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Abstract

Conventional speech emotion recognition based on the extrac-
tion of high level descriptors emerging from low level descrip-
tors seldom delivers promising results in cross-corpus exper-
iments. Therefore it might not perform well in real-life ap-
plications. Factor analysis, proven in the fields of language
identification and speaker verification, could clear a path to-
wards more robust emotion recognition. This paper proposes
an iVector-based approach operating on acoustic MFCC fea-
tures with a separate modeling of the speaker and emotion vari-
abilities respectively. The speech analysis extracts two fixed-
length low-dimensional feature vectors corresponding to the
two mentioned sources of variation. To model the speaker-
related nuisance variability speaker factors are extracted using
an eigenvoice matrix. After compensating for this speaker vari-
ability in the supervector space, the emotion factors (one per
targeted emotion) are extracted using an emotion variability
matrix. The emotion factors are then fed to a basic emotion
classifier. Leave-one-speaker-out cross-validation on the Berlin
Database of Emotional Speech EMO-DB (German) and [EMO-
CAP (English) datasets lead to results that are competitive with
the current state-of-the-art. Cross-lingual experiments demon-
strate the excellent robustness of the method: the classification
accuracies degrade less than 15% relative when emotion models
are trained on one corpus and tested on the other.

Index Terms: emotion recognition, factor analysis, emotion
factor extraction, cross-lingual

1. Introduction

Automatic recognition of paralinguistic information in speech
has gained significant attention over the last couple of years.
This is illustrated by the yearly Computational Paralinguistics
ChallengEs (ComParE) [1, 2]. In this paper we tackle the au-
tomatic emotion recognition in the context of telehomecare. A
Flemish call center regularly contacts people who are socially
isolated or in need of nursing care. The goal is to make an
assessment of their health and mental state, and to timely in-
tervene when necessary. An acoustic voice analysis of the
telephone conversations can deliver crucial information about
the individual’s well-being, feelings of loneliness, mental state,
pain problems, etc.

Supervised learning requires training data with paralinguis-
tic labels, and such data is rarely available in Flemish. There-
fore we rely on language-independent factor analysis tech-
niques [3, 4] popularized in automatic language recognition
and speaker verification to build an emotion recognition sys-
tem. The robustness of the method is verified with cross-lingual
experiments. Compared to the predominant approach [2] with
high-dimensional feature vectors computed using statistical
functionals [5], the proposed factor analysis approach extracts
a very low-dimensional emotion factor vector. This paves the
way for online and speaker-adaptive approaches [6] in our tele-
homecare use case.
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2. System setup

A favored approach in automatic language recognition to extract
information from a speech utterance is that of iVectors [4] or
Total Variability (TV) modeling. All variability is modeled in
a single low dimensional subspace. In the emotion recognition
domain a low rank rectangular matrix 7', called the TV matrix
or the iVector extractor, can be used to approximate the GMM
mean supervector m; s of a segment ¢ uttered by speaker s as

mis =m+Tx; (D

with m being the Universal Background Model (UBM) super-
vector and x; ; being the fixed-length iVector that contains all
the information concerning speaker s and the affective speaker
state (emotion) of that speaker in segment . The UBM is
trained on frame-based acoustic features. In the final stage a
classifier, e. g. a Gaussian Backend [7] extracts the speaker state
information from the iVector.

However, in order to build a robust iVector extractor and
emotion classifier, training data containing a sufficient number
of different speakers acting in a wide range of affective speaker
states is needed. This poses a serious challenge. Moreover,
utterances produced by the same speaker in a varying emo-
tional state should in principle deliver identical speaker infor-
mation and iVectors across these utterances share redundant
speaker information. This leads us to an approach in which
the speaker and the affective speaker state variability are treated
separately [8]. This separation of variability sources has been
shown to deliver state-of-the-art performance in the domain of
language identification [6]. In this paper a speaker variability
eigenvoice model is trained on a large out-of-domain dataset
which only needs speaker label annotations. The eigenvoice
model is then used to train a speaker-independent emotion vari-
ability model on the specialized emotion dataset.

