
Choice functions and rejection sets

Enrique Miranda1, Arthur Van Camp2, and Gert de Cooman2

Abstract We establish an equivalent representation of coherent choice functions
in terms of a family of rejection sets, and investigate how each of the coherence
axioms translates into this framework. In addition, we show that this family al-
lows to simplify the verification of coherence in a number of particular cases.

1 Introduction

Coherent choice functions constitute an uncertainty model that is more general
than sets of desirable gambles, while still preserving some of their nice properties,
such as being able to deal effectively with sets of probability zero when condition-
ing. One of their drawbacks is the technical difficulty of verifying the coherence
axioms. In this paper, we try to remedy this situation somewhat by providing an
equivalent representation of choice functions in terms of those option sets that
allow a subject to reject the zero gamble, which may be interpreted as those op-
tion sets that he should consider preferable to the status quo. As we shall see,
this representation, in addition to capturing more intuitively the ideas underly-
ing coherence, also helps to simplify the verification of coherence in a number of
particular cases.

This paper is organized as follows: in Section 2, we recall the basic aspects of
coherent choice functions that we shall need in the rest of the paper. Our rep-
resentation in terms of rejection sets is established in Section 3, where we also
discuss two additional properties that seem of interest for choice functions. In
Section 4, we look in more detail at a number of particular cases: choice func-
tions on binary spaces (that is, when the experiment on which the outcomes of
the options depend on can only take two values) and those defined by means of
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coherent sets of desirable gambles. The paper concludes with some additional
remarks in Section 5.

2 Coherent choice functions

Let Ω be a possibility space. A gamble on Ω is a bounded map f : Ω → R. We
denote by L , the set of all gambles onΩ. Gambles will also be called options. For
any two gambles f and g , we denote f ≤ g if f (ω) ≤ g (ω) for everyω inΩ, and we
collect all the gambles f for which f ≤ 0 in L≤0. We let f < g if f ≤ g and f 6= g ,
and collect all the gambles f for which f < 0 in L<0, and the gambles f for which
f > 0 in L>0.

Choice functions are defined on finite collections of gambles. We collect all
those collections in the set Q.

Definition 1. A choice function C on a possibility spaceΩ is a map

C : Q →Q∪ {;} : A 7→C (A) such that C (A) ⊆ A .

We collect all the choice functions on Ω in C (Ω), often denoted as C when the
possibility space is clear from the context.

The idea underlying this simple definition is that a choice function C selects the
set C (A) of ‘best’ options in the option set A . Our definition resembles the one
commonly used in the literature (Aizerman, 1985; Seidenfeld et al., 2010; Sen,
1977), except perhaps for an also not entirely unusual restriction to finite option
sets (He, 2012; Schwartz, 1972; Sen, 1971).

Equivalently to a choice function C , we may consider its associated rejection
function R , defined by R(A) := A \C (A) for all A in Q. It returns the options R(A)
that are rejected—not selected—by C .

We focus here on a special class of choice functions, which we call coherent.

Definition 2. We call a choice function C on Ω coherent if for all A , A1 and A2 in
Q, all f and g in L , and all λ in R>0:1

C1. C (A) 6= ;;
C2. if f < g then {g } =C ({ f , g });
C3. a. if C (A2) ⊆ A2 \ A1 and A1 ⊆ A2 ⊆ A then C (A) ⊆ A \ A1;

b. if C (A2) ⊆ A1 and A ⊆ A2 \ A1 then C (A2 \ A) ⊆ A1;
C4. a. if A1 ⊆C (A2) then λA1 ⊆C (λA2);

b. if A1 ⊆C (A2) then A1 + { f } ⊆C (A2 + { f });

These axioms are a subset of the ones introduced in Seidenfeld et al. (2010),
duly translated from horse lotteries to gambles. We have omitted two of the co-
herence axioms from Seidenfeld et al. (2010): one is the Archimedean axiom, be-

1 By R>0 we mean all the (strictly) positive real numbers.
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cause it is not fully compatible with the idea of deriving choice functions from co-
herent sets of desirable gambles (Van Camp et al., 2015), which is one of the goals
in our approach. The other one, which we shall consider later on, is the so-called
convexity axiom. Although this axiom leads to a number of useful properties, and
in particular to a connection with lexicographic probability systems (Van Camp
et al., 2016), we have refrained from including it in the list of coherence axioms
because it not satisfied by some interesting choice functions.

