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1 Introduction

Although the pursuit of knowledge has been around for a long time,
science as a popular vocation rather than an eccentric one, is a
relatively recent phenomenon. Of course we know of notable indi-
viduals in our past who helped science get where we are today, but
rather than surveying their job titles for the term ‘scientist’, history
acknowledges such individuals in their quest for truth, improvement,
and innovation. These unique qualities are still very astute today,
as there is one major concept that will assumably drive you if you
choose a career in science: your need to understand. You will want
to grasp how everything works, to try and unravel how things are
the way they are and why they do the things they do. In order
to evaluate this, you will need to understand the hidden processes
underlying the object that sparked your interest. Consider for ex-
ample communication processes, where researchers not only seek to
establish whether or not messages have an effect in a specific con-
text, but would much rather try to understand how these messages
influence their recipient. Alternatively, in medicinal research we may
discover that a newly developed vaccine has a detrimental effect on
the maturation of a specific disease. Although this, in and by itself,
is groundbreaking and inspiring news, the experimenters won’t feel
satisfied until they truly fathom how the vaccine sways our immune
system to fight off the infection. Likewise, many epidemiologists
promote the opening of their ’black boxes’ as to try and elucidate
explanatory theories for how diseases arise, rather than solely taking
comfort in identifying risk factors and leaving it at that. The same
reasoning holds for research in psychology: we want to understand
the psychological processes by which interventions affect our be-
haviour. When we observe a decline in ruminative thinking after
depressed patients receive a subtle electric stimulation of a specific
brain area, psychologists will want to figure out which underlying
mechanisms are responsible. Or in other words, they wish to identify

1



2 Chapter 1

the processes that mediate the relationship between an intervention
and its effect.

1.1 Mediation
Mediation can be described as the collective processes that disclose an
observed relation between an intervention and its response, be it in either
communication, medicine, epidemiology, social sciences, or any other disci-
pline. As such, the fundamental enquiry into how and why things work
lies at the essence of any mediation analysis. At its core, it attempts to
jump into the world of causality by trying to discern any intermediary
steps between cause and effect.

In order to determine the effect that an independent variable may have
on a dependent variable, experimenters irrevocably require the assistance
of statistical or mathematical models. This dependent variable represents
the object or measure that is being studied, while the independent variable
represents a specific input or cause. As such, the message, vaccine, cause
of infection, or electric stimulation of which we spoke earlier, are defined
as independent variables or exposures X. This annotation describes our
interest in the effect that these variables have, when someone is being
exposed to them. Equivalently, the message impact, disease resistance,
disease manifestation, or amount of rumination are defined as dependent
variables or outcomes Y . These are appropriately labelled ’dependent’,
since we are interested in their dependency on the exposures. To evaluate
and assess the relationship between exposure and outcome, researchers
will gather information from a sample of individuals. This sample will
be summarised in a data set, where each individual i (i = 1...n with n

representing the sample size) contributes one value for the exposure, Xi,
and one for the outcome, Yi. When the outcome is a continuous measure
(such as weight, height or age), a linear regression model represents the
most convenient way of capturing the relationship between exposure and
outcome:

Yi = β0 + β1Xi + εi with εi ∼ N(0, σ2) (1.1)

In such an equation, we attempt to model and predict the outcome
Yi in terms of the exposure Xi. This is achieved through the estimation
of an intercept, β0, and a slope or regression parameter, β1. By means
of these two parameters, we aim to transform any value for the exposure
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into a corresponding measure for the outcome. Of course, this conversion
will never be perfect, which is why the error terms εi are included; they
represent the difference between the true values of the outcome (i.e., Yi)
and the predicted/transformed outcome measures (i.e., β0 + β1Xi). These
errors terms are assumed to be independently distributed (of each other and
the exposure Xi), following a normal distribution with constant variance
(σ2) and mean zero. This implies that, on average, the outcome will equal
β0 +β1Xi for a given value of the exposure. Consequently, the intercept can
be interpreted as the mean value of the outcome, when the exposure equals
zero (i.e., when Xi is zero then, on average, Yi equals β0 + β1 · 0 = β0).
Equivalently, the slope parameter β1 can be interpreted as the association
between exposure and outcome: if Xi changes from zero to one, the mean
outcome increases by β1 (i.e., when Xi is set to one then, on average, Yi
will equal β0 + β1 · 1 = β0 + β1). If, however, the true value of β1 equals
zero, the exposure and outcome will not show any association (i.e., Yi will,
on average, equal β0 + 0 ·Xi = β0). In any case, the slope parameter β1
describes the relationship between the exposure and the outcome: when the
regression parameter equals zero, no relationship between both variables
exists, but when β1 differs from zero, it expresses the size and direction of
the association between exposure on outcome.

1.1.1 Causal effects

When an exposure and an outcome are related (i.e., when β1 6= 0), we can
conclude the presence of an association between both variables. In practice,
however, researchers are most often interested in testing causal relations,
rather than mere associations. In order to label the association between
exposure and outcome in equation (1.1) a causal effect, two conditions
need to be fulfilled: (1) the exposure X needs to temporally precede
the outcome Y , and (2) any variable that confounds the relationship
between exposure and outcome needs to be taken into account. The first
rule is rather straightforward to understand, since the exposure cannot
possibly cause the outcome if the former occurs after the latter. The
second condition is less intuitive, but can be easily understood through
an example. Consider the following well-documented association: people
with yellow stains on their fingers tend to have a worse lung function and
a greater risk of lung cancer, compared to people with unstained fingers.
This negative association does not represent a causal effect, however, as
painting your fingers will not inherently worsen your lung capacity, nor
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will you suddenly develop lung cancer. Instead, the observed relationship
between yellow fingers and lung cancer constitutes the byproduct of a
variable that influences both X and Y simultaneously: smoking behaviour.
Smoking will affect the colouring of your hands, as the nicotine in cigarette
smoke can leave nasty-looking stains on your fingers. Additionally, people
who smoke will diminish their lung function over time, as the chemicals
found in cigarettes damage key genes that protect us against cancer. As
such, smoking confounds the relationship between yellow fingers and lung
function: the observed association between X and Y is due to a common
cause (i.e., smoking), rather than a causal effect between both variables.
Consequently, in order for association to become causation, the relation
between X and Y must persist when all such confounding variables are
taken into account.

As any mediation analysis attempts to discern intermediary steps
between a cause and its effect, mediation is, in essence, a causal process.
Consequently, we need to establish and investigate causal relations, rather
than associations. Graphically, causal effects of an exposure on an outcome
can be represented by an arrow originating from X and arriving at Y (see
the left part of figure 1.1); this causal pathway is often labelled the total
effect of an intervention on a specific outcome.

X Y X
Total effect

Direct effect
Y

M
Indirect effect

Figure 1.1 Left. The total effect of the exposure X on the outcome Y . Right.
The total effect of X on Y is split up into two arrows: an indirect effect (upper arrow)
and a direct effect (lower arrow).

Mediation amounts to deducing the mechanism through which the
exposure influences the outcome of interest; any variables fitting this de-
scription are labelled a possible mediator M . The question of whether or
not the causal effect of X on Y (partly) runs through a specific mediator,
can be answered by decomposing the total effect into two parts (see right
side of figure 1.1). One arrow is defined as the indirect or intervening effect
(as it indirectly runs from the exposure to the outcome through the medi-
ator), while the other is branded the direct effect (i.e. the remaining effect
that does not pass through M). Consequently, we can assess mediation by
evaluating the existence of the arrow that represents the intervening effect.
An example of mediation in experimental psychology consists of figuring
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out why ruminative thinking (the outcome Y ) declines after depressed
patients receive a subtle electric stimulation to the brain (the exposure X).
A possible mediator might be found in cognitive control, as this mental
process allows a person to override his or her impulses by making decisions
based on goals, rather than habits or reactions (Vanderhasselt et al., 2013).
Keeping this definition in mind, it seems very plausible that people with a
high cognitive control may have an easier time in redirecting their attention
from ruminative thoughts to more constructive ones. As such, a slight
electric stimulation might decrease rumination indirectly by increasing the
amount of cognitive control a person possesses.

Although the idea behind mediation has undoubtedly been around as
long as curiosity itself, the origins of its conceptualisation are far more
recent. As far as we know, Wright (1934) was the investigatory pioneer
to put the first form of mediation analysis to paper. However, it wasn’t
until after the introduction of Baron and Kenny (1986)’s causal steps that
mediation analysis began to flourish. Since their research has had such a
great impact on social sciences in particular, let us take a closer look at
their groundbreaking work.

1.1.2 The causal steps approach

So once you have a valid research hypothesis concerning mediation, how
do you answer it? In response to this question, Baron and Kenny (1986)
proposed a framework in which mediation is assessed in four consecutive
steps. It relies on the following three regression equations:

Y = iY 1 + cX + eY 1

M = iM + aX + eM

Y = iY 2 + c′X + bM + eY 2 (1.2)

As we saw in the previous section, each equation can be represented by a
number of arrows equal to the amount of independent variables it contains.
As such, these three equations are captured by four distinct projectiles:
the first equation translates into an arrow flowing from X to Y (see left
part of figure 1.2), the second into an arrow going from X to M (right side
of figure 1.2), and the third into two arrows converging at the outcome:
one emanating from X and the other from M (also right side of figure
1.2). These arrows/effects can be summarised by the slope parameters
belonging to the independent variables from which they originate (c, a,
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c′, and b, respectively). As before, these regression parameters describe
the relationship between the dependent and independent variables: when
a slope parameter equals zero, the corresponding variables will lack a
connecting arrow, while a slope coefficient different from zero will encode
the strength of their connection.

X Y X Y

M

c

c′

a b

Figure 1.2 Left. The regression of the exposureX on the outcome Y is translated
into an arrow flowing from X to Y . This arrow is marked by the regression coefficient
c. Right. The regression of X on M can be depicted by an arrow going from X to
M ; this arrow is labelled by the slope parameter a. The simultaneous regression of X
and M on Y can be represented by two arrows: one flowing from X to Y (symbolised
by c′) and one going from M to Y (symbolised by b).

Keeping this in mind, Baron and Kenny (1986) assess mediation in
four consecutive steps:

• The first step tests the null hypothesis that c equals zero. If we
accept this hypothesis, we lack evidence that supports the existence
of a total effect (see left part of figure 1.2). If this is the case, our
analysis ends here. If, however, we can reject this hypothesis, we hold
statistical proof for an arrow going from X to Y ; we can proceed to
the next step.

• The second step tests the null hypothesis that a equals zero. Again,
accepting this hypothesis halts our assessment procedure: we cannot
find evidence for any kind of mediation. Only when we reject this
hypothesis, that is, when there is proof of an arrow going from X to
M , can we proceed to the next step.

• The third step tests the null hypothesis that b equals zero, or equiv-
alently, whether there is an arrow going from M to Y (controlling
for the exposure X). Once again, accepting this hypothesis disrupts
our analysis: there is still not enough evidence to conclude media-
tion. However, if we reject this null hypothesis, we can surmise the
presence of an indirect effect, or equivalently, that mediation has
occurred.
This means that we can only conclude the presence of mediation,
when we reject the null hypotheses from both the second and the
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third step. This can be understood by comparing figure 1.2 to figure
1.1: they are identical, except for the number of arrows that make
up the intervening effect (in figure 1.2 it consists of two arrows,
while there is only one in figure 1.1). Consequently, testing for an
indirect effect will amount to checking the existence of these two
arrows/regression parameters.

• When mediation is concluded, the fourth step categorises the type
of mediation by testing the null hypothesis that c′ equals zero. It
tests whether there is evidence for an arrow going from X to Y ,
while at the same time controlling the mediator M . If we reject this
null hypothesis, we find evidence for a direct effect (see right part of
figure 1.2). In this case, we observe partial mediation: part of the
total effect is mediated, and part of it is not. If we accept the null
hypothesis, on the other hand, we lack evidence for a direct effect
and researchers can claim complete mediation: the entire effect of
exposure on outcome flows through the mediator M .

When all steps have been iterated through and mediation is concluded,
this approach also lets you evaluate the intervening effect itself: it can
either be estimated as the product of the a- and b-paths (i.e. a · b), or as
the difference between the c- and c′-paths (i.e. c− c′). Both the product-of-
coefficients and the difference-of-coefficients approaches will always provide
identical results in linear settings (as was considered here). As you can
imagine, the straightforward way in which Baron and Kenny (1986) assess
and estimate mediation ensured that, to this very day, their work remains
one of the most cited papers in social science literature.

1.1.3 Criticism and improvements
Of course, as do most first attempts, the causal steps approach has received
its share of criticism, and naturally, earned a vast array of suggestions,
improvements and extensions.

For one, the first step mentioned above has proven superfluous, as it is
entirely possible for a mediator to causally appear between the exposure
and the outcome in the absence of a (detectable) association between
both. Since the total effect aggregates all possible paths of influence (both
direct and indirect), a lack of observable association might result from
two or more (in)direct effects cancelling each other out (Collins et al.,
1998; MacKinnon et al., 2000; Preacher et al., 2007). Alternatively, we
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may lack adequate power to detect a significant total effect, which may in
turn result in the incorrect acceptance of this null hypothesis (Preacher
et al., 2007). These considerations suggest that a significant total effect
does not necessarily imply mediation, while a nonsignificant c-path does
not necessarily indicate a lack of it (Zhao et al., 2010).

Two, the approach is not based on a quantification of the very thing it
is attempting to test: the intervening effect (Hayes, 2009). Given that the
indirect effect is quantified as the product of its constituent paths, it seems
only natural to base inference on tests of the product term, rather than on
its composing parts. Generally, Sobel tests are counted on to complement
Baron and Kenny (1986)’s causal steps, even though these wrongfully
assume a normally, rather an an asymmetrically distributed indirect effect
in finite samples. As the skewness and kurtosis of this sampling distribution
often bring about a low power in detecting mediation, Shrout and Bolger
(2002) suggest bootstrapping as a laudable alternative. As such, the main
role for Baron and Kenny (1986)’s equations therefore dwindles down to
deciding on the type of mediation (Zhao et al., 2010):

• Complementary mediation: both the direct and indirect effect are statisti-
cally significant and point in the same direction.

• Competitive mediation: the direct and indirect effect are both statistically
significant, but their effects are facing in opposite directions.

• Indirect-only mediation: only the indirect effect is found to be statistically
significant.

• Direct-only nonmediation: there is no mediation, only a significant direct
effect is found.

• No-effect nonmediation: no significant effects are detected.

Three, the last null hypothesis test in Baron and Kenny (1986)’s causal
steps approach also received several objections. Essentially, it claims that
mediation is strongest when an indirect effect exists in the absence of a
direct effect, even though the strength of mediation ought to be measured
by the size of the intervening effect rather than by the lack of a direct one.
Any unexplained part of the exposure-outcome relationship (rounded up
into the direct effect), simply hints to the existence of other intermediary
variables not (yet) included into the regression models (Zhao et al., 2010).

Four, among the methods for testing intervening variable effects, the
causal steps approach ranks very low in terms of power (MacKinnon
et al., 2002; Hayes, 2009). Due to possible type-II decision errors during
each hypothesis test, it is entirely plausible for an indirect effect to be
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detectably different from zero, even though one of its constituent path
coefficients is not (Hayes, 2009). Moreover, the power associated with the
b- and c′-paths is known to decrease as the exposure-mediator relationship
becomes stronger, while the power to test the indirect effect maximises
when b is equal to or slightly larger than the a-path (Kenny et al., 1998).
Considering these fluctuations in power, minimising the total number of
tests might prove profitable in increasing the overall detection rate for
mediation.

Five, the causal steps approach requires continuous, as opposed to
discrete, values for both mediator and outcome. Continuous data can take
any value within its defined range; examples include a person’s height,
their intelligence, their age, weight, or the time they need to finish a test.
In contrast, discrete or categorical measures can only take a few specific
values. Examples include the number of cats in a litter (as you cannot have
two and a half kittens), the result of a dice roll (the only possible values are
one to six), a person’s eye colour (brown, blue, green, ...), or a test result
(pass or fail). Extending mediation from continuous to categorical measures
redirects us from linear regression models to generalised linear models
(GLM). Although this progression complicates the mediation analysis itself,
it also infinitely increases the number of possible applications and research
areas to which mediation analysis can be applied.

Six, the authors ignore the possible existence of (unmeasured) con-
founders of the exposure-mediator, exposure-outcome, and mediator-out-
come relation. As already mentioned in section 1.1.1, disregarding the
existence of such confounding variables removes any causal interpretation
from regression equations (2.1).

Seven, Baron and Kenny (1986)’s work is also limited to additive
effects on both the mediator and the outcome. As such, the approach
does not support the inclusion of interactions (i.e. product terms), either
between included covariates and the exposure or mediator, or between
the exposure and the mediator themselves. In response, recent literature
suggests the counterfactual framework, which correctly identifies the direct
and indirect effects under a broad variety of conditions (Imai et al., 2010;
Pearl, 2001, 2012; VanderWeele and Vansteelandt, 2009; VanderWeele,
2013). This framework provides a very broad applicability, as it also conve-
niently encompasses the product-of-coefficients approach when mediation
is investigated in additive, linear settings.

Another stingy, yet important, subject entails the extension of me-
diation analysis to multilevel designs. Before we can expand mediation
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to multilevel settings, however, we will first provide some background
knowledge concerning this type of data structure.

1.2 Multilevel Data
In a lot of scientific areas, researchers are often confronted with hierar-
chically structured data. The key feature of such multilevel, nested, or
clustered data is that the objects under study are assembled together in
groups or clusters. These groups define the different levels present within
the data structure; most often, multilevel data are gathered at two different
levels, but theoretically, there is no limit to the number of cluster-levels
you can define. In two-level designs, a lower-level (level-1) is always nested
within an upper-level (or level-2): at the upper-level, information is gath-
ered about the various groups present in the study, while at the lower-level,
measurements are taken from within the groups themselves.

A typical example of clustered data structures is found in educational
studies, where students (level-1) are observed within classrooms (level-2):
at the upper-level, we gather information about the teachers or classrooms,
while at the lower-level, we measure students nested within these classes
(see upper part of figure 1.3). The most important feature of such nested
data is that students who were taught by the same teacher will perform
more alike, compared to students taught by different teachers. This might
result from the specific way in which a teacher transfers knowledge, or
because some subjects might have been focussed on or glossed over during
a lecture, or maybe just because pupils from the same class tend to help
each other out. When going up one level in the hierarchy, classrooms
(level-2) within a school (level-3) will often be more similar, compared to
classes from different schools (see lower part of figure 1.3).

The same reasoning can be applied to within-subject or longitudinal
studies, where individuals (level-2) are measured over several occasions
(level-1): at the upper-level, we gather information about our subjects, while
at the lower-level, we measure multiple time points nested within these
individuals (see figure 1.4). Naturally, measurements taken from within
the same individual will prove more alike, compared to measurements
taken from different subjects. Imagine for example that we are interested
in modelling the number of hits fencers manage to set during a monthly
competition. In this setting, a fencer can be seen as the upper-level (or
level-2), while monthly measurement occasions constitute the lower-level
(or level-1). As such, each monthly score is nested within a specific fencer.
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Class 1 Class 2 Class 3 Class 4

Students

Class 1 Class 2 Class 3 Class 4

Students

School 1 School 2

Figure 1.3 Upper part. In a two-level hierarchical data structure in educational
research, students (level-1 units) are nested within classrooms (level-2 units). Lower
part. In a similar three-level structure, students (level-1 units) are nested within
classrooms (level-2 units), which are in turn nested within schools (level 3 units).

When you think about it, it seems very reasonable that the monthly hit
rate from the same athlete will be more alike, compared to scores from
different fencers. This might be due to a fencer’s (lack of) experience
or tactical insights, result from a chronic injury with which the fencer
struggles, or it might simply be the effect of rigorous training. Put in short,
the monthly scores of a specific fencer will be correlated with each other:
these repeated measures will often show undeniable similarities across
time.

Equivalently, twin studies collect measurements from both siblings
(level-1) within a twin pair (level-2), resulting in very similar data for the
twins, compared to random strangers. Other examples can be found in
ophthalmology, where two eyes (level-1) form natural clusters within an
individual (level-2), or in teratology, where data are gathered from all
members (level-1) within a litter (level-2).

Unfortunately, such correlated data structures present a number of
challenges in the construction, the estimation, as well as the interpretation
of suitable statistical models. To confront these challenges, multilevel
models were developed.
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Individual 1

Individual 2

Occasion 1 Occasion 2 Occasion 3 ...

Occasion 1 Occasion 2 Occasion 3 ...

Figure 1.4 In a two-level clustered data structure in longitudinal research, mea-
surement occasions (level-1 units) are nested within individuals (level-2 units).

1.2.1 Multilevel Models

In past literature, there have been four main strategies through which re-
searchers attempted to deal with clustered data structures. A first strategy
removes the dependencies from the observations by aggregating all lower-
level measures within a cluster, which forces the data into a single-level
structure (e.g., by summarising all time points from one individual into a
single average). As you can imagine, condensing the data in this way may
lead to a substantial loss of both information and power (Snijders and
Bosker, 1999; Raudenbush and Bryk, 2002). A second possibility ignores
any correlations between the lower-level measures and simply analyses
the data through ordinary regression. In our fencing example, this line
of thinking would ignore the dependencies between the scores from the
same fencers and analyse the data as if all measures arose from different
athletes. A third approach starts out like the second (i.e., it analyses the
data through ordinary regression), but subsequently adjusts the estimated
standard errors to correct for any correlation within the data (so-called
Generalised Estimating Equations or GEE, Liang and Zeger (1986)). A
fourth strategy was found in multilevel models, which attempt to model
variation at the different levels of the data structure. Comparing and
reviewing these four options resulted in a general consensus that some of
these approaches hold a number of advantages over others.

First, GEE and multilevel models offer the opportunity to analyse all
levels of the data simultaneously, in contrast to the first two strategies. As
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a convenient result, they allow us to examine the influence of two types of
covariates at the same time (Raudenbush and Bryk, 2002; Snijders and
Bosker, 1999). The first type, a cluster-level or upper-level variable, displays
the same value for all measurements within a cluster. When observing
monthly tournament scores nested within fencers, an example of an upper-
level variable can be found in a chronic injury, the fencer’s handedness,
or gender: these characteristics will remain fixed within a specific fencer
(i.e., they are fixed over time). The second type of covariate fluctuates
across all measurements within a cluster; it is conveniently referred to as
a within-cluster or lower-level variable. When assessing a fencer’s monthly
competition scores, the number of hours of sleep just before the tournament,
muscle spasms, or malfunctioning equipment represent examples of within-
cluster covariates: these features will be present at some occasions, but
not at others (i.e., they fluctuate over time).

Second, as opposed to ordinary regression, GEE and multilevel models
provide correct standard errors and, consequently, appropriate confidence
intervals and significance tests. Since observations from within the same
cluster tend to be more alike than observations from different clusters,
we observe a lower variation within a cluster, compared to data from a
random sample. As traditional regression models have no way of realising
that this decreased variation is due to similarities between lower-level
measurements, they will irrevocably lead to an underestimation of the
standard errors.

Third, in contrast to the other three approaches, multilevel models
allow us to decompose the total variance of the outcome into portions
associated with each level present within the data. For example, when
observing tournament scores with fencers, we can quantify the proportion
of variation in tournament scores caused by differences between individual
fencers, and compare it to the percentage of variation in fencers’ scores
due to differences over time.

The collective weight of these advantages ensured that inappropriate
aggregation of clusters and single level regression of multilevel data, have
become less and less common. GEE, on the other hand, constitutes a
popular alternative to multilevel models, even though both approaches
tend to focus on different research questions: the former extracts population-
averaged effects, while the latter estimates effects within clusters. To allow
the estimation of such cluster-specific effects, several multilevel modelling
frameworks have been developed. One such framework entails mixed-effects
models, which model both the regression parameters common to all clusters
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(i.e., the fixed effects), as well as any parameters specific to a certain
group (i.e., the random effects). Because they integrate both random and
fixed effects, they are conveniently termed mixed-effects models. A second
framework that allows the analysis of multilevel outcomes are Structural
Equation Models (SEM). Since mixed models are used more frequently and
have been around the longest, and realising that, in most cases, SEM is
entirely equivalent to its mixed-effects counterpart in the absence of latent
variables, we will focus on the former. Multilevel models can be categorised
into two different types, according to the distributional assumptions of the
dependent variable. When the outcome variable is normally distributed,
we end up with Linear Mixed Models (LMMs), while Generalised Linear
Mixed Models (GLMMs) are called upon when it is not. Let us take a
closer look at each of these models in turn.

1.2.1.1 Linear Mixed Models

Intuitively, Linear Mixed Models or LMMs can be seen as an extension
of the linear regression model from section 1.1 to correlated outcomes.
Let us demonstrate the LMM by formulating a statistical model for a
variable measured within-subjects: a fencer’s monthly tournament score,
scoreij . In this notation, j (j = 1...J) indexes a specific fencer, while
i (i = 1...I) represents the particular month at the end of which the
tournament takes place. Suppose we aim to model and predict these scores
in terms of a newly developed training program. At the beginning of
every month, the trainer who implements this new program picks out a
number of fencers that need to attend the training sessions this month.
Since program participation varies from month to month (e.g., a specific
fencer gets to participate one month but not the next), this predictor
represents a time-varying or within-cluster covariate (see section 1.2.1).
Consequently, it ought to be able to change over fencers and measurement
moments: training program, programij , is indexed by both i and j. To
specify whether an athlete follows the training program during a specific
month, the variable programij will equal one when fencer j participates
during month i, and zero otherwise.

At the lower-level (i.e., the measurement occasion), the regression
equation for tournament scores can be written as follows:

scoreij = β0j + β1jprogramij + εij (1.3)

In this multilevel equation, β0j encodes the intercept, while β1j represents
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the regression slope for programij . The lower-level residuals εij are assumed
to be normally distributed with mean zero and variance σ2

e . As you can
see, the major difference from a single level regression model (see section
1.1) is that we assume a different intercept and slope for each fencer.
This is indicated by the subscript j (indexing fencers) present in both
the intercept and slope parameters. Keeping this in mind, the intercept
β0j can be interpreted as the average score for fencer j when he or she
did not partake in training (i.e., when programij equals zero, the average
hit score becomes β0j + β1j · 0 = β0j). Similarly, the average number
of hits for fencer j when he or she did partake in training will equal
β0j + β1j · 1 = β0j + β1j). As such, the β1j-slope coefficient represents the
effect of the training program in fencer j. Since β0j (β0j +β1j , respectively)
represents the average score for fencer j for a month where the athlete
did (respectively, did not) partake in training, the lower-level residual
εij indicates the deviation of that month’s score from this average. For
this reason, the variance of the lower-level residuals, σ2

e , will express the
amount of variation (i.e., deviations from the mean) that exists within
fencers.

Because both the intercept and slope are allowed to change across
fencers, the next equations explain their variation at the upper-level (i.e.,
the subject-level):

β0j = γ0 + u0j (1.4)
β1j = γ1 + u1j (1.5)

The upper-level error terms u0j and u1j are assumed to have a zero
mean, with respective variances σ2

u0 and σ2
u1, and a covariance of σu01. Ad-

ditionally, these are assumed to be independent of the lower-level residuals,
as well as the lower-level predictor, programij . Since these upper-level
residuals, u0j and u1j , are assumed to be randomly drawn from a mul-
tivariate normal distribution, equation (1.4) is often referred to as the
random intercept, while equation (1.5) is designated a random slope.

Upper-level equation (1.4) predicts the random intercept β0j (i.e., the
average hit score for fencer j in months without training) by means of an
intercept, γ0, and an upper-level residual, u0j . The γ0-parameter represents
the mean hit score during months without training, averaged across fencers.
Consequently, for months without training, the upper-level residual u0j
denotes the deviation of fencer j’s mean score from the global average
γ0. The variance of this residual, σ2

u0, will hence express the amount of
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variation in hit scores that exists between fencers.
Equivalently, upper-level equation (1.5) predicts the effect of training

on fencer j’s hit scores, by means of an intercept, γ1, and an upper-level
residual, u1j . The γ1-parameter represents the mean effect of training on
tournament scores, averaged across fencers. Consequently, the upper-level
residual u1j denotes the deviation of the effect of training in fencer j from
the global average γ1. The variance of this upper-level residual, σ2

u1, will
hence express the amount of variation in the effect of training that occurs
between fencers.

Combining both upper-level equations (1.4)-(1.5) with the lower-level
equation for tournament scores (equation (1.3)), provides us with a more
compact, composite model:

scoreij = γ0 + u0j + (γ1 + u1j)programij + εij (1.6)

We clearly see that the fencers’ monthly tournament scores are predicted
by a fixed component that is common to all athletes (the γ0-parameter),
alongside a fencer-specific random component that varies across individuals
(u0j). Additionally, the hit scores are predicted in terms of an independent
variable programij , where the effect of this variable is partitioned into two
pieces: an average program effect common to all fencers (γ1) and a random
fencer-specific slope that varies across individuals (u1j). This flexibility in
modelling the monthly scores in terms of the different levels of the data
constitutes an undeniable perk of mixed-effect models (i.e., combining
both fixed- and random effects).

1.2.1.2 Generalised Linear Mixed Models

While the above-introduced LMM represents an extension of the linear
regression model, the Generalised Linear Mixed Model or GLMM similarly
broadens the Generalised Linear Model (GLM) to multilevel data. For
single level data, the GLM’s major contributions to statistics include
logistic- and probit-regression of binary outcomes, as well as Poisson
regression for count data. Of course, similar to linear regression models,
GLMs are only suited for the analysis of independent data structures.
Hence, we introduce the GLMM, which is capable of modelling both
random- and fixed effects for correlated categorical outcomes. In this
thesis, we primarily focus on binary dependent variables, as this type of
outcome is very popular amongst applied researchers, and as a result, has
been studied most extensively.
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Let us define such a binary outcome variable based on the illustrating
example that we introduced before. Suppose that, rather than focussing
on their monthly scores, we instead look at whether or not the fencers are
happy about their performance that month. This new dependent variable,
happyij , provides a prototypical example of a binary response, as it relays
but two possible outcomes: either fencers are happy with their monthly
performance (i.e., happyij = 1), or they are not (i.e. happyij = 0). Because
this dependent variable can only ever obtain a value of zero or one, we
cannot hope to appropriately fit a model where the outcome values are
allowed to span the entire continuous scale (as in equation (1.6)). For
this reason, we will not attempt to predict the binary outcome itself, but
rather, we will model the monthly probability of a fencer being happy
about his/her performance. At the lower-level, the GLMM equation for
the happiness-outcome can be written as follows:

g[P (happyij = 1)] = β0j + β1jprogramij (1.7)

In this generalised multilevel regression equation, the parameter coefficients
are defined as they were before: β0j encodes the intercept, while β1j
represents the regression slope for programij . The upper-level equations
for β0j and β1j are again defined as in equations (1.4)-(1.5). Additionally,
g represents the link function between the monthly probability of a fencer
being happy, P (happyij = 1), and the linear predictor on the right. Most
often, for a binary outcome, g is defined by either the logit- or the probit-
link. For the logit-link, equation (1.7) becomes:

logit[P (happyij = 1)] =β0j + β1jprogramij

⇐⇒ log

[
P (happyij = 1)
P (happyij = 0)

]
= β0j + β1jprogramij

⇐⇒ P (happyij = 1)
P (happyij = 0)

= eβ0j+β1jprogramij

⇐⇒ Odds(happyij = 1) = eβ0j+β1jprogramij (1.8)

As such, the odds of fencers being happy with their monthly scores
(with the odds defined as the probability of being happy, divided by the
probability of disappointment), are modelled in terms of an exponential
function. This rather complicated expression looks meaner than it is, since
the odds of being happy when the fencer did not partake in training the
previous month, will simply equal eβ0j+β1j ·0 = eβ0j . Equivalently, the
monthly odds of being happy when the fencer did partake in training, will
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equal eβ0j+β1j ·1 = eβ0j+β1j .
Equivalently, for the probit-link, equation (1.7) becomes:

probit[P (happyij = 1)] = β0j + β1jprogramij

⇐⇒ Φ−1[P (happyij = 1)] = β0j + β1jprogramij

⇐⇒ P (happyij = 1) = Φ[β0j + β1jprogramij ] (1.9)

Where Φ represents the cumulative standard normal distribution. As such,
a fencer’s probability of being happy with his or her monthly performance
is modelled in terms of a cumulative standard normal function. Again,
this expression can be interpreted by filling in the two possible values for
training program; when fencer j did not partake in training during month
i (i.e., when programij = 0), the monthly probability of being happy with
his/her performance will equal Φ(β0j + β1j · 0) = Φ(β0j). Equivalently,
when fencer j did follow the training program in month i (i.e., when
programij = 1), the monthly probability of being happy with his or her
performance, will equal Φ(β0j + β1j · 1) = Φ(β0j + β1j).

A more intuitive explanation of the GLMM considers the observed
binary variable happyij as a coarse representation of an underlying con-
tinuous variable performanceij (e.g., a score ranging from −∞ to +∞).
In doing so, we can specify the relationship between the latent (i.e. un-
observed) variable performanceij and the observed variable happyij , by
defining a threshold model:

happyij = 1 if performanceij > 0 (1.10)

In other words, happyij will equal one when the unobserved monthly perfor-
mance is positive, while happyij will equal zero when performanceij 6 0.
Because performanceij , unlike happyij , is defined on a continuous scale,
it can be expressed as a linear combination of the predictors (as in section
1.2.1.1):

performanceij = β0j + β1jprogramij + εij (1.11)

In this multilevel regression equation for the latent outcome variable, the
interpretation of all parameters is similar to the ones explained in the
previous section: β0j encodes the random intercept, while β1j represents
the random slope for programij . Contrary to section 1.2.1.1, however,
performanceij is defined as a hypothetical construct and is never actually
observed. Because of this, the scale of the corresponding lower-level residu-
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als, εij , cannot be estimated and may therefore be chosen arbitrarily, where
different choices will consequently lead to different modelling strategies.
As it turns out, defining the distribution of εij as standard logistical with
variance σ2

ε = π
3 , proves equivalent to selecting the logit-link function in

equation (1.7). Alternatively, defining εij as standard normally distributed
with variance σ2

ε = 1, will effectively implement the probit-link.

1.2.2 Challenges to multilevel modelling
Now that we have introduced the basics to multilevel modelling, it seems
only reasonable to mention several of the challenges these models expe-
rience. A first difficulty relates to the inclusion of more than two levels
into the data hierarchy. Since the complexity of the modelling process
increases with each level that is additionally included, researchers often
limit the number of hierarchical structures to two. This strategy may force
scientists to overlook some dependencies present within the data, leading
to suboptimal estimation processes.

Another challenge involves the number of random effects included into
a multilevel model: as this number increases (e.g. a random slope for each
included predictor), the complexity of the model and its corresponding
interpretation will inflate correspondingly. Fortunately, for a lot of studies,
modelling a random intercept without any random slopes suits the data
just fine. Also, when there are but a scant number of units within each
cluster, the amount of random effects that can be identified is limited. In
such cases researchers may often stick to a random-intercept model with
fixed, rather than random slopes. For the example in section 1.2.1.1, this
would imply that the effect of the training program will be the same for
every fencer (i.e., a fixed slope parameter).

Another challenge that multilevel models face, involves the possible
existence of unmeasured confounding at the upper-level. As such confound-
ing presents difficulties not so easily addressed, we will discuss this issue
next.

1.2.2.1 Unmeasured upper-level confounding

Let us get back to the example introduced in section 1.2.1.1, where we
looked at the effect of a new training program on the monthly tournament
scores of fencers. This one-month program assignment can be appointed
in a systematic or a non-systematic way. The latter option would imply
that training is randomly appointed every month, e.g. by flipping a coin
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to decide whether or not a fencer is assigned to the one-month program.
As training assignment is completely arbitrary in this case, fencers will
not have any impact on program participation. In contrast, during a
systematic designation of training, the fencers’ characteristics will, in
some way, influence the assignment process. Imagine for example that the
athletes have to submit a letter of motivation to express their participation
wishes. If this is the case, a fencer’s overall motivation and general ambition
towards reaching the Olympics may very well affect his or her efforts during
this selection process. This would imply that being selected for training
will implicitly depend on the fencer’s general ambition (see the arrow
pointing downwards to the left in figure 1.5).

Besides the effect that the fencers’ ambition has on program partici-
pation, it seems equally likely that this internal motivation will permeate
through to their efforts in general. As such, the fencers’ ambition is likely
to also influence their scores in the monthly competition (see the arrow
pointing downwards to the right in figure 1.5). In summary, when program
assignment occurs through motivational letters, the fencers’ overall moti-
vation and ambition (motivationj , a level-2 variable) may influence both
their participation in the program as well as their monthly tournament
scores (see figure 1.5)1.

Fencer-level

Month-level

programij scoreij

ambitionj

Figure 1.5 In a two-level data structure where monthly scores (level-1 units)
are nested within fencers (level-2 units), both program participation programij and
monthly tournament scores scoreij (measured at the lower-level), may be influenced
by the fencers’ ambition ambitionj (a confounder at the upper-level). When this
subject-level variable is not accounted for in a multilevel analysis, results may suffer
from an omitted-variable bias.

This provides a straightforward example of an upper-level confounder: a
level-2 variable that simultaneously influences both the exposure, programij ,

1Note that this graph does not represent a mediation process, as this would imply
an arrow pointing from programij to ambitionj , instead of the other way round.
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and the outcome, scoreij . When such confounding is present within the
data, it can distort any causal pathway that exists between two variables.
If this confounder is measured and included into the multilevel model,
its distorting influence can be accounted for and poses no substantial
problems. However, when the upper-level confounder remains unmeasured,
it cannot be included into the model and will be assimilated into the
upper-level error term of the random intercept (i.e., u0j in the previous
section). Here lies the true issue, since we stated in section 1.2.1 that the
upper-level residuals ought to be independent of the predictors. Absorbing
ambitionj into the random intercept will induce a dependency between the
upper-level residual, u0j , and program participation, programij , thereby
violating the independence assumption. This correlation may result in an
omitted variable bias for the coefficient of training program, which may in
turn lead to an over- or underestimation of the random intercept variance
σ2
u0.

1.2.2.2 Dealing with unmeasured upper-level confounding

Covariates correlated with error terms are often labelled endogeneous in
econometrics (Wooldridge, 2010), suggesting that predictors correlated
with the upper-level residuals can be appointed as ‘upper-level endogeneous’.
The most popular way of dealing with such upper-level endogeneity is
to separate lower-level covariates into a within- and between-cluster part
(Neuhaus and Kalbfleisch, 1998). The between-cluster component of a lower-
level variable is defined by its cluster means, while its within-cluster part is
outlined by the within-cluster deviations from these means. Scientists also
refer to this approach as centring the data within clusters: each lower-level
measure is centred according to the mean value in its cluster. In terms of our
example, the between-cluster component of program assignment is defined
as the mean value of programij , averaged within a fencer: programj . This
variable is only indexed by fencer j, since it is averaged over all monthly
measurements within the athlete. Since training represents a dichotomous
variable (with value one or zero), this cluster mean can also be interpreted
as the percentage of months where fencer j was engaged in training (i.e.,
the proportion of months where programij = 1). If this percentage is high
(i.e., it is close to one), the athlete in question will have been assigned to
the program during most months; if this percentage is close to zero, on the
other hand, fencer j will have attended a limited number of one-month
training sessions.

The cluster-mean deviations can in turn be interpreted as the difference
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between fencer j’s program assignment during month i, and the average
training percentage within that fencer: programij − programj . Conse-
quently, months where a fencer did not partake in training will exhibit a
negative within-cluster deviation (i.e., 0− programj), while months that a
fencer did follow training will produce positive values (i.e., 1− programj).
For now, we focus on linear settings; when applying within-cluster centring
to equations (1.3)-(1.4), we end up with:

scoreij = β0j + β1j(programij − programj) + eij (1.12)
with:

β0j = γ00 + γ01programj + u0j (1.13)
β1j = γ10 + u1j

Since the within-subject deviations arise through subtraction of the between-
cluster component, programj , from the original variable, programij , this
computation will effectively remove any upper-level variation. As such,
the within- and between parts of training are completely independent
of each other. More importantly, the within-cluster part of training,
programij − programj , will be uncorrelated with all upper-level vari-
ables, whether they are measured or remain unmeasured. Because of this,
the fencer-centred scores of training will not be correlated with the random
intercept, which implies that the regression slope β1j will not show any
bias in these linear settings, even in the presence of upper-level endogeneity
(depending on the true underlying model). The same does not hold for
the slope parameter γ01, as the cluster means exist at the upper-level and
can therefore still correlate with possible upper-level confounders. As such,
in the presence of possible upper-level endogeneity, researchers advise to
separate any lower-level variables into their respective within- and between
parts, and to subsequently focus on the regression coefficient belonging
to the within-cluster deviations. This way, the challenges introduced by
unmeasured upper-level confounding can be adequately dealt with.

So far, we introduced two major statistical concepts, mediation and
multilevel data. Combining both catapults mediation into a multilevel
setting, where multilevel mediation faces its own challenges and issues.
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1.3 Multilevel Mediation

When generalising mediation from independent to multilevel data struc-
tures, we can discern three different types based on the measurement level
of all variables involved. The first type is termed upper-level mediation, be-
cause both the exposure and mediator are measured at the upper-level; the
outcome is the sole variable to show variation at the lower-level (see upper
panel of figure 1.6). Alternatively, it is also referred to as 2-2-1 mediation,
corresponding to the measurement level of the exposure, the mediator, and
the outcome, respectively. Since all the arrows in this mediation model
originate from upper-level variables (and keeping in mind that random
slopes are only possible for lower-level predictors), all path coefficients, a,
b, and c′, are fixed by design. An example of such a mediation analysis
considers a program assignment that is fixed over time (i.e., a fencer is
either assigned to the new program or not, irrespective of the measurement
occasion); this way, the exposure is measured at the upper- instead of the
lower-level (i.e., exposure programj , instead of programij). This training
program may in turn permantly increase the fencers’ general tactical in-
sights (the mediator tacticsj), thereby indirectly increasing their scores on
the monthly tournament (the outcome scoresij ; see upper panel of figure
1.7).

A second type of mediation is referred to as lower-level mediation of
an upper-level effect or 2-1-1 mediation. Here, the exposure is measured
at the upper-level, while both the mediator and the outcome exist at
the lower-level (see middle panel of figure 1.6). Now, the arrows in this
mediation model no longer exclusively originate from upper-level variables;
since the arrow pointing from the mediator to the outcome represents a
lower-level effect, path coefficient bj is allowed to vary across individuals.
Referring back to our example, a training program that is fixed over time
(the exposure programj) may affect the fencers’ monthly tournament
scores (the outcome scoreij) indirectly by increasing the fencers’ monthly
precision (the lower-level mediator precisionij). Such a mediation process
can be summarised by the middle panel in figure 1.7.

