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Abstract. Depth images generated by direct projection of LiDAR point
clouds on the image plane suffer from a great level of sparsity which is
difficult to interpret by classical computer vision algorithms. We propose
a method for completing sparse depth images in a semantically accurate
manner by training a novel morphological neural network. Our method
approximates morphological operations by Contraharmonic Mean Filter
layers which are easily trained in a contemporary deep learning frame-
work. An early fusion U-Net architecture then combines dilated depth
channels and RGB using multi-scale processing. Using a large scale RGB-
D dataset we are able to learn the optimal morphological and convolu-
tional filter shapes that produce an accurate and fully sampled depth
image at the output. Independent experimental evaluation confirms that
our method outperforms classical image restoration techniques as well
as current state-of-the-art neural networks. The resulting depth images
preserve object boundaries and can easily be used to augment various
tasks in intelligent vehicles perception systems.

1 Introduction

Recent advances in active depth sensing technologies such as high resolution
LiDAR and Time of Flight cameras have extended the applications where ro-
bustness and accuracy have been a limiting factor in the past. This is especially
true in the field of robotics and computer vision where solving high level prob-
lems such as autonomous navigation relies on a rich, multi-modal information.
Until recently, most of such applications reinforced visible light images with per-
pixel depth obtained using stereo cameras. Even though, stereo reconstruction
has been widely researched and many high performance solutions do exist , e.g.
close to 100 submissions on the KITTI Stereo 2015 benchmark1, it still suf-
fers from the effect of measurement correlated noise. As the 3D point is further
away from the sensor, the perceived image disparity between the stereo cameras
drops exponentially and so does the accuracy of it’s estimate. Furthermore, the
quality of reconstructed depth is directly coupled to the camera baseline which
creates another set of challenges. A small autonomous robot cannot carry a wide
baseline stereo rig, limiting the efficiency of any stereo reconstruction algorithm
1 http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo



Fig. 1. Illustration of the depth completion problem. Left: input data is given in the
form of registered RGB image and projected LiDAR points. Middle: Fully reconstructed
depth image, output of the proposed method. Right: dense ground truth data used for
training.

applied on the data. On the other hand, wide baseline stereo setups suffer greatly
from disparity artifacts around object boundaries that are close by. Solving for
these issues is a challenging task which more often than not requires additional
computational load on the perception system. Active depth sensors contrast the
principle of depth reconstruction by sending out well controlled infra-red pulses
into the surroundings. This infra-red light reflects back from the environment
and can be correlated to distances in a systematic way. At the time of writing,
commercial real-time LiDAR sensors can reliably measure depth in the range of
50cm to 80m while at the same time sustain low noise levels that are uncorre-
lated with the measurements. Data is being produced in the form of 3D point
clouds which have excellent depth resolution, but rather low spatial resolution.
In order to achieve real time operation, the LiDAR electronics sample depth at
predefined sparse azimuth and elevation latices. Usually, the spatial resolution is
lower in the elevation axis, which compared to the contemporary camera sensors
varies in the range of 1 depth scan-line for each 5-10 lines of RGB data. See the
left image in figure 1 for illustration of this effect.

Consequently, a direct projection of a LiDAR point cloud on the camera im-
age produces a very sparse depth image. Classical computer vision algorithms
such as visual odometry, scene understanding, segmentation, object detection,
etc. have difficulties extracting useful information from this sparse input. Many
of the processing steps need to be specifically tuned to incorporate sparse depth
pixels and ignore missing depth values which reduces the efficiency and in turn
usefulness of state-of-the-art algorithms. The problem of achieving equal sam-
pling resolution of the RGB camera and depth sensor is called depth completion
and is the main topic of this paper. A non-sparse data cube consisting of re-
constructed depth pixels, middle image on figure 1, can be easily interpreted by



classical computer vision algorithms. We have shown that pedestrian detection,
in particular, can achieve much higher performance when operating on a RGB-
D data reconstructed from a camera-LiDAR pair [1]. Even though many of the
proposed depth completion methods produce dense and visually pleasing depth
images, the depth completion problem is not entirely solved. A seemingly under
explored track is the exploitation of contextual information in the camera image
in order to produce more accurate depth in a semantically meaningful manner.
In this paper we propose a novel neural network architecture which is capable
to complete missing depth pixels by employing a mixture of morphological and
convolutional layers. Learnable morphological operators provide robustness to
the input sparsity, while multi-resolution convolutional layers extract contextual
information about object shapes and boundaries. Our network reconstructs a
depth image which is complete, accurate and preserves object edges.