Equivalent formulations of these axioms, better suited for our subsequent
proofs, are the following:

(C3a) ⇔ (∀A , A′ ∈Q,∀ f ∈ A)
(
( f ∈ R(A), A ⊆ A′) ⇒ f ∈ R(A′)

)
,

(C3b) ⇔ (∀A ∈Q,∀ f ∈ A)
(
{0, f } ⊆ R(A) ⇒ 0 ∈ R(A \ { f })

)
,

(C4a) ⇔ (∀A ∈Q,∀λ> 0)R(λA) =λR(A),

(C4b) ⇔ (∀A ∈Q,∀ f ∈L )R(A + f ) = R(A)+ f .

3 A representation in terms of rejection sets

Next we give an equivalent representation of choice functions in terms of rejec-
tion sets. For any f ∈L and any natural number i , we define

Ki
f := {A : f ∈ R(A), |A | = i } and K f :=∪i∈NKi

f . (1)

We are going to characterize coherent choice functions in terms of these rejection
sets. Our first result shows that we can restrict our attention to the case f = 0:

Proposition 1. Let C be a choice function and consider the family of option sets
{K f : f ∈Ω} it induces by means of Eq. (1). Then

C satisfies Axiom C4b ⇔ (∀ f ∈L )K0 + f =K f .

Proof. For necessity, consider an option set A that includes 0. Then the option set
A + f includes f , and since by C4b it holds that R(A + f ) = R(A)+ f , we conclude
that A ∈K0 if and only if A + f ∈K f .

Conversely, for sufficiency, consider an option set A and a gamble f . Take any
g ∈ R(A), then A ∈Kg , whence by assumption A − g ∈K0 and as a consequence
A − g + ( f + g ) = A + f ∈K f +g . Then indeed g + f ∈ R(A + f ), whence Axiom C4b
holds. ut

Taking this result into account, in what follows we shall restrict our attention
to rejection sets K for which K0 + f =K f for every f in L . We can then simplify
the notation above to

K i :=Ki
0 = {A : 0 ∈ R(A), |A | = i } and K :=K0 = {A : 0 ∈ R(A)}, (2)
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respectively, and denote Q0 the family of option sets that include the zero gam-
ble. Our next result provides a characterisation of the different coherent axioms
in terms of these sets:

Proposition 2. Let C be a choice function satisfying Axiom C4b, and consider the
sets K i ,K defined in Eq. (2).
1. C satisfies Axiom C1 if and only if (∀A ∈Q0)(∃ f ∈ A)A − f ∉ K .
2. C satisfies Axiom C2 if and only if (∀ f ∈L>0){ f ,0} ⊆ K 2.
3. C satisfies Axiom C3a if and only if (∀A ∈ K ,∀A′ ∈Q0)(A ⊆ A′ ⇒ A′ ∈ K ).
4. C satisfies Axiom C3b if and only if (∀A ∈ K ,∀ f ∈ A)(A − f ∈ K ⇒ A \ { f } ∈ K ).
5. C satisfies Axiom C4a if and only if (∀A ∈Q0,∀λ> 0)(A ∈ K ⇔λA ∈ K ).

Proof. 1. Taking Axiom C4b into account, Axiom C1 holds if and only if C (A) 6= ;
for every A ∈Q0. This in turn is equivalent to (∃ f ∈ A) f ∈C (A), which by C4b
is equivalent to 0 ∈C (A − f ) or, in other words, to A − f ∉ K .

2. Under Axiom C4b, Axiom C2 is equivalent to (∀ f ∈ L>0){ f } = C ({0, f }), or, in
other words, to (∀ f ∈L>0){ f ,0} ⊆ K 2.

3. For necessity, consider any A in K and any A′ in Q0 such that A′ ⊇ A . Because
A ∈ K , 0 ∈ R(A), whence, by Axiom C3a, 0 ∈ R(A′). Then indeed A′ ∈ K .
Conversely, for sufficiency, consider any A and A′ in Q0 such that A ⊆ A′, and
any f in R(A). Then by Axiom C4b, 0 ∈ R(A − f ), so A − f ∈ K , whence also
A′− f ∈ K , because A′− f ⊇ A − f . Then 0 ∈ R(A′− f ), and applying again C4b,
indeed f ∈ R(A′).