Finally, the third type of mediation is termed lower-level mediation of
a lower-level effect or, alternatively, 1-1-1 mediation. Here, the exposure,
the mediator, as well as the outcome are all measured at the lower-level
(see lower panel of figure 1.6). In this type of mediation model all arrows
originate from lower-level variables, implying that all path coefficients, aj ,
bj , and c′j , may vary across individuals. To illustrate this type of multilevel
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level-2

level-1

2-2-1 Mediation

X M

Y
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b

c′

level-2

level-1

2-1-1 Mediation

X

M Ybj

a

c′

level-2

level-1

1-1-1 Mediation

X M Yaj bj

c′j

Figure 1.6 Upper pannel: Upper-level mediation considers a multilevel medi-
ation setting where both the exposure and mediator are measured at the upper-level.
The outcome is the only variable measured at the lower-level. Middle panel: Lower-
level mediation of an upper-level effect exists when the exposure is measured at the
upper-level, while the mediator and outcome are measured at the lower-level. Lower
panel: Lower-level mediation of a lower-level effect occurs when all variables are
measured at the lower-level. The circles around the path coefficients announce the
possible existence of random slopes.

mediation, we need the exposure, mediator, as well as the outcome to exist
at the lower-level and vary across time. As such, the training program
again needs to be attributed monthly rather than staying fixed within
fencers (the exposure programij). Consequently, this program may affect
the fencers’ monthly tournament scores (the outcome scoreij), by indirectly
targeting their hand precision (the mediator precisionij). This example of
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lower-level mediation of a lower-level effect is rehashed in the lower panel
of figure 1.7.

fencer-level

month-level

2-2-1 Mediation

programj tacticsj

scoreij

a

b

c′

fencer-level

month-level

2-1-1 Mediation

programj

precisionij scoreijbj

a

c′

fencer-level

month-level

1-1-1 Mediation

programij precisionij scoreijaj bj

c′j

Figure 1.7 Upper panel: 2-2-1 mediation occurs when we aim to asses whether
or not the effect of a time-invariant training program (the exposure programj) on the
monthly tournament scores (the outcome scoreij) is mediated by the fencers’ technique
(the mediator techniquej). Middle panel: Assessing if the effect of a time-invariant
program (exposure programj) on the fencers’ monthly scores (the outcome mathij)
is mediated by their monthly hand precision (the mediator presicionij), exemplifies
a 2-1-1-type mediation. Lower panel: 1-1-1 mediation occurs when the effect of
a time-varying program (exposure programij) on the fencers’ tournament scores
(the outcome scoreij) is mediated by their monthly hand precision (the mediator
precisionij).

In order to try and estimate the intervening effect in 1-1-1 mediation
settings (see lower panel of figure 1.6), Kenny et al. (2003) suggested to
extend the product-of-coefficients approach to correlated data structures.
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This entails a slight modification of the original formula:

indirect effect = E(aj)E(bj) + σajbj (1.14)
= ab+ σajbj (1.15)

Here, a and b represent the mean values of the path coefficients from
section 1.1.2, averaged across clusters. Additionally, a term is included that
represents the covariance between both random effects, σab. Conveniently,
this formula can also be applied to other multilevel mediation settings, by
realising that when either the a- or the b-arrows are fixed (i.e., they do
not vary between clusters as random slopes), there will be no covariance
between both coefficients and σab will equal zero. However, when there is a
random slope for both pathways, this term may differ from zero and needs
to be included in order to correctly assess the intervening effect. Since
2-2-1 mediation precludes random slopes by design (see upper panel figure
1.5), the covariance between a and b will be zero and the intervening effect
will revert back to the original formula ab. Similarly, since there may only
ever exist a random slope for bj in 2-1-1 mediation (see middle panel in
figure 1.5), the covariance term also proves irrelevant; the mediated effect
will again be defined by ab. In contrast, this covariance term may not
necessarily equal zero for 1-1-1 mediation, since this setting may include a
random slope for both the a- and b-paths (see lower panel of figure 1.5).
In this setting, the intervening effect needs to account for the possible
covariance of random slopes: the indirect effect will equal ab+ σab.

1.3.1 Challenges to lower-level mediation of a lower-level
effect

Because of the additional complexity provided by 1-1-1 mediation models
(from now on also referred to as lower-level or within-subject mediation),
this type of multilevel mediation will be the major focus of this thesis.
Although the above-mentioned extension of the product-of-coefficients
approach to multilevel models provides an elegant solution to estimating
the indirect effect, it seems unable to address several issues.

For one, causal mediation analysis has traditionally been formulated,
understood, and implemented within a fixed set of linear (mixed) models.
Consequently, the formula provided by Kenny et al. (2003) cannot offer a
general definition of the direct and indirect effects beyond their specific
set of linear mixed models. For this reason, we intend to rely upon a single
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framework that enables the definition, identification, and estimation of the
causal mediation effects, without reference to a specific statistical model:
the counterfactual framework. Within this framework, it is possible to
define and identify different types of effects, e.g. a controlled versus a
natural direct effect. In this thesis, we focus on the latter; we will introduce
and explain the concept of counterfactuals and natural effects within the
next chapter.

Two, when random effects tend to covary, this suggests the presence of
unmeasured upper-level confounders. In section 1.2.1 we saw that random
effects represent unexplained variance at the upper-level, summarised
through the upper-level residuals. These residuals can be interpreted as
upper-level variables that influence the dependent variable, but are not
(yet) included into the multilevel model. As such, a random intercept can
be interpreted as an unmeasured upper-level variable that influences the
dependent variable, while a random slope represents an interaction between
an unmeasured upper-level variable and the lower-level covariate it belongs
to. So when we are, for example, confronted with a random intercept forM ,
this suggests the existence of at least one unmeasured level-2 variable that
influences the mediator. Equivalently, a random intercept for Y strongly
implies the presence of one or several unmeasured upper-level variables for
the outcome. As such, a covariance between both random intercepts can
only be non-zero in the presence of an unmeasured upper-level variable
that affects the mediator and outcome simultaneously (i.e., a confounder).
As we saw in section 1.2.2.1, such upper-level endogeneity may result in an
omitted variable bias for the coefficients in the model for the outcome. To
account for such upper-level endogeneity of the mediator-outcome relation,
we need appropriate estimation techniques that allow unbiased estimation
of the mediation effects in the presence of such confounding.

Three, equivalent to the product-of-coefficients approach in single level
settings, its extension to clustered data does not provide clear guidelines
on how to tackle interaction terms. This imposes a major limitation to
assessing mediation in multilevel settings, as interactions are as common
here as they are in their single level counterparts. Hence, most researchers
would more than welcome practical instructions on how to assess and
estimate the intervening effect for multilevel mediation in the presence of
both upper-and lower-level interactions.

Four, the formula depicted in equation (1.14) assumes continuous values
for both the mediator and the outcome. Extending multilevel mediation
from continuous to categorical measures redirects us from linear mixed
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models (LMMs) to generalised linear mixed models (GLMMs), as discussed
in sections 1.2.1.1 and 1.2.1.2. To this day, methodological research concern-
ing multilevel mediation analysis for categorical, and more specifically for
binary mediators and outcomes, is relatively sparse. However, since a lot of
research and applications rely on categorical measures, reliable assessment
of mediation in binary settings would make a refreshing addition to current
literature.

Five, although often ignored, the validity of estimation models and nu-
merical optimisation techniques often rely on a specific set of assumptions
(e.g., the absence of unmeasured upper-level confounders) or approxima-
tions (e.g., the Laplace approximation). If those assumptions are not met
or if the approximations prove suboptimal, the corresponding modelling
procedures may provide biased and/or inefficient parameter estimates.
Consequently, figuring out which estimation models (and their respective
implementations in various software packages) provide valid estimates for
the indirect effect under which circumstances, makes up an important part
of evaluating existing approaches that assess multilevel mediation.

Six, when reviewing multilevel data structures, we have not yet con-
sidered sample sizes. In clustered data, we have to define sample size at
all levels of the hierarchy: we have to look at the number of upper-level
units, as well as the number of lower-level units nested within each cluster.
Whereas a small upper-level sample size exhibits the same limitations
found in single level analysis, lower-level sample sizes will introduce prob-
lems more specific to multilevel data. The smallest possible cluster size
entails but two observations within each group, and although this seems
extreme, such data structures are very frequently encountered in prac-
tice. The most common applications are seen in dyadic family studies,
ophthalmology, twin studies, or when analysing measurements from a
2-period - 2-treatment crossover design. These multilevel designs deserve
special attention as they often introduce difficulties during the estimation
of multilevel models. More specifically, this translates in issues with model
convergence, in identification difficulties concerning the random effects,
or even in bias for the parameter coefficients. As such, studying small
cluster-sizes deserves a special mention in multilevel data analysis.

1.4 Goal of this thesis
In this thesis, we want to provide applied researchers with a concrete set
of guidelines on how to assess within-subject mediation from a counter-
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factual point of view, when confronted with one of several issues. These
issues include (1) dealing with unmeasured upper-level confounding of the
mediator-outcome relation, (2) appropriate inclusion and assessment of
multilevel mediation in the presence of interaction terms, (3) assessing
mediation in multilevel settings with binary measures, and (4) exploring
which estimation technique provides the best overall performance (i.e.,
in terms of bias and efficiency) under a broad variety of settings (with a
special focus on small sample sizes).

Chapter 2 addresses multilevel mediation in linear settings from a
counterfactual point of view, where a mere two observations for each
cluster are observed within AB/BA crossover designs. We compare dif-
ferent estimations models, as well as the assumptions they rely on, and
demonstrate that the intervening effect can be identified in some models,
but not in others, in the presence of unmeasured upper-level confounding
of the mediator-outcome relationship.

In chapter 3, we continue exploring mediation analysis within linear
multilevel settings, but now additionally focus on the inclusion of lower-level
interaction terms. To this end, we compare several estimation techniques
that differ in their centring of lower-level interactions, in terms of bias
and efficiency. We observe that unmeasured upper-level endogeneity of
the mediator-outcome relation can lead to biased parameter coefficients
for the interaction coefficient, when the lower-level variables are centred
inappropriately. In addition, some centring approaches provide all-round
more precise estimation, compared to others.

In chapter 4 we temporarily digress from multilevel mediation in prepa-
ration for chapter five. In contrast to the precious two chapters, we venture
into the world of binary multilevel outcomes. We attempt to assess which
estimation models (and implementation procedures) perform best when
modelling binary outcomes in small clusters, under a vast array of settings.
The estimation procedure that best survives our performance assessment
is consequently chosen to lay the basis of the last chapter.

In chapter 5 we redirect our attention to multilevel mediation, but now
we focus on binary instead of continuous measures for the outcome. We
compare the performance of several estimation models for binary data
that allow assessment of multilevel mediation from a counterfactual point
of view , while considering small cluster sizes and varying settings. Again,
we evaluate the impact of unmeasured upper-level confounding of the
mediator-outcome relation on the estimation of the intervening effect.

In a final chapter, we recap and summarise the previous chapters
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in a brief discussion. Here, we aim to postulate specific instructions and
warnings to practical researchers, as to which multilevel mediation methods
to rely on under which circumstances.
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2 Within-subject mediation
analysis in AB/BA
crossover designs

Abstract. Crossover trials are widely used to assess the effect of
a reversible exposure on an outcome of interest. To gain further
insight into the underlying mechanisms of this effect, researchers
may be interested in exploring whether or not it runs through a
specific intermediate variable: the mediator. Mediation analysis in
crossover designs has received scant attention so far and is mostly
confined to the traditional Baron and Kenny approach. We aim
to tackle mediation analysis within the counterfactual framework
and elucidate the assumptions under which the direct and indirect
effects can be identified in AB/BA crossover studies. Notably, we
show that both effects are identifiable in certain statistical models,
even in the presence of unmeasured time-independent (or upper-
level) confounding of the mediator-outcome relation. Employing
the mediation formula, we derive expressions for the direct and
indirect effects in within-subject designs for continuous outcomes
that lend themselves to linear modelling, under a large variety of
settings. We discuss an estimation approach based on regressing
differences in outcomes on differences in mediators and show how
to allow for period effects as well as different types of moderation.
The performance of this approach is compared to other existing
methods through simulations and is illustrated with data from a
neurobehavioral study. Lastly, we demonstrate how a sensitivity
analysis can be performed that is able to assess the robustness
of both the direct and indirect effect against violation of the “no
unmeasured lower-level mediator-outcome confounding” assumption.

This chapter is based on Josephy, H., Vansteelandt, S., Vanderhasselt, M.-A.,
& Loeys, T. (2015). Within-subject mediation analysis in AB/BA crossover designs.
International Journal of Biostatistics, 11(1): 1-22.
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2.1 Introduction
The concept of mediation has received a great deal of attention during
the last couple of decades, with Baron and Kenny (1986) among the
first to scratch the surface of this vast realm. These authors presented
a causal-steps approach to establish whether or not a variable serves
as the generative mechanism, through which an independent variable
(subsequently referred to as the ‘exposure’ X) influences a dependent
variable of interest (the ‘outcome’ Y ). Any such ‘mediator’ variable may
help to clarify the nature of the relationship between exposure and outcome.
The question of whether or not the causal effect of exposure X on outcome
Y (partly) runs through a mediatorM , can be verified by decomposing the
total effect of X on Y into a direct and an indirect effect (see figure 2.1).
The traditional Baron and Kenny framework, which assumes independent
observations of X, M and Y (with the latter two measured at the interval
level), relies on three regression equations:

Y = iY 1 + cX + eY 1

M = iM + aX + eM

Y = iY 2 + c′X + bM + eY 2 (2.1)

Figure 2.1 Decomposition of a total effect (of exposure X on outcome Y ) into a
direct (not through the mediator M) and an indirect effect (through the mediator
M), by means of mediation analysis.

The above mentioned direct effect is conventionally captured by c′,
which is justified provided all relations in the path diagram in figure
2.1 are linear and satisfy a specific set of ‘no unmeasured confounders’-
assumptions (Loeys et al., 2013). The indirect effect, on the other hand,
can be obtained either by means of the product-of-coefficients approach
(as a product of its constituent path coefficients, ab) or by means of the
difference-of-coefficients approach (c− c′). Both estimators are equivalent
in linear models (Mackinnon and Dwyer, 1993).

In AB/BA crossover studies, where each participant is observed ex-
actly twice (once under exposure A and once under B, see figure 2.2),
observations are no longer independent and exhibit a multilevel structure
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(where the subject is considered the upper-level and the measurement
moment the lower-level). Such AB/BA crossover trials are ubiquitous, as
they can effectively eliminate between-patient variation from the data
(Senn, 2002). Unfortunately, when it comes to decomposing the total ef-
fect, the mediation analysis literature has almost exclusively relied on
extending the product-of-coefficients approach to multilevel settings (Judd
et al., 2001; Kenny et al., 2003; Bauer et al., 2006; Raykov and Mels, 2007;
Preacher et al., 2010; Pituch and Stapleton, 2012), without due attention
to the interpretation of the effects as direct and indirect effects, and to
the underlying assumptions needed to identify these.

Figure 2.2 The mechanism of a simple AB/BA crossover design. Each treatment
(treatment A and B) is administered during one of two periods, the sequence of which
(sequence AB or BA) is determined during randomisation.

To surmount these limitations, this paper will tackle mediation analysis
in crossover designs from a counterfactual perspective. This framework has
proven useful in explicating the assumptions underlying mediation analysis,
and in identifying the direct and indirect effects of interest (Pearl, 2001;
VanderWeele and Vansteelandt, 2009; Imai et al., 2010; VanderWeele, 2010;
Pearl, 2012). In section 2.2, we start by defining counterfactual outcomes in
the AB/BA design, introduce non-parametric expressions for the direct and
indirect effect, and discuss the assumptions needed to identify both effects.
Subsequently, we derive expressions for these effects under a simple data-
generating mechanism that satisfies these assumptions. In section 2.3, we
discuss Judd et al. (2001)’s difference approach alongside three multilevel
approaches for the assessment of within-subject mediation in this simple
setting. Next, we consider more complex data-generating mechanisms
involving a variety of interactions (section 2.4), introduce an extension of
the difference approach to accommodate such moderation and compare the
relative performance of the different estimation approaches in a simulation
study (section 8). Furthermore, employing data from a crossover experiment
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that evaluates the effect of neurostimulation on ruminative thinking, we
illustrate how the different estimation techniques may lead to contrasting
conclusions about the indirect effect running through the working memory
(section 2.6). Additionally, since we will show in the subsequent section
that mediation analysis in crossover settings relies on the assumption of
‘no unmeasured lower-level M -Y confounding’, we develop a sensitivity
analysis method. This analysis appraises the robustness of the estimated
direct and indirect effect against violations of this assumption, and can
easily be embedded within our proposed estimation framework. We end
with a discussion.

2.2 Specification of the natural direct and indi-
rect effect in within-subject mediation mod-
els

2.2.1 The counterfactual framework

In order to formalise the notion of direct and indirect effects, we introduce
counterfactual outcomes in AB/BA crossover settings. A ‘counterfactual’
or ‘potential outcome’ Yit(x) denotes the outcome that we would (possibly
contrary to fact) have observed for individual i at the end of period t,
had the exposure Xit been set to a value x through some manipulation
(Rubin, 1978). Since the AB/BA design dictates a dichotomous exposure
(with a value 0 for baseline exposure or no exposure, and 1 otherwise),
each subject is tied to exactly two potential outcomes during a specific
period: Yit(0) and Yit(1). With these definitions, the individual period-
specific total effect of X on Y is defined as the difference between both
counterfactuals: Yit(1)− Yit(0). Since only one of both potential outcomes
is actually observed for each individual during period t, the period-specific
individual total effect is unobserved. In contrast, the population average
of the total causal effect E[Yit(1)− Yit(0)] can be identified under specific
assumptions (cf. infra).

Similarly, counterfactuals for the mediator, Mit(0) and Mit(1) can be
defined. These represent the mediator values for an individual during period
t, under exposure 0 and 1 respectively. Relying on these definitions, a nested
counterfactual Yit(x,Mit(x∗)) can be devised (Robins and Greenland, 1992;
Pearl, 2001). It represents the value for the outcome Yit, when Xit is set
to x and Mit is fixed at the value it would obtain when Xit = x∗. Nested
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counterfactuals allow us to rephrase the average period-specific total effect
of X on Y , to include the mediator: E[Yit(1,Mit(1))− Yit(0,Mit(0))] =
E[Yit(1)− Yit(0)]. This moreover allows the partitioning of a total causal
effect into a direct and indirect effect. Such effect decomposition can occur
in two ways: one possibility is to decompose the total causal effect (TCE)
into a total natural indirect effect (TNIE) and a pure natural direct
effect (PNDE); the other decomposition yields a pure natural indirect
effect (PNIE) and a total natural direct effect (TNDE) (Hafeman and
Schwartz, 2009; VanderWeele, 2013):

TCE =E[Yit(1,Mit(1))− Yit(0,Mit(0))]
=E[Yit(1,Mit(1))− Yit(1,Mit(0)) + Yit(1,Mit(0))− Yit(0,Mit(0))]
=TNIE + PNDE (2.2)
=E[Yit(1,Mit(1))− Yit(0,Mit(1)) + Yit(0,Mit(1))− Yit(0,Mit(0))]
=TNDE + PNIE

We will focus on the first decomposition (TCE = TNIE +PNDE) from
now on.

2.2.2 Causal and modelling assumptions
To identify the (pure) natural direct and (total) natural indirect effect
in multilevel settings, the standard set of ‘no unmeasured confounding’-
assumptions for simple settings with independent observations, has been
generalised as follows (VanderWeele, 2010):

(i) There are no unmeasured upper- or lower-level confounders of the
association between exposure and mediator.

(ii) There are no unmeasured upper- or lower-level confounders of the
association between mediator and outcome.

(iii) There are no unmeasured upper- or lower-level confounders of the
association between exposure and outcome.

(iv) There are no confounders of the association between mediator and
outcome, caused by exposure (i.e. no intermediate confounding).

In crossover settings, the upper-level refers to the individual i, while
the lower-level refers to the period t at which measurements were taken.
Crossover designs render several of these assumptions obsolete. Since
the sequence of exposure is by definition randomised, the first and third
assumption are redundant. Also, as crossover studies are able to eliminate
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between-subject variation, we will show that the second assumption can
sometimes be weakened to: (iib) There are no unmeasured lower-level
confounders of mediator and outcome. In addition to these four confounding
assumptions, we add the following assumption:

(v) There is no causal transience (no carry-over effect): exposure, me-
diator and outcome measures from the first period cannot affect
mediator and outcome measures from the second period.

Assumption (v) is plausible in crossover designs if the wash-out period is
sufficiently long.

These assumptions related to the AB/BA design can be summarised by
the (lack of) arrows in the directed acyclic graph of figure 2.3, which we will
interpret as a nonparametric structural equation model with independent
errors (Robins and Richardson, 2010). In this causal diagram, Mi0 and Yi0
represent the mediator and outcome values for subject i, measured during
the first period (t = 0), while Mi1 and Yi1 denote these values during the
second period (t = 1).

Figure 2.3 Causal diagram, graphically representing the assumptions regarding
mediation in AB/BA crossover designs. The variables Xi0, Mi0 and Yi0 represent
the respective values of the exposure, mediator and outcome for subject i during
the first measurement period. Xi1, Mi1 and Yi1 on the other hand, reflect these
variables assessed during the second measurement period. The unmeasured upper-
level confounders Vi of the mediator and Ui of the outcome allow for upper-level M -Y
confounding. Absence of a unidirectional arrow between two variables indicates the
absence of a direct causal effect between them, while a bidirectional arrow captures
an unmeasured common cause.

Note that in view of assumptions (iv) and (v), we do not allow the
exposure, mediator and outcome measurements from the first period to
causally affect the outcome and mediator values of the second period,
respectively. Also, assumption (iv) dictates that measured within-subject
confounders in the second period should not be affected by the exposure
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(or the mediator) of the first period. We do, on the other hand, allow
for unmeasured subject-specific, period-independent common causes U
of the outcome to correlate with unmeasured subject-specific and period-
independent common causes V of the mediator (relaxation of assumption
(ii) into (iib)), provided that assumptions (vi) and (vii) hold. Note that V
can be expressed as a function of U (i.e. g(U)) without loss of generality,
rendering the unmeasured upper-level confounding of theM -Y relationship
more explicit.

In addition to the above-mentioned causal assumptions, we will make
the following modelling assumptions throughout this paper:

(vi) Unmeasured upper-level confounders of the association between
mediator and outcome exert an additive effect on both the mediator
and the outcome.

(vii) There is no unmeasured heterogeneity among subjects in the effect
of exposure on mediator and in the effect of exposure and mediator
on outcome.

Unlike path diagrams in the structural equation modelling framework,
the lack of interactions implied by assumptions (vi) and (vii) (i.e. no
interactions with unmeasured confounders Ui and Vi) cannot be represented
on a causal diagram. These assumptions are therefore not depicted in figure
2.3.

Throughout the paper, we will make no assumptions regarding tem-
poral stability and accordingly allow for period effects, implying that the
outcome and mediator values can depend on the measurement moment.
This is important because period effects are quite common in crossover
studies (Tucker-Drob, 2011) (e.g. seasonal effects, changes in conditions of
measurements, disease progression, habituation) and ignoring them would
be disadvantageous for two reasons. First, if the exposure sequence were
allocated in an unbalanced way, ignoring a period effect would bias the
estimate of the exposure effect (Palta et al., 1994; Senn, 2002). Second, if
such a trend exists but was not taken into account, its influence would be
attributed to random variation instead of systematic changes, resulting in
an inflated variance of the effect of X (Senn, 2002).
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2.3 Estimating direct and indirect effects in sim-
ple settings with no interactions

Based on the above stipulated set of assumptions, we start with a simple
data-generating mechanism for the mediator and outcome (for subject i
during period t):

Mit = δM + αXit + κM t+ g(Ui) + εMit

Yit = δY + ζ′Xit + βMit + κY t+ Ui + εY it (2.3)

Under this mechanism, in correspondence to figure 2.3, the mediator value
of subject i during period t may be affected by exposure Xit, as well as
by unmeasured individual level confounders Vi = g(Ui). Similarly, the
outcome of individual i during period t may be affected by the exposure
Xit, the mediator Mit and any unmeasured subject level confounders Ui.
In the equations above, the parameters δM and δY represent the respective
intercepts for M and Y , while α, β and ζ ′ represent the effects of exposure
on mediator, mediator on outcome and exposure on outcome, respectively.
Note that we assume that those effects are homogeneous across subjects
(in accordance with assumption (vii)). The parameters κM and κY define
the respective period effects of M and Y . The presence of Ui and g(Ui)
in the models for Y and M , allows for unmeasured time-independent,
subject-specific confounding of the M -Y relationship, without making
strong parametric assumptions about their effects. Furthermore, Ui is
independent of both exposure and period, and exhibits additive effects on
mediator and outcome (in accordance with assumption (vi)). Finally, εMit

and εY it represent the lower-level error terms, which are assumed to have
mean zero and to be independent from the model predictors, as well as
from one another.

Starting from this simple setting, the next subsection will first de-
scribe the identification of the natural direct and indirect effect. Next, we
will summarise four existing approaches that can assess within-subject
mediation in AB/BA crossover designs (sections 2.3.2 - 5.2).

2.3.1 Identification of the direct and indirect effect
Under the above described data-generating mechanism, the assumptions
introduced in section 3.2 are met. This enables us to operate Pearl’s
mediation formula (Pearl, 2001, 2010) in deriving the total, pure natural
direct and the total natural indirect effect for each subject i (conditional on
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i) during period t. Based on equation (2.3), the subject- and period-specific
total causal effect equals αβ + ζ ′, the individual- and period-specific total
natural indirect effect equals αβ and the pure natural direct effect in turn
equals ζ ′ (detailed calculations can be found in appendix A.1).

2.3.2 The difference approach for the AB/BA design
Judd et al. (2001) proposed a straightforward method to evaluate mediation
specifically in AB/BA crossover designs. They suggested an approach in
which they perform regression on the differences of mediator and outcome
values under both exposures, hereby eliminating between-subject variability.
Following their approach, mediation can be assessed in three consecutive
steps:

• The first step determines whether or not there is evidence for an
overall effect of exposure on outcome, by performing a paired t-test
on the outcomes under both exposures. Let Y x=1

i and Y x=0
i represent

the outcome variables for subject i under exposure (X = 1) or no
exposure (X = 0), respectively. When modelling the outcome differ-
ences through linear regression, the average effect of the exposure X
on the outcome Y is estimated by the intercept c.

Y Difi = Y x=1
i − Y x=0

i = c+ e∗Y i1

with error terms e∗Y i1. If there is evidence of such a total effect c
different from zero, one can proceed to the next step.

• The second step tests whether or not there is evidence for an effect
of X on M , by performing a paired t-test on the mediator values
under both exposures. Let Mx=1

i and Mx=0
i represent the mediator

variables for subject i under exposure (X = 1) or not (X = 0),
respectively. The average effect of X on M can be estimated by the
intercept a, from a linear regression model for these differences.

MDif
i = Mx=1

i −Mx=0
i = a+ e∗Mi

with error terms e∗Mi. If there is evidence of an effect of exposure
on mediator, one can proceed to the next step.

• The final step assesses mediation itself. In the absence of moderation,
mediation is evaluated by regressing the outcome differences (Y Difi )
on the mediator differences (MDif

i ):

Y Difi = c′ + bDifM
Dif
i + e∗Y i2
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with error terms e∗Y i2. Now, the intercept c′ captures the direct effect,
while the coefficient of MDif

i describes the effect of the mediator on
the outcome. When it is found that the effect ofMDif

i on the outcome
differences is significantly different from zero, one can conclude that
there is indeed mediation. Judd et al. (2001) argue that the type
of mediation can subsequently be determined by the significance of
the intercept in this equation: if it differs significantly from zero,
partial mediation has occurred, if not, researchers can claim complete
mediation.

Although this method elegantly bypasses the need for multilevel mod-
elling approaches (which we will discuss from section 2.3.3 onwards) and
eliminates between-subject variation (and hence any unmeasured con-
founders of the M -Y relationship that have additive effects at the subject-
level), it has several drawbacks. Besides the frequently raised criticism
concerning the necessity of each of the different steps (Collins et al., 1998;
MacKinnon et al., 2000; Preacher et al., 2007; Hayes, 2009; Zhao et al.,
2010), a first shortcoming is that the approach is not based on a quantifi-
cation of the very thing it is attempting to test - the indirect effect (Hayes,
2009). A second drawback is that it does not account for period effects
(Senn, 2002; Tucker-Drob, 2011).

2.3.3 Standard multilevel mediation analysis
Another approach for mediation analysis in the AB/BA design relies on
multilevel modelling of the mediator and outcome (MacKinnon, 2008).
Allowing for a period effect, the following lower-level equations would
typically be considered:

Mit = dMi + aXit + kM t+ eMit

Yit = dY i + c′Xit + bMit + kY t+ eY it (2.4)

alongside the following upper-level (e.g. individual-level) equations:

dMi = dM + uMi with uMi qXit
dY i = dY + uY i with uY i qXit,Mit

Here, dMi and dY i represent the random intercepts, while eMit and eY it
encode the lower-level error terms. The terms uMi and uY i, on the other
hand, represent the upper-level error terms (subject level) for the random
intercepts, assumed to be independent (as depicted by the symbol q) of
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the predictors in their respective equations. Both upper- and lower-level
error terms are assumed to be independent of one another and normally
distributed with mean zero.

Throughout this paper, maximum likelihood estimators for the param-
eters from the working models are denoted with ‘ ˆ ’. The total natural
indirect is estimated from (2.4) as âb̂, while the pure natural direct effect
is estimated from (2.4) as ĉ′. Unfortunately, since uY i reflects unmeasured
subject-specific variability in Yit and is assumed to be independent of
Mit, it is unable to capture the unmeasured subject-specific confounding
of the M -Y relationship, under data-generating mechanism (2.3). This
may result in an ‘omitted variable bias’ (Tofighi et al., 2013) for β and ζ ′
when such confounding is indeed present (as is the case in data-generating
mechanism (2.3)), resulting in biased estimators for direct and indirect
effect, ζ ′ and αβ, respectively. To this end, we will henceforth refer to this
approach as the Naive modelling approach.

2.3.4 Approaches separating within-subject and between-
subject effects

Many scholars have recently commented on the importance of separating
within-subject from between-subject effects in multilevel settings (Louis,
1988; Neuhaus and Kalbfleisch, 1998; Begg and Parides, 2003; Zhang
et al., 2009; Kenward and Roger, 2010; Preacher et al., 2010; Pituch and
Stapleton, 2012). Within-effects (effects of the deviations from the subject
means) and between-effects (effects of the subject means) can be different
and even opposite in sign (Davis et al., 1961; Zhang et al., 2009). This
can result from unmeasured upper-level confounding, which is absorbed in
the between-subject effect (Goetgeluk and Vansteelandt, 2008). In view
of this, allowing both effects in the outcome equation, will not dictate a
‘forced average’ of within- and between-effects, as demanded by the single
parameter coefficient when no centring of the mediator is used. In this
paper, we will focus on the within-subject effects, as these are of primary
interest in crossover studies.

Following MacKinnon (2008), the within-subject effect can be estimated
by regressing Yit on the subject-mean centred mediator (Mit −M it). Here
M it denotes the subject-specific average of the Mit scores for subject i
across periods. This modelling approach can be described by the following
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set of linear mixed models:

Mit = dMi + aXit + kM t+ eMit with dMi = dM + uMi

Yit = dY i + c′Xit + b(Mit −M it) + kY t+ eY it with dY i = dY + uY i (2.5)

The lower-level residuals εMit and εY it, as well as the upper-level error
terms uMi and uY i, are again assumed to be independently distributed
with mean zero. Under the data-generating mechanism (equation (2.3)),
the unmeasured confounder Ui is uncorrelated with Mit −M it. That is
to say, while (un)measured individual level confounders of the outcome
might correlate with the time-dependent Mit scores, these subject-mean
centred mediators will no longer correlate with Ui. Hence, subtraction
of the individual mean from period specific Mit scores will effectively
eliminate any additive upper-level confounding of the M -Y relation, in
contrast to the Naive modelling approach. We will refer to this procedure
as the Separate W(ithin)-only modelling approach.

Assuming data-generating mechanism (2.3) holds, the total natural
indirect can be estimated unbiasedly from equation (2.5) as âb̂ and the
pure natural direct effect as ĉ′.

A second centring approach not only models the effect of the subject-
mean centred mediator on the outcome, but also the effect of the subject
mean of the mediator itself (MacKinnon, 2008). By doing so, two separate
estimates for the effect of M on Y are obtained: a within-subject effect
and a between-subject effect. This approach is equivalent to the Separate
W-only approach for the estimation of within-subject effects in linear
models, because of M i being uncorrelated with (Mit−M i) and is, as such,
not considered any further.

2.3.5 A joint modelling approach

Another multilevel approach, described by Bauer et al. (2006), models the
mediator and the outcome jointly, in a way that allows for unmeasured
subject-specific common causes of M and Y , by incorporating a covariance
term for the two random intercepts. Technically, this can be achieved by
creating a new outcome variable Z which stacks M and Y for each period
t within individual i. Next, two dummy variables are defined as follows:
SM = 1 when Z = M and SM = 0 otherwise, and similarly SY = 1 when
Z = Y and SY = 0 otherwise.

Zit = SM (dMi + aXit + kM t) + SY (dY i + c′Xit + bMit + kY t) + eZit (2.6)
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This enables fitting a multivariate model, using univariate multilevel
software (e.g. PROC MIXED in SAS). In contrast to the Naive modelling
approach where uMi and uY i are assumed to be independent, this approach
assumes the random intercepts to be bivariate normally distributed. Un-
measured upper-level M -Y confounding may therefore be captured by the
correlation between both random effects. As such, it allows assessment of
the viability of the assumption required in the Naive modelling approach,
namely that no upper-level M -Y confounding is present. This method will
be referred to as the Joint modelling approach.

The total effect under data-generating mechanism (2.3) is estimated
from equation (2.6) as âb̂ and the pure natural direct effect as ĉ′. Since,
in contrast to the separate modelling approaches, the estimation of fixed
effects in the joint modelling approach relies on a bivariate normal distri-
bution of the random intercepts, violation of this assumption may lead
to biased fixed effects even if the mean is correctly specified. As shown
in appendix A.2, one may expect bias when (a) Mit is non-normally dis-
tributed (because of non-normal random effects or residual errors), when
(b) the distribution of uY i is non-normal or when (c) uY i moderates (i.e.
modifies) the effect of Xit in the mediator model.

2.4 Estimating direct and indirect effects in more
complex settings involving interactions

The data-generating mechanism that we considered so far (equation 2.3)),
assumed no moderating effects of exposure. This section, allows for an
interaction between exposure and mediator, moderation of the exposure
effect by measured upper-level confounders Di for both the mediator and
outcome, as well as moderation of the mediator-outcome relationship by Di.
These effects can be jointly represented by the following data-generating
mechanism:

Mit = δM + αXit + κM t+ ωMDi + νMXitDi + g(Ui) + εMit

Yit = δY + ζ′Xit + βMit + φXitMit + κY t+ ωYDi + νYXitDi

+ ηMitDi + Ui + εY it (2.7)

Here, Di is a vector of measured confounders at the subject level. Without
loss of generality, we can assume that E[Di] = 0. The parameter φ encodes
the moderating effect of the mediator on the effect of exposure on outcome,
while νM and νY represent moderation of confounders Di on the effect of
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X on M and of X on Y , respectively. The parameter η in turn encodes
the moderating effect of confounders Di on the effect of the mediator on
the outcome. As before, we assume additive effects for the unmeasured
confounders Ui and g(Ui).

2.4.1 Identification of the direct and indirect effect in
complex settings

Under data-generating mechanism (2.7) the assumptions introduced in
section 3.2 continue to apply, which enables use of the mediation formula
to derive the total causal, pure natural direct and total natural indirect
effect for subject i during period t. Here, the subject- and period-specific
total natural indirect effect equals (detailed calculations can be found in
appendix A.3):

E[Y it(1,Mit(1))− Yit(1,Mit(0))|Di = d, Ui]

=
∑
m

{E[Yit|Xit = 1,Mit = m,Di = d, Ui]P (Mit = m|Xit = 1, Di = d, Ui)

− E[Yit|Xit = 1,Mit = m,Di = d, Ui]P (Mit = m|Xit = 0, Di = d, Ui)}
= (α+ νMd)(β + φ+ ηd), (2.8)

Since this expression does not depend on Ui (see appendix A.3), the
subject and period-specific total natural indirect effect can be marginalised
over Ui (E[Yit(1,Mit(1))− Yit(1,Mit(0))|Di = d, Ui] = E[Yit(1,Mit(1))−
Yit(1,Mit(0))|Di = d]).

This does not always hold for the pure natural direct and total causal
effect; appendix A.3 demonstrates their dependence on unmeasured upper-
level confounders Ui, when φ 6= 0. This dependency on unmeasured upper-
level confounders can be dealt with in one of two ways. A first possibility
is to consider the pure natural direct effect at g(Ui) = 0:

E[Y it(1,Mit(0))− Yit(0,Mit(0))|Di = d, Ui]

=
∑
m

{E[Yit|Xit = 1,Mit = m,Di = d, Ui]P (Mit = m|Xit = 0, Di = d, Ui)

− E[Yit|Xit = 0,Mit = m,Di = d, Ui]P (Mit = m|Xit = 0, Di = d, Ui)}
= ζ′ + νY d+ φ(δM + κM t+ ωMd) (2.9)
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and total causal effect at g(Ui) = 0:

E[Y it(1,Mit(1))− Yit(0,Mit(0))|Di = d, Ui]

=
∑
m

{E[Yit|Xit = 1,Mit = m,Di = d, Ui]P (Mit = m|Xit = 1, Di = d, Ui)

− E[Yit|Xit = 0,Mit = m,Di = d, Ui]P (Mit = m|Xit = 0, Di = d, Ui)}
= (α+ νMd)(β + φ+ ηd) + ζ′ + νY d+ φ(δM + κM t+ ωMd) (2.10)

respectively. However, these lack a clear interpretation due to the fact
that Ui is unmeasured and the subgroup g(Ui) = 0 therefore unknown.

Alternatively, one may estimate the total causal effect marginally over
Ui, for example by regressing the outcome Yit on Xit and Di. The pure
natural direct effect marginalised over Ui can subsequently be estimated
by subtracting the total natural indirect effect from this estimated total
effect.

Finally note that for these settings the period effect comes into play,
as the direct as well as the total effect now show time-dependency. The
indirect effect however remains constant over time.

2.4.2 A more flexible Difference approach
The previously discussed difference approach by Judd et al. (2001) explicitly
allows testing for one specific type of moderated mediation: moderation
of the relation between exposure and outcome by the mediator itself.
Technically, this is done by using the sum of the two mediator values
MSum
i , as a predictor in addition to the difference MDif

i , in the model
for the outcome: Y Difi = c′+ bDifM

Dif
i + bSumM

Sum
i + e∗Y i2. Moderation

is then assessed by testing whether or not bSum equals zero, but again
no indirect effect estimators are derived. Interactions including external
moderators are not allowed for by this approach either, but may often
occur in practice (Edwards and Lambert, 2007; Fairchild and MacKinnon,
2009; Preacher et al., 2007). To allow for such moderation, as well as the
above mentioned period effects, we will extend the approach proposed by
Judd et al. (2001) as follows:

MDif
i = a+ kM t

Dif
i + vMDi + eMi

Y Difi = c′ + bMDif
i + fXMDif

i + kY t
Dif
i + vYDi + nDiM

Dif
i + eY i (2.11)

In equation (2.11), XMDif
i equals Mx=1

i and tDifi = tx=1
i − tx=0

i , where
tx=0
i and tx=1

i represent the measurement moments (t = 0 or 1) when no
treatment and treatment were administered to individual i, respectively.
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The error terms eMi and eY i are once again assumed to be normally and
independently distributed with mean zero. We will refer to this approach
as the Difference approach from now on. Since under data-generating
mechanism (2.7):

MDif
i = α+ κM t

Dif
i + νMDi + εMi

Y Difi = ζ′ + βMDif
i + φXMDif

i + κY t
Dif
i + νYDi + ηDiM

Dif
i + εY i, (2.12)

the difference approach will allow unbiased estimation of the indirect effect
in this setting. The indirect effect can be estimated from equation (2.11)
as â(b̂ + f̂) when Di = 0, or by (â + v̂Md)(b̂ + f̂ + n̂d) when Di = d.
Estimation of the direct effect, on the other hand, is more complicated.
When there is no X-M interaction (φ = 0), all parameters that constitute
the direct effect can be unbiasedly estimated with the Difference approach
under the assumed data-generating mechanism. However, when φ 6= 0, we
suggest the above-mentioned approach based on subtracting the estimated
indirect effect from the total effect (both marginalised over Ui).

A final remark can be made regarding equation (2.11), which assumes
the subject-level confounders Di are measured. If these confounders remain
unmeasured, however (and are therefore not included in the estimating
equations), assumption (vi) will be violated and the Difference approach
may yield biased estimates for the parameters of interest. There may be
bias in the estimates for the parameters in the outcome equation (2.12)
when νY 6= 0 or η 6= 0, as the interaction term between exposure and Di

is correlated with MDif
i , and the interaction term between the mediator

and Di is correlated with Mx=1
i . However, when νY = 0 and η = 0, but

νM 6= 0, the estimator âd(b̂d + f̂d) (where the subscript d refers to the
estimates in the model ignoring Di) will still provide an unbiased estimate
of the indirect effect at average levels of Di. Indeed, when νY = η = 0,
omitting Di introduces no bias for b̂ and f̂ , and as residuals are assumed
to have a zero mean, the intercept âd reflects the effect of exposure on
mediator at average values of Di.

2.4.3 The Naive, Separate W-only and Joint modelling
approach in complex settings

The Naive and Joint modelling approach can incorporate the moderation
effects present in data-generating mechanism (2.7), by adding the respective
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interaction terms to the models. These become:

Mit = dMi + aXit + kM t+ wMDi + vMXitDi + eMit

Yit = dY i + c′Xit + bMit + fXitMit + kY t+ wYDi + vYXitDi

+ nMitDi + eY it (2.13)

where the Joint modelling approach additionally models a covariance term
for both random effects.

The method that separates between- from within-subject effects can
also incorporate such moderation, by adding interaction terms with the
subject-mean deviation scores of the mediator. The model becomes:

Mit = dMi + aXit + kM t+ wMDi + vMXitDi + eMit

Yit = dY i + c′Xit + b(Mit −M it) + f(XitMit −XitM it) + kY t

+ wYDi + vYXitDi + n(Mit −M it)Di + eY it (2.14)

Note that the X-M interaction is modelled as the difference between the
product of the individual, time-specific exposure and mediator values, and
the average of this product over periods, within individuals; modelling it
any other way (e.g. as Xit(Mit −M it)), might lead to bias in the presence
of unmeasured upper-level M -Y confounding.

All three approaches will produce unbiased estimates of the direct and
indirect effect under data generating mechanism (2.7), but in contrast
to the Difference approach, the Separate W-only approach and Joint
modelling approaches also require modelling (and hence potentially correct
specification) the main effect of Di.

2.5 Simulation study
To gain insight into the finite sample performance of all four modelling
approaches represented by equations (2.11), (2.13) and (2.14), we compare
them through simulations. For simplicity, we assume no measured subject-
specific confounders D that moderate the treatment or mediator effect.