In the following section we will make a brief overview of how the state-of-
the-art handles context in the depth completion problem, then in section §3 we
will define a novel neural network architecture suited for fusion of RGB informa-
tion with sparse depth input, furthermore in section §4 we perform large scale
evaluation of the proposed method and report the accuracy and performance,
and we discuss the effectiveness and possible downsides of using our method in
section §5.

2 Overview

One of the pioneering depth completion methods, [2] considered to estimat-
ing each pixel location in the sparse depth image by means of local interpola-
tion within a square window. The authors analyzed various classical reconstruc-
tion techniques which rely on depth information alone such as inverse distance
weighting, Shepard’s Method, ordinary Kriging, Delaunay triangulation and bi-
lateral filtering. Furthermore they introduced a modified bilateral filter which
also considers depth dispersion within the interpolation window. This method
can crudely model the appearance of an object edge or boundary into two cat-
egories: foreground and background. A local segmentation is performed on the
depth pixels which produces two clusters from which only the points that belong
to the dominant cluster contribute to the bi-lateral filter. These authors found
out that even simple techniques such as the minimum and median filter can com-
plete missing depth with comparable accuracy to the more complex bi-lateral
filter. A major drawback in this work is the simple model of the environment
which doesn’t take into account the geometrical and contextual structure of
objects.

Following the success of the bi-lateral filter, we have proposed a semanti-
cally aware multi-lateral filter, [1] that is guided by a segmentation image. The
segmentation image is computed by segmenting the LiDAR point cloud in a
pre-processing step and is independent on the filtering window size. In our mod-
ified multi-lateral filter we use both IR-reflectance and depth pixels originating
from the dominant object within the reconstruction window. Although we report



state-of-the-art performance on a small scale database, we encountered difficul-
ties obtaining an accurate segmentation image due to the point cloud sparsity.
This effect is especially pronounced in distant objects that are sampled by only
a few points. Contextual information originating from the RGB camera image
remained untapped.

Ku et al. [3] propose a surprisingly simple yet efficient depth completion
method using a sequence of morphological operations on the sparse depth im-
age. In their experiments they show that a small set of fine tuned dilations and
erosions is enough to reconstruct a high quality depth image. By experimenting
with various kernel sizes and shapes they come to the conclusion that 5× 5 dia-
mond shaped morphological operators are able to outperform even some neural
network based methods. However, higher level information about object types
and shapes is completely ignored, which can potentially lead to even better re-
constructions.

Recently, [4] proposed a method for semantically guided depth completion
by means of local plane fitting. They use the assumption that the environment
is locally smooth and can be piece-wise modeled by 3D planes. With the in-
tention of preserving depth discontinuities and tiny structures, they introduce
an novel edge and semantics aware geodesic distance metric. Additionally, they
propose an outlier rejection scheme by utilizing labels from the state-of-the-art
semantical segmentation algorithm, FCN [5]. Their reported qualitative results
are promising, however, the method is not monolithic as it relies on different
technologies and has been outperformed by special purpose neural networks.

Uhrig et al. [6] propose a depth completion method by processing the raw
RGB-D data cube using a novel neural network. They propose a sparsity invari-
ant convolutional layer which is built using an additional sampling mask. The
mask holds binary information about which pixel is scanned by the LiDAR and
is used to normalize the convolutional operations. Therefore, the network can
easily handle varying degrees of input data sparsity without any adjustments or
tweaking of the parameters. One downside of this method is that the network is
based on the Fully Convolutional architecture which has a high computational
load. Each inference produces a single depth pixel value and thus can not be
employed in real time applications.

3 Method

3.1 General Architecture

Our depth completion system is a transfer function which takes sparse depth
images and corresponding camera frames as inputs and outputs fully sampled
depth images. The system consists of a fixed and a trainable part. In the fixed
part, we make full use of previous state-of-the-art interpolation knowledge, as
implemented in [3], and for the trainable part we propose a novel morphological
CNN based on the principles of U-Net [7], SegNet [8] and ResNet [9]. We argue
that local depth information alone is not enough to fill-in the missing depth



values in a semantically meaningful way. Therefore, our CNN processes RGB-D
information at multiple scales, learning an optimal depth reconstruction function
that in part is guided by color information. The fixed part of the pipeline can be
seen as a pre-processing step used to better initialize the later CNN. Even though
all of the network weights are actually initialized using the Xavier method [10],
we noticed that convergence is reached much faster when the preprocessed data
is introduced.

