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Chapter 1

Introduction

Unemployment is without a doubt a hot topic. The tiniest fluctuation in the unemployment rate

is the topic of a newspaper article, while members of our government regularly use catchphrases

like "jobs, jobs, jobs". But why are we so concerned with unemployment? There is of course the

most straightforward reason that individuals need a job in order to make a livelihood and have the

ability to fulfil basic needs like food and housing. Furthermore, unemployment has been related

to a myriad of different issues. On a personal level, it has been shown that an unemployment

spell is linked to lower physical health (Mathers and Schofield, 1998) and an increased mortality

rate (Roelfs et al., 2011). In addition, even stronger negative effects have been reported on mental

health and well-being. Dooley et al. (1996), Jefferis et al. (2011) and Mathers and Schofield

(1998) show that an unemployment spell increases the probability of depression and suicide rates.

These findings are confirmed by a number of meta-analyses (Murphy and Athanasou, 1999; Paul

and Moser, 2009). Moreover, being unemployed also negatively influences the extent of one’s

social network, which is in itself related to a lower wellbeing (Atkinson et al., 1986; Kieselbach,

2003). For a society, a higher unemployment rate also entails large costs. First and foremost, the

higher the unemployment rate, the more stress is placed on the welfare state, as there is a smaller

share of active contributors financing higher expenditures on unemployment insurance (UI). In

addition, a society with a high unemployment rate does not make full use of its human resources

and can therefore experience lower economic growth. Moreover, a higher unemployment rate has

been related to higher incidence of (property) crime (Aaltonen et al., 2013; Bennett and Ouazad,

2016; Raphael and Winter-Ebmer, 2001) and a higher incidence of domestic violence (Anderberg

et al., 2016). Finally, it has been demonstrated that societies with a higher unemployment rate

1



2 1. Introduction

Figure 1.1: The Percentage of all Unemployed who Have Been so for More than 1 year (OECD-countries)

Note. Data are collected from ILOSTAT. Data is for the last available year.

exhibit a higher prevalence of xenophobia (Steininger and Rotte, 2009). Nevertheless, a certain

level of unemployment is unavoidable–and not necessarily bad–as people need some time to

look for a job that fully matches their interests and capacities. The above mentioned issues

prevail when this short-term frictional unemployment becomes long-term or structural. The

European Union (EU) defines long-term unemployment as unemployment lasting more than one

year. Looking at the data, we have to conclude that long-term unemployment is a reality in many

countries. According to data from ILOSTAT, worldwide, an average of 39% of the unemployed

have been so for more than one year. Figure 1.1 depicts this indicator for OECD-countries.

Overall, 36 percent of all unemployed have been in this position for more than one year. However,

this average value hides large cross-country differences. Iceland, Canada, Chile and the US all

have a relative low percentage of long-term unemployed (i.e. around 10% of all unemployed),

while at the other side of the spectrum Greece exhibits an extremely high rate of 72%. Belgium–
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depicted in yellow–is one of the worse students of the class. In our country, more than half of all

unemployed have been so for at least one year. Off course, the simple observation that a large

share of all unemployed individuals has been unemployed for at least one year does not tell us

anything about the reasons why this might be the case. Nevertheless, we know that the longer an

individual has been unemployed, the lower her/his chances are of exiting this state (Biewen and

Steffes, 2010; Cockx and Dejemeppe, 2005; Cockx and Picchio, 2013; Imbens and Lynch, 2006;

Luijkx and Wolbers, 2009; Mooi-Reci and Ganzeboom, 2015; Plum and Ayllón, 2015; Shimer,

2008). The economic literature has offered two alternative explanations for this observation.

On the one hand, it could be the case that some people are simply less employable than others

because they are less capable or have lower skills. These individuals will exhibit both a higher

chance of being unemployed and a lower chance of finding employment. In other words, the

most employable individuals exit unemployment first and what remains is a pool of individuals

who will have a lot of trouble finding work. On the other hand, it might also be the case that it

is the unemployment spell that causes the lower hiring probabilities. In this case, individuals

that experience a short unemployment spell throughout the course of their working life face the

threat of ending up in a vicious circle, where an unemployment spell lowers ones chances of

finding work, which in turn lengthens the unemployment spell. This is what is referred to as

the scarring effect of unemployment. Recently, some large scale field experiments have shown

that at least part of the explanation is the scarring effect (Eriksson and Rooth, 2014; Kroft et al.,

2013). Two broad theories could explain this effect. Firstly, it could be that the length of the

unemployment spell constitutes a negative signal to potential employers (Arrow et al., 1973;

Blanchard and Diamond, 1994; Jarosch and Pilossoph, 2018; Spence, 1978; Vishwanath, 1989).

A second theory is that of human capital depreciation (Becker, 1962, 1994) which state that the

unemployed will see a deterioration of their skills over the course of the unemployment spell

(Acemoglu, 1995; Mincer and Ofek, 1982). I will have a closer look at the causes of the observed

scarring effect of unemployment in the first study (Chapter 2) of this dissertation.

A second type of unemployment that is of special concern to society–and this dissertation–is

youth unemployment. Indeed, literature has shown that an unemployment spell in the beginning

of ones career can have long-lasting impacts on the rest of her/his working life (Cockx and

Picchio, 2013). Moreover, as Figure 1.2 clearly shows, unemployment rates among youth are

systematically higher than overall unemployment in OECD-countries. Belgium (again depicted



4 1. Introduction

Figure 1.2: Unemployment Rates by Age

Note. Data are collected from ILOSTAT. Data is for the last available year.

in yellow) is once more at the left side of the spectrum, indicating that–again–only a couple of

countries (mainly in Southern Europe) exhibit higher unemployment rates among youths than

here. Chapter 4, will have a closer look at these issues.

Agreeing on the fact that unemployment–and especially long-term unemployment and youth

unemployment–is an issue of concern, there is a scope for adequate labour market institutions and

policies. Furthermore, given that the first study confirmed that an unemployment spell constitutes

a negative signal towards employers, it seems of crucial importance that labour market policies

aim to help the unemployed to find a job from the very first moment they become unemployed.

Labour market policies are usually classified in two broad categories: Active Labour Market

Policies as opposed to the passive income support policies. While income support policies

exist to provide a financial buffer to bridge temporary periods of unemployment (think about

unemployment benefits or social assistance), active policies aim to enhance the beneficiary’s

prospect of finding gainful employment. These types of policies usually take on the form of job

application counselling and monitoring, training, employment subsidies or direct job creation.

While different viewpoints exist on what constitute an ’Active Labour Market Policy’, in this
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dissertation, I will follow the most common definition and will only look at policies of this nature

that are temporary and targeted.

While originally labour market policy consisted mainly of passive policies, the rising unem-

ployment rates since the 1970s has led to a marked increase in the use of active labour market

policies (ALMPs) in order to enhance the transition from unemployment to employment (ILO,

2014; Martin, 2014). In the early days of active labour market policies, it was believed that in

order to activate the unemployed, public spending needed to shift from passive to active policies

(Martin, 2014). However, this view ignored some important linkages between the generosity of

unemployment insurance, the size and structure of ALMPs and to what extent the first depends on

participation in the second. The lack of evidence showing that countries applying this activation

strategy exhibited better labour market outcomes has led to a new view in which both active and

passive policies are recognized as essential components of a broader labour market policy.

Question remains whether labour market policies are really the best way to tackle unemployment.

One could argue that these programs merely increase the employability for those individuals

participating in the program but, unless more private-sector jobs are created, this will be at the

expense of other individuals. The second study of this dissertation (Chapter 3) investigates

this issue. In this study, we look at labour market policies from a macroeconomic perspective,

i.e. we answer the question whether countries that invest more funds in labour market policies

have better–overall–labour market outcomes. The results of Chapter 3 clearly show that there

is indeed scope for labour market policies as spending in Active Labour Market Policies lower

unemployment and increase employment and labour force participation. Nevertheless, these

effects only materialize given that sufficient amounts are spent in Passive Labour Market Policies.

This demonstrated overall effectiveness of labour market policies highlights the importance for

a scientifically sound evaluation of which specific policies work best (or which don’t) (Card

et al., 2010, 2017; Greenberg et al., 2003; Heckman et al., 1999; Kluve, 2010). In the remainder

of the dissertation I will analyse the effectiveness of labour market policies from two different

perspectives. Chapter 4 evaluates the impact of a specific combination of an active policy (the

youth work plan) and a passive policy (the waiting benefit) on the duration in unemployment for

Belgium. Finally, in Chapter 5, I venture beyond the question whether or not a policy is effective

and assess the mechanisms behind this observation for a specific ALMP, namely the job vacancy

referral in Flanders, Belgium.
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Chapter 2

Why Are Employers Put Off by Long

Spells of Unemployment?1

2.1 Introduction

In social stratification research, the experience of unemployment has been described as a trigger

event (DiPrete, 2002; Gangl, 2004, 2006), that is, a critical, stressful and potentially disruptive

life course event often taking a severe economic and psychological toll on those affected (for

a review: Brand, 2015). With the economic downturn of recent years, the number of people

going through a spell of unemployment as well as the average length of unemployment spells

have been on the rise (OECD, 2013), drawing renewed attention to the potential scarring effect

of unemployment on future re-employment chances. As employers are particularly wary of

lengthy gaps in the résumé that are unaccounted for (Bills, 1990), unemployment tends to be

self-reinforcing, possibly stigmatising the long-term unemployed (hereafter: LTU) in employers’

perceptions. Indeed, a number of studies in both sociology and economics have pointed to the

negative duration dependence of unemployment—the observation that an individual’s probability

of exiting unemployment decreases the longer she/he is unemployed (e.g. Cockx and Picchio,

2013; Luijkx and Wolbers, 2009; Mooi-Reci and Ganzeboom, 2015).

Recently, large-scale field experiments conducted in Sweden and the United States have shown

that at least part of the negative duration dependence of unemployment has a demand-side

1 In collaboration with Stijn Baert, Ralf Caers, Marijke De Couck, and Valentina Di Stasio.
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explanation: employers are reluctant to hire LTU (Eriksson and Rooth, 2014; Kroft et al., 2013).

In these résumé-based audit studies, fictitious job applicants with a longer unemployment spell

received significantly fewer job interview invitations than identical applicants with a shorter

spell. However, while field experiments of this kind are convincing for the clean measurement of

unemployment scarring, they do not allow disentangling the reasons for this pattern: long-term

unemployment is shown to be used as a negative signal by employers, but it remains unclear

what exactly is signalled by longer unemployment spells.

In this study, we explore the empirical importance of four perceptions potentially underlying

employers’ reluctance to hire LTU, namely, the perception that LTU: (i) possess skills or char-

acteristics that are not directly observed but considered less than optimal for the job, (ii) have

experienced a deterioration of skills during the unemployment spell, (iii) are less trainable

than candidates without long unemployment spells, and (iv) have been negatively evaluated

by other employers and therefore deemed undesirable employees. To this end, we propose a

state-of-the-art vignette experiment in which Flemish professionals involved in real-life hiring

processes reveal their hiring intentions with respect to job candidates with different unemploy-

ment durations.2 In addition, the survey module in which the vignette experiment is embedded

provides us with rich information about the reasons underlying employers’ preferences. This

allows us to examine the empirical power of the four signals by estimating a multiple mediation

model. Thereby, our study complements (and is consistent with) the evidence obtained from

employer surveys (Atkinson et al., 1996; Bonoli, 2014) which, however, are more likely to be

biased by socially desirable response patterns. In comparison, vignettes are a powerful method

to analyse socially sensitive questions (Auspurg, Hinz, et al., 2014) and the possibility they

afford to present employers with detailed scenarios is an important methodological advantage as

employers are more likely to report negative views of specific unemployed applicants than when

questioned in very general terms (Bonoli, 2014).

This study contributes to the literature on unemployment scarring by looking more closely at

the demand-side mechanisms that can trap unemployed job seekers in long-lasting periods of

joblessness. Our findings show that employers’ reluctance to hire LTU is to a large extent

2 Belgium is a federal state with three regions. Flanders is the largest region, situated in the North. While
unemployment rates in Belgium are comparable to the average of the Eurozone, the share of long-term unemployment
(i.e. one year or more) is more than 50% (ILOSTAT), which is fairly high in international comparison. In particular,
in Flanders, the share of long-term unemployment was 50.3% in 2018 (source: Public Employment Agency of
Flanders).
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mediated by their perception of unemployment as signalling lower motivation. A smaller

fraction of the total effect of unemployment duration on hiring intentions is associated with

rational herding, that is, the belief that other employers found the candidate’s productivity to

be low. Understanding why employers refrain from hiring LTU is crucial to design activation

policies that are effective in re-inserting them into the labor market. Our study is a contribution

in this direction. For example, if the unemployed (and caseworkers) are made aware of the

(mis)perceptions standing in the way of their employment opportunities, they may attempt to

compensate for these perceptions, for instance, by underlining relevant personal characteristics

and attainments in their résumé.

The remainder of this article is structured as follows. Section 2.2 gives a brief overview of the

four theoretical explanations for employers’ reluctance to hire LTU, and the associated signals,

as found in the multidisciplinary literature on this topic. Section 2.3 describes the experiment we

conducted. The experimental data is then analysed in Section 2.4. Section 2.5 5 concludes with

some take-away messages for scholars as well as for interested policy makers. In addition, in

this last section, we discuss the limitations of our experimental design.

2.2 Theoretical Framework

Theories explaining the phenomenon of negative duration dependence of unemployment are

abundant in both the fields of sociology of work and occupations and labour economics. The

observed reluctance to hire LTU can have many possible sources, both on the demand- and supply-

side of the labour market. While the demand-side explanations reviewed in this study influence

the unemployment duration through the perceptions of employers, supply-side explanations

attribute to the negative duration dependence by actual changes in the behaviour or productivity

of workers over the course of the unemployment spell.3 However, in our vignette experiment,

3 We note three such supply-side explanations. First, a long unemployment spell might reduce one’s search
intensity when looking for a job. Clark et al. (2001) showed that the unemployed can become indifferent to the
prospect of becoming employed after a lengthy unemployment spell. A second explanation is the lack of a network
experienced by LTU (Calvo-Armengol and Jackson, 2004). Finally, human capital theory (Becker, 1962, 1994)
predicts that LTU will experience skill loss over the course of the unemployment spell. It is important to note that
these supply-side explanations could have a demand-side effect through the associated perceptions of employers.
Indeed, the important difference between both groups of explanations is the mechanism behind them. While the
demand-side explanations assume that the hiring process is characterised by asymmetric information and that, as a
result, employers make assumptions based on group differences, the supply-side explanations on the other hand
assume that employers adequately evaluate changes in productivity due to the long unemployment spell.
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explanations for the negative duration dependence of unemployment that are situated on the

supply-side are ruled out by design.

Under the umbrella of signalling theory, we can bracket various models in the social and

behavioural sciences, arguing that when people are confronted with asymmetric information,

they use the limited available information as a signal for other, unobserved factors related to

one’s productivity (Arrow et al., 1973; Eriksson and Rooth, 2014; Kroft et al., 2013; Spence,

1978; Vishwanath, 1989). Accordingly, employers could rely on candidates’ employment history

as a screening device to filter out job candidates. What remains unclear however, is what exactly

is signalled by a long unemployment spell. In this study, we focus on four signals that are related

in the literature to long-term unemployment: (i) a signal of (lower) fixed skills and characteristics,

(ii) a signal of skill loss, (iii) a signal of (lower) trainability, and (iv) a signal of rejection by other

employers.

In the most direct interpretation of signalling theory, employers could see a long unemployment

duration as a signal of unobserved skills or characteristics that are innate or fixed over time.

In this sense, a long unemployment spell can be a signal of lower motivation (Luijkx and

Wolbers, 2009) or lower intellectual and social capabilities (Vishwanath, 1989), both of which

are negatively associated with productivity. As these characteristics are unobserved by employers

at point of hire, unemployment spells may be used as proxies instead.

On the other hand, employers could also believe that a worker’s productivity is dynamic and

deteriorates over the course of an unemployment spell. Put differently, employers could believe

in skill loss or skill depreciation. This mechanism is related to human capital theory, as first

described by Becker (1962, 1994). Crucial is that it is costly for the unemployed to maintain

their skill level during the stretch of unemployment (Acemoglu, 1995; Mincer and Ofek, 1982).

