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Abstract

Simulators are an essential tool in the design and analysis of complex systems. For

many tasks in engineering, highly accurate simulators are used instead of expensive

real-life experiments. As accuracy increases, these simulators are becoming computa-

tionally more expensive to evaluate. Sensitivity analysis provides information on the

importance of the inputs with regard to the outputs. This does not only provide critical

information about the workings of the system but also allows to discard inputs with low

impact on the outputs. However, sensitivity analysis is an expensive process in terms of

number of evaluations. Hence, metamodelling techniques are used to reduce the com-

putational burden. In this paper we present, discuss and evaluate a novel algorithm for

sequential variance-based and derivative-based sensitivity analysis of expensive black-

box simulators using metamodelling. Two new stopping criteria are proposed on top

of the traditional model error based stopping criteria. Extensive testing on benchmark

problems and engineering use cases shows the sensitivity indices can be efficiently and

accurately computed with a limited number of simulator evaluations.
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1. Introduction

Simulations are a valuable tool in the design and analysis of complex systems.

They offer researchers and engineers an analysis method without requiring numerous

expensive real-life experiments or prototypes [1]. The improvement of simulation ac-

curacy over the years has significantly increased the evaluation time and computational

requirements [2]. This increase in complexity gives rise to the curse of dimensionality

[3].

Data analysis techniques can be categorized as data-driven techniques in which data

generated by a natural process is used or as model-driven techniques for which data

has to be generated by evaluating a model or simulator [4]. In data driven analysis,

the dataset is generated beforehand. An example of data driven sensitivity analysis is

found in [5]. In this work, a model driven approach is followed, meaning that new

samples can be sequentially gathered at the required locations.

Sensitivity analysis is a powerful method to reduce the complexity in subsequent

analysis steps of the system and to gain critical insights into the system under study.

In engineering, it is used, for example, to test the importance of parameters in crash-

worthiness tests of thin-walled structures of high-strength steel [6]. Several approaches

can be distinguished such as variance-based methods [7] and derivative-based methods

[8].

Although sensitivity analysis is used to reduce the complexity and hence evaluation

time of simulators, it is often expensive in itself in terms of number of required evalu-

ations. An efficient method to reduce the amount of simulator evaluations, is building

a metamodel, also known as a surrogate model or response surface model [9], of the

simulator [10].

There are various different metamodel types. Here, we explore the Kriging [11, 12],

Gaussian Process (GP) [13], and Least-Squares Support Vector Machine (LS-SVM)

[14] metamodels to compute both variance-based and derivative-based sensitivity in-

dices. Another metamodel frequently used for sensitivity analysis is the Polynomial

Chaos model [15]. The traditional methods to estimate these sensitivity indices are

Monte Carlo or quasi-Monte Carlo methods [16, 17]. However, for metamodels of a
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tensor product functional form, analytic derivations of the variance-based sensitivity

indices can be made [18]. In this work, we extend this approach to other kernels and

the GP and LS-SVM metamodel for variance-based indices. Furthermore, we prove

that a similar derivation for the derivative-based sensitivity indices can be made. These

equations can easily be applied to other metamodels with the same tensor product form

such as Radial-Basis-Function Neural Networks [19]. The Kriging and Gaussian Pro-

cess metamodels also allow for the derivation of the confidence bound on the sensitivity

indices as demonstrated in [20, 21]. The focus of this paper however, is on the sequen-

tial computation of the sensitivity indices.

A metamodel can be constructed in several different ways. In the simplest form, a

set of data points is chosen and evaluated, after which a metamodel is fitted on the gen-

erated data. The metamodelling accuracy and efficiency can be significantly improved

using sequential sampling algorithms. These algorithms start with a small set of initial

points and iteratively extend the dataset [22, 23, 24].

