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Abstract

Mental health is a significant and growing public health concern. As language usage can be
leveraged to obtain crucial insights into mental health conditions, there is a need for large-scale,
labeled, mental health-related datasets of users who have been diagnosed with one or more of
such conditions. In this paper, we investigate the creation of high-precision patterns to identify
self-reported diagnoses of nine different mental health conditions, and obtain high-quality labeled
data without the need for manual labelling. We introduce the SMHD (Self-reported Mental Health
Diagnoses) dataset and make it available. SMHD is a novel large dataset of social media posts
from users with one or multiple mental health conditions along with matched control users. We
examine distinctions in users’ language, as measured by linguistic and psychological variables.
We further explore text classification methods to identify individuals with mental conditions
through their language.

1 Introduction

Mental health is a significant challenge in healthcare. Mental disorders have the potential to tremen-
dously affect the quality of life and wellness of individuals in society (Strine et al., 2008; Mowery et
al., 2017a). Social media have become an increasingly important source of data related to mental health
conditions (Cohan et al., 2017; Mowery et al., 2017b; Coppersmith et al., 2017; Yates et al., 2017), as
it is now a prominent platform for individuals to engage in daily discussions, share information, seek
advice and simply communicate with peers that have shared interests. In addition to its ubiquity and ease
of access, the possibility to disclose mental health matters anonymously or pseudo-anonymously further
drives users to online self-disclosure.

At the same time, the close connection between language and mental health makes social media an
invaluable resource of mental health-related data. Lack of data has been one of the key limitations to
understanding and addressing the challenges the domain is facing (Coppersmith et al., 2014a). Data
from social media can not only be used to potentially provide clinical help to users in need, but also to
broaden our understanding of the various mental health conditions. Social media analysis has already
been proven valuable for identifying depression (Coppersmith et al., 2014a; Yates et al., 2017), suicide
ideation (Cohan et al., 2017; De Choudhury and Kıcıman, 2017; Kshirsagar et al., 2017; Desmet and
Hoste, 2018), and other conditions such as schizophrenia (Mitchell et al., 2015). While social media
data is abundantly available, the amount of labeled data for studying mental health conditions is limited.
This is due to the high cost of annotation and the difficulty of access to experts.

Prior research has investigated self-disclosure as a means of obtaining labeled data from social media.
De Choudhury et al. (2013a) used it to identify new mothers and track post-partum changes in emotions.
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Condition Twitter, (Copper-
smith et al, 2015)

Reddit,
SMHD (ours)

ADHD 102 10,098
Anxiety 216 8,783
Autism n/a 2,911
Bipolar 188 6,434
Borderline 101 n/a
Depression 393 14,139
Eating 238 598
OCD 100 2,336
PTSD 403 2,894
Schizophrenia 172 1,331
Seasonal Affective 100 n/a

Table 1: Comparison between the number of self-reported diagnosed users per condition in the dataset
of Coppersmith et al. (2015a) and ours (SMHD).

I was officially diagnosed with ADHD last year.
I have a diagnosed history of PTSD.
my dr just diagnosed me as schizo.

Figure 1: Examples of self-reported diagnoses statements.

Coppersmith et al. (2014a) specifically focused on self-reports of mental health diagnoses. In particular,
Coppersmith et al. (2015a) constructed a dataset of various mental health conditions using Twitter state-
ments. Finally, Yates et al. (2017) introduced a large dataset of depressed users obtained from Reddit.

We extend the previous efforts on addressing the lack of large-scale mental health-related language
data. Particularly, we propose improved data collection methods through which we can obtain high-
quality large-scale datasets of labeled diagnosed conditions paired with appropriate control users. Con-
sequently, we introduce SMHD (Self-reported Mental Health Diagnoses), a large dataset of diverse mental
health conditions that can provide further insight into the mental health-related language. We leverage
self-reported diagnosis statements where a user declares to have been diagnosed with a mental health
condition such as depression. Examples of self-reported diagnoses are shown in Figure 1. Our dataset
can be used not only to develop methods for better identifying mental health conditions through natural
language, but also allows us to investigate the characteristics of language usage within each condition.
We hope the availability of this new resource will foster further research into these problems and enhance
reproducibility of suggested approaches.

