climatology Project (ISCCP) (Rossow

and Duenas, 2004), and Global Land Surface Temperature Data (LST) (Coccia

et al., 2015). We also included one reanalysis data set, the European Centre for

Medium-Range Weather Forecasts (ECMWF) ERA-Interim (Dee et al., 2011).

In the case of precipitation, eight products have been collected. Four of them

result from the merging of in situ data only: Climate Research Unit (CRU-HR)

(Harris et al., 2014), University of Delaware (UDel) (Willmott et al., 2001), Climate

Prediction Center Unified analysis (CPC-U) (Xie et al., 2007), and the Global

Precipitation Climatology Centre (GPCC) (Schneider et al., 2008). The rest result

from a combination of in situ and satellite data, and may include reanalysis: CPC

Merged Analysis of Precipitation (CMAP) (Xie and Arkin, 1997), ERA-Interim (Dee

et al., 2011), Global Precipitation Climatology Project (GPCP) (Adler et al., 2003),

and Multi-Source Weighted-Ensemble Precipitation (MSWEP) (Beck et al., 2017).

For radiation two different products have been collected (considering incoming

shortwave/longwave and surface net radiation as different time series); first the

NASA Global Energy and Water cycle Exchanges (GEWEX) Surface Radiation

Budget (SRB) (Stackhouse et al., 2004) based on satellite data, and the second one

the ERA-Interim reanalysis (Dee et al., 2011). For soil moisture we use the Global

Land Evaporation Amsterdam Model (GLEAM) (Miralles et al., 2011; Martens

et al., 2016), and the Climate Change Initiative (CCI) product (Liu et al., 2011a,

2012); two different soil moisture products by CCI are considered: the passive

microwave data set and the combined active/passive product (Dorigo et al., 2017).

Moreover, snow water equivalent data comes from the GlobSnow project (Luojus

et al., 2010).

To conclude, as a proxy for the state and activity of vegetation, we use the

third generation (3G) Global Inventory Modelling and Mapping Studies (GIMMS)

satellite-based NDVI (Tucker et al., 2005), a commonly used long-term global

record of normalized difference vegetation index (NDVI) (Beck et al., 2011). NDVI

measures the vegetation greenness of each location at each timestamp, by combining

information from the red and the near-infrared spectral reflectance measurements.

Therefore, it reflects the vegetation state and not the plants activity as other

variables, such as the solar-induced chlorophyll fluorescence (SIF). However, NDVI

captures the main global vegetation patterns and trends and its data span a large

period of 30 years, while most of the data sets that measure vegetation productivity

include recent observations. In addition, the known limitations of NDVI, which

include saturation in densely-vegetated area, sensitivity to atmospheric emissions

and soil background noise, can explain some of uncertainties in the results (see

next chapters). In the context of the SAT-EX project, we experimented with other
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similar vegetation indices, such as the Leaf Area Index (LAI) (Demuzere et al.,

2017) and the Vegetation Optical Depth (VOD) (Liu et al., 2011b), but here we

preferred to present our analysis on NDVI throughout this thesis for consistency.

The use of the NDVI also allows for a direct comparison of our results to previous

studies. We note that this data set is used to derive the response variable in our

approach (seasonal NDVI anomalies, see Sect. 3.2.1), while all other data sets are

converted to predictor variables. The length of the NDVI record (1981–2010) sets

the study period to an interval of 30 years.

3.2.1. Anomaly decomposition

In climate sciences, it is common that methodologies, such as Granger causality

adopted in this thesis, are applied on time series of seasonal anomalies (Attanasio,

2012; Tuttle and Salvucci, 2016). The seasonal anomalies may be obtained in a two-

step decomposition procedure, by first subtracting the seasonal cycle and then the

long-term trend from the raw time series. Several competing decomposition methods

have been proposed in the literature, including additive models, multiplicative

models and more sophisticated methods based on break points (see e.g., Cleveland

et al. (1990); Grieser et al. (2002); Verbesselt et al. (2010a)). In our framework,

we use the following approach: in a first step, at each given pixel, the ‘raw’ time

series of the target variable yt and the climate predictors (xt, zt,...) are de-trended

linearly based on a simple linear regression with the timestamp t as predictor

variable applied to the entire study period. For the case of the target variable this

can be denoted as follows:

yt � yTr
t � w0 � w1t (3.1)

with w0 and w1 being the intercept and the slope of the linear regression, respectively.

We obtain in this way the de-trended time series yDt � yt � yTr
t . This de-trending

is needed to remove non-stationary signals in climatic time series, and allows us to

draw the emphasis to the shorter-term multi-month dynamics. By de-trending one

can assure that the mean of the probability distribution does not change over time;

however, other moments or central moments of the probability distribution, such

as the variance, might still be time-dependent. In a second step, after subtracting

the trend from the raw time series, the seasonal cycle ySt is calculated. When

the assumption is made that the seasonal cycle is annual and constant over time,

one can simply estimate it as the monthly expectation. To this end, the multi-

year average for each of the twelve months of the year is calculated. Finally, the

anomalies yRt can then be computed by subtracting the corresponding monthly

expectation from the de-trended time series: yRt � yDt � ySt . This procedure is

schematically represented in Fig. 3.1.

32



§3.2. Global data sets

0.1

0.3

0.5

0.7

0.9 yT, yS

1984 1989 1994 1999 2004 2009
Time

0.2

0.1

0.0

0.1
yR

Figure 3.1: The three components of the NDVI time series decomposition of a specific
pixel of the Northern hemisphere (lat: 53.5, long: 26.5). On top, the linear trend (black
continuous line) and the seasonal cycle (dashed black line) fitted on the raw data (red).
On the bottom the seasonal anomalies.
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§3.2. Global data sets

3.2.2. Predictor variable construction

We do not limit our approach to considering raw and anomaly time series of the data

sets in Table 3.1 as predictors, but also take into consideration different lag times,

past-time cumulative values and extreme indices. These additional predictors, here

referred to as ‘higher-level variables’, are calculated based on raw and anomaly

time series. Our application can be interpreted as a way to identify patterns in

climate during past-time moving windows (see Fig. 4.1 in Chapter 4) that are

predictive with respect to the anomalies of vegetation time series. Therefore, by

feeding predictor variables from previous timestamps to a linear (or non-linear)

predictive model, one can identify sub-sequences of interest in the moving window

specified for timestamp t, a technique that is similar to so-called shapelets (Ye and

Keogh, 2009). In addition, vegetation dynamics may not necessarily reflect the

climatic conditions from (e.g.) three months ago, but the average of the (e.g.) three

antecedent months. This integrated response to antecedent environmental and

climatic conditions is referred here as a ‘cumulative’ response. More formally, we

construct a cumulative variable of k months as the sum of time series observations

in the last k months:

Cumulrxt�1, xt�2, ..., xt�ks �
ķ

p�1

xt�p (3.2)

Note that, unlike in the case of lagged variables, cumulative ones include always the

period up to time t. Figure 3.2 illustrates an example of a four-month cumulative

variable. In our analysis, we experimented with time lags covering a wide range of

time-lag values and concluded that including lags of more than six months did not

yield substantial predictive power.

Another type of higher-level predictor variable that can be constructed from the

data sets in Table 3.1 are extreme indices. Over the last few years, several research

studies have focused on defining and indexing climate extremes (Nicholls and

Alexander, 2007; Zwiers et al., 2013). As an example, the Expert Team on Climate

Change Detection and Indices (ETCCDI) recommends the use of a range of extreme

indices related to temperature and precipitation (Zhang et al., 2011; Donat et al.,

2013). Here we calculate a variety of analogous indices for the whole set of the

collected climatic variables, based on both the raw data sets as well as on the

seasonal anomalies (see Table 3.2). In addition, we derived lagged and cumulative

predictor variables from these extreme indices to incorporate the potential impact

of climatic extremes occurring (e.g.) three months ago, or during the previous (e.g.)

three months, respectively. All these resulting time series appear as additional

predictor variables in our framework (see Sect. 4.2.3 of Chapter 4).

Combining the different climate and environmental predictor variables described

above, we obtain a database of 4,571 predictor variables per 1� pixel, covering

thirty years at a monthly temporal resolution.
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Table 3.2: Extreme indices considered as predictive variables. These indices are derived
from the raw (daily) data and the (daily) anomalies of the data sets in Table 3.1. We also
calculate the lagged and cumulative variables from these extreme indices (see Sect. 3.2).

Name Description

STD Standard deviation of daily values per month

DIR Difference between max and min daily value per month

Xx Max daily value per month

Xn Min daily value per month

Max5day Max over 5 consecutive days per month

Min5day Min over 5 consecutive days per month

X99p/X95p/X90p Number of days per month over 99th/95th/90th percentile

X1p/X5p/X10p Number of days per month under 1th/5th/10th percentile

T25Ca Number of days per month over 25�C

T0Ca Number of days per month below 0�C

R10mm/R20mmb Number of days per month over 10/20 mm

CHD (Consecutive High value Days)
Number of consecutive days per month over 90th

percentile

CLD (Consecutive Low value Days)
Number of consecutive days per month below 10th

percentile

CDD (Consecutive Dry Days) b Number of consecutive days per month when
precipitation   1 mm

CWD (Consecutive Wet Days)b
Number of consecutive days per month when

precipitation ¥ 1 mm

Spatial Heterogeneity c Difference between max and min values within 1� box

a Only for temperature data sets
b Only for precipitation data sets
c Only for data sets with native spatial resolution <1� lat-lon

3.3. Exploratory pre-analysis

In this section an exploratory pre-analysis is conducted for the raw climate time

series and the higher-level features that serve as predictors to model vegetation in

the next chapters. The target variable of our analysis is the NDVI seasonal anoma-

lies. In fact both the raw NDVI time series as well as the seasonal anomalies are

explored. In addition, autocorrelations within the vegetation time series and correla-

tions between vegetation and climate variables are calculated and illustrated as well.

3.3.1. Correlation between climate records from different

products

The database consists of multiple time series for every land pixel. These time

series are records from the same climate variable. For instance, as mentioned

above, there are seven time series related to temperature in our data set and five of

them measure the near-surface air temperature while the rest (GISS and MLOST )
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§3.3. Exploratory pre-analysis

measure de-trended temperature anomalies. Intuitively, one could expect the corre-

lations between these temperature-related time series to be very high. Figure 3.3

illustrates the Pearson correlation coefficients between the temperature-related

time series for a randomly selected pixel from the data set. In general, the different

temperature measurements for this pixel are highly correlated, with ISCCP being

the only product that is slightly less correlated to the other products (Decubber,

2017).

Figure 3.4 shows the correlation coefficients for the pairs of temperature-related

time series at global scale. The examined pairs of products from top to bottom are

the following: CRU/ERA, LST/CRU and UDel/ERA. On the left part of Fig. 3.4,

the correlations between the raw time series are illustrated, while on the right part

the correlation between the anomalies (which are calculated based on the time

series decomposition method described in Sect. 3.2.1) are presented. The global

maps of the correlation coefficients between all pairs of raw temperature-related

time series are very similar to the maps on the left side on Fig. 3.4 (figures omitted).

As one can observe, the raw time series are highly correlated in most regions, except

for the tropics. This is due to the fact that in these regions (i.e., Amazon, Congo

basin), there is no clear seasonal cycle present and there are no large fluctuations in

the temperature values throughout a year period. In contrast, in more temperate

climates, e.g., in the North Hemisphere, there is a strong presence of seasonal

cycle in the temperature time series (and in other climatic variables as well, e.g.,

radiation). Hence, this seasonal component is similar among the different products,

since it can be easily captured by the measurements. As such, seasonal variability

constitutes a strong correlated component for the time series and if it is missing

the correlation between the various products becomes lower. In order to assess the

correlation between the different products without the effect of the obvious seasonal

component, we calculate the anomalies of the temperature-related time series. The

panels on the right of Fig. 3.4 depict the correlation values of the anomalies time

series at global scale. As one could expect, the time series of anomalies are not so

highly correlated. This means that even though these records measure the same

climate variable they may contain different information. Therefore, depending on

the way that these measurements are obtained for each part of the world, they can

be more accurate for different regions.

Similar to Fig. 3.3, Fig. 3.5 depicts the correlation coefficients between raw water-

related time series (for the same selected pixel as before). The snow-water equivalent

variable is excluded from this analysis, since no snow coverage is observed in this

particular pixel. As one can observe, some water-related time series are strongly

correlated, while others are only weakly or not at all correlated. A conclusion that

can be drawn by this correlation analysis among the different temperature- and

water-related products is that even though their records measure the same climate

variables, these records are not always highly correlated. This can be explained
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Figure 3.3: Pearson correlation coefficients of the temperature variables from a randomly
selected pixel (South Africa; lat: -24.5, long: 22.5). All temperature products measure
near-surface air temperature expressed in K.

by the way that these products are generated. For instance, temperature is not

directly measured by the satellite equipment; instead, irradiance in different parts

of the wavelength spectrum is measured, commonly by the various satellite sensors.

On top of this, these sensors might be based on different technologies (National

Research Council (U.S.). Committee on Earth Studies, 2000). In addition, surface

temperature measurements are dependent on heterogeneities in the surface and

are accurate only under cloud-free conditions. Similar factors affect precipitation

measurements. Moreover, as discussed in Sect. 3.1, the final product depends on the

method that is used to convert the measurements to a (e.g., temperature) data set

consistent in space and time. On the other hand, in situ measurements are also post-

processed (e.g., with interpolation techniques) in order to form the final product.

Therefore, one should expect differences between the different products even if

they are meant to represent the same climate variable (Hughes, 2006). Although

a full technical discussion on measurement techniques and differences between

satellite-based and in situ observations is beyond the scope of this thesis, it is

clear that temperature or precipitation records coming from different observational

sources do not necessarily contain equivalent information.

3.3.2. Autocorrelation of vegetation time series

The NDVI seasonal anomalies is the target time series in our analysis. The past

values of this time series are used for predicting the future ones in the modelling

approach that will be described in Chapter 4. Therefore, an autocorrelation analysis
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Figure 3.4: Pearson correlations between three pairs of raw temperature time series
(left) and between their anomalies (right). From top to bottom: CRU/ERA, LST/CRU
and UDel/ERA. Corresponding to section 3.3.1.

of this time series can reveal to what extent it is possible to predict the value of

the NDVI seasonal anomalies at a next timestamp, based on the values of the

previous timestamps. Figure 3.6 shows the autocorrelation value of the NDVI

seasonal anomalies for every pixel, for temporal lags 1-4 months. The NDVI

seasonal anomalies are positively correlated in most regions of the world for the

temporal lag of one month. The highest autocorrelation values are observed in

Australia, South America, North America, Central Asia, South of Africa and the

Sahel region. The autocorrelation values decrease for the temporal lag of two

in all regions, although the autocorrelation values remain positive in Australia.

When the time lag increases (i.e., three and four) the autocorrelation of the NDVI

seasonal anomalies time series decreases, having near-zero values in most of the

regions.

3.3.3. Correlation between vegetation and climate data

Since vegetation needs some time to adapt to climate variability, the lagged values

of the climate variables are incorporated in our analysis (see Chapter 4). In

order to explore the size of the temporal window for the climate variables that

should be taken into account, correlation plots between climate variables and NDVI

seasonal anomalies are created (Fig. 3.7). In this figure, correlations are calculated

based on different temporal lags between the contemporaneous observation of

the NDVI seasonal anomalies and the past climatic time series. Four different
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Figure 3.5: Correlation matrix of the water-related time series from a randomly selected
pixel (latitude -24.5, longitude 22.5). All products measure precipitation in mm, except
for GLEAM, PASSIVE and COMBINED which measure soil moisture. GLOBSNOW,
which measure thickness of snow coverage, is not included in this visualization.

climate products are selected; one for each climate variable, namely, CRU for

near-surface air temperature, MSWEP for precipitation, GLEAM for soil moisture

and SRB for incoming shortwave radiation. In general, the climatic time series are

most correlated with the NDVI seasonal anomalies when there is no lag difference

between the measurements (lag 0). Correlations between current vegetation and

past climate tend to fade away, when the temporal lag increases further back in

the past. Specifically, for the temperature-related product, the correlation values

with the NDVI seasonal anomalies are larger than 0.2 in absolute value for only

a few pixels. However, correlations values become smaller than 0.1 in absolute

value for temporal lags equal or larger than three months. The same conclusions

can be drawn for the correlations calculated for the radiation product. On the

other hand, the correlations with the precipitation and soil moisture time series

are much stronger, with correlation coefficients larger than 0.2 between NDVI

seasonal anomalies. Correlations with these water-related variables of even 12

months ago are still strong in some pixels in Australia. This result is in line with

prior knowledge about the ‘memory’ of the land surface, which is longer than

memory of the atmosphere (Hilker et al., 2014).

Remarkably, precipitation and soil moisture are consistently negatively correlated

with vegetation seasonal anomalies obtained from the same month in pixels at

higher latitudes (i.e., Europe and north of Asia). At the same time, vegetation in

these pixels is positively correlated with temperature and most of them also with
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Figure 3.6: Autocorrelation between NDVI seasonal anomalies for the different temporal
lags (1-4).

radiation. This result can be explained by the correlation between the climatic

variables; water-related variables and temperature (or radiation) are negatively

correlated. In a month with a large amount of precipitation (soil moisture is

increased), the amount of radiation reaching the vegetation tends to be lower

because of the increased cloud coverage. As a result, the vegetation is confronted

with lower temperature or less radiation, which appears to be associated with lower

NDVI seasonal anomalies (Decubber, 2017).

3.3.4. Visualization of climate data sets in two-dimensions

Principal component analysis (PCA) is a commonly used dimensionality reduction

technique for data visualization and exploration. As described in the previous

sections, high-level features (see Table 3.2) as well as lagged and cumulative

variables have been constructed based on the raw climatic time series. The raw

climatic time series have been also decomposed into the three components of

seasonality, trend and anomalies. As such, one data set for each pixel has been

created, with columns as many as the features extracted by the climatic time series

(4,571) and with rows as many as the monthly observations of the last 30 years (360

observations in total). If one applies the PCA on a data set of a single pixel, the

observations are projected from a high-dimensional space into a lower-dimensional

space, while the variability between the observations is maximally retained. That

way, the observation of one month, represented in a high-dimensional space, is

projected to a lower-dimensional space that is based on the corresponding principal

components. These principal components span the lower-dimensional subspace

and consist of linear combinations of the original feature space. The weight of

each feature is commonly referred to as the loading for a particular component,

while the coordinates of the data points on each of the principal components are

referred to as the scores. The principal components are ordered by the amount

of variance that they explain in the original feature space. Here we applied the
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§3.3. Exploratory pre-analysis

scikit-learn python implementation of PCA (Pedregosa et al., 2011). Figure 3.8

shows the projection of the observations of 16 randomly sampled pixels on the first

two principal components. The percentage displayed on top of each subplot is the

amount of variance that is explained by these two principal components.

The observations in Fig. 3.8 are colored in red and blue based on their timestamp;

red observations correspond to earlier timestaps, while blue ones to more recent

timestamps. There are several remarks considering the plots of Fig. 3.8: (i) in some

pixels, early and recent observations seem to be scattered randomly (e.g., second

plot from the left on the second row) (ii) in others, early and recent observations

seem to form two separate clusters, and (iii) in the rest of the sampled pixels, there

is a circular pattern in the observations (e.g., for the pixels on the third row of the

plots).

Two of the plots (in dashed boxes) are further highlighted in Fig. 3.10. The

data points are now visualized by their relative order based on their timestamp.

The same color scheme is used as in Fig. 3.8. In Fig. 3.10a, a plot of a pixel

where the observations show a main contrast along time is depicted. Two well-

separated clusters are formed by roughly splitting the earliest 200 and the last 150

observations. In the plot of Fig. 3.10b, the observations corresponding to the first

12 timestamps are highlighted in a larger font for illustration purposes. As one can

observe, the observations are located sequentially next to each other in the circular

pattern, forming 12 clusters of observations which belong to the same month of the

year. For example, observations from January form the first cluster, from February

the second one, etc. In order to see the spatial distribution of the pixels, in which

there is a contrast in PCA scores between early and recent observations, we use a

logistic regression classifier. By using this classifier, we expect that these pixels

will be distinguished from the others in which the PCA scores between early and

recent observations show either a circular or a more random pattern. To this end,

observations are labeled according to their timestamp, i.e., for the 200 earliest

observations the ‘0’ label is given, while for the last 160 the label ‘1’ is assigned.

The scores on the first two PCA coordinates are used as predictor variables and

the classification accuracy is evaluated on a random 20% hold-out test set. As a

rigid classifier with a linear decision boundary, logistic regression achieves a high

accuracy when the early-recent pattern is clear, but is expected to perform poorly

when the observations form more than two separate clusters or are scattered in a

more random fashion. Based on this modelling approach, the highest classification

accuracy is achieved in the tropical regions, see Fig. 3.9. This indicates that the

pixels with a strong contrast between early and recent observations are located

in these regions. The explanation for this result is coming from the fact that

there is no strong climate seasonality in these regions. On the other hand, regions

further away from the equator have a pronounced seasonal cycle with respect to

climate. In our data sets, there are several features with strong seasonality (e.g.,

extreme indices), and thus this seasonal component naturally emerges in the PCA
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Figure 3.8: Scores of the observations on the first two PCA dimensions for 16 randomly
sampled pixels. The observations are color coded from blue (early months) to red (most
recent months). The plots in the dashed boxes are highlighted in Fig 3.10.

plots whenever it is present. Moreover, in our analysis, we observed that the

classification performance improves, as more principal components are included as

predictors. This means that in pixels with a strong seasonal cycle, the contrast

between observations throughout time fades away, while this is not the case in the

tropical regions.

This conclusion is also confirmed by our next experiment in which all the variables

with a seasonal component are removed. In this setting, the logistic regression

classifier scores a higher accuracy for most of the pixels, as expected. This result

suggests that the contrast along the first two principal components between early

and recent observations is much more pronounced when the seasonal variability

is taken out of consideration. The contrast between early-recent observations is

caused by the presence of a trend in most time series, reflected in the climatic

indices calculated on the de-seasonalized data. In order to verify this result, as a

final experiment, we run the PCA on the time series of the anomalies. In this case,

the logistic regression classifier performs poorly in discriminating between early

and recent observations, confirming that the large contrasts are mainly explained

by linear trends in the time series.

44



§3.4. Conclusions

Figure 3.9: Proportion of test data correctly classified as early (first 200) or recent (last
153 months) by logistic regression, using the scores of the observations on the first two
PCA dimensions as predictors.
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Figure 3.10: Two distinct PCA score patterns. (a) Clear contrast between early and
recent months. (b) A 12-cluster circular pattern formed by the yearly observations of each
month. The percentage of total variance explained by the first two principal components
is shown on top of each plot.

3.4. Conclusions

In this chapter, we have presented the database used in this thesis. Specifically,

the basic concepts related to data acquisition methods have been introduced and

the data resources used for the database composition have been discussed. We

have also described the time series decomposition technique used for the target

and the predictor variables, as well as the feature construction approaches we have

followed. In addition, we have presented an extended exploratory pre-analysis

on the resulting database, by conducting correlation analysis between the target

and the predictor variables and by visualizing the data in two-dimensions with

PCA.
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Chapter 3. Database creation and variable construction

Figure 3.11: Illustration of the database. Each data cube consists of records for each
1� pixel at each timestamp from 1981-2010. Multiple data cubes correspond to multiple
variables.

To sum up, our database consists of 21 climatic products (7 temperature-related

products, 12 water-related products, 2 radiation-related products) as well as 1

vegetation product which span a period of 30 years (1981-2010). All the data sets

have been transformed into the same spatial (1� latitude-longitude) and temporal

resolution (monthly). Our database can be illustrated as a multi-data cube with

dimensions the spatial coordinates and time, see Fig. 3.11. The vegetation data set

serves as target variable in our analysis. We have isolated the anomalies component

(by removing seasonality and possible trends) from the target variable. The same

approach has been followed for the predictor variables as well. The final set of the

predictor variables comprises lagged values of the raw time series and anomalies,

cumulative variables, extreme indices, etc. In total, we obtain a database of 4,571

predictor variables for each 1� pixel, which covers 140 gigabytes of memory. The

size of the database played an important role in the selection of the monthly

temporal resolution and 1� spatial resolution.

Based on our exploratory pre-analysis, there is a strong degree of similarity between

different temperature-related records and between different water-related records

in the data set, in most regions of the world. However, this is mostly because of the

strong seasonal component that is present in most of the raw signals. Moreover,

the NDVI seasonal anomalies show fairly large autocorrelation at a temporal lag

of 1 month, although the autocorrelation drops down in most pixels for larger

temporal lags. Considering the correlations between the climate variables and

the NDVI seasonal anomalies (Figure 3.7), the highest correlations occur between

observations from the same month or one month earlier. Finally, the first two
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§3.4. Conclusions

principle components from the PCA reflected the largest source of variability in

different pixels. In regions with a pronounced seasonal cycle, the seasonal pattern is

responsible for the largest part of the variation. In the tropics, the largest variation

between different observations occurs over time, indicating the presence of a trend

in (at least) part of the features. This contrast became apparent in most other

pixels as well, after any variable with a seasonal component was removed from the

data set.

This database is further analysed in coming chapters in order to address the

objectives of this thesis (see Chapter 1) and give answers to our specific research

questions (Sect 1.2).
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4 A non-linear Granger causality

framework to investigate

climate–vegetation dynamics

The main focus of this thesis is the study of climate–vegetation interactions.