We consider three different simulation settings, which are defined as
special cases of a general data-generating mechanism, specified by the
following models for M and Y :

Mit = δM + αXit + κM t+ νMViXit + Vi + εMit

Yit = δY + ζ′Xit + βMit + φXitMit + κY t+ Ui + εY it (2.15)

Here, Vi and Ui represent zero-mean bivariate normally distributed un-
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measured individual-level confounders, with a variance of 4 and covariance
σVi,Ui . We generated independently and normally distributed error terms
εMit and εY it, with mean zero and variance 9 and 16 respectively. As
deviations from normality for either the individual-level confounders or the
lower-level error terms have little or no effect (Verbeke and Lesaffre, 1997;
McCulloch and Neuhaus, 2011), we kept these distributions fixed. Results
based on misspecified random effects in the data-generating mechanism
confirmed that such linear mixed models are very robust against any such
incorrect specifications (results not shown). We also generate period effects
for both the mediator and outcome (κM and κY respectively), and an
exposure-mediator interaction for the outcome (φ) as well as an exposure-
‘unmeasured confounder’ interaction for the mediator (νM ). Note that
when νM 6= 0, assumption (vi) is violated.

For the first simulation setting, the M and Y values are generated
according to equation (5.7), but with νM and σVi,Ui both set to zero
(thus satisfying the assumptions in section 3.2). The other parameters are
fixed, with δM = 1, δY = 1.5, α = 3, ζ ′ = 2, β = −1, φ = 2, κM = 0.1
and κY = 0.2. For the second simulation setting, we allowed for a non-
zero covariance term between both upper-level confounders Ui and Vi,
with σVi,Ui = 0.50. In the third simulation setting, we also considered
σVi,Ui = 0.50 but in addition set the parameter value of νM to 1 (thus
violating assumption (vi) in section 3.2).

To get an indication of how the four different modelling approaches
are affected by sample size, we considered samples of size N = 50 and
N = 200. Together, these varying factors yield 6 conditions (3 simulation
settings and 2 sample sizes) for which 500 data sets were generated.

For each method, the average value, empirical standard error and the
coverage of the 95% confidence intervals of the β, ζ ′ and φ estimators are
provided. Note that the respective estimators for β, ζ ′ and φ are given
by b̂, ĉ′ and f̂ , for all approaches (equations (2.11), (2.13) and (2.14)).
Additionally, the square root of the Mean Squared Error is provided for
these estimators. The results for N = 50 and N = 200 are shown in table
2.1. The parameters in this table that show significant bias (as indicated
by a significant deviation of the empirical mean from the true mean) are
marked in boldface.
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2.5.1 Parameter estimates
As expected, the Naive modelling approach provides unbiased estimates of
the β, ζ ′ and φ parameters for both sample sizes, as long as no unmeasured
confounding of the M -Y relation is present (first data-generating mech-
anism). As soon as a non-zero covariance between Vi and Ui is present,
we observe bias in the parameter estimators b̂ and ĉ′, but not in f̂ . The
Difference and Separate W-only modelling approaches yield unbiased esti-
mators for all three effects of interest, irrespective of the data-generating
mechanism or sample size (so even when assumption (vi) is violated).
Moreover, both methods provide identical estimators for β, ζ ′ and φ. This
equivalence in estimates form the Difference and Separate W-only mod-
elling approach is expected when there are no random slopes (Goetgeluk
and Vansteelandt, 2008). Lastly, the Joint modelling approach performs
rather well in terms of bias, except for the estimators obtained under the
third simulation setting (where assumption (vi) is violated) for the larger
sample size, where we find significant bias for all three parameters. This
bias follows from the arguments provided in section 5.2, as the assumption
of no moderation of the effect of Xit on Mit by uY i (condition (c)) is
violated under the third setting (νM 6= 0).

2.5.2 Coverage and mean squared error
First of all, as long as the parameter estimates themselves are unbiased,
we observe good coverages for all modelling approaches and all parameters.
One exception is the low coverage of the estimator for β, obtained by
the Joint modelling approach. However, this undercoverage improves as
the sample size increases. The Separate W-only and Difference approach
differ slightly in their estimated standard errors (even though the empirical
standard error is the same), with the Separate W-only approach yielding
the largest, and the Difference approach providing the smallest.

Secondly, as long as there is no unmeasured confounding of the M -Y
relation, we observe the lowest Mean Squared Error (MSE) for the Naive
modelling approach. As soon as such confounding is introduced however,
the MSE of the Naive approach increases to a level at least as high as the
MSE’s of the other three approaches. Overall, of these methods the Joint
modelling approach seems to provide the lowest MSE’s, while the other
two collectively yield the highest. This is not surprising, considering that
the Joint modelling approach is based on maximum likelihood under a
more restrictive model.
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2.6 Analysis of a neurostimulation experiment

We applied the different estimation approaches discussed in this paper to
data from a recent crossover study in behavioural neuroscience (Vander-
hasselt et al., 2013). This crossover study evaluates the effect of anodal
transcranial direct current stimulation (tDCS) over the dorsolateral pre-
frontal cortex on the occurrence of self-referent thoughts, in 32 healthy
participants. This neuromodulatory technique applies a weak electric cur-
rent during 20 minutes (through the use of electrodes), which induces
polarisation-shifts in the resting membrane potential (Brunoni et al., 2012).
It was postulated that tDCS-exposure (X = 1 for tDCS stimulation, X = 0
for placebo stimulation) affected the outcome (self-referent thoughts) by
inducing changes in the ability to shift from negative representations in
the working memory (the mediator). The wash-out period lasted for a
minimum of 48 hours, and since current research suggests an intersession
interval of 48 hours after a long stimulation is more than sufficient (Nitsche
et al., 2008), the absence of carry-over effects is very plausible here. With
respect to the assumptions, we mentioned earlier that some of the esti-
mation approaches can deal with unmeasured M -Y confounding at the
upper-level, this in contrast to such confounding at the lower-level. To
assess robustness against violations of this ‘no unmeasured confounding’-
assumption at the lower-level, a sensitivity analysis will be presented at
the end of this section.

For all approaches, we start from simple estimation without interactions
but accounting for period effects. The direct and indirect effect estimates
tied to these models, alongside their 95% confidence intervals (these esti-
mates and 95% percentile-based confidence intervals were obtained through
bias-corrected bootstrapping, based on 1000 bootstrap samples), can be
found at the left panel of figure 2.4 (A.). The estimates of the Naive mul-
tilevel modelling method stand out clearly, which may imply that there is
indeed unmeasured individual-level confounding present. Such confounding
can be captured by the correlation between both random intercepts from
the Joint modelling approach, and is estimated at −0.43 (p = 0.31). If such
unmeasured confounding is indeed present, the Naive method produces
biased estimates, in contrast to the other three approaches (provided the
corresponding models hold). As we have not yet included any nonlinearities
in our models at this point, the three other methods yield almost identical
results.

In a second step, we check for moderation effects of a centred subject-
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Figure 2.4
A. Results of fitting each of the four within-subject modelling approaches for the
neurostimulation data, according to the settings summarised by equation (2.3). ‘Naive’,
‘Joint’, ‘Sep-W’ and ‘Diff’ represent the four different approaches: the Separate, Joint,
Separate W-only and Difference approach, respectively. For each method applied
to each setting, the estimated direct and indirect effect are given, alongside their
95% confidence intervals (these estimates and confidence intervals are obtained by
percentile-based bias-corrected bootstrapping, based on 1000 samples).
B. Results of fitting each within-subject modelling approach for the neurostimulation
data, according to the settings summarised by equation (2.7) (with φ = 0).

specific baseline confounder D (representing trait rumination, a stable
subject-specific measure), in the models for the mediator and outcome,
as well as an X-M interaction in the model for the outcome. From the
models based on the difference approach, we find evidence for an interaction
between X and D in both the mediator (p = 0.018) and outcome equations
(p = 0.054), as well as an interaction between M and D in the outcome
equation (p = 0.0057). In contrast, the exposure-mediator interaction
in the outcome model is not significant (p = 0.92), and for this reason
excluded from the model. As mentioned before, the direct and indirect
effect under this assumed data-generating mechanism, do not depend on
the main effects of D, nor on the period effect and the unobserved Ui.
An estimate of the direct and indirect effect at average values of trait
rumination (d = 0), accompanied by their 95% confidence intervals is
provided at the right side of figure 2.4 (B.). We observe no significant
indirect and direct effect at d = 0, except for the Naive modelling approach;
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once again, the estimates from this approach stand out. Note that the
Separate W-only and Difference approach again yield identical results for
both causal effects, while the Joint modelling approach provides somewhat
different estimates in the presence of the above mentioned interactions.
This most likely results from the presence of X-D interactions, as the
linearity assumptions for uY i might be violated in the Joint modelling
approach (see supporting appendix A.2). It is also worth mentioning that
with the additional inclusion of D and its interactions, the Joint modelling
approach now yields a correlation between both random intercepts of −0.21
(p=0.58), which is already closer to zero.

Additionally, a plot is provided for the direct and indirect effects
obtained from the difference approach, over the total range of values for
trait rumination (ranging from −11.87 to 37.13, see upper panel in figure
2.5 (A.)). As hypothesised, significant indirect effects are only observed
for high levels of trait rumination (Vanderhasselt et al., 2013). An average
direct effect on the other hand, remains absent over the entire range of
D-values.
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Figure 2.5
A. The average direct (on the left) and indirect effects (on the right) and their 95%
confidence intervals (95% CI)) obtained from the difference approach (by percentile-
based bias-corrected bootstrapping, based on 1000 samples), over the total range of
values for trait rumination D ∈ [−11.87, 7.13].
B. The average direct (on the left) and indirect effects (on the right) and their 95%
confidence intervals (95% CI)) at D = 22.38 (= 2 standard deviations above the mean),
over a range of values for the sensitivity parameter ρ ∈ [−1, 1] (the estimates, alongside
their 95% confidence intervals were obtained trough percentile-based bias-corrected
bootstrapping, based on 1000 samples).

2.6.1 A sensitivity analysis for omitted lower-level M-Y
confounding

While the assumption of ‘no unmeasured upper-level M -Y confounding’ is
not necessary, the absence of unmeasured lower-level confounding of the
M -Y relation remains essential for unbiased estimation of the direct and
indirect effect. In this section, we present a sensitivity analysis that is able
to assess the impact of such lower-level M -Y confounding. More precisely,
we assume the following extension of data-generating mechanism (2.7):

Mit = δM + αXit + κM t+ ωMDi + νMDiXit + g(Ui) + εMit

Yit = δY + ζ′Xit + βMit + φXitMit + κY t+ ωYDi + νYDiXit + ηDiMit

+ Ui + θεMit + εY it (2.16)
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where θ represents the influence of the lower-level residuals from the
mediator equation on the outcome. Values of θ different from zero imply
violation of the ‘no unmeasured lower-level M -Y confounding’ assumption.
Note that in our neurobehavioral example, φ is assumed to be zero, but is
included here to allow for generalisation. In terms of differences it follows
from (2.16) that:

MDif
i = α+ κM t

Dif
i + νMDi + εMi

Y Difi = ζ′ + βMDif
i + φXMDif

i + κY t
Dif
i + νYDi + ηDiM

Dif
i

+ θεMi + εY i (2.17)

with εMi and εY i encoding the difference inM - and Y -residuals from (2.16).
When εMi is substituted by MDif

i − α− κM tDifi − νMDi in the outcome
equation, we obtain:

Y Difi = (ζ′ − θα) + (β + θ)MDif
i + φXMDif

i + (κY − θκM )tDifi

+ (νY + θνM )Di + ηDiM
Dif
i + εY i (2.18)

which can be rewritten as:

Y Difi = ζ′∗ + β∗MDif
i + φ(XM)Difi + κ∗Y t

Dif
i + ν∗YDi + ηDiM

Dif
i + εY i ,

where:


ζ′ = ζ′∗ + θα

β = β∗ − θ
κY = κ∗Y + θκM
νY = ν∗Y + θνM

(2.19)

As such, under data-generating mechanism (2.16), the difference ap-
proach based on model (2.11) would result in biased parameter estimators
for the effects on the outcome, with bias depending on the value of θ. To
simplify interpretation, we will use a sensitivity parameter ρ, representing
the correlation between the residual error terms in equation (2.17) (εMi

and θεMi + εY i), rather than θ (Imai et al., 2010). It can be shown that:

θ = ρ√
1− ρ2

σεY
σεM

(2.20)

Under the above setting, the sensitivity analysis then proceeds as follows.
First, all parameters in the difference equations (2.11) are estimated and
the estimates for the residual error variances, σεM and σεY , are determined,
assuming that θ = 0. Next, a plausible range of values of ρ (varying between
−1 and 1) is considered while keeping σεM and σεY fixed, so that θ can be
calculated by applying expression (2.20). Then, relying on the estimate for
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θ, the estimated parameters from (2.11) and the equalities on the right side
of (2.19), estimates for the true parameters can be obtained. Additionally,
precision of the resulting direct and indirect effects at different values of ρ
can be assessed by bootstrapping procedures.

We will now illustrate the above proposed sensitivity analysis on our
neurobehavioral data. More specifically, we look at the estimated indirect
effect for large values of trait rumination (at D = 2 standard deviations
above the mean = 22.38), since figure 2.5 (A.) revealed that this effect
exists but for high values of D. At this value for D, we investigate how
extensive the amount of unmeasured M -Y confounding at the lower-level
must become in order for the indirect effect to vanish. For values of ρ
ranging from −1.00 to 1.00, we estimate the direct and indirect effect
(results are shown in lower panel, figure 2.5 (B.). We observe that the
indirect effect disappears when unmeasured lower-level covariates induce a
residual correlation between M and Y larger than 0.20.

2.7 Discussion
In this paper we presented and compared different modelling strategies for
the estimation of the direct and indirect effect in crossover studies. First and
foremost, since the absence of unmeasured upper-level M -Y confounding
can never be guaranteed, we do not recommend the Naive modelling
approach in any setting. Furthermore, we showed that the Joint modelling
method relies on stronger modelling assumptions than the Difference or
Separate W-only modelling approaches. The latter two approaches yield
identical estimators in the absence of upper-level heterogeneity. In the
presence of both exposure-mediator interactions and interactions with
measured subject level confounders D, we have shown how to obtain
unbiased direct and indirect effects at specific levels of D, even when
D is correlated with unmeasured confounders. In general, the difference
approach is simpler to apply and might for this reason prove more accessible
to researchers unfamiliar with mixed effects models.

From a practical perspective, it is important to have clarified the
underlying assumptions of each of the different approaches here. Note
that easily accessible software for mediation analysis in the multilevel
setting, such as the R mediation package (Tingley et al., 2014)), relies
on separate linear mixed models for the mediator and outcome (if both
are measured at the interval level). Considering our findings, these will
only yield valid inference under unmeasured upper-level M -Y confounding,
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when the subject-specific deviation scores for the mediator are used in the
outcome equation model. While we focused on linear settings in this paper,
the aforementioned mediation package additionally tackles non-linear mul-
tilevel settings. The question of whether or not the approach of Imai et al.
(2010) yields unbiased estimators for the direct and indirect effect in the
presence of unmeasured subject-level confounders in non-linear settings,
remains to be explored. However, separating within- and between-effects in
mixed models with log- or logit-links may yield inconsistent within-subject
effects in the presence of unmeasured subject-specific confounders (Goet-
geluk and Vansteelandt, 2008). We conjecture that the mediation package
approach in the multilevel level setting may require assumptions that
are too stringent, even if centred predictors were used. Other estimation
approaches may thus be indicated, e.g. conditional generalised estimat-
ing equations (CGEE) provide a more general framework for sheltering
the estimation of within-subject effects from unmeasured between-subject
confounding factors (Goetgeluk and Vansteelandt, 2008).

Throughout this paper, we remained silent about the incorporation of
measured lower-level confounders. Although at first sight it may seem very
straightforward to incorporate such confounders in the four approaches
we discussed, their inclusion requires additional thought. Assumption (iv),
for example, dictates that measured within-subject confounders from the
second period ought to be unaffected by the exposure (or the mediator) of
the first period. If violated, we end up with time-dependent or interme-
diate confounding. It remains to be investigated how techniques such as
inverse probability weighting (Robins, 1999) or G-estimation (Goetgeluk
et al., 2009), that can deal with intermediate confounding concerning the
estimation of the controlled direct effect in single level settings, could be
applied to multilevel settings.
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A Appendix

A.1 Identification of the causal effects in simple settings

We start from a more general data generating mechanism (compared to
model (2.3)), which relaxes assumption (vii):

Mit = δM + αiXit + κMit+ g(Ui) + εMit

Yit = δY + ζ′iXit + βiMit + κY it+ Ui + εY it (2.21)

Note that the AB/BA design with a single measurement in each of the two
conditions, does not allow identification of such heterogeneous effects. This
set of equations (2.21), however, encompasses the restrictions dictated by
this design (and therefore also equation (2.3)). Based on this generalised
data generating mechanism summarised in expression (2.21), the “it-th”-
specific total natural indirect effect can be identified, when the assumptions
(i)-(vi) from section 3.2 are satisfied:

E[Y it(x,Mit(x))− Yit(x,Mit(x∗))|αi, κMi, βi, ζ
′
i, κY i, Ui]

=
∑
m

(
E[Yit|Xit = x,Mit = m,βi, ζ

′
i, κY i, Ui]P (Mit = m|Xit = x, αi, κMi, Ui)

− E[Yit|Xit = x,Mit = m,βi, ζ
′
i, κY i, Ui]P (Mit = m|Xit = x∗, αi, κMi, Ui)

)
=
∑
m

(dY + ζ′ix+ βim+ κY it+ Ui) ·
(
P (Mit = m|Xit = x, αi, κMi, Ui)

− P (Mit = m|Xit = x∗, αi, κMi, Ui)
)

= βi

(∑
m

mP (Mit = m|Xit = x, αi, κMi, Ui)

−
∑
m

mP (Mit = m|Xit = x∗, αi, κMi, Ui)
)

= βi
(
E[Mit|Xit = x, αi, κMi, Ui]− E[M∗it|Xit = x∗, αi, κMi, Ui)

)
= βi

(
dM + αix+ κMit+ g(Ui)− dM − αix∗ − κMit− g(Ui)

)
= αiβi(x− x∗) (2.22)

Similarly, the “it-th”-specific pure natural direct effect can be identified
(based on equation (2.21)):

E[Y it(x,Mit(x∗))− Yit(x∗,Mit(x∗))|αi, κMi, βi, ζ
′
i, κY i, Ui]
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=
∑
m

(
E[Yit|Xit = x,Mit = m,βi, ζ

′
i, κY i, Ui]P (Mit = m|Xit = x∗, αi, κMi, Ui)

− E[Yit|Xit = x∗,Mit = m,βi, ζ
′
i, κY i, Ui]P (Mit = m|Xit = x∗, αi, κMi, Ui)

)
=
∑
m

P (Mit = m|Xit = x∗, αi, κMi, Ui) ·(
δY + ζ′ix+ βim+ κY it+ Ui − δY − ζ′ix

∗ − βim− κY it− Ui
)

=
∑
m

P (Mit = m|Xit = x∗, i)(x− x∗)(ζ′i)

= ζ′i(x− x
∗) (2.23)

Finally, the “it-th”-specific total causal effect can be identified as (based
on equation (2.21)):

E[Y it(x,Mit(x))− Yit(x∗,Mit(x∗))|αi, κMi, βi, ζ
′
i, κY i, Ui]

=
∑
m

(
E[Yit|Xit = x,Mit = m,βi, ζ

′
i, κY i, Ui]P (Mit = m|Xit = x, αi, κMi, Ui)

− E[Yit|Xit = x∗,Mit = m,βi, ζ
′
i, κY i, Ui]P (Mit = m|Xit = x∗, αi, κMi, Ui)

)
=
∑
m

(δY + βim+ ζ′ix+ κY it+ Ui)P (Mit = m|Xit = x, αi, κMi, Ui)

−
∑
m

(δY + βim+ ζ′ix
∗ + κY it+ Ui)P (Mit = m|Xit = x∗, αi, κMi, Ui)

= ζ′i(x− x
∗) + βi

∑
m

mP (Mit = m|Xit = x, αi, κMi, Ui)

− βi
∑
m

mP (Mit = m|Xit = x∗, αi, κMi, Ui)

= ζ′i(x− x
∗) + βi(dM + αix+ κMit+ g(Ui))− βi(dM + αix

∗ + κMit+ g(Ui))
= (αiβi + ζ′i)(x− x

∗) (2.24)

Consequently, the subject- and period-specific total causal effect equals:

E[Yit(1,Mit(1))− Yit(0,Mit(0))|αi, κMi, βi, ζ
′
i, κY i, Ui]

=
∑
m

{E[Yit|Xit = 1,Mit = m,βi, ζ
′
i, κY i, Ui]P (Mit = m|Xit = 1, αi, κMi, Ui)

− E[Yit|Xit = 0,Mit = m,βi, ζ
′
i, κY i, Ui]P (Mit = m|Xit = 0, αi, κMi, Ui)}

= αiβi + ζ′i (2.25)
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The individual- and period-specific total natural indirect effect and the
pure natural direct effect in turn equals:

E[Yit(1,Mit(1))− Yit(1,Mit(0))|αi, κMi, βi, ζ
′
i, κY i, Ui]

=
∑
m

(
E[Yit|Xit = 1,Mit = m,βi, ζ

′
i, κY i, Ui]P (Mit = m|Xit = 1, αi, κMi, Ui)

− E[Yit|Xit = 1,Mit = m,βi, ζ
′
i, κY i, Ui]P (Mit = m|Xit = 0, αi, κMi, Ui)

)
= αiβi (2.26)

and

E[Yit(1,Mit(0))− Yit(0,Mit(0))|αi, κMi, βi, ζ
′
i, κY i, Ui]

=
∑
m

(
E[Yit|Xit = 1,Mit = m,βi, ζ

′
i, κY i, Ui]P (Mit = m|Xit = 0, αi, κMi, Ui)

− E[Yit|Xit = 0,Mit = m,βi, ζ
′
i, κY i, Ui]P (Mit = m|Xit = 0, αi, κMi, Ui)

)
= ζ′i (2.27)

These effects are in line with results from traditional lower-level media-
tion analysis in linear settings (Kenny et al., 2003). When we marginalise
these effects over individuals, we obtain a total natural indirect effect of
E[αiβi] = E[αi]E[βi] + Cov(αi, βi) = E[αi]E[βi] + σαi,βi , a pure natural
direct effect of E[ζ ′i] and a total causal effect of E[αi]E[βi] +σαi,βi +E[ζ ′i].
However, in an AB/BA design with only two repeated measurements,
not all subject-specific effects in model (2.3) can be identified. This is
why we will assume homogeneous effects across subjects, i.e. αi = α,
βi = β, ζ ′i = ζ ′, κMi = κM and κY i = κY , resulting in data-generating
mechanism (2.3). When subject-specific slopes are absent, the indirect
and direct effect then simplify to αβ and ζ ′. If there were more repeated
measurements per individual (e.g. four, with two observations within each
measurement period), these heterogeneous effects across individuals could
become identifiable.

A.2 Limitations of the Joint modelling approach

The Joint modelling approach may provide biased estimates under some
circumstances, even if the fixed effects part of the model is correctly
specified. To understand this, note that the joint modelling approach
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implies that:

E(Yit|Mx=0
i ,Mx=1

i , Xit) = dY i+c′Xit+bMit+KY t+E(uY i|Mx=0
i ,Mx=1

i , Xit)

where:

E(uY i|Mx=0
i ,Mx=1

i , Xit) = E(uY i|MDif
i ,MSum

i , Xit)
= E(uY i|MSum

i , Xit)

because MDif
i is independent of uMi and therefore also of uY i. When uY i

and MSum
i have bivariate normal distributions (given Xit), this implies

that E(uY i|MSum
i , Xit) is linear in MSum

i . It thus follows that the joint
modelling approach is equivalent with fitting GEE to a marginal model
that, besides linear terms in Xit,Mit and t, also involves a linear term
in MSum

i . The assumption that uY i and MSum
i have bivariate normal

distributions (given Xit) implies in particular that (a) uY i is normal, given
Xit; (b)Mit is normal given Xit and uY i; and (c) uY i has a linear, additive
effect on Mit (no interactions). When these conditions are not satisfied,
then E(uY i|MSum

i , Xit) may be nonlinear in MSum
i , in which case the

joint modelling approach amounts to fitting a misspecified marginal model.
Violations of condition (c) arise in the third data generating mechanism

in our simulations: here, Vi in equation (2.7) depends linearly on Ui, but
non-linearly on Mit (through the interaction between Vi and Xit), thereby
inducing a nonlinear dependence between uY i and MSum

i .

A.3 Identification of the causal effects in complex set-
tings

For the more complex data generating mechanism, summarised by equation
(2.7), the “it-th”-specific total natural indirect effect can also be identified,
when the assumptions (i)-(vii) from section 3.2 are satisfied:

E[Y it(x,Mit(x))− Yit(x,Mit(x∗))|Di = d, Ui]

=
∑
m

(
E[Yit|Xit = x,Mit = m,Di = d, Ui]P (Mit = m|Xit = x,Di = d, Ui)

− E[Yit|Xit = x,Mit = m,Di = d, Ui]P (Mit = m|Xit = x∗, Di = d, Ui)
)

=
∑
m

(δY + ζ′x+ βm+ φxm+ κY t+ ωY d+ νY dx+ ηdm+ Ui) ·
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(
P (Mit = m|Xit = x,Di = d, Ui)− P (Mit = m|Xit = x∗, Di = d, Ui)

)
=(β + φx+ ηd)

(∑
m

mP (Mit = m|Xit = x,Di = d, Ui)

−
∑
m

mP (Mit = m|Xit = x∗, Di = d, Ui)
)

=(β + φx+ ηd)
(
E(Mit|Xit = x,Di = d, Ui)− E(M∗it|Xit = x∗, Di = d, Ui)

)
=(β + φx+ ηd)(δM + αx+ κM t+ ωMd+ νMdx+ g(Ui)
− δM − αx∗ − κM t− ωMd− νMdx∗ − g(Ui))

=(α+ νMd)(β + φx+ ηd)(x− x∗) (2.28)

Similarly, the “it-th”-specific pure natural direct effect can be identified
(based on equation (2.7)):

E[Y it(x,Mit(x∗))− Yit(x∗,Mit(x∗))|Di = d, Ui]

=
∑
m

(
E[Yit|Xit = x,Mit = m,Di = d, Ui]P (Mit = m|Xit = x∗, Di = d, Ui)

− E[Yit|Xit = x∗,Mit = m,Di = d, Ui]P (Mit = m|Xit = x∗, Di = d, Ui)
)

=
∑
m

P (Mit = m|Xit = x∗, Di = d, Ui)(δY + ζ′x+ βm+ φxm+ κY t+ ωY d

+ νY dx+ ηdm+ Ui − δY − ζ′x∗ − βm− φx∗m− κY t− ωY d− νY dx∗

− ηdm− Ui)

=
(

(ζ′ + νY d)
∑
m

P (Mit = m|Xit = x∗, Di = d, Ui)

+ φ
∑
m

mP (Mit = m|Xit = x∗, Di = d, Ui)
)

(x− x∗)

= (ζ′ + νY d+ φE[Mit = m|Xit = x∗, Di = d, Ui])(x− x∗) (2.29)
= (ζ′ + νY d+ φ(δM + αx∗ + κM t+ λM c+ ωMd+ νMdx

∗ + g(Ui))(x− x∗)

Finally, the “it-th”-specific total causal effect can be identified as (based
on equation (2.7)):

E[Y it(x,Mit(x))− Yit(x∗,Mit(x∗))|Di = d, Ui]

=
∑
m

(
E[Yit|Xit = x,Mit = m,Di = d, Ui]P (Mit = m|Xit = x,Di = d, Ui)

− E[Yit|Xit = x∗,Mit = m,Di = d, Ui]P (Mit = m|Xit = x∗, Di = d, Ui)
)
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=
∑
m

(δY + ζ′x+ βm+ φxm+ κY + ωY d+ νY dx+ ηdm+ Ui) ·

P (Mit = m|Xit = x,Di = d, Ui)

−
∑
m

(δY + ζ′x∗ + βm+ φx∗m+ κY t+ ωY d+ νY dx
∗ + ηdm+ Ui) ·

P (Mit = m|Xit = x∗, Di = d, Ui)

= (ζ′ + νY d)(x− x∗) + (β + φx+ ηd)
∑
m

mP (Mit = m|Xit = x,Di = d, Ui)

− (β + φx∗ + ηd)
∑
m

mP (Mit = m|Xit = x∗, Di = d, Ui)

= (ζ′ + νY d)(x− x∗) + (β + φx+ ηd)(δM + αx+ κM t+ ωMd+ νMdx+ g(Ui))
− (β + φx∗ + ηd)(δM + αx∗ + κM t+ ωMd+ νMdx

∗ + g(Ui))

=
(
(α+ νMd)(β + ηd) + ζ′ + νY d+ φ(dM + κM t+ ωMd+ g(Ui))

)
(x− x∗)

+ φ(α+ νMd)(x2 − x∗2) (2.30)





3 More precise estimation of
lower-level interaction

effects in multilevel models

Abstract. In hierarchical data the effect of a lower-level predictor on
a lower-level outcome may often be confounded by an (un)measured
upper-level factor. When such confounding is left unaddressed, the
effect of the lower-level predictor is estimated with bias. Separating
this effect into a within- and between-component removes such bias
in a linear random intercept model under a specific set of assump-
tions for the confounder. When the effect of the lower-level predictor
is additionally moderated by another lower-level predictor, an inter-
action between both lower-level predictors is included into the model.
To address unmeasured upper-level confounding, this interaction
term ought to be decomposed into a within- and between-component
as well. This can be achieved by first multiplying both predictors
and centering that product term next, or vice versa. We show that
while both approaches, on average, yield the same estimates of the
interaction effect in linear models, the former decomposition is much
more precise and robust against misspecification of the effects of
cross-level and upper-level terms, compared to the latter.

This chapter is based on Loeys, T., Josephy, H. & Marieke Dewitte (2018). More
precise estimation of lower-level interaction effects in multilevel models. Multivariate
Behavioral Research, 53(3): 335-347.
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1 Introduction

When measures are collected repeatedly over time in individuals (e.g., in
daily diary studies), such data can yield much more information compared
to a cross-sectional sample. For example, when studying the relationship
between intimacy and positive relationship feelings in a daily diary study,
a between-person effect can be disentangled from a within-person effect
(Curran and Bauer, 2011; Wang and Maxwell, 2015). In this example, the
between-person effect reflects the extent to which individuals with higher
intimacy differ in their positive relational feelings from individuals with a
lower intimacy. The within-person effect on the other hand, reflects the
extent to which an individual exhibits higher (or lower) positive relational
feelings when (s)he had more (or less) intimacy on a particular day, as
compared to other days.

During the last two decades, the behavioural science literature has in-
creasingly focused on separating within- from between-effects in multilevel
models (Curran and Bauer, 2011; Enders and Tofighi, 2007; Hofmann and
Gavin, 1998; Kreft et al., 1995; Raudenbush and Bryk, 2002). Two impor-
tant issues can be highlighted when disaggregating those effects within
longitudinal data: centering and detrending (Curran and Bauer, 2011). The
former refers to subtracting a constant from every value of a variable, while
the latter refers to removing the time trend from time series. The centering
issue is relevant for disaggregation, even when neither the predictor nor
the outcome exhibits any trend over time, whereas the detrending issue is
only relevant when at least one of those variables exhibits some trend over
time (Wang and Maxwell, 2015). In this paper, we assume no time effects
on either the predictor or the outcome and consequently limit our focus to
the centering issue.

The multilevel literature typically considers two levels: the lower-level
or level 1 (e.g. the daily measurements within the individual), and the
upper-level or level 2 (e.g. the individuals in a diary study). Within such
two-level data structures, three types of centering can be distinguished:
no centering (i.e., the raw scores are used), grand-mean centering (i.e.,
subtraction of the overall average across individuals and time points) and
cluster-mean centering (i.e., subtraction of a person-specific mean, averaged
across time points within the individual). There is a general consensus
that cluster-mean centering (also referred to as ‘CWC’, centering within
clusters) is deemed most appropriate when lower-level predictors are of
primary substantive interest (Enders and Tofighi, 2007). More specifically,
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CWC may solve potential confounding issues in estimating the effect of
a predictor on an outcome. A detailed explanation on why is discussed
in the next section. When unmeasured upper-level common causes of the
predictor-outcome relationship are present, we refer to such causes as
unmeasured upper-level confounders. In the econometrics literature, this
type of unmeasured confounding at the subject- or cluster-level is referred
to as upper-level endogeneity (Wooldridge, 2010). Here we argue that
confounding at the upper-level is very common in many contexts. In our
illustration, for example, it is not unlikely that the daily measurements of
intimacy and positive relational feelings are both affected by unmeasured
stable (personality) traits of the individual. We will show that under a
specific set of assumptions for the unmeasured upper-level confounder,
CWC allows unbiased estimation of the within-subject effect of a lower-level
predictor on an outcome.

Unfortunately, discussions on the role of centering are mostly limited
to the assessment of main effects in multilevel models (MLM) and ignore
the centering of interactions. An issue of particular importance entails
the centering of interactions in the 1× (1→ 1) design, where the first ‘1’
corresponds to the level at which the moderator is measured, the second
‘1’ represents the level of the predictor, and the last ‘1’ defines the level
of the outcome (Preacher et al., 2016; Ryu, 2015). We will refer to such
interactions as ‘lower-level interactions’. When cluster-mean centering such
interactions, the question arises whether the predictor and moderator
should be centred first and multiplied next (hereafter labeled as ‘C1P2’,
centre-first and product-second), or whether it should be the other way
around (labeled hereafter as ‘P1C2’). In contrast to cluster-mean centering
an interaction between an upper- and a lower-level variable, or between two
upper-level variables, C1P2 and P1C2 produce different predictors when
cluster-mean centering a lower-level interaction. Some scholars favoured
P1C2 (Josephy et al., 2015), while others advised against it and promoted
C1P2 instead (Preacher et al., 2016). In this paper we investigate how
these two approaches deal with unmeasured upper-level confounding and
whether they can unbiasedly estimate the moderated within-subject effect.

While Josephy et al. (2015) considered the traditional multilevel mod-
elling (MLM) framework (also referred to as mixed modelling), Preacher
et al. (2016) relied on Structural Equation Modelling (SEM). In contrast to
the traditional MLM-framework, in which the within- and between-cluster
decomposition of a predictor relies on the observed cluster means, latent
cluster means are generally used in SEM. The latent means in a multilevel
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SEM-framework avoid bias due to sampling error, which is typically asso-
ciated with the observed cluster means in the MLM-framework (Lüdtke
et al., 2008). And although the impossibility of the MLM-framework to
deal with measurement error is a serious limitation, this does not pose
an issue when the interest lies with the within-cluster effects. When the
lower-level variables are assumed to be measured without error, (Lüdtke
et al., 2008) have shown that the estimator of the within-effect is unbiased
(we will not repeat their proof here). Additionally, Lüdtke et al. (2008)
reported a similar performance in terms of standard errors for the esti-
mated within-effects, when using the observed mean versus the latent mean.
Unfortunately, the MLM-approach can result in substantially biased esti-
mates of between-effects, as well as severely underestimate the associated
standard errors in the presence of upper-level measurement error. However,
since Nesselroade and Molenaar (2016) have recently re-emphasised the
importance of studying within-subject processes in lower-level designs
(Molenaar, 2004, 2009), we will primarily focus on the estimation of these
effects. Given that MLM and SEM perform similarly for within-cluster
effects, we limit our exposition to the MLM-framework.

In the following sections, we first introduce our illustrating example and
describe cluster-mean centering within the MLM-framework for main effect
models. Next, we consider MLMs with lower-level interaction effects and
enumerate the various existing modelling strategies proposed for estimating
such effects. We demonstrate how different estimates (and standard errors)
are found for the moderating effect, when applying these strategies to the
diary data on intimacy and relationship feelings. In a next step, we explore
why and when those centering approaches perform differently by means of
a simulation study. Finally, we discuss the interpretation of the parameters
for the different modelling strategies and end with a short discussion.

2 Illustrating example
We consider longitudinal diary data on sexual behaviour from a Flemish
study in 66 heterosexual couples (Dewitte et al., 2015). Every morning
during three weeks, participants were asked about their sexual and intimate
behaviour since the last time they had filled out their morning diary (i.e.,
sexual behaviour over the past 24 hours). Every evening, the participants
were asked to report on their individual, relational, and partner-related
feelings and behaviour, experienced during that day. In this manuscript,
we limit our focus to the reports of the 66 male partners. Because the
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diary reports were not always completed meticulously over the course of
the 21 days, the number of observations per participant ranges from 5 to
21, with a median cluster size of 18. In total, we have 1127 observations
clustered within 66 men, implying a missing rate of about 19%. The
variables of interest are the extent (on a 7-point scale from ‘not at all’ to
‘very much’) to which they report that intimate acts had occurred with
their partner (described as the amount of kissing, cuddling and caressing),
the men’s daily reports of masturbation (defined as any sexual act that
involved self-stimulation in the absence of their partner), as well as their
daily evening reports on positive relationship feelings. The latter were
obtained by averaging the scores (on a seven-point scale) on nine items
(the extent to which they felt happy, satisfied, understood, supported,
accepted, loved, in love, connected, and close). The research question we
will focus on, considers the contribution of intimacy to next-day positive
relationship feelings within a man, and to what extent that the occurrence
of masturbation during the previous day (yes or no) changes this effect.

3 Centering of main effects in multilevel models
In this section we first explain why a difference in within- and between-
subject effects may result from omitted variable bias at the subject-level.
Let Xij denote the predictor and Yij the outcome of individual j (j =
1, . . . , N) at time i (i = 1, . . . , nj). In our example, Xij and Yij represent
the daily measurements of intimacy and next day’s positive relational
feelings, respectively. As mentioned in the introduction, it is not unlikely
that the daily measurements of intimacy and positive relational feelings are
both affected by unmeasured stable (personality) traits of the individual.
We referred to such unmeasured common causes of Xij and Yij as an
unmeasured upper-level confounder, which we will from now denote by bj .

Consider a simple causal model for the effect of Xij on Yij that takes
an unmeasured subject-level confounder bj into account:

E(Yij | Xij , bj) = β0 + βXij + bj , (3.1)

where we assume that the unmeasured confounder has an additive effect
on the outcome. The left panel of Figure 3.1 represents the corresponding
data-generating process. For a given subject, the β-parameter reflects the
average increase in the outcome for a one-unit increase in the predictor.
As such, this parameter can be interpreted as the within-person effect
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Figure 3.1 Left panel: Unmeasured subject-level confounding of the Xij − Yij
relationship. Right panel: lower-level interaction model with unmeasured subject-level
confounding.

of Xij on Yij . Several remarks deserve some additional attention. First,
in order for β to have a causal interpretation, the predictor Xij should
temporally precede Yij . For example, in our illustration we aim to estimate
the causal effect of intimacy on next day’s positive relationship feelings,
implying a clear temporal ordering. Second, we assume a time-constant
effect of Xij on Yij ; there is no reason to assume that the effect on day one
is any different from the effect on day two. Third, we assume the absence
of any unmeasured lower-level confounders of the Xij − Yij relationship.
That is, given the unmeasured personality traits for example, we do not
allow for further occasion-specific unmeasured common causes of X and
Y . The question that we want to address now is: how can β be unbiasedly
estimated, despite the presence of the unmeasured upper-level confounder
bj?

Naively, we could consider the following multilevel model:

E(Yij | Xij , bj) = γ0 + γXij + uj , (3.2)

Note that to clearly contrast estimation model (3.2) to data-generating
process (3.1), we rely on different notations here, as well as in the remainder
of the paper. Fixed effect parameters will be denoted by γ’s and random
effects by uj in estimation models, while β’s and bj will represent these
effects in the true causal models. To fit model (3.2), we could simply rely
on standard multilevel modelling approaches. Unfortunately, an important
but often ignored assumption in hierarchical linear modelling requires
the random effect uj in (3.2) to be uncorrelated with the predictor Xij

(McNeish et al., 2016). This assumption is violated in case of upper-level
endogeneity. Consequently, the naive MLM-estimator (based on maximum
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likelihood, restricted maximum likelihood, or feasible generalised least
squares, abbreviated FGLS) that aims to estimate β in model (3.1), and
which we will refer to as γ̂RE , will suffer from omitted variable bias
(Raudenbush and Bryk, 2002; Castellano et al., 2014).

In a similar vein, it is important to stress that lagged variables should
not be added to model (3.2), i.e.:

E(Yij | Xij , Yi−1,j , uj) = γ0 + γ1Xij + γ2Yi−1,j + uj , (3.3)

Since model (3.3) applies to all time points, uj has a direct effect on
Yi−1,j . However, if uj affects yi−1,j , it can’t be statistically independent
of Yi−1,j at the same time. The violation of this independence assumption
in traditional hierarchical linear modelling can bias both the coefficient
for the lagged dependent variable, as well as the coefficients for the other
variables (Allison, 2015).

One possible way to deal with omitted variable bias in model (3.2) is
to rely on the fixed effects approach (Mundlak, 1978), where uj is treated
as fixed rather than random. This approach is very popular within the
econometrics literature (Wooldridge, 2010) and has recently resurfaced
in behavioural science literature (Castellano et al., 2014). In practice, N
dummy variables dnj (i.e. one for each subject) are created in a way that
dnj = 1 if n = j, and dnj = 0 when n 6= j (n = 1, . . . , N). Consequently,
Yij is regressed on d1j , . . . , dNj and xij :

E(Yij | Xij , d1j , . . . , dNj) = γ∗1d1j+γ∗2d2j+ . . .+γ∗NdNj+γFEXij (3.4)

Under causal data-generating model (3.1), the OLS-estimator for γFE ,
denoted by γ̂FE (obtained from estimation model (3.4)), represents an
unbiased estimator for β (Wooldridge, 2010). Intuitively, this can be under-
stood by the fact that the predictors in (3.4) are allowed to be correlated
(in contrast to the predictor and random intercept in model (3.2)). One side
effect of the fixed effects approach is that it cannot be used to investigate
between-subject effects, as between-subject characteristics are perfectly
collinear with the dummies.

A possible alternative that can deal with omitted variable bias and
additionally allows the estimation of both within- and between-effects,
is to rely on group-mean centering (i.e. the CWC-approach). That is,
the predictor Xij is separated into a between- (i.e. Xj = 1

nj

∑nj
i=1 Xij)

and a within-subject (i.e.,Xij −Xj = Xc
ij) component within the MLM-

framework. As such, we consider the following model, originally proposed
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by Neuhaus and Kalbfleisch (1998):

E(Yij | Xij , uj) = γ0 + γWX
c
ij + γBXj + uj (3.5)

with uj assumed i.i.d. ∼ N(0, τ2) and independent of the predictors.
Goetgeluk and Vansteelandt (2008) prove that the estimator γ̂W from
model (3.5) is consistent (i.e. asymptotically unbiased) for β in model (3.1),
even in the presence of unmeasured upper-level confounding of Xij and Yij .
The rationale behind this is that by subject-mean centering the predictor,
any subject-specific effects are effectively eliminated. Relying on simple
OLS-estimators for γW and γB , we see that γ̂W = cov(Yij ,Xij−Xj)

var(Xij−Xj)
and γ̂B =

cov(Y j ,Xj)
var(Xj)

, which will converge to β and β+ cov(bj ,Xj)
var(Xj)

, respectively, under
model (3.1). These two expressions clearly illustrate two important points.
First, cluster-mean centering the predictor permits unbiased estimation of
the within-person effect under upper-level endogeneity in causal model (3.1).
Second, when bj is a confounder of the Xij − Yij relationship, this implies
that cov(bj , Xj) 6= 0, and that γ̂B will no longer converge to β. In other
words, upper-level endogeneity elicits differences in the between- and
within-subject effects. Only in the absence of upper-level endogeneity in
model (3.1) (i.e. cov(bj , Xj) = 0), will γ̂B be equal to γ̂W .