Our work has the following significant distinctions compared to existing social media datasets related
to mental health. Previous work has studied self-reported diagnosis posts in Twitter (Coppersmith et
al., 2015a), where the post length is limited to 140 characters.1 This makes the Twitter language use
rather different from real life discussions. Instead, we use data from Reddit, an interactive discussion-
centric forum without any length constraints. Our dataset contains up to two orders of magnitude more
diagnosed individuals for each condition than the Twitter dataset by Coppersmith et al. (2015a), making
it suitable for exploring more recent data-driven learning methods (see Table 1). We choose our control
users in a systematic way that makes classification experiments on the dataset realistic.

We normalize language usage between the users: by removing specific mental health signals and
discussions, we focus on patterns of language in normal (general) discussions. While our dataset cre-
ation method is close to Yates et al. (2017), we extend theirs by investigating multiple high-precision
matching patterns to identify self-reported diagnoses for a range of conditions. Part of our patterns are
obtained through synonym discovery. Considering relevant synonyms from reliable sources increases
the variety of the diagnosed users and linguistic nuances. We also explore nine common mental health

1This limitation was doubled to 280 characters in late 2017.
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conditions while Yates et al. (2017) focus only on depression. We explore classification methods for
identifying mental health conditions through social media language and provide detailed analysis that
helps us understand the differences in language usage between conditions, and between diagnosed users
and controls.

Our contributions are as follows: (i) We investigate the creation of high-precision matching patterns
to identify self-reported diagnoses of nine different mental health conditions. (ii) We introduce a large-
scale dataset of nine mental health conditions that has significant extensions to existing datasets and
we make our data publicly available. Our dataset includes users who might suffer from more than one
condition, thus allowing language study of interacting mental conditions. (iii) We investigate language
characteristics of each mental health group. (iv) We explore classification methods for detecting users
with various mental health conditions.

2 Related work

Social media offers a considerable amount of accessible common language, attracting the attention of
those who study the language of individuals with mental health conditions. Twitter is a natural source,
being a popular platform that enables users to share short messages publicly. Early work used crowd-
sourcing to identify Twitter users who report a depression diagnosis in a survey, and proposed features
that are able to identify depressed users prior to the onset of depression (De Choudhury et al., 2013b).
Others found that these characteristics hold in both English and Japanese tweets (Tsugawa et al., 2015),
indicating similar cross-cultural tendencies.

Due to the cost and bias introduced by relying on surveys, work shifted to identifying mental health
conditions by examining the content shared by social media users. Coppersmith et al. (2014a) identified
approximately 1,200 Twitter users with 4 mental health conditions (bipolar, depression, PTSD, SAD)
using diagnosis statements found in tweets (e.g., “I was diagnosed with depression”). Following this
work, detailed studies were conducted on users experiencing PTSD (Coppersmith et al., 2014b), and
schizophrenia (Mitchell et al., 2015; Ernala et al., 2017). The shared task at the 2nd Computational
Linguistics and Clinical Psychology Workshop (CLPsych 2015) focused on identifying depression and
PTSD users on Twitter (Coppersmith et al., 2015b). This included a set of approximately 1,800 Twit-
ter users with self-identified diagnoses. Leading submissions to CLPsych 2015 relied on the LIWC
lexicon (Pennebaker et al., 2015), topic modeling, manual lexicons, and other domain-dependent fea-
tures (Resnik et al., 2015; Preotiuc-Pietro et al., 2015). Coppersmith et al. (2015a) expands the research
on Twitter to eleven self-identified mental health conditions. (Benton et al., 2017) uses this dataset
(and others) with a neural multi-task learning approach to identify language characteristics. Mowery et
al. (2016) investigates specific symptoms of depression in tweets, including depressed mood, disturbed
sleep, and loss of energy.

While the abundant short texts of Twitter can provide some insight into language characteristics of
those with mental health conditions, long-form content can provide additional linguistic insights. Some
have investigated the language of users of an online crisis forum to identify posts of users who are
at highest risk to allow for faster intervention (Milne et al., 2016; Cohan et al., 2017). Losada and
Crestani (2016) applied the self-reported diagnosis strategy to identify approximately 150 Reddit users
who suffer from depression, and paired them with 750 control users. Yates et al. (2017) also used self-
reported diagnoses to identify clinically depressed users, but applied it to a larger set of Reddit, yielding
the Reddit Self-reported Depression Diagnosis (RSDD) dataset of over 9,000 users with depression and
over 100,000 control users (using an improved user control identification technique). The corpus was
also used to study the temporal aspects of self-reported diagnoses (MacAvaney et al., 2018).

Others have used data sources beyond social media to examine the language of people with mental
health conditions. Resnik et al. (2013) uses topic models to predict depression and neuroticism based
on student-written essays, finding clear clusters of words when students are asked to write about their
feelings in a stream-of-consciousness setting. Althoff et al. (2016) uses text message conversations from
a mental health crisis center to improve counseling techniques.