Moreover, employers cannot detect the genuine level of skill depreciation of a (long-term)

unemployed applicant. As shown by Acemoglu (1995), these two observations may result in an

inefficient equilibrium in which employers discriminate against LTU due to the perceived skill

loss (and, as a result, the unemployed do not invest to maintain their skill level).

Two more specific applications of signalling theory are also widely cited in this context. A first

particular application relates long-term unemployment to (a signal of) lower trainability. Follow-

ing queuing theory (Thurow, 1975), employers may rank all job candidates by their (perceived)

trainability, with the person they believe will be easiest to train holding the first position in the
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queue and the person they perceive as the least trainable holding the last. Subsequently, these

employers decide on a cut-off and only the individuals above the cut-off are invited for a job

interview. Because employers, again, do not possess full information, they have to use the limited

information available to assess a job applicant’s trainability (Di Stasio, 2014). If employers

believe unemployment has a negative effect on trainability, people with a longer unemployment

spell will be ranked lower in the labour queue and, as a consequence, have a lower chance of

getting invited for a job interview.

The final application of signalling theory we consider stipulates that, when making the decision

to invite someone for a job interview, employers follow the behaviour of other employers

—a behaviour also known as rational herding (Banerjee, 1992; Bonoli and Hinrichs, 2012;

Oberholzer-Gee, 2008). One such factor from which employers might infer the screening

behaviour of their colleagues is job candidates’ unemployment durations. Qualitative studies

have indicated that employers assume the time out of work is spent looking for a job, but, since

the candidate is still unemployed, this search must have been unsuccessful (Bonoli, 2014). If

the unemployment spell is relatively long, employers might conclude that other employers have

repeatedly found the candidate’s productivity to be low and decide that it is unprofitable to hire

the candidate.

In what follows, we will explore how these key perceptions mediate the effect of unemployment

duration on hiring intentions. Note that the we do not intend to demonstrate that, for example,

LTU actually lose specific skills or become less motivated while out of work (i.e. to test supply-

side explanations), but only that employers believe they do. In other words, when looking at

unemployment scarring from a demand-side perspective, employers’ perceptions are both crucial

and sufficient for scarring effects to materialise.

Correspondence tests have provided evidence for negative signalling effects related to long-term

unemployment. In this kind of experiment, sets of fictitious résumés, differing only in the

characteristic of interest that is randomly assigned, are sent to real job openings. By measuring

the subsequent invitations received from employers (i.e. callbacks) unequal treatment can be

identified in a causal manner (Baert, 2018). Using this methodology, it has been shown that

a wide range of factors constitute a signal in the hiring process, including ethnicity (Baert,

Cockx, et al., 2015; Kaas and Manger, 2012; Oreopoulos, 2011), gender (Baert, De Pauw, and

Deschacht, 2016; Petit, 2007; Riach and Rich, 2006), and age (Ahmed et al., 2012; Baert, Norga,
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et al., 2016; Lahey, 2008). Studies using this methodology have also looked at the signal of

long unemployment durations. While Farber et al. (2016) found no significant scarring effect of

long unemployment spells on callbacks, the majority of studies reported, indeed, lower callback

probabilities for LTU (Eriksson and Rooth, 2014; Kroft et al., 2013; Oberholzer-Gee, 2008).

Having established that a long unemployment spell is a negative signal towards employers, the

question remains what is signalled by this long unemployment spell. This has been the topic of a

number of qualitative studies. Atkinson et al. (1996) administered a telephone survey with 800

representative employers in the United Kingdom. They concluded that employers believe LTU do

possess the necessary skills but they are nevertheless less attractive due to a recent deterioration

in these skills—pointing towards a negative signal of skill loss—and, most importantly, a lower

motivation. A perceived lower motivation was also the main reason why 722 Swiss employers

surveyed by Bonoli (2014) were reluctant to hire LTU. Bonoli and Hinrichs (2012) reached

similar conclusions based on 41 semi-structured interviews with employers in six European

countries. In addition, they found evidence for rational herding, i.e. the employers stated that

LTU must have been deemed unproductive by previous employers. Lastly, Oberholzer-Gee

(2008) carried out 766 telephone surveys with Swiss employers and found evidence for a signal

of skill loss and a signal of negative evaluation by other employers. To the best of our knowledge,

we are the first to approach this question using experimental methods (and to tease out the signals’

relative importance).

2.3 Experiment

In order to not only determine whether job candidates’ unemployment duration affects their

hiring chances, but also gain an insight into the thought process leading to this pattern, we

conducted a vignette study. Vignette studies are based on the factorial survey method (Auspurg

and Hinz, 2014; Rossi and Nock, 1982) and are commonly used to study human judgements

(Jasso, 2006; Wallander, 2009). In recent years, this method has been increasingly used to study

dynamics in hiring decisions (e.g. Di Stasio, 2014; Liechti et al., 2017).

Each participant in a vignette experiment is asked to judge several short hypothetical descriptions

of situations or individuals described on vignettes, whose characteristics (factors) vary randomly

or systematically over a defined number of categories (levels). As a consequence, correlations
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between the vignette factors are minimised to a value close to 0. This orthogonal design allows

a causal interpretation of the effects of the vignette factors on participants’ judgements. When

employed to study hiring intentions, vignettes typically list various characteristics of fictitious

job applicants who are evaluated by the participants of the experiment. The simultaneous

manipulation of different applicant characteristics closely resembles the multidimensional nature

of selection decisions in the field, as in practice employers also compare candidates who vary on

a number of characteristics, such as gender, level of education, and employment history.

2.3.1 Vignette Design

We asked a sample of professionals familiar with real-life hiring processes (referred to as

employers from here on) to evaluate a set of five vignettes describing each a fictitious job

applicant. The job applicants varied in five factors, presented in Table 2.1.4 The vignette factor

of main interest for our study is the unemployment duration, operationalised as the number of

months a candidate reported to have been unemployed prior to the job application. In line with

Kroft et al. (2013), this number could take on any integer from 1 to 36 (resulting in 36 vignette

levels for this factor). By means of this flexible approach, we did not have to make any prior

judgement on the time-pattern of unemployment scarring. As can be seen from Table 2.1, the

fictitious candidates also differed in gender (male or female), highest degree obtained (secondary

education or bachelor’s degree), work experience (two or five years), and participation in social

activities (none or volunteering activities). These factors were chosen on the basis of our literature

review and tested over the course of explorative interviews with three HR professionals. We also

ran a pilot study with 30 master’s students in economics to assess whether our vignettes were

perceived as credible, which reassured us that no crucial information was omitted. We should

make two important notes. Firstly, our choice to include a continuous unemployment duration,

resulting in one vignette factor with 36-levels (as opposed to two levels for the other factors), can

cause a ‘number of levels’ effect (Auspurg and Hinz, 2014). However, as the aim of our study is

not to compare the relative importance of different vignette factors, we do not think this is a major

issue. Moreover, including these 36 levels in our models allows us to exploit a larger variance

4 In the methodological literature on vignette experiments (Auspurg and Hinz, 2014), five is the lower bound
suggested for the number of vignette factors. We decided to stick to this minimum to limit respondents’ fatigue,
taking into account the relatively large number of judgements we asked them to make for each vignette (see
Section 2.3.2).
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in this variable and avoids a choice for arbitrary vignette levels capturing short- and long-term

unemployment. Secondly, it could be the case that some combinations of vignette factors are

implausible. Indeed, even though long-term unemployment is high in Belgium (see endnote

i) one could imagine that employers are unlikely to have been confronted with, for instance,

candidates with a bachelor degree and/or five years of experience who have been unemployed

for the full 36 months. Therefore, we will report on a robustness check in which implausible

vignettes were excluded.

Table 2.1: Vignette Factors and Levels

Vignette factors Vignette levels

Gender {Male, Female}

Highest degree obtained {Secondary education degree, Bachelor’s degree}

Previous work experience {Two years of experience, Five years of experience}

Mentioned social activities {None, Volunteering}

Unemployment duration {1 month, 2 months, . . . , 36 months}

Note. The factorial product of the vignette levels (2 x 2 x 2 x 2 x 36) resulted in 576 possible combinations.
Three hundred vignettes were sampled from this universe using a D-efficient design (D-efficiency: 99.820;
Auspurg and Hinz, 2014). These vignettes were blocked into 60 decks containing five vignettes each.
These decks were distributed at random to the participants. This guaranteed that the vignette factors were
nearly orthogonal, as shown in Table 2.6.

After fully crossing all the vignette levels for the five factors, we obtained a vignette universe of

576 (i.e. 36 x 2 x 2 x 2 x 2) vignettes. We sampled 300 vignettes out of this universe using a

D-efficient randomisation following the Kuhfeld (2010) algorithm as explained in Auspurg and

Hinz (2014). This resulted in a very high D-efficiency of 99.820. In a second step, we grouped

these vignettes (again following Kuhfeld (2010)) to create 60 decks with five vignettes each.

These decks were distributed at random to the participants. It is important to note that one of

these decks was not effectively evaluated, while the other (59) decks were evaluated at least

once. This could result in a low efficiency of the post-survey sample. The ensuing post-survey

correlations among the vignette factors are shown in Table 2.6 (in Section 2.6). While this is

no test of post-survey efficiency, it is nevertheless comforting that all of these correlations are

sufficiently small and not statistically different from 0.
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2.3.2 Data Collection

Our vignette experiment was integrated into a large-scale web-based survey sent to individuals

living in Flanders, in January 2017. More concretely, the survey was sent to 89,847 individuals

who selected themselves into a database of people interested in participating in research on human

resource management (in response to calls via e-mail and social media). In the first question,

each individual was asked whether she/he had been involved in evaluating job candidates for a

minimum of five vacancies over the last year. In order to closely mimic real-life hiring decisions,

we wanted to conduct our experiment exclusively with professionals familiar with the hiring

process. Therefore, the answer to this first question determined whether a person was eligible to

take part in our experiment. If this first question was answered positively, she/he was assigned

with a chance of 0.50 to our experiment (and with a similar chance to another one). Otherwise,

she/he was referred to a regular, policy-oriented survey on burnout. A total of 10,488 individuals

answered this first question, giving us an overall response rate of about 12%. Out of these

respondents, 475 indicated being actively involved in the hiring process a minimum of five times

over the last year, of which 242 were assigned to our experiment. Twenty-three among them

left one or more questions unanswered, leaving us with a final sample of 219 participants with

complete responses. These 219 participants were comparable to the initial 242 participants in

terms of the participant characteristics that are discussed below and reported in Table 2.7 in

Section 2.6.5 As each participant rated five vignettes, the number of (participant x vignette)

observations is 1,095.

At the beginning of the web-based survey, participants were introduced to their role as employer

at a fictitious company selling building materials. This company was in search of a counter

assistant, which corresponds to ISCO-08 category 4200 (customer services clerks). We selected

this occupation because it is transversal to a number of industries, thus increasing the chance

that respondents would be familiar with it (we discuss the research limitations related to this

choice in Section 2.5). Participants were explicitly informed that this counter assistant should be

(i) customer-oriented, (ii) service-minded, and (iii) commercially oriented. The assistant was

also expected to be efficient and reliable in managing administrative tasks. These instructions

were presented to all participants in the same way at the beginning of the survey. Subsequently,

5 We assessed the difference in means between the initial 242 participants and the 219 participants with complete
responses using t-tests. The results of these tests are available upon request.
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participants were shown the vignettes describing five fictitious candidates. It was stressed that

these candidates were formally qualified for the job. Information about the candidates was

presented in a tabulated way. We chose this format because ‘tabular vignettes might be better

suited to decision tasks (i.e. resumes or many consumer product descriptions), which frequently

involve lists of decision criteria[, compared to text vignettes]’ (Auspurg and Hinz, 2014: p. 70).

Participants were not informed about the goal of the experiment.

After this, participants were asked to indicate, for each vignette, their intention to hire the

candidate by rating the statements ‘The probability that I will invite this candidate for a job

interview is high’ and ‘The probability that I will hire this candidate for the position is high’ on

a 7-point Likert scale (with 1 ‘completely disagree’ and 7 ‘completely agree’). We will refer

to these items as the ‘interview scale’ and the ‘hiring scale’, respectively, and consider both

outcomes separately.

In view of investigating the signals associated with the unemployment duration, participants

were additionally prompted to rate eight statements for each candidate, linked to the four signals

described in Section 2.2, on a 7-point Likert scale. These statements are reported, signal by

signal, in Table 2.2.6

To make sure that our selection of signals was exhaustive, we complemented our literature review

with three exploratory interviews with HR professionals (as described in Section 2.3.1). Here

we asked whether they would hire a person with a long unemployment spell and, if not, which

reasons they voiced for this decision.7 Independently, all HR professionals linked long-term

unemployment to lower motivation and/or fewer hard or soft skills. Related to skill loss, the fact

that the workplace goes through quick technological changes over the course of an unemployment

spell was also cited multiple times. Next, we discussed the four signals we selected and whether

any of these perceptions had ever driven their hiring decisions in practice. The HR professionals

evaluated all four signals as relevant.

Firstly, we included three statements to test for the possibility that long-term unemployment

may signal (a lower level of) fixed skills and characteristics. Participants were asked whether

6 One should note that the order of these statements did not vary between vignettes, therefore we cannot exclude
an order effect (McFarland, 1981).

7 The HR professionals were first shown a résumé of a candidate with an unemployment spell of four years and
were asked whether they would consider hiring this candidate, and why (not). In the second part of the interview,
we talked about ‘long unemployment spells’ in more general terms, allowing it up to the discretion of the HR
professional to determine how she/he interpreted this.
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they thought the candidate was sufficiently motivated (statement 1) and had a high enough

level of intellectual ability (statement 2) and social ability (statement 3) for the job. Secondly,

three statements tested for perceived skill loss of the candidate. Inspired by the interviews with

HR professionals, the candidate was scored with respect to being up to date with technologies

(statement 4). In addition, perceived deterioration in general skills (statement 5) and social

skills (statement 6) were scored. Thirdly, closely linked to queuing theory, participants were

asked to rate the candidate’s trainability (statement 7). Fourthly, participants judged whether the

candidate had been rejected often by other employers (statement 8), which is the explanation for

the negative duration dependence of unemployment put forward by rational herding.8

A definition of all variables collected by means of this vignette experiment and used in our

analyses is given in Table 2.7 in Section 2.6. An English translation of the experimental

instructions and an example of a vignette (and the related items) can be found in Section 2.7.

In the mediation model presented in Section 2.4, we include four mediators, one for each signal,

based on the eight statements reported in Table 2.2. The first mediator, the fixed skills scale,

groups statements 1 to 3 (Cronbach’s alpha for internal consistency: α = 0.763). Its value is, for

each observation, computed as the average over these three statements. The second mediator, the

skill loss scale, is based on the scores of statements 4 to 6 (α = 0.716). The scores of statement 4

were reverse-coded (so that a higher score became consistent with higher perceived skill loss).

The third mediator, the trainability scale, reflects the score of statement 7. The fourth and final

mediator, the rational herding scale, corresponds to the score of statement 8.

Our choice to group statements together as we did is, to some extent, arbitrary. Therefore, we

tested the sensibility of our results with respect to other strategies. For instance, an approach

in which the scores of the statements were first standardised (by subtracting their sample mean

and dividing the result by these scores’ sample standard deviation) before grouping them did not

substantially affect the results presented in Section 2.4. In addition, factor analysis yielded the

same number (i.e. four) of scales, with a comparable composition. Note that we also present

the mediating role of the eight separate statements (i.e. without grouping them) in an alternative

8 Oberholzer-Gee (2008) also prompts participants to rate statements to test for different signals. The statement
related to skill loss (‘I prefer the candidate with a job because the unemployed applicant has lost some skills and
she is not familiar with recent developments in the profession’) is very close to our three statements capturing this
signal. Additionally, he also includes a statement for rational herding: ‘I prefer the candidate with a job because
the unemployed applicant is probably not very productive. If she were productive, she would have been hired by
another firm.’
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mediation model.

