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Abstract. Progress in diagnosis, treatment, and epidemiology of human African trypanosomiasis (sleeping sickness)
depends on the existence of specific and sensitive diagnostic tools. Inherent shortcomings of serologic and parasitologic
diagnostic methods can be overcome by molecular techniques. Therefore, we have developed a new polymerase chain
reaction (PCR) test using primers derived from the recently identified sequence of the Trypanosoma brucei gambiense–
specific glycoprotein (TgsGP). The specificity of the TgsGP-PCR was evaluated on DNA extracted from 73 different
trypanosome populations belonging to diverse taxonomic groups that were isolated from various host species, and from
different geographic origins. The TgsG-PCR was shown to be specific for T. b. gambiense and was suitable for detection
of trypanosome DNA in blood samples of patients with confirmed sleeping sickness.

INTRODUCTION

Trypanosoma brucei gambiense and T. b. rhodesiense are
extracellular protozoan parasites causing human African try-
panosomiasis (HAT or sleeping sickness). Trypanosoma b.
brucei is not infectious to human but causes nagana in do-
mestic ruminants. All three subspecies are morphologically
indistinguishable and can be harbored by domestic animals as
well as wildlife.1–4 Trypanosoma b. brucei is sensitive to lysis
by normal human serum (NHS) while T. b. gambiense and T. b.
rhodesiense are resistant, although the latter subspecies can re-
vert to a human serum-sensitive phenotype.5,6 The parasites are
transmitted by tsetse flies (Glossina spp.) in sub-Saharan Africa.
Therefore, T. b. gambiense is present in western and central
Africa, while T. b. rhodesiense is restricted to eastern Africa.7

Epidemics of T. b. gambiense are currently threatening ap-
proximately 50 million people, mainly in the Democratic Re-
public of the Congo, Angola, southern Sudan, and northern
Uganda, with an estimated number of 300,000–500,000 in-
fected patients.8 Control of T. b. gambiense sleeping sickness
relies heavily on active case detection and correct treatment.
Screening of the population at risk is done by antibody de-
tection with the card agglutination test for trypanosomiasis
(CATT) and subsequent parasitologic detection performed
on the seropositive individuals.9,10 Although proven to be
very useful, the CATT has its limitations. A variable percent-
age of the screened population that is seropositive in the
CATT shows no clinical sign of infection and/or cannot be
confirmed by parasite detection. As shown by Simarro and
others11 and Garcia and others,12 the parasitologic detection
techniques have limited sensitivity; thus, it is possible that at
least some of these unconfirmed CATT-seropositive individu-
als are indeed infected. Furthermore, cured patients can re-
main CATT seropositive for up to three years due to persist-
ing circulating antibodies, thus prohibiting the use of antibody
tests for assessment of treatment success.13

For reasons of erroneous stage determination or treatment
refractoriness, patients sometimes relapse after treatment.
Studies on improved stage determination, therapy, drug re-
sistance, and new drugs are being undertaken but are ham-
pered by the low sensitivity of the parasitologic diagnostic
methods.14–17 In principle, DNA detection techniques such as
the polymerase chain reaction (PCR) might partially over-
come at least some of these diagnostic problems due to their

alleged increased sensitivity and specificity. Indeed, PCR tests
for detection of T. brucei DNA have been developed and
used in several studies on sleeping sickness.18–23 The primers
used in these studies were derived from the repetitive nuclear
DNA or the expression site–associated genes (ESAGs)
ESAG 6 and 7.24–27 Although, their specificity is restricted to
the subgenus Trypanozoon, they are unable to distinguish
between T. brucei subspecies.