A stopping criterion is used to determine when the results are sufficiently accurate

and the sequential sampling process can be stopped. Such criteria typically use the

metamodel accuracy, assessed with k-fold Cross Validation (CV) using a specific error

measure such as the Root Relative Squared Error (CVRRSE) or Bayesian Estimation

Error Quotient (CVBEEQ) [25]. For sensitivity analysis however, instead of only using

the metamodel accuracy, we show it is more efficient and interpretable to also define

a stopping criterion based on the sensitivity indices directly. We define two stopping

criteria based on the sensitivity indices called the Sensitivity Cross Validation (SCV)

maximal variance criterion, SCV-maxvar, and mean variance criterion, SCV-µvar.

This work presents a complete, novel algorithm for sequential sensitivity analysis

of expensive black-box simulators using the Kriging, GP or LS-SVM metamodel. The

algorithm consists of analytic derivations of the variance-based or derivative-based sen-

sitivity indices and the FLOLA-Voronoi sequential sampling strategy with the SCV-maxvar

or SCV-µvar stopping criteria. For testing, we evaluate the algorithm on three common

sensitivity analysis benchmark functions and two engineering applications.

In Section 2, sensitivity analysis is discussed. In Section 3, the process of meta-

modelling is discussed. In Section 4, the complete algorithm is presented. In Section 5,
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the experimental setup is outlined and in Section 6, the results of these experiments are

presented and discussed. Finally conclusions and future work are discussed in Sec-

tion 7.

2. Sensitivity Analysis

Global sensitivity analysis is an important tool to determine how the output be-

havior is related to changes in the inputs [17]. In variance-based global sensitivity

analysis, the variance in the input is related to the variance in the output. The simulator

to be analyzed, represented as the d-dimensional function f (x), is decomposed using a

Hoeffding decomposition [26] (also known as an ANOVA decomposition) and the vari-

ance V of the function is specified as a combination of the variances of the decomposed

parts [16] according to

f (x1,x2, ...,xd) = f0 +
d

∑
i=1

fi(xi)︸ ︷︷ ︸
main effects

+
d

∑
i1=1

d

∑
i2=i1+1

fi1i2(xi1 ,xi2)︸ ︷︷ ︸
interaction effects

+ . . .+ f1..d(x1, ...,xd)︸ ︷︷ ︸
interaction effects

,

V =
d

∑
i=1

Vi︸︷︷︸
main effects

+
d

∑
i1=1

d

∑
i2=i1+1

Vi1i2︸︷︷︸
interaction effects

+ . . .+ V1..d ,︸︷︷︸
interaction effects

where the inputs xi are assumed to be independent. As strong annihilating conditions

apply, the decomposition functions are assumed to be orthogonal.

The Sobol sensitivity index for a subset is..it of inputs is then computed as Sis..it =

Vis..it/V [16] where Vis..it is the variance attributed to the subset of inputs is..it . Main

effect indexes involve only one input i whereas interaction effects involve multiple

inputs. A total index ST
i consists of the main effect index and all interaction effects

containing input i [27]. Sobol indices are bound within [0,1] with 0 indicating no

influence on the output and 1 indicating all variance in the output originates from this

input.

To compute these variance-based global sensitivity indices generally requires a

large amount of function evaluations [8]. In this work, metamodelling is used to re-

duce this amount of function evaluations. Variance-based sensitivity indices can also

be efficiently estimated using the FAST method [28]. However, the focus of this work
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is to analytically derive the sensitivity indices directly from the metamodel predictive

equation which is more efficient and can be more accurate, especially in higher dimen-

sions.

Variance-based sensitivity indices rely on the general assumption that variance is

sufficient to describe output variability [17]. However, this assumption does not always

hold true. We also investigate another interesting index type called the derivative-based

global sensitivity measure (DGSM). This index has evolved from the elementary effects

method by Morris [29] into several different definitions. We use a recent definition by

Sobol and Kucherenko [30],

νi = E
[(

∂ f
∂xi

(x1, ...,xd)
)2
]
, (1)

where the domain of the function to be analyzed is the unit hypercube H d . If the

inputs xi are independent and uniformly distributed, these derivative based indices can

be linked to the total Sobol indices as an upper bound using the definition in [30, 31],

ST
i ≤ SDGSM

i =
νi

π2V
, (2)

where V is the variance of the function.