4. For necessity, consider any A in K and f in A such that A − f ∈ K . Then 0 ∈
R(A − f ), whence f ∈ R(A), by Axiom C4b. Applying Axiom C3b, we deduce
that 0 ∈ R(A \ { f }), whence indeed A \ { f } ∈ K .
Conversely, for sufficiency, consider any A in Q and f in A such that {0, f } ⊆
R(A). Then A ∈ K and by Axiom C4b, f ∈ R(A) implies that 0 ∈ R(A − f ), so
A − f ∈ K . Then A \ { f } ∈ K , or, in other words, indeed 0 ∈ R(A \ { f }).

5. It suffices to note that under Axiom C4b, Axiom C4a is equivalent to 0 ∈C (A) ⇔
0 ∈C (λA) for every λ> 0 and every A ∈Q0. ut

An immediate consequence is:

Corollary 1. A choice function C is coherent if and only if it satisfies Axiom C4b
and the rejection set K it induces by Eq. (2) is increasing, scale invariant, includes
{ f ,0} for every f ∈L>0 and it satisfies the following two properties:
• (∀A ∈Q0)(∃ f ∈ A)A − f ∉ K .
• (∀A ∈ K ,∀ f ∈ A)(A − f ∈ K ⇒ A \ { f } ∈ K ).

Next we consider a couple of additional consistency axioms that were deemed
interesting by Van Camp et al. (2016). The first one is the convexity axiom, which
is given by:
C5. if A ⊆ A1 ⊆ CH(A) then C (A) ⊆C (A1), for all A and A1 in Q,
where C (A) := {

∑n
i=1αi fi : n ∈N, fi ∈ A ,αi ≥ 0,

∑n
i=1αi = 1} is the convex hull of A .

In terms of rejection sets, it is characterized by the following proposition:
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Proposition 3. Let C be a choice function satisfying Axiom C4b. Then C satisfies
Axiom C5 if and only if (∀A1 ∈ K ,∀A ∈Q0)(A ⊆ A1 ⊆ CH(A) ⇒ A ∈ K ).

Proof. For necessity, application of Axiom C5 tells us that, whenever A ⊆ A1 ⊆
CH(A) hold, 0 ∈ R(A1) implies that 0 ∈ R(A), or, in other words, A1 ∈ K implies
that A ∈ K .

Conversely, for sufficiency, consider two option sets A and A1 such that A ⊆
A1 ⊆ CH(A), and let us show that C (A) ⊆ C (A1). Assume ex absurdo that there
is some f ∈ A such that f ∈ R(A1) and f ∈ C (A). Then since A − f ⊆ A1 − f ⊆
CH(A − f ), we can apply axiom C4b and assume that, without loss of generality,
f = 0. But then we obtain that A1 ∈ K while A ∉ K , a contradiction. ut

A weaker property that is also useful is the so-called separate homogeneity,
which means that for all n inN, all f1, f2, . . . , fn in L and all µ1, µ2, . . .µn in R>0:

0 ∈C ({0, f1, f2, . . . , fn}) ⇔ 0 ∈C ({0,µ1 f1,µ2 f2, . . . ,µn fn}). (3)

This property follows from axioms C3a, C4a, C5 (Van Camp et al., 2016, Propo-
sition 1). Moreover, and unlike C5 that is linked to lexicographic choice func-
tions, separate homogeneity is compatible with maximality as a decision rule,
and therefore better suited for connecting choice functions with desirability. Fur-
thermore, separate homogeneity is strictly weaker: there are classes of interesting
coherent choice functions that satisfy Eq. (3) but not Axiom C5. In terms of the re-
jection sets, it is trivial to prove that it can be expressed in the following manner:

Proposition 4. Let C be a choice function satisfying Axiom C4b. It satisfies separate
homogeneity if and only if for all n inN, all f1, f2, . . . , fn in L and all µ1, µ2, . . .µn

in R>0, {0, f1, f2, . . . , fn} ∈ K ⇔ {0,µ1 f1,µ2 f2, . . . ,µn fn} ∈ K .

4 Particular cases

In this section, we consider a number of particular cases of choice functions for
which the representation in terms of rejection sets simplifies somewhat.