After judging the five job candidates, participants were asked to provide some personal infor-

mation, including their gender, level of education, frequency of taking hiring decisions, and

experience with the hiring process (Table 2.7, Section 2.6). Overall, about 57% of our partici-

pants were female. They were mainly highly educated (almost 90% had completed some form

of tertiary education), with an average age of about 42, and an average of around 10 years of

experience as an HR professional. Table 2.8 (in Section 2.6) reports the distribution of our

participants according to the unemployment duration of the candidates they judged to check

whether our randomisation was successful. For instance, as shown in Panel A, the subsample

of vignettes disclosing 3 months of unemployment or fewer and the subsample of vignettes

disclosing more than 3 months of unemployment were scored by participants with comparable

characteristics.

It should be noted that our sample is not representative of the population of Belgian employers,

for which a sampling frame is unfortunately not readily available. We do not consider this a

substantial shortcoming. Samples gathered by field experiments are similarly non-representative

(they only target employers who post their job ads online in specific job banks) but still widely

employed to causally test the scarring effects of unemployment. Moreover, our sample is very

comparable in age and gender distribution with Belgian HR professionals in the European Social

Survey, even though our sample seems slightly higher educated—the formal comparison is

included as Table 2.9 in Section 2.6. We come back to this and other issues related to our

experimental design in the conclusion.

2.4 Results

We estimate a multiple mediation model (Hayes, 2013) to analyse the total effect of unemploy-

ment duration on hiring intentions as well as the part of this effect passing through the four

mediators. A simplified version of the estimated model is depicted in Figure 2.1.

In a first step (Section 2.4.1), we estimate the total effect of the unemployment duration of

our fictitious job candidates on the employers’ hiring intentions. Subsequently, we explore the

mediation effects related to the fixed skills, skill loss, trainability, and rational herding scales.

Each mediation effect is calculated as the product of the effect of unemployment duration on the
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respective mediation scale and the association of this scale on the outcome scale (i.e. δiθi , with i

ranging from 1 to 4, in Figure 2.1). In Section 2.4.2 we explore the mediation effects separately

and in Section 2.4.3 we estimate the complete mediation model, in which the mediation scales

are included jointly. The latter model allows us to decompose the total effect of unemployment

duration into four ‘indirect’ effects via the mediators and a remaining ‘direct’ effect δ
′

(so that

the total effect δ equates δ
′

+∑
4
i=1 δiθi).

We stress that we follow the literature when labelling δiθi as mediation effects but refrain from

giving them a causal interpretation. The unemployment duration of our fictitious job candidates

is experimentally manipulated and, as a consequence, δ and δi are causal effects. However, our

mediators are not exogenous. Although we attempt to capture, based on our literature review, the

most relevant signals potentially explaining the lower hiring chances of LTU, it is still possible

that our mediators correlate with other, unobserved, employer perceptions related to candidates’

unemployment. For this reason, θi should be seen as associations rather than as causal effects.

We return to this point in Section 2.5.

2.4.1 Unemployment Duration and Hiring Intentions

To get a first impression of the (total) effect of the candidates’ unemployment duration on

their hiring intentions, we plot the average scores on the interview scale of the 1,095 evaluated

vignettes, by unemployment duration. As is clear from Figure 2.2, the likelihood of getting

invited for an interview exhibits a clear downward trend as the unemployment duration increases.

A similar pattern emerges for the hiring scale.

However, due to the relatively low number of observations for each potential unemployment

duration (between 23 and 40 observations), Figure 2.2 captures some noise. A clearer picture of

the total effect is presented in Table 2.3, where we compare the outcome scales for candidates

with an unemployment spell of 3 months or fewer to the outcome scales for candidates with an

unemployment spell of more than 3 months (Panel A), and repeat this with 12 months (Panel B)

and 24 months (Panel C) as cut-off points. A t-test is used to determine whether the difference in

invitation and hiring probability between these subsamples are significantly different from zero.9

9 With respect to the calculation of these t-statistics, it is important to account for the nested structure of data
collected through a vignette experiment, with multiple vignettes judged by the same participant (Jasso, 2006). To
this end, we take into account the dependence of the error term within participants by clustering all estimated
t-values at the participant level.
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As shown in Table 2.3, the probability of getting invited for a job interview is always significantly

higher for candidates belonging to a subsample with a shorter unemployment spell compared to

candidates belonging to a subsample with a longer unemployment spell, regardless of the chosen

cut-off. For instance, the average score on the interview scale for those with an unemployment

duration of 3 months or fewer is 5.515 (i.e. just between an evaluation of ‘somewhat agree’ and

‘agree’ with respect to the statement ‘The probability that I will invite this candidate for a job

interview is high’) while it is 4.050 (i.e. close to ‘neither agree or disagree’) for those with an

unemployment duration of more than 3 months. A similar pattern is found for the probability

that a candidate is hired for the position.

Due to the orthogonal design, candidates with a longer unemployment spell are (on average)

equal to candidates with a shorter unemployment spell on all vignette factors, other than their un-

employment duration. In other words, the measured differences in interview invitations presented

in Table 2.3 can only be driven by differences in unemployment duration. A regression-based

approach yields exactly the same conclusion: a clear scarring effect of long-term unemployment.

2.4.2 Exploration of the Mediation Effects

A significant role for the mediation scales in explaining the negative relationship between

unemployment duration and hiring intentions is conditional on two things. Firstly, candidates’

unemployment duration should affect the mediation scales (left part of Figure 2.1). Secondly,

these mediation scales should affect participants’ hiring intentions (right part of Figure 2.1). In

this subsection, we explore both conditions separately.

To get a first idea of the effect of unemployment duration on the four mediation scales, we

examine the candidates’ scores for these scales by their unemployment duration. In addition to

the scores at the aggregate level, we present the scores on the level of the individual statements.

As Table 2.4 shows, the unemployment duration has a significant effect on all four mediators.

Candidates with a longer unemployment spell score significantly lower on the ‘positive’ mediators

(fixed skills and trainability), while they score significantly higher on the ‘negative’ mediators

(skill loss and rational herding). When we look at the individual statements, it is apparent that

the subsample means differ highly significantly for all statements and in the expected direction.

We have also checked that a positive evaluation with respect to the mediation scales is correlated
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with higher hiring intentions. To this end, we calculated correlations between the mediation

scales (and their underlying statements) and the interview and hiring scales. A correlation matrix

is presented in Table 2.10 (in Section 2.6): all correlations are significantly different from 0 and

have the expected sign.

2.4.3 Multiple Mediation Regression Model

In the multiple mediation regression model all four mediators are included jointly, following a

system of linear regression equations (by analogy with Hayes, 2013):

M1 = αM1 +βM1CC+γM1PC+δ1UD+εM1; (2.1)

M2 = αM2 +βM2CC+γM2PC+δ2UD+εM2 ; (2.2)

M3 = αM3 +βM3CC+γM3PC+δ3UD+εM3 ; (2.3)

M4 = αM4 +βM4CC+γM4PC+δ4UD+εM4 ; (2.4)

Y = αY +βYCC+γY PC+δ
′

UD+θ1M1+θ2M2+θ3M3+θ4M4+εY . (2.5)

M1, M2, M3, and M4 are fixed skills, skill loss, trainability, and rational herding mediation scales,

respectively; UD is the candidate’s unemployment duration; CC is a vector of other vignette

factors; PC is a vector of participant characteristics; and Y is the interview or hiring scale. βMi ,

γMi , and δi are the (vectors of) parameters associated with CC, PC, and UD in the equations with

Mi as dependent variable, with αMi being the intercept. βY , γY , δ′, and αY are the corresponding

parameters in the equation with Y as dependent variable. Finally, θ1, θ2, θ3, and θ4 are the

parameters associated with the mediator scales in the latter equation. As a consequence, δ′ is the

remaining direct effect of the unemployment duration after controlling for the mediators. Our

main interest lies in the products δiθi, namely the indirect effects of the unemployment duration

on Y through each mediator Mi. In line with Hayes (2013), we estimate equations 2.1 to 2.5
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simultaneously and correct the standard errors εM1 , εM2 , εM3 , εM4 , and εY for clustering of the

observations at the participant level.

In order to capture hiring intentions, we look at two outcomes: the interview and the hiring

scale. The main results of our mediation analysis with the interview scale (hiring scale) as the Y

-variable are depicted in Figure 2.1 (Figure 2.3 in Section 2.6). The corresponding full estimation

results are reported in Table 2.5 and Table 2.11.

The total effect of unemployment duration on the interview scale (δ = -0.062; p ≤ 0.000) is in

line with what was reported in Section 2.4.1 One additional month of unemployment decreases

the interview scale by 0.062 (i.e. about one sixteenth of a unit decrease on this scale ranging

from 1 to 7). This total effect can be broken down into one direct effect and four indirect effects

(one for each mediator). The direct effect, which can be interpreted as the part of the total effect

that does not pass through any of the four mediators, is substantial (δ’ = -0.026; p ≤ 0.000). It

accounts for 41.9% (i.e. 0.026 divided by 0.062) of the total effect, while all mediation effects

together account for the remaining 58.1% —we will come back to this in Section 2.5.

Next, we investigate the relative importance of the four mediators. On the one hand, unemploy-

ment duration significantly affects all four mediation scales in the expected direction. On the

other hand, only three of the mediation scales—the fixed skills scale (θ1 = 0.851; p ≤ 0.000),

the trainability scale (θ3 = 0.106; p ≤ 0.039), and the rational herding scale (θ4 = -0.117; p

≤ 0.003)—appear to significantly influence the interview probability. Multiplying the first set

of coefficients by the second set yields the mediation effects. In line with Hayes (2013), the

confidence intervals for these mediation effects are based on 10,000 bootstrap samples. We

find three significant mediation effects. Firstly, the effect of the unemployment duration on the

interview outcome is highly significantly mediated by the fixed skills scale (δ1θ1 = -0.025, i.e.

the product of -0.029 and 0.851; p ≤ 0.000). This mediation effect accounts for 38.7% of the

total effect. In addition, we find a smaller—but still highly significant—mediation via rational

herding (δ4θ4 = -0.005; p ≤ 0.005) and a small mediation via perceived trainability (δ3θ3 =

-0.004; p ≤ 0.049). No significant mediation via perceived skill loss is found. In other words,

employers seem to believe that unemployment duration correlates with fixed (unobservable)

employee characteristics rather than that the unemployment spell causes skills to deteriorate.

The total, direct, and indirect effects of unemployment duration on the hiring scale are similar

to what is found with respect to the interview scale. Other secondary results, pertaining to the
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role of employers’ characteristics, are reported in Panel B and Panel C of both Table 2.5 and

Table 2.11 in Section 2.6. We do not discuss them any further as they fall outside the scope of

this paper.

As stated in Section 2.3.1 we perform a robustness analysis where we exclude candidates with a

bachelor degree and/or five years of experience in combination with an unemployment duration

of two years or more, as these combinations of vignette levels could be perceived as implausible.

The results of this analysis (in which 108 of the 300 sampled vignettes are excluded) are reported

in Figure 2.4 in Section 2.6. It is clear that our results are robust to the exclusion of these

potentially implausible vignettes.

To get a picture of the relative weights of the individual statements, we re-estimate our mediation

model using eight separate mediators instead of the four mediation scales. Estimation results

are given in Table 2.12 and Table 2.13 (Section 2.6). These results indicate that the dominant

mediation through the fixed skills scale is mainly driven by a long unemployment spell being

viewed as a signal of lower motivation. Moreover, there is some evidence for an indirect

effect through the ‘not up to date with technologies’ statement. This did not translate into a

significant effect of the overall skill loss scale in our benchmark mediation model because of the

(insignificant) effect of the statements capturing general skill loss and/or social skill loss.

2.5 Discussion and Conclusion

This study contributed to the multidisciplinary literature on the negative duration dependence of

unemployment. It complemented recent large-scale field experiments showing that at least part

of this negative duration dependence can be given a demand-side explanation: employers are

reluctant to hire long-term unemployed job candidates. Using vignettes, we took the logical next

step in this literature and empirically explored four theoretical explanations for unemployment

scarring. Our analyses provided evidence that employers’ reluctance to hire LTU is to a large

extent mediated by their perception of unemployment as a signal of lower motivation. This is

very much in line with findings from the qualitative study of Bonoli and Hinrichs (2012) as well

as with results obtained by Atkinson et al. (1996) and Bonoli (2014) on the basis of employer

surveys. We also found that a smaller fraction of the total effect of unemployment duration on

hiring intentions was associated with rational herding, that is, the belief that other employers
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found the candidate’s productivity to be low (in line with Oberholzer-Gee, 2008).

From a policy point of view, our findings show that LTU might benefit from including in their

job applications a detailed statement about their motivation to find work as well as a credible

justification for their time out of work. We believe that the focus in this respect should be on

work motivation and not on general motivation because an additional mediation analysis with

interaction variables showed that the effect of unemployment duration on hiring intentions was

not moderated by applicants’ engagement in volunteer work.10 Furthermore, labour market

policies should also take into account potential asymmetric information between employers and

job candidates. Indeed, policies aiming to increase productivity of LTU might be ineffective

if this increased productivity is not properly signalled to employers when applying to their

vacancies.

We end this article by acknowledging limitations inherent to our experiment and briefly high-

lighting related directions for further research. Most importantly, while the estimated total effect

of unemployment duration on hiring intentions (i.e. the δ of our mediation model) and its effect

on the tested candidate perceptions (i.e. our δi) can be given a causal interpretation, this is not

the case for the estimated association of these perceptions with hiring intentions (i.e. our θi).

Given that the aim of our study is to explore all potential signals related to a long unemployment

duration, we would have to experimentally manipulate these perceptions separately to be able to

measure their causal impact. However, we do not see a setting in which jointly manipulating

these perceptions would be feasible. Indeed, it would be very difficult to signal, for example,

skill loss in a vignette in a realistic way. Nevertheless, it would make an interesting follow-up

study to experimentally manipulate some of the different signals. Another interesting avenue for

future research into the mechanisms behind signalling would be to experimentally manipulate the

timing and continuity of the unemployment spell(s). In this way one could causally test whether

these factors serve as independent signals or whether they substitute or reinforce one another.

While we found a number of interesting and significant mediation effects, we nevertheless

also reported a large and significant direct effect, indicating that a considerable portion of the

scarring effect of unemployment still remained unexplained (Shrout and Bolger, 2002; Zhao

et al., 2010). This suggests the need for further theoretical development going beyond the four

signals included. Our experiment does not allow us to identify the direction this future theory

10 The results of this analysis are available on request.
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development should take, so we can only speculate. One interesting avenue could be to look into

a signal of overqualification. It could indeed be the case that when a person remains unemployed

for a longer period, she/he will cast a wider net during the job search and apply for positions for

which she/he is overqualified. If employers assume this to be the case, this could be a potential

negative signal associated with a long unemployment spell (as overqualified candidates may not

fit their low-status vacancy). The negative effect of a bachelor degree on hiring intentions is

consistent with this explanation. On the other hand, the significant direct effect can also result

from our statements imprecisely measuring the four signals. Indeed, measurement errors in our

mediators may have resulted in downward-biased estimates for the mediation effects and an

upward-biased estimate for the direct effect (Judd and Kenny, 1981; VanderWeele et al., 2012).

Contrary to field experiments, the data collection within a vignette experiment does not take

place under real-life circumstances and participants are aware to take part in an experiment.

Although this is an advantage from a research-ethical point of view (Charness et al., 2013; Riach

and Rich, 2004) and necessary to get an insight into thought processes (Baert and De Pauw,

2014; Van Hoye and Lievens, 2003), participants may answer in a socially desirable way when

not exposed to the urgency of real-life decision-making. While this is considered a serious

issue for direct question-based surveys (Auspurg and Hinz, 2014), we believe this to be less

of a concern in vignette experiments in general, and in our design in particular, for two main

reasons. Firstly, the widespread use of vignette studies in the social and behavioural sciences is

related to the fact that self-reported measures of perceptions have been shown to correlate highly

with actual behaviour and that changes in intentions clearly result in actual behavioural changes

(Hainmueller et al., 2015). Secondly, in a vignette experiment each participant is only shown

a small number of vignettes that vary with regard to multiple factors and therefore it is almost

impossible for the participant to know what the socially desirable answer is (Auspurg and Hinz,

2014; Liechti et al., 2017; Mutz, 2011). In this respect, the reader should also note that the factor

of interest in our study (unemployment duration) is a generally socially acceptable screen (Bills,

1990)—much less sensitive than, for example, race—and, as a consequence, socially desirable

answers are expected to be negligible.