Note that the naive MLM-estimator γ̂RE actually represents a weighted
combination of γ̂W and γ̂B (Raudenbush & Bryk, 2002, p.137); in balanced
designs (i.e., with nj = n for all j), we see that:

γ̂RE = W1γ̂B +W2γ̂W
W1 +W2

,with W1 = v̂ar(γ̂B)−1 and W2 = v̂ar(γ̂W )−1,

making γ̂RE an uninterpretable blend of both effects. Also note that, since
cov(Xij − Xj , Xj) = 0, the within- and between-subject predictors are
independent. As such, the cluster means can be dropped from estimation
model (3.5) when the within-effect is the only quantity of interest:

E(Yij | Xij , uj) = γ0 + γWX
c
ij + uj (3.6)

Furthermore, it is interesting to note that the fixed effect estimator γ̂FE
and the within-subject estimator γ̂W are identical in balanced designs
(Wooldridge, 2010).

Similar to Greenland (2002), Goetgeluk and Vansteelandt (2008), and
Brumback et al. (2010), we argue that models (3.5) and (3.6) cannot be
considered valid causal models. For example, in the longitudinal setting
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considered here, model (3.5) would imply that the future causes the past
(i.e. future Xij would cause past Yi0j for i > i0, since Xij is contained
within Xj). Also, when model (3.5) is interpreted as a causal model for
the manipulated effect of Xij for a single i, it would conflict with causal
model (3.1) unless γW = γB = β. As mentioned before, the individual
causal effect of a one-unit increase in Xij is represented by β in model (3.1),
while this is γW (1− 1/nj) + 1/njγB in model (3.5); the latter expression
only equals β when γW = γB = β. This remark does not degrade the
usefulness of model (3.5), but it emphasises that model (3.5) should be
viewed as an estimation model rather than a causal one.

What are the principal implications for substantive researchers? Most
importantly, that model (3.5) can be used as the vehicle to estimate the
parameter of interest. In our example, we want to determine the effect of
a one-unit increase in intimacy on next day’s positive relationship feelings
within a person. Unlike γ in model (3.2), the parameter γW in model (3.5)
will target that quantity of interest, even in the presence of unmeasured
time-constant subject-specific confounders. As such, we look at settings
in which model (3.1) (graphically represented in Figure 3.1) rather than
model (3.5) represents the true causal model. However, in these settings,
model (3.5) still correctly describes the conditional association of Yij
given Xij and the independent subject effect ui. In other words, while
both models might be valid at the same time, model (3.1) constitutes the
causal model, whereas model (3.5) represents an estimation model invoked
to circumvent the issue that bi is associated with Xij (so that we can
unbiasedly estimate β).

4 Centering of lower-level interactions in multi-
level models

Researchers’ interest is often not limited to assessing main effects only. In
our illustrating example, researchers may want to know if the effect of
intimacy on the following day’s positive relational feelings differs according
to whether or not the participant has masturbated during the previous
day. Instead of model (3.1), we now assume a causal model in which an
interaction effect is included:

E(Yij | Xij , Zij , bj) = β0 + β1Xij + β2Zij + β3XijZij + bj , (3.7)
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with Zij the moderator at time i in individual j. Since both Xij and Zij are
measured at the lower-level, we have a setting with a lower-level interaction.
The right panel of Figure 3.1 graphically represents the assumed data-
generating process. Note that an arrow-on-arrow notation was used to
indicate the moderating effect of Z.

The parameter β3 in model (3.7) reflects the moderating effect for a
given subject, i.e. the extent to which the effect of Xij on Yij varies for
different values of Zij . In our example, such an effect might translate into:
how does the effect of intimacy on next day’s positive relationship feelings
change within a participant when the man has masturbated versus when
he has not? The interpretation of the main effects β1 and β2 in (3.7) on the
other hand, depends on whether Xij and/or Zij are grand mean centred.
When Xij is grand mean centred, β2 reflects the effect of masturbation
on next day’s positive relationship feelings within a subject at the sample
average level of intimacy. If Xij were not grand mean centred, β2 would
capture the effect of masturbation at the zero-level of intimacy. This,
however, would not provide a very useful interpretation, since intimacy
is measured on a 1-7 scale. Similarly, when Zij is grand mean centred
(i.e., in our example, the sample proportion of days with masturbation
is subtracted from the raw scores), β1 reflects the effect of a one-unit
increase in intimacy on the next day’s positive relationship feelings within a
participant, averaged over days with and without masturbation. When both
Xij and Zij are grand mean centred, the intercept β0 can be interpreted
as the average positive relationship feelings over all participants and days.
As such, grand-mean centering of both continuous and binary predictors
in interaction models provides useful interpretations of the main effects;
we will therefore assume that X and Z are grand mean centred during
the remainder of this manuscript. However, in order to avoid notational
burden, we will not introduce any new notation to indicate this.

The researcher’s primary interest now lies in estimating β3. But how
should β3 be estimated? Naively, we may again consider a traditional
MLM-approach:

E(Yij | Xij , Zij , uj) = γ0 + γ1Xij + γ2Zij + γ3XijZij + uj , (3.8)

Note that here too, we define the parameters γ and u within the estimation
model, whereas β and b are used in the causal model. Given the stan-
dard assumption of independence of the random effect and predictors in
model (3.8), the naive MLM-estimator of the interaction effect (which we
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denote γ̂RE3 ) will once again suffer from omitted variable bias. To address
such unmeasured upper-level confounding, we may - similar to the main
effects model - rely on separating within- from between-effects.

As was already mentioned in the introduction, two different strategies
for centering lower-level interactions have been suggested. The first ap-
proach, advocated by Josephy et al. (2015), first multiplies Xij with Zij ,
after which the cluster mean average of this product term is subtracted.
As such, the "P1C2" estimation model amounts to:

E(Yij | Xij , Zij , uj) = γ0 + γ1X
c
ij + γ2Z

c
ij + γ3(XZ)cij + uj (3.9)

with Xc
ij = Xij −Xj , Zcij = Zij −Zj and (XZ)cij = XijZij −XZj (where

XZj = 1
nj

∑nj
i=1 XijZij). Under data-generating model (3.7), γ̂0, γ̂1, γ̂2

and γ̂3 of the P1C2-approach consistently (i.e., asymptotically unbiased)
estimate β0, β1, β2 and β3 (Goetgeluk and Vansteelandt, 2008; Josephy
et al., 2015). As such, the estimators γ̂0, γ̂1, γ̂2 and γ̂3 share the same
interpretation as β0, β1, β2 and β3 (see below model (3.7)).

It is also possible to add all corresponding between-effects to estimation
model (3.9), i.e.:

E(Yij | Xij , Zij , uj) = γ0 + γ1X
c
ij + γ2Z

c
ij + γ3(XZ)cij

+γ4Xj + γ5Zj + γ6XZj + uj (3.10)

We will refer to estimation model (3.10) as the ‘P1C2+’ approach. Interest-
ingly, since the within-predictors are independent of the between-predictors
in this model, the estimated within-effects γ̂1, γ̂2 and γ̂3 from models (3.9)
and (3.10) are identical in balanced designs.

The second approach is suggested by Preacher et al. (2016), who are
very explicit on their centering convictions in multilevel SEM (MSEM)
models. If we ignore the distinction between centering at the observed
versus the latent cluster means (Lüdtke et al., 2008), Preacher et al. (2016)
distinctly argue that XijZij should not be separated into a within-part
XijZij −XZj and a between-part XZj . These authors reason that “using
these as predictors does not lead to interpretable effects, because researchers
are not interested in the effects of product terms” (p.191). When solely
focusing on within-effects, the multilevel model proposed by Preacher et al.
(2016) (with observed rather than latent cluster means), can be written as:

E(Yij | Xij , Zij , uj) = γ0 + γ1X
c
ij + γ2Z

c
ij + γ3X

c
ijZ

c
ij + uj (3.11)
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We refer to estimation model (3.11) as the ‘C1P2’-approach. In their
paper, Preacher et al. (2016) also describe a more complete model that
additionally includes cross- and between-level effects:

E(Yij | Xij , Zij , uj) = γ0 + γ1X
c
ij + γ2Z

c
ij + γ3X

c
ijZ

c
ij + γ4Xj + γ5Zj

+γ6XjZj + γ7XjZ
c
ij + γ8ZjX

c
ij + uj (3.12)

which we will refer to as the ‘C1P2++’ approach. Model (3.12) contains
four different interaction effects: a within- subject interaction (captured
by the parameter γ3), a between-subject interaction (captured by γ6)
and two cross-level interactions (captured by γ7 and γ8). Note that since
Cov

(
Xc
ijZ

c
ij , XjZj

)
is not necessarily zero, the estimated parameters of

the within-effects in the C1P2 and C1P2++ approaches are no longer
identical in balanced designs (unlike in P1C2 and P1C2+).

Ryu (2015) also considers MSEM for estimating lower-level interactions
in multilevel data, but in contrast to Preacher et al. (2016), Ryu relies on
an earlier MSEM approach (Muthén, 1990). The latter decomposes the
observed data into between- and pooled within-covariances, whilst fitting
separate within- and between-models using the multi-group techniques
of SEM. This multi-group approach does not allow for missing data or
unbalanced cluster sizes, but more importantly, it cannot account for
cross-level interactions. Ryu (2015) considers three types of centering: no
centering (UN), grand-mean centering (CGM), and centering within clus-
ters (CWC). First of all, MSEM with uncentred lower-level variables (UN)
employs latent cluster means to define the various upper- and lower-level
variables. This UN approach therefore corresponds to model (3.10), where
the observed means are replaced by their latent counterparts (denoted
with a tilde):

E(Yij | Xij , Zij , uj) =γ0 + γ1(Xij − X̃j) + γ2(Zij − Z̃j) + γ3(XijZij − X̃Zj)

+ γ4X̃j + γ5Z̃j + γ6X̃Zj + uj (3.13)

Here, Xij and Zij are not grand mean centred. Second, Ryu (2015)’s
CGM approach only differs from the UN approach in that Xij and Zij
are first grand mean centred. Third, the CWC-approach described by Ryu
(2015) uses the observed cluster means as level 2 covariates. As such, the
corresponding estimation model can be written as:

E(Yij | Xij , Zij , uj) = γ0 + γ1X
c
ij + γ2Z

c
ij + γ3X

c
ijZ

c
ij

+γ4Xj + γ5Zj + γ6XjZj + uj (3.14)
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and will be referred to as ‘C1P2+’. We employ this labelling, since the
predictors are centred first and only then multiplied as in Preacher et al.
(2016), but unlike model (3.12) it does not include any cross-level interac-
tions.

Let us now illustrate how the P1C2- and C1P2-approaches may lead to
different estimates of the moderation effect, by means of our example data.
To estimate the moderating effect of masturbation on the effect of intimacy
on next day’s positive relationship feelings, we consider the five different
estimation models (3.9), (3.10),(3.11), (3.12) and (3.14). In these models,
Xij , Zij and Yij denote the grand mean centred intimacy, the grand
mean centred masturbation, and next day’s positive relationship feelings,
respectively. Estimated parameters with associated standard errors, test
statistics, and p-values of all within-cluster effects are summarised in
table 3.4, together with estimated random intercepts and residual variances.

From these results, we can deduce several things. First, as already
stated in the previous section, P1C2 and P1C2+ yield identical results
for all within-effects in balanced designs. In our example the data are
not perfectly balanced due to a small amount of missingness, and as a
consequence the estimates, standard errors and p-values of P1C2 and
P1C2+ differ slightly. The estimated within-effects in the different C1P2-
approaches, on the other hand, are much more discrepant. Second, the
estimated moderating effect of masturbation is more pronounced in the
C1P2-approaches compared to the estimates from P1C2. Even though all
approaches point in the same direction (the positive effect of intimacy
on next day’s positive relationship is diluted if the man masturbated),
the moderating effect is inflated by about 25% in the C1P2-approaches
compared to P1C2. Third, the standard errors of the estimated interaction
effect in the C1P2-approaches are about 25% larger than in P1C2. To gain
further insights into the performance of the different estimation models,
as well as into the precise quantities the different within-effect estimators
are targeting, a simulation study is presented in the next section.

5 Simulation study
We consider five different simulation settings under causal model (3.7),
where we assess the (relative) bias of the estimators and standard errors
of the within-effects for the five different estimation models ((3.9), (3.10),
(3.11), (3.12) and (3.14)), as well as their coverage and power. The bias
is evaluated by contrasting the sample mean of the estimates from the
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1000 simulated data sets to the true parameter value, through the use of a
Wald-test. We report the relative bias of the parameter estimates, which
is defined as the averaged difference of the estimated (e.g., β̂) and true
parameter value (e.g., β), divided by the latter. Equivalently, the relative
bias of the standard errors is defined as the difference between the mean
of the estimated standard errors and the empirical standard error, divided
by the latter. A negative relative bias thus implies an underestimation
of the true variability. The coverage is defined by the proportion of the
95%-confidence intervals that encompass their true parameter value, while
the power is determined by the proportion of the 95%-confidence intervals
that do not encompass zero.

Mimicking the two-level structure of our illustrating data, we simulated
1000 data sets which contain 66 clusters and 21 observations within each
cluster, for five different settings. The true data generating models for Zij
and Yij are:

Zij = α0 + α1Xij + vZj + εZij (3.15)
Yij = β0 + β1Xij + β2Zij + β3XijZij + vYj + εYij (3.16)

In these models we generate independent lower-level residuals, εZij and εYij ,
from standard normal distributions. The upper-level confounders, vZj and
vYj , follow a multivariate standard normal distribution with a correlation
equal to 0.5. As such, we induce unmeasured confounding of the Zij − Yij
relationship with an additive effect on the outcome. Additionally, we fix
α0 = 0, β0 = 0 , β1 = 0.1, β2 = 0.15, and β3 = −0.1 in all settings, since
these values approximately correspond to those seen in our illustrating
example (table 3.4). As will become apparent later this section, some of
the estimation models will show bias in the interaction effect estimator.
Since this bias depends on the distribution of X and Z, we will therefore
vary the distribution of X (see table 3.1). Also, as Preacher et al. (2016)
showed that the within- and between-components of the product of two
lower-level predictors depends on the covariance of the predictors that
form the product, we will additionally vary the value of α1 (see table 3.1).
Consequently, in the scenarios where α1 6= 0, we see that Cov(Xij , Zij) 6= 0.
Note that when α1 6= 0, Z linearly depends on X and may be viewed as a
mediator in the relation between X and Y .

For the first simulation setting, we generate a standard normally dis-
tributed X, whereas X is sampled from a zero-centred Bernoulli distribu-
tion with success probability .5 in settings 2− 4. In simulation setting five,
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Simulation α1 Distribution of X Cov(Xij , Zij)
Sim 1 0.000 N(0.00, 1.00) 0.000
Sim 2 0.000 B(1, 0.500)− 0.500 0.000
Sim 3 -0.200 B(1, 0.500)− 0.500 -0.050
Sim 4 -1.500 B(1, 0.500)− 0.500 -0.375
Sim 5 -1.500 B(1,Φ(vXj ))− 0.500 -0.235

Table 3.1 A summary of the five different simulation settings. Each setting
considers a different combination of a value for α1 and a distribution for X (e.g.
B(1,Φ(vXj ))− 0.5 reflects a mean centred Bernoulli variable with success probability
Φ(vXj ), with Φ representing the cumulative normal distribution an vXj a standard
normally distributed random effect). When α1 6= 0, or when a random intercept for
X is introduced, which is correlated with the random intercepts for Z and Y (as in in
Sim 5), the covariance between Xij and Zij , Cov(Xij , Zij), will differ from zero.

the true data generating model for Xij is:

Probit(Xij = 1) = vXj

with vXj following a standard normal distribution. Furthermore, vXj is
correlated with vZj and vYj , with a correlation equal to 0.5. The latter
implies the existence of an unmeasured upper-level confounder of X, Y
and Z, inducing an additional covariation between Xij and Zij .

In the first two settings α1 = 0, while α1 = −0.2 in the third, and
α1 = −1.5 in the fourth and fifth setting. Although setting α0 = 0
and β0 = 0 implies that both X and Z already exhibit mean zero at
the population level in all settings, we additionally grand mean centre
all variables in the samples prior to analysis. Additionally, all estimation
models were fitted using the lmer-function from the lme4 R-package. The R-
code used to generate the simulated data is available in the supplementary
material.

The means of the 1000 parameter estimates (with the relative bias),
the mean of the standard errors (with the relative bias), the coverage and
power of the estimators are summarised in table 3.2. Estimators that show
significant bias are displayed in boldface. Note that we only displayed
the results for three of the five approaches, since P1C2+ and C1P2+
yield results identical to P1C2 and C1P2, respectively (for our balanced
simulation data). Before we summarise the results, we re-iterate that the
fixed effects approach results in the exact same estimates as obtained by
the P1C2-approach.
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Let us first focus on the bias. For the first and second simulation
setting, where X and Z are independent, we do not observe bias (or more
precisely, the relative bias is smaller than 5%, and not significant) for all
within-effects under all approaches. In the third to fifth setting, Z depends
on X in a linear fashion; when the absolute value of the effect of X on Z
is increased (i.e. comparing simulation 4 to simulation 3), we observe bias
(i.e. the relative bias is larger than 10% in absolute value, and found to be
significant) in the estimator for the interaction effect in C1P2 and C1P2+.
When X and Z are zero-mean centred symmetric distributions and Z is
linear in X (as is the case in the third, fourth and fifth setting), we see for
the OLS-estimator of γ3 under C1P2:

E(γ̂3) = β3
cov[XijZij , X

c
ijZ

c
ij ]

var[Xc
ijZ

c
ij ]

As pointed out by Croissant and Millo (2008), the OLS-estimators are
equivalent to the maximum likelihood estimators (as obtained through
the lmer function) in our simulations, since we are assuming normality,
homoscedasticity and no serial correlation of the errors. The derivation
of the above expression can be found in the appendix. Notably, the bias
depends on the distribution of X, as well as on the absolute value of
α1. We can see that cov[XijZij , X

c
ijZ

c
ij ] can be written as the sum of

var[Xc
ijZ

c
ij ] and some other terms that depend on α2

1cov[Xj , (Xij −Xj)2]
and α2

1cov[X2
j , (Xij−Xj)2]. While the latter two covariances are zero when

the distribution of Xij is Gaussian, these covariances no longer equal zero
when the distribution of Xij becomes Bernoulli (Dodge and Rousson, 2012).
Interestingly, when all cross-level interactions are included in C1P2++,
this bias for the interaction effect in C1P2 and C1P2+ disappears. In sum,
we find that the estimators of the P1C2, P1C2+, and C1P2++ approaches
target the exact same population parameters under the assumed data-
generating model.

Next, we take a look at the precision and power. The mean standard
error for the estimator of the interaction effect is substantially lower in the
P1C2 approaches, compared to C1P2++ in all simulation settings. The
mean standard errors of the main effect estimators, on the other hand, are
similar across all approaches. Furthermore, from the relative bias of the
estimated standard errors we can see that the empirical standard deviation
and the mean of the estimated standard error closely correspond under
all approaches, for the main and interaction effects (except for the main
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effect of X under the first simulation setting). As a consequence, we also
observe appropriate coverages for these estimators. We also ran simulations
with zero values for all lower-level effects (i.e. all β’s equal to zero), and
found appropriates type-I errors for all methods (results not shown), in
line with the coverages reported. Importantly, given the higher precision
of the estimated interaction effect under P1C2, we also observe the highest
power for detecting the interaction under this approach. However, it should
be noted that the simulation results describe average performances and,
in practice, data may be encountered where the P1C2 approach yields a
larger p-value for the interaction effect, compared to C1P2++.

So far, our simulation study only considered balanced data. Since our
diary study was not always complete over the course of the 21 days, we
repeated the above five simulation settings with a missingness pattern
similar to the example data. More specifically, we introduced varying
cluster sizes by sampling them as rounded values from a shifted beta-
distribution, such that cluster sizes varied between 1-21 (with its mode
around 18). The substantive findings from this unbalanced setting are
essentially the same as in the balanced case (see table 3.3). Note, however,
that due to the unbalanced nature of the simulations, the estimators of the
P1C2 and P1C2+ approaches, and of the C1P2 and C1P2+ approaches,
are no longer identical.

We limit the results of our simulation studies to the settings presented
here for two reasons. First, the specific settings we considered allow us
to derive analytical expressions for the observed biases. Second, further
simulation studies with different choices (e.g., non-symmetric distributions
for X and Z, non-linear associations between X and Z, . . . ) lead to
similar conclusions: (1) both P1C2 and C1P2++ yield unbiased estimators
for the interaction effect, (2) both exhibit an appropriate coverage of
their 95% confidence intervals, but (2) P1C2 is always more precise. This
conclusion can also be drawn from our illustrating example: we observe
more precise estimators for the interaction effect in P1C2, compared to
the C1P2 approaches.

What are the practical implications of these findings in terms of in-
terpretation? First of all, we found that the parameters γ1, γ2 and γ3
in estimation models (3.9) and (3.12) (i.e. the P1C2 and C1P2++ ap-
proaches) target the exact same population parameters and can hence
be given the same interpretation. Considering the estimates of the P1C2
approach (and C1P2++, respectively) in our illustrating example, we see
that masturbation dilutes the positive effect of intimacy on next day’s pos-
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itive relationship feelings with on average 0.075 units (0.096, respectively),
for every unit increase in intimacy (table 3.4). Averaging over days with
and without masturbation, a one-unit increase in intimacy within a male
individual will result in an 0.079 (0.080, respectively) increase in his next
day’s positive relationship feelings (table 3.4). Equivalently, at average
levels of intimacy, masturbation reduces next day’s positive relationship
feelings with on average 0.151 points (0.167 respectively) (table 3.4).

6 Discussion
This paper compared two alternative approaches for the centering of
lower-level interactions. In our simulation study, the P1C2-approaches
outperformed the C1P2-approaches in estimating such interactions: (1)
P1C2 results in more precise estimates of the interaction effect, compared
to the three C1P2-approaches; (2) P1C2 is not affected by misspecification
or omission of upper-level effects, in contrast to C1P2 (unless all cross-level
interactions are included).

It can be argued that the data-generating models considered here are
somewhat restrictive. However, it is important to note that the perfor-
mance of the two prevailing approaches for centering interactions was
explored in settings where CWC is usually considered a good remedy. That
is, we studied settings with additive effects for unmeasured upper-level
confounders, because such effects can be effectively eliminated by CWC.

A first important assumption underlying data generating model (3.7)
constitutes homogeneous effects amongst subjects. In the presence of
heterogeneous subject-effects, random slopes for X, Z, as well as for
their interaction can be added to the estimation models. Fortunately,
relying on estimation through a simple random intercept model such
as (3.9) (which ignores any heterogeneity) will not introduce bias in the
effect estimates, provided that the random slopes are independent of
the predictors (Baird and Maxwell, 2016). In contrast, if the random
slopes were to be correlated with the predictors, CWC would no longer
effectively eliminate unmeasured upper-level heterogeneity; alternative
approaches such as fixed-effect estimation or per-cluster analysis would
then be required (Bates et al., 2014).

A second important assumption underlying data generating model (3.7)
entails the absence of unmeasured lower-level confounding. If for exam-
ple daily intimacy, masturbation, and positive relational feelings were
associated with an (unmeasured) daily positive mood (given unmeasured
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subject-specific confounders), this assumption would be violated. Since
CWC only eliminates time-invariant confounding, we would expect biased
effect estimators under unmeasured lower-level confounding. However, as
recently pointed out by Loeys et al. (2016), the assessment of interaction
effects in linear models often requires weaker ‘no-unmeasured-confounding’
assumptions, compared to main effects. Hence, unbiased effect estimators
for the interaction may still be found under relatively lenient assumptions.

Third, we limited our discussion to linear settings. As shown by Goet-
geluk and Vansteelandt (2008), separating a within- from a between-effect
in a random intercept model only yields a consistent estimator of the
within-effect in the presence of upper-level confounding when the model
is linear. For nonlinear models, it is possible to encounter an inconsistent
estimator, though in practice this bias will often be small.

To summarise, when dealing with multilevel data, we recommend that
careful consideration be given to the assumptions under which separating
within- from between-effects yield valid results. When those assumptions
are deemed plausible, CWC can be applied to unbiasedly estimate within-
cluster effects. For the estimation of interaction effects we advocate the
P1C2-approach rather than the C1P2-approach, as the former is much
more efficient. If researchers want to use the C1P2-approach (e.g. because
of implementations in software packages for SEM), we recommend not
to drop any cross-level or upper-level terms, even when they are not of
interest.
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B Appendix

B.1 Bias of the interaction effect estimator under the
P1C2 approach

Assume that the true models for Z and Y are:

Zij = α0 + α1Xij + vZj + εZij (3.17)
Yij = β0 + β1Xij + β2Zij + β3XijZij + vYj + εYij (3.18)

with εZij and εYij i.i.d. with mean zero and variance σ2
Z and σ2

Y , respectively.
Consider the estimation model:

E[Yij | Xij , Zij , uj ] = γ0 + γ1X
c
ij + γ2Z

c
ij + γ3X

c
ijZ

c
ij + uj , (3.19)

where Xc
ij = (Xij −Xj) and Zcij = (Zij − Zj).

The OLS-estimators for the parameters of model (3.19), under models
(3.17) and (3.18) are given by Σ−1ΣV Y with Vij = (1 Xc

ij Z
c
ij X

c
ijZ

c
ij)′,

Σ = E[VijV ′ij ] and ΣV Y =
(
E[Yij ] E[Xc

ijYij ] E[ZcijYij ] E[Xc
ijZ

c
ijYij ]

)′.
Now, we have that:

VijV
′
ij =


1 Xc

ij Zcij Xc
ijZ

c
ij

Xc
ij Xc

ij
2 Xc

ijZ
c
ij Xc

ij
2Zcij

Zcij Xc
ijZ

c
ij Zcij

2 Xc
ijZ

c
ij

2

Xc
ijZ

c
ij Xc

ij
2Zcij Xc

ijZ
c
ij

2 Xc
ij

2Zcij
2


Assuming that Z is linear in X, E(Xij) = E(Zij) = 0, while also assuming
a symmetric distribution for X, the expectation of VijV ′ij simplifies to

Σ =


1 0 0 α1var[Xc

ij ]
0 var[Xc

ij ] α1var[Xc
ij ] 0

0 α1var[Xc
ij ] α2

1E[Xc
ij

2] + var[εZcij ] 0
α1var[Xc

ij ] 0 0 α2
1E[Xc

ij
4]

+var[εZcij ]var[Xc
ij ]

 ,

with εZcij = (εZij − εZj). In order to obtain the elements ckl of Σ−1, we
need its determinant. After some tedious calculations, we find that: |Σ| =
var[εZcij ]var[Xc

ij ]
(
α2

1var[Xc
ij

2] + var[εZcij ]var[Xc
ij ]
)
, c21 = c24 = c31 = c34 =

c42 = c43 = 0, c22 = α2
1

var[εZc
ij

] + 1
var[Xc

ij
] , c23 = c32 = − α1

var[εZc
ij

] , c33 = 1
var[εZc

ij
] ,

c41 = − α1var[Xcij ]
α2

1var[Xc
ij

2]+var[εZc
ij

]var[Xc
ij

] , and c44 = 1
α2

1var[Xc
ij

2]+var[εZc
ij

]var[Xc
ij

] .
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As such, we can show that there is no bias in the OLS-estimator γ̂1 for
β1:

E[γ̂1] =c22E[Xc
ijYij ] + c23E[ZcijYij ]

=(c22 + α1c23)(β1 + β2α1)var[Xc
ij ] + c23β2var[εZcij ]

=β1

Similarly, we find no bias in the OLS-estimator γ̂2 for β2:

E(γ̂2) =c32E[Xc
ijYij ] + c33E[ZcijYij ]

=c32(β1 + β2α1)var[Xc
ij ] + c33α1(β1 + β2α1)var[Xc

ij ] + c33β2var[εZcij ]
=β2

And finally, we find for the OLS-estimator γ̂3 for β3 that:

E(γ̂3) =c41E[Yij ] + c44E[Xc
ijZ

c
ijYij ]

=β3
α2

1cov[X2
ij , X

c
ij

2]
α2

1var[Xc
ij

2] + var[εZcij ]var[Xc
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we find that the bias factor for γ̂3 can be rewritten as:
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c
ijZ

c
ij ]

var[Xc
ijZ

c
ij ]

,

which will equal one when the distribution of X is normal, but will be
smaller than one when X is Bernoulli distributed.





4 A review of R-packages for
random-intercept probit

regression in small clusters

Abstract. Generalised Linear Mixed Models (GLMMs) are widely
used to model clustered categorical outcomes. To tackle the in-
tractable integration over the random effects distributions, several
approximation approaches have been developed for likelihood-based
inference. As these seldom yield satisfactory results when analysing
binary outcomes from small clusters, estimation within the Struc-
tural Equation Modelling (SEM) framework is proposed as an al-
ternative. We compare the performance of R-packages for random-
intercept probit regression relying on: the Laplace approximation,
adaptive Gaussian quadrature (AGQ), penalised quasi-likelihood, an
MCMC-implementation, and integrated nested Laplace approxima-
tion within the GLMM-framework, and a robust diagonally weighted
least squares estimation within the SEM-framework. In terms of bias
for the fixed and random effect estimators, SEM usually performs
best for cluster size two, while AGQ prevails in terms of precision
(mainly because of SEM’s robust standard errors). As the cluster
size increases, however, AGQ becomes the best choice for both bias
and precision.

This chapter is based on Josephy, H., Loeys, T., & Rosseel, Y. (2016). A review
of R-packages for random-intercept probit regression in small clusters. Frontiers in
Applied Mathematics and Statistics, 2 (18): 1-13.
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1 Introduction

In behavioural and social sciences, researchers are frequently confronted
with clustered or correlated data structures. Such hierarchical data sets for
example arise from educational studies, in which students are measured
within classrooms, or from longitudinal studies, in which measurements
are repeatedly taken within individuals. In these examples, two levels
can be distinguished within the data: measurements or level-1 units (e.g.
students or time points), and clusters or level-2 units (e.g. classes or
individuals). These lower-level units are correlated, as outcome measures
arising from students with the same teacher, or measurements within
an individual, will be more alike than data arising from students with
different teachers, or measurements from different individuals. As such,
an analysis that ignores these dependencies may yield underestimated
standard errors, while inappropriate aggregation across levels may result
in biased coefficients (Snijders and Bosker, 1999; Raudenbush and Bryk,
2002).

Over the course of decades, several frameworks that can deal with
such lower-level correlation have been developed. One such framework
entails mixed effect models, which model both the ordinary regression
parameters common to all clusters (i.e. the fixed effects), as well as any
cluster-specific parameters (i.e. the random effects). Using a parametric
approach, two different types can be distinguished: Linear Mixed Models
(LMMs) when the outcome is normally distributed, and Generalised Linear
Mixed Models (GLMMs) when it is not. A second framework that allows
the analysis of multilevel outcomes consists of Structural Equation Models
(SEM). Structural Equation Models can be split up into two main classes:
‘classic’ SEM, which is restricted to balanced data, and multilevel SEM,
which is able to deal with unbalanced data structures by relying on
likelihood-based or Bayesian approaches. Generally, SEM supersects its
GLMM counterpart, as the former is able to additionally include latent
measures (and measurement error) and assess mediation, in one big model.
Discounting these two assets, however, recent literature proves that SEM is
completely equivalent to its GLMM counterpart when considering balanced
data (e.g. when considering equal cluster sizes in a random intercept model)
(Rovine and Molenaar, 2000; Curran, 2003; Bauer, 2003).

As clustered Gaussian outcomes have already been discussed thoroughly
in the LMM and SEM literature (Airy, 1861; Scheffé, 1959; Harville, 1977;
Laird and Ware, 1982; Goldstein, 1979; Bauer, 2003; Curran, 2003), we
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will focus on GLMM- and SEM-methods for non-normal outcome data.
More specifically, we will target binary data from small clusters, with
a particular focus on clusters of size two, as such settings have proven
difficult for the available GLMM methodologies (Breslow and Clayton,
1993; Rodriguez and Goldman, 1995). Clusters of size two are frequently
encountered in practice, e.g. when studying dyads (McMahon et al., 2003),
in ophthalmology data (Glynn and Rosner, 2013), in twin studies (Ortqvist
et al., 2009), or when analysing measurements from a 2-period - 2-treatment
crossover study (Senn, 2002).

Focusing on the two aforementioned frameworks, current literature on
the analysis of clustered binary outcomes reveals two major limitations:
clusters of size two were either not considered (Rabe-hesketh and Pickles,
2002; Browne and Draper, 2006; Zhang et al., 2009; Capanu et al., 2013),
or they were, but limited to only one of both frameworks (Ten Have and
Localio, 1999; Sutradhar and Mukerjee, 2005; Broström and Holmberg,
2011; Xu et al., 2014). Here, we compare several estimation procedures
within both GLMM- and SEM-frameworks for modelling this type of data,
by considering the performance of relevant R-packages. By limiting our
comparison to implementations from the statistical environment R (version
3.2.3., R Core Team (2013)), we rely on estimation techniques that are
easily accessible to all practitioners (this software is freely available, while
at the same time enjoying a wide range of open-source packages). Addi-
tionally, we choose to only focus on R-packages which stand on themselves
and are not dependent on external software. We do, however, check several
of the R-based implementations against others such as implementations
in SAS R© software (version 9.4, SAS Institute Inc (2015))1, the MPLUS R©

program (version 7.4, Muthén and Muthén (2010)) or the JAGS implemen-
tation (version 4.1.0. Plummer (2003)), as to verify the independence of
conclusions on the software used.

In the following sections, we first introduce a motivating example. After
this we elaborate on the GLMM and SEM frameworks in general, so that
the various estimation methods capable of analysing the example can be
enumerated. Next, we illustrate these methods on our example data. To
facilitate the practitioner’s decision on which method is most appropriate
in which setting, we subsequently conduct a simulation study. Based on
our findings we provide recommendations, and end with a discussion.

1SAS and all other SAS Institute Inc. product or service names are registered
trademarks or trademarks of SAS Institute Inc. in the USA and other countries. R©

indicates USA registration.
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2 An example
As a motivating example, we consider data from a randomised study
executed by Vandeweghe et al. (2018) in two Flemish nursery schools.
As healthy eating habits are important to achieve healthy growth and
development in young children, Vandeweghe et al. (2018) focus on strategies
to improve the liking of vegetables in preschool children: a child given a
tangible or non-tangible reward after tasting should be motivated to taste
again. To this end, Vandeweghe et al. (2018) incorporated four possible
intervention plans: encouragement towards eating chicory, an active reward
after consumption, repeated exposure of the vegetable, and a control group.
The binary variable ‘vegetable liking’ (like/ok versus dislike) was measured
during three phases: once during a pretest (to test their inherent liking of
chicory), once during a post-test, and once during a follow-up test. When
we only consider the pre- and post-test, we end up with two measurements
for each child, while additionally including the follow-up measurements
will increase this number to three. So irrespective of whether or not the
follow-up measurement is included, the authors end up with a small cluster
size.

For illustrative purposes, we will only consider the results from a
single school, so that the data structure simplifies to a simple two-level
setting where a binary outcome is assessed repeatedly within each child.
Additionally, we will only contrast the ‘encouragement’ versus the ‘control’
group, as to simplify interpretation and results. The sample size of this
reduced data set consists of 37 children (only retaining the complete cases),
of which 21 were assigned to the control group and 16 to the encouragement
group.

To test whether encouragement increases the liking of chicory, we
consider the following random-intercept probit-regression model:

P (yij = 1 | xij , bj) = Φ(β0 + β1xij + bj) (4.1)

with index i referring to the measurement moment (i = 0, 1 or 2 for
pre-, post- and follow-up test, respectively), index j to the individual
(j = 1, . . . , 37), and with Φ representing the cumulative normal distribu-
tion. Additionally, a random intercept bj , which is assumed to follow a
normal distribution, is included in model (2) to capture the correlation be-
tween measures taken from the same toddlers. In this model, the outcome
variable Yij represents Liking (Liking equals zero when child j dislikes
the vegetable at time i, and one when it is liked/tolerated), while the
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predictor xij represents Encouragement (xij equals one when child j is
encouraged at time i, and zero when it is not). To capture the effect of
Encouragement within a single parameter, we have opted to model the
intervention as a time-dependent covariate, rather than a between-subject
effect interacting with time. This assumption is reasonable here, given the
absence of group differences at the pretest, the nonexistence of a time
effect in the control group, and a similar effect of Encouragement during
the post-test and follow-up (see figure 4.1).

0.00

0.25

0.50

0.75

1.00

Pre-test Post-test Follow-up test

Control Encouragement

Figure 4.1 Percentages of vegetable liking in 37 preschool children, for the tree
measurement moments (pretest, post-test and follow-up) and two reward systems
(control versus encouragement).

With model (2) defined, the research question of whether or not a
reward system will increase the liking of chicory will amount to testing
the null hypothesis H0 : β1 = 0. When this null hypothesis is rejected, we
will conclude that the reward system significantly increases (when β > 0)
the probability of liking the vegetable. But how do we estimate and test
the fixed effects and random intercept variance? Since there are myriad
options and recommendations in current literature, and some of these may
not yield satisfactory results for binary outcomes in such small clusters,
we will introduce and compare several possibilities. As mentioned in the
introduction, these estimation methods stem from both the GLMM- and
SEM-frameworks; to this end, the next section provides an introduction of
both frameworks, a short note on their equivalence, and an explanation
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of the difficulties that accompany marginalising the GLMM-likelihood
function over the random effects distribution.

3 Methods

3.1 Generalised Linear Mixed Models

Generalised linear mixed models (GLMMs) are basically extensions of
Generalised Linear Models (GLMs) (Nelder and Wedderburn, 1972), which
allow for correlated observations through the inclusion of random effects.
Such effects can be interpreted as unobserved heterogeneity at the upper
level, consequently inducing dependence among lower-level units from the
same cluster.

Let xij and yij denote the ith measurement from cluster j, for the
predictor and the binary outcome respectively (where i = 1, .., I and
j = 1, ..., J). Note that since we primarily focus on clusters of size two,
we will set I to 2. Moreover, as I = 2 limits the identification of random
effects, we will consider GLMMs with a random intercept only. In a fully
parametric framework, this particular GLMM is typically formulated as:

E(Yij |xij , bj) = g−1(β0 + β1xij + bj) with bj ∼ N(0, τ) (4.2)

where g−1(·) represents a known inverse link function, β0 represents the
intercept, β1 the effect of the predictor xij , and bj the cluster-specific
random intercept. In this paper, we only consider probit regression models,
where the standard normal cumulative distribution Φ(·) is defined as the
inverse link function g−1(·) (or equivalently the link function g(·) is defined
as probit(·)). Our reasoning behind this is that probit-regression applies
to all estimation procedures we investigate, in contrast to the logit link.
Converting equation (4.2) to a random intercept probit-regression model
yields us:

P (yij = 1 | xij , bj) = Φ(β0 + β1xij + bj) (4.3)

In order to obtain estimates for β0, β1 and τ , the marginal likelihood
function is typically maximised. For a random-intercept GLMM, this
function is obtained by integrating out the cluster-specific random effect,
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and can be written as:

l(β, τ |yij) =
J∏
j=1

∫ +∞

−∞

I∏
i=1

f(yij |β, bj)φ(bj |τ)dbj (4.4)

where f denotes the density function of the outcomes and φ the density of
the random intercept (which is assumed to be normal here).

Unfortunately, statistical inference based on maximising (4.4) is ham-
pered, because integrating out the random effects from the joint density
of responses and random effects is, except for a few cases, analytically in-
tractable. To tackle this, several techniques have been proposed, which can
be divided into two main classes: likelihood-based methods and Bayesian
approaches.

3.1.1 Estimation through likelihood-based approximation methods

One way to tackle the intractability of integrating out the random effects
of the GLMM likelihood function, is to either approximate the integrand or
to approximate the integral itself. We briefly introduce three such methods
below, and refer the interested reader to Tuerlinckx et al. (2006) for more
details.

Technically speaking, the Laplace approximation (Tierney and Kadane,
1986) approximates the integrand by a quadratic Taylor expansion. This
results in a closed-form expression of the marginal likelihood, which can
be maximised to obtain the maximum likelihood estimates of the fixed
effects and random effect variances. In R, the implementation based on this
approximation is available within the function glmer, from the package
lme4 (Bates et al., 2015).

The Penalised Quasi-Likelihood method (PQL) (Breslow and Clayton,
1993; Schall, 1991; Stiratelli et al., 1984) also approximates the integrand;
more intuitively put, PQL approximates the GLMM with a linear mixed
model. This is achieved by considering a Taylor expansion of the response
function and by subsequently rewriting this expression in terms of an
adjusted dependent variable on which estimation procedures for LMM can
be implemented. Consequently, the algorithm cycles between parameter
estimation by linear mixed modelling, and updating the adjusted dependent
variable until convergence. This approach can be implemented using the
function glmmPQL from the R-package MASS (Venables and Ripley, 2002).

Finally, a tractable marginal likelihood can also be obtained by ap-
proximating the integral itself with a finite sum. In regular Gauss-Hermite
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(GH) Quadrature (e.g. Naylor and Smith (1982)), this summation occurs
over a fixed set of nodes, while Adaptive Gaussian Quadrature (AGQ)
(Pinheiro and Bates, 1995) uses a different set of nodes for each cluster.
As such, when applying AGQ, fewer nodes are necessary to achieve equal
accuracy as compared to the regular GH quadrature. AGQ estimation in
R is also possible within the glmer function from lme4.

The detailed R-code on how to implement these three likelihood-based
methods for a binary multilevel probit-model, can be found in Appendix
C.2. To check the R-implementation of AGQ against other software, we
use the NLMIXED procedure within SAS R© (SAS Institute Inc, 2015).

3.1.2 Estimation through Bayesian methods

A second strategy that tackles the intractability of the GLMM likelihood
function, pursues a Bayesian approach where Markov Chain Monte Carlo
(MCMC) methods are used to obtain a posterior distribution of the
parameters. MCMCmethods simulate the likelihood rather than computing
it, by calculating the sample average of independently simulated realisations
of the integrand. As such, MCMC is thought to provide a more robust
approach to marginalising the random effects (Zhao et al., 2006; Browne
and Draper, 2006).

In R, the MCMCglmm function from the package MCMCglmm (Hadfield,
2010) is available for such an approach. Technically, latent variables are up-
dated in block by means of the Metropolis-Hastings algorithm (Metropolis
et al., 1953; Hastings, 1970; Tierney, 1994), while the fixed parameters are
Gibbs sampled within such a single block (Garcia-Cortés and Sorensen,
2001).