This work addresses important limitations of previous efforts. Similar to RSDD (Yates et al., 2017), we
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build our corpus from Reddit using self-reported diagnoses. This results in a large amount of long-form
post content that is not constrained by a character limit. Furthermore, because there are no character
limits (as exist for Twitter), the mode of language is more typical of general writing. Unlike Yates et
al. (2017), we investigate extended self-diagnoses matching patterns derived from mental health-related
synonyms. We also focus on nine mental health conditions (rather than just a single condition). This
results in a collection that can be used to compare and contrast the language characteristics of each
condition.

3 Data

In this section we describe the construction and characteristics of the Self-reported Mental Health Di-
agnoses (SMHD) dataset. The studied conditions correspond to branches in the DSM-5 (American Psy-
chiatric Association, 2013), an authoritative taxonomy for psychiatric diagnoses. Six conditions are
top-level DSM-5 disorders: schizophrenia spectrum disorders (schizophrenia), bipolar disorders (bipo-
lar), depressive disorders (depression), anxiety disorders (anxiety), obsessive-compulsive disorders (ocd)
and feeding and eating disorders (eating). The three other conditions are one rank lower: post-traumatic
stress disorder (ptsd) is classified under trauma- and stress-related disorders, and autism spectrum dis-
orders (autism) and attention-deficit/hyperactivity disorder (adhd) under neurodevelopmental disorders.
We use these lower-rank conditions to provide more definition when they are clearly distinguishable from
sibling disorders.

3.1 Dataset construction
The SMHD dataset was created by using high precision patterns to identify Reddit users who claimed
to have been diagnosed with a mental health condition (diagnosed users) and using exclusion criteria to
match these diagnosed users with control users who are unlikely to have one of the mental health con-
ditions studied (control users). SMHD consists of user labels indicating the mental health condition(s)
associated with each user and all Reddit posts made by each user between January 2006 and Decem-
ber 2017 (inclusive). Users and posts were extracted from a publicly available Reddit corpus2. This
approach is based on the method used to create the Reddit Self-reported Depression Diagnosis (RSDD)
dataset (Yates et al., 2017). SMHD expands on RSDD by incorporating synonyms in matching patterns
and including diagnoses for eight new conditions in addition to depression.3

Diagnosed users were identified using high precision diagnosis patterns in a manner similar to that
used in prior work that studied depression on Reddit (Yates et al., 2017); we describe these patterns in
more detail in section 3.2. After identifying candidate diagnosed users who matched a diagnosis pattern
(see Figure 1), we removed any candidates who (1) matched a negative diagnosis pattern4 or (2) had
fewer than 50 posts talking about topics other than mental health (mental health posts). This is done
to ensure enough data remains for a diagnosed user after removing their mental health-related content.
After removing these candidate diagnosed users, 36948 diagnosed users remain.

Mental health posts were defined as posts that were either made to a subreddit (i.e., a subforum
devoted to a specific topic) related to mental health or that included language related to mental health,
such as the name of a condition (e.g., OCD) and general terms like diagnosis, mental illness, or suffering
from. We constructed a list of subreddits related to mental health by beginning with lists from prior work
studying depression on Reddit (Pavalanathan and De Choudhury, 2015; Yates et al., 2017) and expanding
them to include discussion and support subreddits for each of the other mental health conditions. All
mental health posts are removed for diagnosed users and control users alike. Classification therefore
happens on the set of posts that do not contain any of the mental health terms, and that have not been
posted in any of the mental health-related subreddits. Our methodology does not guarantee, however,
that all potentially relevant terms or subreddits have been excluded.

Control users were chosen from a pool of candidate control users based on their similarity with
2https://files.pushshift.io/reddit/
3Patterns are available from http://ir.cs.georgetown.edu/data/smhd/.
4e.g., I was never clinically diagnosed.
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Figure 2: Precision, recall, F1 and F0.5 of the condi-
tion diagnosis patterns as a function of the maximum al-
lowable distance (in characters) between a diagnosis and
a condition keyword. Chosen threshold indicated at 40
characters.

Figure 3: Number of users per condition
for SMHD (in blue) and SMHD-RC (in or-
ange).