However, for epidemiologic studies, discrimination of the
three T. brucei subspecies within the host or the vector is
essential.4 Within this context, various molecular techniques
have been applied, such as isoenzyme analysis, restriction
fragment length polymorphism (RFLP), random amplified
polymorphic DNA analysis (RAPD), karyotype analysis,
polymorphism analysis within the sequences of the variant
surface glycoprotein (VSG), mini-satellites and micro-
satellites, kinetoplast DNA, and an internal transcribed
spacer 1 of rDNA.28–42 These techniques often require prior
expansion of trypanosome populations in laboratory animals
or in culture medium and involve multiple and time-
consuming analytical steps. Taking into account the low iso-
lation success rates observed for T. b. gambiense, and the fact
that during primary isolation, and subsequent expansion, ini-
tially mixed-infection populations can be lost due to selection
for the best growing one, the need for simplified techniques
able to discriminate between the three T. brucei subspecies
within the animal reservoir and the vector is obvious.4

The purpose of this study was to develop a simple PCR test
capable of specific detection of the DNA of T. b. gambiense.
The recently published sequence of the T. b. gambiense-
specific glycoprotein (TgsGP) served as the base for the
primer design.43 When tested on 73 different trypanosome
populations belonging to various taxonomic groups and origi-
nating from different hosts and geographic locations, the
TgsGP-PCR was shown to be specific for T. b. gambiense. Fur-
thermore, the TgsGP-PCR was also successfully applied in the
detection of T. b. gambiense DNA in total DNA extracts from
blood samples of patients with confirmed sleeping sickness.

MATERIALS AND METHODS

Parasite populations. The trypanosomes used in this study
were derived from 73 different populations representing vari-
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ous species and subspecies. The collection contained nine T.
b. brucei, 15 T. b. gambiense, 12 T. b. rhodesiense, eight T.
equiperdum, 10 T. evansi, 12 T. congolense, five T. vivax, and
two T. theileri parasites. Initial characterization of T. b. gam-
biense, T. b. rhodesiense, and T. b. brucei populations was
based on host specificity, geographic origin, clinical manifes-
tation of the disease, and human serum resistance. They were
kindly provided by Dr. D. Le Ray and N. van Meirvenne
(Institute for Tropical Medicine [ITM], Antwerp, Belgium);
Dr. D. Mehlitz (Institut für Schiffs und Tropenkrankheiten,
Berlin, Germany); Dr. T. Baltz (University II, Bordeaux,
France44); Dr. D. Verloo (ITM45–47); Dr. R. Brun (Swiss
Tropical Institute, Basel, Switzerland48); Dr. M. Carrington
(Cambridge University, Cambridge, United Kingdom); Dr. J.
R. Stevens (University of Bristol, Bristol, United Kingdom);
Dr. P.H. Clausen (University of Berlin, Berlin, Germany);
Dr. J. Hagebock (National Veterinary Services Laboratories,
U.S. Department of Agriculture Ames, IA49); and Dr. P. Bar-
rowman (Onderstepoort Veterinary Institute, Onderstepoort,
South Africa50). Within the collection of T. b. gambiense, four
strains (Ousou, Ligo, Abba, and Kobir) have been reported
to share molecular characteristics with T. b. brucei strains
from Nigeria, differentiating them from the classic T. b. gam-
biense group 1.2,4,35 The human serum resistance phenotype
of those strains was analyzed using the serum incubation in-
fectivity test (SIIT).51

Trypanosoma congolense, T. vivax, and T. theileri popula-
tions were identified based on differences in morphology.
They were kindly provided by Dr. S. Geerts and Dr. D. Ver-
loo (ITM); Dr. M. Desquesnes (Centre de Cooperation In-
ternationale et Recherche Agronomique Pour le Developp-
ment-Department Elevage et Medicine Veterinaire (CIRAD-
EMVT), Centre International de Recmerche Developpment
sur L’Elevage en Zone Subhumide (CIRDES), Burkina
Faso); Dr. H. Tabel (University of Saskatchewan, Regina,
Saskatchewan, Canada).