MCMC methods are known to be computationally intensive and some-
times have a hard time in reaching convergence. To this end, hybrid models
based on an Integrated Nested Laplace Approximation (INLA) of the
posterior marginals for latent Gaussian models (Rue et al., 2009) were
proposed. In short, the INLA approach provides fast Bayesian inference by
using accurate Laplace approximations for the marginal posterior density
of the hyperparameter τ , and for the full conditional posterior marginal
densities of the fixed and random effects. The final posterior marginals of
the model parameters can then be computed through numerical integra-
tion, where the integration points are defaultly obtained by estimating the
curvature of the approximation for the marginal posterior of the hyperpa-
rameter density (Rue et al., 2009). Not surprisingly, these hybrids have
shown a steep decline in the computational burden of MCMC algorithms,
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while at the same time converging more easily. In R, such an approach is
implemented in the function inla from the package R-inla.

The detailed R-code of both implementations, as well as their prior
specifications, can be found in Appendix C.3. To check the R -based
MCMC-implementation against other software, we rely on the he JAGS
program (Plummer, 2003) through the use of the R-package rjags (Plum-
mer, 2016). It has been suggested by Betancourt and Girolami (2013) that
a non-centred parameterisation of the hierarchal model works best when
data are sparse, while a centred parameterisation prevails when the data
strongly identifies the parameters. However, we observed quite similar
results stemming from the two parameterisations in our settings (results
not shown).

3.2 Structural Equation Models
Although at first sight GLMM and SEM may seem like two completely
different modelling frameworks, it is now well established that SEM can
also be relied on to model balanced multilevel data structures. For an
excellent overview of SEM, we refer the interested reader to Skrondal and
Rabe-Hesketh (2004). In order to account for clustered observations, SEM
lets its latent factors represent the random effects from their respective
multilevel models (Willett and Sayer, 1994; MacCallum et al., 1997). This
results in a ‘conventional’ SEM which is analytically equivalent to the
corresponding multilevel model, under a broad set of conditions (Curran,
2003); we illustrate this for model (4.2).

SEM consists of two modelling parts: a measurement model and a
structural part (Skrondal and Rabe-Hesketh, 2004). The former defines
unobserved variables in terms of observed variables measured with error,
so that the latent variables can be interpreted as the ‘true’ underlying
variables (which might be correlated). The structural model on the other
hand, links the different latent variables together. When focusing on
random intercept models (read: with only one latent variable) with an
explanatory variable in clusters of size two, both modelling-parts can be
written as:

yj = ν + Ληj +Kxj + εj

ηj = ζj (4.5)

where yj represents the responses within cluster j, ν= (ν ν) the vector of
intercepts, ηj a latent variable with its matrix of factor loadings Λ = (1
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1)T , xj = (x1j x2j)T represents the explanatory variable, with K its
matrix of regression coefficients, and εj = (ε1j ε2j)T the vector of normally
distributed measurement errors. In the structural part of the model, ζj
represents a random disturbance term ∼ N(0, τ). Note that in accordance
to equation (4.2), we assume the effect of x to be fixed within- as well as
between clusters. Because of this, K reduces to

(
k 0
0 k
)
. Alternatively, we

can write the above equations in reduced form, resulting in:

yj = ν +Kxj + Λζj + εj

= ν +Kxj + ζj + εj (4.6)

where ζj = (ζj ζj)T .
Traditionally, estimation methods in SEM are based on the assumption

that the observed responses are measured on a continuous scale. In order
to reconcile SEM with binary outcomes, the Latent Response Variable
approach was introduced, where a dichotomous Y is considered a crude
approximation of an underlying continuous variable Y ∗. Y ∗ is not directly
observed (hence a latent response variable), and is written in terms of
a linear predictor. When we separate the two observations within each
cluster to eliminate matrix notations, we obtain:{

y∗1j = ν + kx1j + ζj + ε1j
y∗2j = ν + kx2j + ζj + ε2j

(4.7)

where ε1j and ε2j are i.d.d. residuals of the latent response variables
∼ N(0, θ) . Because Y ∗ exhibits an arbitrary mean and variance, a link
between Y and Y ∗ needs to be established through variance constraints.
Since the variance of Y ∗ conditional on xij is τ + θ, there are two possible
ways to constrain this variance (Muthén et al., 2002). First, Generalized
Linear Models standardly fix the residual variance θ to one. In contrast
to this theta parameterisation, identification can also be achieved by
standardising the latent variable Y ∗ itself: the delta parameterisation fixes
the sum of τ and θ to one. This parameterisation is traditionally used in
the SEM-literature.

The relationship between the binary and latent continuous variable
is then: Y = 1 ⇐⇒ Y ∗ > κ. Fixing the threshold κ at 0 (for model
identifiability, either the threshold or the intercept in (4.7) needs to be
constrained), and assuming that Y ∗ij ∼ N(0, 1) (i.e. making use of the delta
parametrisation so that ζj ∼ N(0, τδ) and εij ∼ N(0, 1 − τδ)), it follows
that:
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E[Yij |xij , ζj ] = P (ν + kxij + ζj + εij > 0|xij , ζj)
= P (εij < ν + kxij + ζj |xij , ζj)

= P ( εij√
1− τδ

<
ν + kxij + ζj√

1− τδ
|xij , ζj)

= Φ( ν√
1− τδ

+ kxij√
1− τδ

+ ζj√
1− τδ

) (4.8)

which reduces to the random intercept probit-model from equation
(4.3), where ν√

1−τδ
, k√

1−τδ
and ζj√

1−τδ
are equivalent to β0, β1 and bj ,

respectively.

3.2.1 Estimation in SEM

Within the SEM-framework, there are two common estimation approaches
for modelling binary outcomes: maximum likelihood (ML) estimation
and weighted least squares (WLS) (Skrondal and Rabe-Hesketh, 2004).
In contrast to WLS, ML estimation for binary outcomes is not widely
available in SEM software. Being a ‘full information’ method, ML is more
regularly employed in item response theory (Forero and Maydeu-Olivares,
2009). In contrast, as WLS-based methods adopt a multiple-step estimation
procedure in which only first- and second-order information from the data
is used, they are referred to as a ‘limited information’ approach (see
Finney and DiStefano (2013) for a review). In SEM, WLS is employed to
differentially weigh the residuals resulting from the observed versus the
model-implied sample statistics by their full asymptotic covariance matrix
W .

Since WLS requires extremely large samples for accurate estimation of
the weight matrix W , more contemporary approaches were developed to
improve small sample performance. One such version entails diagonally
weighted least squares (DWLS), which utilises a diagonal weight matrix
instead of a full one (Muthén, 1993; Muthén et al., 1997) (note that
statistical inference in DWLS still relies on the full weight matrix, even
when a diagonal matrix is used during estimation). Following Muthén et al.
(1997), who have shown DWLS to be statistically and computationally
efficient in large samples, more recent studies have proven that DWLS
is also more stable than WLS in small samples (Forero and Maydeu-
Olivares, 2009; Mîndrila, 2010; Bandalos, 2014). Note that WLS and
DWLS estimation is limited to probit-regression models and therefore
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exclude logit-models from our current review study.
SEM relying on DWLS can be implemented through the sem-function

from the package lavaan (Rosseel, 2012). To check the lavaan package
against other implementations, we will verify our results with DWLS
estimation in MPLUS R© software (Muthén and Muthén, 2010) through the
use of the R-package MplusAutomation (Hallquist and Wiley, 2014).

4 Analysis of the example
We illustrate the above six approaches by applying them to our example. To
assess the impact of cluster size, we consider the fit of model (2) when solely
looking at the pre- and post-test (i.e., cluster size two) versus all three time
points together (i.e., cluster size three). The estimated parameters for the
fixed effects (and their standard errors), alongside the estimated random
intercept variance for each of the estimation approaches are summarised
in table 4.1.

Parameter β0 β1 τ
Cluster size 2 3 2 3 2 3

Laplace -0.51 (0.22) -0.44 (0.21) 0.87 (0.42) 1.09 (0.38) 0.21 0.48
AGQ -0.54 (0.24) -0.44 (0.22) 0.92 (0.44) 1.11 (0.38) 0.43 0.65
PQL -0.51 (0.20) -0.42 (0.19) 0.88 (0.36) 1.05 (0.31) 0.47 0.62
MCMC -0.72 (0.34) -0.52 (0.30) 1.20 (0.50) 1.36 (0.43) 1.95 1.79
Hybrid -0.56 (0.24) -0.45 (0.23) 0.95 (0.43) 1.14 (0.37) 0.07 0.45
SEM -0.52 (0.30) -0.41 (0.27) 0.75 (0.53) 0.91 (0.47) 0.45 0.83

Table 4.1 The estimates (and (robust) standard errors) from the six approaches
for the intercept β0, the slope parameter β1 and the random intercept variance τ . Each
estimate is displayed twice: once for the pre-and post-test only (cluster size two), and
once including all three measures (cluster size three).

We observe that for both cluster sizes all methods perform rather
similar in their estimation of β0, except for a higher estimate produced
by MCMC. The estimates for β1 show more variation, especially within
clusters of size two (again with an outlying MCMC-estimate). For the
random intercept variance τ , we see that the MCMC estimate is somewhat
larger than the others, while the estimates from the Laplace approximation
and the hybrid approach are at the lower end of this spectrum. In terms
of computing times, most approaches performed equivalently, with the
Laplace approximation providing the fastest analysis, closely followed by
AGQ, SEM and PQL. The MCMC approach took about ten times as
long as the aforementioned approaches, while the hybrid approach only
increased the computing time threefold.



Probit regression in small clusters 111

Now the question becomes: which of these estimation methods is most
reliable here? In order to find out, we conduct an extensive simulation
study in the next section.

5 Simulation study
In our simulation study we compare the performance of the six above-
described estimation methods in different settings. For this, random binary
outcome variables from small clusters are generated under a random inter-
cept probit-regression model. More specifically, we assume an underlying
latent variable Y ∗ij , such that Yij = 1 if Y ∗ij > 0:

P (Yij = 1|xij , bj) = P (Y ∗ij > 0|xij , bj) (4.9)
= P (β0 + β1xij + bj + εij > 0)
with bj ∼ N(0, τ) and εij ∼ N(0, 1)

First of all, we consider different cluster sizes: we will look at clusters
of size two, three and five. Second, we also consider a different numbers of
clusters. Since Loeys et al. (2013) reported that sample sizes in studies
using the Actor-Partner- Interdependence-Model (Kenny and Ledermann,
2012) within dyads typically ranged from 30 to 300 pairs, we consider
sample sizes n of 25, 50, 100, and 300. Third, we also examine different
intracluster correlations (icc) for the latent response variable. As the latent
iccl is defined as the proportion of between-group versus total variance in
Y ∗ (iccl = V ar(bj)

V ar(Y ∗
ij

) = τ
τ+1 ), a latent iccl of 0.10, 0.30 and 0.50 corresponds

to a random intercept variance of 0.11, 0.43 and 1.00, respectively. Fourth,
we consider rare as well as more abundant outcomes, with an overall
event rate of 10% and 50%, respectively. Since the marginal expected
value of the outcome E(Y ) equals Φ( β0√

1.25+τ ), an outcome prevalence of
50% implies that β0 must be set to zero. Equivalently, when fixing β0 to
−1.50, −1.66, and −1.92 for a random intercept variance τ = 0.11, 0.43,
and 1, respectively, an outcome prevalence of 10% is obtained2. In all

2Note that the observed icco is dependent on the intercept β0, the random intercept
variance τ , and the latent iccl through the following formula (Vangeneugden et al.,

2014): icco =
Φ2( β0√

(τ+1)(1+2τ)
,
β0√
τ+1 ,iccl)−Φ1( β0√

τ+1 )2

Φ1( β0√
τ+1 )(1−Φ1( β0√

τ+1 ))
. In this equation, Φ1 represents

the cumulative standard normal distribution, and Φ2 the cumulative bivariate standard
normal distribution with correlation iccl. Since the outcome prevalence dictates the
value of the intercept, each combination of iccl and E(Y ) provides different icco’s; for
rare outcomes, the observed icco are 0.06, 0.25 and 0.51, while for E(Y ) = 0.5 they are
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simulations, β1 is fixed to 1. Finally, four types of covariates are compared:
we consider a predictor that only varies between clusters, versus one that
varies within clusters; and a Gaussian distributed predictor ∼ N(0, 0.25),
versus a zero-centred Bernoulli x with success rate 0.5.

In total, 2000 simulations are generated for the 3 × 4 × 3 × 2 × 4
combinations of clusters size (3), sample size (4), intracluster correlation
(3), outcome prevalence (2) and type of predictor (4). The above-introduced
methods are compared over these 288 settings in terms of convergence,
relative bias, mean squared error (MSE) and coverage. The relative bias is
defined as the averaged difference between the estimated (e.g. β̂) and true
parameter values (e.g. β), divided by the latter (so that the relative bias
= β−β̂

β ); as such, a relative bias enclosing zero will indicate an accurate
estimator. A relative bias measure was chosen over an absolute one, as
the accuracy of some procedures tends to depend on the magnitude of the
parameter values (Zhang et al., 2011). The MSE is estimated by summing
the empirical variance and the squared bias of the estimates, simultaneously
assessing bias and efficiency: the lower the MSE, the more accurate and
precise the estimator. The coverage is defined as the proportion of the
95%-confidence intervals that encompass their true parameter value, where
coverage rates nearing 95% represent nominal coverages of the intervals.
For the likelihood-based and SEM approaches, Wald confidence intervals
are used, while the Bayesian approaches rely on the quantile-based 95%
posterior credible intervals. Note that coverage rates for τ are not provided,
as not all estimation procedures provide this interval. Lastly, in order to
conclude model convergence, several criteria must be met: first, whenever
fixed effect estimates exceed an absolute value of ten, or the random effect
estimate exceeds 25, the fit is classified as ‘no convergence’. We decided on
this as parameters in a probit-regression exceeding an absolute value of
five are extremely unlikely for the given covariate distribution and effect
sizes. Secondly, convergence has also failed when a model fit does not yield
estimators or standard errors. In addition, for MCMCglmm we specified that
both chains must reach convergence as assessed by Geweke diagnostics;
only when this statistic is smaller than two, convergence is concluded. To
ensure a fair comparison between methods, we only present results for
simulation runs in which all six methods converged.

0.06, 0.19 and 0.33 (corresponding to latent iccl’s of 0.10, 0.30 and 0.50, respectively).
As such, the observed icco’s range from small to large, according to Hox (2010)’s
recommendations.
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6 Results
Below, we discuss the results of the simulation study for clusters of size
two with a Gaussian predictor in detail.

6.1 Convergence
Generally, convergence improves as the number of clusters and the outcome
prevalence increase, and as the iccl decreases (see figure 4.2). In contrast,
convergence is rather unaffected by the level of the predictor, except for
PQL which tends to show more convergence difficulties for a within-cluster
x. The Laplace approximation also shows a slight decline in convergence for
rare outcomes combined with a within-cluster predictor. Note that for 300
clusters most approaches reach 100% convergence, except for MCMC (as in
Ten Have and Localio (1999)) and at times the Laplace approximation. For
rare outcomes in small samples (n = 25), however, the hybrid approach and
SEM (see e.g. Forero and Maydeu-Olivares (2009); Rhemtulla et al. (2012))
often perform worse than MCMC. Overall, AGQ shows least difficulty in
reaching convergence.

6.2 Relative bias
First, for the fixed effect estimators we typically observe that the relative
bias decreases as the number of clusters increases (see figure 4.3). The
Laplace approximation and PQL contradict this, however: for rare outcomes
the relative bias tends to increase with n. Second, we see that an increase
in the iccl tends to shift the relative bias downwards. This implies an
improvement in the performance of MCMC (in contrast to Ten Have
and Localio (1999)), but not of most other methods (Breslow and Lin,
1995; McCulloch, 1997; Rabe-hesketh and Skrondal, 2012; Hox, 2013). As
such, we observe that MCMC performs worse than most methods, but
that this difference attenuates as the iccl increases. Third, the relative
bias is generally smaller for a 0.5 outcome prevalence, compared to rare
events; this is most clear for the hybrid approach, but is also visible in
AQG (see Rabe-Hesketh et al. (2004)). For an outcome prevalence of 0.5,
the bias in the β0-estimators even becomes negligible for all methods.
For β1, however, the MCMC method actually performs worse in small
samples when E(Y ) = 0.5, compared to 0.1. Fourth, different measurement
levels of the predictor do not much sway the bias, except for PQL; this
method reveals slightly more bias for low event rates when the predictor
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Figure 4.2 Model convergence of the six approaches, for different measurement
levels of X (within- or between clusters), outcome prevalence (0.1 and 0.5), iccl (0.1,
0.3 and 0.5), and sample size (25, 50, 100 and 300).

is measured within- rather than between-clusters. Overall, SEM provides
the least biased estimators for the fixed effects, closely followed by AGQ.

For the variance of the random effect, better estimators are typically
found in larger samples (see left part of figure 4.4, also see Hox (2013)).
Similar to the fixed effect estimators, the Laplace approximation and PQL
pose an exception to this rule, by inverting this relation for rare out-
comes (see Bauer and Sterba (2011)). As such, the conclusions of Capanu
et al. (2013), stating that the hybrid approach outperforms the Laplace
approximation by reducing bias in τ , do hold here, but only for large n.
We also observe that as the iccl decreases, bias in the estimates for τ
increases in all methods. Finally, a slightly negative bias in the AGQ- and
SEM-estimates for τ is observed when the outcome is rare and n small
(Raudenbush and Bryk (2002)). This negative bias, however, attenuates as
the number of clusters is increased (Bauer and Sterba, 2011). Overall, SEM
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yields the least biased estimators for the random intercept variance when
the outcome prevalence is rare, while AGQ performs best when E(Y ) = 0.5.

6.3 MSE

For both β0 and β1, the MSE is often higher for rare outcomes, compared
to a 0.5 prevalence (see figure 4.5). Additionally, the MSE drops as the
sample size grows, and as the iccl decreases. The Laplace estimator for β0
again contradicts these trends: for rare events, the MSE increases with
sample size and iccl. As before, the measurement level of x does not
much alter performance, except in PQL where a within-cluster predictor
slightly increases the MSE. For both fixed effects, MCMC often yields the
highest MSE when the prevalence equals 0.5, while the hybrid approach
regularly performs worst for a prevalence of 0.1. In general, the Laplace
approximation yields the lowest MSE when E(Y ) = 0.5, but performs
much worse when the outcome is rare. Overall, AGQ (closely followed by
SEM) performs best in terms of MSE.

For the random intercept variance τ , we observe a decrease in MSE as
the sample size increases, and as the iccl decreases (see right part of figure
4.4). The latter conclusion does not hold for MCMC as here the MSE
tends to decrease with rising iccl. Again, PQL performs slightly worse for
a within-cluster predictor. In general, the Laplace approximation yields
the lowest MSE for 0.5 prevalences, but performs worst when the outcome
is rare. Overall, AGQ performs best in terms of MSE, better than SEM,
especially in smaller samples.

6.4 Coverage

For both fixed effect estimators, coverage of their 95% confidence intervals
is typically better when the outcome prevalence is 0.5 (see figure 4.6). Also,
an increasing iccl usually worsens coverage, except for MCMC (where
coverage improves with increasing icc (Ten Have and Localio, 1999)). The
impact of the iccl on coverage has also been observed by Zhang et al. (2011),
who found nominal coverages for AGQ and the Laplace approximation
for low random intercept variances (i.e. low icc), but more liberal ones
as τ increases (i.e. high icc). Generally, SEM and AGQ provide the best
coverage rates (Bauer and Sterba, 2011), with SEM taking the upper hand
for the coverage of β0, and AGQ for β1 with a low to medium icc.
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6.5 Summary of the other simulation settings

Until now, we only discussed the results of the simulation study for clusters
of size two with a Gaussian predictor. The results for other settings are
available online3 and are briefly discussed in the next paragraphs.

When looking at a binary predictor instead of a Gaussian one, our
conclusions remain more or less the same. One exception is that most
methods experience a steep decline in convergence for smaller sample
sizes, when the predictor is binary compared to continuous. This is most
apparent in SEM, where lower convergence rates are due to empty cell
combinations of outcome and predictor. In SEM, this produces a warning,
which we interpreted as an error (as in MPLUS), since such runs yield
unreliable results.

As the cluster size increases from two to three or five, we observe a
general increase in performance in all methods except SEM. This approach
now no longer yields the lowest bias, with AGQ gradually taking over. As
such, increasing cluster size favours AGQ in terms of precision, as well as
in terms of relative bias.

6.6 MPLUS, JAGS and SAS

MPLUS and lavaan performed quite similarly throughout our settings,
although there were some minor differences (results shown in the online
supplementary material). While MPLUS version 7 slightly dominates in
terms of convergence and coverage, lavaan takes the upper hand for the
relative bias and the MSE. These differences are trivial, however, and most
likely due to lavaan incorporating a slightly higher number of iterations
in reaching convergence.

When comparing JAGS to MCMCglmm, we observe some important differ-
ences in performance; for most settings, JAGS 4.1.0. outperforms MCMCglmm,
except when a small n is combined with a medium to large iccl (see sup-
plementary material). Note that although JAGS performs slightly better in
most settings, its computing times are also significantly higher.

In contrast to Zhang et al. (2011), who found a superior performance
of SAS NLMIXED compared to R’s glmer-function, we found that glmer
performed equally well or even slightly better in terms of convergence rates,
relative bias, and coverage (using SAS version 9.4). When the outcome

3‘Image 1.pdf’ and ‘Image 2.pdf’ at
https://www.frontiersin.org/articles/10.3389/fams.2016.00018/full
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prevalence is 0.5 and for some rare events settings, glmer also provided a
slightly lower MSE.

7 Discussion
In this paper, we provided an overview of several R-packages based on
different estimation techniques, as to fit random-intercept probit regression
models. More specifically, we focused on techniques capable of modelling
binary outcomes in small clusters. Additionally, we presented an extensive
simulation study in which we assessed the impact of various data features
on a number of performance criteria. In summary, we found that some of
our results confirmed findings from previous studies, while others have (to
the best of our knowledge) not been observed before:

Interestingly, both SEM and AGQ performed considerably well for
paired data. Though both approaches disclosed some sensitivity to
sample size, they manifested remarkable robustness when varying
the icc, the event rate, and the measurement level of the predictor.
As such, these methods can be considered the most stable over
all settings in terms of relative bias, for the fixed effect regression
coefficients as well as the random intercept variance. While AGQ
performs slightly better than SEM in terms of convergence and MSE,
SEM performs slightly better when considering the relative bias. As
SEM relies on robust standard errors, it yields higher MSE’s, but also
provides robustness against model misspecification (which was not
investigated here). For the coverage, we observed that SEM performs
slightly better for β0, while AGQ tentatively gains the upper hand
for β1. As the cluster size increases, however, AGQ takes over and
becomes most reliable in terms of bias and precision.
Since the Laplace approximation is known to be precise only for
normally distributed data or for non-normal data in large clusters
(Tuerlinckx et al., 2006), we observed an expected poor performance
of this approximation in our settings (Broström and Holmberg,
2011). PQL also exhibits an inferior performance for low icc’s and a
low outcome prevalence, while additionally revealing disconcerting
performance issues for a within-cluster measured predictor. Finally,
the two Bayesian approaches performed below par in terms of most
criteria considered.

Let us once again consider our motivating example with a within-cluster
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measured predictor, a sample size of 37, an outcome prevalence of 0.4,
and a medium to large latent icc. When we apply our conclusions to these
settings, we can state that SEM will yield the most trustworthy estimates
when the cluster size is two, while AGQ will take over as a measurement
is added. MCMC will yield the most biased estimates in both cases (as
can be clearly seen in table 4.1).

Several limitations can still be ascribed to this paper. First, we restricted
our comparisons to estimation techniques available in R-packages. As such,
several improvements regarding the estimation methods discussed, could
not be explored. For example, while the glmmPQL function employed in this
paper is based on Breslow and Clayton (1993)’s PQL version, a second-
order Taylor expansion (Goldstein and Rasbash, 1996) might provide a
more precise linear approximation (this is referred to as PQL-2, in contrast
to the first order version PQL-1). Be that as it may, not all the evidence
speaks in favour of PQL-2: even though it yields less bias than PQL-1 when
analysing binary outcomes, Rodriguez (2001) found that the estimates for
both fixed and random effects were still attenuated for PQL-2. Furthermore,
PQL-2 was found to be less efficient and somewhat less likely to converge
(Rodriguez, 2001). Second, certain choices were made with respect to
several estimation techniques, such as the number of quadrature points
used in the AGQ-procedure. However, acting upon the recommendation
of 8 nodes for each random effect (Rabe-hesketh and Pickles, 2002), we
argue that surpassing the ten quadrature points considered, would carry
but little impact in our random intercept model. Also, the repercussions
of our choices on prior specification in the Bayesian framework deserves
a more thorough examination, as different priors may lead to somewhat
different findings. Third, the performance results presented here may
not be intrinsic to their respective estimation techniques, but instead
due to decisions made during implementation. As we demonstrated for
MCMCglmm when comparing it to JAGS, its disappointing performance is
most likely due to a suboptimal implementation, and not an inherent treat
of the MCMC estimation procedure. Fourth, some scholars (Skrondal,
2000) have recommended the evaluation of different estimation methods
and their dependence on different data features, by applying ANOVA-
models rather than graphical summaries. Treating the different settings
(sample size, icc, level of the predictor, the event rate, and their two-way
interactions) as factors, did not provide us much insight since almost all
variables (as well as their interactions) were found to be highly significant.
Fifth, in our simulation study we only considered complete data; in the
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presence of missing data, however, DWLS estimation in SEM will exclude
clusters with one or more missing outcomes, resulting in a complete case
analysis. This exclusion stands in contrast to maximum likelihood and
Bayesian approaches from the GLMM-framework, as they consider all
available outcomes when there is missingness present. Consequently, the
GLMM-framework will not introduce any (additional) bias under the
missing at random assumption, while DWLS-estimation requires the more
stringent assumption of data missing completely at random. Sixth, we
do not focus on measurement imprecision in this study and assume that
all observed variables are measured without error. Of course, as Westfall
and Yarkoni (2016) recently pointed out, this rather optimistic view might
pose inferential invalidity when this assumption fails. In light of this, it
is important to note that SEM can deal with such measurement error, in
contrast to GLMM-based approaches.

With the results, as well as the limitations of the current paper in
mind, some potential angles for future research might be worth considering.
As we explicitly focused on conditional models, we deliberately excluded
marginal approaches such as Generalised Estimating Equations (GEE),
because such a comparison is impeded by the fact that marginal and
conditional effects differ for binary outcomes. Whereas multilevel models
allow for the separation of variability at different levels by modelling the
cluster-specific expectation in terms of the explanatory variables, GEE only
focuses on the respective marginal expectations. Previous research (Loeys
and Molenberghs, 2013) has revealed excellent small sample performance
of GEE in terms of bias, when analysing binary data in clusters of size two.
Also, it might we worth considering a pairwise maximum likelihood (PML)
approach, as PML estimators have the desired properties of being normally
distributed, asymptotically unbiased and consistent (Varin et al., 2011).
This estimation method breaks up the likelihood into little pieces and
consequently maximises a composite likelihood of weighted events. PML
in R is currently unable to cope with predictors, but this will most likely
be possible in the near future. And finally, as pointed out by one of the
reviewers, Hamiltonian Monte Carlo (used in Stan software, Carpenter et al.
(2016)) may be a more efficient sampler compared to a Metropolis-Hastings
(i.e. MCMCglmm) or a Gibbs sampler (i.e. JAGS). To this end, exploring the
performance of the Stan software might prove worthwhile when further
focusing on Bayesian analysis.
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C Appendix

This appendix contains the R-code for the data generating mechanism and
the implementation of the six methods discussed in this paper. Note that
in these scripts, y represents the binary outcome, x the predictor and id
the cluster identifier.

C.1 Data generating mechanism

The following R-code allows the generation of data with clusters of size two,
a sample size ‘n’, a latent intracluster correlation ‘icc’, and an outcome
prevalence ‘prev’. In this script, the normally distributed exposure is
generated to vary within clusters.

#Generate 2000 data sets for the current n, icc and prev:
for (i in 1:2000){

print(i)
set.seed(123456+i)
#Population parameters:
tau<-icc/(1-icc)
beta0<-qnorm(prev)*sqrt(1.25+tau)
beta1<-1

#Cluster identifier:
ind<-seq(1,n)
#Random intercept for each cluster:
ri<-rnorm(n,0,sqrt(tau))

#Two normally distributed within-cluster exposures:
x0<-rnorm(n,0,0.5)
x1<-rnorm(n,0,0.5)
#Two binary outcomes y0 and y1:
y0<-rbinom(n,1,pnorm(beta0+beta1*x0+ri))
y1<-rbinom(n,1,pnorm(beta0+beta1*x1+ri))

#Convert variables to long format for GLMM-analyses:
y<-c(y0,y1)
x<-c(x0,x1)
id<-rep(ind,2)}
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C.2 Likelihood-based methods
The Laplace approximation can be applied by relying on the function
glmer, from the package lme4 (Bates et al., 2015). The R-syntax that
corresponds to model (2) is:

glmer(y∼x+(1|id),family=binomial(link="probit"))

PQL can be implemented using the function glmmPQL from the R-
package MASS (Venables and Ripley, 2002), with the following syntax for
model (2):

glmmPQL(y∼x,random=∼ 1|id,family = binomial(link=
"probit"))

AGQ estimation in R is also possible within the glmer function from
lme4, by additionally specifying the number of quadrature nodes (note
that when the number of nodes is set to 1 (the default option), AGQ
reduces to the Laplace approximation). As more quadrature points usually
improve estimation but also increase computational time (Pinheiro and
Bates, 1995; Fitzmaurice et al., 2009; Bauer and Sterba, 2011) and we only
consider one random effect, we fix this number to ten (Bock et al., 1988):

glmer(y∼x+(1|id),family=binomial(link="probit"),nAGQ=10)

C.3 Bayesian methods
MCMC-modelling can be achieved by the MCMCglmm function from the
package MCMCglmm (Hadfield, 2010). We consider two chains to assess
convergence, each with a burnin period of 3000, a thinning interval of
10, and 1000 random posterior draws (providing us with 2000 posterior
estimates in total, of which we reported the posterior median). In order
to fit the random-intercept probit-regression model in equation (2), the
option ‘family = "ordinal"’ needs to be specified, resulting in:

MCMCglmm(y∼x, random = id,family = "ordinal",verbose=
FALSE, prior=priors,nitt=13000,thin=10,burnin=3000)

In a Bayesian framework priors need to be specified. Since probit-
regression coefficients larger than five are unlikely given our data, the
specification of more informative priors will prevent estimates from be-
coming excessively large (Bauer and Sterba, 2011). With this range in
mind, we define a multivariate normal prior for the fixed effects B with
mean zero and a covariance matrix V with 52 on the diagonal and zero
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elsewhere. An inverse gamma distribution G for the random effects is typi-
cally parameterised in terms of a shape parameter α and a scale parameter
β, but MCMCglmm relies on ν = 2α and V = β

α . As such, expressions of
the mean ( β

α−1 ) and variance ( β2

(α−1)2(α−2) ) yield the following derivations

for ν and V : ν = 2µ
2
τ

σ2
τ

+ 4 and V = 2µτν (ν2 − 1). Consequently, values for
ν and V can be deduced by simulating an appropriate distribution for
τ and by extracting its mean and variance. Since we likewise argue that
values exceeding five are equally unlikely for the standard deviation of the
random intercept (and as such, values exceeding 25 for τ), we simulated a
uniform distribution for

√
τ ∼ U(0, 5). Last of all, the residual variance R

is fixed at one. The resulting R-code is:
priors=list(B=list(mu=c(0,0),V=diag(2)*5**2),
R=list(V=1,fix=1), G=list(G1=list(V=V, n=nu)))

Integrated Nested Laplace Approximation, can be implemented
by the function inla from the package R-inla (Rue et al., 2009). In this
package a prior for the logarithm of the random intercept precision log( 1

τ ),
which follows a logGamma distribution, needs to be defined. We follow
the same reasoning as before: a uniform distribution between zero and
five is defined for the standard deviation, which is subsequently squared
and inverted to achieve a distribution for the precision. The mean (µ1/τ )
and variance (σ2

1/τ ) of this distribution help define the shape parameter

α = µ2
1/τ
σ2

1/τ
, and the scale parameter β = µ1/τ

σ2
1/τ

. Since Fong et al. (2010)
showed that binary data prove particularly problematic for this package,
the authors of R-inla have suggested an improvement by constructing
better approximations to the posterior marginals, without any additional
computational costs (Ferkingstad and Rue, 2015). We too have included
this improvement in our analysis, through the following R-syntax to fit
model (2):

inla(y x+f(id,model="iid",param=c(a,b)),family="binomial",
control.family=list(link = "probit"),Ntrials=1,
control.inla=list(correct=TRUE,correct.factor = 10))

C.4 SEM methods

SEM can be applied to the data by use of the function sem from the
package lavaan (Rosseel, 2012). This R-function allows both the theta-
and delta-parametrisation (see section 3.2) but since these are practically
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equivalent, we only focussed on the latter. As the delta-parameterisation
and the DWLS estimator with robust standard errors are executed by
default, we do not need to specify any additional options for this function.
Note that the data is now in wide format, with the following model-
specification for a within-cluster predictor in clusters of size two:

Data <- data.frame(y0 = y0, y1 = y1, x1 = x1, x0 = x0)
model <- ’ int=~1*y0+1*y1

y0~a1*x0; y0|a0*t1; y0 ~~ v1*y0
y1~a1*x1; y1|a0*t1; y1 ~~ v1*y1 ’

fit <- sem(model,ordered=c("y0","y1"),data=Data)
summary(fit)

In this code, int represents the random intercept, influencing both outcomes
from each cluster (y0 and y1). y0 and y1 are regressed on x0 and x1,
respectively, with a common intercept (−1) · a0 (with a0 the threshold
value), and regression parameter a1. We also define identical residual
variances v1 for both outcomes. For a between-cluster predictor, x0 and x1
are substituted by one x value for both measurement moments. Note that
the estimates obtained by this parameterisation are on a different scale
than the parameters from model (2); in order to adjust them, they need to
be divided by the square root of the residual variance v1 (see section 3.2).



5 Lower-level mediation with
a binary outcome

Abstract. In recent literature, researchers have put a lot of time
and effort in expanding mediation to multilevel settings. Unfortu-
nately, such extensions are often limited to a continuous outcome,
whereas research concerning multilevel mediation within binary set-
tings remains rather sparse. Additionally, in lower-level mediation,
the effect of the lower-level mediator on the outcome may oftentimes
be confounded by an (un)measured upper-level variable. When such
confounding is left unaddressed, the effect of the mediator, as well
as the causal mediation effects, will be estimated with bias. In linear
settings, bias due to unmeasured additive upper-level confounding
is often remedied by separating the effect of the mediator into a
within- and between-cluster component. However, this solution is no
longer valid when considering binary outcome measures. To assess
the severity of this transgression, we aim to tackle lower-level me-
diation with a binary outcome and a binary randomised exposure
from a counterfactual point of view, with a special focus on small
clusters. We do this by 1) providing non-parametrical identification
assumptions of the direct and indirect effect, 2) parametrically iden-
tifying these effects based on appropriate modelling equations, 3)
considering estimation models for the mediator and the outcome,
and 4) estimating the causal effects through an imputation algo-
rithm that samples counterfactuals. Since steps three and four can
be completed in various ways, we compare the performance of three
different estimation models (an uncentered and centred separate
modelling method, and a joint approach), and two different ways
of predicting random effects (marginally versus conditionally). Em-
ploying simulations, we observe that the joint modelling approach
combined with a marginal generation of the random effects performs
best.

This chapter is joint work with Tom Loeys and Sara Kindt.
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1 Introduction

We must acknowledge that clustered or multilevel data have become protag-
onists in numerous research fields, either through the application of family-
or twin studies, during multicenter research, or in longitudinal designs.
In this type of studies, we always encounter a specific kind of hierarchy
within our data where usually, two levels can be distinguished: lower-level
measurements are nested within clusters or upper-level units. Examples
of such hierarchically nested entities, consist of relatives nested within a
family, students within classrooms, or measurement moments within an
individual. These lower-level measures show dependencies amongst each
other, as measures arising from within a family, a classroom, or an indi-
vidual, will be more alike than data arising from two random units. Such
correlated data structures need special care, as analyses that either ignore
these dependencies or inappropriately aggregate the data across levels, will
often lead to invalid inferences (Snijders and Bosker, 1999; Raudenbush
and Bryk, 2002). Over the course of decades, two major frameworks have
been put forward that are able to deal with such correlations: Mixed-effect
Models (MM) and Structural Equation Models (SEM). Although SEM
holds several advantages over its MM counterpart, both frameworks turn
out to be entirely equivalent when considering balanced multilevel data
within a random intercept model (Rovine and Molenaar, 2000; Curran,
2003; Bauer, 2003).

Taking the extreme usefulness of multilevel designs into account, ex-
panding mediation to multilevel settings has become an increasingly popu-
lar topic (Bauer et al., 2006; VanderWeele and Vansteelandt, 2009; Zhang
et al., 2009; Preacher et al., 2010; Preacher, 2015; Tofighi and Kelley,
2016). When looking at the effect of a randomised binary exposure that
varies within clusters, researchers usually consider a design where the
mediator and the outcome are also measured at the lower-level. This type
of mediation is appropriately termed lower-level or 1-1-1 mediation (i.e.,
the exposure, mediator, and outcome are all measured at level-1). Despite
becoming a quite established subject, the lower-level mediation literature
has almost exclusively relied on extending the product-of-coefficients ap-
proach to multilevel settings (Judd et al., 2001; Kenny et al., 2003; Bauer
et al., 2006; Preacher et al., 2010). Unfortunately, this procedure does not
offer a general definition of the causal effects that is applicable beyond
the few (linear) statistical models considered. Also, these extensions to
multilevel settings have mostly been executed without due attention to
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the interpretation of the effects as causal parameters, nor to the under-
lying assumptions needed to identify these. Some researchers have tried
to surmount these shortcomings by tackling multilevel mediation from
a counterfactual perspective (Imai et al., 2010a; VanderWeele, 2010b,a;
Josephy et al., 2015). This has proven very fruitful, as this framework is
able to explicate the assumptions underlying multilevel mediation, put
forward a general non-parametrical definition of the causal effects, as
well as identify these effects based on appropriate parametrical models
(Pearl, 2001; VanderWeele and Vansteelandt, 2009; Imai et al., 2010a;
VanderWeele, 2010b; Pearl, 2012).

1.1 Estimation of the causal mediation effects in four
steps

When resorting to the counterfactual framework, four steps need to be
considered if we want to unbiasedly estimate the causal mediation effects.

1.1.1 A first step - Nonparametric definition & identification of the
causal effects

First, we define non-parametrical expressions for the direct and indirect
effect. For a continuous outcome, this is usually achieved on a linear scale
(VanderWeele, 2010b; Josephy et al., 2015), while a linear-, risk ratio-
(RR), and odds ratio (OR)-type definition have been used for categorical
outcomes (Imai et al., 2010b; VanderWeele, 2013; Loeys et al., 2013; Bind
et al., 2016). We would like to focus on deriving these expressions on a
linear scale, as to provide a counterfactual definition of the causal effects
in terms of differences.

As a second part of the first step, we also recite the assumptions needed
to identify the above-mentioned effects. One very important assumption in
lower-level mediation studies entails the absence of unmeasured upper-level
confounders of the mediator-outcome relationship, alternatively referred to
in econometrics as upper-level endogeneity of the mediator and the outcome
(Wooldridge, 2010). This type of confounding is very common in many
contexts, and may lead to serious bias in the estimation of the intervening
effect if not appropriately dealt with. However, although the absence of
such endogeneity is often claimed as a necessary prerequisite for unbiased
estimation, specific conditions allow researchers to relax this assumption
(e.g., when the confounder has a linear and additive effect on mediator
and outcome). As this assumption portrays such an important, complex,
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and recurrent issue in lower-level mediation settings, this manuscript
intends to emphasise the consequences of upper-level endogeneity of the
mediator-outcome relation.

1.1.2 A second step - Parametric identification of the causal effects

Next, we identify parametrical expressions for the causal mediation effects
based on modelling equations that satisfy the assumptions explicated in
the previous step. Traditionally, most such attempts were made with a
continuous scaled mediator and outcome in mind (VanderWeele, 2010b;
Josephy et al., 2015). Social and behavioural sciences, however, have
developed a natural interest in hierarchical models for dichotomous data,
and hence, the corresponding mediation analyses that may ensue. In
practice, binary variables often arise through the occurrence of discrete
events (e.g., disease vs. no disease, pass vs. fail, ...), or through an artificial
classification of a continuous variable based (high vs. low rumination,
small vs. large families, ... ). Because research on multilevel mediation
with a binary outcome is relatively sparse, we will focus on this setting in
particular.

When considering modelling equations for the outcome, researchers
have mostly focussed on the logit-link for binary multilevel models (Robins
et al., 2000; Neuhaus and McCulloch, 2006; Bind et al., 2016). In practice,
however, dichotomous outcomes are also often predicted through the use of
probit-regression models. As such, we will consider both logit- and- probit
link-functions when deriving and evaluating parametrical expressions for
the direct and indirect effect.

1.1.3 A third step - Estimation models for the mediator and outcome

In a third step, we require unbiased and efficient estimation of the regression
coefficients of the mediator and outcome models. This unbiasedness of
course depends upon the assumptions mentioned during the first step of
this process; if, for example, the assumption of ‘no upper-level endogeneity
of the mediator-outcome relation’ is not met, a traditional multilevel
model for the outcome (with the mediator as a predictor) will estimate
its regression coefficients with bias (Zhang et al., 2009; Josephy et al.,
2015). In two-level linear settings, Centering Within-Clusters, or CWC
(i.e., the subtraction of a cluster-specific mean), was proposed to solve
potential confounding issues when estimating the effect of a predictor on
an outcome (Neuhaus and Kalbfleisch, 1998). Unfortunately, when the
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outcome is binary, CWC will no longer yield proper parameter estimates,
although in practice the resulting bias may often be small (Goetgeluk and
Vansteelandt, 2008; Brumback et al., 2010).

Alternatively, the mediator and outcome can also be modelled jointly
under a slightly more stringent set of conditions (Bauer et al., 2006; Josephy
et al., 2015). Such a joint modelling approach allows for unmeasured cluster-
specific common causes of the mediator and the outcome, by estimating a
covariance term between the two random intercepts (Bauer et al., 2006;
Skrondal and Rabe-Hesketh, 2014). Bind et al. (2016) incorporate such a
joint strategy (even though their applications are limited to linear settings),
hereby allowing for upper-level confounding (Skrondal and Rabe-Hesketh,
2014). As CWC no longer provides unbiased parameter estimates in binary
settings, we too, aim to focus on joint modelling in order to confront and
solve upper-level endogeneity of the mediator-outcome relation.