By having at our disposal the database described in the previous chapter and

methods coming from the field of machine learning and data mining, we try

to unravel the complex relationships between climate variability and vegetation

dynamics. Commonly-used statistical methods are often too simplistic to represent

complex climate-vegetation relationships due to linearity assumptions. In this

chapter, we describe our core approach, which is an extension of the Granger

causality analysis. Specifically, we present a novel non-linear framework consisting

of several components, such as data collection from various databases, time series

decomposition techniques, feature construction methods and predictive modelling

by means of random forests. The first steps have been described in Chapter 3,

while in this chapter the non-linear causality framework is introduced (Sect. 4.2).

Experimental results on our global database indicate that, with this framework, it

is possible to detect non-linear patterns that are much less visible with traditional

Granger causality methods (Sect. 4.3.1 and 4.3.2). In addition, we discuss extensive

experimental results that highlight the importance of considering non-linear aspects

of climate–vegetation dynamics (Sect. 4.3.3).

This chapter is an edited version of:

Papagiannopoulou, C., Miralles, D. G., Decubber, S., Demuzere, M., Verhoest,

N. E. C., Dorigo, W. A., and Waegeman, W.: A non-linear Granger-causality

framework to investigate climate–vegetation dynamics, Geosci. Model Dev., 10,

1945-1960, https://doi.org/10.5194/gmd-10-1945-2017, 2017.

4.1. Introduction

Vegetation dynamics and the distribution of ecosystems are largely driven by the

availability of light, temperature and water, thus they are mostly sensitive to

climate conditions (Nemani et al., 2003; Seddon et al., 2016; Papagiannopoulou

et al., 2017b). Meanwhile, vegetation also plays a crucial role in the global climate

system. Plant life alters the characteristics of the atmosphere through the transfer

of water vapour, exchange of carbon dioxide, partition of surface net radiation (e.g.,

albedo), and impacts on wind speed and direction (Nemani et al., 2003; McPherson

et al., 2007; Bonan, 2008; Seddon et al., 2016; Papagiannopoulou et al., 2017b).
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Because of the strong two-way relationship between terrestrial vegetation and

climate variability, predictions of future climate can be improved through a better

understanding of the vegetation response to past climate variability.

The current wealth of Earth observation data can be used for this purpose. Nowa-

days, independent sensors on different platforms collect optical, thermal, microwave,

altimetry and gravimetry information, and are used to monitor vegetation, soils,

oceans and atmosphere (e.g., Su et al., 2011; Lettenmaier et al., 2015; McCabe

et al., 2017). The longest composite records of environmental and climatic variables

already span up to 35 years, enabling the study of multi-decadal climate–biosphere

interactions. Simple correlation statistics and multilinear regressions using some

of these data sets have led to important steps forward in understanding the links

between vegetation and climate (e.g., Nemani et al., 2003; Barichivich et al., 2014;

Wu et al., 2015). However, these methods in general are insufficient when it comes

to assessing causality, particularly in systems like the land–atmosphere continuum

in which complex feedback mechanisms are involved. A commonly used alternative

consists of Granger causality modelling (Granger, 1969). Analyses of this kind

have been applied in climate attribution studies, to investigate the influence of

one climatic variable on another, e.g., the Granger causal effect of CO2 on global

temperature (Triacca, 2005; Kodra et al., 2011; Attanasio, 2012), of vegetation and

snow coverage on temperature (Kaufmann et al., 2003), of sea surface temperatures

on the North Atlantic Oscillation (Mosedale et al., 2006), or of the El Niño Southern

Oscillation on the Indian monsoons (Mokhov et al., 2011). Nonetheless, Granger

causality should not be interpreted as ‘real causality’; one assumes that a time

series A Granger-causes a time series B if the past of A is helpful in predicting the

future of B (see Sect. 2 for a more formal definition). However, the underlying

statistical model that is commonly considered in such a context is a linear vector

autoregressive model, which is (again), by definition, linear – see e.g., Shahin et al.

(2014); Chapman et al. (2015).

In this chapter, we show new experimental evidence that advocates the need of

non-linear methods to study climate–vegetation dynamics, due to the non-linear

nature of these interactions (Foley et al., 1998; Zeng et al., 2002; Verbesselt et al.,

2016). To this end, we have assembled a large, comprehensive database, comprising

various global data sets of temperature, radiation and precipitation, originating

from multiple online resources, as described in Chapter 3. We use NDVI to

characterise vegetation, which is commonly used as a proxy of plant productivity

(Myneni et al., 1997; Nemani et al., 2003). We followed an inclusive data collection

approach, aiming to consider all available data sets with a worldwide coverage, and

at least a thirty-year time span and monthly temporal resolution (see Chapter 3).

Our novel non-linear Granger causality framework is used for finding climatic

drivers of vegetation and consists of several steps (Sect. 4.2). In a first step,

we apply time series decomposition techniques to the vegetation and the various

climatic time series to isolate seasonal cycles, trends and anomalies. Subsequently,
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we explore various techniques for constructing more complex features from the

decomposed climatic time series, see more details in Chapter 3. In a final step, we

run a Granger causality analysis on the NDVI anomalies, while replacing traditional

linear vector autoregressive models by random forests. This framework allows for

modelling non-linear relationships and prevents over-fitting. The results of the

global application of our framework are discussed in Sect. 4.3.

4.2. Granger causality for climate studies

4.2.1. Linear Granger causality revisited

We start with a formal introduction to Granger causality for the case of two times

series, denoted as x � rx1, x2, ..., xN s and y � ry1, y2, ..., yN s, with N being the

length of the time series. In this work, y alludes to the NDVI anomalies time series

at a given pixel, whereas x can represent the time series of any climatic variable at

that pixel (e.g., temperature, precipitation, radiation). Granger causality can be

interpreted as predictive causality, for which one attempts to forecast yt (at the

specific timestamp t) given the values of x and y in previous timestamps. Granger

(1969) postulated that x causes y if the autoregressive forecast of y improves when

information of x is taken into account. In order to make this definition more

precise, it is important to introduce a performance measure to evaluate the forecast.

Below we will work with the coefficient of determination R2, which is here defined

as follows:

R2py, ŷq � 1� RSS

TSS
� 1�

°N
i�P�1pyi � ŷiq2°N
i�P�1pyi � ȳq2

(4.1)

where y represents the observed time series, ȳ is the mean of this time series, ŷ is

the predicted time series obtained from a given forecasting model, and P is the

length of the lag-time moving window. Therefore, the R2 can be interpreted as the

fraction of explained variance by the forecasting model, and it increases when the

performance of the model increases, reaching the theoretical optimum of 1 for an

error-free forecast, and being negative when the predictions are less representative

of the observations than the mean of the observations. Using R2, one can now

define Granger causality in a more formal way.

Definition 1. We say that time series x Granger-causes y if R2py, ŷq increases

when xt�1, xt�2, ..., xt�P are included in the prediction of yt, in contrast to consid-

ering yt�1, yt�2, ..., yt�P only, where P is the lag-time moving window (Granger,

1969).

In climate sciences, linear vector autoregressive (VAR) models are often employed

to make forecasts (Stock and Watson, 2001; Triacca, 2005; Kodra et al., 2011;
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Attanasio, 2012). A linear VAR model of order P boils down to the following

representation: �
yt

xt

�
�
�
w01

w02

�
�

P̧

p�1

�
w11p w12p

w21p w22p

��
yt�p

xt�p

�
�
�
ε1

ε2

�
(4.2)

with wij being parameters that need to be estimated and ε1 and ε2 referring to two

white noise error terms. This model can be used to derive the predictions required

to determine Granger causality. In that sense, time series x Granger-causes time

series y if at least one of the parameters w12p for any p significantly differs from

zero. Specifically, and since we are focusing on the vegetation time series as the

only target, the following two models are compared:

yt � ŷt � ε1 � w01 �
P̧

p�1

�
w11pyt�p � w12pxt�p

�
� ε1 (4.3)

yt � ŷt � ε1 � w01 �
P̧

p�1

w11pyt�p � ε1 (4.4)

We will refer to model in Eq. (4.3) as the full model and to model in Eq. (4.4) as

the baseline model, since the former incorporates all available information and the

latter only information of y. Note that the two models are nested and the baseline

model should capture all the information related to the history of the target time

series.

Comparing the above two models, x Granger-causes y if the full model manifests a

substantially better predictive performance in terms of R2 than the baseline model.

To this end, statistical tests can be employed, for which one typically assumes that

the errors in the model follow a Gaussian distribution (Maddala and Lahiri, 1992).

However, our above definition differs from the perspective in research papers that

develop statistical tests for Granger causality (Hacker and Hatemi-J, 2006), because

we intend to move away from statistical hypothesis testing. This is because the

assumptions behind such testing are typically violated when working with climate

data where neither variables nor observational techniques are fully independent

from each other in most cases, and errors are not normally distributed (see Sect.

4.2.4 for a further discussion).

In climate studies, the Granger causal relationship between two time series x and y

has often been investigated in the bivariate setting (Elsner, 2006, 2007; Kodra et al.,

2011; Attanasio, 2012; Attanasio et al., 2012). However, such an analysis might

lead to incorrect conclusions, because additional (confounding) effects exerted by

other climatic or environmental variables are not taken into account (Geiger et al.,

2015). This problem can be mitigated by considering time series of additional

variables. For example, let us assume one has observed a third variable z, which

52



§4.2. Granger causality for climate studies

might act as a confounder in deciding whether x Granger-causes y. The above

definition then naturally extends as follows.

Definition 2. We say that time series x Granger-causes y, if R2py, ŷq increases

when xt�1, xt�2, ..., xt�P are included in the prediction of yt, in contrast to con-

sidering yt�1, yt�2, ..., yt�P and zt�1, zt�2, ..., zt�P only, where P is the lag-time

moving window.

Similarly as above, we refer to the two models as full and baseline model, respectively.

Therefore, in the tri-variate setting, Granger causality might be tested using the

following linear VAR model:�
��ytxt
zt

�
�� �

�
��w01

w02

w03

�
��� P̧

p�1

�
��w11p w12p w13p

w21p w22p w23p

w31p w32p w33p

�
��
�
��yt�pxt�p

zt�p

�
���

�
��ε1ε2
ε3

�
�� , (4.5)

where a causal relationship between x and y exists if at least one w12p significantly

differs from zero. As previously mentioned, the time series z might also have

a causal effect on y and be correlated with x. For this reason z, should be

included in both models (baseline and full), so that the method can cope with

cross-correlations between predictors, in our case between the climatic drivers of

vegetation anomalies. An extension of this definition for more than three times

series is straightforward.

4.2.2. Over-fitting and out-of-sample testing

It is well known in the statistical literature that predictions made on in-sample data,

that is, the same data that was used to fit the statistical model, tend to be optimistic.

This process is often referred to as over-fitting, i.e., by definition, the fitting process

leads to parameter values that cause the model to mimic the observed data as

closely as possible (Friedman et al., 2001). In the context of Granger causality

analysis, over-fitting will occur more prominently in the multivariate case, when

the number of considered time series increases. The results in Sect. 4.3 are based

on multivariate analysis, thus they are vulnerable to over-fitting; the situation

further aggravates when switching from linear to non-linear models, because then

the number of parameters typically increases to allow for a more flexible functional

model form.

To prevent over-fitting, out-of-sample data should be used in evaluating the predic-

tive performance in Granger causality studies (Gelper and Croux, 2007). The most

straightforward procedure for creating out-of-sample data is to separate the time

frame into two parts, a training set and a test set, which typically constitute the

first and last half of the time frame. A few authors have adopted this approach for

climatic attribution (Attanasio et al., 2012; Pasini et al., 2012); however, satellite
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Earth observation time series are usually too short to allow for train-test splitting in

that fashion. An alternative approach, which uses the available data in an efficient

manner, is cross-validation. To this end, the time frame is divided in a number

of short intervals, typically a few years of data, in which one interval serves as a

test set, while all remaining data are used for parameter fitting. This procedure is

repeated until all intervals have served once as a test set, and the prediction errors

obtained in each round are aggregated, so that one global performance measure

can be computed (see Chapter 2). We direct the reader to Michaelsen (1987) and

Von Storch and Zwiers (2001) for further discussion.

The inclusion of a regularization term in the fitting process of over-parameterized

linear models will avoid over-fitting. Typical regularizers that shrink the parameter

vectors of linear models towards zero are L2-norms as in ridge regression, L1-

norms as in LASSO models, or a combination of the two norms, as in elastic net

(Friedman et al., 2001). Translated to VAR models, this implies that one should

impose restrictions on the parameter matrix of Eq. (4.5), as done in the recent

theoretical paper of Gregorova et al. (2015). In this setting, we want to identify

causal relationships between a vegetation time series and various climatic time

series. Hence, there is only one target variable of interest, and a simpler approach

can be adopted. Denoting the vegetation time series by y, one can mimic in the

tri-variate setting a VAR model by means of three autoregressive ridge regression

models:

yt � ŷt � ε1 � w01 �
P̧

p�1

�
w11pyt�p � w12pxt�p � w13pzt�p

�
� ε1 (4.6)

xt � x̂t � ε2 � w02 �
P̧

p�1

�
w21pyt�p � w22pxt�p � w23pzt�p

�
� ε2 (4.7)

zt � ẑt � ε3 � w03 �
P̧

p�1

�
w31pyt�p � w32pxt�p � w33pzt�p

�
� ε3 (4.8)

Our goal is to detect the climate drivers of vegetation, and not the feedback of

vegetation on climate (see e.g., Green et al. (2017)). Therefore, it suffices to

retain Eq. (4.6) in our analysis as is stated above for the tri-variate case (Eq. 4.5).

Concatenating all parameters of this model into a vector w � rw01, w11p, ..., w13ps,
one fits in ridge regression the parameters by solving the following optimization

problem:

min
w

Ņ

P�1

pyt � ŷtq2 � λ||w||2 (4.9)

with λ being a regularization parameter, that is tuned using a validation set or

nested cross-validation and ||w||2 being a penalty term, i.e., the squared L2-norm

of the coefficient vector. The sum only starts at P � 1 because a moving window

of P lags is considered. For simplicity, we describe the above approach for the
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tri-variate setting, even though the total number of variables used in our study is a

lot larger (see Chapter 3); nonetheless, extensions to the multivariate setting are

straightforward.

4.2.3. Non-linear Granger causality

The methodology that we develop in this thesis is closely connected to the methods

explained in the previous section. However, as we hypothesize that the relationships

between climate and vegetation can be non-linear (Foley et al., 1998; Zeng et al.,

2002; Verbesselt et al., 2016), we replace the linear VAR-models in the Granger

causality framework with non-linear machine learning models. In other fields, such

as in neurosciences, kernel methods or other non-linear models have been used

for the investigation of non-linear Granger causality relationships between time

series (Ancona et al., 2004; Marinazzo et al., 2008). In our analysis, we stick to

simple non-linear methods that are applicable to large data sets. More sophisticated

approaches typically do not scale well enough in global climate–vegetation data sets.

Therefore, in our approach, the machine learning algorithm we choose is random

forests, due to its excellent computational scalability (Breiman, 2001). Random

forests are a well-known method that has shown its merits in diverse application

domains, and that has successfully been applied to Earth observations in both

classification and regression problems (Dorigo et al., 2012; Rodriguez-Galiano et al.,

2012; Loosvelt et al., 2012a,b). However, random forests has not been applied yet in

the context of Granger causality. Briefly summarized, the random forest algorithm

forms a combination of multiple decision trees, where each tree contributes with a

single vote to the final output, which is the most frequent class (for classification

problems) or the average (for regression problems) – see Chapter 2.

Compared to most application domains where random forests are applied, we

employ the algorithm in a slightly different way, as an autoregressive non-linear

method for time series forecasting. In practice, this means that we replace the full

and baseline linear model of Sect. 4.2.1 by a random forest model. At each pixel,

the vegetation time series is still considered as response variable, and the various

climate time series serve as predictor variables (see Chapter 3 for an overview

of our database). For a given value of the NDVI time series y at timestamp t,

we investigate properties of the different predictor time series – i.e., temperature,

radiation, etc. – by considering a moving window including a number of previous

months (Fig. 4.1). In this way, the definition of Granger causality in Sect. 4.2.1

is adopted. Any climatic time series x Granger-causes vegetation time series y

if the predictive performance in terms of R2 improves when the moving window

xt�1, xt�2, ..., xt�P is incorporated in the random forest, in contrast to considering

yt�1, yt�2, ..., yt�P and zt�1, zt�2, ..., zt�P only. Analogous to the linear case, we

will speak of a full random forest model when all variables are taken into account and

of a baseline random forest model when only the moving window yt�1, yt�2, ..., yt�P
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of y is considered as predictor. In Fig. 4.1, this principle is extended to four time

series. The baseline random forest predictions of NDVI at t1 are based on the

observations from the green moving window only, whereas the full random forest

model includes the three red moving windows as well.

In our experiments, we treat each continental pixel as a separate problem, and

use the scikit-learn library (Pedregosa et al., 2011) for the random forest regressor

implementation, with the number of trees equal to 100 and the maximum number

of predictor variables per node equal to the square root of the total number of

predictor variables. Different values in these parameters do not show large impact

on the results. Changes in these parameters or in the randomness of the algorithm

do not cause substantial changes in the results (not shown). Model performance

is assessed by means of five-fold cross-validation. The window length is fixed to

twelve months because initial experimental results revealed that longer lag time

windows did not lead to improvements in the predictions (results omitted). Finally,

we also experimented with techniques that exploit spatial correlations to improve

the predictive performance of the model (see Sect. 4.3.3).

4.2.4. Granger causal inference

Generally, the null hypothesis (H0) of Granger causality is that the baseline model

has equal prediction error as the full model. Alternatively, if the full model predicts

the target variable y significantly better than the baseline model, H0 is rejected. In

some applications, inference is drawn in VAR by testing for significance of individual

model parameters. Other studies have used likelihood-ratio tests, in which the full

and baseline models are nested models (Mosedale et al., 2006). However, in both

cases, the models are trained and evaluated on the same in-sample data. As it

has been discussed above, the performance of any Granger causal model should be

validated on out-of-sample data to avoid overfitting (see Sect. 4.2.2). Therefore,

the null hypothesis of non-causality in the formulation stated above should be

tested for by comparing out-of-sample prediction errors. To this end, statistical

tests have been proposed and applied both in the econometric literature as well as

in Granger causality studies in the context of climate science. This kind of tests,

which compare out-of-sample prediction errors, are available for models for which

parameter estimation is done through ordinary least squares or maximum likelihood

estimation (Attanasio et al., 2013). Moreover, the asymptotic and finite-sample

properties of a battery of tests for comparing forecasting accuracies of different

models have been studied and more recently, further tests aiming specifically at

nested models have been proposed (Clark and McCracken, 2001).

Unfortunately, all the tests mentioned above were designed to compare the out-

of-sample prediction errors of linear parametric models (McCracken, 2007). In

climate, relations between variables are non-linear and tend to become even more

non-linear as the temporal resolution of the data becomes finer (Attanasio et al.,

56



§4.2. Granger causality for climate studies

t1

Figure 4.1: An illustrative example of the moving window approach considered in the
analysis of vegetation drivers at a given timestamp t1. NDVI takes here the role of the
time series y in Eq. 4.3. In addition three climate predictor time series are shown. The
baseline random forest model only considers the green moving window, whereas the full
random forest model includes the red moving windows as well. The pixel corresponds to
a location in North America (lat: 37.5, long: -87.5).

2013). Therefore, it would be convenient to have at our disposal a statistical test

to assess the significance of any quantitative evidence of climate Granger-causing

vegetation anomalies that we can find. Ideally, the test would be model-independent

so that any non-linear model could be used. One well-known model-independent

test to compare the accuracy of two forecasts is the Diebold-Mariano test (DM-test)

(Diebold, 2015a). Although its application to Granger causality is promising, the

test does not hold for nested models, because under H0, the prediction errors from

two nested models are exactly the same and perfectly correlated (McCracken, 2007).

An alternative approach for comparing the predictive performance of different

models is to use resampling methods such as the bootstrap or schemes such as 5�2

cross-validation (Dietterich, 1998). Methods based on the bootstrap have been

used before in Granger causality studies with climate data (Diks and Mudelsee,

2000; Attanasio et al., 2013). However, these results need to be interpreted with

care because, by increasing the number of bootstrap samples, the power of any

paired test (such as the Wilcoxon signed rank test) to detect significant differences

between the error distributions of both models (full and baseline) increases as well.

For these reasons, we conclude that developing a statistical test that is able to

handle non-stationary time series and non-linear models is not a trivial task. To

the best of our knowledge, no such test exists in the current literature. In this

paper, we focus on expressing Granger causality in a quantitative instead of a

qualitative way, and stress the gained improvement with the use of a non-linear

model.
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4.3. Results and discussion

4.3.1. Detecting linear Granger-causal relationships

In a first experiment, we evaluate the extent to which climate variability Granger-

causes the anomalies in vegetation using a standard Granger causality approach,

in which only linear relationships between climate (predictors) and vegetation

(target variable) are considered. To this end, ridge regression is used as a linear

vector autoregressive (VAR) model in the Granger causality approach (note this

ridge regression will be substituted by the non-linear random forest approach in

Sect. 4.3.2). In the application of the ridge regression, we use all climatic and

environmental predictor variables (Sect. 3.2.2), and adopt a nested five-fold cross-

validation to properly tune the hyper-parameter λ (see Eq. 4.9). Figure 4.2a shows

the predictive performance of the full ridge regression model. While the model

explains more than 40% of the variability in NDVI anomalies in some regions

(R2 ¡ 0.4), this is by itself not necessarily indicative of climate Granger-causing

the vegetation anomalies, as it may reflect simple correlations. In order to test

the latter, we compare the results of the full model to a baseline model, i.e., an

autoregressive ridge regression model that only uses previous values of NDVI

to predict the NDVI at time t (see Sect. 4.2.1). If climate Granger-caused the

variability of NDVI at a given pixel, the full ridge regression model (Fig. 4.2a)

would show an increase in the predictive power over the predictions based on the

baseline ridge regression model. However, the results unequivocally show that –

when only linear relationships between vegetation and climate are considered –

the areas for which vegetation anomalies are Granger-caused by climate are very

limited, involving mainly semiarid regions and central Europe (Fig. 4.2b).

For further comparison, we analyze the predictive performance obtained when

(linear) Pearson correlation coefficients are calculated on the training data sets,

selecting the highest correlation to the target variable for any of the 4,571 predictor

variables at each pixel. Figure 4.2c shows that the explained variance is again

rather low, and for most regions substantially lower than the R2 of the baseline

ridge regression model, here considered as the minimum to interpret this predictive

power as Granger-causal. These results indicate that, despite being routinely used

as a standard tool in climate–biosphere studies (see e.g. Nemani et al., 2003),

univariate correlation analyses are unable to extract the nuances of the relationships

between climate and vegetation dynamics.

4.3.2. Linear versus non-linear Granger causality

To analyze the effect of climate on vegetation more thoroughly, we substitute

the linear ridge regression model (VAR) by the non-linear random forest model.
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Figure 4.2: Linear Granger causality of climate on vegetation. (a) Explained variance
(R2) of NDVI anomalies based on a full ridge regression model in which all climatic
variables are included as predictors. (b) Improvement in terms of R2 by the full ridge
regression model with respect to the baseline ridge regression model that uses only past
values of NDVI anomalies as predictors; positive values indicate (linear) Granger causality.
(c) A filter approach in which the variable with the highest squared Pearson correlation
against the NDVI anomalies is selected. (d) Improvement in terms of R2 by the filter
approach with respect to the same baseline ridge regression model that uses only past
values of NDVI anomalies.

Results in Fig. 4.3 highlight the differences. Compared to the results in Sect. 4.3.1,

the predictive power substantially increases by considering non-linear relationships

between vegetation and climate (Fig. 4.3a). This is the case for most land regions,

but is especially remarkable in semiarid regions of Australia, Africa, Central and

North America, which are frequently exposed to water limitations. In those regions,

more that 40% of the variance of NDVI anomalies can be explained by antecedent

climate variability. These results are further investigated by Papagiannopoulou

et al. (2017b), who highlight the crucial role of water supply for the anomalies in

vegetation greenness in these and other regions. On the other hand, the variance

of NDVI explained in other areas such as the Eurasian taiga, tropical rainforests

or China is again below 10%. We hypothesize two potential reasons: (a) the

uncertainty in the observations used as target and predictors are typically larger

in these regions (especially in tropical forests and at higher latitudes), and (b)

these are regions in which vegetation anomalies are not necessarily primarily

controlled by climate, but may be predominantly driven by phenological and biotic

factors (Hutyra et al., 2007), occurrence of wild fires (van der Werf et al., 2010),

limitations imposed by the availability of soil nutrients (Fisher et al., 2012a) or

agricultural practices (Liu et al., 2015a). Nonetheless, the explained variance shown

in Fig. 4.3a is again not necessarily indicative of Granger causality. As we did
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in Fig. 4.2b, in order to test whether the climatic and environmental controls

do, in fact, Granger-cause the vegetation anomalies, we compare the results of

our full random forest model to a baseline random forest model which only uses

previous values of NDVI to predict the NDVI at time t. As seen in Fig. 4.3b, in

this case, the improvement over the baseline is unambiguous. One can conclude

that – while not bearing into consideration all potential control variables in our

analysis – climate dynamics indeed Granger-cause vegetation anomalies in most

of the continental land surface, with a larger impact on subtropical regions and

mid-latitudes. Moreover, a comparison between Figs. 4.2b and 4.3b unveils that

these causal relationships are non-linear, as expected given the distinct resistence

and resilience of different ecosystems, which is reflected by a progressive response

and recovery of vegetation to these perturbations (Foley et al., 1998; Zeng et al.,

2002; Verbesselt et al., 2016).