4.1 Coherent choice functions defined via maximality

We begin by considering choice functions defined via Walley’s notion of maxi-
mality (Van Camp et al., 2015). A set of gambles D is called coherent when it is
a convex cone that includes all non-negative gambles and does not include the
zero gamble. We refer to (Walley, 1991; Miranda and Zaffalon, 2010; Quaeghe-
beur, 2014) for a study of the notion of desirability and its variants. In particular,
any coherent set of desirable gambles can be used to define a coherent choice
function, by means of the formula
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CD(A) := { f ∈ A : (∀g ∈ A)g − f ∉D}. (4)

Unlike general choice functions, the ones defined in the manner above are
uniquely determined by binary comparisons. Thus, it is not surprising that for
them the representation in terms of rejection sets takes a simpler form:

Proposition 5. Let D be a coherent set of gambles and let CD be the coherent choice
function it induces by Eq. (4). Then K = {A ∈ Q0 : (∃A1 ∈ K 2)A1 ⊆ A} and K 2 =
{{0, f } : f ∈D}.

Proof. Consider an option set A in K . By Eq. (4), 0 ∈ RD(A) if and only if A ∩
D 6= ;. If |A | = 2, then A = {0, f } for some f in D, and as a consequence K 2 ⊇
{{0, f } : f ∈D}. Conversely, consider any A′ ∈ K 2. Then A′ = {0, g } for some g in L .
But since 0 ∈ RD(A′), we have g ∈ D, so K 2 ⊆ {{0, f } : f ∈ D}, proving that indeed
K 2 = {{0, f } : f ∈ D}. If, on the other hand, |A | ≥ 3, then A ⊇ {0, f } for some f
in D. But then 0 ∈ RD({0, f }), so A ⊇ A′ for some A′ ∈ K 2, and therefore indeed
K = {A ∈Q0 : (∃A1 ∈ K 2)A1 ⊆ A}. ut

4.2 Coherent choice functions on binary spaces

Next, we consider coherent choice functions defined on binary spaces. It turns
out that, under separate homogeneity, they are determined by rejection sets of
cardinality two or three:

Proposition 6. Let C be a coherent choice function on Ω = {a,b}. If C satisfies
Eq. (3), then

K = {
A ∈Q0 : (∃A1 ∈ K 2 ∪K 3)A1 ⊆ A

}
Proof. Let us prove that for every A in K there exists a A1 in K 2 ∪K 3 for which
A1 ⊆ A .

Consider thus A in K . By Axiom C2, we find that A ∩L<0 ⊆ R(A ∩L≤0), so
Axiom C3a implies that then A ∩L<0 ⊆ R(A). Since A ∈ K and therefore also 0 ∈
R(A), by Axiom C3b we find that then 0 ∈ (A ∩L c

<0), so we can assume without
loss of generality that A ∩L<0 =;. There are two possibilities.

If A ∩L>0 6= ;, then for any f in A ∩L>0 it follows from Axiom C2 that 0 ∈
R({0, f }), whence the set {0, f } ⊆ A belongs to K 2. So we find indeed that A1 :=
{0, f } in K 2 for which A1 ⊆ A .

If A ∩L>0 = ;, then we can denote A = { f1, . . . , fn , g1, . . . , gm} for some n ≥
0 and m ≥ 0 but max{m,n} ≥ 1, where fi belongs to the second quadrant (i.e.,
fi (a) < 0 < fi (b)) for every i in {1, . . . ,n} and g j belongs to the fourth quadrant
(i.e., g j (a) > 0 > g j (b)) for every j in {1, . . . ,m}. Let λi := −1

fi (a) and µ j := 1
g j (a) for

every i in {1, . . . ,n} and j in {1, . . . ,m}. Then, applying Eq. (3),

0 ∈ R({0,λ1 f1, . . . ,λn fn ,µ1g1, . . . ,µm gm}).
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Infer that λi fi (a) = −1 for every i in {1, . . . ,n}. Letting i∗ := argmax{λi fi (b) : i ∈
{1, . . . ,n}}, we infer that

λk fk (b) <λi∗ fi∗ (b) ⇒λk fk ∈ R({λk fk ,λi∗ fi∗ }) ⇒λk fk ∈ R(A),

where last implication follows from Axiom C3a. similarly, µ j g j (a) = 1 for every j
in 1, . . . ,m, and letting j∗ := argmax{µ j g j (b) : j ∈ {1, . . . ,m}}, we infer that

µ j g j (b) <µ j∗g j∗ (b) ⇒µ j g j ∈ R({µ j g j ,µ j∗g j∗ }) ⇒µ j g j ∈ R(A),

where again last implication follows from Axiom C3a. If we now apply C3b, we
deduce that 0 ∈ R({0,λi∗ fi∗ ,µ j∗g j∗ }), whence 0 ∈ R({0, fi∗ , g j∗ }), applying Eq. (3).
Thus, there is a subset of A with cardinality three that also belongs to K . ut