Standard 2D convolution operations have difficulties in learning sparse data
input problems [6], [11]. This is especially true when it is necessary to distinguish
between actual measurement values and invalid pixels. Therefore, the entry point
of our CNN is a series of trainable morphological filters operating on the sparse
depth images alone. The purpose of this morphological sub-network is to separate
the low level RGB and depth processing pipelines in order to better learn an
initial depth image estimate. We approximate morphological dilation and erosion
operations by utilizing the limit behavior of the Contraharmonic Mean Filter
(CHM). These filters can be easily implemented in most contemporary deep
learning frameworks by means of standard convolutional layer building blocks.
In the later layers, morphologically processed depth and RGB information is
fused using standard convolutional layers. Instead of operating directly on the
depth values, our morphological network operates on inverse depth (disparity)
values which are then converted back to depth when computing the loss function.
The network is designed to output a depth patch with equal spatial size of the
input patch and can thus process high resolution data in reasonable time.

3.2 Morphological Filtering with a Contraharmonic Mean Filter

Morphological operators are the foundation of many image segmentation algo-
rithms. Using so called “structuring elements” they represent non-linear opera-
tions which compute the minimum, maximum or the combination of both within
the element. Morphological operations are also invariant to translation and are
strongly related to Minkowski addition. In the context of depth completion, it
is of interest for the system to learn the shape and the operation type that fits
best the data. However, due to the non-differentiable nature of minimum and
maximum filtering, only few approaches have been found to succeed in the lit-
erature. To this end, we find that the approximation of morphological operators
by the contraharmonic mean (CHM) filter in [12] is the best founded technique
which can easily be integrated in a deep learning framework. In this paper, we
also use the CHM to approximate our basic learn-able morphological block. Fol-
lowing the analysis in [12], [13] and [14], we model the contraharmonic mean
filter function ψk (x) as the power-weighted 2D convolution of the image f (x)
and a filter w representing the structuring element:

ψ (x;W,k) = ψk (x) =


(fk+1∗w)(x)
(fk∗w)(x)

if k ∈ R
min (fW (x)) if k = −∞
max (fW (x)) if k = +∞

, (1)



Algorithm 1 MATLAB snippet for initializing the morphological operator using
AutoNN and MatConvNet framework
function out = morphFilter(x,weights,biases,k)

x1 = x.^(k+1);
x1 = vl_nnconv(x1,weights,biases);
x2 = x.^k;
x2 = vl_nnconv(x2,weights,biases);
out = x1./x2;

end

where the order k of the filter defines the desirable properties such as mor-
phological erosion if k � 0 or dilation if k � 0, W defines the set of values in
the support of w and fk is simply the input image raised to the power k. When
k is large, the filter tends to select the pixels xi with the largest values within
the support region W which in the limit case, k →∞ equates to the supremum,
i.e. morphological dilation:

lim
k→∞

ψk (x) = max
xi∈W

(f (x− xi)) ≡ ψ∞ (f) . (2)

Otherwise, when k is sufficiently small, the CHM filter will tend to select the
smaller valued pixels which in the limit case k → −∞ equates to the infimum,
i.e. the morphological erosion:

lim
k→−∞

ψk (x) = min
xi∈W

(f (x− xi)) ≡ ψ−∞ (f) . (3)

In practice, the choice of k, and thus computing the derivative, will be limited
by the computer number precision, but we found that a value of k = 5 produces
the desired morphological filtering effect using single-precision floating point
filter and pixel values. For a more detailed analysis of the filter properties and
their proofs we advise the reader to the works of van Vliet [13] and Angulo [14].
This filter formulation is differentiable with respect to the input data x and both
the filter mask w and the filter order k, as given in [12]. However, in our problem
where we only encounter empty regions which we need to complete, we fix the
order k to a positive value and are mainly focused on learning the structuring
element w, hence the partial derivative of the filter with respect to the input is:

∂ψk (x)

∂f
=
f (x)− f (x)

(
fk+1 ∗ w

)
(x)

(fk ∗ w) (x)
, (4)

and is used while applying the chain rule in back propagation. In practice we
use the MatConvNet [15] framework with the AutoNN implementation of au-
tomatic differesntiation API which successfully handles the inference and back-
propagation operations. Formally, the CHM filter is implemented using two con-
volution layers representing the denominator and numerator in (1). The convo-
lution layers share the same filters and biases and have the same learning rates.



An extract of our initialization procedure for a single morphological operator is
given in algorithm 1. The learned morphological operators can thus be visualized
by taking the logarithm mi (x) = log (w). We note that the input data for our
morphological operators is the inverse depth (disparity) image rather than the
raw depth values. This is done because of the nature of the morphological dila-
tion operation in gray level images, where pixels with larger values are extended
by the shape of the structuring element. In cases where an area to be dilated is
completely filled with measurements, the resulting dilation will accentuate ob-
jects that are nearer to the camera (lower depth, greater disparity), rather than
the background. This result is more desirable since it is safer to assume that no
object with size less than half of the structuring element will be completely lost
by applying the dilation.