For a better understanding of the results obtained by the two models, we average the

performance of each model regionally. More specifically, we use the International

Geosphere-Biosphere Program (IGBP) (Loveland and Belward, 1997) land cover

classification to stratify the mean and variance of R2 for both the baseline and the

full model in Fig. 4.3 per IGBP land cover class. The barplot in Fig. 4.4 shows

that the full model outperforms the baseline model in all IGBP land cover classes,

i.e., that Granger causality exists for all these biomes. In the parentheses, we note

the number of pixels per region. The error bars indicate that the variances of the

two models are analogous, i.e., they are low or high in both models in the same

land cover class. For the Closed Shrublands region, one can observe the highest

difference between the two models, yet only 19 pixels belong to this biome type. In

savanna regions, the performance of the full model is high in comparison with other

regions (see Fig. 4.3). On the other hand, the lowest performance improvement of

the full model with respect to the baseline is observed for the regions of Deciduous

Needleleaf Forests and Evergreen Broadleaf Forests. This shows that for these two

regions, climate is not identified as a major control over vegetation dynamics (see

discussion in previous paragraph about tropical and boreal regions).

4.3.3. Spatial and temporal aspects

Environmental dynamics reveal their effect on vegetation at different time scales.

Since the adaptation of vegetation to environmental changes requires some time,

and because soil and atmosphere have a memory, a necessary aspect to investigate

is the potential lag-time response of vegetation to climate dynamics which relates

to the ecosystem resistence and resilience properties. The idea of exploring lag

times was introduced by several studies in the past (see e.g., Davis (1984); Braswell

et al. (1997)), and it has been adopted in various studies more recently (Anderson

et al., 2010; Kuzyakov and Gavrichkova, 2010; Chen et al., 2014; Rammig et al.,

2014).
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Figure 4.3: Non-linear Granger causality of climate on vegetation. (a) Explained
variance (R2) of NDVI anomalies based on a full random forest model in which all climatic
variables are included as predictors. (b) Improvement in terms of R2 by the full random
forest model with respect to the baseline random forest model that uses only past values
of NDVI anomalies as predictors; positive values indicate (non-linear) Granger causality.

These studies indicate that lag times depend on both the specific climatic control

variable and the characteristics of the ecosystem. As explained in Chapter 3,

in our analysis shown in Fig. 4.2 and 4.3, we moved beyond traditional cross-

correlations, and incorporate higher-lever variables in the form of cumulative and

lagged responses to extreme climate. As mentioned in Sect. 4.2.3, our experiments

indicated that lags of more than six months do not add extra predictive power (not

shown), even though the effect of anomalies in water availability on vegetation can

extend for several months (Papagiannopoulou et al., 2017b).

To disentangle the response of vegetation to past cumulative climate anomalies and

climatic extremes, Fig. 4.5a visualizes the predictive performance when cumulative

variables and extreme indices are not included as predictive variables in the random

forest model. As shown in Fig. 4.5b, in almost all regions of the world the predictive

performance decreases substantially compared to the full random forest model

approach, i.e., using the full repository of predictors (Fig. 4.3a), especially in

regions such as the Sahel, the Horn of Africa or North America. In those regions

10-20% of the variability in NDVI is explained by the occurrence of prolonged

anomalies and/or extremes in climate, illustrating again the non-linear responses

of vegetation. For more detailed results about lagged vegetation responses for

specific climate drivers and the effect of climate extremes on vegetation, the reader

is referred to Chapter 5.

Because of uncertainties in the observational records used in our study to represent

climate and predict vegetation dynamics, and given that ecosystems and regional

climate conditions usually extend over areas that exceed the spatial resolution

of these records, one may expect that the predictive performance of our models

becomes more robust when including climate information from neighbouring pixels.

In addition, it is quite likely that neighbouring areas have similar climatic conditions,

which in their turn affect vegetation dynamics in a similar manner. We therefore also

consider an extension of our framework to exploit spatial autocorrelations, inspired

61



Chapter 4. A non-linear Granger causality framework

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Mean R 2

Barren

Closed Shrublands

Cropland

Cropland/Natural 
 Vegetation Mosaics

Deciduous 
 Broadleaf Forests

Deciduous 
 Needleleaf Forests

Evergreen 
 Broadleaf Forests

Evergreen 
 Needleleaf Forests

Grasslands

Mixed Forests

Open Shrublands

Permanent Wetlands

Savannas

Urban and Built-up

Woody Savannas

D
IS

C
o
v
e
r 

C
la

ss

Baseline model

Granger causality

(1241)

(41)

(881)

(80)

(2776)

(992)

(1971)

(427)

(1041)

(172)

(132)

(769)

(1217)

(19)

(602)

Figure 4.4: Mean R2 and variance per IGBP land cover class for both the baseline and
full random forest model. The green part indicates the improvement in performance of
the full model with respect to the baseline, i.e., the quantification of Granger causality
(as in Fig. 4.3b). The number of pixels per IGBP class is noted in the parentheses.
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Figure 4.5: Analysis of spatio-temporal aspects of our framework. (a) Explained
variance (R2) of NDVI anomalies based on a full random forest model in which all climatic
variables are included as predictors as in Fig. 4.3a, except for the cumulative variables
and the extreme indices (see Chapter 3). (b) Difference in terms of R2 between the model
without cumulative and extreme predictors and the full random forest model in Fig. 4.3a.
(c) Explained variance (R2) of NDVI anomalies based on a full random forest model in
which all climatic variables are included as predictors as in Fig. 4.3a, but including also
the predictors from the eight nearest neighbours. (d) Difference in terms of R2 between
this full random forest model which includes spatial information from neighbouring pixels
and the full random forest model in Fig. 4.3a.
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by Lozano et al. (2009b), who achieved spatial smoothness via an additional penalty

term that punishes dissimilarity between coefficients for spatial neighbours. In

our analysis, we incorporate at a given pixel spatial autocorrelations by extending

the predictor variables of our models with the predictor variables of the eight

neighbouring pixels. We provide such an extension both for the full and the

baseline random forest model. As such, for the full random forest model, a vector

of 41,139 (4,571 � 9) predictor variables is formed for each pixel.

Figure 4.5c illustrates the performance of the full random forest model that includes

the spatial information. As one can observe in Fig. 4.5d, the explained variance

of NDVI anomalies remains similar to the original model that depicts the same

approach without spatial autocorrelation (Fig. 4.3a). While in most areas the

performance slightly increases, the explained variance never improves by more

than 10%; as a result, incorporating spatial autocorrelations in our framework

does not seem to further improve the quantification of Granger causality and is

not considered in further applications of the framework (see Papagiannopoulou

et al. (2017b)). A possible explanation for this result is that the model without the

spatial information cannot be outperformed because of the large dimensionality of

the feature space, which may include redundant information, in combination with

the low number of observations per pixel (Fig. 4.3a). Note that in this case the

number of observations per pixel remains the same as in the original model (360

observations) while the number of predictor variables is nine times larger.

4.3.4. The importance of focusing on vegetation anomalies

In Chapter 3, we advocated that Granger causality analysis should target on NDVI

anomalies, as opposed to raw NDVI values. There are several fundamental reasons

for this. First, by applying a decomposition, one can subtract long-term trends

from the NDVI time series, making the resulting time series more stationary. This

is absolutely needed, as existing Granger causality tests cannot be applied for

non-stationary time series. Secondly, by subtracting the seasonal cycle from the

time series, one is not only able to remove a confounding factor that may contribute

predictive power without bearing causality, but is also able to remove a clear

autoregressive component that can be well explained from the NDVI time series

themselves. As vegetation has a strong seasonal cycle, it is not difficult to predict

subsequent vegetation conditions by using the past observations of the seasonal

cycle only. To corroborate this aspect, we repeat our analysis in Sect. 4.3.2, but

this time considering the raw NDVI time series instead of the NDVI anomalies

as the target variable. We again compare the full and the baseline random forest

models.

The results are visualized in Fig. 4.6a. As it can be observed, worldwide the R2 is

close to the optimum of one. However, due to the overwhelming domination of the
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Figure 4.6: Comparison of model performance with R2 as metric with the raw NDVI
time series as target variable. (a) Full random forest model (b) Improvement in terms of
R2 of the full random forest model over the baseline random forest model.

seasonal cycle, it becomes very difficult, or even impossible, to unravel any potential

Granger-causal relationships with climate time series in the Northern Hemisphere –

see Fig. 4.6b. The predictability of NDVI based on the seasonal NDVI cycle itself is

already so high that nothing can be gained by adding additional climatic predictor

variables; see also the large amplitude of the seasonal cycle of NDVI at those

latitudes compared to the NDVI anomalies, as illustrated in Chapter 3, Fig. 3.1.

Therefore, a non-linear baseline autoregressive model is able to explain most of the

variance in the time series. Moreover, as observed in Fig. 4.1, temperature and

radiation also manifest strong seasonal cycles that often coincide with the NDVI

cycle. For most regions on Earth, such a stationary seasonal cycle is less present for

variables, such as precipitation. This can potentially yield wrong conclusions, such

as that temperature in the Northern hemisphere is driving most NDVI variability,

since the two seasonal cycles have the same pattern. However, based on the above

discussion, it becomes clear that results of that kind should be treated with caution:

for climate data, a Granger causality analysis should be applied after decomposing

time series into seasonal anomalies.

4.4. Conclusions

In this chapter, we introduced a novel framework for studying Granger causality

in climate-vegetation dynamics. Our approach consists of the combination of

data fusion, feature construction and non-linear predictive modelling. The choice

of random forests as a non-linear algorithm has been motivated by its excellent

computational scalability with regards to extremely large data sets, but could be

easily replaced by any other non-linear machine learning technique, such as neural

networks or kernel methods.

Our results highlight the non-linear nature of climate–vegetation interactions and

the need to move beyond the traditional application of Granger causality within a

linear framework. Comparisons to linear Granger causality approaches indicate
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that the random forest framework can predict 14% more variability of vegetation

anomalies on average globally. The predictive power of the model is especially high

in water-limited regions where a large part of the vegetation dynamics responds

to the occurrence of antecedent rainfall. Moreover, our results indicate the need

to consider multi-month antecedent periods to capture the effect of climate on

vegetation, in particular to account for the effects of climate extremes on vegetation

resilience. The reader is referred to Papagiannopoulou et al. (2017b) for a detailed

analysis of the effect of different climate predictors on the variability of global

vegetation using the mathematical approach described here.
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5 Detecting the main vegetation drivers

at global scale

Quantifying environmental controls on vegetation is critical to predict the net effect

of climate change on global ecosystems and the subsequent feedback on climate.

Following the non-linear Granger causality framework described in Chapter 4, we

aim to uncover the main drivers of monthly vegetation variability at the global

scale. Results indicate that water availability is the most dominant factor driving

vegetation globally: about 61% of the vegetated surface was primarily water-limited

during 1981-2010. Intra-annually, temperature controls Northern Hemisphere de-

ciduous forests during the growing season, while antecedent precipitation largely

dominates vegetation dynamics during the senescence period. The uncovered depen-

dency of global vegetation on water availability is substantially larger compared to

previous works. This is owed to the ability of the framework to (1) disentangle the

co-linearities between radiation/temperature and precipitation, and (2) quantify

non-linear impacts of climate on vegetation. Our results reveal a prolonged effect

of precipitation anomalies in dry regions: due to the long memory of soil moisture

and the cumulative, non-linear, response of vegetation, water-limited regions show

sensitivity to the values of precipitation occurring three months earlier. Meanwhile,

the impacts of temperature and radiation anomalies are more immediate and

dissipate shortly, pointing to a higher resilience of vegetation to these anomalies.

Despite being infrequent by definition, hydro-climatic extremes are responsible

for up to 10% of the vegetation variability during the 1981-2010 period in cer-

tain areas, particularly in water-limited ecosystems. Our approach is a first step

towards a quantitative comparison of the resistance and resilience signature of

different ecosystems, and can be used to benchmark Earth system models in their

representations of past vegetation sensitivity to changes in climate.

This chapter is an edited version of:

Papagiannopoulou, C., Miralles, D. G., Dorigo, W. A., Verhoest, N. E. C., De-

poorter, M. and Waegeman, W.: Vegetation anomalies caused by antecedent

precipitation in most of the world. Environ. Res. Lett., 12(7):074016, 2017.

5.1. Introduction

Vegetation is a key player in the climate system, constraining atmospheric conditions

through a series of positive and negative feedbacks. Plants regulate water, energy

and carbon cycles, through their transfer of vapour from land to atmosphere (i.e.,

transpiration, interception loss), effects on the surface radiation budget (e.g., albedo,
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surface temperature, emission of volatile organic compounds), exchange of carbon

dioxide with the atmosphere (i.e., photosynthesis, respiration), and influence on

wind circulation (Bonan, 2008; Mcpherson, 2007; Teuling et al., 2017). Vegetation

holds around 42% (�28 Pg C) of the terrestrial carbon storage and assimilates

about 20% of the annual anthropogenic emissions of carbon dioxide (Pan et al.,

2011; Le Quere et al., 2016). This fundamental role highlights the importance

of understanding the regional drivers of ecological sensitivity and the response of

vegetation to climatic changes at the global scale.

Vegetation dynamics are generally driven by climate, in particular by precipitation,

incoming radiation, air temperature and atmospheric humidity (Nemani et al.,

2003). In addition, nutrient availability (e.g., atmospheric CO2 concentrations,

soil chemicals) and short-term natural and anthropogenic disturbances (e.g., fires,

volcanic eruptions, logging, insect epidemics) can be crucial at various spatio-

temporal scales (Fisher et al., 2012b; Reichstein et al., 2013; Le Quere et al., 2016;

Zhu et al., 2016). Consequently, humans impact vegetation dynamics directly

through land-use change or agricultural management, and indirectly through air

pollution, induced changes in climate and spread of pest outbreaks (Baccini et al.,

2012; Reichstein et al., 2013). In natural conditions, long-term climatological

controls on vegetation dominate: this is reflected in the general distribution of

continental biomes, largely based on the annual cycle of solar irradiance, mean

temperature, and the intensity of dry and wet seasons (Kottek et al., 2006).

However, at shorter temporal scales, the interactions between vegetation and

climate become complex and species-dependent (Zimmermann et al., 2009). Some

vegetation types react preferentially to specific climatic changes, with different

levels of intensity, resilience and lagged response (Wu et al., 2015; De Keersmaecker

et al., 2015; Seddon et al., 2016). In addition, extreme climatic events – such as

droughts, heatwaves, or heavy winds and storms – may cause long-lasting impacts

and even bring ecosystems to a tipping point for collapse (Anderegg et al., 2015;

Ciais et al., 2005; Reichstein et al., 2013; Verbesselt et al., 2016). Ultimately, the

resistance and resilience of ecosystems to these anomalies depend on both vegetation

characteristics and the duration and severity of climatic events (Anderegg et al.,

2015; Cole et al., 2014).

A first and necessary step to understand how vegetation will respond to future

climatic changes is to quantify the sensitivity of global ecosystems to past time

climate variability. Conveniently, satellites routinely collect a wealth of information

about the dynamics of our biosphere, hydrosphere and atmosphere: current multi-

satellite composite records of environmental and climatic variables enable the

study of global vegetation–climate interactions over multi-decadal time scales.

Recent studies using long-term satellite records have indicated an overall greening

trend (Zhu et al., 2016) and a long-term increase in above ground biomass (Liu

et al., 2015b) – particularly at high latitudes and in the tropics – that have been

attributed to CO2 fertilization, warming trends and land-use change. Dominant
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ecosystem drivers at inter- and intra-annual scales have also been intensively

studied, both globally (Nemani et al., 2003; Poulter et al., 2014; De Keersmaecker

et al., 2015; Wu et al., 2015; Gonsamo et al., 2016; Seddon et al., 2016) and over

specific regions (Zhou et al., 2014; Barichivich et al., 2014; Guan et al., 2015). A

particular example of a well-studied phenomenon is the short-term response of

the Amazonian forest to precipitation scarcity and radiation, which has been the

subject of intense debate over the past few years (Morton et al., 2014; Saleska et al.,

2016). In the context of identifying the short-term (e.g. monthly) climatic controls

on global vegetation dynamics, approaches based on correlations or multilinear

regressions between climate and vegetation variables have led to important steps

forward in our understanding (Nemani et al., 2003; Zhao and Running, 2010; Wu

et al., 2015; De Keersmaecker et al., 2015; Seddon et al., 2016). However, these

approaches are not designed to infer causality directly, and are commonly subjected

to artifacts emerging from auto-correlation, non-linearity and cross-correlation

between climatic drivers (Papagiannopoulou et al., 2017a). As mentioned in the

previous chapters, the exponential increase in the volumes of satellite, in situ

and reanalysis records existing today, together with the consistent progress of

computing science, allow for more sophisticated data-driven methods to yield

robust insights into the global interactions between vegetation and climate. As

such, machine learning approaches are becoming increasingly valuable to investigate

complex cause-effect relationships in geosciences, as well as to evaluate the skill of

climate models in representing these interactions (Faghmous and Kumar, 2014).

In Chapter 4, we presented an approach which adopts the well-known Granger

(1969) causality framework – originally introduced in econometrics to quantify

a measure of pseudocausality in time series – and extended it to capture the

non-linearity of vegetation–climate relationships. This was achieved by substituting

the traditional linear autoregressive model used in Granger-causality approaches

with a non-linear random forest algorithm (Breiman, 2001). This new framework

has clear advantages over simpler approaches: (a) it can cope with the emerging

wealth of Earth observations while preventing over-fitting, (b) it enables a robust

estimation of deterministic relationships, and (c) it incorporates the non-linear

nature of vegetation–climate interactions.

5.2. Materials and methods

5.2.1. Data and feature construction

For our analysis, we used the database described in Chapter 3. This database

consists of several predictive features constructed from 21 data sets. These predictive

features consist of monthly time series for each 1� pixel, and include: raw data time

series of each data set, seasonal anomalies (after subtraction of the seasonal cycle

69



Chapter 5. Detecting the main vegetation drivers at global scale

based on the multi-year mean for each corresponding month of the year), de-trended

seasonal anomalies (after subtraction of the long-term linear trend from the seasonal

anomalies), lagged variables (with monthly lags up to six months into the past),

cumulative variables (corresponding to the cumulative mean over the antecedent

one to six months), and extreme indices (including the maximum and minimum

of a variable per month, number of days per month exceeding a given threshold,

values of specific percentiles, etc.). The lagged variables, cumulative variables and

extreme indices were computed based on both raw data and (de-)trended seasonal

anomalies. These predictive features are used to train the non-linear Granger

causality framework (see Sect. 5.2.3), targeting the variable of de-trended NDVI

seasonal anomalies (Tucker et al., 2005).

5.2.2. Non-linear Granger causality framework

Given a particular target time series, one speaks of the existence of Granger

causality if the prediction of this target variable improves when information from

other time series is taken into account in this prediction (Granger, 1969). Here, we

quantify the extent to which a variable x (i.e., a predictive feature, or a certain

group of them – see Sect. 5.2.3) is Granger-causing a target variable y (i.e., the

de-trended NDVI anomalies at each individual pixel) by computing the increase in

the variance of y that is explained by the random forest model predictions when x

is included in the set of predictive features used by the model (this set also includes

past values of y to conform to the definition of Granger causality). The explained

variance is then defined as R2 � 1 � RSS
TSS , with RSS being the sum of squared

errors of the predictions (relative to the true de-trended NDVI anomalies), and

TSS being the sum of the squared differences between the true values and their

long-term mean, as defined in Chapter 4.

5.2.3. Sequential method to evaluate the impact of specific

groups of features

To explore the importance of different climatic variables for the occurrence of NDVI

anomalies, all predictive features have been aggregated into one of these three

groups: ‘temperature’ (including surface and air temperature), ‘radiation’ (including

incoming shortwave, longwave and net) and ‘water’ (including precipitation, surface

and root-zone soil moisture, and snow water equivalent) – see Table 3.1 of Chapter 3.

Then, taking the ‘water’ group as example, the explained variance (R2) of NDVI

anomalies by ‘water’ is calculated sequentially by: (1) applying the random forest

approach to predict the anomalies of NDVI based on the entire database of

predictors (including ‘water’, ‘radiation’ and ‘temperature’ features, but also past

NDVI values to conform to the definition of Granger causality); (2) applying the

random forest approach to the entire database except for the ‘water’ group; (3)
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calculating the deterioration in the predictive performance (R2) after excluding

the ‘water’ group. Moreover, to prevent favouring groups with a larger number

of predictive features, the number of selected features in every random forest is

forced to be the same for all three groups by randomly selecting the same number

of features for each group of variables.

As in most statistical techniques, the assessment of causality is ultimately limited

to quantifying the level of cross-covariance between predictors and target variable,

thus if critical predictors are not included, the importance of the assessed variable

(or group of variables) may be inflated. However, the sequential approach explained

above preserves the multivariate nature of the framework, as opposed to a hypo-

thetical case in which the contribution of a specific group of variables (e.g., ‘water’)

is assessed in isolation. In addition, the approach goes one step beyond previous

statistical analyses of global vegetation drivers by preventing the importance of

a secondary driver (e.g., temperature) to be inflated due to its correlation to the

primary one (e.g., water availability). Nonetheless, the resulting R2 is still not

a measure of ‘real’ causality but of pseudo-causality, given the unfeasibility of

including all possible drivers of global vegetation. Finally, we note that since the

R2 attributed to a particular variable (or group) is quantified by subtracting it

from the entire database of predictors, its causal effect (computed as R2) will

be underestimated as long as the remaining variables are strongly correlated to

that one being subtracted. As such, the R2 reported here refers to the explained

variance that is ‘unique’ to the variable (or group), i.e., the part of the variance

in the NDVI anomalies that cannot be explained by any other variable in the

database.

5.3. Results and discussion

5.3.1. Detecting important vegetation drivers

More than half (61%) of the vegetated area appears primarily controlled by water

availability (i.e., precipitation, soil moisture or snow dynamics) – see Fig. 5.1a.

In addition, for 17% of the remaining vegetated area, water availability is the

second most important limiting factor after temperature or radiation (Fig. 5.1b).

Temperature and radiation are the primary climatic controls for 23% and 15%

of the vegetated areas, respectively. In addition, for most of these energy-driven

regions the dynamics of vegetation are largely independent from climate variability

(Fig. 5.1b). That is the case for both high latitudes and tropical zones, where

no climatic driver is responsible for a substantial fraction of the variability in

vegetation, as suggested by the inability of the framework to explain the dynamics

in NDVI anomalies (see below). Nonetheless, in boreal and temperate regions,

radiation and temperature remain the two main climatic controls, respectively, and
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Figure 5.1: Primary climatic and environmental factors controlling vegetation dynamics.
(a) Temperature, radiation and water-limited continental regions based on the non-linear
Granger causality approach targeting de-trended NDVI anomalies. The net of black
dots is represented at 2� resolution and indicates areas with R2 ¡ 0.3 for the full model
including all variables. ‘No GC’ indicates no Granger causality (R2 � 0). (b) Order of
importance of each group of variables for vegetation according to the performance in
terms of R2 (left), and the corresponding R2 (right). Grey colour indicates the regions
considered as non-vegetated throughout the analysis.

most European croplands are temperature-driven (Fig. 5.1a and 5.1b). The relative

importance of water availability in boreal regions such as Siberia or Alaska responds

to the influence of snowmelt, which is nonetheless controlled by temperature and

radiation patterns (Barichivich et al., 2014). Meanwhile, central Europe is mostly

temperature-driven, while China is largely controlled by radiation. These patterns

are in general agreement with those by Nemani et al. (2003); Wang et al. (2011);

Wu et al. (2015); Seddon et al. (2016), bearing into consideration the different

periods and seasons of focus, and the differences in methodology and data.

For the remaining vegetated land, the availability of water is the first control over

ecosystem dynamics, and is particularly important in semiarid regions such as
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Figure 5.2: Factors controlling vegetation dynamics for two annual seasons. Temperature,
radiation and water-limited regions during January-June (left) and July-December (right).
The net of black dots is represented at 2� resolution and indicates areas with R2 ¡ 0.3.
‘No GC’ indicates no Granger causality (R2 � 0). Grey colour indicates the regions
considered as non-vegetated throughout the analysis.

eastern and central Australia, the Pampas and Caatinga region in South America,

the US Great Plains, and the south and Horn of Africa. Interestingly, most of

these ecoregions were recently shown to influence their own availability of water

through transpiration feedbacks during dry and wet years (Miralles et al., 2016). As

mentioned above, in tropical forests, none of the climatic drivers is causing a large

fraction of vegetation variability. This may be explained by the subtle changes in

vegetation and the ecosystems resistance to mean climate dynamics. However, this

low response of tropical rainforests may also reflect aspects such as the dependency

on phenological processes driven by biotic factors (Hutyra et al., 2007), occurrence

of wild fires (van der Werf et al., 2008), limitations imposed by the availability

of soil nutrients (Fisher et al., 2012b) and tropical deforestation (Hansen et al.,

2013). In addition, it may also echo the influence of CO2 fertilization, even though

CO2 emissions are expected to be more important for multi-decadal trends than

for monthly dynamics (Liu et al., 2015b; Zhu et al., 2016). Therefore, Fig. 5.1 only

partially supports the hypothesis of a radiation constraint on tropical vegetation,

as defended by Nemani et al. (2003) or Seddon et al. (2016): (a) the Amazonian

rainforest is affected by radiation, yet the South East Asia and Congo rainforests

appear primarily driven by temperature; (b) other (non-climatic) drivers seem

to dominate the dynamics in these ecosystems, as discussed above. Nevertheless,

known issues of NDVI saturation in densely vegetated areas (Beck et al., 2011)

may contribute to these results and should be considered.