Many different definitions for sensitivity analysis indices have been proposed to

overcome some of the deficiencies mentioned. For a review on recent sensitivity anal-

ysis methods the reader is referred to [32]. We limit ourselves to the variance-based

and derivative-based measures discussed above which are commonly used by engineers

and design analysts.

3. Metamodelling

3.1. Tensor Product Functions

To analytically compute the variance-based and derivative-based sensitivity indices

using metamodelling, the metamodel predictive function has to be of a tensor product

form , i.e., f̂ (x) = ∑
N
i=1 αi k(x,xi), where N is the number of basis functions and k is

a kernel function. When the kernel k is separable, the formula can be rewritten as
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f̂ (x) = ∑
N
i=1 αi ∏

d
l=1 hi,l(xi,l) where hi,l(xi,l) is the part of the kernel for dimension l

out of d dimensions. Two popular kernels are the Radial Basis Function (RBF) kernel

kRBF(x,xi) = exp(−θ ||x− xi||2), also known as the Gaussian or squared exponential

kernel, and the Matérn 3
2 kernel k(x,xi) = σ2

(
1+θ

√
3||x−xi||

)
exp
(
−θ
√

3||x−xi||
)
.

For the metamodel to be of a tensor product form, the kernel has to be separa-

ble. This is the case for the RBF kernel by definition, as illustrated by kRBF(x,xi) =

∏
d
l=1 exp(−θ ||xl−xi,l ||2). However, the Matérn 3

2 kernel is not separable. A separable

version of this kernel is defined as the product of d 1-dimensional kernels. Which leads

to k(x,xi) = ∏
d
l=1(1+

√
3θ ||xl− xi,l ||)exp(−

√
3θ ||xl− xi,l ||).

3.2. Sequential Design

In a basic metamodelling setup, selecting the number and location of sample points

for simulator evaluations, known as Design of Experiments (DoE), is performed up

front. For an extensive review on the state-of-the-art design of experiments methods,

the reader is referred to [33]. One-shot designs have the risk of under-fitting (too few

data) or over-fitting (too much data) leading to an inaccurate or inefficient analysis.

A sequential sampling approach can be used to improve metamodelling efficiency

and accuracy. A small set of initial data points is iteratively extended with additional

samples. Doing so, sequential design can exploit the available information of the simu-

lator response (exploitation) in addition to space-filling criteria (exploration) to modify

the distribution of the samples to the specific problem or application. Furthermore, the

process can be halted when predefined goals (such as metamodel accuracy) have been

met, drastically reducing the amount of required simulator evaluations.

A powerful sequential design strategy is (F)LOLA-Voronoi [22, 23] which is a

computationally efficient approach for increasing the number of samples in non-linear

regions. These non-linear regions can have a large impact on the sensitivity indices.

However, such non-linear regions are more difficult to model. (F)LOLA-Voronoi in-

creases the amount of samples in these regions, leading to a more accurate model and

improving the accuracy of the sensitivity indices.

The (F)LOLA-Voronoi algorithm balances two parts: (F)LOLA and Voronoi which

are respectively the exploitation and exploration steps of the algorithm. The algorithm
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selects random candidate points in the design space and scores them according to the

(F)LOLA and Voronoi criteria. In the (F)LOLA part, new sample locations are ranked

according to their non-linearity which is estimated using a LOcal Linear Approxima-

tion (LOLA) of each suggested sample location. The best locally linear approximation

is the gradient at that sample location. However, this gradient is often not known in

advance. Hence, it is estimated using a set of neighboring points. The FLOLA algo-

rithm offers a fuzzy approach for determining the neighbors, increasing the efficiency

in higher dimensions over regular LOLA [22].

In the Voronoi part, Voronoi tessellation is used to detect large regions with no

samples. If the distance of candidate points to already selected samples is large, these

points get a high score to be selected as the next sample. When the FLOLA and the

Voronoi scores have been computed for all candidate points, the two parts are aggre-

gated to compute the final scores. The samples are ranked and the sample with the

highest score is returned as the next sample to be selected [23].