1.1.4 A fourth step - Estimation of the causal effects through Monte
Carlo potential outcome generation

Finally, a fourth step aims to estimate the causal mediation effects them-
selves. Typically, the expressions derived during the second step are condi-
tional on the cluster-specific random effects. In linear settings, such effects
are effectively eliminated from the parametrical expressions of the causal
effects (when these are defined on a difference-scale), but unfortunately,
this is no longer the case when the outcome is binary. If we want to obtain
expressions for the indirect and direct effect marginalised over the random
effects, we need to sample the random effects from their assumed distri-
bution and average them out. From a counterfactual point of view, this
can be achieved by an imputation algorithm that sequentially 1) simulates
‘potential values’ for the mediator, conditional on the random effects, 2)
simulates ‘potential values’ for the outcome, given the sampled values
of the mediator and conditional on the random effects, 3) computes the
causal mediation effects for each simulated draw, and 4) calculates the
summary statistics of these effects, over the draws (Imai et al., 2010a). This
sampling algorithm may base itself upon the empirical Bayes predictor for
the random effects (Skrondal and Rabe-Hesketh, 2004), which can rely
on one of two possible mechanisms during the sampling process of the
mediator and outcome models. A first possibility draws the random effect
from a marginal zero-centred distribution (i.e., the marginal sampling
(co)variances), while a second relies on a distribution that is conditional
on the cluster identifier (i.e., the posterior (co)variances) (Tingley et al.,
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2014). It has been stated that the latter might underestimate the variance
of the random effects distribution (Skrondal and Rabe-Hesketh, 2004),
which is why we aim to quantify and compare the performance of both
methods.

In their manuscript, Bind et al. (2016) parametrically identify the
direct and indirect effect in binary settings and subsequently rely on these
expressions to estimate the causal effects. In doing so, the authors are able
to circumvent the above-described algorithm, through the explication of
additional assumptions that enable them to remove the random effects
from the parametrical expressions of the causal effects (i.e., the assumption
of a rare binary mediator and/or outcome, and small random slopes). In
contrast, the algorithm we propose in the fourth step does not require
such additional assumptions, since the imputation algorithm allows us
to marginalise over the random effects rather than remove them. In this,
the algorithm broadens the applicability of causal effect estimation in
multilevel mediation models.

1.2 Our work

In summary, we aim to investigate which multilevel estimation models are
able to effectively eliminate unmeasured upper-level confounding of the
mediator and the outcome, when the latter is binary. In addition, we will
focus on a randomised binary exposure that varies within small clusters, as
such group sizes have proven difficult for the available estimation techniques
(Breslow and Clayton, 1993; Rodriguez and Goldman, 1995). These settings
are often encountered in practice, e.g. when studying dyads (McMahon
et al., 2003), twins (Ortqvist et al., 2009), or few repeated measures within
each individual (Senn, 2002). On top of this, we want to evaluate if, and
how, the link-function and/or a conditional versus a marginal sampling of
the upper-level residual distribution (within the imputation algorithm),
may affect the estimation of the mediation effects. In an attempt to answer
these questions, we aim to conduct a large simulation study in which we
compare three estimation models for mediator and outcome (an uncentered
separate modelling approach, a separate approach that relies on CWC,
and a joint method), two link-functions (logit and probit), and two ways
in which to generate the random effects (marginally vs. conditionally). In
this respect, our work distinguishes itself from other papers on lower-lever
mediation, as most of these either 1) do not offer a generalisable approach
to lower-level mediation from a counterfactual point-of-view, 2) do not
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investigate the case of a binary outcome (and/or mediator), or 3) do not
evaluate performance measures based on an extensive simulation study
(Judd et al., 2001; Kenny et al., 2003; Bauer et al., 2006; Raykov and Mels,
2007; Montoya and Hayes, 2017; Vuorre and Bolger, 2017).

In the following sections, we go over the four different steps one at
a time. First though, we introduce a motivating example with a small
clusters size, where the outcome is measured on a binary scale. Next, we go
over the first step in the process of estimating the causal mediation effects:
we start by defining counterfactual outcomes in lower-level mediation
settings, introduce non-parametric expressions for the direct and indirect
effect, and discuss the assumptions needed for their identification. Then,
in a second step, we derive parametrical expressions for these effects
under a set of equations for the mediator and outcome that satisfy these
assumptions. In the third part, we elaborate on three possible estimation
methods that enable us to estimate the regression coefficients of random
intercept models for binary measures. During the fourth part, we discuss
the mechanism through which the causal mediation effects are estimated,
as well as the two possible ways through which the random effects can
be generated. Next, we illustrate these methods on our example data. To
facilitate the practitioner’s decision on which method is most appropriate
in which setting, we subsequently conduct a simulation study where we
compare the relative performance of the different estimation techniques and
random effect generating mechanisms. Based on our findings we provide
recommendations, and recap with a discussion.

2 Illustrating example
We consider data from a crossover study that aims to assess the impact of
experimentally induced goal conflict on the helping behaviour of partners
of individuals with chronic pain (ICP) (Kindt et al., 2018). During this
study, couples (with at least one person having chronic pain) were asked to
perform a series of household activities, while the presence of goal conflict
in partners was randomly manipulated in a counterbalanced way. Partners
were asked to stay available for help, while simultaneously working on a
puzzle task (i.e., the goal conflict condition) or simply asked to be available
(i.e., the control condition). After each series of chores, couples reported on
several intra- and interpersonal outcomes, as well as the partners’ quantity
and quality of help. We will focus on the effect of goal conflict (a binary
exposure) on the amount of help provided by the ICP’s partner (the
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binary outcome, high vs. low amount of help). As the amount of help is
encoded within 10-second time frames (absence vs. presence of help), we
regarded the amount of help as ‘high’ when, on average, help was more
present than absent, and regarded it as ‘low’ otherwise. Additionally, we
wanted to check whether or not this relation is mediated by the partner’s
amount of autonomous helping motivation, as perceived by the ICP (a
continuous mediator, based on eight items on a 7-point scale). For this
research question, we focus on data from 56 out of the original 68 couples,
where no missingness is observed in the mediator or the outcome for either
experimental condition1. As all three variables are measured within clusters
(i.e., the couple) and each couple is exposed to two experimental conditions,
we end up with a lower-level mediation design where two measurements
are taken within each cluster.

3 Step 1 - Nonparametric definition & identifi-
cation of the causal effects

Traditionally, mediation analysis has been formulated, understood, and
implemented within a framework of linear regression models. This has
proven problematic, since this line of thinking cannot offer general defi-
nitions of the causal effects beyond a few specific models. On top of this,
these conclusions cannot be generalised to nonlinear models for discrete
mediators and outcomes. In response, researchers have proposed and relied
on the counterfactual framework to include the definition, identification,
and estimation of causal mediation effects, without any reference to one
specific statistical model (VanderWeele and Vansteelandt, 2009; Pearl,
2010; Imai et al., 2010a; Pearl, 2012).

3.1 The counterfactual framework
Before we introduce a nonparametric definition for the causal effects, let
us explain the concept of ‘counterfactual outcomes’ in settings where all
variables are measured at the lower-level. A ‘counterfactual’ or ‘potential’
outcome Yij(x) represents the outcome that we would, possibly contrary to
fact, have observed for measurement j within cluster i, had the exposure
Xij been manipulated to a value x (Rubin, 1978). When considering
a dichotomous exposure (with value 0 for baseline/no exposure, and

1We run a complete case analysis, as missingness proves problematic for the joint
approach implemented in this manuscript.
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1 otherwise), we can define two possible potential outcomes for each
measurement within a cluster: Yij(0) and Yij(1). Keeping this in mind,
the measure- and cluster-specific total effect of X on Y is defined as the
difference between both counterfactuals: Yij(1) − Yij(0). Unfortunately,
since only one of these counterfactuals is observed for each measurement,
this effect cannot be estimated. The population average of the total causal
effect E[Yij(1)−Yij(0)], on the other hand, can be identified under specific
assumptions (cfr. next section).

Similarly, counterfactuals for the mediator, Mij(0) and Mij(1), and
nested counterfactuals for the outcome, Yij(x,Mij(x∗)), can be devised
(Robins and Greenland, 1992; Pearl, 2001). The latter counterfactual
represents the value for the outcome Yij , when Xij is set to x and Mij is
fixed at the value it would obtain when Xij = x∗. Nested counterfactuals
allow us to rephrase the average total effect of X on Y , to include a
mediator: E[Yij(1,Mij(1))− Yij(0,Mij(0))] = E[Yij(1)− Yij(0)], enabling
us to partition the total causal effect into a total natural indirect and a
pure natural direct effect (Hafeman and Schwartz, 2009; VanderWeele,
2013):

TCE =E[Yij(1,Mij(1))− Yij(0,Mij(0))]
=E[Yij(1,Mij(1))− Yij(1,Mij(0)) + Yij(1,Mij(0))− Yij(0,Mij(0))]
=TNIE + PNDE (5.1)

Note that we define non-parametrical expressions for the direct and
indirect effect on a linear scale, in contrast to e.g. Imai et al. (2010b);
VanderWeele (2013); Loeys et al. (2013); Bind et al. (2016), where these
effects are often defined in terms of risk- or odds ratios for binary outcomes.

3.2 Causal and modelling assumptions to identify the cau-
sal mediation effects

In order to identify the above-defined non-parametrical effects in lower-level
mediation settings with a randomised exposure, we need to postulate the
following set of assumptions (VanderWeele, 2010b; Josephy et al., 2015):

(i) There are no unmeasured upper- or lower-level confounders of the
association between mediator and outcome.

(ii) There are no confounders of the association between mediator and
outcome, caused by exposure (i.e. no intermediate confounding).
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(iii) There is no carry-over effect when lower-level measures represent
time points.

For lower-level mediation in clusters of size two, assumptions (i)-(iii) can
be summarised by the (lack of) arrows within the diagram in figure 5.1
(Robins and Richardson, 2010).

Xi1 Xi2

Mi1

Yi1

Mi2

Yi2

Level 2
Level 1

Ui Vi

Figure 5.1 This causal diagram graphically represents assumptions (i)-(iii), which
are needed to identify the causal effects in a randomised lower-level mediation setting
with clusters of size two. Xi1, Mi1 and Yi1 represent the respective values of the
exposure, mediator, and outcome for the first measure within cluster i, while Xi2, Mi2
and Yi2 reflect these variables for the second measurement. Absence of a unidirectional
arrow between two variables indicates the absence of a direct causal effect, while a
bidirectional arrow captures an unmeasured common cause.

Note that including the red arrow in figure 5.1, allows for the unmea-
sured cluster-specific common causes of the outcome (V ) and those of the
mediator (U), to correlate. As such, V can be expressed as a function of U
(i.e. h(U)) without a loss of generality, rendering the unmeasured upper-
level confounder of the M -Y relationship more explicit. Consequently,
this arrow directly violates assumption (i): there are unmeasured upper-
level confounders of the mediator-outcome relation. Josephy et al. (2015)
showed that in linear lower-level mediation settings, this assumption is
not necessary for the identification of the causal mediation effects; they
demonstrate that researchers can estimate the direct and indirect effects
without bias, even in the presence of such upper-level confounding. In this
manuscript, we wish to additionally demonstrate the redundancy of this
assumption in lower-level mediation settings with a binary outcome.

In addition to these three causal assumptions, we will consider the
following modelling assumptions throughout the paper:

(iv) Unmeasured upper-level confounders of the mediator and outcome
exert an additive effect on both the mediator and the outcome2.

2This assumption is made on the scale of the parametrical models for the mediator
and outcome
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(v) There is no unmeasured heterogeneity among clusters in the effect
of exposure on mediator, nor in the effect of exposure and mediator
on the outcome.

Unlike the previous three assumptions, assumptions (iv) and (v) cannot
be represented on a causal diagram; hence, they are not depicted in figure
5.1.

4 Step 2 - Parametric identification of the causal
effects

Now that we possess non-parametric definitions of the causal effects, we
can pursue their identification based on parametrical statistical models for
the mediator and binary outcome. Let us consider the following multilevel
models, with i the cluster, and j a within-cluster observation:

E[Mij |Xij , Ui] = g−1
M

(
δM + αXij + ηi

)
E[Yij |Xij ,Mij , Ui] = g−1

Y

(
δY + ζ′Xij + βMij + φXijMij + h(ηi)

)
(5.2)

where g−1
M and g−1

Y represent known inverse link functions for M and Y ,
respectively. In these equations, δM and δY represent the intercepts for the
mediator and the outcome, while α, β, ζ ′ , and φ represent the effects of
exposure on mediator, mediator on outcome, exposure on outcome, and the
interaction between exposure and mediator on the outcome, respectively.
Since the unmeasured upper-level confounders of the mediator, ηi, and of
the outcome, νi = h(ηi), are allowed to correlate, this induces unmeasured
cluster-specific confounding of the M -Y relationship (see red arrow in
figure 5.1). Note that we additionally assume that these effects are homo-
geneous across clusters, in accordance with assumption (v). Under this
data-generating mechanism, the assumptions introduced in section 3.2 are
met (except for the upper-level confounders of assumption (i), of which we
aim to prove its redundancy under a lenient set of modelling assumptions).
This enables us to operate Pearl’s mediation formula (Pearl, 2001, 2010)
to derive the total, pure natural direct, and total natural indirect effect
for each measurement j within cluster i.

For example, when gM = gY = probit (and hence with Φ representing
the standard normal cumulative distribution), we find a “ij-th”-specific
total natural indirect effect of:
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E[Y ij(1,Mij(1))− Yij(1,Mij(0))|Ui, t)]

=
(
Φ(δM + Ui)− Φ(δM + α+ Ui)

)(
Φ(δY + ζ′ + h(Ui))

− Φ(δY + ζ′ + β + φ+ h(Ui))
)

(5.3)

The parametrical derivations and expressions for the causal effects can be
found in the appendix, for both gM = gY = logit and gM = gY = probit.
We do not offer any derivations for these effects when gM represents the
identity-link and gY either the probit- or logit-link, as this case does not
provide any closed-form expressions.

5 Step 3 - Estimation models for the mediator
and outcome

Now that we know how to identify the causal mediation effects, a next
logical step considers their estimation. Before we can achieve this, however,
we first need to estimate the regression parameters for the mediator and
outcome models (5.2), with the aid of appropriate estimation models. To
this end, the following sections summarise three potential approaches. Note
that the next few equations represent estimation models, in contrast to
the causal model from the previous section (i.e., equation (5.2)).

5.1 Separate modelling of a binary mediator and outcome
One such approach fits the mediator and outcome measures by use of
two separate multilevel models, with i the cluster (i = 1...I) and j the
measurement within a cluster (j = 1...J):

E(Mij |Xij , ui) = g−1
M

(
dM + aXij + ui

)
E(Yij |Xij ,Mij , vi) = g−1

Y

(
dY + c′Xij + bMij + fXijMij + vi

)
with ui qXij and vi qXij ,Mij , XijMij (5.4)

Here, g−1
M and g−1

Y again represent known inverse link functions and ui
and vi the random intercepts for M and Y , respectively. These upper-level
residuals are assumed to be normally distributed with mean zero and
variance σ2

M for ui and σ2
Y for vi. Note that this uncentred (UN) separate

modelling approach assumes that the upper-level residuals are independent
of the predictors. If, however, there is upper-level confounding of the M -Y
relation, both random intercepts will be correlated and, since ui predicts
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Mij , Mij and vi will be correlated as well. This is in direct violation of the
assumption vi qXij ,Mij and, as a result, the above-described multilevel
model for the outcome will estimate the regression coefficients of model
(5.2) with bias.

In linear multilevel settings (i.e., when gM and gY both represent the
identity-link), many scholars have attempted to solve this confounding issue
by separating within- from between-cluster effects (Louis, 1988; Neuhaus
and Kalbfleisch, 1998; Begg and Parides, 2003; Zhang et al., 2009; Kenward
and Roger, 2010; Preacher et al., 2010; Pituch and Stapleton, 2012). Such
centering within-clusters (CWC) can be achieved by regressing a continuous
dependent variable on the cluster-mean centred values of the predictors:
(Xij −Xi) and (Mij −M i). In these expressions, Xi and M i denote the
cluster-specific averages of the exposure- and mediator-scores for cluster i
across its measurements (MacKinnon, 2008). Subtracting these means from
the raw scores will remove any cluster-specific effects that may influence
the predictors and hence, any possible impact of unmeasured upper-level
confounders. As such, the upper-level residuals will be uncorrelated with
these within-cluster deviations, implying that the parameter coefficients of
model (5.2) can be estimated without bias in the presence of upper-level
endogeneity.

A similar approach is possible for a binary outcome, through the
following set of multilevel models:

E(Mij |Xij , ui) = g−1
M

(
dM + a(Xij −Xi) + ui

)
E(Yij |Xij ,Mij , vi) = g−1

Y

(
dY + c′(Xij −Xi) + b(Mij −M i)

+ f(XijMij −XM i) + vi
)

with ui q (Xij −Xi)
and vi q (Xij −Xi), (Mij −M i), (XijMij −XM i) (5.5)

Again, both upper-level residuals are assumed to be independently and
normally distributed with mean zero and a fixed variance. Unfortunately,
when the outcome is measured on a binary scale, CWC no longer yields
proper parameter estimates, although in practice, the bias may often be
small (Goetgeluk and Vansteelandt, 2008; Brumback et al., 2010).

Similar to Greenland (2002), Goetgeluk and Vansteelandt (2008), and
Brumback et al. (2010), we argue that model (5.5) cannot be considered a
valid causal model. In the longitudinal setting considered here, this model
would imply that the future causes the past (e.g., future Xij would cause
past Yij∗ for j > j∗, sinceXij is contained withinXi). This remark does not
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downgrade the usefulness of this estimation model, but rather emphasises
that model (5.5) should not be attributed a causal interpretation.

5.2 Joint modelling of a binary mediator and outcome
A second approach consists of jointly modelling the mediator and the
outcome. This can be achieved by either relying on multivariate techniques,
or by tricking univariate software into modelling the mediator and outcome
in a multivariate way (Bauer et al., 2006). The set of equations resembles
(5.4) except that now, ui and vi are allowed to covary:

E(Mij |Xij , ui) = g−1
M

(
dM + aXij + ui

)
E(Yij |Xij ,Mij , vi) = g−1

Y

(
dY + c′Xij + bMij + fXijMij + vi

)
with (ui, vi) ∼ N(0,Σ) (5.6)

Here, the upper-level residuals are assumed to be multivariate normally
distributed, with zero mean and covariance matrix Σ. This matrix is
defined by the variances of ui and vi on its diagonal (σ2

M and σ2
Y , respec-

tively), and by the covariance between both upper-level residuals (σMY )
elsewhere. Since this set of models allow both random intercepts to covary,
unmeasured upper-level M -Y confounding may be accounted for through
the modelling of this correlation. As estimation model (5.6) equals the true
data-generating model (5.2) from section 4, we expect unbiased estimators
for the regression coefficients in the outcome model.

6 Step 4 - Estimation of the causal effects through
Monte Carlo potential outcome generation

After estimating the regression coefficients in the models for the mediator
and outcome, a final step aims to estimate the mediation effects themselves.
This can be achieved by sampling potential outcomes from the estimated
mediator and outcome distributions with the aid of an imputation al-
gorithm. Recall that, for a randomised binary exposure X, we observe
Yij(Xij ,Mij(Xij)) for each within-cluster measure. However, in order to
estimate the population averaged indirect effect, we additionally require
the counterfactual outcome Yij(Xij ,Mij(1−Xij)) for every measurement.
In an algorithm proposed by Imai et al. (2010a), we can obtain a Monte
Carlo draw from the potential outcome Yij(x,Mij(x∗)) by using model pre-
dictions. This transpires through a parametrical or quasi-Bayesian Monte
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Carlo approximation in which the posterior distribution of the quantities
of interest is approximated by their sampling distribution:

1. Fit models for the observed mediator and outcome variables.

2. Simulate estimated model parameters from their sampling distribu-
tions (e.g., 1000 draws).

3. Repeat the following three processes within a single draw from
the previous step: (a) predict both potential values of the mediator
(Mij(0) andMij(1)) for each measure within each cluster, (b) predict
the potential outcomes for each within-cluster measurement, given
the predicted values of the mediator (Yij(0,Mij(0)), Yij(1,Mij(0)),
Yij(0,Mij(1)), and Yij(1,Mij(1))), (c) compute the causal mediation
effects, averaged over clusters and measurements within clusters.

4. Compute the summary statistics, such as point estimates and confi-
dence intervals, over all simulated draws.

7 Estimation techniques and software implemen-
tations

Up until now, we merely focussed on the models for the mediator and the
outcome and the estimation of the causal mediation effects. Of course, there
are a lot of possible combinations of estimation techniques and software
implementations that allow us to fit the above-mentioned statistical models
and to generate potential outcomes for the estimation of causal mediation
effects. We discuss several such options next.

7.1 Step 3 - Estimation of the regression parameters
Let us first tackle estimation techniques for the uncentered and centred
approaches that model the mediator and the outcome separately. With the
aid of simulation studies, Josephy et al. (2016) concluded that generalised
linear mixed models (GLMMs) that rely on Maximum Likelihood (ML)
estimation through Adaptive Gaussian Quadrature (AGQ) provided the
most reliable estimates when analysing binary probit-regression models
within small clusters. For dyadic cluster sizes, AGQ operated on par with
Diagonally Weighted Least Squares (DWLS) estimation within the SEM
framework, but took the upper hand as the cluster size increased. Note
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that using conditional logistic regression within the third step is not really
an option, although this approach is perfectly capable of dealing with
unmeasured upper-level confounding of mediator and outcome. The reason
for this is that conditional likelihood approaches do not estimate any
intercepts, nor do they provide estimates for the random effect variances,
making the prediction of potential values for the mediator and the outcome
within the fourth step impossible. On top of this, conditional logistic
regression cannot be implemented for any link-functions other than the
logit-link.

Next, let us look at possible implementations that allow us to jointly
model the mediator and outcome. Bauer et al. (2006) first introduced a
joint modelling approach for linear mixed models (LMMs) in SAS R©, by
fitting a multivariate model using univariate multilevel software (i.e., the
Proc Mixed procedure). A next logical step extends this line of thinking
to GLMMs, but regrettably proves unattainable within the current SAS-
software, as the method requires the specification of random effects in
combination with a residual covariance structure that differentiates between
mediator and outcome. Unfortunately, Proc Glimmix cannot integrate
marginal covariances within AGQ, while Proc NLmixed is unable to model
residual covariances in the first place.

A second possible candidate consists of a Bayesian approach through
Komárek and Komárková (2014)’s mixAK -package within the statistical
environment R (R Core Team, 2013). However, while exploring the nu-
merous possibilities of this package, we experienced several difficulties in
estimating the covariance between the random intercepts of M and Y ;
this random term did not attain stable convergence measures, even when
considering high burn-in and thinning values. On top of this, the package
is restrained to Bayesian estimation through the logit-link, disregarding
its probit-alternative entirely.

Structural Equation Models (SEM), where a categorical outcome is
considered a crude approximation of an underlying continuous variable,
offer a third possibility. As we mentioned at the beginning of this section,
DWLS has proven very auspicious when estimating models for binary
measures within small clusters. Since SEM naturally considers data in a
multivariate way, it allows the joint modelling of mediator and outcome.
However, within (D)WLS, a binary measure that simultaneously acts as
both a dependent and independent variable (i.e., a so-called endogenous
variable), is treated as its underlying continuous measure during the entire
estimation process. As such, (D)WLS encounters problems when estimat-
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ing the parameter coefficient of a binary endogenous mediator within
the outcome model. Fortunately, ML-estimation can treat the mediator
as its underlying measure when it serves as a dependent variable, while
considering its observed values when the mediator serves as a predictor.
In Rosseel (2012)’s lavaan-package within R, only (D)WLS-estimation
is currently able to deal with endogenous categorical variables. In con-
trast, ML-estimation through AGQ in MPLUS R©-software is able to model
endogenous binary mediators (Muthén and Muthén, 2010).

With these considerations and limitations in mind, we will consider
ML-estimation through AGQ for the joint and both separate modelling
methods in the third step. The uncentred and centred separate modelling
approaches will be fitted with the aid of the lme4 -package (version 1.1-17)
within R version 3.5.0 (Bates et al., 2015), while the joint approach will
take place within the MPLUS-software (version 7.4).

7.2 Step 4 - Estimation of the causal mediation effects

Conveniently, Tingley et al. (2014) developed their R-package mediation in
which separate models for the mediator and the outcome can be inserted,
to subsequently generate estimates for the causal mediation effects through
the implementation of the algorithm described in section 6. We do, however,
have a few concerns regarding the implementation as described in Imai
et al. (2010a).

For one, as this package can only model the mediator and the outcome
separately, it cannot quantify any unmeasured upper-level confounding
of M and Y through a covariance term between both random intercepts.
As a consequence, the random effects will be generated from independent
normal distributions rather than from a less stringent multivariate one,
and hence, will not be able to appropriately deal with upper-level endo-
geneity of a mediator and a binary outcome. This package’s documentation
consequently assumes the (somewhat improbable) absence of upper-level
endogeneity of mediator and outcome.

Two, the authors do not provide any recommendations concerning
which estimation techniques ought to be used in which settings. Tingley
et al. (2014) do not explicitly recommend the use of AGQ when the fitted
models for the mediator and/or outcome constitute GLMMs. As such,
uninformed researchers might not be aware that they are relying upon
the Laplace approximation by default and consequently, shoulder the
approach’s shortcomings when dealing with non-normal data within small
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clusters (Tuerlinckx et al., 2006; Josephy et al., 2016).
Three, in the third step of their algorithm (see section 6), the authors

rely on a conditional approach for generating the random effects. During
this process, these are sampled conditionally on the cluster identifier: the
upper-level residuals are assumed to follow a normal distribution, condi-
tional on the estimated random effect within that cluster, as well as the
estimated conditional variance. It has been pointed out that this method
for generating the random effects may not lead to a realistic sampling dis-
tribution (Skrondal and Rabe-Hesketh, 2004). Rather, a marginal sampling
process, in which all random effects are drawn from a normal distribution
with a zero mean and a standard deviation based on the estimated variance
component, may lead to better estimates of the causal mediation effects.

As such, we will compare the performance of two possible random effect
generating mechanisms within the fourth estimation step: a conditional
versus a marginal procedure. As we were unable to extract the conditional
variances from MPLUS, we only compare both approaches within the two
separate modelling techniques.

8 Simulation study
In summary, we compare five different approaches for estimating the causal
mediation effects: (1) an uncentered separate, (2) a centred separate, and
(3) a joint modelling procedure with marginally generated random effects,
alongside (4) an uncentered and (5) a centred separate modelling approach
with conditionally generated random effects. The detailed code on the
software implementation can be found in the appendix.

To gain insight into the performance of these procedures, we compare
them through simulations under a variety of settings. For this, we gener-
ated random binary mediator and outcome values within small clusters,
according to random intercept probit- or logit-models. For simplicity, our
data generating mechanism omits an interaction between the exposure
and mediator in the outcome model:

P (Mij = 1|Xij , ui) = P (M∗ij > 0|Xij , ui)
= P (δM + αXij + ui + εMij > 0)

P (Yij = 1|Xij ,Mij , vi) = P (Y ∗ij > 0|Xij ,Mij , vi)
= P (δY + ζ ′Xij + βMij + vi + εYij > 0)
with (ui, vi) ∼ N(0,Σ) (5.7)
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Here, M∗ij and Y ∗ij represent the underlying latent variables of the binary
mediator and outcome, respectively, such that Mij = 1 if M∗ij > 0, and
Yij = 1 if Y ∗ij > 0. In these equations, the lower-level residuals of the latent
variables, εMij and εMij , are both i.i.d. drawn from a normal distribution
with mean zero and a variance, σ2, that changes according to the link
function. For the probit-link, σ2 = 1, while for the logit-link σ2 = π2

3 . The
random intercepts are sampled from a multivariate normal distribution
with zero means and variance-covariance matrix Σ:

Σ =
(

τM ρ
√
τMτY

ρ
√
τMτY τY

)
For the different simulation settings, we vary several parameters. First

of all, we consider different clusters sizes: we will look at clusters of size
two and five. Second, we also regard a different number of clusters: we
consider sample sizes n of 50, 100, and 300. Three, as we wish to study
whether or not the link function impacts our conclusions, we consider
both the probit- and the logit-link in generating the mediator and outcome
measures. Note that the coefficients of the logit-link are about 1.7 times
larger compared to those defined for the probit-link (see table 5.1).

Link-function
Parameter Probit-link Logit-link

δM 0.00 0.00
α 1.00 1.70
δY –0.70 -1.20
ζ′ 0.50 0.85
β 0.80 1.35

Table 5.1 A summary of the parameter values for the data-generating mechanism,
according to one of two possible link functions.

Four, we also wish to examine the impact of different intracluster
correlations (icc’s) for the latent response variables of the mediator and
outcome. As the latent iccl is defined as the proportion of between-cluster
versus total variance in the latent responses (e.g., for the mediator, iccl =
V ar(ui)
V ar(M∗

ij
) = τM

τM+σ2 ), this value depends upon the variance of the lower-level
residuals and hence, on the link function. As such, a latent iccl of 0.10, 0.30,
and 0.50 corresponds to a respective random intercept variance of 0.11,
0.43, and 1.00 for the probit-link, and 0.36, 1.41, and 3.29 for the logit-link
(with iccMl = iccYl ). Finally, we also look at the impact of unmeasured
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upper-level confounding of mediator and outcome by varying the value
of ρ in the covariance matrix Σ: we consider a correlation ρ = 0 (i.e., no
unmeasured upper-level confounding) and ρ = 0.50.

In total, 1000 simulations are generated for different combinations of
cluster size (2), sample size (3), link-function (2), icc (3), and random
intercept correlation (2). The five above-introduced methods are compared
over these settings in terms of convergence, relative bias, mean squared
error (MSE), and coverage. The relative bias is defined as the averaged
difference between the estimated (e.g. β̂) and true parameter values (e.g.
β), divided by the latter (so that the relative bias equals β−β̂

β ); as such, a
relative bias enclosing zero will indicate an unbiased estimator. The MSE
is estimated by summing the empirical variance and the squared bias of
the estimates, simultaneously assessing bias and precision: the lower the
MSE, the more accurate and precise the estimator. The coverage is defined
as the proportion of the 95% Wald-confidence intervals that encompass
their true parameter value; coverage rates nearing 95% represent nominal
coverages of the intervals. Lastly, in order to conclude model convergence,
a model fit must yield both estimates and standard errors. To ensure a
fair comparison between methods, we only present results for simulation
runs in which all five methods converged.

9 Results
Below, we discuss the results of the simulation study for the probit-link
in detail, comparing clusters of size two and five. In addition, we report
the results comparing the logit- and probit-link for clusters of size two. In
the following sections, we refer to the five approaches as: UN (separate
modelling, uncentred) and CWC (separate modelling, centred within-
clusters), both with a marginal (“-Marg") and a conditional (“-Cond")
approach to modelling the random effects, and to the Joint approach with
a marginal random effects generation as “Joint-Marg".

9.1 Convergence
For the convergence, we can but observe the results of three rather than five
approaches, since both ways of generating the random intercepts overlap
up until the fourth step of our estimation process; hence, their convergence
will be identical. Generally, convergence improves as the number of clusters
(i.e. the sample size n) and the number of measurements within a cluster
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increase (i.e. from two to five) (see left part of figure 5.2). Note that
for 300 clusters most approaches reach 100% convergence, except for the
joint approach when the iccl is low. In contrast to changes in sample and
cluster sizes, convergence seems more or less unaffected by the presence
of unmeasured upper-level confounding of the mediator-outcome relation.
Moreover, convergence is seemingly unaffected by the latent intracluster
correlation for UN and CWC, whereas it seems to improve for the joint
approach with increasing iccl. Lastly, it appears that the convergence
fares slightly better for all approaches when the logit-link, rather than the
probit-link is used (see right part of figure 5.2). Overall, the joint approach
shows the most difficulty in reaching convergence.

9.2 Relative bias

First of all, for the direct and indirect effect estimators we typically observe
that the relative bias decreases as the number of clusters and the number
of measurements within each cluster increases (see figure 5.3). Only when
there is upper-level endogeneity of mediator and outcome, does the relative
bias of the indirect effect increase instead of decrease with larger samples,
for both uncentred approaches. Second, both causal mediation effects are
not influenced by an increase in the iccl for the joint approach (with
‘CWC-Cond’ a close second), while it does impact others, especially when
ρ 6= 0: in this case, their relative bias increases with rising icc. Third, when
comparing link functions, we see no obvious changes in the performance of
the joint approach, nor for both conditional approaches to generating the
random effects (see figure 5.6 in the Appendix). Both marginal approaches,
however, exhibit a strong increase in relative bias when relying on the logit-,
compared to the probit-link. Overall, we observe that the joint approach
provides the least biased estimates.

9.3 MSE

Generally, the mean squared error declines with increasing sample size
and number of within-cluster measures, as well as with a rising iccl (see
figure 5.4). Furthermore, we do not observe any differences in MSE when
comparing settings with and without unmeasured upper-level confounding
of the M-Y relation, nor when comparing link functions. The only deviation
from this consists of a slightly increased MSE for the direct effect estimator
of both CWC approaches when comparing logit- to probit regression (see
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figure 5.7 in the Appendix). Over all settings considered, the MSE is
generally lowest for the joint modelling approach and CWC.

9.4 Coverage
For both causal mediation effects, the coverage of their 95% confidence
intervals is typically better when the cluster size equals two rather than
five, and when the latent intracluster correlation is low (see figure 5.5). This
observation holds for all methods, although the joint approach and ‘CWC-
Cond’ seem least influenced by changes in these measures. Additionally,
when the iccl is high, we often observe a decrease in the coverage rate
as the upper-level sample size increases, for both UN-approaches and
‘CWC-Marg’. Also, the presence of unmeasured upper-level confounding
of the mediator and outcome does not seem to impact the joint approach
or ‘CWC-Cond’ that much, whereas the other approaches show a steep
decrease in coverage, especially when samples sizes are large. Again, the
link function does not seem to impact the coverage of the joint and both
conditional approaches, whereas the it tends to decrease for both marginal
approaches when comparing the logit- to the probit-link (see figure 5.8 in
the Appendix). Generally, the joint approach and ‘CWC-Cond’ provide
the best coverage.

9.5 Analysis of the example
Next, we illustrate the above five approaches by applying them to our
example data, where we assess whether or not the effect of goal conflict
(i.e., the binary exposure) on the observed amount of help (i.e., the binary
outcome) is mediated by the partner’s amount of autonomous helping
motivation, as perceived by the patient (i.e., the continuous mediator).
Within the third step of our estimation procedure, we modelled the media-
tor and the outcome according to estimation models (5.4)-(5.6), where gM
represents the identity-link, gY the probit-link, and without an interaction
(i.e., f = 0). The estimated regression coefficients and random intercept
variances (alongside the estimated standard errors and p-values) based on
the joint modelling approach (i.e., estimation model (5.6)), are summarised
in table 5.2.

In doing so, we observe a significant effect of goal conflict on the ob-
served amount of help (i.e., the c-path, p < 0.001) and on the perceived
amount of autonomous helping motivation (i.e., the a-path, p = 0.032).
Additionally, we also discern a significant effect of goal conflict on the
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Estimate (se) p-value
ˆdM 3.896 (0.200) < 0.001
â -0.356 (0.160) 0.026
d̂Y 2.678 (1.350) 0.047
ĉ′ -1.453 (0.446) 0.001
b̂ 0.699 (0.342) 0.041
σ̂2
M 1.520 (0.361) < 0.001
σ̂2
Y 0.765 (0.930) 0.411
ˆσMY -0.704 (0.610) 0.249

Table 5.2 The estimated regression coefficients of the models for the effect of goal
conflict on the partner’s amount of autonomous helping motivation, and of goal conflict
and the partner’s amount of autonomous helping motivation on the observed amount
of help. The estimates (with estimated standard errors, se) and p-values are provided
for the joint modelling procedure.

amount of help, when controlling for the amount of autonomous helping be-
haviour (i.e., the c′-path, p = 0.001), and a significant effect of the amount
of autonomous helping behaviour, when controlling for the exposure (the
b-path, p = 0.041).

Although all these pathways appear significant, we observe a significant
direct, but no indirect effect, for either of the five estimation procedures
during the fourth step of our estimation process (see table 5.3). This
is most likely due to the rather modest upper-level sample size, which
might provide a very low power for detecting a small indirect effect. For
the intervening effect, we see that the uncentred estimates are larger
than those of both CWC-approaches, whereas the estimates of the Joint
approach are somewhere in between (although closer to those of CWC). In
contrast, the estimates for the direct effect are smallest for the uncentred
approaches and largest for the CWC-approaches, with the Joint approach
again providing estimates between both. Additionally, we also observe
the smallest empirical standard errors for the uncentred approaches, the
largest for CWC, with the joint approach again taking the middle ground.

Our motivating example manifests 56 clusters of size two and, according
to iccl = τ

τ+ε , a latent intracluster correlation of 0.68 for the mediator and
0.43 for the outcome (according to the joint approach). Additionally, the
upper-level correlation between the random intercepts of mediator and
outcome is estimated at -0.65 (with p = 0.25). An example of a couple-level
confounder that is negatively associated with the amount of autonomous
motivation and positively associated with the observed amount of help
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Indirect Effect Direct Effect Total Effect
Estimate (se) 95%-CI Estimate (se) 95%-CI Estimate (se) 95%-CI

UN-Cond -0.020 (0.016) (-0.058; 0.004) -0.370 (0.086) (-0.523; -0.202) -0.390 (0.086) (-0.544; -0.214)
UN-Marg -0.020 (0.016) (-0.056; 0.005) -0.374 (0.087) (-0.531; -0.202) -0.394 (0.087) (-0.547; -0.226)
CWC-Cond -0.042 (0.035) (-0.115; 0.007) -0.275 (0.112) (-0.481; -0.067) -0.317 (0.116) (-0.525; -0.077)
CWC-Marg -0.042 (0.035) (-0.120; 0.005) -0.281 (0.114) (-0.491; -0.062) -0.323 (0.118) (-0.527; -0.074)
Joint-Marg -0.037 (0.031) (-0.109; 0.012) -0.339 (0.093) (-0.514; -0.151) -0.376 (0.092) (-0.539; -0.187)

Table 5.3 The estimates of the indirect, direct, and total effect of goal conflict on
the observed amount of help, mediated by the patients’ perceived amount of autonomous
helping motivation. The estimates (and empirical standard errors, se) are provided for
the five different estimation procedures, alongside the percentile-based 95% confidence
intervals.

might be found in a worried/solicitous partner. Partners who are naturally
worrisome will often offer a considerable amount of help to regulate their
own distress and emotions, irregardless of the needs of the ICP (Vervoort
and Trost, 2017). As such, solicitous partners may help the ICP out of
an internal pressure (i.e., controlled motivation) to temper his or her own
guilt. If the patient picks up on this, the perceived amount of autonomous
helping behaviour may be low (i.e., the partner helps out of obligation),
while at the same time, the observed amount of offered help is high.

In summary, we are confronted with a small upper-level sample size
with only two observations within each cluster, medium to large latent
icc’s, and a high (nonsignificant) amount of unmeasured upper-level M-Y
confounding. In these settings, our simulation studies suggest that the
joint approach is most likely to provide unbiased estimates for both causal
mediation effects (as can be seen in figure 5.3). In the absence of unmea-
sured upper-level confounding of mediator and outcome, our preference
would slightly gravitate towards the estimates of the UN-approaches, but
in the end, we would still prefer the estimates of the joint approach as
they have proven much more reliable.

In section 3.2 we saw that assumption (i) can be relaxed to ‘no un-
measured lower-level confounders of mediator and outcome’ for some
estimation models, but not for others. The other assumptions, however,
still need to hold in order for our inferences to be valid. Unfortunately,
there is no way of checking the plausibility of assumptions (i)), (ii), and
(iv). Concerning assumption (iii), we cannot exclude the possibility of a
carry-over effect, as there was no notable wash-out period in this study.
Unfortunately, there is also no way of checking assumption (v), as random
slopes are unidentifiable in designs with a mere two measurements within
each cluster. These shortcomings should be kept in mind when interpreting
this lower-level mediation analysis.
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10 Discussion

In this paper, we provided an overview of several possible estimation tech-
niques that allow us to evaluate lower-level mediation where the outcome
is binary (with a specific focus on small cluster sizes). Additionally, we
presented an extensive simulation study in which we assessed the impact of
several data features on the convergence, relative bias, mean squared error,
and coverage of the estimates of the various methods. Overall, we found
that jointly modelling the mediator and the outcome provided the best
performance measures (combined with a marginal approach to simulating
the random effects), especially in the presence of unmeasured upper-level
confounding of mediator and outcome. A separate modelling approach
that centres the lower-level variables within-clusters and draws the random
effects in a conditional way, comes in as a close second performance-wise,
confirming the reports of Goetgeluk and Vansteelandt (2008); Brumback
et al. (2010), who stated that although CWC no longer yields proper
parameter estimates when the outcome is binary, the resulting bias is often
small. Unsurprisingly, not centering the lower-level predictors provided
very biased estimates in the presence of upper-level mediator-outcome
endogeneity (irrespective of the assumed random effects distribution).

With these conclusions in mind, we must acknowledge several limita-
tions to this manuscript. For one, we restricted our simulations to settings
where the intracluster correlations for the mediator and outcome are identi-
cal, because allowing them to vary independently of each other would have
incremented the duration of our simulation study and its computational
demands by sixfold. Of course, as witnessed in our example data, unequal
icc’s are often encountered in practice.

Two, there also exists a non-parametrical implementation of the algo-
rithm that we described in the fourth step of the estimation process. This
alternative assesses mediation based on bootstrapping mediator and out-
come values, rather than on simulated draws from the estimated parameter
distributions. However, this non-parametrical approach has not (yet) been
implemented into Imai et al. (2010a)’s mediation-package for multilevel
data structures. We also did not incorporate this procedure within our
study, as the bootstrapping process takes up an enormous amount of time
in multilevel samples. However, our (and Imai et al. (2010a)’s) sole reliance
on a parametrical approach might provide suboptimal estimates for the
causal mediation effects, especially when estimation procedures are used
that are known to produce biased estimates (e.g., the uncentred approaches
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when there is upper-level endogeneity of mediator and outcome).
Three, we only considered complete data in our simulation study, as

well as in our example data set, as missingness in either the mediator or
the outcome will cause Mplus to produce error messages when the method
of integration is specified as ‘Gaussian’ (i.e., as in Gaussian Adaptive
Quadrature). This stands in contrast to the two separate modelling ap-
proaches in R, where all available outcomes are considered even when there
is missingness.

With the current results and limitations in mind, future research
might consider an important potential addition to Imai et al. (2010a)’s
mediation-package. Unfortunately, to this day, we lack an easy-to-use
software implementation that allows us to estimate the causal mediation
effects in the presence of upper-level confounding of mediator and outcome.
To this end, it would well be worthwhile investigating whether a joint
approach can be implemented to achieve this, in linear as well as in binary
settings.
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D Appendix

D.1 Identification of the causal effects in general settings

In equation (5.2) we worked with unspecified, known inverse link functions,
gM and gY . In the following sections, we derive the parametrical expressions
for the causal effects when gM = gY = probit, and when gM = gY = logit.