2.1. Emotion factor extraction

During evaluation we pool together all data of a particular
speaker s and use an eigenvoice matrix U to extract the relevant
speaker factors y, in a way similar to the iVector framework [9]:

ms =m+ Uy, 2)

This operation shifts the UBM towards a speaker-dependent
GMM according to the triggered eigenvoices in U. Next, we
extract emotion factors y; for each test segment ¢ uttered by
speaker s(7):

m; =myu) + Vy; 3
The corresponding speaker-dependent GMM is shifted towards
a speaker-dependent and emotion-dependent GMM matching
the test utterance within the emotion subspace defined by emo-
tion variability matrix V. All affective speaker state informa-
tion is conveyed by the emotion factors y;, which can be ex-
tracted by a simple classifier due to the low dimensionality of
this vector.



Note that we could have used Joint Factor Analysis
(JFA) [3] to extract the speaker factors and emotion factors si-
multaneously for all utterances of a particular speaker. How-
ever, this simultaneous extraction is computationally much
more demanding and did not return better results. Moreover,
in an online use case it might be useful to fix the speaker fac-
tors on a previous set of recordings of that speaker, which is
straightforward to implement in our two-step procedure. In the
subsequent subsections we will discuss how to build all the nec-
essary subspace models and emotion classifiers.

2.2. Speaker variability modeling

As no emotion annotations are needed, the UBM and eigen-
voice matrix can be trained on a large out-of-domain dataset
with a large collection of different speakers. The eigenvoice
matrix U is constructed by means of Principal Component
Analysis (PCA) initialization [10] followed by iterating the
non-simplified Expectation-Maximization (EM) algorithm de-
scribed in [11] until it converges. However, we want the speaker
factors to react to speaker changes only and not to intra-speaker
variability due to changes in the channel or the background.
Thus, during the training of the eigenvoice matrix U we pool
together all turns of a certain speaker into one instance of that
speaker, meaning that the channel and background variability
are incorporated in the speaker model.

2.3. Emotion variability modeling

In this section we discuss the training procedure of emotion
variability matrix V in greater detail.

2.3.1. Speaker-compensated Baum-Welch statistics

The mathematical procedure of extracting latent factors re-
lies on the estimation of the zero- and centralized first order
Baum-Welch statistics [11] estimated with the UBM. In previ-
ous work [6] we have shown that by averaging the centralized
first order statistics across speakers within a language class one
can build a robust language variability model. Due to the small
number of speakers in our emotion datasets this strategy will not
be sufficient to eliminate all nuisance speaker variability. We
propose to centralize the first order statistics around a speaker-
dependent supervector, instead of the UBM supervector. This
suppresses the speaker dependencies per segment before elim-
inating the remaining variability via the standard approach of
averaging the statistics across utterances within the considered
speaker state.

These statistics of a given utterance ¢ made by speaker s(z)
corresponding with time interval 7 (¢) are estimated as:
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In these equations, oy is the feature vector at time ¢ and %(m) is

the occupation probability of mixture m according to the UBM
at that time. m™ and U™ are the components correspond-
ing with mixture m of the UBM supervector and eigenvoice
matrix respectively . The first order statistics defined in (5) are
centralized around the speaker-dependent supervector m in-
stead of the UBM supervector. Note that m is estimated on all
data belonging to speaker s.

2.3.2. Training the emotion variability matrix

Since the number of emotions is small, there is no need to rely
on the EM algorithm for finding a compact representation V' of
the emotion subspace. Instead, we assign one vector directly to
each of the emotions and set the values of the column vectors
Ve of V equal to the offset between the ML supervector m.
of the corresponding emotion e and the corresponding speaker-
adapted supervectors ms. This is achieved by averaging the
speaker-compensated first order Baum-Welch statistics across
utterances within a speaker state per mixture m:

> viee J. i(m)
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This ensures that the speaker-adapted GMMs can be shifted to-

wards speaker and emotion dependent GMMs when performing
adaptation with matrix V.

v = )

2.3.3. Removal of the neutral emotion shift

The evaluation datasets treat neutral speech as an one of the
emotion categories. However, our UBM should model neutral
speech already, which calls the validity of column V;, in V' cor-
responding with a shift towards neutral speech into question.
Due to the small number of training speakers, this shift is ex-
pected to be mostly dataset-specific and it might behave unex-
pectedly on unseen conditions. We propose to eliminate this
redundant shift in a second training iteration. First the UBM
supervector is adapted towards the neutral speech:

m =m+YV, )