3.3. Stopping Criterion

Stopping criteria are used to halt the sequential sampling process when the desired

task is achieved. Standard stopping criteria are based on the generalization error of the

model. These methods often use k-fold cross validation (CV) in which the generated

data points are split up in k folds followed by the training of the model with each

combination of k−1 folds and testing the model using the remaining data points. Error

measures are then computed based on the difference between the evaluation of the test

set and the original simulator data. Examples of popular error measures using cross

validation are the Root Relative Squared Error (CVRRSE) and the Bayesian Estimation

Error Quotient (CVBEEQ) [34] shown by

CVRRSE(y, ỹ) =

√
∑

n
i=1(yi− ỹi)2

∑
n
i=1(yi− ȳ)2 , (3a)

CVBEEQ(y, ỹ) =

(
n

∏
i=1

|yi− ỹi|
|yi− ȳ|

) 1
n

, (3b)

where y is the real value, ỹ is the predicted value and ȳ is the mean real value.
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The CVRRSE is intuitive but only measures the improvement of the estimate over the

mean model. It does not measure the quality of the fit directly and is rather pessimistic

for smooth functions. The CVBEEQ error measure is an improved version which is less

sensitive to large errors. An overview and discussion of various error measures for

global surrogate modelling is presented in [34].

4. Metamodelling based sensitivity analysis

To compute the sensitivity indices, the exact mathematical representation of the

simulator has to be known. However, this expression is in general unknown or too com-

plex. In such cases, an estimator of the sensitivity indices, often based on Monte Carlo

methods, is used resulting in many evaluations of the simulator. When dealing with

expensive-to-evaluate simulators, such Monte Carlo computations quickly become too

costly. A common approach is to build a metamodel of the expensive simulator, to be

used as a proxy for the Monte Carlo computations.

Examples of Monte Carlo estimation methods are the approaches of Sobol [35] and

Saltelli [36] for variance based Sobol indices. However, to achieve a descent accuracy,

Monte Carlo methods require numerous samples and even though the metamodel is

cheaper to evaluate, this quickly becomes an expensive procedure. When the dimen-

sionality of the problem increases, the amount of required samples for Monte Carlo

increases exponentially.

Using quasi-Monte Carlo sequences [4] or Fourier Amplitude Sensitivity Testing

(FAST) [28] can help reduce the amount of metamodel evaluations. However, Monte

Carlo methods introduce an additional error on top of the metamodel error. For some

metamodels, a more efficient and accurate approach is available based on the analytic

evaluation of the sensitivity indices using the mathematical expression of the meta-

model. In this section, we introduce a complete algorithm for data-efficient sensitivity

analysis with metamodelling using this analytic evaluation.

4.1. Variance-based Approach

For metamodels in a tensor-product functional form, the Sobol indices can be de-

rived analytically [18]. For such metamodels, the variance of a subset of input dimen-
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sions, with pl(xl) the distribution of the input l, [al ,bl ] the bounds of the distribution

pl(xl), d the number of input dimensions and N the number of samples, can be com-

puted using

Vis...it =
N

∑
i1

N

∑
i2

(
αi1αi2

d

∏
l=1

(C1i1,l C1i2,l)( ∏
l∈is...it

C2i1,i2,l

C1i1,l C1i2,l
−1)

)
,

C1i,l =
∫ bl

al

hi,l(xl)pl(xl)dxl ,

C2i1,i2,l =
∫ bl

al

hi1,l(xl)hi2,l(xl)pl(xl)dxl .

For a derivation of these formulas we refer to the original works of Jin [18]. These

integrals can easily be analytically evaluated using symbolic software without the need

of any estimators. By using these analytic formulas, we avoid the use of Monte Carlo

methods on the metamodel which would introduce additional errors and would still

require many samples for high-dimensional problems.