With respect to the generalisability of our findings, our approach is subject to the same limitations

as those found in the field experiments we mimicked. We only measured unequal treatment

based on a single recent unemployment spell towards individuals with a specific profile (i.e. two
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or five years of experience, with a secondary education degree or a bachelor’s degree) applying

for a specific position in a specific context (i.e. Flanders). As a consequence, our findings

cannot be easily generalised to settings with jobs and candidate profiles different from those

used in this study, or to other geographical regions. Indeed, it is possible that the stigma of

unemployment is more or less present in other settings. In particular, there may be systematic

variation across countries, as unemployment is differently regulated across institutional contexts

(Gangl, 2004). Similarly, the relative value of some signals related to unemployment may differ

across occupations. For instance, the value of social capabilities could be lower in occupations

without (much) contact with customers or co-workers. Alternatively, the reported lack of

significance for the skill loss scale may be due to the fact that the occupation of counter assistant

requires mainly general skills that are less subject to depreciation. More generally, Mosthaf

(2014) argues that as the incidence of unemployment is more typical for low-skilled workers, the

negative signals related to long-term unemployment may be weaker for them (compared with

high-skilled workers).

This being said, the consistency of our results with findings from earlier studies conducted in

very different contexts, namely Switzerland (Bonoli, 2014) and the United Kingdom (Atkinson

et al., 1996), and different populations, including low-educated LTU in six European countries

(Bonoli and Hinrichs, 2012), suggests—at the very least—that the belief that LTU are particularly

lacking in motivation is widespread across employers. Nevertheless, further research is necessary

to ensure the robustness of our results in other settings. With the recent economic downturn,

many people have suffered a spell of unemployment: we welcome a program of research that

looks more closely at the scars they carry from a demand-side perspective. For instance, semi-

structured interviews with employers (e.g. Bonoli and Hinrichs, 2012) and/or employees could

deepen the insights from our study. In addition, research that combines testing in the field with

psychological tests in the manner of Rooth (2010) or that integrates vignettes in large-scale and

possibly representative employer surveys could be very fruitful.
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2.6 Appendix A: Additional Figures and Tables

Table 2.6: Correlations Between Vignette Factors

1 2 3 4 5

1 Gender 1.000

2 Highest degree obtained 0.036 1.000

3 Previous work experience -0.083 0.034 1.000

4 Mentioned social activities 0.026 -0.009 0.021 1.000

5 Unemployment duration -0.003 -0.017 -0.005 0.023 1.000

Note. Cramer’s V is reported as all values are categorical. These statistics are based on the full sample of
1,095 observations.
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Table 2.9: Comparison Between Participant Characteristics and Characteristics of HR Professionals in
ESS

Participant characteristics Mean in experiment Mean among HR

professionals in ESS

Female gender 0.566 0.582

Age 42.379 40.900

Highest degree obtained

Secondary education or lower 0.100 0.216

Tertiary education: outside university 0.457 0.252

Tertiary education: university 0.443 0.532

Note. We combined waves 1 to 8 of the European Social Survey, conducted between 2002 (wave 1) and
2016 (wave 8) and selected all respondents with ISCO-88 occupation codes 1232 (Personnel and industrial
relations department managers), 2412 (Personnel and careers professionals) and 3423 (Employment agents
and labour contractors) for waves 1 to 6 and ISCO-08 codes 1212 (Human resource managers), 2423
(Personnel and careers professionals), 3333 (Employment agents and contractors) and 4416 (Personnel
clerks) for waves 7 and 8.

Table 2.10: Correlation Matrix Between Mediation Scales and Outcome Scales

Interview scale Hiring scale

Fixed skills scale 0.695*** 0.710***

Fixed skills: motivation 0.688*** 0.705***

Fixed skills: intellectual capacities 0.490*** 0.489***

Fixed skills: social capacities 0.542*** 0.564***

Skill loss scale -0.515*** -0.536***

Skill loss: not up to date with technology -0.577*** -0.610***

Skill loss: general skills -0.358*** -0.358***

Skill loss: social skills -0.327*** -0.344***

Trainability scale 0.530*** 0.544***

Rational herding scale -0.333*** -0.355***

Note. Cramer’s V is reported as all values are categorical. These statistics are based on the full sample of
1,095 observations. Standard errors are corrected for clustering of the observations at the participant level.
*** (**) ((*)) indicates significance at the 1% (5%) ((10%)) significance level.



Table
2.11:

M
ediation

A
nalysis

w
ith

H
iring

Scale
as

O
utcom

e

E
xplanatory

variables

O
utcom

e
variables

Fixed
skills

scale
Skillloss

scale
Trainability

scale
R

ationalherding
scale

Interview
scale

A
.C

andidate
characteristics

Fem
ale

gender
0.112***

(0.041)
-0.084*

(0.050)
0.050

(0.053)
-0.045

(0.062)
0.073

(0.046)

B
achelor’s

degree
0.354***

(0.050)
-0.232***

(0.056)
0.743***

(0.066)
-0.196***

(0.066)
-0.231***

(0.058)

Five
years

ofexperience
0.146***

(0.045)
-0.179***

(0.052)
0.047

(0.056)
-0.062

(0.067)
0.048

(0.047)

Volunteering
0.475***

(0.054)
-0.361***

(0.059)
0.158***

(0.056)
-0.165***

(0.064)
0.024

(0.051)

U
nem

ploym
entduration

-0.029***
(0.003)

0.036***
(0.003)

-0.034***
(0.003)

0.045***
(0.004)

-0.021***
(0.003)

B
.Participantcharacteristics

Fem
ale

gender
0.083

(0.108)
-0.161*

(0.094)
-0.065

(0.108)
-0.372***

(0.120)
-0.076

(0.089)

A
ge

0.005
(0.005)

-0.009*
(0.005)

0.010*
(0.006)

-0.019***
(0.007)

-0.004
(0.005)

H
ighestdegree

obtained

Secondary
education

orlow
er

0.181
(0.143)

-0.262*
(0.159)

0.162
(0.143)

-0.211
(0.184)

0.117
(0.148)

Tertiary
education:outside

university
0.177*

(0.105)
-0.293***

(0.091)
0.228**

(0.105)
-0.016

(0.122)
0.096

(0.088)

Tertiary
education:university

(reference)

Frequency
ofhiring:w

eekly
-0.055

(0.108)
0.195*

(0.100)
-0.047

(0.109)
0.175

(0.117)
-0.080

(0.095)

E
xperience

as
H

R
professional:≥

10
years

-0.055
(0.122)

0.142
(0.101)

-0.085
(0.134)

0.104
(0.146)

-0.110
(0.105)

C
.M

ediation
scales

Fixed
skills

scale
0.725***

(0.054)

Skillloss
scale

-0.085*
(0.045)

Trainability
scale

0.101**
(0.047)

R
ationalherding

scale
-0.124***

(0.032)

O
bservations

1,095

N
ote.T

he
presented

statistics
are

coefficientestim
ates

and
standard

errors
in

parentheses
forthe

m
ediation

m
odeloutlined

in
Section

2.4.Standard
errors

are
corrected

forclustering
ofthe

observations
atthe

participantlevel.***
(**)((*))indicates

significance
atthe

1%
(5%

)((10%
))significance

level.

46



Ta
bl

e
2.

12
:M

ed
ia

tio
n

A
na

ly
si

s
w

ith
In

te
rv

ie
w

Sc
al

e
as

O
ut

co
m

e
an

d
E

ig
ht

St
at

em
en

ts
as

M
ed

ia
to

rs

O
ut

co
m

e
va

ri
ab

le
s

E
xp

la
na

to
ry

va
ri

ab
le

s
Fi

xe
d

sk
ill

s:

m
ot

iv
at

io
n

Fi
xe

d
sk

ill
s:

in
te

lle
ct

ua
l

ca
pa

ci
tie

s

Fi
xe

d
sk

ill
s:

so
ci

al

ca
pa

ci
tie

s

Sk
ill

lo
ss

:n
ot

up
to

da
te

w
ith

te
ch

no
lo

gi
es

Sk
ill

lo
ss

:g
en

er
al

sk
ill

s

Sk
ill

lo
ss

:s
oc

ia
l

sk
ill

s

Tr
ai

na
bi

lit
y

R
at

io
na

lh
er

di
ng

In
te

rv
ie

w
sc

al
e

A
.C

A
N

D
ID

A
T

E
C

H
A

R
A

C
T

E
R

IS
T

IC
S

Fe
m

al
e

ge
nd

er
0.

17
0*

**
(0

.0
59

)
0.

04
6

(0
.0

50
)

0.
11

9*
*

(0
.0

53
)

-0
.0

48
(0

.0
56

)
-0

.0
50

(0
.0

62
)

-0
.1

54
**

(0
.0

65
)

0.
05

0
(0

.0
53

)
-0

.0
45

(0
.0

62
)

0.
16

4*
**

(0
.0

55
)

B
ac

he
lo

r’
s

de
gr

ee
-0

.0
78

(0
.0

71
)

0.
91

7*
**

(0
.0

67
)

0.
22

1*
**

(0
.0

58
)

-0
.3

12
**

*
(0

.0
65

)
-0

.2
17

**
*

(0
.0

73
)

-0
.1

66
**

(0
.0

70
)

0.
74

3*
**

(0
.0

66
)

-0
.1

96
**

*
(0

.0
66

)
-0

.0
65

(0
.0

68
)

Fi
ve

ye
ar

s
of

ex
pe

ri
en

ce
0.

09
7

(0
.0

62
)

0.
18

3*
**

(0
.0

53
)

0.
15

8*
**

(0
.0

55
)

-0
.2

39
**

*
(0

.0
57

)
-0

.1
70

**
(0

.0
74

)
-0

.1
28

**
(0

.0
66

)
0.

04
7

(0
.0

56
)

-0
.0

62
(0

.0
67

)
0.

06
5

(0
.0

55
)

Vo
lu

nt
ee

ri
ng

0.
34

9*
**

(0
.0

64
)

0.
15

0*
**

(0
.0

57
)

0.
92

6*
**

(0
.0

80
)

-0
.2

33
**

*
(0

.0
62

)
-0

.2
40

**
*

(0
.0

72
)

-0
.6

11
**

*
(0

.0
80

)
0.

15
8*

**
(0

.0
56

)
-0

.1
65

**
*

(0
.0

64
)

0.
16

0*
*

(0
.0

63
)

U
ne

m
pl

oy
m

en
td

ur
at

io
n

-0
.0

38
**

*
(0

.0
04

)
-0

.0
24

**
*

(0
.0

04
)

-0
.0

24
**

*
(0

.0
03

)
0.

04
3*

**
(0

.0
04

)
0.

03
9*

**
(0

.0
04

)
0.

02
4*

**
(0

.0
04

)
-0

.0
34

**
*

(0
.0

03
)

0.
04

5*
**

(0
.0

04
)

-0
.0

22
**

*
(0

.0
04

)

te
xt

sc
B

.P
ar

tic
ip

an
tc

ha
ra

ct
er

is
tic

s

Fe
m

al
e

ge
nd

er
-0

.0
50

(0
.1

31
)

0.
15

2
(0

.1
37

)
0.

14
7

(0
.1

05
)

-0
.2

18
**

(0
.1

10
)

-0
.0

42
(0

.1
30

)
-0

.2
22

*
(0

.1
22

)
-0

.0
65

(0
.1

08
)

-0
.3

72
**

*
(0

.1
20

)
0.

03
8

(0
.1

03
)

A
ge

0.
01

3*
*

(0
.0

06
)

0.
00

4
(0

.0
07

)
-0

.0
03

(0
.0

05
)

-0
.0

10
*

(0
.0

05
)

-0
.0

09
(0

.0
07

)
-0

.0
08

(0
.0

06
)

0.
01

0*
(0

.0
06

)
-0

.0
19

**
*

(0
.0

07
)

0.
00

2
(0

.0
06

)

H
ig

he
st

de
gr

ee
ob

ta
in

ed

Se
co

nd
ar

y
ed

uc
at

io
n

or
lo

w
er

0.
10

5
(0

.1
76

)
0.

21
8

(0
.1

74
)

0.
22

1
(0

.1
51

)
-0

.0
85

(0
.1

73
)

-0
.2

71
(0

.2
32

)
-0

.4
30

*
(0

.2
20

)
0.

16
2

(0
.1

43
)

-0
.2

11
(0

.1
84

)
0.

28
1

(0
.1

90
)

Te
rt

ia
ry

ed
uc

at
io

n:
ou

ts
id

e
un

iv
er

si
ty

0.
23

4*
(0

.1
26

)
0.

11
1

(0
.1

28
)

0.
18

6*
(0

.1
01

)
-0

.2
08

*
(0

.1
13

)
-0

.3
19

**
(0

.1
28

)
-0

.3
51

**
*

(0
.1

16
)

0.
22

8*
*

(0
.1

05
)

-0
.0

16
(0

.1
22

)
0.

12
5

(0
.1

06
)

Te
rt

ia
ry

ed
uc

at
io

n:
un

iv
er

si
ty

(r
ef

er
en

ce
)

Fr
eq

ue
nc

y
of

hi
ri

ng
:w

ee
kl

y
0.

01
0

(0
.1

31
)

-0
.0

93
(0

.1
32

)
-0

.0
83

(0
.1

05
)

0.
19

7*
(0

.1
18

)
0.

28
9*

*
(0

.1
39

)
0.

10
0

(0
.1

31
)

-0
.0

47
(0

.1
09

)
0.

17
5

(0
.1

17
)

-0
.1

55
(0

.1
17

)

E
xp

er
ie

nc
e

as
H

R
pr

of
es

si
on

al
:≥

10
ye

ar
s

-0
.2

69
*

(0
.1

56
)

0.
05

6
(0

.1
62

)
0.

05
0

(0
.1

10
)

0.
09

4
(0

.1
18

)
0.

22
0

(0
.1

49
)

0.
11

2
(0

.1
34

)
-0

.0
85

(0
.1

34
)

0.
10

4
(0

.1
46

)
-0

.3
28

**
*

(0
.1

25
)

C
.M

E
D

IA
T

IO
N

S
C

A
L

E
S

Fi
xe

d
sk

ill
s:

m
ot

iv
at

io
n

0.
49

8*
**

(0
.0

48
)

Fi
xe

d
sk

ill
s:

in
te

lle
ct

ua
lc

ap
ac

iti
es

0.
15

6*
**

(0
.0

46
)

Fi
xe

d
sk

ill
s:

so
ci

al
ca

pa
ci

tie
s

0.
12

6*
**

(0
.0

47
)

Sk
ill

lo
ss

:n
ot

up
to

da
te

w
ith

te
ch

no
lo

gi
es

-0
.1

71
**

*
(0

.0
51

)

Sk
ill

lo
ss

:g
en

er
al

sk
ill

s
-0

.0
20

(0
.0

38
)

Sk
ill

lo
ss

:s
oc

ia
ls

ki
lls

0.
04

4
(0

.0
40

)

Tr
ai

na
bi

lit
y

sc
al

e
0.

09
5*

(0
.0

50
)

R
at

io
na

lh
er

di
ng

sc
al

e
-0

.0
94

**
(0

.0
39

)

O
bs

er
va

tio
ns

1,
09

5

N
ot

e.
T

he
pr

es
en

te
d

st
at

is
tic

s
ar

e
co

ef
fic

ie
nt

es
tim

at
es

an
d

st
an

da
rd

er
ro

rs
in

pa
re

nt
he

se
s

fo
rt

he
m

ed
ia

tio
n

m
od

el
ou

tli
ne

d
in

Se
ct

io
n

2.
4.

St
an

da
rd

er
ro

rs
ar

e
co

rr
ec

te
d

fo
rc

lu
st

er
in

g
of

th
e

ob
se

rv
at

io
ns

at
th

e
pa

rt
ic

ip
an

tl
ev

el
.*

**
(*

*)
((

*)
)i

nd
ic

at
es

si
gn

ifi
ca

nc
e

at
th

e
1%

(5
%

)(
(1

0%
))

si
gn

ifi
ca

nc
e

le
ve

l.