All trypanosomes were kept as cryostabilates in liquid ni-
trogen. The bloodstream form trypanosomes were first ex-
panded in OF1 mice (IFFA CREDO, Charles River Labora-
tories, Brussels, Belgium) and subsequently in Wistar rats
(Harlan, Horst, The Netherlands). The parasites were puri-
fied from a blood using a DAE52 column (Whatman, Maid-
stone, Kent, UK) according to the procedure of Lanham and
Godfrey.52 The eluted parasites were centrifuged at 1,200 × g
for 30 min at 2°C. The sediment was washed three times with
phosphate saline glucose buffer (PSG buffer, 38 mM
Na2HPO4, 2 mM NaH2PO4, 29 mM NaCl, 83 mM glucose,
pH 8) by resuspension and centrifugation. The procyclic
forms (four isolates of T. b. gambiense: Bage, Nabe, Pakwa,
and Seka, one of T. b. rhodesiense: O4O4, one of T. b. brucei:
Ketri, and one of T. theileri: Melsele; Table 1) were grown in
a kit for in vitro isolation or in Cunningham culture me-
dium.53 They were separated from the culture media by cen-
trifugation at 1,200 × g for 30 min at 2°C. The sediment was
washed three times with phosphate glucose sacharose buffer
(38 mM Na2HPO4, 2 mM NaHPO4, 29 mM NaCl, 83 mM
glucose, 100 mM sacharose, pH 8) by resuspension and cen-
trifugation. All trypanosome sediments were stored at -70 C°.
Plasmodium falciparum parasites were obtained from the

Institute for Tropical Medicine (Antwerp, Belgium). They
were grown in BALB/c mice (Harlan). Infected red blood

cells were obtained from blood collected by heart puncture
into tubes containing heparin at a parasitemia of 30%.
Extraction of DNA from human blood, purified trypano-

somes, and P. falciparum. A total of 92 human blood samples
from individuals in Côte d’Ivoire were analyzed by a PCR.
They were collected during a medical survey that was carried
out in April-May 2000, where, for regular diagnostic pur-
poses, 2 mL of venous blood was collected into tubes con-
taining heparin. Among them were 41 samples that were
found positive in the CATT, from which 14 samples were
confirmed positive by a miniature anion exchange centrifu-
gation technique (mAECT). The other 51 samples were col-
lected during the same survey from the CATT/mAECT-
negative persons. After serologic and parasitologic tests were
performed, 180 �L of the remaining blood was mixed with
180 �L of AS1 storage buffer (Qiagen, Westburg, Leusden,
The Netherlands). All blood samples were stored for one
month in the dark at -20°C. In addition, 10 control blood
samples were collected from healthy Belgian volunteers. To-
tal DNA was extracted using the Qiamp blood DNA extrac-
tion protocol (Qiagen). The DNA was collected into 200 �L
of AE elution buffer (Qiagen) and precipitated using 20 �L of
3 M sodium acetate (pH 5.2) and 400 �L of pre-chilled 100%
ethanol. Samples were then centrifuged (for five minutes at
8,000 × g), and the pellet was rinsed once with pre-chilled
70% ethanol and centrifuged for three minutes at 8,000 × g.
The concentrated DNA was resuspended in 20 �L of water.
The typical DNA yield corresponded to 10 �g/ml as deter-
mined by spectrophotometric analysis.

To determine the analytical PCR detection limit, purified
trypanosomes in PSG buffer were first counted in a counting
chamber under a light microscope. A human blood sample
from a volunteer was spiked with 100,000 purified trypano-
somes/ml of blood. From this spiked blood, 10-fold serial di-
lutions to one trypanosome/ml were prepared. These dilu-
tions were processed immediately with proteinase K solution
(20 mg/ml) and AL lysis buffer according to the protocol of
Qiagen. The DNA was extracted using a blood DNA extrac-
tion kit (Qiagen) and precipitated as described earlier.

The extraction of DNA purified trypanosomes was per-
formed as follows: 20 �L of purified trypanosome sediment
(2 × 107cells) was resuspended in 200 �L of PSG buffer, and
the trypanosome DNA was extracted using a blood DNA
mini kit (Qiagen). The DNA was eluted in 200 �L of the AE
buffer (Qiagen). Its typical yield was 30 �g/ml as determined
by spectrophotometric analysis.