4.2. Derivative-based Approach

Similarly, for the derivative-based sensitivity indices, an analytic form of Equa-

tion (1) can also be extracted for specific metamodels. This has been applied to poly-

nomial chaos expansion metamodels in [37]. Here, we prove the formulas for general

metamodels in a tensor-product form. This results in the following equations

νi =
N

∑
i1

N

∑
i2

αi1αi2(
d

∏
l=1
l 6=i

C2i1,i2,l) C3i1,i2,i,

C3i1,i2,i =
∫ bl

al

∂hi,i1(xi)

∂xi

∂hi,i2(xi)

∂xi
pi(xi)dxi.

See Appendix A for the mathematical proof.
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4.3. Stopping Criterion

The metamodel accuracy is assessed using the CVRRSE and the CVBEEQ criterion.

However, while the metamodel itself might still not be completely accurate, the gen-

eral trend of variability of the outputs might already be visible. Furthermore, the error-

based stopping criteria are difficult to interpret when evaluating the accuracy of the

sensitivity indices. Hence, we introduce two new stopping criteria based on the vari-

ability of the sensitivity indices to make the metamodelling process more efficient and

interpretable:

SCV-µvar =
d

∑
i=1

Var(Ii,1, .., Ii,k)

d
,

SCV-maxvar = max
i=1..d

Var(Ii,1, .., Ii,k)

d
,

where k is the number of folds and Ii, j, a specific sensitivity index (either a variance-

based Sobol index Si, j or a derivative-based index νi, j) for variable i in fold j. Note

that the SCV-maxvar definition is a more conservative approach than the SCV-µvar def-

inition. The division by d in both equations makes the result more interpretable.

For derivative-based indices, the indices are first normalized across dimensions per

evaluation, before computing the criterion to overcome the interpretation problem of

derivative-based sensitivity indices.

As the sensitivity indices have values between 0 and 1, and the proposed criteria are

based on the variance of these sensitivity indices, an interpretable stopping criterion is

achieved even for black-box simulators as this criterion, in contrast to the error-based

criteria, is not dependent on the output values of the simulator. The analyst can easily

set a desired goal for the variance of the sensitivity indices. This goal will depend on

the application requirements.

4.4. Complete Algorithm

The complete work flow of the algorithm is shown in Figure 1. First, an initial set of

points is chosen using for example a Latin hypercube design after which the metamod-

elling loop starts. The size of this initial set is problem-depended and determined by the

analyst. All selected points are evaluated using the simulator and a metamodel is built.
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Next, the sensitivity indices are evaluated analytically based on the metamodel predic-

tive equation. At the end of each iteration, the stopping criteria are computed. This

involves a model accuracy based measure (CVRRSE or CVBEEQ) and one of the criteria

based on k-fold cross validation of the sensitivity indices (SCV-µvar or SCV-maxvar). If

the stopping criterion threshold is reached, the algorithm terminates. Otherwise, a new

set of points is selected using FLOLA-Voronoi after which another iteration begins.

Figure 1: Sequential sensitivity analysis of expensive black-box simulators with metamodelling.

5. Experimental Setup

The performance of the proposed sequential global sensitivity analysis algorithm is

evaluated on three typical sensitivity analysis benchmark functions and two engineer-

ing applications. Table 1 provides an overview of the mathematical formulation and

dimensionality of the functions.

Table 1: Sensitivity analysis benchmark functions.

Name Equation Inputs

Ishigami
[38] sin(x1)+7sin(x2)

2 +0.1x4
3 sin(x1) 3

G-function
[39]

3

∏
i=1

|4xi−2|+(i−2)/2
1+(i−2)/2

3

Loeppky
[40]

6x1 +4x2 +5.5x3 +3x1x2 +2.2x1x3

+1.4x2x3 + x4 +0.5x5 +0.2x6 +0.1x7

10

The first engineering application is the simulation of a satellite braking system [41,

42]. The system has a five-dimensional input which contains, among others, the mass
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of the braking system.