A key property in the proof of Proposition 6 is that separate homogeneity, to-
gether with Axiom C2, allows to assume without loss of generality that an op-
tion set A that includes the zero gamble has at most one gamble f in the second
quadrant (for which f (a) < 0 < f (b)) and one g in the fourth quadrant (for which
g (a) > 0 > g (b)). Let us show that this need not happen without separate homo-
geneity:

Example 1. Consider Ω = {a,b} and let D be the coherent set of gambles D :=
{ f ∈ L : f (a) < 0 < f (b) and f (a)+ f (b) > 0}∪L>0. Let C be the choice function
determined by the rejection function

0 ∈ R(A) ⇔ (
A ∩D 6= ; or (∃λ1 >λ2 > 0){(−λ1,λ1), (−λ2,λ2)} ⊆ A

)
(5)

for all A in Q0. We extend the domain of R to Q by letting f ∈ R(A) ⇔ 0 ∈ R(A− f )
for all A in Q and f in A . Remark already that (−λ,λ) lies on the border of D for
every λ> 0: indeed, for every g in D we have that (−λ,λ)+ g ∈D.

Let us show that C is a coherent choice function. Taking into account the last
part of the definition, we see that C4b holds, and we can restrict our attention to
option sets in Q0. We show that C satisfies Axioms C2, C3a, C3b, C4a, and C1, in
this order.

For Axiom C2, consider any f in L>0. Then f ∈D, so indeed 0 ∈ R({0, f }).
For Axiom C3a, consider any A and A′ in Q0 such that A ⊆ A′, and any

f in R(A). Using Axiom C4b, then 0 ∈ R(A − f ), whence (A − f ) ∩ D 6= ; or
{(−λ1,λ1), (−λ2,λ2)} ⊆ A − f for some λ1 > λ2 > 0. But A′ − f ⊇ A − f , so also
(A′ − f ) ∩D 6= ; or {(−λ1,λ1), (−λ2,λ2)} ⊆ A′ − f , and therefore 0 ∈ R(A′ − f ),
whence, again by Axiom C4b, indeed 0 ∈ R(A′).

For Axiom C3b, consider any A in Q0 and any f in A such that {0, f } ⊆ R(A).
We need to prove that then 0 ∈ R(A \ { f }). Since f ∈ R(A), then

(i) D∩ (A − f ) 6= ;, or (ii) {(−λ1,λ1), (−λ2,λ2)} ⊆ A − f for some λ1 >λ2 > 0.

Furthermore, since 0 ∈ R(A), then D∩A 6= ;, or {(−λ1,λ1), (−λ2,λ2)} ⊆ A for some
λ1 >λ2 > 0. If f ∉D∩ A and f ∉ {(−λ1,λ1), (−λ2,λ2)}, then also D∩ A \ { f } 6= ; or
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{(−λ1,λ1), (−λ2,λ2)} ⊆ A \ { f }, whence 0 ∈ R(A \ { f }). So assume that (a) f ∈ D or
(b) f = (−λ,λ) for some λ> 0.

If (a) f ∈ D, then (i) or (ii) must be the case. If (i) occurs, then there is some
gamble g in (D + f ) ∩ A , whence g − f ∈ D for some g in A . But since f ∈ D,
also g = f + g − f ∈ D, and therefore 0 ∈ R({0, g }), whence by Axiom C3a indeed
0 ∈ R(A \ { f }). If (ii) occurs, then there are λ1 > λ2 > 0 such that f + (−λ1,λ1), f +
(−λ2,λ2) ∈ A , whence, since f ∈D, by construction also f + (−λ1,λ1) ∈D. There-
fore 0 ∈ R({0, f + (−λ1,λ1)}), whence by Axiom C3a, also 0 ∈ R(A \ { f }).

If (b) f = (−λ,λ) for some λ> 0, then, similarly, (i) or (ii) must be the case. If (i)
occurs, then there is some g in A such that g − f ∈ D. Therefore by construction
also g = f +g − f ∈D, whence 0 ∈ R({0, g }), and then by Axiom C3a, also 0 ∈ R(A \
{ f }). If (ii) occurs, then there is someλ1 > 0 andλ2 > 0 for which { f +(−λ1,λ1), f +
(−λ2,λ2)} = {(−λ−λ1,λ+λ1), f + (−λ−λ2,λ+λ2)} ⊆ A . Letting λ′

1 := λ+λ1 and
λ′

2 :=λ+λ2, we find that {(−λ′
1,λ′

1), f + (−λ′
2,λ′

2)} ⊆ A \ { f }, whence 0 ∈ R(A \ { f }).
Axiom C4a follows from Equation (5), taking into account that D is a cone.
Finally, for Axiom C1, assume ex absurdo that C (A) =; for some A in Q0. Then

A = R(A) whence, by Axiom C3b, 0 ∈ R({0}). But 0 ∉ D and (−λ,λ) ∉ {0} for every
λ> 0, so 0 ∉ R({0}), a contradiction.