For extraction of P. falciparum DNA, 180 �L of infected
mouse blood was treated with 20 �L of proteinase K solution
(20 mg/ml) and 200 �L of AL lysing buffer (Qiagen). The
DNA was extracted using the blood DNA extraction kit, and
was eluted in 200 �L of AE buffer at a concentration of 20
�g/ml.
TgsGP-PCR. The primers were derived from the sequence

of the T. b. gambiense-specific glycoprotein (TgsGP; acces-
sion number AJ277951).43 They were designed using the
GenBank homology search program to target the region lack-
ing significant similarity with already known DNA sequences.
The following sequences were selected: sense primer: 5-�
GCTGCTGTGTTCGGAGAGC-3� and anti-sense primer:
5�-GCCATCGTGCTTGCCGCTC-3�. The presence of am-
plifiable DNA in the extracted human samples was checked
by PCR with human �-actin-specific primers. The �-actin
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TABLE 1
Origin of the trypanosome populations used in this study and corresponding results in the Trypanosoma brucei gambiense—specific glycopro-

tein—polymerase chain reaction (PCR)*

Species/Subspecies Trypanosome population/Identification code/References† Parasite form Origin Original host PCR

T. brucei EATRO/1125,AnTAR:AnTat 1.8 121296AA,38 Bloodstream Uganda Bushbuck Neg
T. brucei NITR40/12,AnTAR2: AnTat 2.2 ITMAS100297BA,43 Bloodstream Nigeria Tsetsefly Neg
T. brucei GUTAR22, AnTAR5: AnTat 5.2 ITMAS220197 A43 Bloodstream Gambia Bovine Neg
T. brucei ITMAV 051078, AnTat 17.1 ITMAS210596A Bloodstream D.R. of the Congo Sheep Neg
T. brucei Ketri 2494 ITMAS270881 28 Procyclic Kenya Tsetsefly Neg
T. brucei STIB 348 ITMAS250500B34,B Bloodstream Tanzania Hartebeest Neg
T. brucei MCRO/ZM/73/J10 ITMAS250500A28,38 Bloodstream Zambia Hyena Neg
T. brucei TSW 196 ITMAS300500A38 Bloodstream Côte d’Ivoire Pig Neg
T. brucei MiTAR1, MiTat 1.1C Bloodstream Uganda NA Neg
T. gambiense AYL, AnTAR9: AnTat 9.1 ITMAD010399A43 Bloodstream Cameroon Human Pos
T. gambiense LiTAR1,LiTat 1.3; Paris/52/-/-/(ELIANE) ITMAS100500 A,43 Bloodstream Côte d’Ivoire Human Pos
T. gambiense KEMLO,; AnTAR 13; Bwamanda/74/ITMAS28058438 Bloodstream D.R. of the Congo Human Pos
T. gambiense MBA/KINKOLE/74, AnTAR11: AnTat 11.17 ITMAS12048438 Bloodstream D.R. of the Congo Human Pos
T. gambiense PA, AnTAR22: AnTat 22.1 ITMAS11028043 Bloodstream D.R. of the Congo Human Pos
T. gambiense JUA:FONTEM/-/ITMAS 01079938 Bloodstream Cameroon Human Pos
T. gambiense LiTAR1, LiTat 1.6; Paris/52/-/-/(ELIANE) ITMAS121296A,43 Bloodstream Côte d’Ivoire Human Pos
T. gambiense BAGE ITMAP2569A Procyclic D.R. of the Congo Human Pos
T. gambiense NABE ITMAP2569A Procyclic D.R. of the Congo Human Pos
T. gambiense PAKWE ITMAP2570A Procyclic D.R. of the Congo Human Pos
T. gambiense SEKA ITMAP2568A Procyclic D.R. of the Congo Human Pos
T. gambiense MHOM/CI/82/DAL503/KOBIR ITMAS26060035 Bloodstream Côte d’Ivoire Human Pos
T. gambiense MHOM/CI/82/DAL494/OUSOU ITMAS22060035 Bloodstream Côte d’Ivoire Human Pos
T. gambiense MHOM/CI/83/DAL626/.ABBA ITMAS190600A35 Bloodstream Côte d’Ivoire Human Neg
T. gambiense MHOM/CI/84/DAL655/LIGO/ITMAS190600B35 Bloodstream Côte d’Ivoire Human Neg
T. rhodesiense AnTAR12, AnTat 12.1 ITMAS140476AA,42 Bloodstream Rwanda Human Neg