The primary climatic controls over vegetation dynamics may shift throughout

the year, both due to natural phenological cycles as well as intra-annual climate

variability. In Fig. 5.2, our framework is applied to estimate the dominant factors

causing vegetation variability during two distinct six-month seasons: January-June

and July-December. As expected, results are markedly different in regions of

ample phenological cycles, such as Northern Hemisphere mid and high latitudes.

Deciduous and mixed forests in North America, Europe and China show a strong

dependency on temperature during January-June, which is consistent with the

expectations of the timing and length of their growing season being dependent on
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temperature (see e.g., Chmielewski and Rötzer (2002); Menzel and Fabian (1999)).

On the other hand, precipitation occurring during summer and autumn appears

more relevant as a control of Northern Hemisphere deciduous vegetation during

the senescence period (Xie et al., 2015) – see results for July-December in Fig. 5.2.

Consequently, 50% of the vegetated surface appears primarily water-limited during

January-June, while a larger 66% is primarily water-limited during July-December,

with this seasonal dependency being mainly attributed to the phenological cycle of

deciduous forests.

5.3.2. Lagged vegetation response to climate

Since vegetation, soil and atmosphere have a memory, and because some vegetation

properties take time to respond to environmental changes, it is crucial to explore

the latency in this response, which is ultimately related to the resistance and

resilience of the ecosystems. Lag times are already considered in Figs. 5.1 and 5.2,

given that our non-linear approach includes predictive features with various lags

and based on several past cumulative periods (see Chapters 3 and 4). While the

concept of introducing lag times in the study of these relationships is certainly not

new (Davis, 1984; Braswell et al., 1997), it has become more extended in recent

years (Chen et al., 2014; Wu et al., 2015; Seddon et al., 2016). The aforementioned

studies suggest that the time taken by vegetation to respond to climatic and

environmental anomalies, as well as its resilience, depend on both climate and

ecosystem characteristics. Figure 5.3 shows that changes in water availability lead

to lagged effects and longer-term impacts on vegetation than those in radiation and

temperature. Semiarid ecosystems in Australia and the Americas show sensitivity to

the dynamics in water availability occurring even longer than three months earlier,

which partly reflects their lower resilience to drought stress (De Keersmaecker

et al., 2015). In addition, Fig. 5.3 confirms that vegetation greenness typically

takes several weeks to react to precipitation anomalies (Adegoke and Carleton,

2002; Seddon et al., 2016): the available water during the previous month (i.e., lag

= 1) has more predictive power than during the current month (lag = 0).

On the other hand, the effect of temperature and radiation is more immediate

(maximum at lag = 0), and dissipates rapidly, indicating a higher resilience of

vegetation to anomalies in these variables. This is supported by the results in

Fig. 5.3, which show that temperature and radiation data cannot help predict

vegetation greenness in the following month, not even in energy-limited regions.

These results also relate to the short memory of atmosphere compared to that

of soil, implying that air temperature and radiation anomalies are less likely to

prevail than those of water availability in following months (Seneviratne et al.,

2006). These insights from Fig. 5.3 agree with the results by Seddon et al. (2016),

but disagree with Wu et al. (2015). The latter showed a delayed response of

vegetation greenness to radiation anomalies, based on multilinear regressions and

a partial correlation model. However, as mentioned in Sect. 5.2.3, multilinear
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Figure 5.3: Temporal scale of the effects of hydro-climatic variables on vegetation.
Influence (R2) of each group of variables (radiation, temperature and water availability)
on the NDVI anomalies considering different lag times (in months) separately.

regressions are prone to inflate the importance of temperature and radiation due

to the (negative) correlations these variables hold against precipitation and soil

moisture (Papagiannopoulou et al., 2017a). More complex frameworks, such as the

one proposed here, allow us to disentangle and quantify the impacts of different

climatic drivers independently and deterministically, which seems a necessary step

to advance our understanding on climate–vegetation interactions.

5.3.3. Effect of hydro-climatic extremes in vegetation

Finally, we specifically target the net effect of hydro-climatic events – i.e., extremes

in temperature, water availability and radiation – on global vegetation. Recent

studies have highlighted the key role such events play for the structure and func-

tioning of ecosystems, with their impacts depending on timing, magnitude, extent

and type of event, and on the natural resistance and resilience of the ecosystem

(Reichstein et al., 2013; Zscheischler et al., 2014; Sippel et al., 2016). Because

our database of predictors includes climate extreme indices calculated based on

the data sets in Table 3.1 (see Chapters 3 and 4), we have the means to isolate

the importance of hydro-climatic extremes for global ecosystems following the

sequential approach described in Sect. 5.2.3. Figure 5.4 depicts this importance in

terms of R2, i.e., the added explanatory power of these climate extremes – over

the remaining predictor variables in the database – when it comes to predicting

past NDVI anomalies. Hydrological extremes had an influence over the vegetation

dynamics in most ecoregions on Earth during 1981-2010, being more important
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Figure 5.4: Effect of hydro-climatic extremes on vegetation. Influence (R2) of radiation,
water and temperature extremes on vegetation, calculated as their potential to predict
the de-trended NDVI anomalies during the period 1981-2010.

in areas such as the US and Australia, where severe droughts occurred in recent

decades. As expected, radiation and temperature extremes have an impact at

higher latitudes and in the tropics; in particular, parts of boreal and tropical

forests were affected by high temperature events. The apparent response of boreal

forests to extremes in temperature is in line with the results by Zscheischler et al.

(2014). Despite a particular type of extreme being able to explain up to 5%-10%

of past vegetation variability for some regions, the importance of these events is

low compared to that of the general climate dynamics. This is simply related

to the fact that extremes are by definition infrequent, thus for the multi-decadal

period considered here vegetation typically responds to regular environmental

conditions.

5.3.4. Discussion

Despite the general agreement of our results with previous literature, an overall

finding emerges from our analysis: water availability is not only the dominant con-

trol factor over vegetation in semiarid regions, but in most transitional ecoregions

as well. On the contrary, Wu et al. (2015) reported that most of the vegetated land

is primarily controlled by temperature, then radiation and finally water (the latter

accounting only for 16% of the area where results were significant), while Nemani

et al. (2003) reported 40%, 33% and 27% of the vegetated land being primarily

constrained by water, temperature and radiation, respectively. Here, we estimate
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a contrasting 61%, 23% and 15%, which is qualitatively more comparable to the

results by Seddon et al. (2016). The latter reported water limitations in regions

that were predominantly energy-limited according to Nemani et al. (2003), such as

Western Europe and the American prairies. Figure 5.3 supports the hypothesis

that (a) our consideration of the non-linear, lagged and cumulative impacts of

water availability on vegetation, (b) the treatment of the co-linearities between tem-

perature, radiation, and precipitation by our Granger-causality model (Sect. 5.2.2),

and (c) our sequential approach to unravel the importance of these separate drivers

(Sect. 5.2.3), are behind the stronger importance of water availability for vegetation

dynamics revealed in our study. Nonetheless, it is important to note that differences

in the accuracy of the radiation, water and temperature observations used here

could affect the resulting contributions of these drivers, and may explain part of

the differences with previous studies.

5.4. Conclusion

We have identified the main climatic and environmental controls on global vegeta-

tion during the satellite era following the non-linear Granger causality framework,

which uses random forests as core model and is driven by a large database of

global observational features (Chapter 4). Results indicate that water availability

is the primary factor driving NDVI anomalies globally, with 61% of the vegetated

continental surface being water limited, despite the relative importance of tem-

perature in the Northern Hemisphere during the growing season. This overall

water constraint appears more dominant than previously reported (Nemani et al.,

2003; Wu et al., 2015; Gonsamo et al., 2016). In semiarid environments, water

control over vegetation is reinforced by the long memory of soil moisture, which

allows precipitation to affect vegetation dynamics more than three months into the

future, in contrast to the more immediate and shorter-lasting impacts of radiation

and temperature. We argue that this kind of non-linear interactions have not

been adequately exposed by more traditional studies based on correlations and

multilinear regression models.

Overall, our findings highlight a strong dependency of global vegetation on water

availability, and show the imprint of hydro-climatic extremes on global vegetation

during the satellite era. These results suggest that over a large part of the continents

vegetation is prone to follow future trends in water availability. Critically, for

most of the regions reported here as water-limited, the supply of precipitation is

expected to decline following global warming (Fischer et al., 2014), and a general

aggravation in hydro-climatic extremes is also expected (Seneviratne et al., 2012;

Fischer et al., 2014). In the light of these projections, further studies to characterize

the resistance and resilience of global vegetation to precipitation scarcity remain

imperative to adequately predict the fate of these ecosystems.

77





6 Detecting regions with similar

climate-vegetation dynamics via

multi-task learning

In the previous chapters, we investigated the relationship between climate and

vegetation by using a pixel-level approach. In this chapter, we explore the spatial

relationship between the different locations (pixels) in order to detect locations

with similar characteristics with respect to climate–vegetation dynamics. To this

end, we model our spatio-temporal problem in a multi-task setting by considering

the different locations as different tasks. As such, the dynamic interplay between

vegetation and local climate is modelled to delineate ecoregions that share a coherent

response to hydro-climate variability. Our novel framework is based on a multi-task

learning approach which learns a low-dimensional representation of predictive

structures (Sect. 6.2). This low-dimensional representation is combined with a

clustering algorithm that yields a classification of biomes with coherent behaviour.

Experimental results using our global observation-based data sets indicate that,

without the need to prescribe any land cover information, our method is able to

identify regions of coherent climate–vegetation interactions that agree well with

the expectations derived from traditional global land cover maps (Sect. 6.3). The

resulting global ‘hydro-climatic biomes’ can be used to analyse the anomalous

behaviour of specific ecosystems in response to climate extremes and to benchmark

climate–vegetation interactions in Earth system models.

This chapter is an edited version of:

Papagiannopoulou, C., Miralles, D. G., Demuzere, M., Verhoest, N. E. C., and

Waegeman, W.: Global hydro-climatic biomes identified via multi-task learning, ac-

cepted in Geosci. Model Dev., https://doi.org/10.5194/gmd-2018-92, 2018.

6.1. Introduction

Approaches which aim to define regions with similar biophysical characteristics

are commonly known as land cover classification schemes, and are widely used in

multiple geoscientific disciplines. Land cover classifications are crucial to enable

a better understanding of the spatial variability of the land surface, which can

be a first and necessary step towards understanding complex spatio-temporal

interactions among different environmental variables (Feddema et al., 2005). Tradi-

tional land use/land cover (change) classifications are typically based on spectral

information from the land-surface coming from satellites (Loveland and Belward,
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1997; Congalton et al., 2014). Amongst the most well-known and widely used

are the International Geosphere-Biosphere Program DISCover Global 1km Land

Cover classification (IGBP-DIS) (Loveland et al., 2000), Global Land Cover 2000

(Bartholomé and Belward, 2005) and more recently the land cover map developed

within the European Space Agency’s Climate Change Initiative (ESA CCI) (Poulter

et al., 2015; Li et al., 2018). Similarly, climate classification schemes cluster regions

with similar climate conditions and are also widely used to stratify geographical

regions with different climatic expectations (Baker et al., 2009; Brugger and Rubel,

2013; Garcia et al., 2014; Herrando-Pérez et al., 2014). Here, the best known is

probably the Köppen-Geiger climate classification (Köppen, 1936), which has been

modified many times in recent decades (e.g. Thornthwaite, 1943; Trewartha and

Horn, 1980; Feddema, 2005; Kottek et al., 2006; Peel et al., 2007). Yet to date,

dynamics in these climate regimes are used as diagnostic of climate change by

exploring their shifting boundaries (e.g. Diaz and Eischeid, 2007; Chen and Chen,

2013; Zhang and Yan, 2014a,b; Spinoni et al., 2015; Chan and Wu, 2015) or as a

means to predict future climatic zone distributions using climate projections (e.g.

Hanf et al., 2012; Gallardo et al., 2013; Mahlstein et al., 2013).

As advocated in the previous chapters, in recent years, the exponential advance

in Earth observation research has made climate science one of the most data-rich

scientific domains (Faghmous and Kumar, 2014). As such, data-driven methods

have become popular in their use for land cover and climate classifications. For

instance, Lund and Li (2009) proposed a new distance measure to define seasonal

means and autocorrelations of climatic time series from weather stations, and

grouped the stations using a hierarchical agglomerative clustering. Zscheischler

et al. (2012) also stressed the importance of unsupervised methods for tasks,

such as the classification of the land surface into zones with different climate and

vegetation characteristics. Metzger et al. (2012) applied an alternative data-driven

approach on climate and vegetation data that used principal component analysis

(PCA) to discover informative structures in the data. In this method, the principal

components of the initial climate–vegetation data set were applied as input to a

clustering algorithm. Interesting results in the same direction can be attributed to

Netzel and Stepinski (2016, 2017), who used distance measures of climatic variables,

such as dynamic time warping, coming from time series analysis, in a data mining

approach. In addition, temporal change in climate zones has been explored in the

same context via clustering algorithms, such as k-means (Zhang and Yan, 2014a,b).

Finally, data-driven methods have been also applied for the biome classification

task, which has been commonly treated as an object recognition problem using

remote sensing data. In this case, techniques coming from computer vision are

frequently applied (Mekhalfi et al., 2015; Chen and Tian, 2015). Following the

progress in computer science, neural networks and deep learning approaches are

also becoming popular for this kind of tasks in recent years, making the whole

procedure even more automated (Scott et al., 2017; Xu et al., 2017).
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Previous studies rely on spectral information, supervised techniques or clustering

approaches, which are applied to observations of climate variables and/or vegetation

characteristics. However, these classification schemes are not based on the type

of response of vegetation to climate dynamics. Recent advances in understanding

vegetation response to climate variability highlight the importance of revealing

the sensitivity of ecosystems to climate conditions, see Nemani et al. (2003);

De Keersmaecker et al. (2015); Seddon et al. (2016); Papagiannopoulou et al.

(2017b); Liu et al. (2018). Therefore, a step beyond these previous studies is a

spatial characterization of the vegetation dynamics that are induced by climate

variability, so that ecosystems of similar response to climate anomalies can be

unveiled. This objective could be tackled by geostatistical approaches, such as

geographically weighted regression (GWR) (Brunsdon et al., 1996), which assume

that neighboring pixels have a similar behaviour with respect to specific variables;

these methods have already been applied in studies with a regional focus (Propastin

et al., 2008; Zhao et al., 2015; Georganos et al., 2017). However, here, we aim to

avoid neighborhood assumptions and focus on the discovery of relationships between

pixels based on the similarity in their modelled climatevegetation interaction,

acknowledging that global ecosystems may experience similar interactions even if

they are remotely located from each other. A previous effort towards detecting

regions with similar vegetation response to climate involves the work of Ivits et al.

(2014), where PCA is performed on the data matrix of drought anomalies and

vegetation state, and a clustering is applied to the correlation coefficients based

on the spatio-temporal patterns obtained by PCA. However, in this study, the

interaction between climate and vegetation is not explicitly learned, nor the causes

behind vegetation changes are inferred in a predictor–target framework.

Here, we introduce for the first time (to the best of our knowledge) a data-

driven approach that aims to quantify the response of vegetation to local climate

variables in a supervised setting at a global scale, and use this information to

define ecoregions of consistent behaviour against hydro-climatic variability. In

simple terms, our framework results in regions where vegetation responds similarly

to the dynamics in temperature, soil moisture, incoming radiation, etc. The

proposed framework relies on predictive modelling and clustering techniques and

builds further upon recent work (described in Chapter 4) in which we investigated

the global response of vegetation to local climate by applying machine learning

algorithms in a Granger causality setting (Chapters 4 and 5). Since here we aim to

exploit the relationships between different pixels – instead of modelling each pixel

separately as in our previous studies – we propose the use of multi-task learning

(MTL) methods (Caruana, 1997). These methods are commonly used for solving

multiple related tasks: considering as one task the prediction of vegetation in one

location and as multiple tasks the prediction of vegetation in multiple locations,

we can model our problem by using an MTL approach. First, we apply an MTL

approach which tries to unveil low-dimensional common predictive structures and
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exploit the relationships among them. Second, we employ a clustering technique

on these informative structures, which is applied on a lower-dimensional space

(Sect. 6.2). This clustering technique is known as spectral clustering (Ng et al., 2002),

and is one of the core assets of our framework. We refer to the emergent regions of

coherent vegetation–climate behaviour as hydro-climatic biomes (Sect. 6.3).

6.2. Materials and methods

6.2.1. Data sets

The large database of global climate and vegetation data that will be used in

the context of our framework is described in detail in Chapter 3 and is mostly

based on satellite and in situ observations. Briefly, the database spans a 30-year

period (1981-2010) at monthly temporal resolution and 1� latitude-longitude spatial

resolution. The most important climatic and environmental drivers of vegetation

are included in this database, namely: (i) land surface temperature, (ii) near-

surface air temperature, (iii) longwave/shortwave surface radiative fluxes, (iv)

precipitation, (v) snow water equivalent, and (vi) soil moisture. To characterise

vegetation, we use the NDVI data set (Tucker et al., 2005). The target variable

of our machine-learning framework is the de-trended seasonal NDVI anomalies,

calculated as described in Chapter 3, while all other data sets are used as predictor

variables. In addition, a series of ‘high-level features’ has been hand-crafted from

the raw time series of predictors, and used as well as predictor variables. As such,

our set of predictive features includes not just the raw data time series of each

climate/environmental variable, but also: seasonal anomalies, de-trended seasonal

anomalies, lagged variables, past cumulative variables, and extreme indices – see

Chapter 3. The use of these non-linear features greatly improved causal inference

and help characterise non-linear relationships between climate and vegetation

dynamics in our recent work (see Chapter 4). For a further discussion about the

importance of the higher-level representation adopted in our framework, we refer

the reader to Sect. 6.3.1.

6.2.2. Pixel-based approach: single-task learning

In our study, we use information on climate and vegetation variables at spe-

cific time points and locations. Formally, we consider a spatio-temporal data

set D � tpXp1q,yp1qq, pXp2q,yp2qq, ..., pXpLq,ypLqqu, with L being the number of

different locations and pXplq,yplqq the tuple of the predictor variables and the

target variable of each location l. We denote Dplq � tpxplqi , yplqi qui�1,...,N the ob-

servations of a location l, while the input feature vectors are denoted as a matrix

Xplq � rxplq1 , ...,x
plq
N sT and the corresponding target values as yplq � ryplq1 , ..., y

plq
N sT .
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Specifically, Xplq P RN�d is the matrix of the predictor variables with d being the

number of predictors, and yplq P RN the response time series (i.e., NDVI seasonal

de-trended anomalies), where N denotes the number of discrete timestamps, i.e.,

the length of the time series. In this setting, a straightforward approach is to

tackle each regression problem in each location l separately, i.e., by independently

training one model for each location (see Chapter 4 and Papagiannopoulou et al.

(2017a)). That way, for every pixel, only the data of that particular location l is

used (pXplq,yplqq, l � 1, ..., L), not attempting to utilize the data from other regions

where the target variable might have a similar response to the predictors.

We can start by defining regions of similar climate–vegetation dynamics with the

most naive approach: the relationship between climate and vegetation can be

caught by the weights of a regression model, i.e., the regression coefficients of the

predictor variables. Specifically, if one defines a multiple linear regression model

for a location l, the model for the lth location is given by f plqpxplqi q � wplqx
plq
i ,

with x
plq
i being the input data (i.e., one observation) and wplq being the weight

vector learned for particular location l, which describes the importance of each

input variable for the target – see Fig. 6.1a. Even though one can assume that

these weight vectors can be similar for regions in which the response of vegetation

to climate is similar, the information from these other regions is not used in the

prediction (i.e. each regression is applied at each individual pixel separately). This

is despite the fact that these locations could be grouped (e.g., based on a similarity

measure of the weight vectors) into wider regions that one may assume that share

common climate–vegetation dynamics. Note also that the information captured by

each weight vector wplq should be sufficient, which means that it is necessary for

the models to have a good generalization performance.

6.2.3. Exploiting spatial relationships: multi-task learning

Unlike the single-task learning models that only take the data of each particular

location into account, MTL models extract information of data sets with similar

characteristics from other locations. As such, they can be expected to generalize

better and give a higher predictive performance on unseen data. Specifically, by

using the MTL approach, the generalization of the model improves if the data set

of each task is expanded by observations from highly related tasks. This is crucial,

especially in cases where the number of training instances per task is limited.

The basic idea that underlines the MTL modelling approach is the learning of a

separate model for each task and not a unique model trained on a concatenated

set of observations of all tasks. Note that in our spatio-temporal data sets, each

location can be seen as a different task, and neighbouring (or distant) locations with

similar climate-vegetation interactions will tend to have similar (yet not identical)

behaviour. In light of this observation, MTL seems to be a quite natural modelling

approach to explore the interaction between climate and vegetation in different

locations.
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(a) (b)

Figure 6.1: Graphical representation of the two learning approaches. (a) A single-
task learning approach in which each pixel is treated separately. For each pixel l there
is an input data set Xplq P RN�d, with N being the number of observations and d
being the number of predictors, and a target vector yplq P RN . The vector wplq P Rd

represents the weight vector learned by the model. (b) A multi-task learning approach
in which the models of L tasks are simultaneously learned. The input of the method
is the data sets Xp1q,Xp2q, ...,XpLq of all locations (i.e., all global land pixels). The
corresponding target vectors are denoted with yp1q,yp2q, ...,ypLq. The weight matrix
rwp1q,wp2q, ...,wpLqs P Rd�L contains the weight vectors for all tasks.

The idea of MTL is not new (Baxter, 1997; Caruana, 1997; Baxter et al., 2000), and

it has been applied in many machine learning applications in medical sciences (Bi

et al., 2008; Zhang et al., 2012) and computer vision (Zhang et al., 2014). It has

also been used in climate science to improve the way multiple Earth System Models

(ESMs) outputs are combined, by treating the locations as different tasks. In these

studies, the idea is that in neighbouring locations (pixels which are close to each

other), similar ESMs tend to have similar performance (Subbian and Banerjee,

2013; McQuade and Monteleoni, 2013). A recent study proposed a hierarchy of

tasks, in which at a first level, tasks of each location are trained into an MTL

setting, while at a second level, tasks of each variable are sharing information

(Gonçalves et al., 2017). In addition, for modelling spatio-temporal data, Xu

et al. (2016) introduced an MTL framework in which local models share a common

representation based on the spatial autocorrelation. Although this kind of modelling

is becoming more common in climate science, it has not been combined (to the

best of our knowledge) with clustering approaches in the context of mapping land

cover nor climate–vegetation dynamics.

In this chapter, we focus on MTL methods that can discover the relationship

between different tasks (locations) and recover strong predictive structures of the

vegetation response to climate. These are then used to conform hydro-climatic

biomes, i.e., regions of coherent vegetation behaviour with respect to climate

variability (see Sect. 6.3.4). To this end, we use the same notation as before by

denoting Xplq P RN�d as input data matrix of the predictor variables, yplq P RN as

the target vector for each location l and wplq P Rd in which each value corresponds
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to a weight. We define as rwp1q,wp2q, ...,wpLqs P Rd�L the weight matrix of all

locations such that the wplq vector is the lth column of the rwp1q,wp2q, ...,wpLqs
matrix - see a graphical representation of the notation in Fig. 6.1b. Given a loss

function L (e.g., the squared error loss), the multi-task minimization problem is

formulated as:

min
wp1q,..,wpLq

Ļ

l�1

Ņ

i�1

Lpwplqx
plq
i , y

plq
i q � Ωpwp1q, ...,wpLqq (6.1)

where Ωpwp1q, ...,wpLqq is a factor which controls the relatedness among the tasks.

In our setting, we assume that there is no prior knowledge about the relationship

of the tasks (locations) and we aim to apply a method that can discover these

relationships.

In literature, there are many MTL methods that are trying to do two things

simultaneously: learn a weight matrix rwp1q,wp2q, ...,wpLqs and another matrix

which captures the task relationships simultaneously (Ando and Zhang, 2005; Chen

et al., 2009; Zhou et al., 2011). In real applications, there are scenarios where the

tasks of an MTL problem follow a specific structure, i.e., some tasks are more

related whereas some others are unrelated. In order to identify this group structure,

researchers have developed various methods which have been referred to as clustered

multi-task learning (CMTL) methods (Zhou et al., 2011). For instance, Xue et al.

(2007) proposed a method which uses a Dirichlet process-based statistical model

to identify similarities between related tasks, while Jacob et al. (2009) introduced

a framework which identifies groups of tasks and performs the learning at once.

In the same direction, Wang et al. (2009) used an inter-task regularization term

to take into consideration tasks which have been grouped in the same cluster in a

semi-supervised setting. More recently, Barzilai and Crammer (2015) suggested

a method that assigns explicitly each task to a specific cluster, building a single

model for each task by using linear classifiers that are combinations of some basis.