The second engineering application is a Fluid-Structure Interaction (FSI) simula-

tion of an aneurysm in an artery [43]. In this application, the flow through an artery is

modelled by a simulator with a 20D input. Each input dimension represents the spring

characteristic of a slice of the artery except for the last input which influences all other

spring characteristics.

5.1. Configuration

The experiments are performed using the SUMO Toolbox [9] which provides a

complete framework for developing and testing metamodelling techniques. The Krig-

ing model [44] and the Gaussian process model [45] are both optimized using max-

imum likelihood estimation. The Kriging and GP models use a separable Matérn 3
2

kernel and the LS-SVM model uses a Gaussian RBF kernel, the hyperparameters of

this model are optimized with CVRRSE. For the low-dimensional problems (< 20D), a

separate hyperparameter is trained for each dimension of the Matérn kernel. For high-

dimensional problems (≥ 20D), a single hyperparameter is trained to avoid a complex

and lengthy high-dimensional optimization of the hyperparameters. For the Gaussian

RBF kernel, a single hyperparameter is trained regardless of dimensionality.

The initial design used to build the metamodels is a Latin hypercube constructed

using the Translational Propagation algorithm [46]. During each step of the process,

10 new sampling points, determined by FLOLA-Voronoi are evaluated up to a total of

300 samples. For the artery FSI application, a total of 500 samples are evaluated.

The complete process is repeated 10 times for statistical robustness. The accuracy

of the metamodel itself is evaluated using 10-fold cross validation with the CVRRSE and

CVBEEQ error functions. Both the variance-based and the derivative-based sensitivity

indices are computed. The novel SCV-maxvar and SCV-µvar stopping criteria are com-

puted as well. For variance-based indices, the Monte Carlo estimates are computed as

well for comparison.
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6. Results and Discussion

6.1. Benchmark functions

In the following discussion, the Ishigami function will be used to demonstrate the

various aspects of the algorithm and Kriging is used as metamodel type, unless other-

wise specified. The figures illustrate the mean (full line) and standard deviation (shaded

area) across 10 complete runs.

6.1.1. Sensitivity Indices

The most important aspect of the algorithm is the accurate determination of the

sensitivity indices of the simulator. For variance-based analysis, both the main effects

and total effects (= main effects + interaction effects) have to be accurate. Figure 2

shows the evolution of the various sensitivity indices, as a function of the number of

data samples. The cross at the end of the figure indicates the exact target value of the

sensitivity indices, analytically computed on the equation of the Ishigami function. The

figures clearly demonstrate the MC version struggling in the beginning to get a stable

and accurate value. It also shows the large differences across iterations in the MC

version while the evolution of the sensitivity indices for the analytic version is much

more similar during each iteration of the experiment. In a black-box setting, where the

amount of required samples and the sampling budget is unknown, it is desirable to get

a stable estimate as fast as possible. By using these analytic computations, this desired

stable and accurate evolution can be achieved.

Note the difference in ranking of the sensitivity indices when comparing variance-

based with derivative-based analysis. As the sensitivity indices have a different focus,

they come to different results. This demonstrates the value in computing multiple types

of indices.

The accuracy of the computed indices can be evaluated by comparing the experi-

mental results with the exact theoretical values. For the Ishigami function, this is shown

in Table 2. These experimental results were gathered after 300 samples with a final

variance-based SCV-maxvar score of 2.4496×10−6, total variance-based SCV-maxvar

score of 2.6112×10−6 and derivative-based SCV-maxvar score of 3.6477×10−5.
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(a) Variance-based sensitivity. (b) Variance-based sensitivity MC.

(c) Variance-based total sensitivity. (d) Variance-based total sensitivity MC.

(e) Derivative-based sensitivity.

Figure 2: Sensitivity indices for the Ishigami function with Kriging and FLOLA-Voronoi.

14



As detailed in Section 3, the FLOLA-Voronoi sampling criterion guides the algo-

rithm to acquire more samples in the difficult-to-model regions which are the most

interesting regions for sequential sensitivity analysis. This helps to reduce the overall

required samples and increase the accuracy of the analysis method when compared to

recent literature [47].