47



Table
2.13:

M
ediation

A
nalysis

w
ith

H
iring

Scale
as

O
utcom

e
and

E
ightStatem

ents
as

M
ediators

O
utcom

e
variables

E
xplanatory

variables
Fixed

skills:

m
otivation

Fixed
skills:

intellectual

capacities

Fixed
skills:social

capacities

Skillloss:notup
to

date
w

ith

technologies

Skillloss:general

skills

Skillloss:social

skills

Trainability
R

ationalherding
H

iring
scale

A
.C

A
N

D
ID

A
T

E
C

H
A

R
A

C
T

E
R

IS
T

IC
S

Fem
ale

gender
0.170***

(0.059)
0.046

(0.050)
0.119**

(0.053)
-0.048

(0.056)
-0.050

(0.062)
-0.154**

(0.065)
0.050

(0.053)
-0.045

(0.062)
0.064

(0.044)

B
achelor’s

degree
-0.078

(0.071)
0.917***

(0.067)
0.221***

(0.058)
-0.312***

(0.065)
-0.217***

(0.073)
-0.166**

(0.070)
0.743***

(0.066)
-0.196***

(0.066)
-0.087

(0.054)

Five
years

ofexperience
0.097

(0.062)
0.183***

(0.053)
0.158***

(0.055)
-0.239***

(0.057)
-0.170**

(0.074)
-0.128**

(0.066)
0.047

(0.056)
-0.062

(0.067)
0.050

(0.045)

Volunteering
0.349***

(0.064)
0.150***

(0.057)
0.926***

(0.080)
-0.233***

(0.062)
-0.240***

(0.072)
-0.611***

(0.080)
0.158***

(0.056)
-0.165***

(0.064)
0.090*

(0.052)

U
nem

ploym
entduration

-0.038***
(0.004)

-0.024***
(0.004)

-0.024***
(0.003)

0.043***
(0.004)

0.039***
(0.004)

0.024***
(0.004)

-0.034***
(0.003)

0.045***
(0.004)

-0.017***
(0.003)

B
.P

A
R

T
IC

IPA
N

T
C

H
A

R
A

C
T

E
R

IS
T

IC
S

Fem
ale

gender
-0.050

(0.131)
0.152

(0.137)
0.147

(0.105)
-0.218**

(0.110)
-0.042

(0.130)
-0.222*

(0.122)
-0.065

(0.108)
-0.372***

(0.120)
-0.049

(0.085)

A
ge

0.013**
(0.006)

0.004
(0.007)

-0.003
(0.005)

-0.010*
(0.005)

-0.009
(0.007)

-0.008
(0.006)

0.010*
(0.006)

-0.019***
(0.007)

-0.006
(0.005)

H
ighestdegree

obtained

Secondary
education

orlow
er

0.105
(0.176)

0.218
(0.174)

0.221
(0.151)

-0.085
(0.173)

-0.271
(0.232)

-0.430*
(0.220)

0.162
(0.143)

-0.211
(0.184)

0.173
(0.144)

Tertiary
education:outside

university
0.234*

(0.126)
0.111

(0.128)
0.186*

(0.101)
-0.208*

(0.113)
-0.319**

(0.128)
-0.351***

(0.116)
0.228**

(0.105)
-0.016

(0.122)
0.088

(0.083)

Tertiary
education:university

(reference)

Frequency
ofhiring:w

eekly
0.010

(0.131)
-0.093

(0.132)
-0.083

(0.105)
0.197*

(0.118)
0.289**

(0.139)
0.100

(0.131)
-0.047

(0.109)
0.175

(0.117)
-0.093

(0.094)

E
xperience

as
H

R
professional:

≥
10

years
-0.269*

(0.156)
0.056

(0.162)
0.050

(0.110)
0.094

(0.118)
0.220

(0.149)
0.112

(0.134)
-0.085

(0.134)
0.104

(0.146)
-0.050

(0.093)

C
.M

E
D

IA
T

IO
N

S
C

A
L

E
S

Fixed
skills:m

otivation
0.420***

(0.043)

Fixed
skills:intellectualcapacities

0.1104**
(0.043)

Fixed
skills:socialcapacities

0.125***
(0.036)

Skillloss:notup
to

date
w

ith
technologies

-0.186***
(0.043)

Skillloss:generalskills
0.017

(0.031)

Skillloss:socialskills
0.006

(0.032)

Trainability
scale

0.089*
(0.047)

R
ationalherding

scale
-0.107***

(0.032)

O
bservations

1,095

N
ote.T

he
presented

statistics
are

coefficientestim
ates

and
standard

errors
in

parentheses
forthe

m
ediation

m
odeloutlined

in
Section

2.4.Standard
errors

are
corrected

forclustering
ofthe

observations
atthe

participantlevel.***
(**)((*))indicates

significance
atthe

1%
(5%

)((10%
))significance

level.

48



2.7. Appendix B: Survey Experiment 49

2.7 Appendix B: Survey Experiment

2.7.1 Introduction to the Experiment (translated from Dutch)

Imagine, you have been working for the firm ‘Building & Co’, a firm that sells building materials

to both individuals and professionals in the building industry, for several years.

You are the head of the human resources department at ‘Building & Co’ and currently

looking for a new counter assistant.

This employee will be responsible for a friendly first reception and will give advice to customers

in the store. In addition, the employee will answer questions and provide helpful information

concerning orders over telephone.

You are consequently looking for someone who is customer-oriented, service-minded and a

commercial talent. The employee has to be efficient and trustworthy concerning administrative

work and has to have a good PC knowledge. There is no specific education nor experience

required for this position.

The candidates have been pre-screened by an administrative assistant. Five candidates are

formally considered. Some of their characteristics have been summarised by the administrative

assistant and can be found on the next pages.

Read, candidate by candidate, the profile thoroughly. You have to make a decision concerning

whether or not to invite these candidates for a job interview based on this information. You

can judge the candidates in a random order and you can return to previous candidates. There is

no restriction in the number of candidates you invite for a job interview. Judge all candidates

before continuing to the additional questionnaire. It is important that you fill in all the

questions and do not leave anything open.
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2.7.2 Example of a Vignette and Subsequent Questions (translated from

Dutch)

Profile candidate 1

Gender Woman

Highest degree obtained Bachelor

Previous work experience 2 years

Mentioned social activities None

Unemployment duration 9 months

As head of the human resources department you now have to decide whether to invite the

candidate for a job interview based on the above given information.

Please, take your decision now

I will invite the candidate for a job interview at ‘Building & Co’ for the function of counter

assistant:

Completely disagree Completely agree

1 2 3 4 5 6 7

There is a large probability that I will hire this candidate for the function of counter assistant at

‘Building & Co’:

Completely disagree Completely agree

1 2 3 4 5 6 7
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Please answer the following statements concerning the candidate.

Completely Completely

disagree agree

1. I think this person will be sufficiently motivated to

perform properly in this job (fixed skills: motivation).

1 2 3 4 5 6 7

2. I think this person possesses sufficient intellectual

abilities to perform properly in this job (fixed skills: intel-

lectual capacities).

1 2 3 4 5 6 7

3. I think this person possesses sufficient social abilities

to perform properly in this job (fixed skills: social capaci-

ties).

1 2 3 4 5 6 7

4. I think this person is sufficiently aware of the evolutions

in the work field to perform properly in this job (skill loss:

not up to date with technologies).

1 2 3 4 5 6 7

5. I think this person has lately had a deterioration in

her/his general skills (skill loss: general skill loss).

1 2 3 4 5 6 7

6. I think this person has lately had a deterioration in

her/his social skills (skill loss: social skill loss).

1 2 3 4 5 6 7

7. I think this person will be easy to train (trainability). 1 2 3 4 5 6 7

8. I think this person has often been rejected by other

employers (rational herding).

1 2 3 4 5 6 7



Chapter 3

Better together: Active and Passive

Labour Market Policies in Developed and

Emerging Economies1

3.1 Introduction

The rise in unemployment in developed economies during the 1980s led governments to increas-

ingly use the coordination of passive and active labour market policies to offer social protection,

while at the same time enhancing the transition from unemployment to employment (Estevão,

2003; ILO, 2014). This policy trend regained a central stage since the eruption of the global

financial crisis, which reinforced the need for governments to channel spending towards interven-

tions that could at the same time protect workers’ income and raise their employability (Martin,

2014). While active labour market policies (ALMPs) have a long history in OECD countries,

at the beginning the important potential linkages between the generosity of the unemployment

benefits, the size and composition of ALMPs and the degree to which unemployment benefits’

eligibility was determined by participation in ALMPs were largely ignored (Martin, 2014).

Indeed, it was believed that in order to activate the unemployed, public spending needed to shift

from passive labour market policies (PLMPs) to active policies. However, evidence showed

that countries implementing this activation strategy did not automatically increase their labour

1 In collaboration with Clemente Pignatti – Preliminary, please do not cite.
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market performance, suggesting that active and passive policies should be seen as two essential

components of a broader social protection system (ILO, 2012).

In the developing world, social protection systems were originally implemented as short-term

interventions in response to crises and structural adjustments (Barrientos, 2010; McCord, 2012;

Sabates-Wheeler and Devereux, 2011). However, rising poverty and stagnating productivity

following the 1980s ‘lost decade’ in Latin America, the financial crises in Asia in the 1990s and

rapid economic transformation in transition economies demonstrated the need for strong and

stable labour market institutions concerned with poverty reduction and employment promotion

(Barrientos, 2010; McCord, 2012). This led to two parallel developments. On the one hand, there

has been a marked increase in conditional cash transfers and public works programs aiming to

tackle basic income security (Barrientos and Hulme, 2009).2 On the other hand, social protection

is increasingly linked with other complementary measures (i.e. skills programs). These social

protection systems serve not only the present basic income security role, but also aim to increase

the opportunities to improve capabilities and break the poverty cycle (DFID, 2011). At the same

time, ALMPs in emerging economies are rarely promoted as independent interventions (i.e.

without a connection with income support programs) (Escudero et al., 2016).

The increased importance of active labour market and income support policies in both developed

and emerging economies has generated an interest by researchers in evaluating their effectiveness

(Greenberg et al., 2003; Heckman et al., 1999; Kluve, 2010; Liechti et al., 2017; Van Belle et al.,

2018). While most evaluations look at the effects of one specific intervention, few studies have

looked at the combination of active and income support policies. For developed economies, the

microeconomic evidence is rather mixed. Overall, results suggest that – after an initial lock-in

period – both the job finding rate and the quality of the employment increase due to the policy mix

(Bolhaar et al., 2016; Crépon et al., 2012; Graversen and Van Ours, 2008; Markussen and Røed,

2016). Nevertheless, some studies find no or adverse effects on labour market outcomes (Cockx

and Van Belle, 2016; McGuinness et al., 2013). For emerging economies, consensus seems

even less likely. While positive results on employment and income were found for programs

combining cash transfers and training in Nicaragua and Chile (Macours et al., 2012; Martínez

et al., 2015) and a program combining public works and training in Bangladesh (Hashemi and

2 In line with the horizontal dimension of the ILO recommendation on social protection (ILO, 2012), i.e. the
implementation of a social protection floor.
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Rosenberg, 2006) similar programs appeared to produce adverse effects in Argentina (Almeida

and Galasso, 2010; Galasso et al., 2004). Moreover, a program combining an employment

subsidy with training in Colombia led to a decrease in employment 18 months after participation

(Medina et al., 2013).

While this evidence is compelling, very few studies have taken a macroeconomic approach

to the assessment of active and passive interventions. This relates to general problems of

econometric identification in cross-country analyses as well as the lack of adequate information

on spending in passive and active policies beyond OECD economies. Filling this void is

particularly important, as macroeconomic studies can address critical questions such as the

presence of general equilibrium effects (e.g. disincentives or displacement effects) that are

generally not taken into account in single impact evaluations. Similarly, cross-country analyses

can generate conclusions whose validity goes beyond the single intervention at the centre of

the impact evaluation. A number of studies have looked at the effectiveness of spending in

ALMPs in developed economies, sometimes controlling for the level of unemployment benefits.

Escudero (2018) examines the effect of spending in ALMPs in OECD countries and finds that

they can improve employment outcomes (especially for low-skilled individual), provided that

they are correctly implemented. Gal and Theising (2015) look both at unemployment insurance

(UI) benefit replacement rates and spending in ALMPs and find that both lower UI replacement

rates and a higher spending in ALMPs increase employment. A similar conclusion is reached

by Estevão (2003); while Hujer et al. (2009) find no effect of ALMPs on the matching process

in West-Germany. A second strand of literature looks at the macroeconomic effects of labour

market institutions and reforms, of which both ALMPs and UI are important components. The

studies by Blanchard and Wolfers (2000), Murtin and Serres (2014) and Murtin and Robin

(2016) confirm that additional spending in ALMPs increases employment, while a higher UI

replacement rate has the opposite effect. Some of these studies have also explored the possible

interaction between active and passive interventions. For instance, Bassanini and Duval (2006,

2009) find that the adverse impact of the generosity of UI is lower in countries that spend more

in ALMPs. Boone and Van Ours (2004) estimate the same interaction but with specific types of

ALMPs and find that spending in training is more effective for countries with a more generous

UI. Elmeskov et al. (1998) find an inverted U-shape relationship between the detrimental effects

of UI and spending in ALMPs (i.e. with the negative effects of UI being the lowest in countries
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with an average amount of spending in ALMPs).

The current study complements the existing macroeconomic literature in two important ways.

Firstly, we expand the analysis – compared to the OECD focus of previous contributions –

by also including data from a number of emerging economies. In particular, we look at data

from 58 countries – of which about one third is outside the OECD. Given differences in the

functioning of labour markets as well as differences in the way in which labour market policies

are implemented between developed and emerging countries, results from previous studies

cannot be easily generalised to emerging countries. Secondly, while some of the previous studies

looked at the effects of both spending in active and passive labour market policies, only a handful

of studies have explicitly taken the interaction between both into account – as reviewed above.

In this paper we explicitly take this interaction effect into account and test for its presence, which

can be extremely important given the set of countries at the centre of the analysis. Indeed and as

mentioned above, active and passive labour market policies in emerging economies do not often

follow a clear-cut distinction and are often provided in combination.

The results reveal that ALMPs alone have only a marginal effect on labour market outcomes

(i.e. they increase labour force participation and unemployment as expected, but the coefficients

are small in magnitude and only marginally significant). At the same time, spending in PLMPs

alone has the anticipated adverse effect on labour market performances as suggested by previous

studies. In particular, it increases the unemployment rate and decreases the employment rate –

while no significant result is reported on labour force participation. However, when taking into

consideration both policies at the same time as well as their interaction a different picture emerges.

In particular, each type of (active or passive) intervention is more effective if spending in the other

type increases. As a result, even the negative effect of PLMPs disappears (and eventually becomes

positive) for a given level of spending in ALMPs. When looking in more detail at the type of

active or passive intervention it appears that additional spending in Public Employment Services

(PES) and administration, direct job creation and employment incentives positively impact labour

market outcomes, while spending in supported employment and rehabilitation has the opposite

effect. Spending in training programs has the desired effect on unemployment rates, but at the cost

of important discouragement effects. Turning to passive policies, both unemployment insurance

and unemployment assistance increase unemployment and lower employment. Nevertheless,

increased spending in unemployment insurance appears to incentivize individuals to remain
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in the labour force, while spending in unemployment assistance has the opposite effect. With

regards to to the globally positive interaction effects between ALMPs and PLMPs, these seem to

be driven by a positive interaction between spending in the different types of active interventions

and spending in unemployment insurance.

The rest of the paper is structured as follows. Section 3.2 gives an overview of the data sources

and some insight into the data gathering process; section 3.3 describes the empirical strategy

adopted; section 3.4 reports the main results and the robustness tests for the overall analysis (i.e.

on total spending in active and passive policies); section 3.5 looks at the detailed results by type

of active and passive intervention; section 3.6 concludes with some take-away messages and

policy recommendations.

3.2 Data

The aim of the paper is to capture the effects of labour market policies on main employment

dynamics. Following previous studies, we look at three main indicators: the unemployment rate,

the employment-to-population ratio and the labour force participation rate. All this information is

gathered from the ILO World Economic and Social Outlook (WESO) database, which produces

harmonized series for 189 countries from 1991.

