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Abstract

Mathematical models can describe biochemical processes. Accurately
measured data are fundamental for the estimation of the model parame-
ters. This research uses the Monod model describing the bacterial kinetic
degradation. The Levenberg-Marquardt method was applied successfully
in order to fit the parameters of the model expressing the substrate con-
centration as a function of time. Hereby the method of steepest ascent
and the iterative Gauss-Newton method with its quadratic convergence
rate were used to find optimized parameter values of the Monod kinetic
model. These results are compared with the results of other minimization
methods. Orthogonal error measurement is introduced as uncertainty is
present for all variables. This corrected type of error measurement is used
to validate the parameter estimations.
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1 Introduction

Kinetic equations [4], which describe the activity of an enzyme on a substrate,
are crucial in understanding many phenomena in biotechnological processes.
Accurate models, based on quantitative experimental data, are required for the
design and optimization of biological transformation processes. The main goal
of this work was the construction of a valuable nonlinear regression model [1] in
this application field of microbiology, inspired by the Monod kinetic model [9]
and characterized by an accurate estimation of the parameters. Linear regres-
sion is insufficient because an enzyme reaction consists of two timescales with
a different behaviour: the initial stage near t = 0 when there is little change in
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the substrates concentration and a second stage when the substrates concentra-
tion changes significantly. Simkins and Robinson [12, 13] already determined
whether the variety of shapes of substrate disappearance curves could be mod-
eled with only the variables of substrate concentration and population density
and the parameters of classical Monod kinetics. Compared to these previouly
published relative papers, the novelty of this contribution is the application
of the Levenberg-Marquardt algorithm [6, 7, 10, 3] or damped least-squares
method, to obtain a highly accurate model for the considered enzyme kinetic
problem.

2 Materials and methods

2.1 Monod kinetic model

In enzyme kinetics the reaction rate is measured to study the chemical reactions
that are catalysed by enzymes. The study of the enzyme’s kinetics can reveal
the catalytic mechanism of this enzyme, its role in metabolism, how its activity
is controlled, and how a drug or a poison might inhibit the enzyme. The idea of
microbial growth kinetics has been dominated by an empirical model described
in Eq. (1) originally proposed by Monod [9]. Monod’s model introduced the con-
cept of a growth limiting substrate by an empirical equation or an approximate
quantification of reaction kinetics.

µ =
µmax S

Ks + S
(1)

Here µ is the growth rate and µmax is the maximum growth rate specific for
the enzyme. S is the substrate concentration and Ks is the substrate saturation
constant (i.e. substrate concentration at half µmax). In Monod’s model, the
microbial growth rate is related to the substrate concentration S of a single
growth limiting substrate through the parameters µmax and Ks. In the activity
study, a distinction has to be made between resting conditions (no growth)
and conditions of growth. The latter is characterized by a S-shaped substrate
depletion curve expressing the sigmoidal kinetics [11].

2.1.1 Monod’s no growth model

In case no growth is assumed, the rate of change of substrate consumption by
a bacterium growing in batch, can be described by [9]

dS

dt
= −µmax S

Ks + S
X0, (2)

with the half-saturation constant for growth Ks, the initial biomass concentra-
tion X0 and the maximum specific growth rate µmax as parameters. Following
the differential equation Eq. (2), the relation between the substrate concentra-
tion S and time t can be written as

Ks ln
S

S0
+ S − S0 = −X0 µmax (t− t0). (3)
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In case of the no growth model, the sensitivity equations can be obtained by
differentiation of Eq. (3) with respect to µmax and Ks respectively:

Ks
S0

S

1

S0

dS

dµmax
+

dS

dµmax
= −X0 (t− t0) ⇒

dS

dµmax
=

−X0 (t− t0)

1 + Ks

S

(4)

ln
S

S0
+Ks

S0

S

1

S0

dS

dKs
+

dS

dKs
= 0 ⇒ dS

dKs
=

− ln S
S0

Ks

S + 1
(5)

These sensitivity equations express the rate of change of the concentration S
with varying parameters µmax and Ks.