Next, the speaker factors « are re-extracted and the speaker-
compensated Baum-Welch statistics are re-estimated given the
occupation probabilities emitted by the adapted UBM. The
emotion variability matrix V' is reconstructed according to the
training procedure explained in Section 2.3.2. Finally, the re-
maining neutral emotion shift V;, is removed from V and the
other emotions shifts are updated accordingly:

‘/e*:‘/e_vn (9)

This final procedure defines the origin of the emotion shifts V.*
in V'* as the supervector of the neutral speech in the emotion
dataset. Given the updated models, new emotion factors y; are
extracted per utterance.

2.4. Emotion factor classification

A simple Gaussian Backend (GB) classifier models the distribu-
tion of the emotion factors y* of the target emotion e by means
of a multivariate normal distribution N (pte, ) with X a full
covariance matrix shared by all target emotions [7]. The classi-
fication is based on the following emotion score:

* — * 1 —
al,=(2""pe) yl - 5#52 "pte (10)

The emotion producing the highest score a; ; is selected.

2.5. Acoustic features

The acoustic inputs of the UBM are shifted delta cepstral (SDC)
MECC feature vectors [12] on 10ms frames. They are acknowl-
edged to constitute a richer representation of the signal dy-
namics than the standard dynamical features derived from the



MFCCs and have been shown to significantly improve perfor-
mance in the domain of emotion recognition [13]. SDC fea-
tures are defined by four parameters: NN, d, P and k. The first
(2k 4+ 1) N features of frame ¢ consist of the As of the N static
MFCCs ¢; ... cn, computed for frames ¢ + ¢P (i = —k ... k).
A A at frame ¢ is computed over the window (¢t — d, t + d). We
use a standard configuration of N = 10, d = 2, P = 3 and
k = 2. Supplementing the SDCs with 16 static MFCCs (the
c1 . ..ci6 of frame t) and a normalized log-energy finally leads
to a feature vector of dimension 67. The normalized log-energy
component is defined as:

lOg Enrm(t) = IOgE(t) - logE(t) 11)

It is equal to zero when the log-energy is equal to a running
mean log-energy log F(t) and positive when it is larger. The
running mean is computed by means of a leaky integrator with
a time constant of 5 seconds.

We do not incorporate any kind of frame-based voice activ-
ity detection (VAD) or additional speaker-based feature normal-
ization (e. g. cepstral mean subtraction). Note that the SDC fea-
tures span a relatively large window and features of low-energy
non-speech frames can contain information about surrounding
speech frames. Utterance-based MFCC feature normalization
to compensate for channel effects significantly degraded the
emotion classification performance and was not incorporated
as well. Future work will focus on finding ways to eliminate
the channel variability without removing too much emotion-
specific information and integrating extra pitch information in
the proposed approach.

2.6. Baseline system

The performance of our proposed factor analysis technique
will be compared with the conventional approach of extract-
ing high-dimensional feature vectors using statistical function-
als on low-level descriptors [2]. We use the openSMILE [5]
toolbox and the emobase.conf configuration file to extract 988
features. Heuristic feature selection is applied to retain the 70
features that deliver optimal classification performance on the
evaluation sets. All baseline experiments use the same selec-
tion of features. We apply speaker normalization on the func-
tional level so that the feature vectors have a mean of zero and
standard deviation of one for each speaker. An ensemble of 5
Extreme Learning Machines (ELM) [14] with each 200 hidden
nodes is used to classify the feature vectors into emotion cate-
gories. The ELM is defined as a feed-forward neural network
(a Multi-Layer Perceptron) with a randomly fixed hidden layer
and a linear output layer whose weights are fixed to minimize
the cross entropy between the computed and the desired out-
puts. It is mathematically proven that the ELM is as powerful
as a fully trained Multi-Layer Perceptron [14].