Table 2: Comparison of metamodel based sensitivity indices with exact analytic values for the Ishigami

function with Kriging and FLOLA-Voronoi.

Index 1 2 3 1 2 3

Type Proposed algorithm Exact

Variance 0.3152 0.4393 0.0002 0.3139 0.4424 0

Total-variance 0.5603 0.4397 0.2453 0.5576 0.4424 0.2437

Derivative 329.3 965.6 420.5 304.8 967.2 433.8

6.1.2. Stopping Criterion

An important aspect of the algorithm is the stopping criterion to determine when

sufficient samples have been gathered. Apart from the two typical error based cross val-

idation criteria, the two newly introduced stopping criteria, SCV-maxvar and SCV-µvar,

are also computed for both the variance and the derivative-based sensitivity indices as

shown in Figure 3. All stopping criteria show the same pattern, indicating that when

the metamodel for the Ishigami function becomes sufficiently accurate, the sensitivity

indices also become stable. Note how the value of the variance across the sensitivity

indices, represented by the SCV-maxvar and SCV-µvar criteria can easily be interpreted

by an analyst while this interpretation is more difficult for the error based stopping cri-

teria when dealing with a black-box function. This is because the sensitivity indices

always have values between 0 and 1 while the error based measures are dependent on

the output variability of the simulator.

6.1.3. Different Models

The algorithm can be used with various different metamodel types. This is useful

as the appropriate metamodel type is dependent on the problem being modelled. The
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(a) Variance-based SCV. (b) Total variance-based SCV.

(c) Derivative-based SCV. (d) Error based CV.

Figure 3: Cross validation measures for the Ishigami function with Kriging and FLOLA-Voronoi.

evolution of the sensitivity indices for the GP and LS-SVM metamodels is shown in

Figure 4 and Figure 5 respectively. The results after 300 samples are shown in Table 3

and Table 4 for the GP and LS-SVM metamodels respectively.

(a) Variance-based sensitivity. (b) Variance-based total sensitivity.

(c) Derivative-based sensitivity.

Figure 4: Sensitivity indices for the Ishigami function with GP and FLOLA-Voronoi.

6.1.4. G-function and Loeppky Benchmark Functions

The results for the other benchmark functions are similar to those for the Ishigami

function. An overview of the results is given in Figure 6 and Figure 7 for the G-
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(a) Variance-based sensitivity. (b) Variance-based total sensitivity.

(c) Derivative-based sensitivity.

Figure 5: Sensitivity indices for the Ishigami function with LS-SVM and FLOLA-Voronoi.

Table 3: Metamodel based sensitivity indices for the Ishigami function with GP and FLOLA-Voronoi.

Index 1 2 3 SCV-maxvar

Variance 0.3157 0.4393 0.0001 2.2758×10−6

Total-variance 0.5605 0.4397 0.2449 2.4638×10−6

Derivative 326.3 965.9 405.9 3.0642×10−5

Table 4: Metamodel based sensitivity indices for the Ishigami function with LS-SVM and FLOLA-Voronoi.

Index 1 2 3 SCV-maxvar

Variance 0.3066 0.4546 0.0000 3.0547×10−6

Total-variance 0.5453 0.4552 0.2387 2.5661×10−6

Derivative 301.1 1010.7 406.6 1.7899×10−5
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function and Loeppky function respectively. For the Loeppky function, only the three

most significant inputs are provided in the figure legend to keep the figures clear.

(a) Variance-based sensitivity. (b) Error based CV.

(c) Variance-based total sensitivity. (d) Variance-based SCV.

(e) Derivative-based sensitivity. (f) Derivative-based SCV.

Figure 6: Sensitivity analysis of G-function with Kriging and FLOLA-Voronoi.

6.2. Satellite Braking System Application

For the satellite braking system application, the evolution of the corresponding

sensitivity indices is shown in Figure 8 where data is shown for an LS-SVM model.

The figures show large similarities between the variance-based and total variance-based

sensitivity indices. From this, we learn that the simulator has very few interaction

effects.