Figure 4: Number of users with a single or mul-
tiple co-occurring conditions. Figure 5: Concomitance of condition diag-

noses. Rows contain relative co-occurences of
the row condition with other conditions.

the diagnosed users as measured by their number of posts and the subreddits they posted in. This is
done to prevent biases between the control and diagnosed groups in the dataset and prevent making
the task of identifying such users artificially easy. In more detail, every Reddit user who (1) had no
mental health post5 and (2) had at least 50 posts became a candidate control user. Given this pool of
candidate control users, we matched each diagnosed user with 9 candidate control users (on average)
after excluding controls who had never posted in the same subreddit as the diagnosed user or who had
more than twice as many posts or less than half as many posts as the target diagnosed user.

The selection criteria for potential control users are stringent: users are removed if they do not have
the required subreddit overlap or minimum post count, or if they use any of the mental health-related
terms in any of their posts. The latter is necessary because we found that the prior probability of using
an exclusion term in any given subreddit (e.g. depressed) is almost always higher for diagnosed users
than for controls, even in popular subreddits on general topics (e.g. r/politics). As a result, the pool of
candidate controls for matching to diagnosed users is significantly diminished. Because control users are
picked from the pool without replacement, we were unable to meet the target of 9 appropriate controls for
some of the diagnosed users. We release the users who have at least 9 control users as SMHD, and use this

5When defining language related to mental health, we consider add to be a mental health term. However, this term is often
used as a verb that does not refer to Attention Deficit Disorder. We therefore do not exclude candidate control users who have
used this term. We instead remove any post containing the term add, which matches our treatment of the diagnosed users where
all mental health posts are removed.
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dataset for all analyses in this paper. It contains 20,406 diagnosed users and 335,952 matched controls.
A secondary dataset containing the remaining 16,542 diagnosed users with fewer than 9 controls will
be made available as SMHD-RC (Relaxed Controls) for studies that require additional data for analysing
differences between mental health conditions, rather than between diagnosed users and controls.

3.2 Diagnosis patterns
To identify Reddit users who report a diagnosis for one or more mental health conditions, we developed
detection patterns with a focus on high precision. The patterns consist of two components: one that
matches a self-reported diagnosis, and another that maps relevant diagnosis keywords to the 9 mental
health conditions. A user is included for a condition if one of the condition keywords occurs within a
certain distance of the diagnosis pattern (as discussed below).

For each condition, a seed list of diagnosis keywords was collected from the corresponding DSM-5
headings. To increase the likelihood of matching diagnostic posts, we expanded each set of medical
expressions to include synonyms, common misspellings, vernacular terms and abbreviations. Our steps
mirror the ones of Soldaini and Yom-Tov (2017), who were also interested in identifying self-diagnosed
users, albeit on query logs. In particular, we leveraged two synonym mappings to generate alternative
formulations of the disorders of interest:

• MedSyn (Yates and Goharian, 2013) is a laypeople-oriented synonym mapping ontology. It was gener-
ated from a subset of UMLS6 filtered to remove irrelevant semantic types.

• Behavioral (Yom-Tov and Gabrilovich, 2013) maps expressions commonly used by laypeople to de-
scribe their medical condition to concepts in UMLS. The synonyms were generated by first identifying
the most frequent search terms Yahoo! search used to retrieve Wikipedia medical pages. Then, frequent
lexical affinities (Carmel et al., 2002) to the aforementioned were added to synonyms lists.

The resulting expansions were vetted manually to remove terms that did not describe the condition pre-
cisely (e.g., hypernyms) or that were ambiguous (e.g., “add”), and missing items were added.

Using the diagnosis patterns without condition keywords, all self-reported diagnosis posts were col-
lected from the Reddit dataset, and 500 posts were randomly sampled for manual annotation. False
positive matches were found in 18 of those, i.e. the precision for self-diagnosis detection was 96.4%.
False positives included negations, hypotheticals (e.g., “I’m not sure if I was diagnosed”), and diagnoses
that are uncertain or wrong (“I was diagnosed with autism, then undiagnosed.”). Out of 500 diagnosis
posts, 241 reported a mental health condition. The ones that were annotated as belonging to one of the 9
conditions were used to tune the condition term lists and the optimal distance between a diagnosis pattern
and a condition term. Figure 2 plots the effect of this distance on precision, recall, F1 and F0.5 (which
emphasizes precision). A maximum distance of 40 characters was chosen, where F0.5 score is highest.
We thus achieve high precision (93%) with good recall (84%). Since the optimal distance threshold was
tuned on this development set, it may overfit the data and the reported scores should be considered a
ceiling performance.