The main regressors of interest in our model are the variables capturing the intensity of active

and passive labour market policies. While different options are available, we look at spending in

active and passive labour market policies as a percentage of GDP. As Estevão (2003) argues, using

this measure may downward bias the results as aggregate output shocks change unemployment in

the same direction as spending in labour market policies as a share of GDP. Therefore, the final

estimates should be interpreted as a lower bound for the true effect of labour market policies on

employment outcomes. Other studies alternatively use the spending per unemployed individual

(Escudero, 2018; Gal and Theising, 2015; Murtin and Robin, 2016; Murtin and Serres, 2014),

as this is more representative of the true policy stance (Escudero, 2018). Nevertheless, the

level of spending per unemployed individual is also an imperfect measure of policy intensity;

especially when the policy is targeted towards individuals who already have a job or those

outside of the labour market (e.g. labour market services, unemployment assistance). The OECD

defines expenditure in ALMPs as all expenditure aimed at improving the beneficiaries’ prospect
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of finding gainful employment. This includes spending in (i) public employment services

and administration; (ii) training; (iii) employment incentives; (iv) sheltered and supported

employment; (v) direct job creation; and (vi) start-up incentives. Of course, the structure and

content of ALMPs differs in emerging economies; where such a clear categorization does not

often apply since interventions tend to combine different components (Escudero et al., 2016).

Spending in PLMPs on the other hand consist of spending in (i) unemployment insurance; (ii)

unemployment assistance; and (iii) programs for early retirement (OECD, 2007). Even in this

case, such a clear-cut differentiation does not often apply in emerging economies; where income

support programs tend to target only the most vulnerable groups in the population without a

strict labour market conditionality.

Given the broad geographical coverage of the present study, data on public expenditure in active

and passive labour market policies is necessarily collected from different sources. Firstly, data

for OECD countries comes from the OECD Labour Market Programs database. This database

contains information on spending in ALMPs and PLMPs for 34 countries from 1985 to 2015

with the exception of some (mainly Eastern-European) countries – for which the information

is available for a more limited time period. Secondly, data for EU member states who are not

part of the OECD was collected from the Eurostat Labour Market Policy database. This gives

us information for an additional five countries from 1985 to 2015, with some exceptions. Data

from Eurostat and the OECD are fully comparable (i.e. we can compare the information for

EU countries in the OECD from the two databases) and therefore the use of these different

data sources does not generate any inconsistency. Thirdly, we obtained access to detailed data

on spending in active and passive labour market programs in 18 countries in Latin America

and the Caribbean from roughly 2000 to 2015 from the World Bank ASPIRE Database. This

data source overlaps with data from the OECD for both Chile and Mexico. Unfortunately, the

information is not fully comparable and for both countries we use OECD data since it reports a

longer time series. Fourthly and finally, data from fourteen Asian countries was collected from

the Social Protection Index (SPI) database from the Asian Development Bank (ADB). Data is

mainly available for countries in Central, East and South-East Asia, from 2008 till 2013. In

contrast to the other data sources, the data on PLMPs is limited to spending in unemployment

insurance. Even in this case, data from ADB overlaps for two countries (Japan and Korea)

with the OECD database and we opt for the latter source for the longer and more complete
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information. The lack of comparability between the data collected from different sources could

be due to a number of factors. First, the data reported in the World Bank ASPIRE Database only

takes central government expenditures into account. Secondly, the data collected from different

sources is based on different definitions of active and passive policies. For example, while the

OECD data on PLMPs includes spending in early retirement benefits, this is not the case for the

other two sources. Table 3.1 gives an overview of the available data and their respective sources.

For the purpose of the estimation strategy, we also extract information on GDP growth rates (from

the ILO WESO database) and on the governments’ primary balance (from the World Economic

Outlook database of the IMF). Table 3.2 gives the descriptive statistics for the outcome variables,

the main regressors and the control variables in Panel A, Panel B and Panel C respectively. The

descriptive statistics are provided both for the entire sample and by development status. A first

interesting observation is that the classic labour market outcomes appear to be consistently better

in emerging economies than in developed economies. This can be explained by the fact that

the lack of social protection in emerging economies makes open unemployment unaffordable

(Madrid, 2006). Rather than becoming unemployed, these individuals take up various forms

of, often vulnerable, employment (Schmitt, 2011). Moreover, from the observations in Panel

B of Table 3.2 it is clear that emerging economies spend far lesser shares of their GDP in

both active and passive labour market programs. However, we have to bear in mind that the

expenditure data sourced from different databases is not fully comparable – and the empirical

analysis will take care of this inconsistency. Lastly, Panel C gives the descriptive statistics for

the control variables. In particular, the output gap seems to be more favourable for the emerging

countries who have experienced higher growth rates in the recent decades as part of the process of

economic convergence. The primary balance seems fairly comparable between country groups,

with both running on average a primary deficit.

Figure 3.1 depicts a more detailed image of spending in ALMPs and PLMPs in the different

countries considered in this study. The bottom of the distribution for both spending in ALMPs

and PLMPs is made up by Asian countries and countries in Latin America and the Caribbean,

while at the other side of the spectrum we find Western European countries. The majority of

Eastern-European countries can be found somewhere halfway along the distribution. While

most countries spend larger parts of their GDP on passive policies than they spend on active

policies (the average value is almost twice as large), this is not always the case. Especially
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Table 3.1: Data Availability on Spending in Active and Passive Labour Market Policies

Country Time period covered Source Country Time period covered Source

Argentina 2000 – 2015 ASPIRE Kyrgyz Republic i 2008 – 2013 ADB

Armenia 2008 – 2013 ADB Latvia 2003 – 2015 OECD

Australia 1985 – 2015 OECD Lithuania 2003 – 2015 OECD

Austria 1985 – 2015 OECD Luxemburg i 1985 – 2015 OECD

Azerbaijan 2008 – 2013 ADB Malaysia i 2008 – 2013 ADB

Belgium 1985 – 2015 OECD Malta 2006 – 2014 Eurostat

Brazil 2005 – 2015 ASPIRE Mexico 1998 – 2015 OECD

Bulgaria 2004 – 2015 Eurostat Mongolia 2008 – 2013 ADB

Canada 1985 – 2015 OECD Netherlands 1985 – 2015 OECD

Chile i 2004 – 2015 OECD New Zealand 1985 – 2014 OECD

China 2008 – 2013 ADB Norway 1985 – 2015 OECD

Colombia ii 2000 – 2015 ASPIRE Papua New Guinea i 2008 – 2013 ADB

Croatia 2012 – 2015 Eurostat Peru ii 2000 – 2015 ASPIRE

Cyprus 2006 – 2016 Eurostat Philippines i 2008 – 2013 ADB

Czech Republic 1991 – 2015 OECD Poland 1991 – 2015 OECD

Denmark 1986 – 2015 OECD Portugal 1985 – 2015 OECD

Ecuador i 2000 – 2015 ASPIRE Romania 2003 – 2015 Eurostat

Estonia 2003 – 2014 OECD Slovak Republic 1991 – 2015 OECD

Finland 1985 – 2015 OECD Slovenia i 2003 – 2015 OECD

France 1985 – 2015 OECD Spain 1985 – 2015 OECD

Germany 1985 – 2015 OECD Sweden 1985 – 2015 OECD

Greece i 1985 – 1997 OECD Switzerland 1985 – 2015 OECD

Honduras ii 2003 – 2015 ASPIRE Tajikistan 2008 – 2013 ADB

Hungary 1992 – 2015 OECD Thailand i 2008 – 2013 ADB

Ireland 1985 – 2015 OECD United Kingdom i 1985 – 2011 OECD

Israel 2004 – 2015 OECD United States 1985 – 2015 OECD

Italy i 1990 – 2015 OECD Uruguay i 2000 – 2015 ASPIRE

Japan i 1985 – 2015 OECD Uzbekistan 2009 – 2013 ADB

Korea 2000 – 2015 OECD Viet Nam 2008 – 2013 ADB

Note. Data availability based on the data collection as discussed in Section 3.2. Where different sources
overlap preference was given to OECD data. Countries in bold are emerging economies according to
the worldbank classification. i Data is not equally available for active and passive policies. ii No data is
available for spending in passive labour market policies.
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Table 3.2: Descriptive Statistics

Entire sample Emerging economies Advanced economies

N Mean N Mean N Mean

A. OUTCOME VARIABLES

Unemployment rate 1,782 7.757 810 7.315 972 8.125

Employment to population ratio 1,782 56.914 810 59.415 972 54.830

Labour force participation rate 1,782 61.594 810 63.972 972 59.612

B. MAIN REGRESSORS

Spending in ALMPs (% of GDP) 1,047 0.507 214 0.130 833 0.604

Spending in PLMPs (% of GDP) 1,049 0.930 155 0.142 894 1.067

C. CONTROL VARIABLES

GDP growth gap 1,518 3.295 690 4.121 828 2.606

Primary balance 1,483 -0.132 514 -0.279 969 -0.054

Note. The variables are defined as described in Section 3.2. The number of observations and means are
calculated for the entire period of 1985 - 2015, where the data is available.

Asian countries (i.e. Papua New Guinea, the Philippines, Mongolia, China, Viet Nam, Kyrgyz

Republic, Korea, Malaysia and Tajikistan), Scandinavian countries (i.e. Sweden and Norway),

Argentina, Colombia, Mexico and Lithuania all spend a larger share of their GDP in ALMPs

than they spend in PLMPs.

3.3 Empirical Strategy

The purpose of the analysis is to investigate the causal effect of spending in active and passive

labour market policies (and their interactions) on aggregate employment performances in a panel

analysis. Following previous contributions (Escudero, 2018; Estevão, 2003), we estimate the

following model:

Yi,t = c+β1LMPi,t +β2Xi,t +β3Tt +β4Ct +εi,t (3.1)

Where Yi,t represents the outcome of interest (unemployment, employment and labour force

participation rates) in country i and year t; c is a constant; LMPi,t is the (vector of) spending
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Figure 3.1: Average Spending in Active and Passive Policies by Country

(a) Average spending in ALMPs (% of GDP)

(b) Average spending in PLMPs (%of GDP)

Note. Data collected from different sources as discussed in Section 3.2. Where different sources overlap
preference was given to OECD data.
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in labour market policies; Xi,t is the vector of control variables; Tt are year fixed effects; Ct are

country fixed effects; and εi,t is the error term.

Apart from the intensity of active and passive policies, labour market outcomes are likely

determined by a number of factors. While we control for some aspects, we are fairly limited

by data availability – especially for the emerging economies in our sample. In general, the

literature has defined four groups of factors possibly influencing labour market outcomes. A first

set of factors are demand conditions. In this sense, we include the difference between the GDP

growth rate and its five-year average to capture cyclical fluctuations.3 While Escudero (2018)

controls for the terms of trade, this data is not available for our entire sample. In order to partially

accommodate for this, we include year fixed effects to control for time variant shocks that affect

all countries in the same way. A second set of factors deals with the structure of the labour market.

For instance, Escudero (2018) controls for this by including the share of the population on a

certain skill level, information which is again not available for our sample of countries. Thirdly,

labour market outcomes are likely determined by institutional factors. Previous studies have

controlled for the union density and the employment protection legislation (EPL) (Bassanini and

Duval, 2006, 2009; Boone and Van Ours, 2004; Elmeskov et al., 1998; Escudero, 2018; Estevão,

2003; Gal and Theising, 2015), the prevalence of a minimum wage (Bassanini and Duval, 2006,

2009; Elmeskov et al., 1998; Gal and Theising, 2015), the tax wedge (Boone and Van Ours,

2004; Elmeskov et al., 1998; Estevão, 2003; Gal and Theising, 2015) and whether or not a

country was part of the European Union (Escudero, 2018). Most of these variables are however

less informative in our setting, as labour market institutions are often less binding in emerging

economies due to lower compliance with labour law. In any case, data on institutional factors

are often very scant and including these variables would require to substantially restrict the

sample.4 In order to partially account for these (generally constant) institutional characteristics,

we follow previous contributions and include country fixed effects that capture any time-invariant

difference at the country level. A fourth and final set of determinants are fiscal measures. In line

3 Ideally, we would include the output gap as is done by Gal and Theising (2015) and Elmeskov et al. (1998) but
this data is not publicly available for all countries in our sample.

4 Data on the EPL is available for a large subset of our sample, therefore we control for this institution in a
robustness check. Additionally, we also test whether our results are robust to the inclusion of a dummy variable for
EU membership, as this is closely related to the degree of labour mobility. For both types of tests, the results of the
regressors of interest do not significantly change in either magnitude or significance. For ease of exposition, these
tetss are not reported in the paper but are available upon request.
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with Gal and Theising (2015), we include the governments’ primary balance to make sure that

the measured effects of active and passive policies do not result from an overall fiscal stimulus.

Estevão (2003) and Gal and Theising (2015) control in addition for the level of government

employment, data which is nevertheless not available for our sample.

After having discussed the inclusion of covariates, the other main step concerns the choice of

the empirical model. In particular, different econometric problems could affect simple OLS

estimates in the present context. First, panel data are likely to be plagued by serial correlation

in the idiosyncratic error term (Escudero, 2018; Lusinyan and Bonato, 2007). Although this

does not necessarily affect identification, it would definitely influence inference (i.e. coefficients

estimated would be consistent but not efficient). In order to test for this autocorrelation, we

use the Arellano-Bond post-estimation technique (Roodman et al., 2009). Given that this test

confirms the presence of first order autocorrelation (AR(1)), we estimate the model using feasible

generalized least squares (FGLS) as proposed in Escudero (2018). FGLS is a viable alternative to

OLS as it allows for the presence of AR(1) autocorrelation within panels and for cross-sectional

correlation and heteroskedasticity across panels (Escudero, 2018). The second main econometric

problem relates to endogeneity due to omitted variable bias or reversed causality, which would

directly affect consistency of the estimated parameters (i.e. OLS results might be biased). While

the choice of the covariates (as presented above) has aimed at alleviating the risk of omitted

variable bias, it is impossible to rule out the risk that we are omitting variables that at the same

time influence the outcome and the regressors of interest. This is particularly the case given the

relatively large sample of countries included, for many of which we lack detailed information

on labour market and institutional characteristics. With respect to the possible risk of reversed

causality, it can be expected that when unemployment is high governments decide to increase

spending in active labour market programs in order to increase enrolment.5 This reverse causality

might be even more important for passive labour market policies, as in this case the level of

spending (almost) mechanically increases with the unemployment rate (at least in developed

economies where this policy adjustment is in place). In order to control for these sources of bias,

we follow previous contributions and estimate the panel models described above by instrumenting

the expenditure in active and passive labour market policies (or their interactions) with their

5 For instance, the opportunity cost of enrolling in a training program is lower during times of crises due to the
reduced job opportunities.



64 3. Better Together: ALMPs and PLMPs in Developed and Emerging Economies

one-year lagged values (Escudero, 2018; Estevão, 2003; Hujer et al., 2009).

The rationale behind this instrumental variable strategy is that spending in active and passive

labour market policies might vary over time in ways that do not necessarily reflect labour

market dynamics. In this way, previous spending is correlated with current spending (first

stage relationship) without being otherwise correlated with the outcome of interest (exclusion

restriction). In particular, we might think about two possible sources of exogenous variation in

spending levels that could be exploited in the present context. First, there could be policy changes

concerning the eligibility, duration or coverage of labour market policies from one period to the

other. These policy changes would generate variations in spending levels across years that are

not (necessarily) entirely associated with changes in the state of the labour market. For instance,

during the years of the economic crisis between 2008 and 2015 there have been 801 legislative

changes in the area of ALMPs reported in European countries (LABREF Database). Similarly,

spending in active and passive policies might vary over years in ways that do not necessarily

reflect the state of the labour market due to hysteresis effects. In particular, spending in PLMPs

might decrease after the peak of the recession (despite the unemployment rate remaining high) as

the bulk of the unemployment becomes long-term and the replacement rates gradually decrease.

Of course, a main threat to the identification assumption is represented by concurrent time

persistence in both labour market dynamics (e.g. current unemployment levels being determined

by the previous unemployment levels) and spending in labour market policies. In that case, the

lagged value of spending is a strong function of both current spending and current labour market

outcomes. Although there is no conclusive solution to this problem, concerns could be alleviated

by taking longer values of the lags as instruments (i.e. instrumenting current expenditure with

their values x years before). We will check how the results vary by changing the length of the lag

used as a robustness test, the results of which are presented in Section 3.4.2.

3.4 Aggregate Impact of Active and Passive Labour Market

Policies

This Section will present the main empirical results of the macroeconomic analysis on the impact

of overall spending in active and passive labour market policies (i.e. without differentiating
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by type of intervention) on labour market indicators. In particular, Section 3.4.1 will present

the results of our preferred specification (both for the overall sample and splitting the countries

according to their development status); while Section 3.4.2 reports a large set of robustness tests

aimed at exploring the extent to which our results are sensitive to slight changes in the empirical

analysis.