An alternative approach has been proposed by Zhou et al. (2011), in which the

structure of the task relatedness is unknown and is learned during the training

phase. Interestingly, when case-specific conditions are fulfilled, this method is

equivalent to the method by Ando and Zhang (2005), known as the Alternative

Structure Optimization (ASO), which belongs to the category of MTL methods that

assume the existence of a shared low-dimensional representation among the tasks.

The name of the method indicates that an alternating optimization procedure is

involved during the learning process, since the weight matrix and the matrix that

captures the shared low-dimensional representation are learned simultaneously.

Typically, in these procedures, the optimization of each part is separately performed,

while the other part remains fixed. In our work, we apply the ASO method due

to its simplicity and the fact that it does not need a lot of iterations to capture

the information about the task relatedness that is needed. This is crucial for our
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application, since the large size of the global database we use, puts severe limitations

to the choice of method. Another aspect is that by learning this low-dimensional

representation we can have a visual inspection of the ‘most predictive common

structures’ for each region. In the following section we explain in detail the ASO

method used in our setting.

6.2.4. Learning predictive structures from multiple tasks

The ASO algorithm proposed by Ando and Zhang (2005) learns common predictive

structures from multiple related tasks that are assumed to share a low-dimensional

feature space. Specifically, by applying this method, one learns one model function

for each individual task and the learned weight vector is decomposed into two parts:

(a) a high-dimensional space, and (b) a shared low-dimensional space based on a

feature map learned during the process. This feature map is a matrix which serves

as a link between a high-dimensional space and a low-dimensional space. In our

case, L predictor functions tf plquLl�1 are simultaneously learned by exploiting the

shared feature space that underlines all tasks. This low-dimensional feature space

is expressed in a simple linear form of a low-dimensional feature map Θ across the

L tasks. Mathematically, the function f plq can be written as:

f plqpxiq � wplqx
plq
i � uplqxplqi � vplqΘxplqi (6.2)

with Θ P Rh�d being a parameter matrix with orthonormal row vectors, i.e.,

ΘΘT � I, where h is the dimensionality of the shared feature space, and wplq,uplq

and vplq are the weight vectors for the full feature space, the high-dimensional

one (initial dimension d), and the shared low-dimensional one (based on the h

parameter), respectively. As mentioned before, the ASO method is equivalent to

the CMTL method (Zhou et al., 2011), under a specific condition: the parameter

k, which symbolizes the number of clusters in the CMTL approach, is equal to

the parameter h of the ASO method. This condition determines the number of

clusters that should be used in the clustering phase of our framework, because

the objective of ASO is optimized based on the value of the parameter h. We

reconsider this equivalence in Sect. 6.3.3, where we discuss about the number of

clusters that should be identified based on our analysis.

Formally, ASO can be formulated as the following optimization problem:

min
twplq,vplqu,ΘΘT�I

Ļ

l�1

� Ņ

i�1

Lpwplqx
plq
i , y

plq
i q � λplq

∥∥∥uplq∥∥∥2
2



(6.3)

with
∥∥uplq∥∥2

2
being the regularization term puplq � wplq � ΘTvplqq that controls

the task relatedness among L tasks, pxplqi , yplqi q being the input vector and the

corresponding target value of the ith observation in a particular location l, and

86



§6.2. Materials and methods

λplq being a predefined parameter – see Fig. 6.2 for the graphical representation of

the notation. During the learning process the weight matrix rwp1q,wp2q, ...,wpLqs
and the matrix Θ, which captures the shared low-dimensional representation, are

learned simultaneously. The regularization term
∥∥uplq∥∥2

2
, based on the value of

the parameter λ, penalizes the differences between the weights on the initial high-

dimensional space and the weights on the low-dimensional space parameterized by

Θ.

There are several ways of solving the optimization problem in Eq. (6.3) (Ando

and Zhang, 2005). Our main purpose is to extract the shared feature space Θ in

order to apply a clustering on the low-dimensional feature space. In this feature

space, locations with similar predictive structures will be grouped into the same

broader region. For this reason, we adopt the Singular Value Decomposition (SVD)-

based ASO algorithm, proposed by Ando and Zhang (2005), which achieves good

performance even in the first iteration of the method. As mentioned before, this is

crucial to our application, given the large number of tasks and the high-dimensional

data sets. The steps of the SVD-based ASO are presented in Algorithm 1.

Algorithm 1 SVD-ASO

Input: training data Dplq � tpxplqi , yplqi qui�1,...,N , where l � 1, ..., L
Parameters: h and λ � tλp1q, ..., λpLqu
Output: Θ P Rh�d and V � rvp1q, ...,vpLqsT P RL�h
Initialize: wplq � 0, l � 1, ..., L, and Θ to random
repeat

for l � 1 to L do
with fixed Θ and vplq � Θwplq, solve the optimization problem of Eq. (6.3)
for uplq:
argminuplq

°N
i�1 Lpuplqxplqi � pvplqΘqxplqi , yplqi q � λplq

∥∥uplq∥∥2
2

wplq � uplq �ΘTvplq

end for
Apply an SVD decomposition on W � r

?
λp1qwp1q, ...,

?
λpLqwpLqs:

W � V1DV2
T (with diagonals of D in descending order)

Θ � V1
T r: h, :s // update Θ to the first h rows of V1

T

until convergence

The SVD-based ASO method can be interpreted as a dimensionality reduction

technique applied to the model space (i.e., weights). It should be stressed here

that this method must not be confused with PCA, which is usually employed

on the data space (input space of predictors) (Metzger et al., 2012; Ivits et al.,

2014). The goal of the ASO method is to detect the principal components of the

parameter matrix, while PCA identifies the principal components of the input

data X. This goal can be achieved by considering the models of multiple tasks as

samples of their own distribution. Therefore, these samples can only be formed

by using an MTL approach, in which there is access to the models from multiple
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Figure 6.2: Graphical representation of the ASO method. The input of the method
is the data sets Xp1q,Xp2q, ...,XpLq of all locations. The corresponding target vectors
are denoted with yp1q,yp2q, ...,ypLq. The weight vector wplq P Rd of the full space is
decomposed in two parts; to the weight vector uplq P Rd of the high-dimensional space
and the weight vector vplq P Rh of the low-dimensional one. The low-dimensional feature
map ΘT P Rd�h is common for all the tasks.

learning tasks. Moreover, in our work, we explicitly consider the climatic variables

as predictors and the vegetation variable as target variable, and we learn the

relationship between them in a supervised setting. As such, the regions that we

define rely on the relationship between climate and vegetation in a prediction

setting, and the clustering is calculated based on similarity of this relationship

(i.e. the model coefficients for different locations), see Sect. 6.2.5 for more details.

As such, we learn relationships between climate and vegetation in a supervised

setting, whereas PCA-based methods (Metzger et al., 2012; Ivits et al., 2014) are

fully unsupervised. In our study the SVD decomposition is used as part of the

optimization algorithm, thus in a supervised setting. In this setting, the model

weights are optimized based on a given training set. Therefore, the discovered

structures are obtained during the training process.

To clarify the notation used in the ASO method, we intuitively explain the symbol-

ization of the method in relation to our specific setting: the problem of detecting

locations with similar climate–vegetation dynamics. As mentioned above (Sect. 6.2.2

and 6.2.3), the input features that constitute the Xplq P RN�d matrix consist of

the climatic predictor variables, i.e., the extreme indices, lagged variables, etc.,

calculated based on raw climatic time series of a certain location l. The dimensions

N and d correspond to the number of observations, i.e., the length of the time

series and the number of predictor variables, respectively. The target variable for a
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particular location l, which is the NDVI anomalies, is symbolized with yplq P RN .

As such, an observation of a certain location l at a particular timestamp i is denoted

as a pair pxplqi , yplqi q. The goal of the ASO method is to learn the weight matrix

rwp1q,wp2q, ...,wpLqs, i.e., a single weight vectorwplq for each location l. This weight

vector wplq is able to capture the relationship between the predictor variables and

the target, i.e., the climatic variables and the NDVI anomalies. Therefore, climatic

predictors that are more important for vegetation anomalies correspond to higher

absolute values in the weight vector wplq. As a result, locations with similar weights

are considered as regions where vegetation responds to climate in a similar way.

As described in a previous paragraph of this section, the ASO method assumes

that the weight vectors wplq consist of two parts the uplq and the vplqΘ. These

two parts are learned simultaneously in Algorithm 1 in an alternating fashion. The

first part, i.e., the uplq P Rd belongs to the high-dimensional space, the initial one,

which is equal to d. This part expresses the location-specific part of the weight

vector, i.e., the deviation of each location’s weight vector from the weights learned

in a lower dimensional space. The second part consists of the matrix Θ P Rh�d

that represents the map from the initial dimension d to the lower dimension h and

the weight vector vplq P Rh. The map matrix Θ is common for all the locations

(tasks) and can be learned across them due to the MTL approach. The weight

vector vplq represents the projection of the initial weights to a low-dimensional

space h. Intuitively, this second part of the weight decomposition expresses the

coarsest and most important part of weights, since it detects the most important

structures through the map matrix Θ. The matrix V � rvp1q, ...,vpLqsT P RL�h

denotes the representation of the models in the low-dimensional space h for the L

locations.

Note that the ASO method can be extended into a non-linear (kernelized) version,

see more details in the original paper (Ando and Zhang, 2005). Although this

non-linear extension of the method fits well our setting, we preferred to stick to a

simple linear approach since our preliminary results with the kernelized version

showed a marginal or no improvement (depending on the region) in predictive

performance. This result can be explained by the fact that kernel parameters

should be carefully fine-tuned. Tuning is a computationally intensive process and

cannot easily be applied in our large data set.

6.2.5. Land classification: clustering highly-predictive struc-

tures

Clustering in machine learning is the task of grouping a set of samples in such a

way that those samples that belong to the same group (cluster) are more similar

with respect to a specific criterion than to samples that belong to other groups.

Clustering techniques are usually based on a distance (or similarity) measure that is

calculated among the samples and/or group of samples. There are several clustering
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approaches and an in-depth review can be found in Xu and Tian (2015).

It is known that in high-dimensional spaces, distance measures are not able to

capture well differences between pairs of samples, thus clustering algorithms tend

to perform better in lower dimensional spaces. In our setting, we learn the common

feature map Θ P Rh�d and the V � rvp1q, ...,vpLqsT P RL�h matrix, which is the

representation of the models in this low-dimensional space, using the SVD-ASO

method – see Sect. 6.2.4. The V matrix captures the information of the similar

predictive structures among all the tasks, so similar tasks are closer in this low

dimensional space and as a consequence, they have a similar representation (i.e.,

similar weights) in this matrix. That way, the clustering techniques based on

distance calculations are applied on the more expressive low-dimensional space,

resulting in a better performance. As it has been discussed in Chapter 4, global

climate–vegetation relationships are complex and non-linear. Here, if the V

representation is expressive enough, the clustering method can group together

locations with similar models, i.e., locations in which vegetation responds to

climate in a similar way. Thus, it is first necessary to evaluate the quality of the

learned matrix V. The most straightforward way to do so is by measuring the

predictive performance of the MTL model in terms of, e.g., R2. If the predictive

power of the model is strong, we can conclude that the V matrix is able to well-

capture the relationships of each task with the highly predictive structures. So,

given that the V representation is sufficiently learned from the data, we can apply

any kind of clustering algorithm on the low-dimensional representation of matrix

V. This approach is also known as spectral clustering, due to the fact that the

clustering algorithm is applied on a reduced feature space, making the clustering

results more robust.

In our application, we use a hierarchical agglomerative clustering approach (Ward,

1963) where the number of clusters is not predefined. In the hierarchical clustering

approach, the result is usually depicted as a dendrogram in which the leaves

represent the observations and the inner nodes correspond to the data clusters.

The dendrogram branches are proportionally long to the value of the intergroup

dissimilarity. By defining this hierarchical form of the clustering result, one can

define the number of clusters by cutting down vertically (or horizontally, depending

on the view) the dendrogram in a point where the dissimilarity between the clusters

is high and therefore the branches are longer – see Sect. 6.3.3 for the choice of the

optimum number of clusters in our analysis.

6.2.6. Experimental setup

In all the experiments, we use as predictors all the climatic data sets and the

features that we have constructed from them, as well as the 12-lagged values of

the target variable. A total number of 3,209 predictor variables is included, i.e.,

d � 3, 209 in our setting. These variables constitute the input to our framework,
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i.e., the Xplq, l � 1, ..., L data sets. As target variable, we use the NDVI seasonal

anomalies, denoted as yplq, l � 1, ..., L for each location. We examine 13,072 land

pixels where each pixel constitutes a single task in our MTL setting, i.e., L �
13,072. The data set of each single task consists of 360 monthly observations, i.e.,

N � 360.

For the STL modelling, evaluated for comparison, we use ridge regression for

each location independently, as discussed in Chapter 2 and 4. The regularization

parameter λ is tuned using a separate validation set. Note that by splitting the

original data set in three parts (1) training set, (2) validation set, and (3) test set,

we tune the parameters in a set of observations (validation set) that are not included

in the final test set and achieve a fair evaluation of the model performance. The

optimization problems of the SVD-ASO algorithm are solved by using the Limited-

memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimization algorithm.

6.3. Results and discussion

6.3.1. Importance of a higher-level representation of features

To illustrate the non-linear response of vegetation and explain our choice to

use a high-level feature representation in our framework, we compare the model

performance with and without the use of this high-level representation. Figure 6.3a

shows the predictive performance of the ASO-MTL method when the raw variables

as well as the corresponding six-lagged values are included in the model, i.e.,

the cumulative variables and the extreme indices are not included as predictors.

Figure 6.3b visualizes the difference in predictive performance of the ASO-MTL

model with and without the cumulative variables and the extreme indices as

predictors. As one can observe, in regions such as Europe, North America, southern

and northern parts of Asia and parts of South America, the model performance

substantially decreases if these higher-level features are not used in the data

representation. In these regions, more than 10% of the variability in NDVI anomalies

is explained by this more complex (non-linear) representation, illustrating the non-

linear nature of the relationship between climate and vegetation dynamics.

6.3.2. Single- versus multi-task learning model

In a second experiment, we compare the predictive performance of the STL model

versus the MTL model. For the STL modelling, ridge regression is used. For the

MTL modelling, we apply the ASO-MTL model (Ando and Zhang, 2005) described

in Sect. 6.2. We use a separate validation set to tune the regularization parameter
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Figure 6.3: Comparison of the predictive performance in terms of R2 of the model
which does not include the cumulative variables and the extreme indices with the model
which is trained with the full collection of higher-level features – Chapter 3. (a) Explained
variance (R2) of NDVI anomalies based on the raw data of the climatic variables as well
as their six-lagged values (cumulative variables and the extreme indices are not included
as predictors to the model). (b) Difference in terms of R2 between the model without
cumulative and extreme predictors and the model which includes all the higher-level
feature representation (see Fig. 6.4 in the next section).

λ for both approaches. For the STL approach, we tune the λ parameter for each

location (task) separately, while for the MTL approach we use the same λ value

for all the tasks, taking into account the average performance across these tasks.

For the ASO-MTL method, we have also experimented with the value of the h

parameter, which is the dimensionality of the shared feature space – see Sect. 6.3.3

for more details about the influence of this parameter on the clustering results.

Finally, we evaluate the performance of both approaches in terms of R2, as in

Chapter 4. Figure 6.4 depicts the result of our comparison. Figure 6.4a shows the

R2 of the ASO-MTL model while Fig. 6.4b highlights the difference in predictive

performance of the MTL model in comparison with the STL model. As shown in

Fig. 6.4b, in almost all regions of the world, the predictive performance increases

substantially compared to the STL approach. In fact, over extensive regions (40% of

the study area), more than 5% of the variability in NDVI is explained by the spatial

structure of the data. In statistical terms, this implies the existence of a hidden

structure between the different locations (tasks), which is informative with respect

to our target variable. The dotted regions in Fig. 6.4b correspond to areas where

the MTL model significantly outperforms the STL models based on the Diebold-

Mariano statistical test, which compares model predictions (Diebold, 2015b). For

the statistical test, we use the False Discovery Rate (Benjamini and Hochberg,

1995) method to correct the p-values at level 0.05 due to the multiple-hypothesis

testing setting.

Additionally, Fig. 6.4a shows that more than 40% of the mean monthly vegetation

dynamics can be explained by climate variability in some regions. In particular, in

regions such as Australia, Africa and Central and North America the predictive

power of the model is stronger in terms of R2, following the same pattern and

scoring similar R2 values as the random forest approach by Papagiannopoulou et al.

92



§6.3. Results and discussion

(2017a) (Chapter 4). To deepen on the performance difference between the two

approaches, the R2 scores are presented as two different distributions in Fig. 6.4c.

The blue histogram corresponds to the distribution of the R2 scores of the STL

approach, while the orange one corresponds to the distribution of the R2 scores

of the MTL approach. As can be observed, the distribution of the R2 scores is

shifted to the right for the MTL, meaning that values are typically greater than

those derived from the STL approach. Moreover, the skew towards the left in

the blue histogram, with values close to zero, is an indication of the near-zero

performance of the STL models in many locations. The Wilcoxon paired statistical

test (Demšar, 2006) confirms that the results of the two approaches are overall

statistically different (p-value   10�9).

Since we are ultimately interested in investigating regions of coherent impact of

climate variability on vegetation dynamics, we also evaluate the ability of the MTL

model to detect Granger-causal effects of climate on vegetation. For a detailed

description of the Granger causality modelling framework, see Chapter 4. This

point is crucial to understand the extent to which the climatic predictors carry

additional information about the dynamics in vegetation that is not contained in

the past vegetation signal itself. The results of applying the Granger causality

analysis using MTL modelling are shown in Figure 6.4d, which illustrates results

of the full MTL model compared to the baseline MTL model. This baseline

model only uses previous values of NDVI to predict monthly NDVI anomalies

(Chapter 4). In this figure, it becomes clear that climate dynamics Granger-cause

monthly vegetation anomalies in most regions of the world, and the ability of

the MTL model to detect deterministic relationships is evidenced. This is also

confirmed by the Wilcoxon paired statistical test (p-value   10�9). On the other

hand, the ability of the STL model to detect Granger-causal relationships is rather

limited compared to that of the MTL model. Figure 6.4e depicts the result of the

comparison, where in almost all regions the quantification of Granger causality

of the MTL approach increases substantially compared to the one of the STL

approach. Analogous to Fig. 6.4c, Fig. 6.4f compares the distributions of Granger

causality (i.e., the difference in predictive performance in terms of R2 between

the full and the baseline model) between the STL and MTL approach. Once

again, the blue histogram corresponds to the distribution of Granger causality

retrieved using the STL approach, while the orange corresponds to the results

of the MTL approach. The shift to the right of the orange histogram shows the

larger ability of the MTL model to reveal Granger-causality between climate and

vegetation. Similar to the previous comparison, the Wilcoxon paired statistical

test (Demšar, 2006) confirms that the results of the two approaches are overall

statistically different (p-value   10�9). In summary, these findings highlight the

potential of using the low-dimensional feature representation learned from the data

to fulfill our final objective, which is the detection of vegetated areas holding a

similar response to climate via a clustering approach.
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Figure 6.4: Comparison of the predictive performance between the STL and the MTL
approaches. (a) Explained variance (R2) of the NDVI monthly anomalies based on the
MTL approach. (b) Difference in terms of R2 between the MTL and the STL approaches;
blue regions indicate a higher performance by the MTL. The dotted regions correspond
to areas where the MTL model significantly outperforms the STL models based on the
Diebold-Mariano statistical test (Diebold, 2015b). (c) Comparison of the distributions of
the R2 scores in the STL and in the MTL setting; the blue histogram corresponds to the
STL, and the orange one to the MTL approach. (d) Quantification of Granger causality
for the MTL approach, i.e., improvement in terms of R2 by the full MTL model with
respect to the R2 of the baseline MTL model that uses only past values of NDVI anomalies
as predictors; positive values indicate Granger causality (Chapter 4). (e) Difference in
terms of Granger causality between the MTL and the STL approaches; blue regions
indicate a higher performance by the MTL. (f) Comparison of the distributions of the
Granger causality in the STL and in the MTL setting; the blue histogram corresponds to
the STL, and the orange one to the MTL approach.
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6.3.3. Appropriate number of hydro-climatic biomes

As described in Sect. 6.2.5, there are multiple approaches that can be used to define

the number of classes in a clustering problem. In our framework, we define the

number of clusters by using a data-driven approach. In our analysis, we choose not

to use information from any predefined number of vegetation and/or climate classes

existing in the literature, since the ultimate goal is to identify land classes fully

independently, and only based on the observed relationship between vegetation

and climate. To this end, we rely on the definition of the number of clusters on

the predictive performance of the MTL model. In Sect. 6.2.3, it is stated that the

ASO-MTL approach shares the objective function of the CMTL method. This

only holds if the number of clusters (which is a predefined parameter in the CMTL

method) is equal to the value of the parameter h in the ASO-MTL method, which

is the dimensionality of the common feature space. In light of this equivalence

relation, we experimented with a wide range of values for h in a validation set,

aiming to select the value of h that maximises the model performance in terms of

R2. Figure 6.5 shows the median of the predictive performance (R2) for all tasks
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Figure 6.5: Assessing the number of biomes: Median of the predictive performance of
the ASO-MTL model in terms of R2 when the value of the h parameter varies. For h � 11
the model scores the maximum value of R2. However, the differences in the predictive
performance for h � 6, r...s, 15 are marginal.

when the value of the parameter h varies. Note that for these experiments, the

λ parameters remain constant in order to assess only the effect of parameter h

on the model performance. As one can observe in Fig. 6.5, the maximum median

value R2 is achieved when h = 11. However, the differences in the predictive

performance for h � 6, .., 15 are marginal. Therefore, we can conclude that the

method gives robust results, as the strongest predictive structures are captured

for the first most important components given by the SVD (see more details in
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Sect 6.3.5). As such, the number of biomes we use in the clustering phase equals to

11, since the data-driven methodology with the criterion of the maximum predictive

performance indicates this particular number of biomes.

The results of this hierarchical clustering (with Euclidean distance) can be visualised

in a dendrogram representation. Figure 6.6b depicts the dendrogram formed by

our framework, with the vertical cutting line separating the data into 11 clusters.

This representation allows for a visual inspection of whether the choice of the 11

clusters is in line with the dissimilarities existing in the observations. As one can

observe, our choice is reasonable, since the clusters at this point are quite dissimilar,

based on the Euclidean distance metric, compared to hypothesized cutting lines

either before or after this point. In other words, the branches of the dendrogram

are already quite long at 11 clusters, indicating high dissimilarities between the

resulting classes.

6.3.4. Hydro-climatic biomes

The final objective of this study is to uncover the regions in which vegetation

responds in a analogous way to climate anomalies, here referred to as ‘hydro-climatic

biomes’. In the previous section, we investigated the appropriate number of such

regions based on the information contained in our database. Figure 6.6a illustrates

the spatial distribution of the emerging global hydro-climatic biomes. The colours

depicted correspond to those of the clusters in the dendrogram of Fig. 6.6b. Further

analysis of this dendrogram, in combination with the spatial distribution of the

clusters in Fig. 6.6a, shows that our framework can clearly differentiate the bio-

climatic behaviour of northern latitude ecosystems from those in mid- and southern

latitudes. The behaviour of tropical ecoregions is unsurprisingly closer to the

behaviour of sub-tropical ones, while boreal regions sharing the exposure to low

temperature anomalies have a more coherent response to one another, forming

the second main branch of the dendrogram. Bearing in mind the results of the

Granger causality approach by Papagiannopoulou et al. (2017b), described in the

previous chapter (Chapter 5), as well as the prior knowledge on climate and land

use classification, we define the hydro-climatic biomes as follows: (1) Tropical,

(2) Transitional water-driven, (3) Transitional energy-driven, (4) Sub-tropical

energy-driven, (5) Sub-tropical water-driven, (6) Mid-latitude water-driven, (7)

Mid-latitude temperature-driven, (8) Boreal temperature-driven, (9) Boreal water-

driven, (10) Boreal water/temperature-driven, (11) Boreal energy-driven. This

nomenclature is broadly based on latitude and main climatic drivers.

Figure 6.6c shows the main 10 climate regions of the Köppen-Geiger climate classifi-

cation, which is based on precipitation and temperature, and their seasonality. On

the other hand, the International Geosphere-Biosphere Program (IGBP) (Loveland

and Belward, 1997) land cover classification, depicted in Fig. 6.6d, is mostly based
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Figure 6.6: Comparison of the different land surface classification schemes. (a) Hydro-
climatic biomes derived from the proposed framework. The region colours correspond
to the colours of the clusters that are depicted in the dendrogram. (b) Dendrogram
scheme of the clustering result derived by the hierarchical agglomerative clustering on the
low-dimensional representation of our model observations. The length of the dendrogram
branches is a function of the inter-cluster dissimilarities. The vertical cutting line marks
the data split into 11 clusters. The denomination of the different classes is supported by
the results from Papagiannopoulou et al. (2017b), described in Chapter 5. (c) Simplified
Köppen-Geiger climate classification scheme. (d) IGBP land use classification scheme. (e)
Climate space (i.e. mean annual temperature versus precipitation) for our hydro-climatic
biomes in Fig. 6.6a. (f) Same as (e) but for the Köppen-Geiger climate classes in Fig. 6.6c.
(g) Same as (e) but for IGBP in Fig. 6.6d.

on plant functional types. Without the need to prescribe any land cover or climate

classification, and only relying on the spatial coherence in the vegetation response

to climate anomalies, our hydro-climatic biomes in Fig. 6.6a clearly depict some
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Chapter 6. Detecting regions with similar climate-vegetation dynamics

of the main characteristic patterns from these traditional classification schemes.