T. rhodesiense AnTAR25, AnTat 25.1 ITMAS300381AA,42 Bloodstream Rwanda Human Neg
T. rhodesiense ETat 1.2 (TREU164)A,42 Bloodstream Uganda Tsetsefly Neg
T. rhodesiense 0404 ITMASa Procyclic Uganda Tsetsefly Neg
T. rhodesiense LIRI/UTRO/STIB 847 ITMAS050399AB Bloodstream Uganda Human Neg
T. rhodesiense LIRI/UTRO/STIB 848 ITMAS190399B Bloodstream Uganda Human Neg
T. rhodesiense LIRI/UTRO/STIB 849 ITMAS050399BB Bloodstream Uganda Human Neg
T. rhodesiense LIRI/UTRO/STIB 850 ITMAS050399CB Bloodstream Uganda Human Neg
T. rhodesiense LIRI/UTRO/STIB 851 ITMAS080399CB Bloodstream Uganda Human Neg
T. rhodesiense LIRI/UTRO/STIB 851 ITMAS080399CB Bloodstream Uganda Human Neg
T. rhodesiense LIRI/UTRO/STIB 882 ITMAS080399AB Bloodstream Uganda Human Neg
T. rhodesiense LIRI/UTRO/STIB 883 ITMAS080399BB Bloodstream Uganda Human Neg
T. rhodesiense LIRI/UTRO/STIB 884 ITMAS150399AB Bloodstream Uganda Human Neg
T. evansi CAN 86K ITMAS 140799BA,45 Bloodstream Brazil Dog Neg
T. evansi RoTat 1.2 ITMAS020289A,45 Bloodstream Indonesia Buffalo Neg
T. evansi AnTat 3.1 ITMAS070799A,45 Bloodstream South America Capybara Neg
T. evansi MERZOUGA56 ITMAS120399DA Bloodstream Marocco Camel Neg
T. evansi STIB 816 ITMAS140799CA,45 Bloodstream China Camel Neg
T. evansi Columbia ITMAS150799A,45 Bloodstream Colombia Horse Neg
T. evansi ZAGORA 1.17 ITMAS150799A,45 Bloodstream Marocco Camel Neg
T. evansi Vietnam WH ITMAS101298A,47 Bloodstream Vietnam Buffalo Neg
T. evansi Philipines ITMAS060297A,45 Bloodstream Phillipines Buffalo Neg
T. evansi Ketri 2480 ITMASB11029734 Bloodstream Kenya Camel Neg
T. equiperdum AnTat 4.1 ITMAS210983AA Bloodstream NA NA Neg
T. equiperdum BoTAR:BoTat 1.1 ITMAS240922A34,44 Bloodstream France Horse Neg
T. equiperdum OVI ITMAS 241199CA,50 Bloodstream South Africa Horse Neg
T. equiperdum Hamburg ITMAS 251199CA,C Bloodstream NA NA Neg
T. equiperdum Alfort ITMAS241199AA,C Bloodstream NA NA Neg
T. equiperdum SVP ITMAS241199BA,C Bloodstream NA NA Neg
T. equiperdum STIB 818 ITMAS01099A,48 Bloodstream China Horse Neg
T. equiperdum Am.Strain ITMS220101 Bloodstream NA NA Neg
T. congolense TRT 17 ITMAS020699A Bloodstream Zambia Bovine Neg
T. congolense TRT 57 ITMAS070199A Bloodstream Zambia Bovine Neg
T. congolense Kilifi K60/1A/KenyaD Bloodstream Kenya Bovine Neg
T. congolense Kilifi K45/1A/Kenya Bloodstream Kenya Bovine Neg
T. congolense Savannah ILRAD3000D Bloodstream Kenha Bovine Neg
T. congolense Forè Dinder80/CRTA/3D Bloodstream Burkina Faso Bovine Neg
T. congolense Forè Komoè87/CRTA/153D Bloodstream Burkina Faso Bovine Neg
T. congolense Savannah ILRAD1180D Bloodstream Zambia Bovine Neg
T. congolense TC13E Bloodstream NA NA Neg
T. congolense STIB68A,B Bloodstream NA NA Neg
T. congolense J4/23A Bloodstream NA NA Neg
T. congolense TRT55A Bloodstream NA NA Neg
T. vivax ILRAD 700 ITMAS190199A Bloodstream Nigeria Zebu Neg
T. vivax Banan83/CRTA/73D Bloodstream Burkina Faso Bovine Neg
T. vivax Noronin80/CRTA/16D Bloodstream Burkina Faso Bovine Neg
T. vivax Nyarafo96/CIRDES/1D Bloodstream Burkina Faso Bovine Neg
T. vivax Sarfaloa83/CRTA/54D Bloodstream Burkina Faso Bovine Neg
T. theileri Melsele ITMAS020299A,46 Procyclic Belgium Bovine Neg
T. theileri T.th.BFD Bloodstream Burkina Faso Bovine Neg