3.4.1 Main Results

As mentioned above, following previous contributions our preferred specification estimates

equation 3.1 above with a 2SLS model using the previous level of spending (in active and passive

policies) as an instrument for the current spending values. The results of this estimation are

reported in Table 3.3 below for the unemployment rate, the employment rate and the labour force

participation rate. For each outcome of interest, we present four different specifications; adding

spending in active and passive policies first in isolation, then together and finally taking also into

account their interaction.

At first glance, both types of spending seem to increase the unemployment rate – with the effect

of spending in passive policies being particularly strong (Columns 1 and 2). However, once we

introduce the two spending measures simultaneously (Column 3) the findings become more

informative: additional spending in ALMPs has a negative (albeit small and non-significant)

effect on the unemployment rate; while additional spending in PLMPs still increases unemploy-

ment. This result is expected from a theoretical point of view, as ALMPs are intended to activate

the unemployed and help them attain gainful employment (OECD, 2007). PLMPs on the other

hand make the option of being unemployed more attractive and increase the reservation wage,

potentially increasing unemployment (Estevão, 2003; Gal and Theising, 2015). In Column 4,

we also add the interaction between spending in active and passive labour market policies. The

results reveal that in the complete specification spending in ALMPs and PLMPs both increase

the unemployment rate, while the interaction between the policies significantly decreases it. In

terms of magnitude, for any given value of spending in PLMPs (ALMPs) x, the effect of an

additional unit (here, one percent of GDP) spent in ALMPs (PLMPs) is equal to 3.867-3.554x

(8.321-3.554x). In other words, while both spending in ALMPs and PLMPs increase the unem-

ployment rate if the spending in the other policy is equal to zero, the point estimate decreases



66 3. Better Together: ALMPs and PLMPs in Developed and Emerging Economies

gradually when the spending in the other type of intervention increases – and it turns negative at

a certain point. Figure 3.2 shows this more clearly for each of the three labour market outcomes.

Panel A plots the equations quantified here above. The figure confirms that spending in both

ALMPs and PLMPs increases the unemployment rate when spending on the other policy package

is zero. For the effect of spending in ALMPs (the dashed line) the effect turns quickly negative

when spending in PLMPs increases (it reaches zero for a level of spending in PLMPs just above

1 per cent of GDP). A similar pattern is visible for the effect of spending in PLMPs (the full line)

albeit that the initial positive effect is larger and more persistent (it reaches zero for a level of

spending in ALMPs around 2.4 per cent of GDP). As a matter of comparison, the median value

of spending in ALMPs (PLMPs) in 2014 was equal to 0.3 per cent (0.5 per cent) of GDP. This

means that spending in ALMPs is beneficial for all those countries above the 75 percentile of

the distribution of spending in PLMPs (e.g. France, Portugal, Spain and the Netherlands); while

there is no country that currently reaches the threshold level of spending in ALMPs for making

spending in PLMPs beneficial to unemployment reduction (Denmark had in 2014 a value of

spending in ALMPs just above 2 per cent of GDP).

The results for the employment-to-population ratio and the labour force participation rate are in

line with the findings for the unemployment rate. In particular, additional spending in ALMPs

increases labour force participation rates (while it does not have a statistically significant effect

on the employment rate), while additional spending in PLMPs has a negative effect on the

employment rate (but no effect on the labour force participation rate). These results are in

line with the economic theory, as ALMPs aim to activate individuals that would otherwise

remain outside of the labour market (i.e. these individuals will enter both employment and

unemployment) while PLMPs might generate disincentive effects for those that are already in

the labour market (i.e. these forms of supports do not generally cover inactive individuals).

As above, the inclusion of the interaction term reveals how ALMPs and PLMPs might have

detrimental effect if implemented in isolation. In particular, both ALMPs and PLMPs have a

negative effect on the employment rate; while PLMPs have also a negative (although smaller)

effect on the labour force participation rates. However, the interaction between active and passive

interventions is positive and statistically significant – meaning that both types of interventions

can have a positive labour market effect provided that enough is spent in the other type of policy.

For the labour force participation rate, the critical threshold of spending is lower than for the
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case of the unemployment rate. In particular, spending in ALMPs (PLMPs) increases labour

force participation provided that around 0.6 per cent (1.3 per cent) of GDP is spent in PLMPs

(ALMPs).

The results discussed above are generally in line with previous studies as reviewed in the

introduction. The only notable difference is that we do not find evidence of the fact that ALMPs

alone can improve labour market performances. Rather, this positive mechanism works only

when ALMPs and PLMPs are jointly implemented (and an adequate level of spending is devoted

to both types of interventions). The main motivation behind this difference in the results could

lie in the differences in the countries covered in the present analysis (i.e. for the first time we

include also emerging economies). In order to better investigate this hypothesis, we conduct the

analysis by adding an interaction term between the main regressors of interest (i.e. spending

in ALMPs, PLMPs and their interactions) and a dummy variable for development status (i.e.

taking the value of one for emerging countries). The equation presented above takes therefore

the following form:

Yi,t = c+γ1LMPi,t +γ2DEVi,t +γ3DEVi,t ∗LMPi,t +γ4Xi,t +γ5Tt +γ6Ct +εi,t (3.2)

Where DEVi,t takes the value of one for emerging economies and all the other covariates have

the same interpretation as before. Note that in this case we have two endogenous regressors

(LMPi,t and DEVi,t ∗LMPi,t) that are both instrumented with their lagged values. The results of

this exercise is presented in Table 3.4 below, where the parameters of interest are in this case

represented by the interaction terms between the development status and the variables for the

labour market policies. The main finding from Table 3.4 is that PLMPs seem to have a stronger

disincentive effect on labour market performances (i.e. increasing unemployment and decreasing

employment) in emerging compared to advanced economies. However, the coefficient is not

very stable across specifications and it also changes sign–suggesting that the parameters might

be imprecisely estimated, potentially due to the limited sample size. At the same time, we also

find some evidence of the fact that ALMPs might be more effective in increasing labour force

participation rates in emerging economies (i.e. the coefficients of the interaction term between

emerging economies and spending in ALMPs is positive and significant in columns 9 and 12).

For both ALMPs and PLMPS, these results might be driven by the fact that emerging economies



Table
3.3:

R
esults

forthe
U

nem
ploym

entR
ate,E

m
ploym

ent-to-population
R

atio
and

L
abourForce

Participation
R

ate
E

stim
ated

w
ith

2SL
S

(1)
(2)

(3)
(4)

(5)
(6)

(7)
(8)

(9)
(10)

(11)
(12)

U
nem

p.

rate

U
nem

p.

rate

U
nem

p.

rate

U
nem

p.

rate

E
m

pl.rate
E

m
pl.rate

E
m

pl.rate
E

m
pl.rate

L
abour

force
part.

rate

L
abour

force
part.

rate

L
abour

force
part.

rate

L
abour

force
part.

rate

2SL
S

2SL
S

2SL
S

2SL
S

2SL
S

2SL
S

2SL
S

2SL
S

2SL
S

2SL
S

2SL
S

2SL
S

N
=

806
N

=
805

N
=

749
N

=
749

N
=

806
N

=
805

N
=

749
N

=
749

N
=

806
N

=
805

N
=

749
N

=
749

Spending
in

A
L

M
Ps

(%
ofG

D
P)

1.430**

(0.613)

-0.848

(0.750)

3.867***

(0.848)

-0.339

(0.575)

0.822

(0.746)

-2.843***

(0.857)

0.744*

(0.435)

0.543

(0.487)

-0.473

(0.615)

Spending
in

PL
M

Ps

(%
ofG

D
P)

4.066***

(0.392)

4.213***

(0.462)

8.321***

(0.624)

-2.500***

(0.355)

-2.616***

(0.426)

-5.809***

(0.548)

-0.0705

(0.218)

-0.117

(0.252)

-1.002**

(0.416)

Interaction
-3.554***

2.762***
0.766***

(0.453)
(0.391)

(0.268)

C
ontrols

Y
E

S
Y

E
S

Y
E

S
Y

E
S

Y
E

S
Y

E
S

Y
E

S
Y

E
S

Y
E

S
Y

E
S

Y
E

S
Y

E
S

C
ountry

fixed
effects

Y
E

S
Y

E
S

Y
E

S
Y

E
S

Y
E

S
Y

E
S

Y
E

S
Y

E
S

Y
E

S
Y

E
S

Y
E

S
Y

E
S

Y
earfixed

effects
Y

E
S

Y
E

S
Y

E
S

Y
E

S
Y

E
S

Y
E

S
Y

E
S

Y
E

S
Y

E
S

Y
E

S
Y

E
S

Y
E

S

N
ote.T

he
presented

statistics
are

coefficientestim
ates

and
robuststandard

errors
in

parentheses
forthe

panelm
odeloutlined

in
Section

3.3.T
he

spending
in

A
L

M
Ps

and
spending

in
PL

M
Ps

variables
are

instrum
ented

by
its

lagged
values.***(**)((*))indicates

significance
atthe

1%
(5%

)((10%
))significance

level.

68



3.4. Aggregate Impact of Active and Passive Labour Market Policies 69

Figure 3.2: The Effect of one Additional Unit Spending in ALMPs (PLMPs) Given Spending in PLMPs
(ALMPs)

(a) Unemployment rate

(b) Employment rate

(c) Labour force participation rate

Note. Interaction effects as described in Section 3.4. The presented statistics are coefficient estimates for
the panel mode outlined in Section 3.3.



70 3. Better Together: ALMPs and PLMPs in Developed and Emerging Economies

spend a relatively low amount on these types of interventions–an additional percentage of GDP

spent can therefore quickly generate large (positive or negative) labour market effects. Finally,

the results obtained for the differential effect of the interaction between active and passive

policies across development groups are implausibly large. In passing by, it is worth noting how

the results of the overall effects of active and passive policies and their interactions (i.e. the

variables for the labour market policies not interacted with the dummy of development status)

have remained mostly unchanged (i.e. in terms of both magnitude and significance) compared to

those reported in Table 3.3 above.

3.4.2 Robustness Tests

This section presents the different tests conducted in order to verify the soundness of the

methodological approach adopted in the paper. First, we have run the regressions departing from

the 2SLS model introduced before. In particular, we re-estimated equation 3.1 above by means

of OLS, Arellano-Bond and FGLS. The results are available in the Appendix (Table 3.11 in

Appendix 3.7) and–given that they are mostly in line with those discussed above–we proceed in

the rest of the analysis with the 2SLS model.

The main issue with the instrumental variable approach as presented above concerns the plausi-

bility of the exclusion restriction (i.e. lagged values of spending do not directly affect current

labour market performances). Given possible time persistence in both the regressors of interest

and the dependent variable, this condition could be violated. Although there is no conclusive

solution to this problem, we might get a measure of the extent to which this constitutes a threat

to the current estimation strategy by using previous lags of spending levels (i.e. going back in

time). Although this will reduce the available sample size for the estimation (and the strength

of the instrument), it should probably weaken concerns over the plausibility of the exclusion

restriction.6 The results of the exercise are available in Table 3.5, where for ease of exposition

we presented only the full specification for the unemployment rate (i.e. corresponding to column

4 in Table 3.3 above). Moving from the left to the right of the Table, each column uses a different

lagged value of the instrument (i.e. from the first to the tenth lag). Of course, the sample size

also varies and therefore the results are not directly comparable. However, the regressors of

6 Additionally, the sample size becomes increasingly biased towards advanced economies for which we have
longer time series.
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interest remain remarkably constant across the different specifications both in terms of magnitude

and statistical significance (with the possible exceptions of models from 5 to 7, which are less

precisely estimated). This suggests that using longer lags–for which the exclusion restriction is

more likely to hold–should not necessarily change the validity of the results discussed above.

Since previous lags are also available for identification purposes, the model presented above

can be over-identified (i.e. using more instruments than endogenous regressors). In that case, a

GMM specification could be preferred to 2SLS. In order to check the robustness to changes in

the model, we therefore run equation 3.1 above with a GMM model that uses as instruments all

the lags up to four years.7 The results are available in Table 3.6 below and they largely confirm

those obtained before in the just-identified case.

After having discussed the validity of the instrument, another set of robustness tests concerns

introducing slight changes to the preferred specification introduced above. The first point of

concern is the unbalanced nature of our data, especially the fact that we have longer time series

for developed than emerging economies. In order to make sure that what we are estimating is

not an effect that is only present for OECD countries in the 1990s we restrict our sample to the

years after 1999, for which we have a more comparable number of observation. These results

(estimated with 2SLS, using one-year lag as an instrument) are reported in the first three Columns

of Table 3.7 below. They confirm the findings obtained for the overall sample with the exception

of regressions using labour force participation as the outcome of interest, when the coefficients

of the regressors of interest become smaller in magnitude and statistically non-significant. As

an additional test, we re-estimate the baseline equation using the same methodology as before

(2SLS with lagged values as instruments) but without additional covariates (i.e. apart from the

year and the country fixed effects). Indeed, it could be that the inclusion of those covariates (i.e.

difference between the GDP growth rate and its five-year average to capture cyclical fluctuations

and government primary balance) is spuriously driving the results for active and passive labour

market policies. The issue is particularly important for the primary balance, since controlling

for that means that we are considering variations in spending in labour market policies that are

somehow compensated by reductions in spending in other items of the public budget. In that

case, one may wonder whether the effect that we identify is truly associated with the change in

spending in ALMPs or PLMPs–rather than with the reduction in some other type of spending.

7 A different choice of the length of the lag would not substantially change the results.
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The last three Columns of Table 3.7 below presents the result of this new exercise, which once

again provides reassuring evidence that the results discussed above are not sensitive to slight

modifications in the baseline specification.

3.5 Effects by Type of Intervention

As stated previously, we have detailed data on the type of active and passive interventions for

two regions (OECD countries and Latin America and the Caribbean), which we will exploit in

this section. From a policy perspective, this is particularly important as it helps us to understand

the relative effectiveness of the different (active and passive) interventions. Moreover, from

a research perspective, the exercise is also interesting because few studies have explore the

macroeconomic effectiveness of these policies by types of interventions (and their eventual

interaction type by type). In order to do so, we re-estimate our preferred specification (as

described above) and replace the aggregate spending variables by spending (as a % of GDP)

in the specific labor market policy components. We follow the OECD classification and split

spending in ALMPs into the following six components: (i) PES and administration; (ii) training;

(iii) employment incentives; (iv) sheltered and supported employment and rehabilitation; (v)

direct job creation; and (vi) start-up incentives.8 For the passive policies, we make the distinction

between unemployment insurance and unemployment assistance (i.e. contributory and non-

contributory unemployment benefits).9 Table 3.8 gives an overview of the spending in these

labour market programs for the overall sample and for both regions.

A few things stand out from Table 3.8. First, it is clear that the vast majority of our data points

again come from OECD countries. Nevertheless, we can see some clear distinctions in the

types of labour market programs prevalent in both regions. Looking at active policies, we can

observe that in the OECD, the biggest chunk of spending goes to training programs and PES.

8 PES and administration refers to programs including (i) counselling and case management of jobseekers;
(ii) open information services; and (iii) referral to work, training or other assistance, as well as the budget of the
institutions that manage unemployment benefits. Training includes both institutional and workplace training, as well
as support for apprenticeships. Employment incentives refers both to recruitment- and employment maintenance
incentives, usually in the form of subsidies or reduced social security contributions. Sheltered and supported
employment and rehabilitation are programs targeted at people with a permanently reduced capacity to work. Direct
job creation creates additional jobs, usually for community benefits. The final category, start-up incentives, are
programs promoting entrepreneurship. For the complete definitions of these active interventions, see OECD.org.

9 We do not include early retirement benefits here, as this information is only available for OECD countries.
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Table 3.8: Descriptive Statistics by Program Component

Entire sample OECD LAC

N Mean N Mean N Mean

A. SPENDING IN LABOR MARKET PROGRAMS

PES and administration 765 0.122 712 0.131 53 0.004

Training 815 0.153 737 0.162 78 0.068

Employment incentives 768 0.095 739 0.095 29 0.100

Supported employment and rehabilitation 751 0.076 711 0.079 40 0.020

Direct job creation 774 0.079 736 0.076 38 0.137

Start-up incentives 783 0.015 747 0.015 36 0.011

Unemployment insurance 573 0.506 514 0.553 59 0.268

Unemployment assistance 507 0.203 496 0.208 11 0.001

Note. The variables are defined as described in Section 3.5. OECD stands for Organisation of Eco-
nomic Co-operation and Development and LAC for Latin America and the Caribbean. The number of
observations and means are calculated for the entire period of 1985 – 2015, where the data is available.