For instance, the region of North Asia is quite coherent in terms of climate based

on the 10 climate classes shown here (Fig. 6.6c), but quite diverse in terms of

vegetation type (Fig. 6.6d); the hydro-climatic biomes show a clear distinction in

the transition from shrublands (energy-driven) to coniferous forests (energy- and

water-driven). In North America, the more energy-limited ecosystems along the

coasts emerge from the water-driven regions inland, and a latitudinal behaviour is

also depicted, partly reflecting the transition from croplands and grasslands into

temperate and boreal forests. Patterns in the tropics clearly differentiate between

rainforest and transitional savannas, and in South America the different drivers

of vegetation dynamics in the Arc of Deforestation lead to a class change that is

not depicted by neither the Köppen-Geiger climate classification nor the IGBP

land cover classes. Finally, the patterns found for arid and warm semiarid regions

(here referred to as ‘sub-tropical water-driven’), and their transition towards wetter

and more vegetated ecosystems, agree with the expectations based on vegetation

(Fig. 6.6d) and climate (Fig. 6.6c).

The comparison to the Köppen-Geiger and IGBP maps serves only as a general

evaluation or proof of concept for our hydro-climatic biomes map, since in the

end such maps are based on a different rationale, and thus, there is no intent

to ‘outperform’ these classification schemes. However, it can be observed in this

comparison that the hydro-climatic biomes map in Fig. 6.6a combines information

on climate and vegetation zones by illustrating regions where vegetation similarly

interacts with the multi-month dynamics in climatic and environmental conditions.

This conclusion is confirmed by the scatter plots in Figs. 6.6e-g. Figure 6.6e

depicts our hydro-climatic biomes of Fig. 6.6a in climate space of mean annual

temperature against precipitation, while Fig. 6.6f shows the same but for the

Köppen-Geiger climate classes of Fig. 6.6c. In Fig. 6.6f, the five climate classes

are well-separated, since their definition is based on these two climatic variables.

On the other hand, Fig. 6.6g depicts the same information but for the IGBP

map of Fig. 6.6d. In this figure, savannahs, tropics, and shrublands appear again

well clustered. It can be observed that the scatter plot of Fig. 6.6e clearly lie

between the two previous classifications in terms of clustering. Boreal biomes

correspond to cold climate classes, the sub-tropical and mid-latitude water-driven

biomes correspond to arid regions, while the transitional biomes correspond to

the savannas and croplands. The clustering of biomes is also consistent with the

global distribution of key climatic drivers reported in Chapter 5. These common

dynamics are identified by latent structures in our MTL approach. A discussion

about these latent structures is included in the next section (Sect. 6.3.6). Moreover,

we should note that the approach of spectral clustering applied here allows for

a robust result, as small perturbations in the data sets do not affect the overall

clustering result. This conclusion is confirmed by the fact that even in the tropical

region where the uncertainty in the observations is typically larger and the skill of
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the predictions is lower (see Fig. 6.4), the different clusters are separated in a clear

manner. A discussion about the comparison of the three land surface classification

schemes (the hydro-climatic biomes, the Köppen-Geiger climate classification and

the IGBP land use classification based on the predictive structures is presented in

Sect. 6.3.7.

6.3.5. Visualization of different number of hydro-climatic

biomes

In Sect. 6.3.3 we concluded that the method gives robust results, as the strongest

predictive structures are captured for the first most important components. To

visually inspect the spatial distribution of the hydro-climatic biomes given a different

number of regions, we experimented with parameter h. To this end, we ran the

algorithm for h � 9, 10, 11, 12 to check the robustness of the results. The conclusion

of Sect. 6.3.3 is confirmed by Fig. 6.7, where the maps with 9 (Fig. 6.7a), 10

(Fig. 6.7b), 11 (Fig. 6.7c) and 12 (Fig. 6.7d) hydro-climatic biomes are depicted.

In all figures, the tropics, the boreal and the arid regions are well-detected. In

addition, sub-tropical regions and transitional ones are also commonly defined in

all of the aforementioned figures. Differences in the borders of the identified regions

are noticed between temperature-driven areas (e.g., Europe and North America).

In transitional water- and energy-driven regions also there are some differences

in the clusters’ borders. However, these inconsistencies can be explained by the

smoother differences between the climatic and environmental conditions in these

areas.

6.3.6. Visualization of the most important predictive struc-

tures

In Sect. 6.2.5, we describe the steps of the SVD-based ASO algorithm, which learns

a low-dimensional feature representation for our tasks based on the relationships

between them. The learned matrix Θ maps the high-dimensional space to a (lower)

h-dimensional space, storing the loadings of the original weights to the ‘highly

predictive structures’. Thus, the task models are also projected to this shared

lower-dimensional space. This information is stored in the matrix V, on which the

clustering approach is performed. Figure 6.8 presents the values of the tasks in the

first six components of the matrix V. Similar pixel values to the same components

mean similar climate-vegetation dynamics. There are several remarks considering

Fig. 6.8: (1) all the six components are able to distinguish specific regions according

to different criteria such as regions with temperate and dry climate, regions with

cold and dry climate, tropical and dry climate, etc.; (2) pixels which are grouped

into the same region in the final clustering result (Fig. 6.6a) tend to have similar
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(a) (b)

(c) (d)

Figure 6.7: Maps with different number of hydro-climatic biomes. (a) h = 9 (i.e., 9
hydro-climatic biomes) , (b) h = 10, (c) h = 11 (Fig. 6.6a), and (d) h = 12.

values in a particular predictive structure, and (3) the differences in the values

across regions are intense, and in some cases one can recognize the boundaries of

the regions depicted in Fig. 6.6a.

6.3.7. Visualization of the predictive structures with the dif-

ferent land surface classifications

As in Zscheischler et al. (2012), we conduct a dimensionality reduction to the matrix

V which contains the clustering data. We separately present the results for the

Northern and the Southern Hemisphere (ibid.) – see Figs. 6.9 and 6.10, respectively.

The data is projected onto the first two components of the t-SNE method (Maaten

and Hinton, 2008) and visualized based on the hydro-climatic biomes (Fig.6.9a

and 6.10a), the Köppen-Geiger clustering (Köppen, 1936) (Fig.6.9b and 6.10b)

and the IGBP clustering (Loveland and Belward, 1997) (Fig.6.9c and 6.10c). We

use the same color representation as in Fig. 6.6a. That way we can assess if the

learned predictive structures match well the classes of the different classification

schemes.

Considering Fig. 6.9, one can see that the best-formed clusters are depicted in

Fig. 6.9a, as the clustering has been performed on this dataset (as expected).

Figure 6.9c represents the IGBP land use classification; the tropical regions are

well-detected as well as the forest- and the cropland-covered regions. This means

that the learned predictive structures are highly relevant to the vegetation type of

each region. In addition, Fig. 6.9b indicates that the cold, the arid and the tropical
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low   high

Figure 6.8: Visualization of the first six ‘principal components’ of the predictive struc-
tures. The classification of the land surface into the hydro-climatic biomes is based on the
importance of these structures for each location. The color intensity in the map indicates
the value magnitude of each pixel in a particular predictive structure.
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Figure 6.9: Data projection to the first two t-SNE components for the Northern
Hemisphere. Each point represents one pixel of the global grid and it is colored based on
(a) the hydro-climatic biomes, (b) the Köppen-Geiger climate classification, and (c) the
IGBP land use classification. For the color-class mapping see Fig. 6.6.

regions can be well distinguished by the learned structures whereas the temperate

climate is scattered among the others and is thus harder to be identified.

Figure 6.10 depicts the same plots for the Southern Hemisphere. As in Zscheischler

et al. (2012), overall, the classes identified by the various classification schemes

show a worse match than for the Northern Hemisphere. However, Fig. 6.10a shows

that the predictive structures can clearly distinguish the sub-tropical water-driven

region and the transitional energy/water-driven regions as well. In addition, the

Köppen-Geiger climate classes (Fig. 6.10b) of the tropic and the arid regions are

also identified in a certain degree. The IGBP classes, in Fig 6.10c, do not form

clear clusters.
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Figure 6.10: As Fig. 6.9 but for the Southern Hemisphere.

6.4. Conclusion

In this chapter, we introduced a novel framework for identifying regions with

similar biosphere-climate dynamics interplay. Our framework combines a multi-

task learning (MTL) modelling approach and a spectral clustering technique, and it

is applied to the global database of global observational climate records described

in Chapter 3. Comparisons to a typical single-task learning approach, in which

each task (in each location) is analysed separately, indicate that learning about

climate–vegetation relationships in neighbouring, or even remote, locations can

help predict local vegetation dynamics based on climate. Moreover, our approach

is able to detect shared hidden predictive structures among the tasks that enhance

the predictive performance of the models. These predictive structures form the

basis for the clustering algorithm to detect regions where vegetation responds to

climate in a similar way. We demonstrate that, without the need to prescribe any

land cover information, our method is able to identify coherent climate-vegetation

interaction zones that that emerge directly from the spatio-temporal variability in

the data. These zones agree with traditional global classification maps, such as

the Köppen-Geiger climate classification or the IGBP land cover classification. We

refer to these regions as ‘hydro-climatic biomes’. These wide regions can be used

in various applications in geosciences, such as unravelling anomalous relationships

between climate and vegetation dynamics at local scales, defining extreme values of

vegetation response to climate, exploring tipping points (Horion et al., 2016) and

turning points of ecosystem resilience, and benchmarking the dynamic response of

vegetation in Earth system models.
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7 Global vegetation extreme events and

their response to climate variability

In all previous chapters, our aim to infer causal relationships between time series

of continuous measurements, lead to regression settings. However, classification

settings may arise when targeting extreme events, such as heatwaves, droughts or

floods. In this chapter, we conduct an experimental study in the area of investigating

climate-vegetation dynamics as before, where such a classification setting naturally

arises. Specifically, we investigate the relationship between climate and browning

events. This is a practically-relevant setting, because extremes in vegetation can

reveal the vulnerability of ecosystems with respect to climate change. Firstly, a

more precise description of the application domain and the recent literature is

provided (Sect. 7.1). Then, we present the various definitions of vegetation extreme

events (Sect. 7.2.2) and the extended Granger-causality framework for binary target

variables (Sect. 7.2.3). Afterwards, the main results are discussed (Sect. 7.3). These

are preliminary results and represent work in progress.

This chapter is based on the content of:

Papagiannopoulou, C., Miralles, D. G., Demuzere, M., Verhoest, N. E. C., and

Waegeman, W.: Global browning events and their response to climate variability,

in prep.

De Graeve, A. : Detecting climate drivers for vegetation extremes., Master thesis

(tutored by C. Papagiannopoulou), Ghent University, 2018.

7.1. Introduction

Climate extremes have a great impact on terrestrial biomes since they affect different

functionalities of plant life (Hasanuzzaman et al., 2013). Various vegetation types

have different responses under similar climatic conditions, i.e., croplands have a

higher vulnerability to high temperature compared to forests (Larcher et al., 1994).

For instance, if one considers only temperature extremes, one can already observe

severe consequences on the terrestrial ecosystems in Europe which are mostly

covered by agricultural landscapes (Semenov and Shewry, 2011; Deryng et al., 2014).

Such ecosystem impacts can be identified as extreme events in terrestrial biosphere

on the global data streams (e.g., NDVI, fraction of Absorbed Photosynthetically

Active Radiation (fAPAR)) collected by remote sensing observations.

Recent studies on modelling extreme events mostly focus on linking climate ex-

tremes and their effects to biosphere extreme events (Ciais et al., 2005; Kurz et al.,
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2008; Zeng et al., 2009). Some of these studies conduct analyses in limited geo-

graphical regions or focus on specific disturbance factors, such as fires (Forkel et al.,

2012). However, there are other recent works that analyze the climatic drivers of

vegetation at global scale (Karnieli et al., 2010; Kim et al., 2010; Papagiannopoulou

et al., 2017b). Specifically, Liu et al. (2013) defined vegetation extreme events from

NDVI time series obtained by a Box-Cox data transformation and evaluate their

sensitivity to climate by using the slope of linear regression models. Other studies

focused on extreme events have considered linear relationships between environ-

mental variables and have applied correlation and regression analysis (Stöckli and

Vidale, 2004; Hao et al., 2012). However, the linearity assumption might lead to

inconsistent results, since relationships between environmental variables are highly

non-linear (Papagiannopoulou et al., 2017a). In the same context of analyzing

the effect of climate on vegetation, Zscheischler et al. (2013) proposed an extreme

event identification method and analyse the effect of climate extremes on fAPAR

extreme events. Other studies (Rammig et al., 2015; Baumbach et al., 2017) use

coincidence analysis to attribute biosphere extremes. Unlike linear correlation

analysis, which considers the general dependence (i.e., covariance) between the

time series, coincidence analysis focuses on the co-occurrence of events defined in

different variables (Donges et al., 2016).

In this chapter, we focus on defining vegetation extreme events (i.e., browning

events) based on observational data. The proposed definition is based on a generic

land classification method that is applicable in various spatio-temporal data sets

(i.e., relation between climate–vegetation). Therefore, our method is a data-driven

approach that strongly relies on the automated extracted regions, called hydro-

climatic biomes, described in detail in Chapter 6. By using this land classification,

we aim to resolve issues identified in previous works (Zscheischler et al., 2013;

Rammig et al., 2015) that rely on predefined regions without taking into account

the spatial distribution of the Earth observation. For instance, Zscheischler et al.

(2013) focus their work on six predefined regions (i.e., continents) as defined by

the IPCC Special Report. Other studies that apply data-driven methodologies to

define regions with similar characteristics for defining extremes, such as Mahecha

et al. (2017); Guanche Garćıa et al. (2018), use clustering approaches or binning

techniques to group the pixels and form the regions. However, these methods are

based on parameters, such as number of clusters or bins, which should be defined

in advance. Different parameter values lead to different results, making the whole

process rather complicated in practice. Moreover, other previous studies (Nicolai-

Shaw et al., 2017; Baumbach et al., 2017; Liu et al., 2013) apply their methods

at pixel level, without considering information about the locations with similar

characteristics. Taking into account regional information is beneficial in defining

extreme events, with the definition of browning events emerging from the ‘average’

conditions of a specific region.

In addition, we apply the non-linear Granger causality framework, introduced
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in Chapter 4, to identify complex relationships between climate and vegetation

extremes. Specifically, we extend the existing framework in order to model the

effect of climate on vegetation extreme events instead of just investigating the

average response of vegetation to climate (Chapter 4). Moreover, another extension

is the application of our framework at a region scale instead of a per-pixel basis.

In particular, we perform our analysis on the hydro-climatic biomes instead of

just using the previously studied (Papagiannopoulou et al., 2017a,b) pixel-based

modelling approaches. That way, modelling at a region scale leads to more robust

results, since the number of observations increases. To sum up, the contribution

of this chapter is twofold: (i) we propose a new definition of vegetation extreme

events based on the hydro-climatic biomes and (ii) we apply a non-linear Granger

causality framework to investigate the relations between climate and vegetation

extremes. Future extensions of this work will include a detail investigation of

the core climatic variables leading to browning events in different regions of the

world.

7.2. Materials and methods

7.2.1. Database

Our framework is applied on a large database of global climate and vegetation

records. The database mainly consists of satellite and in situ measurements and

spans of 30 years (1981-2010), as described in Chapter 3. The data sets have been

transformed to a common monthly temporal resolution and a spatial resolution

of 1�. In this database, several relevant vegetation drivers have been collected.

Specifically, the main climatic and environmental variables are included: (i) land

surface temperature, (ii) near-surface air temperature, (iii) longwave/shortwave

surface radiative fluxes, (iv) precipitation, (v) snow water equivalent and (vi) soil

moisture. For vegetation, we use NDVI data set (Tucker et al., 2005). In this

chapter, we define as target variable a binary time series in which the value ‘1’

indicates the starting point of an extreme event in vegetation (see Sect. 7.2.2 for

more details). As predictor variables, we define the rest of the collected data sets.

Moreover, we use the same set of manually extracted features from the raw time

series of the climatic variables as defined in Chapter 3.

7.2.2. Defining vegetation extremes

To investigate the effect of the climatic drivers on extremes in vegetation, one

should first detect the extreme events in vegetation based on observational data.

There are several methods proposed in the literature that try to identify patterns

in vegetation data which may be classified as ‘extreme events’. Extreme event, by
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definition, occur only rarely; this means that one should expect a limited number

of occurrences during long time spans. Thus, the presence or the absence of an

extreme event can be defined as a highly imbalanced binary classification problem.

Intuitively, more strict definitions of extreme events will (i) reduce the number

of extreme events and (ii) increase the class imbalance problem. As such, if the

number of extreme events is more limited, analyses are performed in an under-

represented sample, making the modelling process hard or even impossible. On the

other hand, the definition of an extreme event should be based on prior knowledge

about climate, vegetation, the interaction between them and/or other factors.

Hence, the physical interpretation of an extreme event is also a very important

aspect to be considered already when designing the detection method. Therefore,

new definitions of extreme events should take into account a trade-off between

the validity of the analysis and the physical interpretation of the conditions that

characterize an event as an extreme.

A common practice in defining extreme events based on observational data is

the use of a cut-off threshold. The 10th percentile is broadly used as a threshold

in several previous works for defining an extreme event in climate or vegetation

data (Seneviratne et al., 2012; Zscheischler et al., 2013; Baumbach et al., 2017;

Rammig et al., 2015). The 10th percentile can be calculated on a per-pixel basis.

Thus, observations below this threshold are defined as extreme events for this

particular pixel (above this threshold are the non-extreme events), see Fig. 7.1.

The numerical value of the cut-off threshold (e.g., 5th percentile, 10th percentile)

affects the total number of extreme events. That is, lower values of this threshold

(5th percentile) result in less extreme events while higher ones (10th percentile) in

larger number of extremes in the same period. A drawback when considering the

previous definition of an extreme event (i.e., 10th percentile per pixel) is that it

results in the same number of extremes per pixel. To circumvent this problem,

since extremes may be considered to be more likely in some regions than in others,

previous studies (Zscheischler et al., 2013; Mahecha et al., 2017) have considered

the 10th percentile in specific regions instead of considering it at a pixel level. In

this study, we use the hydro-climatic biomes introduced in Chapter 6, which are

regions with similar vegetation response to climate, and were specifically designed

for this purpose. From now on, when the 10th percentile is mentioned, this is the

10th percentile calculated per region.

A limitation of many traditionally used definitions of extremes is that they do

not capture that vegetation needs a certain time to recover. For this reason, here,

an event is considered as extreme only if predefined temporal (e.g., two months)

and/or spatial extreme conditions are also occurring (Liu et al., 2013; Mahecha

et al., 2017). The amount of vegetation coverage is expected to affect the magnitude

of the NDVI anomalies in a particular location. In addition, the calculation of

the percentiles per region is strongly influenced by pixels with lower vegetation

coverage, since in these pixels, the NDVI values tend to be lower. To alleviate this
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Figure 7.1: Threshold-based definition of vegetation extreme events. The green time
series represents the NDVI anomalies for one pixel. The grey line represents the cor-
responding raw NDVI data. The value of the 10th percentile is depicted as threshold.
A value of ‘1’ is assigned to the data points below this threshold and a value of ‘0’ is
assigned to the data points above this threshold. The resulting binary variable is the new
class variable in our setting.

issue, the original NDVI values are corrected by the fractional vegetation coverage

per pixel, based on the data set from MODIS MOD44B vegetation continuous

field (Dimiceli et al., 2015). Specifically, we obtain these coverage factors using the

sum of the fractions of herbaceous plants and tall canopies. Furthermore, only the

pixels with a coverage fraction exceeding a threshold of 0.1 are kept for further

analysis.

Another aspect in defining the extreme events in vegetation is that even when

the seasonality of the raw NDVI data is removed, as described in Chapter 3,

some residual seasonality may be retained in the occurrence of extreme events.

This phenomenon can be explained by the fact that extreme events usually occur

during specific seasons (i.e., summer), affecting also the interpretation of the

Granger causality results. To reduce the effect of seasonality, the de-trended

and de-seasonalized NDVI time series is divided by the standard deviation of the

corresponding month. Moreover, as mentioned above, vegetation needs some time

to respond to climate changes. This progressive adaptation can also be observed in

the presence of autocorrelation on the NDVI anomalies time series.

To sum up, for the construction of the binary target variables for the vegetation

extreme events, we: (i) apply the vegetation coverage filter on the raw NDVI time

series for each pixel, (ii) use a time series decomposition method and we divide

with the standard deviation for each month, (iii) calculate the 10th percentile of
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the anomalies for each region, (iv) take into account extreme events which last at

least two months (low values for more than two consecutive months) and cover at

least two pixels (during the event at least one neighbouring pixel should experience

an extreme event as well) and (v) transform each time series to binary target data

(by keeping only the starting point of an event as positive example). This results

in a binary variable, see Fig. 7.2 for an example of an NDVI anomalies time series

and the starting points of the extreme events detected by our methodology.

7.2.3. Granger causality for binary data

Granger causality (Granger, 1969), as discussed in Chapter 4, is a well-established

framework that has been exploited in climate sciences to detect causal relationships

between time series based on predictability. Assuming we have two time series

x � rx1, x2, ..., xN s and y � ry1, y2, ..., yN s, where N the length of the time series.

If x serves as a cause and y as an effect, one can say that x Granger causes y when

at a specific time point t, the prediction of y at t improves when past information

of x is taken into account. So, in the bivariate case, the forecasts of two models are

compared: (i) the forecast of a baseline model which includes information only for

the history of the time series y and (ii) the forecast of a full model that includes

also information from the past values of the time series x.

In this study, we focus on the problem of Granger causal relationships between

climate and vegetation extremes. Thus, in our case, the time series y that resembles

the effect is a binary variable where: (i) ‘0’ denotes the absence of an extreme

event and (ii) ‘1’ indicates the starting point of an extreme event at timestamp

t. To this end, two classification problems are defined (i.e., one for the baseline

and one for the full model). To compare the prediction performance of the two

models, one should define a performance measure. Since extreme events rarely

occur, the two classes (i.e., 0 and 1) are heavily imbalanced. So, a performance

measure such as the Area Under the Curve (AUC) can be used to deal with this

class imbalance problem. AUC can be easily calculated by considering pairs of

observations where one is positive and the other negative and calculating how

frequently the positive one has the highest (most positive) test result. Denoting as

ŷ, the one-step ahead predicted time series of the original time series y, Granger

causality can be formulated as:

Definition 3. A time series x Granger causes a target time series y if the

predicted performance in terms of AUCpy, ŷq improves when xt�1, xt�2, ..., xt�P
are included in the model as predictors for the forecast of yt, in contrast to including

yt�1, yt�2, ..., yt�P only, where P is the lag-time moving window.

In cases where other climatic factors, which act as additional confounding effects

to our target variable, are not included in the analysis, Granger causality might

lead to incorrect conclusions (Geiger et al., 2015). These factors can be included as

additional variables in the analysis to alleviate this issue. For instance, assuming
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another variable z for which its presence affects the decision whether x Granger-

causes y, the above definition is extended as follows:

Definition 4. A time series x Granger causes a target time series y if the

predicted performance in terms of AUCpy, ŷq improves when xt�1, xt�2, ..., xt�P
are included in the model as predictors for the forecast of yt, in contrast to including

yt�1, yt�2, ..., yt�P and zt�1, zt�2, ..., zt�P only, where P is the lag-time moving

window.

It is straightforward to extend the previous definitions (bivariate, tri-variate cases)

to multi-variate settings. As we mentioned above, in our setting, the target variable

will represent the vegetation extremes at a particular location, while the other

time series (x and z) will be climatic time series at the same location, such as

temperature, soil moisture, etc. In statistical terms, the null hypothesis (H0) of

Granger causality examines whether the two models (i.e., baseline and full model)

have the same predictive performance. On the other way around, the H0 is rejected

if the full model significantly outperforms the baseline model. Typically, in Granger

causality analyses, vector autoregressive models are used and the significance of

the results are assessed based on the model parameters. In other studies, several

statistical tests have been proposed for nested models such as the likelihood-ratio

tests (Mosedale et al., 2006). The limitations of these statistical tests are three

fold: (i) they cannot be directly applied on climate data due to their unrealistic

assumption (i.e., stationarity), (ii) are based on linear models, although causal

relationships in climate science are highly complex and non-linear, and (iii) are

evaluated on in-sample data, which is a practice that typically results in the

overfitting phenomenon.

In Chapter 4, we have proposed an alternative way to measure Granger-causality

between the two models (baseline and full). Specifically, we assess their difference

quantitatively instead of qualitatively. We also proposed to replace linear models

with powerful machine learning algorithms. If the models (i.e., baseline and full)

give more accurate predictions, the conclusions drawn by a Granger causality

analysis are stronger with respect to the examined causal relationships. Since there

are no existing statistical tests that can be computed to evaluate the significance

of the results, we visualize and interpret the differences between the two models in

this quantitative way.