3. Experimental results
3.1. Datasets
3.1.1. Emotion datasets

The German Berlin Database of Emotional Speech EMO-
DB [15] includes 535 short utterances from seven basic emo-
tions (anger, boredom, disgust, fear, happiness, sadness, neu-
tral). In an anechoic chamber, ten native German professional
actors expressed ten different sentences. Each sentence was
expressed in all emotions. Sentences leading to annotator dis-
agreement were omitted.

We also conducted experiments on the English Interac-
tive Emotion Dyadic Motion Capture (IEMOCAP) dataset [16].
This dataset contains approximately 12 hours of audio-visual
data from five mixed-gender pairs of actors, in this paper we
only focus on the audio data. Each interactive session lasts
about 5 minutes and is based on either a scripted or impro-
vised scenario. The sessions were manually segmented into
utterances. Each utterance was annotated by at least 3 anno-
tators into categorical labels. We examine the anger, happiness,
excitation, neutrality and sadness emotion classes for the 5531
utterances that had majority consensus across the annotators.
The classes of happiness and excitation are merged into a single
class. The class distribution is: 20.0% angry, 19.6% sad, 29.5%
happy, and 30.9% neutral.

3.1.2. Out-of-domain datasets

The English 1996 HUB4 Broadcast News [17] data (66 hours,
3009 speakers) is used to train an English UBM and eigen-
voice model. We harvested 15 hours of speech from ZDF pod-
casts! (1106 speakers) as German training data for these mod-
els. Speaker labels for the podcasts were auto-generated by our
speaker diarization system [18].

3.2. Evaluation protocol

The emotion recognition experiments are based on 10-fold
leave-one-speaker-out cross-validation (CV). First, an UBM
and eigenvoice model are trained on the out-of-domain dataset
that matches the language of the evaluation dataset. Next, the
emotion variability matrix estimation is performed on the 9
training speakers. The system is evaluated on the remaining
speaker. This process is repeated for each speaker in the dataset.

In both evaluation sets the emotion class distribution is not
too heavily skewed and we rely on the (weighted) accuracy (i. e.
the probability that a test utterance is classified correctly) to
evaluate the different system setups.

3.3. Intra-corpus experiments

The number of UBM mixtures is set to 64. The rank of the
eigenvoice matrix U is 50. The results compared to the baseline
OpenSMILE approach can be found in Table 1. We included
both GB and ELM classification of the extracted emotion fac-
tors. We reduced the number of ELM hidden nodes to 20 to
match the low dimensionality of this input.

Table 1: Emotion recognition performance in accuracy(%).

dataset | EMO-DB  IEMOCAP
OpenSMILE + ELM (200 nodes) 83.2 54.8
Emotion Factors + GB 82.8 55.2
Emotion Factors + ELM (20 nodes) 81.3 55.4
OpenSMILE 1 1 200 nodes) ‘ 85.6 ‘ 56.1

Emotion Factors

Both feature extraction approaches achieve similar perfor-
mance and the results reported in Table 1 are competitive with
the results reported in literature [19, 8, 20, 21]. The emotion
factor extraction is clearly successful in reducing the feature
dimensionality towards a feature space that is directly inter-
pretable, which makes the simple GB a suitable classifier. It
also suggests that the adaptation techniques proposed in [6]
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could lead to an adaptive strategy for emotion recognition. ELM
classification on the speaker-normalized concatenation of the
OpenSMILE features and the extracted emotion factors deliv-
ers better performance than the standalone systems, which indi-
cates the two approaches contain complementary information.
These results of feature fusion are shown in the final row of
Table 1.

3.4. Cross-corpus experiments

To evaluate the robustness of our proposed emotion recogni-
tion system and to assess real-word performance, we train the
emotion models on one corpus and evaluate the system on the
other. Another argument for this cross-lingual experiment is
the fact that annotated emotional speech is hard to collect, and
one may need to resort to non-target languages to collect suf-
ficient data. English, Flemish and German are Germanic lan-
guages and share a very similar cultural background, we there-
fore assume that the emotion definitions are transferable across
the datasets. We select the 4 matching emotions in the IEMO-
CAP and EMO-DB datasets (angry, happy, neutral and sad).