On the other hand, it follows by Equation (5) that, given the option set A =
{0, (−1,1), (−2,2)}, we obtain C (A) = {(−1,1), (−2,2)}. However, the same equation
implies that 0 ∈C ({0, (−1,1)}). This shows that C does not satisfy separate homo-
geneity, and also that we cannot reduce the intersection with the second quad-
rant to only one gamble. �

On the other hand, Proposition 6 also depends crucially on the assumption
that |Ω| = 2, as our next example shows:

Example 2. Consider a ternary space Ω, some n in N, and let fk be the gamble

given by fk := (−1, k
n ,− k2

n2 ), for all k in {1, . . . ,n}. Let us show that for each k we can
find a probability measure whose expectation operator Pk (called linear prevision
in Walley’s terminology) satisfies Pk ( fk ) > 0 > Pk ( f j ) for every j in {1, . . . ,n} \ {k}.

To find such expectation operators, let P be the expectation operator associ-

ated with the mass function (0, 2k
n+2k , n

n+2k ). Then P ( fk − f j ) = k− j
n(n+2k) (2k−(k+ j )),

whence P ( fk − f j ) > 0 if k 6= j . Moreover, P ( fk ) = k2

n(n+2k) > 0.
If we now consider any λ ∈ (0,1) and define Pk as the expectation operator

associated with the mass function (λ, (1−λ) 2k
n+2k , (1−λ) n

n+2k ), we obtain P ( fk −
f j ) = (1−λ)P ( fk − f j ) > 0 whenever k 6= j . Moreover,

Pk ( fk ) =−λ+ (1−λ)P ( fk ) > 0 ⇔λ< P ( fk )

1+P ( fk )
,

and similarly

Pk ( f j ) =−λ+ (1−λ)P ( f j ) < 0 ⇔λ> P ( f j )

1+P ( f j )
.
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Since, for every j in {1, . . . ,n} \ {k},
P ( f j )

1+P ( f j ) <
P ( fk )

1+P ( fk ) because P ( f j ) < P ( fk ), we let

λ ∈
(

max
j∈{1,...,n}\{k}

P ( f j )

1+P ( f j )
,

P ( fk )

1+P ( fk )

)
,

and for this λ we obtain Pk ( fk ) > 0 > Pk ( f j ) for every j 6= k.
Now, let Dk be the coherent set of gambles given by Dk := { f ∈ L : Pk ( f ) > 0},

and let CDk be the coherent choice function it induces by Eq. (4). Then the choice
function C given by C (A) :=⋃n

k=1 CDk (A) is also coherent (Van Camp et al., 2015,
Proposition 3), and it can be checked to satisfy separate homogeneity because all
CDk do. If we now consider the option set A = {0, f1, . . . , fn}, we get that CDk (A) =
{ fk } for every k, since Pk ( fk ) > 0 > Pk ( f j ) implies that fk , fk − f j ∈ Dk for every
j . As a consequence, we obtain C (A) = { f1, . . . , fn}, whence A ∈ K . However, for
every k it holds that CDk (A \{ fk }) = {0}, using again that Pk ( f j ) < 0 for every j 6= k,
and therefore C (A \{ fk }) = A \{ fk }. Thus, A has no proper subset that also belongs
to the rejection class K . �

5 Conclusions

It is a consequence of coherence that a choice function is uniquely determined
by those option sets that allow us to reject the zero gamble, i.e., those that are
considered preferable to the status quo. In this paper, we have investigated the
structure of these sets and shown that the coherence axioms can be expressed
more intuitively in terms of these sets. In addition, we have shown that all the
necessary information is given by option sets of cardinality two when the choice
function is defined via maximality, and with cardinality two or three in most (but
not all) cases of interest when the possibility space is binary. Moreover, we have
shown that this last result does not extend to larger possibility spaces; thus, de-
termining an analogous representation for arbitrary spaces would be the main
open problem for the future.
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