2.1.2 Monod’s growth model

In case of the growth model, the rate of change of substrate consumption by a
bacterium growing in batch, can be described by [9]

dS

dt
= − µmaxS

Ks + S

X

Y
(6)

with the yield coefficient Y . The variable X is the biomass concentration and
is linked at the substrate concentration by the mass balance relation

X = Y (S0 − S) +X0, (7)

which makes that

dX

dt
= −Y

dS

dt
and Y S0 +X0 = X + Y S. (8)

The integrated form of Eq. (6) gives

C1 ln
X

X0
− C2 ln

S

S0
= µmax (t− t0) (9)

with C1 = (KsY +S0 Y +X0)/(Y S0+X0) and C2 = Ks Y/(Y S0+X0) because
differentiating Eq. (9) with respect to t leads to

Ks Y + (Y S0 +X0)

(Y S0 +X0)

1

X

dX

dt
− Ks Y

(Y S0 +X0)

1

S

dS

dt
= µmax. (10)

This is equivalent to Eq. (6) if (Y S0 +X0) and
dX
dt are eliminated by means of

Eq. (8).

2.2 Experimental setup

A chloropropham degrading biofilm culture was grown on plastic carriers (Biofilm-
Chip M, anoxkaldnes Sweden) using minimal incubation medium which con-
tained 1419.6 mg Na2HPO4, 1360.9 mg KH2PO4, 300 mg (NH4)2SO4, 98.5 mg
MgSO4 7H2O, 5.88 mg CaCl2 H2O, 2.78 mg FeSO4 7H2O, 1.69 mg MnSO4 H2O,
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1.15 mg ZnSO4 7H2O, 0.38 mg CuSO4 5H2O, 0.24 mg CoCl2 6H2O, 0.12 mg
(NH4)6Mo24 4H2O, 3.2 mg Na2EDTA and 50 mg of chlororpropham per liter
of distilled water [16, 17]. When all chloropropham was mineralized, 200 mg/l
chloroproham was added to the medium until a biofilm became clearly visi-
ble on the added carriers . The biomass concentration was determined and
expressed as the volatile suspended solid concentration. A batch test was set
up in 250 ml autoclaved glass erlenmeyers containing 100 ml minimal medium
with a final concentration of 60 mg/l chloropropham and 50 mg VSS/l culture
(VSS=Volatile Suspended Solids) [14] to examine the chloropropham removal
efficiency of the culture. Liquid samples for HPLC analysis were taken at 30
minutes intervals. Supernatants of the samples were analyzed by reverse-phase
HPLC after the cells were removed by centrifugation at 5000 g for 10 minutes.

2.3 Analytical methods

Chloropropham and 3-chloroaniline were analysed using a high-performance liq-
uid chromatography (HPLC) system (HP Agilent 1100 series) equipped with
a G1322A degasser, a G1311A quaternary pump, a G1313A autosampler, a
G1314A variable wavelength detector, a G1316A column compartment and HP
Chemstation software. A Gracesmart RP-18 column (250- by 4.6-mm inner di-
ameter, 5-m particle size; Grace, USA) was used. The mobile phase consisted
of CH3OH/0.1% H3PO4 (60/40) with a flow rate of 1.0 ml 1/min and the UV
detector was set to 240 nm. Quantitative determination of chloropropham and
3-chloroaniline was done using an external standard ranging from 0.1 to 60 mg/l.
The detection limit was ± 0.1 mg/l.

2.4 Curve fitting method

To model the evolution in time of the concentration S, it is necessary to find
methods that can mathematically express their relation based on the measured
concentration values at different time periods. The initial concentrations are
S0 = 59.69mg/l and X0 = 10mg/l.

Interpolation of the data points by means of polynomials (e.g. Lagrange
interpolation), performs badly too much oscillatory. With the knowledge of the
integrated forms Eq. (3) and Eq. (9), better results can be expected from curve
fitting methods. To find the best estimations of the parameters in Eq. (3) and

Eq. (9), the sum of squares of the differences (ti − t
[pred]
i ) can be minimized,

with (Si, ti) the i-th data point in the (concentration, time) field. t
[pred]
i is the

predicted value of time associated with the measured concentration Si follow-
ing the suggested model. The Levenberg-Marquardt algorithm is an iterative
technique that locates the minimum of a function that is expressed as the sum
of squares of nonlinear functions. It uses a combination of steepest descent and
the Gauss-Newton method to handle nonlinear least-squares problems with a
vectorial approach. An alternative method is the quasi-Newton method that
works with an approximation for the Hessian which is built up from changes in
the gradient.
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Figure 1: Orthogonal error measurement

The classical error measurement

Evert =

√√√√ n∑
i=1

(∆ti)2, with∆ti = ti − t
[pred]
i , (11)

expresses the vertical error in the (S, t) plane with n the number of data points.
A better error measurement tool is the orthogonal error

Eorth =

√√√√ n∑
i=1

ϵ2i (12)

with ∆ti = ti − t
[pred]
i and ∆Si = Si − S

[pred]
i (13)

and ϵi the orthogonal distance between (Si, ti) and the regression curve. From
Figure 2 it can be derived that

sin θi =
∆Si√

(∆ti)2 + (∆Si)2
and sin θi =

ϵi
∆ti

(14)

as θi is a sharp angle in different rectangular triangles: ∆ABC and ∆ADB.
This justifies that

ϵi =
∆Si ∆ti√

(∆ti)2 + (∆Si)2
. (15)

3 Results and discussion

3.1 Initial parameter estimation

As the Levenberg-Marquardt method is an iterative method, an accurate initial
estimation of Ks and µmaxis recommendatory. Initial estimations of the pa-
rameters can be obtained from the discretized form Eq. (16) of the no growth
differential equation Eq. (2).