7.2.4. Seasonality and trend in vegetation extreme events

Another aspect that should be taken into account in this kind of modelling ap-

proaches, such as in Granger-causality analyses, is related to the target variable

itself. Unsurprisingly, we noticed that the distribution of the vegetation extremes

in time indicates that many more extremes occur in recent years, which means

that a clear trend appears again in the time series of extreme events, even though

the initial time series was de-trended, see Fig. 7.2. This makes the time series
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Figure 7.2: Time series of the NDVI anomalies of a pixel in North Africa. The red points
(and the dashed vertical lines) indicate the starting points of the vegetation extreme
events (i.e., the ‘1’s in the target variable). Some low-value points are not considered as
extremes, due to the additional criteria about time duration and space extension that may
not be fulfilled in these low-value points. In the recent years more vegetation extreme
events are detected in this particular location.

highly non-stationary. Moreover, also a seasonal cycle typically re-appears, as

one observes more extremes in certain months. Correctly identifying those two

components (trend and seasonality) is essential when inferring causal relationships

between vegetation extremes and climate.

As discussed in Sect. 7.2.3, a baseline model only includes information from the

target time series (i.e., previous timestamps). We both consider the anomalies as

well as their binarized extreme counterparts as features for the baseline model.

However, due to the existence of seasonal cycles and trends when considering

binary time series of extreme vegetation, we also include 12 dummy variables which

indicate the month of the observation and a variable for the year of this observation.

These last two components are necessary because the baseline model should tackle

as good as possible the seasonality and the trend that exists in the time series

of NDVI extremes. As such, the full model extends the baseline model with the

above-mentioned climatic variables.

7.3. Results and discussion

7.3.1. Proposed definition of browning events

Figure 7.3a depicts the bio-climatic regions used in this study for the definition

of the vegetation extreme events as well as the Granger-causality analysis. These
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regions have been defined in Chapter 6 by using a purely data-driven approach.

Based on climate and vegetation observations, locations where vegetation responds

to climate in a similar way are grouped together, forming coherent regions in

terms of bio-climatic conditions. The use of the land classification scheme of

hydro-climatic regions is of great importance for the definition of extreme events

and the attribution analysis, since: (i) the number of observations for each general

bio-climatic condition increases, (ii) by having a complete picture of the bio-climatic

conditions, the definition of extreme events as well as the analysis of the climatic

drivers become more robust, (iii) other land classifications may not fully capture the

climate–vegetation interactions since they are either based on climate or vegetation

data (see e.g., Loveland et al. (2000)), and (iv) vegetation extreme events emerge

by not only taking into account the vegetation observations but also the response

of vegetation to climate. Therefore, in the definition of the vegetation extreme

events the response of vegetation to climate is taken into account and thus, only

anomalous vegetation responses are detected. In addition, from a statistical point of

view, the modelling approach becomes more stable with the use of a large amount

of data. Hence, causal inference based on predictability can lead to stronger

conclusions.

(a)

1

5

8

 10

(b)

Figure 7.3: Hydro-climatic biomes and vegetation extreme frequency. (a) The hydro-
climatic biomes used from the definition of vegetation extreme events (figure based on the
results of Chapter 6). (b) In the lighter-colored regions fewer vegetation extreme events
are detected while in the darker ones more vegetation extreme events are identified based
on the NDVI time series and our detection method in Sect. 7.2.2.

In Fig. 7.3b, the distribution of the vegetation extreme events detected by our

approach is depicted. As it can be observed, the filtering step, which weights the

importance of each pixel for the calculation of the threshold, plays an important

role in the final result. For instance, in the Australian desert there are almost no

extremes since the vegetation is rather limited. On the other hand, most browning

events are concentrated in the North parts of America and Africa. In general, our

results are in line with previously reported ones. Specifically, it is clear that the

distribution of the extremes in the North America is similar to the one shown

by Zscheischler et al. (2013). Also similar patterns are observed in South America,

South Africa, mid latitudes of Asia and East Australia. However, the frequency of

the browning events in North Africa in our resulting map does not agree with the
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findings by Zscheischler et al. (2013). In addition, our vegetation extreme spatial

distribution is similar to the one shown by Liu et al. (2013). However, the main

differences are observed in the Amazon, in west of Europe as well as in the mid

latitudes of Asia. Our approach takes into account the response of vegetation to

climate, and thus it is not based only on vegetation observations as in Liu et al.

(2013).

7.3.2. Comparative study of the different definitions of brown-

ing events

In this section, we compare the distribution of the extreme vegetation events based

on the different definitions that exist in current literature and we elaborate on the

one that we propose. The different constraints, which are applied in each step for

the characterization of the extremes, have a specific effect that is reflected in the

global distribution of the extremes as well as the results of the Granger-causality

analysis (see Sect. 7.3.3). From a physical point of view, it may not appear realistic

to consider an equal frequency of extremes evenly distributed over the world. For

this reason, we do not consider in our study a pixel-based definition of extreme

events. Figure 7.4 depicts the frequencies of the vegetation extreme events defined

based on different approaches. Figure 7.4a shows the distribution of the extremes

calculated at regional scale by just taking the 10th percentile as a threshold. As

one can observe, the global distribution of the extremes is quite homogeneous; yet,

there are regions with high frequency in browning events while there are others

with a lower frequency. Similar patterns are depicted in Figs. 7.4b-d, with Fig. 7.4b

being the distribution of the extremes with spatial extension (the extreme affects

at least one neighbouring pixel with respect to a given pixel) and Fig. 7.4c being

the distribution of the extremes based on the spatio-temporal three-dimensional

cube of Zscheischler et al. (2013) (the extreme affects at least one out of the six

nearest spatio-temporal neighbours of a given pixel). Figure 7.4d depicts the global

distribution of the vegetation extremes calculated as in Fig. 7.4c, with the only

difference that this time 26 nearest neighbours are taken into account in the spatio-

temporal three-dimensional cube. The spatial extension and the consideration of

the spatio-temporal three-dimensional cube do not effect in a large degree the global

distribution of the vegetation extremes compared to the initial simpler definition

of Fig. 7.4a.

On the other hand, the temporal extension of the extreme events does affect the

number of extremes per pixel at global scale. In these definitions, the starting point

of an extreme event is denoted as extreme, while the subsequent extreme values

are not considered as extremes. This means that in the target variable, there are

1’s in the starting points of the extreme events and 0’s in the rest. As such, the

rest of the maps (Figs. 7.4e-h) have a reduced number of extremes compared to the

previous ones. Figure 7.4e illustrates the distribution of the extreme events with
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two-month duration at least, while Fig. 7.4f with three-month duration at least. As

one can observe, the extreme events with duration three months (or more) occur at

limited regions. Thus, even though an analysis of severe browning events would be

of a great interest, the data in this setting are so limited that a further statistical

analysis is not possible. In Fig. 7.4g, we first apply the vegetation filtering and

then we apply the two-month and the one-neighbour constraint. The distribution

is similar to the one of Fig. 7.4e, but the frequency is decreasing. In addition,

extreme events do not occur in arid regions. Finally, Fig. 7.4h illustrates the

distribution of the proposed definition, which is described in the previous section.

In this definition, the standard deviation of each month is taken also into account.

The main effect of this modification compared to the definition of Fig. 7.4g is that

the map in Fig. 7.4h is more homogeneous than the one in Fig. 7.4g.

7.3.3. Detecting Granger-causal relationships between cli-

mate and vegetation extremes

Figure 7.6 shows the results of our analysis. Specifically, we assess the ability of

a non-linear classification model to detect Granger-causal effects of climate on

vegetation. The full model, which includes information for the past of climate,

outperforms the baseline one in most regions. This indicates that climate Granger-

causes vegetation browning events in most of the world. As one can observe in

Fig. 7.6a, in regions such as North America, Europe, China, South Amazon and

subtropical regions in Africa, the performance measure for the full model increases

substantially compared to the performance of the baseline model. In other regions,

such as in Australia, south Africa, South America and middle latitudes, there is

an indication of Granger causality, since in some locations the full model clearly

outperforms the baseline one, although the result is not homogeneous (scattered

result). Although one expects that in neighbouring locations conclusions about

the climate effect on vegetation extreme events should be similar, this is not the

case for the aforementioned regions. So, conclusions about the impact of climate

on the extreme events in vegetation in these regions should be drawn with caution.

The distribution of the AUC scores of the baseline model is also depicted in the

blue histogram of Fig. 7.6b, while the AUC scores of the full model is depicted

in the orange one. From this figure, it becomes clear that the full model scores

higher AUC values than the baseline one for a large number of pixels. Moreover,

the skewness of the orange histogram towards one means that the performance of

the full model tends to be closer to the optimal side.

Extremes in climate have been related to vegetation extreme events (Zscheischler

et al., 2013; Baumbach et al., 2017). This is because extreme climatic conditions

lead to extreme response of vegetation. To this end, in our analysis we incorporate

extreme climate indices to capture extreme climatic conditions. Based on the

previous results, the effect of climate extremes on the ‘average’ vegetation conditions

is important (see Chapter 5). This means that also the influence of climate
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Figure 7.4: Vegetation extreme frequency for the different definitions of vegetation
extremes. (a) Spatial distribution of vegetation extremes based on the 10th percentile for
each region. (b) Spatial distribution of vegetation extremes based on the 10th percentile for
each region with spatial extension (the extreme affects at least one neighbouring pixel to
a given pixel). (c) Spatial distribution of vegetation extremes based on the 10th percentile
for each region and on the spatio-temporal three-dimensional cube of Zscheischler et al.
(2013) (the extreme affects at least one out of the six nearest spatio-temporal neighbours of
a given pixel). (d) Global distribution of the vegetation extremes calculated as in Fig. 7.4c,
with the only difference that this time 26 nearest neighbours are taken into account in the
spatio-temporal three-dimensional cube. (e) Spatial distribution of vegetation extremes
based on the 10th percentile for each region with extreme events of two-month duration
at least. (f) Spatial distribution of vegetation extremes based on the 10th percentile for
each region with extreme events of three-month duration at least. (g) Spatial distribution
of vegetation extremes based on the 10th percentile for each filtered region with extreme
events of two-month temporal duration and two-pixel space coverage at least. (h) Spatial
distribution of vegetation extremes calculated as in (g) by also taking into account the
standard deviation of each month. For future analysis we propose the use of the last
definition of Fig. (h).
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Figure 7.5: Schematic representation of the effect of climate extremes to vegetation
extremes.

extremes provokes the extreme response of vegetation, see Fig. 7.5 for a schematic

representation. Note that other factors, such as rising of CO2 concentrations,

changes in land use, deforestation, grazing, nitrogen deposition, can all affect

vegetation as well, leading to extreme events. This is also indicated in Fig. 7.5,

where vegetation extremes may be caused by other disturbances. However, in

this study these factors are not taken into account. In general our Granger-

causality pattern (Fig. 7.6) is in line with the result of Papagiannopoulou et al.

(2017b), presented in Chapter 5, since the impact of the hydro-climatic extremes

(hydrological, radiation and temperature extremes) on vegetation coincides for

most of the regions. In addition, the non-homogeneity of the affected regions is a

common result in both works, meaning that extreme phenomena might occur at

local scale.
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Figure 7.6: Quantification of Granger causality based on the proposed definition for
the vegetation extreme events. (a) Spatial overview of the quantification of Granger
causality; in the green regions the full model outperforms the baseline model in terms of
the AUC performance measure. (b) Distributions of the AUC scores of the baseline (blue
histogram) and the full model (orange histogram).
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7.3.4. A comparative study of Granger-causality analysis

based on the various extreme definitions

As described in Sect. 7.2.3, Granger-causality analysis is based on the predictive

skill of a full model versus a baseline model. In this section, we investigate the

performance of the baseline models applied on the different binary target variables,

created by the various vegetation extreme definitions. By assessing the predictive

performance of the baseline models, one can reveal basic characteristics of the

target variables. Figure 7.7 depicts the performance of the baseline models in

terms of the AUC performance measure. The order of the maps is the same as in

Fig. 7.4, so each map corresponds to the definition of extreme events described in

Sect. 7.3.2. In general, the baseline models perform well in most of the regions

for all the definitions of the extreme events. Specifically, Figs. 7.7a-d show the

performance of the baseline models on the target variables, calculated based mostly

on spatial information. From these maps, it becomes clear that if one does not

keep only the starting point of an extreme event, the autocorrelation in the target

variable is high and thus, can be detected by the baseline model, leading to a high

predictive performance. This autocorrelation is not present in the definitions of the

maps in Figs. 7.7e-h, and therefore the performance decreases compared to the first

four maps. However, the high predictive performance in arid and semiarid regions

is common for all the maps of Fig. 7.7, e.g., in Australia; this can be explained

by the fact that vegetation data are quite constant in these regions, meaning that

there is also high autocorrelation in the NDVI anomalies. As such, the models are

able to detect this autocorrelation, since the baseline model includes the lagged

values of the NDVI anomalies as additional predictor variables. In addition, in

these regions, there is an increasing trend in the occurrence of vegetation extremes,

see Fig. 7.2. The year of the extreme observations is also included in the baseline

models to represent this trend, affecting their predictive performance. Moreover,

the high predictive performance in the boreal regions can be explained by the

high seasonality in the extreme events, since only in summer months vegetation

extremes can be detected, due to the snow coverage in the rest of the year.

To delve into the form of the different NDVI anomalies time series and the extremes

detected based on the proposed definition of vegetation extreme events, we illustrate

the corresponding time series of a pixel in which the baseline model performs well

and of another pixel in which the baseline performs poorly, see Fig. 7.8. Figure 7.8a

depicts the NDVI anomalies time series of a pixel in Amazonia (where the baseline

models perform rather poor) and Fig. 7.8b shows the NDVI anomalies time series

of a pixel in Central Australia (where the baseline models perform rather well).

The detected (based on the proposed definition) vegetation extreme events are

highlighted in red. From these time series, it is clear that there are two types of

vegetation extreme events: (i) there are extreme events with a slower progress that

last for a certain period, i.e., the amount of vegetation decreases until an extreme
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Figure 7.7: Performance in terms of the AUC measure of the baseline models for the
corresponding definitions of vegetation extreme events described in Fig. 7.4. The baseline
models include as predictors information relevant to vegetation only, i.e., lagged NDVI
values of the anomalies, lagged extreme–non-extreme values, 12 dummy variables (which
encode seasonality), year (which encodes trend).

event is reached and after a while it starts rising again (Fig. 7.8b), and (ii) there

are more sudden extremes, corresponding with sharp peaks in the vegetation data,

i.e., the extreme value is reached suddenly and lasts only for a very short period

(Fig. 7.8a). Hence, the sudden extremes will be more difficult to be predicted and

will be characterized by a lower performance in the baseline model. The longer

lasting extreme events will have the tendency to have a higher score. This is because

these vegetation data and extremes will contain a high autocorrelation, meaning

that the next value is easier to be predicted from the previous value(s). Therefore,

based on the previous discussion, it can be concluded that there is a relationship
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Figure 7.8: Time series of the NDVI anomalies of two pixels in which the baseline
model performs differently. (a) NDVI anomalies time series of a pixel in Amazonia (where
the baseline models perform rather poor). (b) NDVI anomalies time series of a pixel in
Central Australia (where the baseline models perform rather well). The detected (based
on the proposed definition) vegetation extreme events are highlighted in red (and with
the dashed vertical lines).

between the high performance of the baseline model and the seasonality, trend and

autocorrelation in the vegetation data. The regions with a low baseline score are

the regions with sudden and less predictable extremes. Since these sudden peaks in

the data have a low autocorrelation, the models have more difficulties in predicting

these values. These regions can also have a weaker seasonal cycle and not a clear

trend.

In the proposed definition with the filtered NDVI data adjusted with the standard

deviation, the goal is to reduce the effect of the seasonality. However, the results

are very similar to those of the definition with the filtered NDVI data without

the standard deviation adjustment. The corresponding baseline model (Fig. 7.7h)

performs a bit worse compared to the baseline model in Fig. 7.7g, but still the

performance remains high. For instance, in the north there is still a strong

seasonality, since the surface is covered half of the year with snow, while in other

regions with a high score, the autocorrelation in the vegetation data seems to affect

the performance. Also in some regions, there is a trend in the frequency of the

extreme events, which further causes the performance increase.
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Another remark considering the performance of the baseline models in Figs. 7.7e-h

is that it shows a scattered distribution. This result could be explained by our

choice to consider as an extreme event only the starting point of the event. This

choice encodes naturally the fact that only the start of the event is caused by the

climate. For example, the response time of vegetation or some other indirect effects

of vegetation extremes can be possible causes of the low vegetation in subsequent

months. In addition, the temporal and spatial extension of the events are used in

order to remove possible noise in the data.

The performance of the corresponding full models is similar to the baseline ones, i.e.,

in regions where the baseline models perform well, the full models also perform well

and in regions where the baselines perform poorly, the same holds for the full models
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Figure 7.9: Spatial overview of the quantification of Granger causality for each of the
different definitions of vegetation extreme events of Fig. 7.4; in the green regions the full
model outperforms the baseline model in terms of the AUC performance measure.
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(results not shown). The difference between the two models are depicted in Fig. 7.9,

which is the quantification of Granger causality for each of the different definitions

of the extremes. As one can observe, even though the results are again scattered,

especially for the definitions in Figs. 7.9e-h, in most of the pixels the improvement

in predictive performance is larger than 10%, which is a large improvement in

terms of the AUC measure. Therefore, one can conclude that climate drivers have

a substantial influence on the vegetation extremes. However, it would be expected

that the influence would be more distributed into regions where vegetation has

high sensitivity to climate. Interestingly, in Figs. 7.9a-d, the Granger causality is

clustered into similar regions. These are regions where the baseline model performs

rather low and thus, the addition of the climate data improves the performance of

the full model, resulting in a higher Granger causality quantification. The other

way around, in regions where quantification of Granger causality is low, the baseline

model performs already very good (a score larger than 0.8), so there is no room

for further improvement. Undoubtedly, the difference in predictive performance

of the baseline models (in the different regions due to the different characteristics

in vegetation data) influences the interpretation of the Granger-causality analysis.

Therefore, these aspects should be taken into consideration for further study.

7.4. Conclusions

In this chapter, we identified complex relationships between climate and vegetation

extremes by applying the non-linear Granger-causality framework, introduced in

Chapter 4. Specifically, we proposed a new definition of browning events based on

the hydro-climatic biomes (see Chapter 6) and we apply the non-linear Granger

causality framework to investigate the relations between climate and the detected

extreme events. Our results indicate that definitions of the browning events

should take into account a trade-off between the validity of the analysis and the

physical interpretation of the conditions that characterize an event as an extreme.

In addition, our Granger-causality analysis shows that climate Granger causes

browning events in most regions, although the conclusions highly depend on the

definition of an extreme event. Future extensions of this work will include a detailed

investigation of the core climatic variables leading to browning events in different

regions of the world.
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8 Analyzing Granger causality in

climate data with time series

classification methods

In this chapter, we investigate the potential of state-of-the-art time series clas-

sification techniques to enhance causal inference in climate science. Specifically,

we postulated that causal inference in climate science can be further improved

by using automated feature construction methods for time series. We conduct a

comparative experimental study of different types of algorithms on a large test suite

that comprises our unique database from the area of climate–vegetation dynamics.

The results indicate that specialized time series classification methods are able to

improve existing inference procedures. Substantial differences are observed among

the methods that were tested.

This chapter is an edited version of:

Papagiannopoulou, C., Decubber, S., Miralles, D. G., Demuzere, M., Verhoest, N.,

and Waegeman, W.: Analyzing Granger Causality in Climate Data with Time

Series Classification Methods. Joint European Conference on Machine Learning

and Knowledge Discovery in Databases (ECML/PKDD) (3) 2017: 15-26. Presented

at the Applied data science track.

8.1. Introduction

In the general framework that we presented in the previous chapters, we constructed

hand-crafted features based on knowledge that has been described in the climate

literature (e.g. Donat et al. (2013)). These features include lagged variables,

cumulative variables as well as extreme indices. Therefore, we ended up with in

total �360 features extracted from one time series. Our previous results have

shown that incorporating those features in any classical regression or classification

algorithm might lead to a substantial increase in performance (for both the baseline

and the full model). In this section, we investigate whether this feature construction

process can be automated using time series classification methods.
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8.2. From Granger causality to time series classi-

fication

Due to the increased public availability of data sets from various domains, many

novel time series classification algorithms have been proposed in recent years. In a

time series classification task, one tries to classify a time series in a specific class.

Formally, an example in this task is a pair px, yq with m observations x1, ..., xm
(the time series) and discrete class variable y with c possible values. In our setting,

there are two possible class values t0, 1u. The data set D consists of a N examples

with associated class labels, i.e., D � pX,yq � tpx1, y1q, ..., pxN , yN qu. A classifier

is a function or mapping from the space of possible inputs to the class variable

values. Some classifiers give also as output a probability distribution over the class

variable values. Time series classification algorithms involve some processing or

filtering of the time series values prior or during constructing the classifier. Most of

those methods either try to find higher-level features that represent discriminative

patterns or similarity measures that define an appropriate notion of relatedness

between two time series (Liao, 2005; Ding et al., 2008; Bagnall et al., 2017). The

following categories can be distinguished:

(a) Algorithms that use the whole series or the raw data for classification. To this

family of algorithms belong the one nearest neighbour (1-NN) classifier with

different distance measures such as dynamic time warping (DTW) (Sakoe

and Chiba, 1978), which is usually the standard benchmark measure, and

variations of it, the complexity invariant distance (CID) (Batista et al., 2014),

the derivative DTW (Górecki and  Luczak, 2013), the derivative transform

distance (DTD) (Górecki and  Luczak, 2014) and the move-split-merge (MSM)

(Stefan et al., 2013) distance.

(b) Algorithms that are based on sub-intervals of the original time series. They

usually use summary measures of these intervals as features. Typical algo-

rithms in this category are the time series forest (TSF) (Deng et al., 2013), the

time series bag of features (TSBF) (Baydogan et al., 2013) and the learned

pattern similarity (LPS) (Baydogan and Runger, 2016).

(c) Algorithms that are attempting to find informative patterns, called shapelets,

in the data. An informative shapelet is a pattern that helps in distinguishing

the classes by its presence or absence. Representative algorithms of this class

are the fast shapelets (FS) (Rakthanmanon and Keogh, 2013), the shapelet

transform (ST) (Hills et al., 2014) and the learned shapelets (LS) (Grabocka

et al., 2014).

(d) Algorithms that are based on the frequency of the patterns in a time series.

These algorithms build a vocabulary of patterns and form a histogram for each

observation by using this vocabulary. Algorithms, such as the bag of patterns
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(BOP) (Lin et al., 2012), the symbolic aggregate approximation-vector space

model (SAXVSM) (Senin and Malinchik, 2013) and the bag of SFA symbols

(BOSS) (Schäfer, 2015), are based on the idea of a pattern vocabulary.

(e) Finally, there are approaches that combine more than one from the above

techniques, forming ensemble models. A recently proposed algorithm named

collection of transformation ensembles (COTE) combines a large number of

classifiers constructed in the time, frequency, and shapelet transformation

domains.

In our comparative study, we run algorithms from the first four different groups.

The main criteria for including a particular algorithm in our analysis are (1)

availability of source code, (2) running time for the data sets that we consider, and

(3) interpretability of the extracted features. Since we have collected multiple time

series for a large part of the world (3,536 locations in total), the algorithms should

run in a reasonable amount of time. Several algorithms had problems to finish

within three days. We briefly describe the algorithms selected for performance

comparison in our climate data set:

Complexity invariant distance (CID) Batista et al. (2014) defined the con-

cept if complexity invariance in time series. Intuitively, complex time series are

characterized by many peaks and valleys. The distance between pairs of complex

time series is frequently greater than the distance between pairs of simple time

series. A complexity invariant distance measure has been introduced to compen-

sate this phenomenon. Specifically, a distance measure is multiplied by a term

that is calculated based on the sum of squares of the first differences of the time

series. The Euclidean and the DTW distance measures can be used from the CID

algorithm.

Time series forest (TSF) Deng et al. (2013) proposed a random forest approach,

using summary statistics as features. The training of a tree is performed by using

the mean, standard deviation and slope of random intervals for every series as

features, while the classification of a new observation is obtained by a majority

voting over all trees.

Learned pattern similarity (LPS) LPS (Baydogan and Runger, 2016) follows

a tree-based ensemble-learning strategy that is quite fast and has as a goal the

identification of local autopatterns. Specifically, it creates regression trees based on

randomly selected subseries as features and a random attribute as target variable.

Then, the observations are transformed according to the frequency of the values

residing at each terminal node of the trees. The classification is performed by

applying the 1-NN algorithm on the new representation.

Fast shapelets (FS) The FS algorithm (Rakthanmanon and Keogh, 2013) tries

to find informative shapelets in a fast way, avoiding to fully enumerate the whole

search space. It uses the symbolic aggregate approximation (SAX) (Lin et al., 2007)

123



Chapter 8. Granger causality with time series classification methods

to reduce the dimension of the series. Then it forms a vocabulary from the SAX

words and it performs dimensionality reduction on them. After that, it counts

the presence of each word in each class and it scores the words based on their

discriminative power. Finally, it selects the k best SAX words and it maps them

back to the original subseries, i.e., shapelets. The set of the k shapelets is further

assessed based on the information gain criterion (Ye and Keogh, 2011).