* Neg � negative; D.R. � Democratic Republic; NA � (information) not available; Pos � positive.
† Superscript A � Institute for Topical Medicine, Antwerp, Belgium; superscript B � Swiss Tropical Institute, Basel; superscript C � Dr. Mark Carrington (Cambridge, United Kingdom)

and Dr. P. H. Clausen; superscript D � M. Desquesnes (CIRAD-EMVT, CIRDES, Burkina Faso); superscript E � Dr. H. Table (University of Saskatchewan, Regina, Saskatchewan, Canada).
Superscript numbers indicate references.
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PCR was performed according to the protocol described by
Kinoshita and others.54

All PCR amplifications were performed using 10–100 ng of
the DNA extracted from purified parasites, or 10 �L of the
DNA extracted from human blood samples. The DNA tem-
plate was amplified in 50 �L of PCR mixture containing 1×
PCR buffer (20 mM Tris-HCl pH 8.7, 100 mM KCl, 50 mM
(NH4)2SO4, Q solution), 1.5 mM MgCl2, 200 �M each of the
four dNTPs, 0.5 �M of each primer, and 2.5 units of HotStar
Taq DNA polymerase (Qiagen). All PCRs were performed
using a T3 Thermocycler (Biometra, Westburg, Leusden, The
Netherlands). The TgsGP-PCR conditions were as follows:
sample incubation for 15 minutes at 95°C followed by 45
cycles of one minute at 94°C, one minute at 63°C, and one
minute at 72°C, and a final extension for 10 minutes at 72°C.
A 20-�L sample of each PCR product was analyzed by elec-
trophoresis in a 2% agarose gel. The gels were stained with
ethidium bromide (1 �g/ml) (Sigma, St. Louis, MO) and ana-
lyzed on an Imagemaster Video Detection System (Pharma-
cia, Bucks, United Kingdom). To increase the analytical PCR
detection limit, a second TgsGP-PCR was performed with
one microliter of the first PCR product. As negative PCR
controls, human DNA sample extracted from blood samples
of healthy volunteers and a PCR mixture without the DNA
template were run along with the other samples. Samples
were collected as a part of routine diagnosis of patients, as
prescribed by the World Health Organization (WHO). The
study was approved by the ministry of health from Côte
d’Ivoire and oral consent was systematically collected from all
patients.

RESULTS

Specificity and detection limit of the TgsGP-PCR. Using
primers that recognize the T. gambiense TgsGP gene, we de-
veloped a PCR protocol in which a 308-base pair (bp) PCR
product was expected for specific amplification. Results ob-
tained with this PCR are shown in Table 1. Seventy-three
different trypanosome populations have been analyzed by the
TgsGP-PCR. A specific PCR product was obtained with 13 of
15 T. b. gambiense populations. The other 58 non-T. b. gam-
biense populations tested negative, thus confirming the speci-
ficity of the TgsGP-PCR for T. b. gambiense within the col-
lection of tested Trypanosoma sp. (Table 1). Unexpectedly,
the T. b. gambiense Abba and Ligo strains were TgsGP-PCR
negative. When subjected to the SIIT, all 13 TgsGP-positive
populations were found to be fully resistant to NHS, while the
Abba and Ligo strains were initially found to be sensitive,
although they reverted to a resistant phenotype in mice after
repeated injection with NHS.