3.3 Proposed Network Architecture

Depth completion using a regression neural network can be performed in three
different ways. Depth can be reconstructed per pixel, per patch or per entire
frame. While processing each pixel individually enables us to use a very deep
CNN, in reality it’s deployment is intractable due to long computing times. On
the other hand, reconstructing the entire image in a single pass is most desirable,
but it is difficult to achieve acceptable results since processing is limited by
image resolution and GPU memory. Single image inference networks must be
kept relatively simple which limits their performance in terms of error rates.
In this paper we propose a medium sized CNN architecture which can process
sparse patches of the input RGB-D images. A complete dense depth image is
thus formed by processing overlapping patches over the input image. The general
structure of the proposed network is loosely based on the auto-encoder with
information leak proposed in [7] and [8] for high resolution segmentation tasks.

We exploit the knowledge from [3] and start with a fixed pre-processing
morphological block consisting of a sequence of dilation, closing and two hole
filling operators. In a separate step we use two learnable CHM filter layers to
infer the optimal morphological operations from the sparse input, each with a
support of 11× 11 pixels. In the end, the RGB channels are concatenated with
the output of [3] and the output of our CHM filters and are passed through a
three stage U-Net, figure 2.

The novelty of this paper comes from the introduction of morphological layers
before the contracting part which helps to eliminate the sparsity in the input.
By applying a succession of convolutional filters we then double the number of
channels and reduce the spatial resolution by half. Having learned the optimal
dilation structuring elements in the CHM filter, the U-Net channels have no
sparsity and can easily adapt to produce the desired output. At the end of each
contracting block we specifically chose to use average pooling layers because they
capture all of the information necessary for later depth reconstruction. In the
expanding part, the network employs standard series of “deconvolution” layers
that upsample their input by a factor of 2× and concatenate outputs from the
respective contracting layers. The purpose of the expanding blocks is to reduce
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Fig. 2. General structure of the proposed network.

the number of contextual information stored within the channels while at the
same time increase the spatial resolution. This way, information over varying
resolutions and abstraction levels in both RGB and input depth is used to form
high resolution depth output which adheres to object boundaries.

In order to learn the shape of the morphological and convolutional filters we
use dense ground truth depth images to which we compare the output of our
proposed network. Deviations from the ground truth can be quantified by a mul-
titude of different metrics, such as absolute error, squared error, inverse absolute
error, inverse squared error, absolute and squared relative error, percentage of
outliers, etc. but in this paper we stick to the classical mean squared error as our
loss function. We are motivated to do so because we are interested in accurate
depth reconstructions which can later be used for the tasks of autonomous driv-
ing. Therefore, object distances need to be accurate regardless of their absolute
distance to the sensor, i.e. we equally penalize error whether it is for a distant or
a close object. For training the entire network we use the backpropagation chain
rule and employ the stochastic gradient descent by adaptive moment estimation
(ADAM) technique, [16]. This method computes individual adaptive learning
rates for different parameters from estimates of first and second moments of the
gradients. We set an initial learning rate

(
α = 10−5

)
and two hyper-parameters:

decay for the first moment vector (β1 = 0.9) and decay for the second moment
vector (β2 = 0.999).



4 Experiments

4.1 General

Learning a robust set of depth completion filters requires a large and variable
set of input and ground truth data. The very recently published KITTI depth
completion2 data [6,17,18] is an excellent example of such dataset in the context
of depth sensing for autonomous navigation. It consists of video sequences cap-
tured by a stereo RGB camera pair as well as point clouds from the Velodyne
HDL-64E LiDAR. Each point cloud is projected on a virtual camera image cre-
ating a sparse depth image, previously visualized on the left image in figure 1.
There is a total of 151 sequences with 93505 frames split into ∼ 92% training
and the remaining ones for model validation. Independent method evaluation
is also provided by means of an on-line server which tests uploaded results to
frames with unknown ground truth data.