This example clearly shows the advantages of using the SCV-maxvar and SCV-µvar

stopping criteria. While the error-based metrics are still at a relatively high value, and

furthermore dependent on the simulator output, the sensitivity-based stopping criteria

converge to a small value which represents the variance of the sensitivity indices. The

18



(a) Variance-based sensitivity. (b) Error based CV.

(c) Variance-based total sensitivity. (d) Variance-based SCV.

(e) Derivative-based sensitivity. (f) Derivative-based SCV.

Figure 7: Sensitivity analysis of Loeppky function with Kriging and FLOLA-Voronoi.
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analyst can easily interpret this and set a desirable goal for this variance depending on

the application requirements.

(a) Variance-based sensitivity (b) Error based CV

(c) Variance-based total sensitivity (d) Variance-based SCV

(e) Derivative-based sensitivity (f) Derivative-based SCV

Figure 8: Sensitivity analysis of satellite braking system application with LS-SVM.

The results of the sensitivity analysis teach us that the third input, representing

the mass of the satellite braking system, has a negligible impact on the output of the

simulator. This is valuable information for the analysis of the system as well as for

efficient modelling of the simulator response.

6.3. Artery FSI Application

The sensitivity analysis results for the Artery FSI application are shown in Figure 9

where we show the data for a GP model with FLOLA-Voronoi sequential sampling.

In these figures, only the last two input dimensions are mentioned in the figure legend

as all 18 other inputs have a relative negligible impact. The calculated sensitivity in-

dices confirm the importance of the last input dimension which influences the spring

characteristic of all other inputs.
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The final engineering example also demonstrates the advantages of the novel stop-

ping criteria. The CVRRSE and CVBEEQ measures, which are based on the error of the

model and hence also on the simulator output, show little convergence and remain at

a relatively high value. The novel sensitivity based criteria on the other hand, quickly

converge to a small and interpretable value as the sensitivity information is already

available without the need for small CVRRSE and CVBEEQ scores.

The results of the sensitivity analysis teach us some interesting insights. It shows

that the final output indeed has the most influence on the output of the system. If a

screening of the output variables was desired, the results have already been achieved.

If the goal was to create an accurate model of the simulator, the results provide useful

insights into where the most interesting data samples can be gathered.

(a) Variance-based sensitivity. (b) Error based CV.

(c) Variance-based total sensitivity. (d) Variance-based SCV.

(e) Derivative-based sensitivity. (f) Derivative-based SCV.

Figure 9: Sensitivity analysis of Artery FSI Application with GP and FLOLA-Voronoi.
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7. Conclusion

We introduced a complete algorithm for sequential variance-based and derivative-

based sensitivity analysis of expensive black-box simulators using a metamodelling

approach. The analytic evaluation of the sensitivity indices on the metamodel predic-

tive function, together with the sequential sampling approach and the stopping crite-

rion provides an efficient and accurate estimation process. The tests demonstrate the

accurate and efficient computation of the sensitivity indices and the strength of the

SCV-maxvar and SCV-µvar criteria next to the traditional metamodel accuracy mea-

sures. These novel criteria represent an intuitive measure of the variance of the sen-

sitivity indices. If the end goal is to have a screening of the input variables, the new

stopping criteria allow to stop the metamodelling process without having to create an

extensive globally accurate metamodel. If the end goal is to create an accurate meta-

model, the new stopping criteria indicate when the operator can remove inputs from the

design space to reduce the dimensionality and increase the efficiency of the modelling.

The results of this work allow researchers to get better and faster insights into expen-

sive black-box problems and can help to reduce the dimensionality of these complex

design problems.
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Appendix A. Derivative-based Sensitivity Analysis of Tensor Product Functions

In this appendix the general equation for derivative-based global sensitivity indices

for tensor product functions is derived. The domain of the function is assumed to be

the unit hypercube H d .
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In this derivation, C2 is the same factor as in variance-based global sensitivity anal-

ysis. For domains other than the unit hypercube H d , the equations are easily updated.
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