D.1.1 Probit-regression models

Consider the following probit-models for both a binary mediator and
outcome (with i the cluster, and j the measurement within a cluster):

E[Mij |Xij , Ui] = Φ
(
δM + αXij + Ui

)
E[Yij |Xij ,Mij , Vi] = Φ

(
δY + ζ′Xij + βMij + φXijMij + h(Ui)

)
with Φ representing the standard normal cumulative distribution. Based on
this data generating mechanism, the “ij-th”-specific total natural indirect
effect can be identified, when the assumptions (i)-(v) from section 3.2 are
satisfied:

E[Y ij(1,Mij(1))− Yij(1,Mij(0))|Ui, t)])

=
∑
m

{E[Yij |Xij = 1,Mij = m,Ui]P (Mij = m|Xij = 1, Ui)

− E[Yij |Xij = 1,Mij = m,Ui]P (Mij = m|Xij = 0, Ui)}
= P (Yij = 1|Xij = 1,Mij = 0, Ui)(1− P (Mij = 1|Xij = 1, Ui))
− P (Yij = 1|Xij = 1,Mij = 0, Ui)(1− P (Mij = 1|Xij = 0, Ui))
+ P (Yij = 1|Xij = 1,Mij = 1, Ui)(P (Mij = 1|Xij = 1, Ui)
− P (Mij = 1|Xij = 0, Ui))

= P (Yij = 1|Xij = 1,Mij = 0, Ui)(P (Mij = 1|Xij = 0, Ui)
− P (Mij = 1|Xij = 1, Ui)) + P (Yij = 1|Xij = 1,Mij = 1, Ui)
(P (Mij = 1|Xij = 1, Ui)− P (Mij = 1|Xij = 0, Ui))

= (P (Mij = 1|Xij = 0, Ui)− P (Mij = 1|Xij = 1, Ui))
(P (Yij = 1|Xij = 1,Mij = 0, Ui)− P (Yij = 1|Xij = 1,Mij = 1, Ui))

=
(
Φ(δM + Ui)− Φ(δM + α+ Ui)

)(
Φ(δY + ζ′ + h(Ui))

− Φ(δY + ζ′ + β + φ+ h(Ui))
)
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Similarly, the “ij-th”-specific pure natural direct effect can be identified:
E[Y ij(1,Mij(0))− Yij(0,Mij(0))|Ui, t)]

=
∑
m

{E[Yij |Xij = 1,Mij = m,Ui]P (Mij = m|Xij = 0, Ui)

− E[Yij |Xij = 0,Mij = m,Ui]P (Mij = m|Xij = 0, Ui)}
= (P (Yij = 1|Xij = 1,Mij = 0, Ui)− P (Yij = 1|Xij = 0,Mij = 0, Ui))
P (Mij = 0|Xij = 0, Ui) + (P (Yij = 1|Xij = 1,Mij = 1, Ui)
− P (Yij = 1|Xij = 0,Mij = 1, Ui))P (Mij = 1|Xij = 0, Ui)

=
(
1− Φ(δM + Ui)

)(
Φ(δY + ζ′ + h(Ui))− Φ(δY + h(Ui))

)
+ Φ(δM + Ui)

(
Φ(δY + ζ′ + β + φ+ h(Ui))− Φ(δY + β + h(Ui))

)
Finally, the “ij-th”-specific total causal effect can be identified as well:

E[Y ij(1,Mij(1))− Yij(0,Mij(0))|Ui, t)]

=
∑
m

{E[Yij |Xij = 1,Mij = m,Ui]P (Mij = m|Xij = 1, Ui)

− E[Yij |Xij = 0,Mij = m,Ui]P (Mij = m|Xij = 0, Ui)}
= P (Yij = 1|Xij = 1,Mij = 0, Ui)P (Mij = 0|Xij = 1, Ui)
− P (Yij = 1|Xij = 0,Mij = 0, Ui)(P (Mij = 0|Xij = 0, Ui))
+ P (Yij = 1|Xij = 1,Mij = 1, Ui)(P (Mij = 1|Xij = 1, Ui))
− P (Yij = 1|Xij = 0,Mij = 1, Ui)(P (Mij = 1|Xij = 0, Ui))

= Φ(δY + ζ′ + h(Ui))
(
1− Φ(δM + α+ Ui)

)
− Φ(δY + h(Ui))

(
1− Φ(δM + Ui)

)
+ Φ(δY + ζ′ + β + φ+ h(Ui))Φ(δM + α+ Ui)− Φ(δY + β + h(Ui))Φ(δM + Ui)

D.1.2 Logit-regression models

Consider the following logit-models for both a binary mediator and out-
come:

E[Mij |Xij , Ui] = 1
1 + e−δM−αXij−Ui

E[Yij |Xij ,Mij , Ui] = 1
1 + e−δY −ζ

′Xij−βMij−φXijMij−h(Ui)

Based on this data generating mechanism, the “ij-th”-specific total
natural indirect effect can be identified, when the assumptions (i)-(v) from
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section 3.2 are satisfied:
E[Y ij(1,Mij(1))− Yij(1,Mij(0))|Ui, t)]

= (
1

1 + e−δM−Ui
−

1
1 + e−δM−α−Ui

)(
1

1 + e−δY −ζ′−h(Ui)

−
1

1 + e−δY −ζ′−β−φ−h(Ui)
)

Similarly, the “ij-th”-specific pure natural direct effect can be identified:
E[Y ij(1,Mij(0))− Yij(0,Mij(0))|Ui, t)]

=
e−δM−Ui

1 + e−δM−Ui
(

1
1 + e−δY −ζ′−h(Ui)

−
1

1 + e−δY −h(Ui)
)

+
1

1 + e−δM−Ui
(

1
1 + e−δY −ζ′−β−φ−h(Ui)

−
1

1 + e−δY −β−h(Ui)
)

Finally, the “ij-th”-specific total causal effect can be identified as well:
E[Y ij(1,Mij(1))− Yij(0,Mij(0))|Ui, t)]

=
1

1 + e−δY −ζ′−h(Ui)
e−δM−α−Ui

1 + e−δM−α−Ui
−

1
1 + e−δY −h(Ui)

e−δM−Ui

1 + e−δM−Ui

+
1

1 + e−δY −ζ′−β−φ−h(Ui)
1

1 + e−δM−α−Ui
−

1
1 + e−δY −β−h(Ui)

1
1 + e−δM−Ui

D.2 Identification of the causal effects in general settings
This appendix contains the R-code for the data generating mechanism and
the implementation of the different methods discussed in this paper. Note
that in these scripts, y represents the binary outcome, x the exposure, and
m the mediator.

D.2.1 Data generating mechanism for probit- regression

The following R-code allows the generation of data with clusters of size
two, a sample size ‘n’, a latent intracluster correlation for M and Y of
‘icc’, a correlation between the random intercepts of mediator and outcome
of rho’, and generated through the probit-link.

#Generate 1000 data sets for the current n, icc, and prev:
for (i in 1:1000){

print(i); set.seed(123456+i)
#Population parameters:
iM<-0; ia<-1; iY<--0.7; ic<-0.5; ib<-0.8
#Random intercept covariance matrix (with tau<-icc/(1-icc)):
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sig<-matrix(c(tau,sqrt(tau)*sqrt(tau)*rho,
sqrt(tau)*sqrt(tau)*rho,tau),byrow=T,nrow=2)

#Random intercepts for M and Y within each cluster:
ri<-mvrnorm(n,c(0,0),sig)

#Generate data for binary X, M and Y:
x0<-rbinom(n,1,0.5); x1<-1-x0
m0<-rbinom(n,1,pnorm(iM+ia*x0+ri[,1]))
m1<-rbinom(n,1,pnorm(iM+ia*x1+ri[,1]))
y0<-rbinom(n,1,pnorm(iY+ic*x0+ib*m0+ri[,2]))
y1<-rbinom(n,1,pnorm(iY+ic*x1+ib*m1+ri[,2]))

#Centring of X and M within-clusters:
xmean<-colMeans(rbind(x0,x1))
xx0<-x0-xmean; xx1<-x1-xmean
mmean<-colMeans(rbind(m0,m1))
mm0<-m0-mmean; mm1<-m1-mmean

#Convert the variables to long format:
x<-c(x0,x1); m<-c(m0,m1)
xx<-c(xx0,xx1); mm<-c(mm0,mm1)
y<-c(y0,y1)
#Cluster identifier:
ind<-rep(seq(1,n),2)
#Create dataset:
data<-as.data.frame(cbind(ind,x,m,xx,mm,y)) }

D.2.2 Estimation models for mediator and outcome

For the uncentred separate modelling approach, by use of the lme4-package
in R (Bates et al., 2015):

med.UN<-glmer(m~x+(1|ind),family=binomial(link="probit"),
data=data,nAGQ=15)

out.UN<-glmer(y~x+m+(1|ind),family=binomial(link="probit"),
data=data,nAGQ=15)

For the separate modelling approach centred within clusters, by use of the
lme4-package in R (Bates et al., 2015):

med.CWC<-glmer(m~xx+(1|ind),family=binomial(link="probit"),
data=data,nAGQ=15)

out.CWC<-glmer(y~xx+mm+(1|ind),family=binomial(link="probit"),
data=data,nAGQ=15)
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For the joint modelling approach in Mplus (Muthén and Muthén, 2010):

DATA:
file = mplus.raw; type = individual;

VARIABLE:
names = x0 x1 m0 m1 y0 y1; usevariables = x0 x1 m0 m1 y0 y1;
missing = .; categorical = m0 m1 y0 y1;

ANALYSIS:
type = general; estimator = ML; integration= GAUSS;
adaptive = on; link = probit;

MODEL:
i0 BY m0@1 m1@1; i1 BY y0@1 y1@1; i0 (Mvar); i1 (Yvar);
m0 ON x0 (a); m1 ON x1 (a);
y0 ON x0 (c); y1 ON x1 (c); y0 ON m0 (b); y1 ON m1 (b);
[m0$1] (iM); [m1$1] (iM); [y0$1] (iY); [y1$1] (iY);

OUTPUT:
sampstat cinterval tech3;

D.2.3 Generation of the random effects

For a marginal generation of the random effects, based on the uncentred
separate modelling approach and the probit-link:

#Extract the estimates and estimated covariance matrix:
b_est<-c(fixef(med.UN),out.UN)
b_vcov[c(1:2),c(1:2)]<-as.matrix(vcov(med.UN))
b_vcov[c(3:5),c(3:5)]<-as.matrix(vcov(out.UN))
#Extract the estimated random intercept variances:
ri_varM<-med.UN@theta**2, ri_varY<-out.UN@theta**2

#Simulate draws from the sampling distribution:
b_sim<-mvrnorm(1000,b_est,b_vcov)
#Simulated draws:
for (t in 1:1000){
set.seed(12345+t)
riMm<-rep(rnorm(n,mean=0,sd=ri_varM),each=2)
riYm<-rep(rnorm(n,mean=0,sd=ri_varY),each=2)
m_0m<-rbinom(2*n,1,pnorm(b_sim[t,1]+riMm))
m_1m<-rbinom(2*n,1,pnorm(b_sim[t,1]+riMm+b_sim[t,2]))
y00m<-pnorm(b_sim[t,3]+riYm+b_sim[t,5]*m_0m)
y11m<-pnorm(b_sim[t,3]+riYm+b_sim[t,4]+b_sim[t,5]*m_1m)
y10m<-pnorm(b_sim[t,3]+riYm+b_sim[t,4]+b_sim[t,5]*m_0m)
ie_m[t]<-mean(y11m-y10m)
de_m[t]<-mean(y10m-y00m)
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te_m[t]<-mean(y11m-y00m) }

#Marginal Causal effects:
ie[i,2]<-mean(ie_m); de[i,2]<-mean(de_m); te[i,2]<-mean(te_m)

For a conditional generation of the random effects, based on the un-
centred separate modelling approach and the probit-link:

#Extract the parameter estimates and estimated covariance matrix:
b_est<-c(fixef(med.UN),fixef(out.UN))
b_vcov[c(1:2),c(1:2)]<-as.matrix(vcov(med.UN))
b_vcov[c(3:5),c(3:5)]<-as.matrix(vcov(out.UN))
#Extract the estimated conditional means and random intercept vars:
ri_meanM<-ranef(med.UN)[[1]][,1]
ri_meanY<-ranef(out.UN)[[1]][,1]
ri_cond_varM<-cond.se(med.UN)[[1]][,1]
ri_cond_varY<-cond.se(out.UN)[[1]][,1]

#With the function to extract the conditional standard errors:
cond.se<-function(object){

se.bygroup<-ranef(object,condVar=T)
vars<-attr(se.bygroup[[1]],"postVar")
se.by.clust[[1]]<-array(NA,c(n,1))
for (j in 1:n){

se.by.clust[[1]][j,]<-sqrt(diag(as.matrix(vars[,,j]))) }
return(se.by.clust)}

#Simulate draws from the sampling distribution:
b_sim<-mvrnorm(1000,b_est,b_vcov)
#Simulated draws:
for (t in 1:1000){
set.seed(12345+t)
riMc<-rep(rnorm(n,mean=ri_meanM,sd=ri_cond_varM),each=2)
riYc<-rep(rnorm(n,mean=ri_meanY,sd=ri_cond_varY),each=2)
m_0c<-rbinom(2*n,1,pnorm(b_sim[t,1]+riMc))
m_1c<-rbinom(2*n,1,pnorm(b_sim[t,1]+riMc+b_sim[t,2]))
y00c<-pnorm(b_sim[t,3]+riYc+b_sim[t,5]*m_0c)
y11c<-pnorm(b_sim[t,3]+riYc+b_sim[t,4]+b_sim[t,5]*m_1c)
y10c<-pnorm(b_sim[t,3]+riYc+b_sim[t,4]+b_sim[t,5]*m_0c)
ie_c[t]<-mean(y11c-y10c)
de_c[t]<-mean(y10c-y00c)
te_c[t]<-mean(y11c-y00c) }
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#Conditional causal effects:
ie[i,1]<-mean(ie_c); de[i,1]<-mean(de_c); te[i,1]<-mean(te_c)
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1 General Overview

With this thesis, we aim to provide applied researchers with a tangible
set of guidelines on how to assess multilevel mediation in within-subject
designs, when confronted with one of several issues. These items include
(1) dealing with unmeasured upper-level confounding of the mediator-
outcome relation, (2) appropriate inclusion and assessment of lower-level
mediation in the presence of interaction terms, (3) assessing mediation
in multilevel settings with binary measures, and (4) exploring which
estimation techniques provide the best overall performance (i.e., in terms
of bias and efficiency) under a broad variety of settings (with a special
focus on small cluster sizes).

In chapter 2, we discussed multilevel mediation in linear settings within
crossover designs, where a mere two observations within each cluster
are observed. More specifically, we tried to address the first and fourth
above-raised issues, by deriving expressions for the direct and indirect
effect based on the counterfactual framework. In doing so, we were able
to demonstrate that, in the presence of upper-level confounding of the
mediator-outcome relationship, the intervening effect can be identified in
some statistical models, but not in others. When multilevel mediation was
considered within linear settings (i.e., with a continuous mediator and
outcome) we revised three possible ways in which researchers can model
the mediator and the outcome. A first possibility consisted of separately
modelling the mediator and the outcome through the use of multilevel
models. Unfortunately, as soon as upper-level endogeneity of the mediator
and the outcome is present, this option may result in biased estimates
for the parameter coefficients in the model for the outcome. A second
option was found in within-cluster centering the lower-level predictors in
the outcome equation, or equivalently, through the difference-approach.
Such within-cluster centering can be achieved by separating both the
exposure and the mediator into a within- and a between-cluster part. Since
these within-cluster parts no longer contain any upper-level variation,
they will be uncorrelated with all upper-level variables: measured and
unmeasured. As such, the within-cluster regression coefficients of exposure
and mediator in the model for the outcome will be estimated without bias,
even in the presence of upper-level endogeneity of mediator and outcome.
A third possibility was found in an approach that models the mediator and
the outcome jointly. Doing so, allowed us to estimate a covariance term
between the random intercepts of both mediator and outcome, which in
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turn indirectly captured any unmeasured cluster-level common causes of
both variables. In chapter 2, we saw that the first approach was unequipped
to deal with upper-level endogeneity of mediator and outcome. In contrast,
the latter two approaches were able to unbiasedly estimate the causal
mediation effects in the presence of such endogeneity, although the joint
approach required a slightly more stringent set of assumptions. For the
latter method, we find bias in its parameter estimates when either (1)
the mediator values are non-normally distributed, (2) when the random
intercept of the outcome is non-normal, or when (3) the random intercept
for Y interacts with the mediator in the model for the outcome. Because
of the stronger assumptions required for the joint modelling approach, we
recommend the use of within-cluster centring of lower-level predictors to
deal with upper-level endogeneity of the mediator and outcome in linear
settings.

In chapter 3, we continued exploring the first and fourth above-raised
issues within linear within-subject mediation settings, but now additionally
focussed on the inclusion of lower-level interaction terms (i.e., the second
issue mentioned above). In the previous paragraph, we concluded that
separating the lower-level predictors into a within- and a between-cluster
part constitutes the least restrictive and most appropriate way of modelling
(linear) lower-level mediation in the presence of upper-level endogeneity
of mediator and outcome. However, including an interaction between the
exposure and mediator within the model for the outcome, introduces some
questions concerning the correct way of centering this lower-level product
term. A first option considers a model where both the exposure and
mediator are first centred within-clusters, after which the interaction term
is defined by multiplying these two centred variables (C1P2, first centre
and take the product term next). A second possibility first multiplies both
the exposure and the mediator, and only afterwards centres this product
term within-clusters (P1C2, take product first and centre second). As such,
chapter 3 focussed on the fourth issue by comparing the performance of
estimation techniques that differ in their centring of lower-level interactions.
We observed that unmeasured upper-level endogeneity of the mediator-
outcome relation may lead to biased parameter estimates for the interaction,
when the lower-level variables are centred according to C1P2 (unless all
cross-level interaction are included). In addition, P1C2 also provided more
precise estimates of the interaction effect, compared to C1P2. Consequently,
when dealing with a within-subject moderated mediation model in linear
settings, we advocate to first multiply the values of lower-level predictors,
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and to only then apply within-cluster centering.
The third issue we mentioned at the beginning of this section, considers

the assessment of lower-level mediation when switching from continuous to
binary settings. To address this, however, we first needed to figure out which
estimation techniques (and implementation procedures) provide unbiased
and efficient estimates when modelling dichotomous outcomes in small
clusters. As such, in order to address issue number four in binary settings,
chapter 4 temporarily digressed from multilevel mediation in preparation
for chapter 5. In the introduction, we saw that binary responses are
typically modelled through the aid of GLMMs, but unfortunately, the
marginal likelihood functions of these models prove analytically intractable.
To tackle this, researchers can either resort to a likelihood-based method
by approximating the integrand (e.g. the Laplace approximation, Penalised
Quasi-Likelihood), to approximate the the integral itself (e.g., Adaptive
Gaussian Quadrature or AGQ), or through a Bayesian approach (e.g.,
Markov Chain monte Carlo methods, hybrid models based on integrated
nested Laplace approximations). Alternatively, it is also possible to turn
form GLMMs in general and resort to diagonally weighted least squares
estimation (DWLS) within structural equation models. To evaluate the
performance of these different techniques, we provided an overview of
several R-based packages that are able to fit random intercept probit-
models and subsequently presented an extensive simulation study. We
found that AGQ and DWLS-estimation performed best when considering
cluster sizes with only two measurements, with AGQ clearly taking the
upper hand as the cluster size increases. As AGQ best withstood our
performance assessment, it is consequently chosen to lay the foundations
of chapter 5 .

In chapter 5 we redirected our attention to multilevel mediation, with
our continued focus on binary, rather than continuous outcome measures.
More specifically, in chapter 5, we aimed to address issue number one,
three, and four by estimating the causal mediation effects in four consecu-
tive steps: (1) providing non-parametrical expressions for the direct and
indirect effect in binary settings (alongside the assumptions required for
their identification), (2) identifying these effects parametrically, based on
appropriate statistical models, (3) considering estimation models for the
mediator and the outcome, and (4) estimating the causal mediation effects
through an imputation algorithm that samples counterfactual outcomes.
From the previous paragraph, we concluded that GLMMs with AGQ
provided the best overal performance when modelling binary outcomes in
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small clusters. Hence, we decided on comparing several estimation mod-
els for the mediator and outcome within the third step, based on this
approximation. Similar to linear mediation settings, we assessed three
different techniques: a separate modelling approach that does not centre
the lower-level predictors, a separate modelling approach than centres
these predictors within-clusters, and a method that models the mediator
and outcome jointly. During the fourth step in our estimation process we
additionally evaluated two different ways of generating random intercepts:
a marginal versus a conditional approach. Employing simulation studies
allowed us to evaluate the performance of the different methods during
steps three and four, under a broad variety of settings. These results
suggest that jointly modelling the mediator and binary outcome, combined
with a marginal generation of the random effects, generally provided the
most reliable results, even in the presence of upper-level endogeneity of
mediator and outcome.

Since it is impossible to completely rule out the presence of unmeasured
upper-level confounders of the mediator and outcome in within-subject
mediation settings, we advise to always act as if such confounding is indeed
present. We also caution applied scientists towards careful consideration
of estimation techniques and implementations when cluster sizes are small,
as such settings have proven straining on the available methodologies. In
summary, we conclude this thesis with the following suggestions:

• We strongly advise against assessing mediation through the use of
a separate modelling approach that does not centre the lower-level
predictors within-clusters. This approach is, in both linear or non-
linear within-subject mediation settings, unequipped to deal with
upper-level endogeneity of mediator and outcome.

• In linear settings, we recommend researchers to centre all lower-level
predictors within-clusters, as to correctly assess mediation in the
presence of upper-level endogeneity of mediator and outcome.

• When researchers wish to include lower-level interactions into their
linear within-subject mediation model, we advise to first multiply
the corresponding variables and to only then centre this product
term within-clusters.

• In binary settings, we encourage the use of Generalised Linear Mixed
models, where the integral of the likelihood function is approximated
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through Adaptive Gaussian Quadrature. This suggestion becomes
increasingly substantial as the lower-level cluster size decreases.

• Moreover, when assessing binary within-subject mediation, we advise
to jointly model the mediator and outcome, as to correctly assess the
intervening effect in the presence of upper-level endogeneity of medi-
ator and outcome. We do not recommend the use of within-cluster
centring, as this approach will no longer yield unbiased parameter
estimates when the outcome is binary.

2 Limitations and Future Research
Throughout this thesis, we looked at multilevel mediation from a coun-
terfactual point of view, defining the causal mediation effects in terms
of so-called ‘potential outcomes’. We only considered natural direct and
indirect effects, glossing over the concept of a controlled direct effect
(Robins and Greenland, 1992; Pearl, 2001). For a dichotomous exposure in
single-level settings, this controlled direct effect of exposure on outcome
(controlling for the mediator), can be defined by: E[Y (1,m) − Y (0,m)].
It expresses the effect of exposure on outcome, if the mediator would be
fixed at level m in the entire population. This controlled direct effect in
fact requires a smaller set of assumptions for its identification, compared
to the natural effects we considered within our chapters:

(i) A consistency assumption: for measurement moments within subjects with
observed exposure level Xij = x and observed mediator Mij = m, the
observed outcome Yij equals the potential outcome Y (x,m).

(ii) There are no unmeasured upper- or lower-level confounders of the associa-
tion between exposure and outcome.

(iii) There are no unmeasured upper- or lower-level confounders of the associa-
tion between mediator and outcome.

Unfortunately, an indirect effect cannot be defined in a similar controlled
manner, as it is impossible to keep a set of variables fixed in a way that
would exclude the direct effect (Pearl, 2001). On top of this, it might often
not be realistic to force the mediator to a specific value for all measurements
within all individuals. Because of these limitations, we instead focussed on
natural direct and indirect effects in this thesis. For example, the (pure)
natural direct effect is defined as E[Yij(1,Mij(0))− Yij(0,Mij(0)], where
Yij(x,Mij(x∗)) represents the value for the outcome Yij , when Xij is set
to x and Mij is fixed at the value it would obtain when Xij = x∗ (see
chapter 2). However, the identification of these natural effects requires
several additional assumptions:
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(iv) A composition assumption: for measurement moments within subjects
with observed exposure level Xij = x, the observed outcome Yij equals
the potential outcome Y (x,Mij(x)).

(v) There are no unmeasured upper or lower-level confounders of the associa-
tion between exposure and mediator.

(vi) There are no confounders of the association between mediator and outcome,
caused by exposure (i.e., no intermediate confounding).

As should be quite clear by now, the upper-level part of assumption
(iii) constituted the primary focus of this thesis. With respect to this
assumption, our most important conclusion reported that bias induced
by unmeasured upper-level confounders of mediator and outcome may
be corrected for by some modelling strategies, but not by others. The
lower-level chunk of this assumption was partly addressed within chapter
2, where we proposed a sensitivity analysis to asses the impact of possible
lower-level confounders of mediator and outcome on the estimated causal
mediation effects in linear settings. Equivalently, future work might attempt
to evaluate the effect of such lower-level confounders within binary within-
subject mediation settings, as introduced in chapter 5. We additionally
postulated that the effect of upper-level confounders of mediator and
outcome exert an additive effect on both variables. As such, studying the
impact of nonlinear effects of unmeasured confounders (such as interactions
or quadratic terms) may also prove rewarding as a future research topic.
On top of this, we limited our research to random intercept models without
any random slopes. The main reason for this was that small clusters sizes
often limit the number of random effects that can be identified within
multilevel models. Hence, it would be extremely interesting to extend our
work towards more general settings that include random slopes for the
lower-level predictors (and hence also consider a lower-level sample size
that is appropriate ‘large’).

Similar to our focus on assumption (iii), the evaluation of the plausibility
as well as the possible violation of the remaining assumptions may entail
an important part of possible future studies. As we limited our research to
within-subject designs with a randomised exposure, we hence automatically
placated assumptions (ii) and (v). With this in mind, our work could be
regarded as a first preparatory step towards more general longitudinal
settings within observations studies. In observational research, we may
not only be confronted with unmeasured confounding of mediator and
outcome, but also with unmeasured confounders concerning the exposure.
As some methods have proven able to appropriately deal with upper-
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level endogeneity of mediator and outcome, this line of thinking may be
extended towards unmeasured upper-level confounders of the exposure and
mediator, or of the exposure and outcome. Within longitudinal studies,
researchers may often be confronted with the risk of causal transience
across time points. The most easy way to counter such lingering effects
over time, is to incorporate a sufficiently long washout period between
individual measurements within the study design itself. When such a
carry-over effect cannot be excluded by design, however, the mediator or
outcome values from the first measurement occasion may influence the
mediator and/or outcome values of consecutive time points. When this
is the case, we are confronted with exposure-dependent confounders (i.e.,
the mediator or outcome measure at the first measurement occasion) of
the mediator-outcome relation, hence directly violating assumption (vi).
When this is the case, we will no longer be able to identify the natural
direct and indirect effects. Note that the controlled direct effect can still
be identified in these settings, through the use of e.g. G-estimation or
structural equation models. It may therefore prove very interesting to
investigate the performance of such methodologies within (binary) lower-
level mediation settings, when there is additional unmeasured upper-level
confounding of mediator and outcome.

Finally, setting the above-mentioned assumptions aside, we think it
might also prove worthwhile to invest in an application that enables
researchers to evaluate and estimate causal mediation effects within lower-
level settings. This software implementation would have to incorporate
approaches that are able to deal with possible unmeasured upper-level
confounding of mediator and outcome, in linear as well as in binary settings.
Additionally, it might also facilitate unbiased and precise estimation of
moderated mediation effects, irrespective of the measurement levels of the
exposure, the mediator, or the outcome. Ideally, this program would also
include appropriate sensitivity analyses, which ought to enable researchers
to evaluate the impact of possible lower-level confounders of mediator and
outcome on their inferences concerning the causal mediation effects.
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1 Introduction

When a clinical experiment establishes an effect of an intervention X on
an outcome Y , researchers often wonder which underlying processes make
up this effect. More specifically, we can ask ourselves whether this effect
can be ascribed to an underlying process than runs indirectly from X to Y ,
through an intermediary measure M . This constitutes the kind of question
mediation analyses attempt to answer. If mediation is indeed present,
the total effect of intervention on outcome can be partitioned into an
indirect effect that runs through the mediator M , and a possible lingering
direct effect of X on Y . As science is generally enormously interested in
the existence of and search for such explanatory processes, researchers
have studied this phenomenon quite extensively during the last couple of
decades. In the eighties, Baron and Kenny (1986) came up with a relatively
straightforward approach to assess mediation, in a manuscript that makes
up one of the most cited social science papers of all time. But even though
mediation analysis has come a long way since their groundbreaking work
(Pearl, 2001; Imai et al., 2010; Pearl, 2012), a lot of questions still remain.

One such stingy subject entails the extension of mediation to multilevel
data structures, mainly because single-level techniques assume independent
observations; an assumption which is clearly violated when we deal with
clustered or multilevel data. Most often, hierarchical data consist of two
levels (often referred to as level-1 and level-2), where level-1 units or lower-
level units are nested within level-2 or upper-level units. Examples of such
data structures entail students grouped within classes or repeated measure-
ments nested within individuals. When we extend single-level mediation
to nested data structures, we are able to discern three different models:
2-2-1, 2-1-1, and 1-1-1 mediation. The first type of multilevel mediation
occurs when the effect of an upper-level exposure on a lower-level outcome
is explained by an upper-level mediator. The second type of mediation, on
the other hand, exhibits an exposure at the upper-level, while both the
mediator and the outcome are defined at the lower-level. The last type
of multilevel mediation occurs when all three variables, the exposure, the
mediator, and the outcome are defined at the lower-level. The latter type
is alternatively termed within-subject mediation, when the upper-level
constitutes the individual. This model brings along several additional
challenges, as longitudinal measurements are not only influenced by other
time-dependent measures, but also by properties that remain constant
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over time.

Because of the additional complexity provided by 1-1-1 or within-subject
mediation models, this type of multilevel mediation will be the major focus
of this thesis. We want to provide applied researchers with a concrete set
of guidelines on how to assess within-subject mediation, when confronted
with one of several issues. These issues include (1) dealing with unmeasured
upper-level confounding of the mediator-outcome relation, (2) appropriate
inclusion and assessment of multilevel mediation in the presence of lower-
level interactions, (3) assessing mediation in multilevel settings with binary
measures, and (4) exploring which estimation techniques provide the best
overall performance (i.e., in terms of bias and efficiency) under a broad
variety of settings (with a special focus on small sample sizes).

2 Chapter 2
In chapter 2 we take a closer look at one specific subcategory of within-
subject mediation, namely mediation within crossover designs in linear
settings. In this type of studies, each participant is observed exactly twice:
once under exposure A and once under exposure B. Since two subsequent
observations within the same individual are usually correlated with each
other, this design exhibits a multilevel structure where the subject is
considered the upper-level and the (repeated) measurements within an
individual constitute the lower-level. On top of this, crossover studies
administer both treatments in a randomised order, implying that every
participant is assigned to one of two possible intervention series: sequence
AB or sequence BA. Consequently, this type of designs are often referred
to as AB/BA crossover studies.

Unfortunately, the currently available methodologies aimed at assessing
mediation in AB/BA studies are limited to the approach suggested by
Judd et al. (2001). And even though this method offers a simple and
elegant way of testing for within-subject mediation, researchers have come
up with a few points of criticism. For one, this method does not provide a
definite estimate for the indirect effect; it merely answers the question of
whether or not mediation has occurred. Moreover, this question is answered
through an adaptation of Baron and Kenny (1986)’s causal steps approach,
which is not without criticism itself. Apparently, this approach has been
attributed a low power in detecting the indirect effect (Hayes, 2009), while
the necessity of some of its constituent steps have been questioned (Collins
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et al., 1998; MacKinnon et al., 2000; Preacher et al., 2007; Zhao et al.,
2010). Other shortcomings of the method suggested by Judd et al. (2001),
entail that it but allows for one type of moderation (namely, an interaction
between the intervention X and the mediator M) and that possible period-
and carry-over effects cannot be taken into account (Tucker-Drob, 2011).
Finally, as is the case for Baron and Kenny (1986)’s causal steps, underly-
ing assumptions concerning measured and unmeasured confounders are
not clearly explicated.

To counter the existing limitations in current literature, chapter 2 aimed
to investigate mediation analysis in crossover studies from a counterfactual
point of view. This enabled us to formulate non-parametrical expressions
for the direct and indirect effect in 1-1-1 designs, based on so-called
‘potential outcomes’. These formulas in turn allowed us to shed some light
on the assumptions needed to identify the causal mediation effects. When
we subsequently focussed on a data generating mechanism that satisfied
these assumptions, we were able to draw up parametric expressions for
the direct and indirect effect, based on Pearl (2001)’s mediation formula.
In this way, different data generating mechanisms (ranging from simple
to complex settings with different kinds of interactions) enabled us to
contrast the performance of different statistical models during a simulation
study. This comparison included a ‘naive’ Linear Mixed Model (LMM)
without centring, an LMM with centring within-subjects, and an LMM
approach that models the mediator and the outcome jointly. Apart from
these three approaches, we also implemented a technique that is based on
regressing the difference scores of the outcome on the difference scores of
the mediator (i.e., an adaptation of Judd et al. (2001)’s method), while at
the same time allowing for period effects and different types of moderation.

Our simulation studies revealed that the ‘naive’ approach cannot ad-
equately handle unmeasured upper-level confounding of the mediator-
outcome relationship. Since the absence of such confounders can never
be guaranteed, we strongly advise against the use of this method. The
other statistical models were able to unbiasedly estimate both the direct
and indirect effect, even in the presence of unmeasured time-independent
confounders of mediator and outcome. On top of this, we were able to
establish that the joint procedure requires a slightly more stringent set
of assumptions, compared to the centring- and difference-score methods
(both of which usually yield identical estimators). Finally, we illustrated
these conclusions with a neurostimulation experiment, after which we
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proposed a sensitivity analysis that attempted to assess the impact of
possible lower-level confounders of M and Y , on the direct and indirect
effect.

3 Chapter 3
In chapter 3, we continue focussing on the different centring techniques
within LMMs. Basically, multilevel data can be centred according to one
of three possible techniques: either no centring is employed, data are
grand-mean centred, or centring is applied within clusters. Within current
multilevel literature, there exists a general consensus that centring within
clusters is best suited when researchers’ main interests lie with the effects
of lower-level predictors. This recommendation is in accordance with the
results from the previous chapter, where we saw that an uncentred (or
grand-mean centred) approach provided biased estimates in the presence
of unmeasured upper-level confounding of M and Y , in contrast to an
approach where measures were centred within-subjects.

Unfortunately, discussions within multilevel literature on the role of
centering are mostly limited to the assessment of main effects in multilevel
models (MLM) and ignore the centering of interactions. An issue of par-
ticular importance entails the centering of interactions in a 1 × (1 → 1)
design, where the first ‘1’ corresponds to the level at which the moderator
is measured, the second ‘1’ represents the level of the exposure, while the
last ‘1’ defines the level of the outcome (Preacher et al., 2016; Ryu, 2015);
we will refer to such moderated effects as ‘lower-level interactions’. When
cluster-mean centering these interaction terms, the question arises whether
the exposure and moderator should be centred first and multiplied next
(labeled as ‘C1P2’, centre-first and product-second), or whether it should
be the other way around (labeled hereafter as ‘P1C2’). This questions
entails an important concern as, in contrast to an interaction between an
upper- and a lower-level variable or between two upper-level variables,
C1P2 and P1C2 produce diverging results when cluster-mean centering a
lower-level product term.

Consequently, chapter 3 investigates whether these approaches can
unbiasedly estimate a moderated within-subject effect of exposure on
outcome. To better understand the performance of both techniques, we
explored why and when those centering approaches perform differently by
means of a simulation study. To this end, we looked at different settings
where we investigated the relative bias of the estimators and standard
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errors, as well as their coverage and power. We were able to determine that
the estimators remained unbiased, as long as the predictor and moderator
remained independent of each other. However, as soon as the moderator
is affected by the exposure (i.e., as soon as it becomes a mediator), we
detected bias in the C1P2 estimators of the interaction effect. An analytical
determination of this bias demonstrated its dependence on the distribution
of the exposure and the size of the effect of exposure on mediator: when X
is binary, the bias inflates as the effect of exposure on moderator increases.
On top of this, we were able to observe smaller standard errors for P1C2,
compared to C1P2. Taking both conclusions into account, we advise to
always multiply any level-1 predictors first and only afterwards centre
their product term within clusters, because: (1) P1C2 results in more
precise estimates of the interaction effect, and (2) P1C2 is not affected
by misspecification or omission of upper-level effects, in contrast to C1P2
(unless all cross-level interactions are included).

To demonstrate these centring techniques, we illustrated our results
on a longitudinal diary study on sexual behaviour in Flanders. More
specifically, we focussed on male participants and investigated the effect
of intimacy on next day positive relationship feelings, and to what extent
this effect was moderated by masturbation.

4 Chapter 4
As chapters 2 and 3 solely focussed on within-subject mediation in linear
settings, the next chapters aim to investigate whether 1-1-1 mediation is
easily extendable to binary settings. However, before we are able to answer
this question, we must attempt to figure out which estimation methods
are able to unbiasedly and efficiently estimate a simple (unmediated) effect
of an exposure on a binary outcome. This smoothly transitions us to 4,
where Generalised Linear Mixed Models (GLMMs) take the center stage,
rather than the LMMs from the previous chapters.

Although GLMMs are widely used to model clustered categorical out-
comes, their statistical inference is hampered as integrating out the random
effects from the likelihood function is, except for a few cases, analytically
intractable. To tackle this, several techniques have been proposed, which
can be roughly divided into two main classes: likelihood-based methods
and Bayesian approaches. One way to tackle the intractability of the
GLMM likelihood function, is to either approximate the integrand, as
does the Laplace approximation (Tierney and Kadane, 1986) or Penalised
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Quasi-Likelihood (PQL, Breslow and Clayton (1993); Schall (1991); Sti-
ratelli et al. (1984)), or to approximate the integral itself by a finite sum,
as in Adaptive Gaussian Quadrature (AGQ, Pinheiro and Bates (1995)).
Bayesian methods, on the other hand, make use of Markov Chain Monte
Carlo (MCMC) implementations, where the likelihood is simulated rather
than calculated analytically, as to obtain the posterior distribution of
the parameters of interest. As MCMC methods are known to be compu-
tationally intensive, hybrid models based on Integrated Nested Laplace
Approximations (INLA) of the posterior marginals were proposed (Rue
et al., 2009) .

As these approximations rarely yield satisfactory results when analysing
binary outcomes within small clusters (Breslow and Clayton, 1993; McMa-
hon et al., 2003), we proposed estimation within the Structural Equation
Modelling (SEM) framework as an alternative. Although at first glance
SEM and GLMM may seem like two different edifices, recent literature
proves that SEM is completely equivalent to its GLMM counterpart in
the absence of latent variables, and this under a broad set of conditions
(Rovine and Molenaar, 2000; Curran, 2003; Bauer, 2003). Within the SEM-
framework, there are two common estimation approaches for modelling
binary outcomes: maximum likelihood (ML) estimation and (diagonally)
weighted least squares (DWLS) (Skrondal and Rabe-Hesketh, 2004). As
ML-estimation is not widely used within traditional SEM literature, but
also proves equivalent to ML-estimation within GLMMs, this chapter puts
an emphasis on DWLS.

Apparently, we are confronted with a myriad of options to estimate bi-
nary clustered outcomes: the Laplace approximation, AGQ, PQL, MCMC,
and INLA within the GLMM framework, and robust DWLS estimation
within SEM. But which method yields the best and most efficient estima-
tors? To answer this question, we conducted an extensive simulation study
in chapter 4, where we assessed the performance of six different R-packages
for random-intercept probit regression (R version 3.2.3, R Core Team
(2013)). To compare these methods as thoroughly as possible, we decided
on varying a range of settings: we considered a cluster size of 2, 3, and 5,
a sample size ranging from 25 to 300, a rare versus an average outcome
prevalence, small, medium, and large latent intracluster correlations, as
well as different types of predictors (continuous versus binary, and varying
within- versus between subjects). Over these 3 × 4 × 3 × 2 × 4 possible
settings, we assessed the convergence, relative bias, mean squared error,
and coverage of the six different estimation methods. To ascertain if the
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conclusions hold, irrespective of software implementations, we reran some
prominent settings by means of other programs, such as SAS R© (version
9.4 (SAS Institute Inc, 2015)), MPLUS R© (version 7 (Muthén and Muthén,
2010)), and JAGS (version 4.1.0. (Plummer, 2003)).

For clusters of size two, we were able to conclude that SEM usually
performs best in terms of bias for the fixed and random effect estimators,
while AGQ prevails in terms of precision (mainly because of SEM’s robust
standard errors). As the cluster size increases, however, AGQ becomes the
best choice for both bias and precision. These results proved independent of
the software used, with one notable exception: the MCMC implementation
in R appeared to be suboptimal, compared to JAGS software.

Finally, these conclusions were highlighted by means of a dataset on
eating habits of toddlers in Flemish nursery schools. In this study, we
considered whether or not encouragement towards the eating of chicory
(the intervention X) affected the children’s disliking of the vegetable (the
binary outcome Y ).

5 Chapter 5
Although recent literature has devoted a lot of time and attention to
expanding mediation to multilevel settings, such extensions were often
limited to continuous outcome measures. Hence, in chapter 5, we attempt
to address this issue by expanding 1-1-1 mediation to settings with a
binary outcome. To this end, we continue and expand the preparatory
work from chapter 4, where we demonstrated that GLMMs with AGQ
provide the best estimators, when assessing the effect of an exposure on a
binary outcome within small clusters.

Once again, we intend to focus on the consequences of upper-level
endogeneity of M and Y , as such confounding may generate bias in the
estimates of the regression coefficients, as well as those of the direct and
indirect effect. As shown in chapters 2 and 3, in linear settings, bias due
to unmeasured additive upper-level confounding of mediator and outcome
is often remedied by separating lower-level predictors into a within- and a
between-cluster component. However, as this solution is no longer valid
when considering binary outcome measures (Goetgeluk and Vansteelandt,
2008; Brumback et al., 2010), we need to search for a different solution
when confronted with upper-level endogeneity of a mediator and binary
outcome.

To assess the severity of this transgression, chapter 5 aims to tackle
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lower-level mediation with a binary outcome from a counterfactual point
of view, with a special focus on small cluster sizes. We proposed doing
this through the evaluation of four consecutive steps. A first step offers
non-parametric definitions of the causal mediation effects, as well as the
assumptions needed for their identification. Within this step, we focussed
on expressions defined on the linear scale, as to provide a counterfactual
definition based on differences. A second step identifies the direct and
indirect effect based on parametric models for the mediator and outcome.
For these models, we considered two link functions that combine the binary
outcome and linear predictor term: the probit and the logit link. A third
step estimates the regression coefficients of the models for mediator and
outcome, by use of three different estimation models: (1) an uncentred
method that estimates the mediator and outcome separately, (2) a separate
modelling technique that centres the predictors within subjects, and (3) a
method that jointly models the mediator and outcome. Finally, a fourth
step estimates the causal mediation effects themselves, by predicting poten-
tial outcomes forM and Y . This was done through a parametric algorithm,
in which the posterior distributions of both variables are approximated
by their sampling distribution. This predicting of random effects can be
achieved in one of two ways: a marginal versus a conditional approach.

In summary, chapter 5 aimed to check which multilevel estimation
models are capable of effectively eliminating unmeasured upper-level con-
founding of mediator and outcome, by the use of the four above-mentioned
steps. In doing so, we focussed on a binary randomised exposure and a
binary outcome within smal clusters. To verify this research question, we
subsequently presented an extensive simulation study in which we com-
pared three different estimation models (an uncentred, a centred, and a
joint modelling approach), two link functions for the outcome (the logit and
the probit link), and two ways of generating the random effects (marginally
versus conditionally). Ensuring a relevant comparison of these different
techniques, we varied a number of factors within our simulated datasets:
the cluster size and sample size, the intracluster correlation, as well as the
presence or absence of unmeasured upper-level confounding of mediator
and outcome.