To validate the final diagnosis matching approach on a held-out set, 900 posts (corresponding to 9
samples of 100 diagnosis posts, one for each condition) was manually checked for false positives. We
obtain high precision, with a minimum precision of 90% for anxiety and macro-averaged precision of
95.8%. Most false positives are caused by terms for a condition occurring close to a diagnosis for another
condition (e.g. “My doctor diagnosed me with depression, and I also have an anxiety problem.”). While
a user might also suffer from these conditions, they are not explicitly reporting a diagnosis.

3.3 Dataset statistics
Figure 3 shows the distribution of diagnosed users per condition in both datasets. Users who self-reported
a diagnosis of depression, ADHD, anxiety or bipolar are most common. Interestingly, 26.7% of diag-
nosed users in the dataset reported more than one diagnosis (Figure 4). Such concomitant conditions are
not uncommon, and were also reported in the work of Coppersmith et al. (2015a). As can be seen in

6Unified Medical Language System
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condition posts tokens characters
per user total per post total per post

control 310.0 (157.8) 115,669k 26.2 (48.3) 3,031.6M 133.9 (252.9)

depression 162.2 (84.2) 1,272k 45.1 (80.0) 57.4M 227.5 (406.9)
adhd 164.7 (83.6) 872k 46.5 (82.7) 40.5M 237.5 (433.5)
anxiety 159.7 (83.0) 795k 46.4 (83.0) 36.9M 233.9 (422.8)
bipolar 157.6 (82.4) 575k 45.5 (86.5) 26.2M 230.6 (447.0)
ptsd 160.7 (84.7) 258k 53.1 (114.0) 13.7M 267.8 (581.7)
autism 168.3 (84.5) 248k 46.5 (82.3) 11.6M 237.9 (434.0)
ocd 158.8 (81.4) 203k 46.4 (90.1) 9.4M 234.2 (459.5)
schizophrenia 157.3 (80.5) 123k 49.2 (105.6) 6.1M 253.8 (566.6)
eating 161.4 (81.0) 53k 46.3 (73.7) 2.5M 232.6 (372.8)

Table 2: Average (Stdev.) and count of posts, tokens and characters for diagnosed and control users.

Figure 5, depression co-occurs with high frequency with most of the other conditions, almost 30% of
users with depression, OCD or PTSD also suffer from anxiety, and schizophrenia is most likely to be
diagnosed alongside bipolar disorder.

An important characteristic of the SMHD dataset is its scale. Reddit allows its users to write long-form
posts, so unlike datasets collected on Twitter, a large amount of text is available for each diagnosed user.
Table 2 gives an overview of the average and total number of posts, tokens and characters per condition,
and for controls. Control users post on average twice as many posts as diagnosed users, but these posts
tend to be considerably shorter. Although this may be a valid signal for certain mental health conditions,
it can be removed for classification experiments by truncating the length and number of posts. This is
common practice for technical reasons, and truncating post length has been shown in previous work to
improve classification performance (Yates et al., 2017).

3.4 Ethics and privacy
Even though we rely on publicly available Reddit posts in our work, mental health is a sensitive matter
and measures to prevent risk to individuals in social media research should always be considered (Hovy
and Spruit, 2016; Šuster et al., 2017). The risks associated with the data collection methods and our
resulting SMHD dataset is minimal. We refrain from publicly posting any excerpts of the data, we made
no attempt to contact users, and we made no attempt to identify or link users to other social media
accounts. We further replace usernames with random identifiers to prevent users’ identities from being
known without the use of external information. The SMHD dataset is available through a Data Usage
Agreement (DUA)7 protecting the users’ privacy. In particular, the DUA specifies that no attempt should
be made to publish portions of the dataset (which could result in users being identified), contact users,
identify them, or link them with other user information.

4 Analysis

To investigate the differences between the language of mental health condition groups and the control
group, we categorize language of users based on measures of psycholinguistic attributes through the
LIWC lexicon (Pennebaker et al., 2015). These categories include variables that characterize linguistic
style as well as psychological aspects of language (e.g., cognitive attributes and affective attributes). For
each user, we obtain LIWC categories based on their posts and then compare these categories across
users in each mental health condition group versus the control group using Welch’s t-test (Welch, 1947).
We adjust p-values with Bonferroni correction. To better see the differences between the categories, we
also report the Cohen’s d statistic (Cohen, 1988). Table 3 shows the results.