Bag of patterns (BOP) BOP (Lin et al., 2012) is an algorithm that also uses

the SAX representation (Lin et al., 2007). BOP takes as input three parameters,

named window size, word length and alphabet size and applies SAX to each window

of the time series forming a word, which represents a pattern. Then, a histogram

is calculated based on the frequency of the patterns in each observation. When a

new observation arrives, the same transformation is applied on it and it is classified

based on the histogram distances using the 1-NN classifier.

Symbolic aggregate approximation-vector space model (SAXVSM) Senin

and Malinchik (2013) also use the SAX representation (Lin et al., 2007) but instead

of creating histograms, they calculate the term frequencies (tf) multiplied by the

inverse document frequency (idf) for each class separately. This representation is

typically used in document classification tasks. SAXVSM takes as input the same

parameters as BOP and the classification of a new observation is performed by

using the 1-NN classifier in combination with the cosine similarity measure.

Bag of SFA symbols (BOSS) BOSS (Schäfer, 2015) is also an algorithm which

creates a vocabulary out of the time series and uses the words of this vocabulary as

features. Its main difference from the above two algorithms (BOP and SAXVSM) is

the way that it constructs the words from the time series windows. More specifically,

BOSS uses the Discrete Fourier Transform (DFT) on each window, while the above

two algorithms (BOP and SAXVSM) use the technique of piecewise constant

models (PAA). The steps of the algorithm are: (a) split the time series in different

intervals based on a window size, (b) perform a DFT on each of them, (c) find

the bin in which each Fourier coefficient drops in, and (d) transform the subseries

into a word by using the names of the bins (each bin has a letter as a given name,

e.g., ‘a’, ‘b’). Finally, the classification of a new observation is performed by using

again the 1-NN classifier in combination with a non-symmetrical distance function

that measures the distance only for the words that appear in the test observation.

8.3. Experimental setup

In order to evaluate the above-mentioned time series classification methods for causal

inference, we adopt an experimental setup that is similar to Papagiannopoulou

et al. (2017a), described in Chapter 4. The non-linear Granger causality framework

is adopted to explore the influence of past-time climate variability on vegetation

dynamics. To this end, we used the data sets of observational nature presented
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in Chapter 3. However, in all previous chapters, we used in this way in total

21 data sets. For the present study, we retained three of them, while covering

the three basic climatic variables: water availability, temperature, and radiation.

The main reason for making this restriction was that in that way the running

time of the different time series classification algorithms could be substantially

reduced. Specifically, we use one precipitation data set, which is coming from a

combination of in situ, satellite data, and reanalysis outputs, called MSWEP (Beck

et al., 2017). We include one temperature data set, which is a reanalysis data set,

and one radiation data set from the ECMWF ERA-Interim (Dee et al., 2011). For

vegetation. we use again the NDVI (Tucker et al., 2005) seasonal anomalies as

explained in Chapter 3.

Since these are preliminary experiments for the attribution of vegetation extremes,

we adopt a simple definition of the vegetation extreme events. Specifically, we group

the location pixels into areas with the same vegetation type, by using the global

vegetation classification scheme of the International Geosphere-Biosphere Program

(IGBP) (Loveland and Belward, 1997), which is generically used throughout a range

of communities. We selected the map of the year 2001 (closer to the middle of

our period of interest). In order to end up with coherent regions that have similar

climatic and vegetation characteristics, we further divided the vegetation groups

into areas in which only neighbouring pixels can belong to the same group. That

way, we create 27 different pixel groups in North and Central America, see Fig. 8.1.

We limit the study to North and Central America because some of the time series

classification methods that we analyse have a long running time. Once we know

which of those methods perform well, the study can of course be further extended

to other regions, under the assumption that the same methods are favored for those

regions. The vegetation extremes are then defined by applying a 10th percentile

threshold on the seasonal anomalies of each region. In this way, we produce the

target variable of our time series classification task. The presence of an extreme is

denoted with a ‘1’ and the absence with a ‘0’, as previously. In this definition, a

clear trend and a seasonal-cycle appear again in the time series of extreme events,

as discussed in Sect. 7.2.4.

Figure 8.1: Groups of pixels that are regions with similar climatic and vegetation
characteristics. Based on the time series of each region we calculate the vegetation
extremes for the pixels of that region.
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8.4. Results and discussion

We present two types of experimental results. First, we analyze the predictive

performance of various time series classification methods as representatives for

the full model in a Granger-causality context. Subsequently, we select the best-

performing algorithm for a Granger causality test, in which a baseline and a full

model are compared.

8.4.1. Comparison of time series classification methods

For the first step we performed a straightforward comparison of the performance of

the following algorithms: CID (Batista et al., 2014), LPS (Baydogan and Runger,

2016), TSF (Deng et al., 2013), SAXVSM (Senin and Malinchik, 2013), BOP (Lin

et al., 2012), BOSS (Schäfer, 2015) and FS (Rakthanmanon and Keogh, 2013). In

this setting, our data set consists of monthly observations (there are in total 360

observations per pixel), and the input time series for each observation includes

the 365 past daily values of precipitation time series before the month of interest

(excluding the daily values of the current month), see Fig. 8.2 for an example of two

observations. Only the precipitation time series is used, as some of the methods

are unable to handle multivariate time series as input. We train the models per

region by concatenating the observations of the pixels. The evaluation is performed

per pixel by using random three-fold cross-validation and AUC as performance

measure.

Figure 8.3 shows the results. The vocabulary-based algorithms outperform the

other representations, which implies that the frequency of the patterns makes the

two classes of our data set more distinguishable. Algorithms which distinguish

the observations according to a presence or an absence of a shapelet perform

poor, probably because observations originating from consecutive time windows

have similar shapelets (the daily values of the next month is added for the next

observation). In addition, the shapelet-based FS algorithm is also not very efficient

in terms of memory space for large data sets. For this reason, we could not obtain

results for the four largest regions of our data set – see Table 8.1. For the algorithms

Figure 8.2: Data set example. The input time series for each observation includes the
365 past daily values of precipitation time series before the month of interest. The target
variable indicates the presence (‘1’) or the absence (‘0’) of an extreme.
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that compare the whole raw time series by using a distance measure (i.e., CID) one

can observe that the performance is also very low, probably also due to the strong

similarity between consecutive observations. Similarly, algorithms that attempt to

form a characteristic vector for each class fail, since the patterns in both classes

are very similar (i.e., SAXVSM). On the other hand, from the algorithms that use

sub-intervals of time series, LPS has a similar performance as the vocabulary-based

algorithms, because it takes local patterns and their relationships into account and

forms a histogram out of them, while TSF fails in capturing useful information.

We note that the LPS algorithm includes randomness, so in each run it extracts

different patterns from the data and also it is more time and space inefficient

compared to the vocabulary-based algorithms. Table 8.1 presents the numerical

results for the nine largest regions. As one can observe, the results of BOP and

BOSS are very similar. In most regions they give rise to substantially better results

than the other methods that were tested.

8.4.2. Granger causality using the BOSS patterns

In a second step, we combine the best representation coming from the time

series classification algorithms and we apply it to the non-linear Granger-causality

framework in order to test causal effects of climate on vegetation extremes. Our

main goal is to replace the hand-crafted features constructed in Chapter 3. As

the BOSS algorithm has the best performance compared to the other time series

algorithms, we use the vocabulary of patterns that BOSS automatically extracts

from the climatic time series as features. To evaluate Granger causality, the baseline

model includes information from the NDVI extremes, while the full model includes

(a) LPS (b) BOP (c) BOSS

(d) SAXVSM, TSF, FS

0.5 .55 .6 .65 .7 ≥ .8

(e) CID

Figure 8.3: Performance comparison in terms of AUC of the time series classification
algorithms in the univariate time series classification setting on climate data.
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Table 8.1: Mean and standard deviation of the AUC for areas which include more
than 100 pixels. The vocabulary-based algorithms as well as the LPS algorithm perform
very similar. Results of the algorithms SAXVSM and TSF are omitted due to their low
performance.

Algorithm Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6 Reg 7 Reg 8 Reg 9

LPS 0.59�0.06 0.56�0.04 0.65�0.09 0.65�0.07 0.61�0.06 0.62�0.05 0.60�0.05 0.65�0.07 0.59�0.05

BOP 0.60�0.07 0.56�0.05 0.65�0.08 0.64�0.07 0.60�0.06 0.61�0.05 0.61�0.06 0.66�0.07 0.60�0.05

BOSS 0.60�0.06 0.56�0.04 0.64�0.08 0.65�0.07 0.61�0.05 0.61�0.05 0.61�0.05 0.67�0.07 0.59�0.05

CID 0.50�0.03 0.50�0.02 0.51�0.05 0.51�0.04 0.50�0.03 0.54�0.04 0.53�0.03 0.55�0.05 0.51�0.03

FS - 0.50�0.00 0.50�0.00 - 0.50�0.00 - 0.50�0.00 - 0.50�0.00

also the automatically-extracted features from the climatic time series. In contrast

to the previous set of experiments, we now include three climatic time series instead

of only the precipitation time series.

Figure 8.4 shows the performance of the full model in terms of AUC, as well as

the performance improvement of the full model compared to the baseline model.

It is clear that by using information from climatic time series the prediction of

vegetation extremes improves in most of the regions. Therefore, one can conclude

that – while not bearing into consideration all potential control variables in our

analysis – climate dynamics indeed Granger-cause vegetation extremes in most of

the continental land surface of North and Central America.

Even though results of that kind could be obtained also with hand-crafted feature

representations, we do conclude that more specialized time series classification

methods, such as BOSS, have also the potential of enhancing causal inference in

climate science. This is mainly due to the fact that our hand-crafted representation

with the extreme indices and the cumulative variables has a lot in common with

the representation obtained by these algorithms. Finally, note that while this work

presents particular results for the case of climate–vegetation dynamics, we believe

that the approach might be useful in other causal inference studies, too.

Area Under the ROC Curve (AUC) Quantification of Granger causality

.50

.55

.60

.65

.70
≥ .80

0

.05

.1

≥ .2

Area Under the ROC Curve (AUC) Quantification of Granger causality

Figure 8.4: On the left, the performance of the full model that uses the patterns extracted
by the BOSS algorithm as predictors. On the right, a quantification of Granger causality;
positive values indicate regions with Granger-causal effects of climate on vegetation
extremes.
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8.5. Conclusions

In previous chapters, we have shown that causal inference in climate science can be

substantially improved by replacing traditional statistical models with non-linear

autoregressive methods that incorporate hand-crafted higher-level features of raw

time series. However, approaches of that kind require a lot of domain knowledge

about the working of our planet. In this chapter, we postulated that causal inference

in climate science can be further improved by using automated feature construction

methods for time series. Our experimental results indicate that recently proposed

time series classification methods have a lot of potential to improve causal inference

in climate science.
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9 General conclusions and future

directions

In this chapter, we summarize the main conclusions that can be drawn from

each of the chapters from this dissertation. Specifically, we present in detail the

main contributions of our study. We also discuss possible extensions to overcome

limitations of the proposed framework and investigate challenges in the field.

9.1. Conclusions

9.1.1. Granger causality analysis on global climate–vegetation

data

The analysis of this thesis was conducted on a database assembled by several publicly

available climate data sets. We compiled a global database of observational records

spanning a thirty-year time frame, containing satellite, in situ and reanalysis-

based data sets. At a first stage we conducted an exploratory pre-analysis on the

global database. Correlation analysis revealed that the different products which

measure the same variable are strongly correlated. For instance, temperature

records produced by different resources capture similar information. The same

conclusions hold for the other variables as well, i.e., precipitation, soil moisture, etc.

However, stronger correlations have been observed in regions where the seasonal

component is obvious, such as in the Northern Hemisphere. In regions where the

seasonal cycle is not strong, e.g., in the tropics, different measurement records

of the same variable are much less correlated. On the other hand, correlations

between the anomalies of the corresponding records are not so high for most regions

of the Earth as expected.

The target variable of the analysis in this thesis was vegetation. Specifically, we used

the commonly-used NDVI greenness indicator as measurement of global vegetation

and we isolated the anomalies of the original time series. The time series of the

NDVI anomalies are highly autocorrelated at one month lagged time. There is

an autocorrelation reduction when the lagged time increases, although in some

regions, such as in Australia, there is still autocorrelation even at four months lag

time. In addition, we found that there are different correlation levels between the

climate variables and the NDVI anomalies. As expected, the highest correlations

are identified between the target variable and climate in observations of consecutive

months (i.e., current month or month after). Water-related variables are more
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correlated in higher lags compared to temperature and radiation variables with

vegetation, due to the prolonged memory of the land. Finally, the correlation tends

to zero between the NVDI residuals and the 6-month lagged variables.

In Chapter 4, we introduced a novel framework for studying Granger causality in

climate–vegetation dynamics. Our approach combines various components, such as

data fusion, feature construction and non-linear predictive modelling. We selected

the random forest algorithm as a non-linear method for our framework, due to its

excellent computational scalability with regards to extremely large data sets, as

the global climate data set of this thesis. In general, the non-linear part of the

framework could be substituted by any other non-linear machine learning technique,

such as neural networks or kernel methods. In our results one can clearly see the

non-linear nature of climate–vegetation relationships. This fact highlights the

need to move beyond the commonly-used linear approaches of Granger causality.

In our analysis, we compared our framework with the traditional linear Granger

causality frameworks. As one can notice, 14% more variability of vegetation

anomalies has been predicted compared to the linear Granger-causality approaches

globally. Moreover, it has been observed that in the water-limited regions the

predictive power of the model is higher than in the other regions. This result also

indicates that the climate representation, which includes prior knowledge about

the lagged-response of vegetation to climate and the effect of climate extremes

on vegetation, well-captures the climate–vegetation interactions. For the effect of

the particular climate drivers on vegetation, we conducted an analysis in the next

chapter (Chapter 5).

In Chapter 5, we investigated the main climatic drivers of vegetation anomalies

at global scale by applying the non-linear Granger-causality framework described

in Chapter 4. The main result of our analysis is that water availability is the

main driver of vegetation anomalies at global scale. Specifically, we concluded that

more than half of the global vegetated area is under water limitation; percentage

that is the highest one from those reported in previous studies. In our analysis,

the role of water availability has been enhanced by the prolonged memory of the

soil (compared to the memory of the atmosphere). In addition, as it has been

experimentally proven, lagged-values of water-related variables are informative

for vegetation anomalies of three months later, especially in semiarid regions.

Moreover, in higher latitudes, radiation and temperature are the primary factors

of vegetation as expected. In tropical regions, the explained variance of vegetation

by climate is lower compared to other regions, possibly because other factors are

more important. Finally, our results confirm that hydro-climatic extremes have an

impact on monthly vegetation dynamics regionally, although their global influence

still requires more thorough investigation, since the mean climate also incorporates

its extremes, fading away the effect of the extreme climate on vegetation.
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9.1.2. Clustering regions with similar climate–vegetation dy-

namics

In Chapter 6, we introduced a novel framework for identifying regions with similar

climate–vegetation dynamics. We applied our analysis to a global database of

observational records, which has been compiled in this thesis (see Chapter 3). Our

approach combines an MTL modelling approach and a clustering technique. Our

results highlight that the problem of predicting vegetation dynamics based on

climate in different locations can be tackled as an MTL problem. Comparison

to a typical STL approach, in which each task (in each location) is resolved

separately, indicates that the MTL approach outperforms the STL one globally.

Moreover, the ASO-MTL approach, which is used in this work, is able to detect

shared hidden predictive structures among the tasks. These structures boost

the predictive performance of the models and characterize each location. Based

on these predictive structures, we apply a clustering algorithm to detect regions

where vegetation responds to climate in a similar way. The result of the land-

surface classification to these regions is in line with the previous literature and the

environmental/climate prior knowledge and it can be used as a basis for further

analysis of the climate–vegetation interactions.

9.1.3. Assessing causes of vegetation extremes

In Chapter 7, we investigated different definitions of vegetation extremes and we

adapted the Granger-causality framework, developed in this thesis, to detect rela-

tionships between climate and vegetation extremes. Specifically, we experimented

with different vegetation extreme definitions found in the literature and we pro-

posed new ones. In addition, we discussed important aspects of Granger-causality

approaches applied on this setting. The Granger-causality analysis on this problem

indicated that climate Granger causes browning events in most regions of the

world.

In a second approach, we used a representation coming from time series classification

algorithms and we applied it to the non-linear Granger causality framework in

order to test causal effects of climate on vegetation extremes. Our main goal was

to replace the hand-crafted features described in Chapter 3. Based on the results of

the comparative study conducted in Chapter 8, the BOSS algorithm had the best

performance, compared to the other time series algorithms. Therefore, we used

the patterns that BOSS automatically extracts from the climatic time series as

features. Our results showed that by using information from climatic time series the

prediction of vegetation extremes improves in most of the regions. Thus, one can

conclude that – while not bearing into consideration all potential control variables

in our analysis – climate dynamics indeed Granger cause vegetation extremes in

most of the continental land surface of North and Central America.
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9.2. Future directions

Granger-causality frameworks have been developed under the assumption that

causal effects between different variables remain unchanged through time. This is

quite a strong assumption, especially in climate sciences, where climatic variables

are changing in the different ecosystems due to climate change. Therefore, since

there is a change in the behaviour of the different variables, the causes or the

effects related with these variables may also change. So, an interesting application

is the investigation of the main climatic drivers of each region through time. To

do so, methods, such as online learning, can be adopted to assess Granger-causal

relationships for each time step. A challenge in this approach is to detect significant

changes in the climatic drivers of a region, and therefore other tools, such as special

statistical inference, should be developed. In the same direction, evaluating Granger

causality in a one-step ahead approach can lead to robust results, since online

approaches are commonly applied to non-stationary data. To this end, non-linear

methods, which can cope with large data sets and can run in an online mode, are

necessary.

Statistical testing is another open research question for non-linear Granger-causality

frameworks with autocorrelated variables. As it has been discussed extensively in

Chapter 4, various statistical tests have been proposed in Granger-causality studies

in the context of climate science. However, the proposed tests, which compare out-

of-sample prediction errors, are available for models for which parameter estimation

is done through ordinary least squares or maximum likelihood estimation (Attanasio

et al., 2013), for linear parametric models (McCracken, 2007). As it has been

discussed in Chapter 4, in climate, relations between variables are highly non-linear.

Therefore, it would be convenient to have at our disposal a statistical test to

assess the significance of any quantitative evidence of climate Granger-causing

vegetation anomalies. Ideally, the test would be model-independent so that any non-

linear model could be used. An alternative approach for comparing the predictive

performance of different models is to use resampling methods, such as the bootstrap,

or schemes such as 5�2 cross-validation (Dietterich, 1998). In this direction, a

null distribution of the difference in the predictive performance of the two nested

models is estimated by using (e.g.) random noise. However, in these approaches

the effect of the additional variables (in the full model) might be overestimated.

Random noise violates the time dependencies that occur in time series data. This

issue can be resolved by using random blocked bootstrapping from the original data.

Nonetheless, this solution comes together with other questions about the size of the

bootstrapped blocks, since short blocks will destroy the temporal structure of the

data and long blocks will not allow for bootstrap samples to be variable enough or

for drawing a sufficient number of bootstrap samples. Also note that bootstrapping

techniques are iterative processes. Therefore, the number of iterations should be

selected carefully when the applications involve the use of large data sets (such as
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in our case). In this thesis, we mainly focus on expressing Granger causality in a

quantitative instead of a qualitative way, and stress the gained improvement with

the use of a non-linear model. However, an exploration of methods that might use

bootstrapping or permutation techniques is a potential avenue that completes the

proposed non-linear Granger-causality framework from a statistical perspective.

As we have discussed in Chapter 1, Granger causality is a common predictability-

based approach for cause-effect relationships between time series. One of its

strongest assumptions is that all the possible causes are included in the model, so

the whole available information is represented in the model as different time series

variables. However, due to the complexity of the Earth system, this assumption is

almost never fulfilled, and thus the conclusions drawn from Granger-causality anal-

yses should be treated with caution. Therefore, incorporating as much information

related to climate and/or vegetation as possible will make the proposed framework

more reliable. For instance, anthropogenic factors, such as deforestation, fires and

agriculture, are all possible causes of vegetation changes and micro-climate changes

in an ecosystem. Conveniently, there are some publicly data sets which include

this kind of information. Other useful data sets that one can think of are CO2

emissions, irrigation, etc. Yet, some of these data sets are only available for more

recent periods.

One of the main contributions of this thesis is the construction of a global data cube,

which includes climate and vegetation data sets. However, the spatial resolution of

this data cube is quite coarse (1�). So, with this spatial resolution, the interpretation

of the results is not so easy, since different climatic (or vegetation) conditions may

occur in the same 1� square. Therefore, although the 1� spatial resolution is a

convenient spatial resolution that allows for a global analysis, an in-depth study of

climatic (or vegetation) conditions at local scale is not possible. On top of this, the

temporal resolution of the constructed data cube is monthly. For this reason, in our

analysis we included the current value of the climatic variables as predictors for the

forecast of the current vegetation. We found that variables such as radiation and

temperature lose their predictive strength after the first month, so if we excluded

the current month of the analysis, these variables would not have any effect on

vegetation. Thus, the prolonged effect of water variables would be inflated. A

possible solution in this issue is the down-scaling of the temporal resolution to

bi-weekly or weekly data. That way, one can possibly exclude the current values of

the predictor variables for the forecast of vegetation. However, this kind of solution

enhances the autocorrelation between the consecutive time points, since vegetation

does not change from one day to the other. Therefore, baseline and full models of

Granger-causality frameworks should be designed very carefully in order not to

lead to incorrect conclusions.

Another future direction of our study is related to the applicability of our data-

driven approaches on data coming from our current Earth System Models (ESMs).
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Each ESM is based on its own assumptions, so capturing complex interactions

between vegetation and climate in this kind of data becomes a huge challenge. Yet,

since ESMs do not model vegetation greenness expressed by NDVI, the methodology

has been already repeated using LAI data (Demuzere et al., 2017) as target, which

is a variable close to models’ representation for vegetation. The results are in line

with those presented in Chapter 4, providing confidence in both the methodology

as well as the use of the LAI anomalies as a target variable. These observation-

based results can then be used to benchmark ESMs on their representation of

vegetation sensitivity to climate and climatic extremes. ESMs can be selected

from the Coupled Model Intercomparison Project Phase 5 (CMIP5) based on their

availability of daily output for all variables of interest. For example, ESMs such as

the BCC-CSM1 (Wu et al., 2013), the GFDL-ESM2G (Dunne et al., 2012) and the

MIROC-ESM (Watanabe et al., 2011), the BNUESM (http://esg.bnu.edu.cn),

the CAN-ESM2 (Arora et al., 2011) and the INM-CM4 (Volodin et al., 2010) can be

used in this analysis. A better understanding of the climate–vegetation interactions

on this basis can contribute to a more confident view about our projections of

future climate and the fate of global ecosystems.

In Chapter 8, we experimented with different time series classification methods

that are able to automatically extract features from the raw time series. From this

analysis, we concluded that there is a potential for these methods to be applied

in climate applications. However, most of these methods have been developed for

univariate time series. Moreover, they do not take into account spatial information,

since they use the time series of one particular location. Recent advances in neural

networks can be used for the automatically extraction of spatio-temporal features.

Recurrent neural networks (RNNs) and convolutional neural networks (CNNs) are

commonly used for this purpose. In the context of the Granger-causality framework,

a neural network architecture has also been studied. For more information about

the different neural network approaches that were applied see (Mortier et al., 2017).

However, the results of this effort were not that promising maybe due to the limited

number of observations for each variable (there are only 360 timestamps/maps

for each variable). It is known that these methods need large data sets in order

to generalize well and achieve high predictive performance. Possible solutions

for enhancing the data set include the use of advanced interpolation methods to

downscale the temporal resolution of the data set or the use of data produced

by climate models that span longer time periods. Note that even if the use of

neural network approaches seems to fit well the current setting, the interpretation

of the resulting features is not possible. Therefore, the use of these methods highly

depends on the given research questions.

Finally, even if the proposed definition (discussed in Chapter 7) for the vegetation

extreme events seems promising for future research, there are some aspects that

can be improved. For instance, looking at the natural processes of extreme events

in vegetation, one would expect that an extreme event occurs when there is an
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abrupt decrease in the vegetation values at the time (or shortly after) the climate

event takes place. And then, it takes some time for the vegetation to recover to its

original condition. This is the reason why in the subsequent timestamps, there is

usually still a small decrease present in the vegetation values due to some extended

effects. Using the current definition, this abrupt change is not captured well. A

possible solution is the use of the first-order differences of the vegetation anomalies

time series instead of directly using the original data. Thus, by calculating the

percentile on the time series of differences, one can receive the extreme events at

the points where vegetation is characterized by a sharp decrease.

As a last direction, we should note that a further improvement of the causality

framework is necessary in order to take into account the cascade problem caused by

the memory of vegetation. The effects of climate are incorporated in vegetation in

each month and hence, the assessment of the climate influence cannot be detected

if information from vegetation is already included in a model. Therefore, one could

resolve this problem by targeting (e.g.) the vegetation extreme events of two or

more months ahead.
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J. Grieser, S. Trömel, and C.-D. Schönwiese. Statistical time series decomposition

146



§.

into significant components and application to European temperature. Theor.

Appl. Climatol., 71(3-4):171–183, 2002.

K. Guan et al. Photosynthetic seasonality of global tropical forests constrained by

hydroclimate. Nat. Geosci., 8:284–9, 2015.
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