Overall, we found that jointly modelling the mediator and the out-
come provided the best performance measures (combined with a marginal
approach to simulating the random effects), especially in the presence of
unmeasured upper-level confounding of mediator and outcome. A separate
modelling approach that centres the lower-level variables within-clusters
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and draws the random effects in a conditional way, comes in as a close
second performance-wise. Unsurprisingly, not centering the lower-level
predictors provided very biased estimates in the presence of upper-level
mediator-outcome endogeneity (irrespective of the assumed random effects
distribution).

To illustrate these results, we applied the different methods to a
crossover study that assessed the impact of an induced goal conflict
situation on the observed helping behaviour in partners of individuals
with chronic pain. Additionally, we wanted to assess whether or not this
causal effect was mediated by the partner’s amount of autonomous helping
behaviour, as perceived by the patients.

6 Discussion
With this thesis, we aim to provide applied researchers with a concrete set
of guidelines on how to assess within-subject mediation, when confronted
with: (1) unmeasured upper-level confounding of the mediator-outcome
relation, (2) lower-level interactions, (3) binary outcome measures, and (4)
challenging or demanding settings (e.g., small cluster sizes). As researchers
can never rule out the presence of unmeasured upper-level confounders of
the mediator and outcome in within-subject mediation settings, we advise
to always act as if such confounding is indeed present. We also caution
applied scientists towards careful consideration of estimation techniques
and implementations when cluster sizes are small, as such settings have
proven straining on the available methodologies.

In summary, we conclude this thesis with the following suggestions. One,
we strongly advise against assessing mediation through the use of a separate
modelling approach that does not centre the lower-level predictors within-
clusters. This approach is, in both linear and non-linear within-subject
mediation settings, unequipped to deal with the presence of possible upper-
level endogeneity of mediator and outcome. Two, in linear settings, we
recommend researchers to centre all lower-level predictors within-clusters,
as to correctly assess mediation in the presence of unmeasured upper-
level confounding of mediator and outcome. Three, when researchers
wish to include lower-level interactions into their linear within-subject
mediation model, we advise to first multiply the corresponding variables
and only then centre this product term within-clusters. Four, in binary
settings, we encourage the use of Generalised Linear Mixed models where
the integral of the likelihood function is approximated through Adaptive
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Gaussian Quadrature. This suggestion becomes increasingly substantial as
the lower-level cluster size decreases. And finally, when assessing binary
within-subject mediation, we advise to jointly model the mediator and
binary outcome, as to correctly assess the intervening effect in the presence
of upper-level endogeneity of mediator and outcome. We do not recommend
the use of within-cluster centring in this setting, as this approach will no
longer yield unbiased parameter estimates when the outcome is binary.

Concerning the current limitations of this thesis and possible directions
for future research, we referred to the various assumptions that were
postulated during the different chapters. Investigating the impact of the
violations of each of these in turn, would prove a valuable addition to
our work. Moreover, we strongly promote the construction of a software
implementation which would enable applied researchers to unbiasedly
assess within-subject (moderated) mediation in linear or binary settings,
in the presence of upper-level endogeneity of mediator and outcome.
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1 Inleiding

Wanneer een klinisch experiment een effect vertoont van een interventie X
op een uitkomst Y , kan men zich afvragen welke onderliggende processen
dit effect bepalen. Of specifieker uitgedrukt: kan het effect van X op Y
(deels) worden toegeschreven aan een onderliggend effect dat loopt via een
intermediaire meting M? Dit is het soort vraag waar mediatie-analyses
pogen een antwoord op te geven. Indien er sprake is van mediatie, zal het
totale effect van interventie op de uitkomst kunnen worden opgedeeld in een
indirect effect dat loopt via de mediator M en een eventueel overblijvend
direct effect van X op Y . Aangezien de wetenschap enorm geïnteresseerd
is in het bestaan van en de zoektocht naar dergelijk verklarende processen,
hebben onderzoekers dit fenomeen de voorbije decennia dan ook uitvoerig
bestudeerd. Zo werkten Baron and Kenny (1986) een relatief eenvoudig
stappen-plan voor mediatie uit, in een manuscript dat intussen één van
de meest geciteerde werken uit de sociaal wetenschappelijke literatuur
vormt. Hoewel methodologisch reeds een lange weg werd afgelegd sinds
hun baanbrekende werk (Pearl, 2001; Imai et al., 2010; Pearl, 2012), resten
er ons nog steeds enkele grote uitdagingen.

Eén zo’n uitdaging omvat de extensie van mediatie naar multilevel
data, aangezien traditionele mediatie-technieken onafhankelijke observaties
veronderstellen; een assumptie die duidelijk geschonden wordt in het geval
van geclusterde of multilevel data. De meest voorkomende hiërarchisch ge-
structureerde data omvatten twee levels (vaak level-1 en level-2 genoemd),
waarbij level-1 of onderste-level units genest zijn binnen level-2 of bovenste-
level units. Voorbeelden van dergelijke hiërarchische structuren omvatten
studenten gegroepeerd binnen klassen of herhaalde metingen genest bin-
nen individuën. Wanneer men klassieke mediatie-analyse uitbreidt naar
geneste data, kan men drie verschillende mediatie-modellen onderscheiden:
2-2-1, 2-1-1 en 1-1-1 mediatie. Het eerste type multilevel mediatie komt
voor wanneer het effect van een level-2 interventie op een level-1 uitkomst
gemediëerd word door een level-2 mediator. Het tweede type mediatie
vertoont dan weer een interventie op het onderste level, terwijl zowel de
mediator als de uitkomst gemeten zijn op level-2. Het laatste type mediatie
komt dan weer voor wanneer alle drie de variabelen, zowel de interven-
tie, de mediator, als de uitkomst, gedefiniëerd zijn op het onderste-level
van de data. Dit laatste type wordt alternatief binnen-subject mediatie
gedoopt, wanneer men mediatie beschouwt in longitudinale settings. Dit
soort mediatie brengt extra complicaties met zich mee, aangezien longitu-
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dinale metingen niet alleen beïnvloed worden door andere tijdsafhankelijke
variabelen, maar evenzeer door eigenschappen die constant blijven over
tijdspannes heen.

Omdat deze 1-1-1- of binnen-subject mediatie extra uitdagingen met
zich meebrengt, zal deze setting de voornaamste focus van dit doctoraat
vormen. Zo willen we toegepaste onderzoekers voorzien van een concrete
set aan richtlijnen over hoe mediatie correct te evalueren en te schatten,
wanneer ze geconfronteerd worden met enkele belangrijke kwesties. Deze
uitdagingen omvatten ondermeer (1) ongemeten level-2 confounders van
de M -Y relatie, (2) de aanwezigheid van onderste-level interacties, (3)
een uitkomst gemeten op een binaire, eerder dan een lineaire schaal, en
(4) het op de proef stellen van de betrokken schattingsmethoden (en hun
implementaties) door verschillende eigenschappen van de data te laten
variëren (met een speciale focus op kleine clustergroottes).

2 Hoofdstuk 2
In hoofdstuk 2 wordt er dieper ingegaan op één specifieke subcategorie
van binnen-subject mediatie, namelijk mediatie binnen crossover designs
in lineaire settings. In dit type studies worden er exact twee metingen
afgenomen bij elk participerend individu: één meting onder interventie
A en één onder interventie B. Aangezien twee opeenvolgende observaties
binnen hetzelfde individu meestal afhankelijk zijn van elkaar, vertoont
dergelijk design een multilevel structuur waarbij level-2 verwijst naar het
individu, terwijl level-1 refereert naar de (herhaalde) metingen binnen dat
subject. Bovendien worden in crossover studies beide behandelingen in een
gerandomiseerde volgorde aangeboden, waardoor alle participanten worden
toegewezen aan één van twee mogelijke interventie-armen: de sequentie AB
of de sequentie BA. Vandaar dat naar dit soort designs ook vaak wordt
verwezen als AB/BA-crossover studies.

Helaas is de methodologie voor mediatie-analyse in AB/BA studies
binnen de bestaande literatuur beperkt tot de aanpak voorgesteld door
Judd et al. (2001). En hoewel deze methode een eenvoudige en elegante
manier aanreikt om binnen-subject mediatie te testen, bestaan er toch
enkele belangrijke punten van kritiek. Ten eerste levert deze methode
geen concrete schatter van het indirecte effect op; het levert slechts een
antwoord op de vraag of er al dan niet mediatie aanwezig is. Daarboven
wordt deze vraag beantwoord via een adaptatie van de causale-stappen
methode van Baron and Kenny (1986), die zelf ook niet vrij is van kritiek.
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Uit verschillende studies blijkt immers dat de causale-stappen methode
een lage power heeft (Hayes, 2009) en wordt de noodzaak van sommige
onderdelen uit hun stappen-plan in twijfel getrokken (Collins et al., 1998;
MacKinnon et al., 2000; Preacher et al., 2007; Zhao et al., 2010). Andere
beperkingen van de methode voorgesteld door Judd et al. (2001), houden
in dat het slechts één type moderatie toestaat (namelijk, een interactie
tussen de interventie X en de mediator M) en dat er geen rekening
gehouden wordt met mogelijke periode- of carry-over effecten (Tucker-
Drob, 2011). Tenslotte worden -net zoals in Baron and Kenny (1986)-
onderliggende assumpties over gemeten en ongemeten confounders niet
duidelijk geëxpliciteerd.

Om deze beperkingen in de huidige literatuur tegemoet te komen,
onderzochten wij in hoofdstuk 2 mediatie-analyse in crossover studies
binnen een ‘tegenfeitelijk’ denkkader. Zo konden we aan de hand van
zogenaamde ‘potentiële uitkomsten’ niet-parametrische formules opstellen
voor het directe en indirecte effect in 1-1-1-designs, wat meteen ook meer
duidelijkheid schiep over de assumpties die nodig zijn om deze effecten
te identificeren. Wanneer we vervolgens focusten op een data genererend
mechanisme dat voldeed aan deze assumpties, konden we aan de hand van
de mediatie-formule (Pearl, 2001) parametrische uitdrukkingen opstellen
voor het directe en indirecte effect. Zo lieten verschillende data genererende
mechanismes (gaande van eenvoudige tot complexe settings met verschil-
lende soorten interacties) ons toe de performantie van statistische modellen
te vergelijken in een simulatiestudie. In deze vergelijking beschouwden we
onder andere een ‘naïef’ Lineair Mixed Model (LMM) zonder centrering,
een LMM mét centrering binnen-subjecten en een LMM aanpak die de
mediator en de uitkomst simultaan of ‘joint’ modelleert. Naast deze be-
staande methoden, implementeerden wij ook een techniek die gebaseerd is
op het regresseren van de verschilscores in Y op de verschilscores in M
(i.e., een adaptatie van de methode van Judd et al. (2001)), waarbij we
eveneens periode-effecten en verschillende types moderatie toelieten.

De simulaties toonden aan dat de ‘naïeve’ methode niet kan omgaan met
ongemeten level-2 confounders van de mediator-uitkomst relatie. Aangezien
men de afwezigheid van dergelijke confounders nooit kan garanderen, raden
we het gebruik van deze methode dan ten stelligste ook af. Voor de andere
statistische modellen konden we zowel het directe als het indirecte effect
identificeren, zélfs wanneer er ongemeten tijds-onafhankelijke confounders
van de mediator-uitkomst relatie aanwezig zijn. Verder konden we ook
vaststellen dat de ‘joint’ methode iets strengere assumpties veronderstelt,
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vergeleken met de centrerings-methode en de verschil-methode (die beiden
meestal identieke schatters opleveren). Ten slotte illustreerden we deze
conclusies aan de hand van een neurostimulatie-experiment, waarna we ook
een sensitiviteits-analyse voorstelden die de impact poogde in te schatten
van mogelijke level-1 confounders van M -Y op het directe en indirecte
effect.

3 Hoofdstuk 3
In hoofdstuk 3 gaan we verder in op de verschillende centreringstechnieken
binnen LMMs. In principe zijn er drie voorname methodes waarmee mul-
tilevel data gecentreerd kunnen worden: ofwel wordt er niet gecentreerd,
ofwel centreren we over het algemeen gemiddelde, ofwel centreren we bin-
nen clusters. In de huidige literatuur rond multilevel data is er intussen
een algemene consensus ontstaan, dat centreren binnen clusters het meest
is aangewezen wanneer onderzoekers geïnteresseerd zijn in het effect van
level-1 predictoren. Deze conclusie is in overeenstemming met het vorige
hoofdstuk, aangezien we hier vaststelden dat de naïeve (of ongecentreerde)
methode vertekeningen vertoont wanneer er ongemeten level-2 confounders
zijn van mediator en uitkomst, terwijl de methode die centreerde binnen
subjecten hiervan bespaard bleef.

Jammer genoeg bleven de meeste discussies binnen de multilevel li-
teratuur tot nu toe beperkt tot het centreren van hoofdeffecten, terwijl
het centreren van interacties eerder op de achtergrond bleef. Dit vormt
vooral een beperking wanneer zowel de predictor, de moderator (die een
interactie vormt met de predictor), als de uitkomst gemeten zijn op het
onderste-level (waardoor de interactie tussen de predictor en de moderator
zich ook op level-1 bevindt). We kunnen ons dan de vraag stellen hoe we
deze onderste-level interactieterm best gaan centreren en wat de eventuele
gevolgen zijn van deze keuze: centreren we eerst de predictor en moderator
binnen subjecten, waarna we beide gecentreerde variabelen vermenigvuldi-
gen (centreer eerst, neem het nadien het product, C1P2), of is het beter
om eerst beide -ongecentreerde- variabelen te vermenigvuldigen en deze
productterm pas achteraf te centreren (neem eerst het product, pas nadien
centreren, P1C2)? Want in tegenstelling tot een interactie tussen een
onderste- en een bovenste-level variabele, of tussen twee level-2 variabelen,
zullen C1P2 en P1C2 verschillende resultaten opleveren wanneer we een
level-1 interactie gaan centreren binnen subjecten.

Hoofdstuk 3 trachtte dan ook beide centreringsmethoden (P1C2 en
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C1P2) tegen elkaar uit te zetten, om na te gaan of ze het (gemodereerde)
effect van predictor op uitkomst al dan niet onvertekend kunnen schatten.
Om inzicht te verkrijgen in de prestaties van beide technieken, voerden we
een uitgebreide simulatiestudie uit. Hierin beschouwden we verschillende
settings waarin we de relatieve vertekening van de schatters en standaard-
fouten, evenals hun coverage en power trachtten te onderzoeken. We konden
vaststellen dat we geen vertekening in de schatters zien, zolang de predictor
en moderator onafhankelijk zijn van elkaar. Van zodra de moderator echter
beïnvloed werd door de predictor (zodat deze óók een mediator wordt),
stelden we vertekening vast in de schatters van het interactie-effect voor
C1P2. Een analytische berekening van deze bias toonde aan dat deze
vertekening afhangt van de verdeling van de predictor én de grootte van
het effect van de predictor op de moderator: wanneer de predictor binair is,
neemt deze vertekening toe naarmate het effect van X op M sterker wordt.
Bovendien konden we ook vaststellen dat de gemiddelde standaardfout
veel kleiner is voor P1C2, vergeleken met de C1P2-centrering. Indien we
deze twee conclusies samen in beschouwing nemen, adviseren wij om altijd
eerst level-1 predictoren te vermenigvuldigen en pas dan deze product-term
te centreren binnen clusters, aangezien: (1) P1C2 resulteert in preciezere
schatters van het interactie-effect en (2) P1C2 wordt, in tegenstelling tot
C1P2, niet beïnvloed door misspecificatie of omissie van bovenste-level
effecten.

Om het hoofdstuk te verduidelijken, illustreerden we de gevonden
resultaten aan de hand van een longitudinale dagboek-studie over seksu-
eel gedrag in Vlaanderen. Specifiek focusten we onze op de mannelijke
deelnemers en keken naar het effect van intiem gedrag op positieve relatie-
gevoelens de dag nadien, en in welke mate dit effect veranderde door
masturbatie.

4 Hoofdstuk 4
Aangezien in hoofdstukken 2 en 3 enkel werd gekeken naar binnen-subject
mediatie in continue settings, kunnen we ons vervolgens de vraag stellen
of 1-1-1-mediatie gemakkelijk uit te breiden valt naar binaire settings.
Vooraleer we deze vraag kunnen beantwoorden, moeten we echter eerst
proberen na te gaan welke schattingsmethoden in staat zijn een simpel (niet-
gemediëerd) effect op een binaire uitkomst efficiënt en zonder vertekening te
schatten. Dit brengt ons vlekkeloos naar hoofdstuk 4, waar het vooral draait
om Gegeneraliseerde Lineaire Mixed Modellen (GLMMs), in tegenstelling
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tot de Lineaire Mixed Modellen (LMMs) uit hoofdstukken 2 en 3.
Alhoewel GLMMs heel vaak worden toegepast op geclusterde cate-

gorische uitkomsten, wordt hun statistische inferentie gehinderd door
problemen tijdens het integreren van de random effecten uit de likelihood-
functie. Om deze tekortkoming het hoofd te bieden, hebben onderzoekers
in de loop der jaren enkele technieken voorgesteld die we grofweg kunnen
indelen in twee klasses: likelihood-gebaseerde versus Bayesiaanse methoden.
De eerste mogelijkheid kan het integratie-probleem oplossen door ofwel een
approximatie van de integrand te berekenen, zoals in de Laplace approxi-
matie (Tierney and Kadane, 1986) of in Penalised Quasi-Likelihood (PQL)
(Breslow and Clayton, 1993; Schall, 1991; Stiratelli et al., 1984)), ofwel
door de integraal zelf te benaderen door een eindige som, zoals in Adap-
tive Gaussian Quadrature, AGQ (Pinheiro and Bates, 1995). Bayesiaanse
methoden daarentegen, maken gebruik van Markov Chain Monte Carlo
(MCMC) implementaties om de posterieure distributies van de gewenste
parameters te bekomen, waarbij de likelihood zelf gesimuleerd wordt in
plaats van deze te analytisch berekenen. Aangezien MCMC-methoden
vaak computationeel heel intensief zijn, werden er ook hybride modellen
voorgesteld zoals een Integrated Nested Laplace Approximatie, INLA,
(Rue et al., 2009)) die benaderingen gebruikt voor verschillende posterieure
distributies.

Aangezien deze voorstellen slechts zelden bevredigende resultaten ople-
veren voor binaire uitkomsten binnen kleine clusters (Breslow and Clayton,
1993; McMahon et al., 2003), stelden wij Structural Equation Modelling
(SEM) voor als alternatief. Hoewel SEM en GLMM op het eerste zicht twee
verschillende denkkaders lijken, hebben wetenschappers intussen kunnen
vaststellen dat beide vaak equivalent zijn in de afwezigheid van latente
variabelen, en dit onder een brede set van condities (Rovine and Molenaar,
2000; Curran, 2003; Bauer, 2003). Binnen het SEM-denkkader zijn er twee
belangrijke schattingsmethoden: maximum likelihood (ML) en (diagonally)
weighted least squares (DWLS) (Skrondal and Rabe-Hesketh, 2004). Omdat
ML-schatting niet veel voorkomt binnen de traditionele SEM-literatuur,
en bovendien ook min of meer equivalent blijkt aan ML-schatting via
GLMMs, legden wij in dit hoofdstuk de nadruk op DWLS.

Er zijn dus vele mogelijke opties om een binaire geclusterde uitkomst te
schatten: de Laplace approximatie, PQL, AGQ, MCMC, en INLA binnen
het GLMM-kader, evenals robuuste DWLS binnen SEM. Maar welke
methode levert nu de beste en meest efficiënte schatters op? Om deze vraag
te beantwoorden, voerden wij in hoofdstuk 4 een uitgebreide simulatiestudie
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uit waarin we de performantie nagingen van zes verschillende R-pakketten
(R version 3.2.3, R Core Team (2013)). In deze simulaties pasten we
bovenstaande methoden toe op random-intercept probit-regressie, waarbij
we een groot aantal factoren lieten variëren om de verschillende methoden
zo goed en volledig mogelijk te kunnen vergelijken: een clustergrootte
van 2, 3 of 5, een steekproefgrootte van 25, 50, 100 of 300, een uitkomst
prevalentie van 0.1 of 0.5, een latente intracluster correlatie van 0.1, 0.3 of
0.5, en verschillende types predictoren (continu versus binair, en variërend
binnen versus tussen clusters). Dit leverde ons een simulatie-studie op met
3×4×3×2×4 mogelijke settings, waarbinnen we de convergentie, relatieve
vertekening, mean squared error en coverage van de zes verschillende
schattingsmethoden met elkaar konden vergelijken. Om na te gaan of
de conclusies onafhankelijk zijn van de gebruikte R-pakketten, zijn de
belangrijkste simulaties herhaald aan de hand van implementaties in andere
software, zoals SAS R© (version 9.4 (SAS Institute Inc, 2015)), MPLUS R©

(version 7 (Muthén and Muthén, 2010)) en JAGS (version 4.1.0. (Plummer,
2003)).

Uit deze simulatiestudie konden we onder meer afleiden dat wanneer
we clusters van grootte twee beschouwden, SEM het beste presteerde
in termen van vertekening, terwijl AGQ de bovenhand nam in termen
van precisie (dit voornamelijk door de robuuste standaardfouten in SEM).
Indien de clustergrootte echter toenam, werd AGQ de beste optie voor zowel
de vertekening als de precisie. Deze conclusies bleken ook onafhankelijk
van het gebruikte software-medium, met als enige uitzondering dat de
gebruikte MCMC-implementatie in R sub-optimaal was, vergeleken met
de implementatie in JAGS-software.

Tenslotte werden deze conclusies ook nog eens geïllustreerd aan de
hand van een dataset over de eetgewoonten van kinderen in Vlaamse
kleuterscholen. Hierbij werd er nagegaan of aanmoediging tot het eten
van witloof (de interventie X) enige invloed had op het al dan niet lusten
ervan (de binaire uitkomst Y ).

5 Hoofdstuk 5
Alhoewel de recente literatuur reeds veel aandacht besteedde aan het
uitbreiden van mediatie naar multilevel settings, werden dergelijke extensies
vaak gelimiteerd tot continue uitkomstmaten. Vandaar dat we in hoofdstuk
5 hierop trachten in te spelen door binnen-subject mediatie uit te breiden
naar settings met een binaire uitkomst. Hiervoor bouwden we verder op
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het voorbereidende werk van hoofdstuk 4, waarin we aantoonden aan dat
GLMMs met AGQ de beste schattingen opleveren, wanneer we het effect
van een predictor op een binaire uitkomst nagaan in kleine clusters.

Bovendien willen we ook weer focussen op de gevolgen van ongemeten
level-2 confounders van de M -Y relatie, aangezien dit kan zorgen voor
vertekening in de schattingen van de regressieparameters, evenals in de
schattingen van het indirecte en directe effect. Zoals we reeds aantoonden in
hoofdstukken 2 en 3, kan vertekening ten gevolge van zulke confounders in
lineaire settings aangepakt worden door de level-1 predictoren te centreren.
Helaas vervalt deze oplossing wanneer de uitkomst binair is (Goetgeluk and
Vansteelandt, 2008; Brumback et al., 2010), waardoor we een geschiktere
manier moeten zoeken die kan omgaan met bovenste-level endogeniteit
van de mediator en uitkomst.

Om dit probleem het hoofd te bieden, beschouwden we in hoofdstuk 5
1-1-1 mediatie met een binaire uitkomst vanuit een ‘tegenfeitelijk’ stand-
punt, opnieuw met een focus op kleine cluster-groottes. Hoofdstuk 5 stelde
voor om dit te doen aan de hand van vier sequentieel te doorlopen stap-
pen. Een eerste stap biedt niet-parametrische definities van de causale
mediatie-effecten aan, evenals een opsomming van de assumpties die hun
identificatie mogelijk maken. In deze stap focusten wij op expressies die
gedefiniëerd zijn op de lineaire schaal, zodat we een contrafactuele definitie
op basis van verschillen konden opstellen. Een tweede stap identificeert
het directe en indirecte effect op basis van parametrische modellen voor
mediator en uitkomst. We deden dit aan de hand van twee link-functies
die de binaire uitkomst aan de lineaire predictorterm koppelen: de probit-
en de logit-link. Een derde stap schat de regressieparameters van de mo-
dellen voor de mediator en de uitkomst. Wij deden dit op basis van drie
verschillende modellen: (1) een ongecentreerde methode die de mediator
en de uitkomst apart schat, (2) een techniek die de mediator en de uit-
komst apart modelleert, waarbij de predictoren gecentreerd zijn binnen
subjecten, en (3) een methode die de mediator en uitkomst simultaan of
‘joint’ modelleert. Ten slotte schatten we in een laatste stap de causale
mediatie-effecten zelf, door potentiële uitkomsten voor de mediator en de
uitkomst te voorspellen. Dit gebeurde aan de hand van een parametrisch
algoritme, waarin de posterieure verdelingen van beide variabelen benaderd
werden door hun steekproevenverdeling. Hierbij werden de random effecten
op twee verschillende manieren gegenereerd: marginaal of conditioneel.

Op deze manier gingen we in hoofdstuk 5 na welke multilevel schat-
tingsmethoden in staat zijn om op een correcte manier ongemeten level-2
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confounding van M en Y te elimineren. Hierbij focusten we op een binaire
gerandomiseerde interventie en een binaire uitkomst binnen kleine clus-
ters. Om deze onderzoeksvraag na te gaan voerden we een simulatiestudie
uit, waarin we drie schattingsmethoden vergeleken (een ongecentreerde-,
een gecentreerde- en een joint- modelleringsmethode), twee link-functies
voor de uitkomst (de logit- en de probit-link) en twee manieren om de
random effecten te genereren (marginaal versus conditioneel). Om deze
verschillende methoden goed met elkaar te kunnen vergelijken, lieten we
meerdere factoren binnen de gesimuleerde datasets variëren: de grootte van
de clusters, de steekproefgrootte, de intracluster correlatie en de aan- of
afwezigheid van ongemeten level-2 confounding van mediator en uitkomst.

Uit deze simulaties konden we afleiden dat het simultaan modelleren
van M en Y de beste prestatie vertoonde (gecombineerd met een mar-
ginale generatie van de random effecten), vooral in de aanwezigheid van
ongemeten level-2 confounding van mediator en uitkomst. Een aparte mo-
delleringsmethode waarbij we de predictoren centreerden binnen subjecten
en de random effecten conditioneel gegenereerd werden, leverde ook relatief
goede resultaten op. Zoals te verwachten, presteerde de ongecentreerde
methode (ongeacht de manier van random effect-generatie) ondermaats
in de aanwezigheid van ongemeten level-2 confounding van mediator en
uitkomst.

Om deze resultaten te illustreren, pasten we deze methoden toe op een
crossover studie die de impact van een geïnduceerde doelconflict-situatie
op het hulpgedrag van partners van individuën met chronische pijn. Hierbij
trachtten we na te gaan of dit causale effect gemediëerd werd door de
hoeveelheid autonoom hulpgedrag bij de partner, zoals waargenomen door
de patient.

6 Discussie
Met dit doctoraat hoopten we toegepaste onderzoekers van een concrete
set aan richtlijnen te voorzien, over hoe binnen-subject mediatie best te
evalueren in de aanwezigheid van: 1) ongemeten level-2 confounding van de
relatie tussen mediator en uitkomst , 2) onderste-level interactietermen, 3)
binaire uitkomstmaten, en 4) moeilijke of veeleisende settings (e.g., kleine
cluster-groottes). Aangezien we de afwezigheid van ongemeten bovenste-
level confounding van mediator en uitkomst nooit kunnen garanderen,
adviseren wij om er (preventief) van uit te gaan dat dergelijke confounders
altijd aanwezig zijn. Wij willen toegepaste wetenschappers ook graag



Nederlandse Samenvatting 215

bewust maken van de beperkingen van verscheidene schattingsmethoden
en hun implementaties, wanneer het aantal metingen binnen clusters
beperkt zijn. Dit aangezien kleine cluster-groottes vaak uitdagend blijken
voor de beschikbare methodologiën.

Ter samenvatting zouden we dit doctoraat graag afsluiten met de
volgende suggesties omtrent binnen-subject mediatie. Ten eerste raden we
het gebruik van een methode die mediator en uitkomst apart modelleert
waarbij de onderste-level predictoren niet gecentreerd worden binnen
clusters, ten stelligste af. Deze methode is -in lineaire én niet-lineaire
settings- niet uitgerust om met bovenste-level endogeniteit van mediator en
uitkomst om te gaan. Ten tweede, in lineaire settings raden we onderzoekers
wél aan om alle onderste-level predictoren te centreren binnen-subjecten,
opdat mediatie correct kan worden nagegaan in de aanwezigheid van
ongemeten confounding van M en Y . Ten derde, wanneer wetenschappers
de intentie hebben om onderste-level interacties toe te voegen aan hun
lineair mediatiemodel, adviseren wij om de betrokken variabelen eerst te
vermenigvuldigen en pas nadien deze productterm te centreren binnen
clusters. Ten vierde willen we in binaire settings pleiten voor het gebruik van
GLMMs, waarin de integraal van de likelihood-functie benaderd wordt door
‘Adaptive Gaussian Quadrature’. Deze suggestie wordt des te belangrijker
wanneer de onderste-level steekproefgrootte afneemt. En ten slotte, wanneer
binnen-subject mediatie wordt nagegaan in binaire settings, raden we aan
om de mediator en de uitkomst gezamelijk te modelleren, zodat de causale
mediatie-effecten correct kunnen worden geëvalueerd in de aanwezigheid
van bovenste-level endogeniteit van M en Y . We raden het gebruik van
binnen-cluster centrering af in settings met een binaire uitkomstmaat,
aangezien deze methode dan niet langer onvertekende schatters oplevert.

Betreffende de huidige tekortkomingen van deze thesis en mogelijke
richtingen voor toekomstig onderzoek, refereren we naar de assumpties die
we gedurende de verschillende hoofdstukken veronderstelden. Onderzoek
naar de impact van het schenden van elk van deze veronderstellingen, zou
een uiterst waardevolle bijdrage tot de huidige literatuur kunnen leveren.
Bovendien promoten we de constructie van een software implementatie,
die het toegepaste onderzoekers mogelijk zou maken om (gemodereerde)
binnen-subject mediatie te schatten in de aanwezigheid van ongemeten
level-2 confounding van M en Y , in zowel lineaire als binaire settings.
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9 Data Storage Fact Sheets

1 Data Storage Fact Sheet Chapter 2
1. Contact details
===========================================================
1a. Main researcher
-----------------------------------------------------------
- name: Haeike Josephy
- address: Henri Dunantlaan 2, 9000 Gent
- e-mail: Haeike.Josephy@gmail.com

1b. Responsible Staff Member (ZAP)
-----------------------------------------------------------
- name: Tom Loeys
- address: Henri Dunantlaan 2, 9000 Gent
- e-mail: Tom.Loeys@Ugent.be

If a response is not received when using the above contact details,
please send an email to data.pp@ugent.be or contact Data Management,
Faculty of Psychology and Educational Sciences, Henri Dunantlaan 2,
9000 Ghent, Belgium.

2. Information about the datasets to which this sheet applies
===========================================================
* Reference of the publication in which the datasets are reported:
Josephy, H., Vansteelandt, S., Vanderhasselt, M.-A., & Loeys, T. (2015).
Within-subject mediation analysis in AB/BA crossover designs.
INTERNATIONAL JOURNAL OF BIOSTATISTICS, 11(1), 1-22.

* Which datasets in that publication does this sheet apply to?
This data storage fact sheet refers to the raw data and SAS-code relating
to the example analysis and simulation study in Josephy et. al. (2015).

3. Information about the files that have been stored
===========================================================
3a. Raw data
-----------------------------------------------------------
* Have the raw data been stored by the main researcher? [X] YES / [ ] NO

If NO, please justify:
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* On which platform are the raw data stored?
- [X] researcher PC
- [X] research group file server: shared drive ‘mediation’ in the

Department of Data Analysis (file: ‘Example_Chapter2.csv’)
- [ ] other (specify): ...

* Who has direct access to the raw data (i.e., without intervention of
another person)?

- [X] main researcher
- [X] responsible ZAP
- [X] all members of the research group
- [ ] all members of UGent
- [ ] other (specify): ...

3b. Other files
-----------------------------------------------------------
* Which other files have been stored?

- [X] file(s) describing the transition from raw data to reported
results. Specify: ‘Example_Chapter2.sas’

- [ ] file(s) containing processed data. Specify: ...
- [X] file(s) containing the data generating mechanism and analyses.

Specify: ‘Simulations_Chapter2.sas’
- [ ] files(s) containing information about informed consent
- [ ] a file specifying legal and ethical provisions
- [ ] file(s) that describe the content of the stored files and how this

content should be interpreted. Specify: ...
- [ ] other files. Specify: ...

* On which platform are these other files stored?
- [X] individual PC
- [X] research group file server: shared drive ‘mediation’ in the

Department of Data Analysis
- [ ] other: ...

* Who has direct access to these other files (i.e., without intervention
of another person)?

- [X] main researcher
- [X] responsible ZAP
- [X] all members of the research group
- [ ] all members of UGent
- [ ] other (specify): ...

4. Reproduction
===========================================================
* Have the results been reproduced independently?: [ ] YES / [X] NO

* If yes, by whom (add if multiple):
- name:
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- address:
- affiliation:
- e-mail:

2 Data Storage Fact Sheet Chapter 3
1. Contact details
===========================================================
1a. Main researcher
-----------------------------------------------------------
- name: Haeike Josephy
- address: Henri Dunantlaan 2, 9000 Gent
- e-mail: Haeike.Josephy@gmail.com

1b. Responsible Staff Member (ZAP)
-----------------------------------------------------------
- name: Tom Loeys
- address: Henri Dunantlaan 2, 9000 Gent
- e-mail: Tom.Loeys@Ugent.be

If a response is not received when using the above contact details,
please send an email to data.pp@ugent.be or contact Data Management,
Faculty of Psychology and Educational Sciences, Henri Dunantlaan 2,
9000 Ghent, Belgium.

2. Information about the datasets to which this sheet applies
===========================================================
* Reference of the publication in which the datasets are reported:
Loeys, T., Josephy, H., Dewitte, M. (2018). More precise estimation of
lower-level interaction effects in multilevel models. MULTIVARIATE
BEHAVIORAL RESEARCH, 53(3), 335-347.

* Which datasets in that publication does this sheet apply to?
This data storage fact sheet refers to the raw data and R-code relating
to the example analysis and simulation study in Loeys et. al. (2018).

3. Information about the files that have been stored
===========================================================
3a. Raw data
-----------------------------------------------------------
* Have the raw data been stored by the main researcher? [X] YES / [ ] NO

If NO, please justify:

* On which platform are the raw data stored?
- [X] researcher PC
- [X] research group file server: shared drive ‘mediation’ in the

Department of Data Analysis
(files: ‘Example_Chapter3.txt’ and ‘Example_Chapter3_c.txt’)
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- [ ] other (specify): ...

* Who has direct access to the raw data (i.e., without intervention of
another person)?

- [X] main researcher
- [X] responsible ZAP
- [X] all members of the research group
- [ ] all members of UGent
- [ ] other (specify): ...

3b. Other files
-----------------------------------------------------------
* Which other files have been stored?

- [X] file(s) describing the transition from raw data to reported
results. Specify: ‘Example_Chapter3.R’

- [ ] file(s) containing processed data. Specify: ...
- [X] file(s) containing the data generating mechanism and analyses.

Specify: ‘Simulations_Chapter3.R’
- [ ] files(s) containing information about informed consent
- [ ] a file specifying legal and ethical provisions
- [ ] file(s) that describe the content of the stored files and how this

content should be interpreted. Specify: ...
- [ ] other files. Specify: ...

* On which platform are these other files stored?
- [X] individual PC
- [X] research group file server: shared drive ‘mediation’ in the

Department of Data Analysis
- [ ] other: ...

* Who has direct access to these other files (i.e., without intervention
of another person)?

- [X] main researcher
- [X] responsible ZAP
- [X] all members of the research group
- [ ] all members of UGent
- [ ] other (specify): ...

4. Reproduction
===========================================================
* Have the results been reproduced independently?: [ ] YES / [X] NO

* If yes, by whom (add if multiple):
- name:
- address:
- affiliation:
- e-mail:
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3 Data Storage Fact Sheet Chapter 4

1. Contact details
===========================================================
1a. Main researcher
-----------------------------------------------------------
- name: Haeike Josephy
- address: Henri Dunantlaan 2, 9000 Gent
- e-mail: Haeike.Josephy@gmail.com

1b. Responsible Staff Member (ZAP)
-----------------------------------------------------------
- name: Tom Loeys
- address: Henri Dunantlaan 2, 9000 Gent
- e-mail: Tom.Loeys@Ugent.be

If a response is not received when using the above contact details,
please send an email to data.pp@ugent.be or contact Data Management,
Faculty of Psychology and Educational Sciences, Henri Dunantlaan 2,
9000 Ghent, Belgium.

2. Information about the datasets to which this sheet applies
===========================================================
* Reference of the publication in which the datasets are reported:
Josephy, H., Loeys, T., & Rosseel, Y. (2016). A review of R-packages for
random-intercept probit regression in small clusters.
FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2(18), 1-13.

* Which datasets in that publication does this sheet apply to?
This data storage fact sheet refers to the raw data, R- and SAS-code
relating to the example analysis and simulation study in
Josephy et. al. (2016).

3. Information about the files that have been stored
===========================================================
3a. Raw data
-----------------------------------------------------------
* Have the raw data been stored by the main researcher? [X] YES / [ ] NO

If NO, please justify:

* On which platform are the raw data stored?
- [X] researcher PC
- [X] research group file server: shared drive ‘mediation’ in the

Department of Data Analysis (file: ‘Example_Chapter4.csv’)
- [ ] other (specify): ...

* Who has direct access to the raw data (i.e., without intervention of
another person)?

- [X] main researcher
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- [X] responsible ZAP
- [X] all members of the research group
- [ ] all members of UGent
- [ ] other (specify): ...

3b. Other files
-----------------------------------------------------------
* Which other files have been stored?

- [X] file(s) describing the transition from raw data to reported
results. Specify: ‘Example_Chapter4.R’

- [ ] file(s) containing processed data. Specify: ...
- [X] file(s) containing the data generating mechanisms and analyses.

Specify:
1. Simulations for cluster size 2:

A. For a between-subject predictor:
‘Simulations_Chaprer4_Between.R’

B. For a within-subject predictor:
‘Simulations_Chapter4_Within.R’

C. For comparing lavaan in R to MPLUS:
‘Simulations_Chapter4_MPLUS.R’

D. For comparing MCMCglmm in R tot JAGS:
‘Simulations_Chapter4_JAGS.R’

E. For exporting the data set to SAS:
‘Simulations_Chapter4_SAS_data.R’

F. For comparing the Laplace approximation and AGQ in R vs. SAS:
‘Simulations_Chapter4_SAS.sas’

2. Simulations for cluster size 3:
A. For a between-subject predictor:

‘Simulations_Chapter4_Clustersize3_Between.R’
B. For a within-subject predictor:

‘Simulations_Chapter4_Clustersize3_Within.R’
3. Simulations for cluster size 5:

A. For a between-subject predictor:
‘Simulations_Chapter4_Clustersize5_Between.R’

B. For a within-subject predictor:
‘Simulations_Chapter4_Clustersize5_Within.R’

- [ ] files(s) containing information about informed consent
- [ ] a file specifying legal and ethical provisions
- [ ] file(s) that describe the content of the stored files and how

this content should be interpreted. Specify: ...
- [ ] other files. Specify: ...

* On which platform are these other files stored?
- [X] individual PC
- [X] research group file server: shared drive ‘mediation’ in the

Department of Data Analysis
- [ ] other: ...
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* Who has direct access to these other files (i.e., without intervention
of another person)?

- [X] main researcher
- [X] responsible ZAP
- [X] all members of the research group
- [ ] all members of UGent
- [ ] other (specify): ...

4. Reproduction
===========================================================
* Have the results been reproduced independently?: [ ] YES / [X] NO

* If yes, by whom (add if multiple):
- name:
- address:
- affiliation:
- e-mail:

4 Data Storage Fact Sheet Chapter 5
1. Contact details
===========================================================
1a. Main researcher
-----------------------------------------------------------
- name: Haeike Josephy
- address: Henri Dunantlaan 2, 9000 Gent
- e-mail: Haeike.Josephy@gmail.com

1b. Responsible Staff Member (ZAP)
-----------------------------------------------------------
- name: Tom Loeys
- address: Henri Dunantlaan 2, 9000 Gent
- e-mail: Tom.Loeys@Ugent.be

If a response is not received when using the above contact details,
please send an email to data.pp@ugent.be or contact Data Management,
Faculty of Psychology and Educational Sciences, Henri Dunantlaan 2,
9000 Ghent, Belgium.

2. Information about the datasets to which this sheet applies
===========================================================
* Reference of the publication in which the datasets are reported:
Josephy, H., Kindt, S., Loeys, T. (in preparation).
Lower-level mediation with a binary outcome.

* Which datasets in that publication does this sheet apply to?
This data storage fact sheet refers to the raw data and R-code
relating to the example analysis and simulation study in
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Josephy et. al. (in preparation).

3. Information about the files that have been stored
===========================================================
3a. Raw data
-----------------------------------------------------------
* Have the raw data been stored by the main researcher? [X] YES / [ ] NO

If NO, please justify:

* On which platform are the raw data stored?
- [X] researcher PC
- [X] research group file server: shared drive ‘mediation’ in the

Department of Data Analysis (file: ‘Example_Chapter5.txt’)
- [ ] other (specify): ...

* Who has direct access to the raw data (i.e., without intervention of
another person)?

- [X] main researcher
- [X] responsible ZAP
- [X] all members of the research group
- [ ] all members of UGent
- [ ] other (specify): ...

3b. Other files
-----------------------------------------------------------
* Which other files have been stored?

- [X] file(s) describing the transition from raw data to reported
results. Specify:

‘Example_Chapter5.R’ and ‘Example_Chapter5.inp’
- [ ] file(s) containing processed data. Specify: ...
- [X] file(s) containing the data generating mechanisms and analyses.

Specify:
1. Simulations for cluster size 2:

A. For probit-regression:
‘Simulations_Chapter5_cs2_probit.R’

B. For logit-regression:
‘Simulations_Chapter5_cs2_logit.R’

2. Simulations for cluster size 5:
A. For probit-regression:

‘Simulations_Chapter5_cs5_probit.R’
- [ ] files(s) containing information about informed consent
- [ ] a file specifying legal and ethical provisions
- [ ] file(s) that describe the content of the stored files and how

this content should be interpreted. Specify: ...
- [ ] other files. Specify: ...

* On which platform are these other files stored?
- [X] individual PC
- [X] research group file server: shared drive mediation’ in the
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Department of Data Analysis
- [ ] other: ...

* Who has direct access to these other files (i.e., without intervention
of another person)?

- [X] main researcher
- [X] responsible ZAP
- [X] all members of the research group
- [ ] all members of UGent
- [ ] other (specify): ...

4. Reproduction
===========================================================
* Have the results been reproduced independently?: [ ] YES / [X] NO

* If yes, by whom (add if multiple):
- name:
- address:
- affiliation:
- e-mail:
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