In general, we observe a variety of differences in language use between the diagnosed and the control
groups. The effect sizes range from a very small effect to medium (0.05<d<0.5), which is typical of
large datasets (Sakai, 2016). These differences span across both the linguistic style and psychological

7http://ir.cs.georgetown.edu/resources/

1491



LIWC category depression adhd anxiety bipolar ptsd autism ocd schizophrenia eating

Summary Language Variables
Clout �0.06‡ – �0.1‡ – – – – – –
Authentic 0.2‡ 0.15‡ 0.22‡ 0.18‡ 0.21‡ 0.14‡ 0.23‡ – 0.24?

WPS 0.08‡ 0.1‡ 0.08‡ 0.06‡ 0.1‡ 0.12‡ 0.08† – –
Dictionary words 0.27‡ 0.22‡ 0.28‡ 0.24‡ 0.31‡ 0.2‡ 0.28‡ 0.22‡ 0.3‡

Total function words 0.27‡ 0.21‡ 0.28‡ 0.24‡ 0.3‡ 0.26‡ 0.28‡ 0.23‡ 0.27‡

Total pronouns 0.22‡ 0.14‡ 0.24‡ 0.2‡ 0.25‡ 0.17‡ 0.26‡ 0.18‡ 0.26†

Personal pronouns 0.23‡ 0.14‡ 0.26‡ 0.21‡ 0.22‡ 0.14‡ 0.23‡ 0.2‡ 0.27†

1st pers singular 0.23‡ 0.16‡ 0.28‡ 0.22‡ 0.23‡ 0.17‡ 0.26‡ 0.17† 0.28†

3rd pers singular 0.09‡ – 0.1‡ 0.08? 0.17? – – – –
Impersonal pronouns 0.06‡ 0.05? 0.07† – 0.11† 0.09? 0.13† – –
Prepositions 0.12‡ 0.12‡ 0.12‡ 0.12‡ 0.16‡ 0.12‡ 0.11† – –
Auxiliary verbs 0.12‡ 0.1‡ 0.14‡ 0.11‡ 0.14‡ 0.15‡ 0.13‡ – –
Common Adverbs 0.09‡ 0.07‡ 0.08‡ 0.06? – – – – –
Conjunctions 0.17‡ 0.14‡ 0.18‡ 0.16‡ 0.17‡ 0.13‡ 0.11† – 0.3‡

Other Grammar
Common verbs 0.15‡ 0.11‡ 0.17‡ 0.13‡ 0.15‡ 0.13‡ 0.19‡ – –
Numbers �0.1‡ �0.09‡ �0.11‡ �0.09‡ �0.11‡ – �0.1‡ – �0.13†

Psychological Variables
Positive emotion – – – – – �0.08? – – –
Anxiety 0.07† – 0.07? – – – – – –
Social processes 0.11‡ 0.07‡ 0.11‡ 0.1‡ 0.15‡ – – – –
Family 0.06‡ – 0.06? – 0.12† – – – –
Female references 0.13‡ 0.07‡ 0.1‡ 0.13‡ 0.22† – – – –
Cognitive processes 0.12‡ 0.13‡ 0.14‡ 0.09‡ 0.12† 0.16‡ 0.13† – –
Insight 0.09‡ 0.07‡ 0.1‡ 0.08‡ – 0.1? 0.17† – –
Discrepancy – 0.06? – – – – – – –
Tentative 0.07‡ 0.08‡ 0.08‡ 0.07? – – – – –
Differentiation 0.08‡ 0.08‡ 0.1‡ – – 0.09? – – –
Biological processes 0.06‡ – – – – – – – –
Health 0.08‡ 0.07† 0.08‡ 0.11‡ – – – – –

Time orientation
Past focus 0.08‡ 0.05? 0.09‡ 0.08† 0.09? – 0.11? – –
Present focus 0.09‡ 0.06‡ 0.1‡ 0.07? – – – – –

Personal concerns
Relativity 0.05† 0.06† – – – – – – –
Time 0.06‡ – 0.06? – – – – – –
Work – 0.06? – – – – – – –
Leisure �0.07‡ �0.07‡ �0.07‡ �0.09‡ �0.12‡ �0.09† – – –
Money �0.06‡ – �0.05‡ �0.06‡ – �0.1‡ – – �0.12‡

Informal language �0.07‡ �0.07‡ �0.06‡ – �0.12‡ – �0.09? – –
Netspeak �0.07‡ �0.06‡ �0.06‡ �0.06? �0.1‡ �0.08? – – �0.15‡