The detection limit of the TgsGP-PCR was evaluated on
the series of human blood samples spiked with purified try-
panosomes. After a single PCR, the detection limit reached
1,000 trypanosomes/ml of blood. This detection limit in-
creased to 10 trypanosomes/ml of blood when the TgsGP-
PCR was repeated using an aliquot of the first PCR product.
Detection of T. b. gambiense DNA in total extracts from

blood samples of patients with confirmed sleeping sickness by

the TgsGP-PCR. Figure 1 shows representative results of the
TgsGP-PCR obtained with total DNA extracts from human

blood samples. As expected, only one PCR product of 308 bp
was amplified in the DNA extracts of parasitologically con-
firmed patients with sleeping sickness, and in a T. b. gambi-
ense-positive control (Figure 1, lanes 1–4 and 9) while DNA
extracts from the CATT/mAECT-negative African individu-
als and healthy Belgian volunteers remained TgsGP-PCR
negative (Figure 1, lanes 5–8). Since malaria is very common
in regions where sleeping sickness is present, the TgsGP-PCR
should not amplify Plasmodium DNA. No amplification
product was obtained with DNA extracted from P. falci-
parum (Figure 1, lane 10).

The diagnostic potential of the TgsGP-PCR was evaluated
on a collection of human blood samples from Côte d’Ivoire
and Belgium. All samples were subjected to an initial PCR,
followed by a second PCR on an aliquot of the first reaction
product. The results are shown in Table 2. All 51 CATT/
mAECT-negative samples from Côte d’Ivoire were TgsGP-
PCR negative. Of 41 CATT-positive samples from Côte
d’Ivoire, 14 were TgsGP-PCR positive, which corresponded
exactly to the 14 samples that were parasitologically con-
firmed by the mAECT. The remaining 27 CATT-positive and
mAECT-negative samples from Côte d’Ivoire were negative
by the TgsGP-PCR, as were 10 samples from healthy Belgian
volunteers.

FIGURE 1. Agarose gel electrophoresis showing the representa-
tive results obtained with the Trypanosoma brucei gambiense–specific
glycoprotein–polymerase chain reaction (TgsGP-PCR) on human
blood samples from Côte d’Ivoire. The 308-base pair PCR product
corresponds to the fragment amplified from the TgsGP gene. Lanes
1–4, samples from patients with confirmed sleeping sickness due to T.
b. gambiense; lanes 5–8, samples from the CATT/mAECT-negative
African individuals and a healthy volunteer; lane 9, positive control
(T. b. gambiense DNA); lane 10, Plasmodium falciparum DNA; lane
11: control PCR without DNA template; lane M, molecular weight
marker (1-kb DNA ladder).

TABLE 2
Results obtained with the card agglutination test for trypanosomiasis

(CATT), the miniature anion exchange centrifugation technique
(mAECT), and the Trypanosoma brucei gambiense—specific gly-
coprotein—polymerase chain reaction (TgsGP-PCR) with total
RNA extracted from 92 human blood samples from Côte d’Ivoire

Test

CATT

Positive Negative

mAECT Positive 14 0
Negative 27 51

TgsGP-PCR Positive 14 0
Negative 27 51
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DISCUSSION

The purpose of this study was to develop a new PCR test
for specific detection of T. b. gambiense DNA. The PCR
primers used were derived from the sequence of the recently
identified TgsGP gene, which encodes a T. b. gambiense-
specific flagellar pocket glycoprotein.43 Since this gene shares
certain similarities with the 5�-terminal half of the T. b. brucei
IlTat 1.23 VSG gene, the primer sequences were selected
from regions of low similarity. To avoid primer-dimer forma-
tion, both 3� ends did not contain any complementary base
pairs and were devoid of any long stretches of guanidine and
cytosine repeats. A hot start step was included to avoid gen-
eration of non-specific PCR products. The TgsGP-PCR speci-
ficity was evaluated with 73 different trypanosome popula-
tions. An expected 308-bp specific PCR product was gener-
ated solely when DNA from T. b. gambiense was tested.
Interestingly, two alleged T. b. gambiense strains, i.e., Abba
and Ligo, that were isolated from patients with sleeping sick-
ness in Côte d’Ivoire remained negative in the TgsGP-PCR.
These strains were previously identified as being distinct from
the conventional T. b. gambiense group 1, sharing molecular
characteristics with Nigerian strains of T. b. brucei.4,35,38,55 This
initial characterization was based on cluster analysis of the
RFLP pattern derived from the ribosomal non-transcribed
spacer region.35 Since the TgsGP-PCR targets a gene that is
associated with NHS resistance, we subjected the Abba and
Ligo strains to the SIIT.43,51 Initially, both strains were sen-
sitive to lysis by NHS. When grown in mice under NHS pres-
sure, they converted to an NHS-resistant phenotype, confirm-
ing earlier reports that some alleged T. b. gambiense strains
from humans in Côte d’Ivoire can exert different inducible
levels of NHS resistance.5,6,56,57 Together, these results indi-
cate that the TgsGP-PCR specifically identifies conventional
T. b. gambiense strains that are persistently resistant to NHS.