4.2 Data Preparation

In order to reduce the computational burden and expedite the training process
we only use a small sub-sample of the training set. We noticed that, due to
the relatively high sampling rate, most of the 93K frames in the KITTI dataset
contain temporally correlated information. Additionally, many of the sequences
are recorded from a static vehicle and thus contain a large portion of the same
content. Thus, in all our experiments we removed most of the static sequences
and only sample every 6th frame from the remaining data. We ended up with a
training set of ∼ 4.3K samples. Input images are padded to a fixed resolution
of 1280× 384 pixels from which we randomly sample rectangular patches of size
96×96. Since our network uses 3 stage contraction, the lowest resolution of the
input image inside the network is 12× 12 with a channel depth of 256.

4.3 Training Procedure

Learning of the optimal network parameters is done by presenting the network
with sub-batches of the labeled training set. After each inference, batch-average
MSE is calculated from ground truth and the value is used as a loss to adjust
the convolution filter parameters. Each successive layer is updated by backprop-
agation using the chain rule. We employ the ADAM optimization method and,
since we train using small patches of images, we train until convergence for ∼ 200
epochs. During training we keep the hyper-parameters α, β1 and β2 fixed, but
adaptively change the batch size, starting from 4 increasing to 64. After each
epoch, we also perform validation using a small sub-set of the validation dataset.

2 http://www.cvlibs.net/datasets/kitti/eval_depth.php?benchmark=depth_completion



Fig. 3. Typical use case scenario in an urban environment. From top to bottom: a)
RGB camera frame, b) completed depth image from [3], c) completed depth image
from [6] and d) completed depth image from the proposed method.

4.4 Analysis

We deployed our trained neural network on the 1000 test samples from the
KITTI depth completion benchmark. The accuracy of our method in terms of
iRMSE, iMAE, RMSE and MAE is independently measured by the KITTI on-
line server and compared to various techniques. This benchmark contains various
anonymous submissions, summarized on Table 1, to which we can’t fully com-
pare since we don’t know their exact details. To that end, we match our results
only to results from publicly available techniques. In terms of raw RMSE error
we outperform classical methods such as [4] and [3], as well as the only pub-
lished CNN method [6]. Qualitatively, our method also better preserves object
boundaries which is visible from the results shown on figure 3. Using the RGB
information in the contracting and expanding network architecture, we are able



Table 1. Depth completion results on the KITTI benchmark.

Method iRMSE iMAE RMSE MAE Runtime Source
HMS-Net_v2 3.90 1.90 911.49 310.14 0.02 s / GPU n/a

Sparse-to-Dense-2 3.21 1.35 954.36 288.64 0.04 s / GPU n/a
HMS-Net 3.25 1.27 976.22 283.76 0.02 s / GPU n/a

Morph-Net 3.84 1.57 1045.45 310.49 0.17 s / GPU Proposed
IP-Basic 3.78 1.29 1288.46 302.60 0.011 s / 1 core Ku [3]
ADNN 59.39 3.19 1325.37 439.48 0.04 s / GPU n/a

NN+CNN 3.25 1.29 1419.75 416.14 0.02 s / Uhrig [6]
SparseConvs 4.94 1.78 1601.33 481.27 0.01 s / Uhrig [6]
NadarayaW 6.34 1.84 1852.60 416.77 0.05 s / 1 core Uhrig [6]

SGDU 7.38 2.05 2312.57 605.47 0.2 s / 4 cores Schneider [4]
NiN CNN 4.60 2.15 2378.79 685.53 0.01 s / n/a

NiN+Mask CNN 4.63 2.40 2534.26 848.25 0.01 s / GPU n/a

to effectively fill in missing object parts with the relevant depth information.
This is especially noticeable in transparent objects such as house and car win-
dows and glass displays. The inclusion of morphological layers makes the network
flexible enough so that sparse data is handled in the initial layers, while the rest
of the network is dedicated to better extracting contextual information.

5 Conclusion

Depth completion from sparse inputs has traditionally been solved by local image
processing that handles sparsity using fine tuned filters. However, in instances
where the level of sparsity varies spatially or parts of objects are completely
missing, local processing is unable to accurately reconstruct depth information.
Contextual information from the entire scene or parts of objects must be con-
sidered to better fill-in missing depth. We explored the idea of adding learnable
morphological filters to a state-of-the-art multi-scale neural network in order to
reduce the input sparsity. At the same time, these filters are adjusted for optimal
reconstruction quality. We implemented morphological operators using the CHM
filter which can be constructed out of standard deep learning building blocks.
In terms of reconstruction accuracy, our method outperforms all published clas-
sical and neural network based approaches. It operates on image stripes which
are concatenated to form the final depth image. The run-time for completing
a single image (inference) of size 1280x384 pixels is on average 1.75s. A future
direction of our research will be to investigate which additional steps need to
be taken in order to reduce the complexity of the network while not sacrificing
reconstruction accuracy.
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