Assent – – – – �0.06? – – – –

Table 3: Differences between the linguistic and psycholinguistic variables obtained from LIWC between
users treatment groups and control users. Statistical significance is based on t-test with Bonferroni ad-
justment. Numbers in the cells are effect sizes (Cohen’s d). ?, †, and ‡ respectively show adjusted
p-values of <0.01, <0.001 and <0.0001. This is also indicated by shading colors, red shading shows
that the corresponding category is observed with more intensity in the treatment group, where as blue
shading shows more significance in the control group. For brevity, only significant attributes are shown.

attributes. Particularly, we observe that clout, an attribute regarding language that indicates high social
status, is more prominent among control users compared to the depression and anxiety groups. Related
work in psychology shows that depression and anxiety are more prevalent in lower socioeconomic status
demographics (Murphy et al., 1991), which is in line with the observation in our dataset. Next, authen-
tic language is stronger among most of the mental health groups compared with control groups. This
correlates with the use of personal and first person pronouns. This is backed by prior research show-
ing that fewer self-references are associated with unauthentic language (Newman et al., 2003). We also
observe that among most of the conditions the usage of first-person singular pronouns is higher than in
control groups. Related studies arrive at the same conclusion that people with mental health conditions
tend to use more first-person pronouns and references, possibly because mental health conditions result
in greater self-focused attention and rumination (Bucci and Freedman, 1981; Pennebaker et al., 2015;
Watkins and Brown, 2002; Van der Zanden et al., 2014).

Social processes, the language related to human interaction and sharing, appears to be higher in de-
pressed, anxiety and PTSD users. A potential explanation for this is that sharing and support-seeking
behaviors have been shown to improve an individual’s state of mind (Turner et al., 1983; De Choudhury
and Kıcıman, 2017). People with conditions such as bipolar, depression and anxiety show significantly
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Depression ADHD Anxiety Bipolar PTSD Autism OCD Schizophrenia Eating Multi-label

Logistic
Regression
BoW features

P=85.00 P=88.60 P=85.80 P=87.06 P=92.44 P=93.18 P=95.00 P=100.00 P=0.00 P=17.22
R=28.65 R=19.22 R=27.04 R=21.57 R=19.71 R=7.93 R=4.87 R=2.25 R=0.00 R=24.38
F=42.85 F=31.59 F=41.13 F=34.58 F=32.50 F=14.62 F=9.27 F=4.40 F=0.00 F=19.72

XGBoost
BoW features

P=81.40 P=85.71 P=83.52 P=84.94 P=89.83 P=84.09 P=86.96 P=86.84 P=94.12 P=16.87
R=29.49 R=21.25 R=31.46 R=30.31 R=37.99 R=21.47 R=25.64 R=24.72 R=14.29 R=29.38
F=43.29 F=34.05 F=45.71 F=44.68 F=53.40 F=34.21 F=39.60 F=38.48 F=24.81 F=20.51

Linear SVM
BoW features

P=78.70 P=83.74 P=81.76 P=84.36 P=93.12 P=91.19 P=86.29 P=93.06 P=100.00 P=19.20
R=39.75 R=30.69 R=39.88 R=37.21 R=41.22 R=28.05 R=27.44 R=25.09 R=13.39 R=34.86
F=52.82 F=44.92 F=53.61 F=51.64 F=57.14 F=42.90 F=41.63 F=39.53 F=23.62 F=23.71

Supervised
FastText

P=66.80 P=62.11 P=67.63 P=62.63 P=70.76 P=68.47 P=65.02 P=69.23 P=64.15 P=23.02
R=44.70 R=37.77 R=44.54 R=42.74 R=48.57 R=39.07 R=33.85 R=33.71 R=30.36 R=44.44
F=53.56 F=46.98 F=53.71 F=50.81 F=57.60 F=49.75 F=44.52 F=45.34 F=41.21 F=27.83

Convolutional
Neural
Network (CNN)

P=45.85 P=37.86 P=51.33 P=37.21 P=47.00 P=30.82 P=22.97 P=30.12 P=38.56 P=20.65
R=56.07 R=32.77 R=45.01 R=39.53 R=65.95 R=50.68 R=57.95 R=47.94 R=52.68 R=48.12
F=50.45 F=35.13 F=47.96 F=38.34 F=54.88 F=38.33 F=32.90 F=36.99 F=44.53 F=26.55

Table 4: Classification performance on target users in SMHD. All methods rely on the official SMHD split
introduced in Section 3 for training, tuning, and testing. We report the performance of each classifier as
binary predictor (i.e., given a condition, predict if a user belongs to the diagnosed or control group) as
well as in a multi-label, multi-class setting (i.e., given a user, predict if and which conditions they were
diagnosed with).

more female references. This might point to a gender bias in the corpus towards males, which would
shift an increased preoccupation with romantic relationships towards references of female partners. Cog-
nitive processes (markers of cognitive activity associated with rational thought and argumentation) are
also observed more in people with mental health conditions. This could be due to the observation that
these groups tend to express their feelings more. Other attributes such as health, focus on past time, and
biological processes are observed more in conditions such as depression. Unsurprisingly, attributes like
leisure and money are more prevalent among controls.