Previous reports have described other molecular tech-
niques for the specific detection of T. b. gambiense. Mathieu-
Daudé and others40 and Schares and others41 reported on
methods involving a first PCR step or nested PCR, followed
by hybridization with a T. b. gambiense-specific probe that
was derived from the sequence of the kinetoplast minicircle
DNA variable regions. A risk associated with targeting kine-
toplast minicircle DNA for diagnostic purposes is connected
with the high rate of genetic evolution within this sequences,
as it is for VSG genes. Indeed, other groups have developed
PCR tests based on T. b. gambiense VSG sequences (AnTat
11.17 and LiTat 1.3), but observed that some T. b. gambiense
strains from northwestern Uganda and Cameroon remained
negative in these PCRs due to the absence of the correspond-
ing VSG genes within their genome.40,58–60 Although the
TgsGP gene is located on a telomere, it does not belong to a
VSG expression site (ES), and as such is not subjected to
ES-associated antigenic variation.43,60 Therefore, the TgsGP-
PCR may prove to be a more reliable tool in the detection of
T. b. gambiense, e.g., for studying its animal reservoir and its
transmission dynamics.

Although the geographic distribution of T. b. gambiense
and T. b. rhodesiense is classically confined to west and cen-
tral Africa, and eastern Africa, respectively, recent reports
indicate the presence of T. b. rhodesiense outside the tradi-
tional foci in southeastern Uganda.7,61 Isolates from the Mas-
indi district in midwestern Uganda were shown to be T. b.

gambiense as well as T. b. rhodesiense.61 Since both trypano-
somes show differential drug sensitivity, a correct diagnosis
between T. b. gambiense and T. b. rhodesiense is essential for
successful drug treatment and may be facilitated by a simple
molecular technique, such as the TgsGP-PCR.

One advantage of the TgsGP-PCR is its simplicity com-
pared with other techniques used for differentiation of the
three T. brucei subspecies, such as isoenzyme analysis, karyo-
type analysis, RFLP, RAPD, which usually require high num-
bers of parasites or involve a comparative analysis of genomic
patterns.28–42 By running two subsequent TgsGP-PCRs on
the same sample of spiked blood, a detection limit of 10 try-
panosomes/ml of blood could be obtained. This is comparable
with that reported with a two-run ESAG6/7 PCR or a repeti-
tive nuclear DNA-based PCR used with blood samples from
patients with sleeping sickness.18,21

Whether the detection limit of the TgsGP-PCR will be low
enough to identify all patients with sleeping sickness caused
by T. b. gambiense in a specific population remains to be
investigated. Indeed, in the present study, only the CATT-
positive cases that were confirmed by the mAECT (34% of
the samples) were positive in the TgsGP-PCR after two am-
plification reactions, while all the parasitologically uncon-
firmed CATT-positive samples remained negative. Similar re-
sults were obtained by Kyambadde and others, who found
that 60% of the CATT-positive samples were negative when
tested by both the hematocrit centrifugation technique and
the repetitive nuclear DNA-based PCR, while all the parasi-
tologically confirmed CATT-positive samples were also posi-
tive in their PCR.23 Since there is evidence that some of the
unconfirmed CATT-positive individuals are indeed infected,
lowering the detection limit of the PCR methods, e.g., by
analyzing a larger volume of blood, may be necessary.12
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