∆t

∆S
= − 1

S

Ks

X0 µmax
− 1

X0 µmax
. (16)
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Estimations of the intercept and the slope when expressing ∆t
∆S as a function of

1/S, lead to estimations of Ks and µmax to start the iteration process based on
the method of Levenberg-Marquardt. In the same way Eq. (17) can be used in
case of growth based on Eq. (6).

X
∆t

∆S
= − 1

S

Ks Y

µmax
− Y

µmax
. (17)

3.2 Feasibility

As for the no growth model the sensitivity coefficients −dS/dµmax and dS/dKs

are linear dependent, there is no guarantee for a unique minimum. However,
the two sensitivity coefficients are not proportional, so unique estimations of the
parameters of the model can be expected [2].

In case of the Monod growth model, the sensitivity equations coefficients
are almost proportional. Consequently the iteration process of the nonlinear
regression will be hindered by the similar modes [2].

3.3 Regression analysis

Table 1: Parameter results after iteration process of curve fitting process for the
growth model.

Parameter Initial value Value after convergence
µmax(1/h) 0.0645 0.0386
Ks(mg/l) 5.79 11.22

Y 0.2 0.04

Table 2: Parameter results after iteration process of curve fitting process for the
no growth model.

Parameter Initial value Value after convergence
µmax(1/h) 0.290 0.998
Ks(mg/l) 5.203 8.852

A nonlinear regression analysis based on the Levenberg-Marquardt method
for the no growth model and the growth model is performed by means of the
software MATLAB [8]. The best fitted curves are plotted together with the
data points in Figure 4 (no growth model and growth model) and do almost
coincide.

Accurate initial parameter values were obtained from slope estimations of the
linear regression model from Figure 3, also descriped in Eq. (16) and Eq. (17).
The values of Ks and µmax are estimated with results as in Table 1 and Table 2
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Figure 2: Orthogonal error measurement

for respectively the growth and the no growth model. Here Y is a dimensionless
quantity as is expresses mg of biomass produced/mg of substrate consumed.

The no growth model requires less iterations and less function evaluations,
while the growth model results in a smaller difference between the measured
values and the predicted values of the model. The use of the R2-value (R2 =
SSM
SST ) to evaluate the regression models is typical for an analysis of variance.

However here it is avoided as the model is non-linear [15] so the partitioning
SST=SSE+SSM [5] of the total sum of squares into the sum of squares of the
model SSM and the sum of squares of the error SSE does no longer hold. Table 3
also shows that the Levenberg-Marquardt method is superior to other iteration
methods in iteration efficiency to reach the same model. Experiments with
several more arbitrary initial parameter values lead to convergence difficulties
in case of the growth model. This was predicted by the almost proportional
sensitivity coefficients.

4 Conclusion

The Levenberg-Marquardt method performed as a valuable and efficient method
to construct a nonlinear regression curve in this case of bacterial degradation
kinetics. This is confirmed by several evaluation criteria: the number of func-
tion evaluations to calculate the cost, supplemented by an orthogonal error
measurement to calculate the accuracy. This error measure takes into account
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Table 3: Performance results after iteration process of curve fitting process
Model Method Number of Number of Eorth

iterations function
evaluations (seconds)

No growth Levenberg-Marquardt 6 21 0.6775
quasi-Newton 10 60 0.6775
Simplex 62 117 0.6775
Genetic Algorithm 116 5850 0.9084

Growth quasi-Newton 32 152 0.5851
Levenberg-Marquardt 26 121 0.5851
Simplex 127 228 0.6775
Genetic Algorithm 138 6950 1.264

inaccuracy for the independent time measurement as well as for the dependent
concentration measurement. The initial values for the iteration process required
to obtain the regression parameters, are estimated from the discrete form of the
underlying differential equation. The feasibility of the iteration process is exam-
ined by considering the sensitivity equations, expressing the change in response
of the concentration with a change in the parameters.
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