5 Experiments

In order to provide a more thorough understanding of SMHD, we explored several classification methods
for each of the conditions included in the dataset. We train our classifiers both in a binary and multi-
label multi-class setting. For the binary tasks, all classifiers are trained only on the subset of diagnosed
users in SMHD who are associated with any condition and their respective control users. Recall that,
as discussed in 3.3, users can be diagnosed with one or more conditions; as such, we also evaluate the
baseline classifiers in a multi-class, multi-label setting. In other words, given a user, classifiers are trained
to predict if and which conditions the user was diagnosed with. In detail, we consider the following
methods:

Logistic regression: we trained a simple discriminative model using bag-of-words features extracted
over all posts by all users in the training set. Posts were concatenated and split on non-alphanumeric
characters; we normalized tokens by folding them to lowercase. Words occurring less than 20 times in
the training set were removed. Features were weighted using tf-idf and `

2

-normalized.
XGBoost (Chen and Guestrin, 2016): we evaluated the performance of an ensemble of decision trees.

For this model, the same features described above were used. We set the number of estimators to 100.
Support vector machine (SVM): we included a SVM classifier with linear kernel among our base-

lines. Like the methods above, this model was trained on tf-idf bag-of-words features.
Supervised FastText (Joulin et al., 2016): we trained a shallow neural net model using FastText. After

tuning on the development set, we set the dimension of the hidden layer to 100. The model leverages
sub-word information by using character ngrams of size 3 to 6; it was trained for 100 epochs.

Convolutional neural network (CNN): Finally, we tested a CNN approach to learn ngram sequences
indicative of each condition. We used a model architecture based on the work of Kim (2014), with
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a filter size of 3 and a pooling size of 4. A model was trained for each condition, and each model
was trained for 100 epochs. Each user’s posts are concatenated and truncated to 15,000 tokens. This
representation combines tractability with density. We do not pad posts individually hence no space is
wasted by including short posts. Each token is represented by the FastText embeddings from above.

Results of the classification methods are reported in Table 4. All classifiers are trained, tuned, and
tested on binary labels, except for the results reported in the rightmost column (“multi-label”). Overall,
FastText obtained the best performance in terms of F1 score across all conditions except bipolar, in
which it is outperformed by the SVM model, and eating disorder, where it is outperformed by a CNN.
FastText also outperforms all other classifiers in the multi-label, multi-class test setting. We observe that
models trained on bag-of-words features favor precision over recall, while the two neural models we
tested offer more balanced performance. This can be explained by the fact that bag-of-words models are
more likely to give more weight to strongly indicative text features, potentially causing some overfitting
on the training data.

Comparing across conditions, we note that the performance on models is strongly affected by the num-
ber of diagnosed users in the training set. All classifiers struggle on the three conditions with fewest users
(OCD, schizophrenia, and eating). This observation is consistent with the analysis on LIWC categories
reported in Section 4.

Finally, we note that the simpler neural model (FastText) outperformed the richer CNN method. We
explain this result by observing that FastText considers all posts by a user, while CNN samples a portion
of them. This strategy, which is motivated by efficiency reasons, was based on the work of Yates et
al. (2017), in which sampling was found to be an effective strategy to make the classification problem
tractable. However, this result suggests that novel methods ought to be studied to achieve a robust
sampling strategy across all conditions included in SMHD.

6 Conclusion

We presented SMHD, a large dataset of Reddit users with diverse mental health conditions and matched
control users. Our dataset was constructed using high-precision diagnosis patterns and carefully selected
control users. To our knowledge, SMHD is the largest dataset that supports a variety of mental health
conditions and is up to two orders of magnitude larger than the largest published similar resource. We
further examined differences in language use between mental health condition (diagnosed users) and
control groups as measured by various linguistic and psychological signals. Several text classification
methods were explored to identify the diagnosed users, with FastText being the most effective approach
overall. We make our dataset available to the community, and hope that it will foster further research
into these problems and enhance reproducibility of suggested approaches.
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