For the proposed emotion factor extraction, we train the
UBM and eigenvoice model U on the out-of-domain dataset
that has the same language as the target evaluation set. Such
data should be easily obtainable as there is no need for emotion
labels. Finally, the emotion variability model is trained on the
non-target evaluation set. In case of the baseline approach, we
reduce the number of hidden nodes to 20 in order to enhance
the generalization performance across datasets. The ELM is
simply trained on the non-target dataset and evaluated on the
target one. The results are shown in Table 2. The corresponding
intra-corpus CV experiments with identical system settings are
also included. Note the improved intra-corpus performance on
EMO-DB due to the reduced number of emotion classes.

Table 2: Intra-corpus and cross-lingual emotion recognition
performance in accuracy(%) on 4 emotion classes (happy, an-
gry, neutral and sad).

dataset EMO_.DB IEMOCAP
(4 emotions)

| intra-corpus

OpenSMILE + ELM (200 nodes) 90.3 54.8
OpenSMILE + ELM (20 nodes) 88.5 51.3
Emotion Factors + GB 90.5 55.2
| Cross-corpus
OpenSMILE + ELM (200 nodes) 51.9 38.9
OpenSMILE + ELM (20 nodes) 61.0 40.9
Emotion Factors + GB 81.4 48.4

The OpenSMILE system underperforms significantly in the
cross-corpus experiments and it experiences performance drops
of up to 40% in absolute terms. The reduction of the num-
ber of hidden nodes in the ELM increases its generalization
performance slightly at the cost of intra-corpus performance.
The relative cross-corpus performance degradation of the pro-
posed emotion factor extraction on the other hand, is about
12.5% only. This is significantly less than the impact reported
in [22, 21]. Extra experiments on feature fusion did not result
in enhanced results, probably due to the degraded performance
of the baseline system.

3.5. Extra analysis IEMOCAP results

The performance on the IEMOCAP data significantly lags the
performance on the EMO-DB data, which may be partially ex-
plained by the fact that IEMOCAP contains spontaneous, less
over-acted recordings. In order to make a more useful analysis
of the IEMOCAP performance we suggest to perform an oracle
segmentation and group all consecutive utterances (disregard-
ing utterances of out-of-set emotions) of identical emotion for
each speaker. Each group is classified as one unit. This is a
viable approach as the utterances are part of 5 minute scenar-
ios with one dominant emotion. The evaluation of the emo-
tion factor extraction remains utterance-based. The accuracy
increases from 55.2% to 70.7% when oracle segmentation is
enabled. This indicates that systems exploiting contextual infor-
mation by looking for speaker state changes in an initial stage
could drastically outperform the current utterance-based classi-
fication approaches. We note that the average duration per test
unit increased from 4.5s to 23s. A crude approach where we in-
clude the two previous and the two subsequent utterances of the
same speaker during the emotion factor extraction of the con-
sidered test utterance already results in an accuracy of 61.5%
on the IEMOCAP data. To allow for a varying dominant emo-
tion in the conversations, we did not take conversations (file)
boundaries into account and concatenated all utterances of the
test speaker.

We also note that there is a big discrepancy between the per-
formance on the scripted and improvised subset of the [IEMO-
CAP data. The results of training and evaluating the emotion
factor extraction on each of the subsets with 10-fold CV can be
found in Table 3. A possible explanation for this performance
gap might lay in the fact that it comes more natural to an actor
to convey emotions when he/she is not restricted by a script.

Table 3: Emotion recognition performance in accuracy(%) on
different subsets of IEMOCAP.

IEMOCAP subset ‘ improvised  scripted
utterance-based ‘ 61.4 ‘ 51.0

oracle segmentation | 73.1 | 659

4. Conclusion

In this work we proposed a two-step factor analysis approach
for speech emotion recognition. After a reduction of the speaker
variability in utterance-based supervectors by an eigenvoice
analysis, the remaining variability is projected to an affective
speaker state subspace. The coordinates in this low-dimensional
space can be directly interpreted as a score per emotion, which
paves the way for speaker-adaptive applications. The approach
delivers competitive results for matching training and test con-
ditions compared to the conventional emotion classification
based on high-dimensional feature vectors computed using sta-
tistical functionals on lower level descriptors. Cross-lingual ex-
periments on English and German data illustrate the improved
robustness of the proposed approach which bodes well for real-
world applications of speech emotion recognition.
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