Indeed, the spending in training programs is about ten times what is spent in start-up incentives.

In Latin America and the Caribbean (LAC) this picture is quite different. Here, the biggest

programs (in terms of spending) are direct job creation programs and employment incentives.

Moreover, and in striking contrast with the OECD countries, almost nothing is spent in PES

and administration. Concerning passive programs, both regions spend the largest amounts in

unemployment insurance. For LAC countries, the percentage of GDP spent in unemployment

assistance is even virtually zero.

Table 3.9 gives the results of the 2SLS regression with the individual components rather than

the aggregate labour market spending variables. Spending in PES and administration appears to

have an overall positive impact on labour market outcomes (i.e. additional spending lowers the

unemployment rate, and increases the employment and labour force participation rates). This is

in line with economic theory, stating that employment services increase the quality of labour

market matching, reducing frictional unemployment and the duration of the unemployment spell.

Training programs on the other hand lower the unemployment rate but also the labour force

participation rate, pointing towards an important discouragement effect making people shift
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from unemployment to inactivity. Spending in employment incentives lowers the unemployment

rate and increases the employment rate, while no effect is found on labour force participation.

These findings are in accordance to previous evidence from micro-econometric evaluations (Card

et al., 2010, 2017; Kluve, 2010) and macroeconomic evidence for OECD countries (Escudero,

2018), who also find large positive effects for employment services and employment incentives,

and smaller positive effects for training programs. Spending in supported employment and

rehabilitation has an overall adverse effect on labour market outcomes, as we see no effect on

unemployment and significant negative effects on employment and labour force participation.

This is rather suprising, as previous evaluations have found mainly positive employment effects

(Burns et al., 2007; Crowther et al., 2001; Hoffmann et al., 2012). To the extent that participation

in these programs is mandatory, our findings could be due to important discouragement effects.

Spending in direct job creation has an overall favourable labour market impact. This is expected,

as direct job creation increases the total number of jobs, and is in line with findings for OECD

countries (Escudero, 2018). Nevertheless, previous micro-econometric studies have indicated

that this type of interventions have low or adverse effects on the employability of beneficiaries

(Card et al., 2010, 2017; Kluve, 2010). Lastly, spending in start-up incentives does not appear

to have any labour market consequences for our sample of countries. This is in contrast to the

evidence for OECD countries presented by Escudero (2018).

For the passive measures, the results are again in line with general economic theory. Spending in

unemployment insurance increases unemployment and lowers employment, while at the same

time labour force participation increases, indicating that higher contributory unemployment

benefits incentivize individuals to remain in the labour force. For unemployment assistance, we

find that additional spending increases unemployment and lowers employment and labour force

participation significantly.

As one of the most important results of our main analysis was that the interaction between

active and passive policies appears to be of vital importance, we repeat the exercise including all

possible interactions between active and passive policies here (resulting in twelve interactions).

The results of this exercise are reported in Table 3.10. In general, the interaction between

active policies and unemployment insurance appears to have favourable labour market outcomes,

while the interaction with unemployment assistance has the opposite effect. This is the case for

spending in PES and administration, employment incentives, direct job creation and start-up
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Table 3.9: Results for the Analysis by Component Estimated Using 2SLS

(1) (2) (3)

Unempl. rate Empl. rate Labour force part. rate

2SLS 2SLS 2SLS

N = 436 N = 436 N = 436

PES and administration -5.066 8.953** 6.762**

(4.526) (3.839) (2.662)

Training -7.644*** 1.535 -3.403***

(1.680) (1.329) (1.057)

Employment incentives -7.199** 5.739** 1.667

(3.513) (2.647) (2.088)

Supported empl. and rehabilitation 3.799 -13.064*** -11.647***

(3.975) (3.657) (2.346)

Direct job creation -1.495 4.579*** 4.095***

(1.587) (1.750) (1.443)

Start-up incentives -5.492 9.783 7.379

(10.992) (10.579) (6.798)

Unemployment insurance 7.941*** -3.098*** 1.804***

(1.172) (0.983) (0.600)

Unemployment assistance 7.757*** -5.649*** -1.059**

(0.546) (0.526) (0.426)

Controls YES YES YES

Country fixed effects YES YES YES

Year fired effects YES YES YES

Note. The presented statistics are coefficient estimates and standard errors in parentheses for the panel
model outlined in Section 3.3. *** (**) ((*)) indicates significance at the 1% (5%) ((10%)) significance
level.
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incentives. For supported employment and rehabilitation on the other hand we find the exact

opposite results. Indeed, it appears that the interaction between this group of active policies and

unemployment assistance counters the overall negative effect of these policies on labour market

outcomes.

3.6 Conclusion

In this paper, we investigate the causal effect of spending in active and passive labour market

policies on key labour market outcomes in both developed and emerging economies. We do

this by means of a panel model using a rich database containing expenditure information on 58

countries, of which about one third is outside of the OECD. We follow the existing literature

(Escudero, 2018; Estevão, 2003; Gal and Theising, 2015; Murtin and Robin, 2016; Murtin and

Serres, 2014) and control for the likely presence of reverse causality between the labour market

outcomes and the spending measures by estimating an instrumental variable model where the

spending variables are instrumented by their lagged values.

We extend the existing literature in two important ways. Firstly, to the best of our knowledge,

this is the first contributions that includes observations from non-OECD countries. Indeed, very

little evidence exists to show that policies which work well in one labour market context can

be easily translated to another labour market context. Moreover, micro-econometric evidence

indicated that, overall, policies combining an active and a passive component exhibit more mixed

success rates in emerging economies than in developed economies (e.g. Almeida and Galasso,

2010; Cockx and Van Belle, 2016; Crépon et al., 2012; Graversen and Van Ours, 2008; Martínez

et al., 2015; Medina et al., 2013). Secondly, we explicitly take into account the possible presence

of complementarities between active and passive labour market policies. This is particularly

important given the wider country coverage of the present contribution, since active and passive

policies in emerging economies do not generally have an independent status but they are rather

provided in combination.

If labour market policies are considered in isolation, we find that spending in ALMPs does

not have a significant effect on labour market performances; while spending in PLMPs might

generate disincentive effects (i.e. increase in unemployment or decrease in employment levels).

However, when we consider the two policies in combination we find that the interaction between



3.6. Conclusion 81

Table 3.10: Results for the Analysis by Component Including Interactions Estimated Using 2SLS

(1) (2) (3)

Unempl. rate Empl. rate Labour force part. rate

2SLS 2SLS 2SLS

N = 436 N = 436 N = 436

PES and administration 11.586 (7.567) 4.988 (6.615) 13.037*** (4.375)

Training 4.028 (3.952) -4.744 (4.078) -2.673 (2.633)

Employment incentives 1.852 (3.482) 1.690 (3.593) 3.024 (2.620)

Supported empl. and rehabilitation 13.091 (8.216) -20.360** (8.938) -13.637** (5.908)

Direct job creation 3.558 (2.530) 1.475 (2.581) 4.005** (1.900)

Start-up incentives -33.010 (20.716) -24.686 (16.751) -47.234*** (12.007)

Unemployment insurance 14.977*** (2.314) -10.744*** (1.981) -1.935* (1.079)

Unemployment assistance 8.832** (3.593) 0.120 (3.111) 5.791*** (2.058)

PES*UI -40.695*** (14.521) 43.709*** (16.498) 20.692* (11.616)

Training*UI -2.915 (4.928) -0.288 (5.626) -2.244 (3.743)

Emp. inc.*UI -10.119 (6.443) 21.662*** (7.196) 16.545*** (5.155)

Sup. empl.*UI 2.526 (12.826) -20.476 (14.840) -19.758* (10.966)

Direct job creation*UI -10.092** (4.968) 5.822 (4.879) 0.153 (3.269)

Start-up inc.*UI -22.865 (21.865) 49.624** (21.778) 39.609** (16.372)

PES*UA 11.762 (18.054) -46.760*** (18.109) -41.744*** (12.127)

Training*UA -4.188 (5.848) 7.188 (5.428) 4.964 (3.975)

Emp. inc.*UA -8.597 (15.704) -42.719*** (15.682) -50.356*** (11.802)

Sup. empl.*UA -9.784 (15.115) 25.847* (14.905) 20.773** (9.599)

Direct job creation*UA -10.257 (7.927) 9.089 (6.753) 2.630 (5.575)

Start-up inc.*UA 93.323*** (35.152) -31.928 (38.026) 23.389 (28.797)

Controls YES YES YES

Country fixed effects YES YES YES

Year fired effects YES YES YES

Note. The presented statistics are coefficient estimates and standard errors in parentheses for the panel
model outlined in Section 3.3. *** (**) ((*)) indicates significance at the 1% (5%) ((10%)) significance
level.
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active and passive labour market policies generate substantial beneficial effects in terms of both

employment, unemployment and labour force participation. This means that the more is spent on

one type of policy, the more the other policy becomes effective. As a result, even the disincentive

effects of PLMPs disappear (and eventually become positive) provided that enough is spent in

ALMPs.

When looking in detail at the type of active and passive interventions, we find that spending in

PES and administration, direct job creation and employment incentives have overall positive

labour market effects, while no effects are found for additional spending in start-up incentives.

Additional spending in supported employment and rehabilitation on the other hand has an overall

negative effect on labour market outcomes. Finally, spending in training programs has the desired

effects on the unemployment rate but at the cost of a lower labour force participation rate. For the

passive policies, our findings are in line with economic theory. Both spending in unemployment

insurance and unemployment assistance increases unemployment and lowers employment, but

while unemployment assistance decreases labour force participation, unemployment insurance

incentivizes individuals to remain in the labour force. In line with this, we also find that the

positive interaction effects between active and passive interventions are completely driven by a

positive interaction between active policies and unemployment insurance.

This leads us to the main take-away message from this paper. Ignoring the important interaction

effects between active and passive labour market policies is detrimental, both form an academic

point of view as for policy makers. Indeed, if we would not take the interaction into account we

might conclude that spending in passive labour market policies leads to negative labour market

outcomes, and that it therefore should be kept limited – and potentially considered as a sunk cost

meant to provide support to the unemployed at the expense of labour market efficiency. However,

as we learn from our interaction analysis, spending in ALMPs can only effectively ameliorate

labour market outcomes if spending in PLMPs is sufficiently high. This can be explained by

the fact that participation in active interventions is not attractive (or not effective) if individuals

are not provided with adequate income support while being in the active program. Indeed and

especially in emerging economies, individuals cannot afford to spend long periods without a

job and participating in ALMPs (without a source of income) often represents an unaffordable

investment whose returns will eventually materialise only in the medium (or even long) run. In

this context, any investment in ALMPs alone becomes largely ineffective. A similar reasoning
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can be made for the spending in PLMPs. Indeed and while it is true that this spending deteriorates

labour market outcomes when no money is spent in ALMPs, additional spending in PLMPs

becomes beneficial for the labour market once a certain amount is spent in ALMPs. This can

be explained by the fact that the provision of income support does not generate disincentive

effects when adequate measures are implemented in parallel to activate the unemployed. Rather,

guaranteeing income security can increase the efficiency of labour market matching (i.e. higher

wages, longer job tenure) if individuals are not forced to accept the first available job in the

presence of an adequate income support. Of course, the design and implementation of this

support is critical to avoid any disincentive effects (e.g. duration, rate, conditionality).
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3.7 Appendix A: Additional Tables

Table 3.11: Results for the Robustness Test using Different Specifications

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Unemp. rate Empl. rate Labour force

part. rate

Unemp. rate Empl. rate Labour force

part. rate

Unemp. rate Empl. rate Labour force

part. rate

OLS OLS OLS Arellano-

Bond

Arellano-

Bond

Arellano-

Bond

FGLS FGLS FGLS

N = 788 N = 788 N = 788 N = 723 N = 723 N = 723 N = 788 N = 788 N = 788

Spending in ALMPs (%

of GDP)

3.594***

(0.685)

-2.608***

(0.710)

-0.431

(0.551)

0.951

(0.889)

-0.837

(0.663)

-0.156

(0.418)

2.366***

(0.558)

-1.942***

(0.486)

-0.630*

(0.364)

Spending in PLMPs (%

of GDP)

6.396***

(0.488)

-4.194***

(0.438)

-0.473

(0.373)

3.757***

(0.768)

-2.805***

(0.525)

-0.488**

(0.190)

5.098***

(0.358)

-3.414***

(0.311)

-0.489**

(0.231)

Interaction -2.659*** 2.010*** 0.529** -1.563*** 1.152*** 0.198 -1.760*** 1.373*** 0.431**

(0.322) (0.297) (0.248) (0.519) (0.386) (0.196) (0.271) (0.238) (0.179)

Controls YES YES YES YES YES YES YES YES YES

Country fixed effects YES YES YES YES YES YES YES YES YES

Year fixed effects YES YES YES YES YES YES YES YES YES

Note. The presented statistics are coefficient estimates and robust standard errors in parentheses for the robustness analysis outlined in Section 3.4.2. ***
(**) ((*)) indicates significance at the 1% (5%) ((10%)) significance level.



Chapter 4

Waiting Longer Before Claiming, and

Activating Youth. No Point?1

4.1 Introduction

The Great Depression of 2008 has had a devastating impact on youth unemployment in Europe.

By 2012 the youth unemployment rate in the European Union (EU27) had attained an unprece-

dented height of 22.8 percent, causing multiple countries to raise the alarm. Belgium was no

exception. In 2009 the Flemish2 government introduced a Youth Work Plan (YWP) in which job

seekers below the age of 25 were followed-up more intensively when entering unemployment. In

2012 the Belgian government extended, for school-leavers aged less than 26, the waiting period

before entitlement to unemployment insurance (UI) by three months, from nine to twelve months.

This study aims at evaluating the effectiveness of these two policies.

Belgium is one of the few countries in the world where school-leavers need not have worked to

be eligible to (flat rate) non-means-tested UI benefits. To the best of our knowledge, Australia

and New-Zealand are the only other OECD countries that share these features of UI, even for

non-school-leavers. While a waiting period in UI is usually justified as a means to discourage

voluntary job quits (Fredriksson and Holmlund, 2006), this argument cannot apply for school-

leavers who enter the labour market for the first time. Rather, the extension mainly aimed at

reinforcing job search incentives. Indeed, standard job search theory predicts an unambiguous

1 In collaboration with Bart Cockx.
2 Belgium is a federal state. Flanders is the Dutch speaking region in the North.
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increase in the job finding rate throughout the unemployment spell as opposed to job seekers

facing a shorter waiting period. This job finding rate will gradually decrease, until the point of

benefit entitlement (Mortensen, 1977). Moreover, empirical predictions from this job search

theory have been largely confirmed in the literature (Tatsiramos and Ours, 2014).3

One may question that these predictions realise for at least two reasons. First, they are based

on the assumption that other income sources are exogenously fixed. This may be unrealistic for

school-leavers who may be financially supported by their parents. Whether this is possible could

depend on the financial situation of parents, which we will test for in the analysis. Second, these

predictions are based on the assumption that job seekers form rational and unbiased expectations

about the likelihood of finding jobs. Since the seminal work of Tversky and Kahneman (1974)

there is, however, growing evidence that expectations can be severely biased. For example, it is

shown that individuals are overly optimistic regarding positive events and pessimistic with respect

to negative events (Moore and Healy, 2008). Job seekers in particular strongly underestimate how

long they will remain unemployed (Spinnewijn, 2015), and behave according to time-inconsistent

(hyperbolic) preferences (DellaVigna and Paserman, 2005). Both tend to make job seekers less

responsive to future incentives (Paserman, 2008; Spinnewijn, 2015). Hence, an extension of the

waiting period may have much weaker behavioural impact than the one predicted by the standard

job search model.

The empirical evidence on the effects of an intensification of counselling and training for youth

such as in the aforementioned YWP in Flanders is mixed. In their most recent meta-analysis of

active labour market programme (ALMP) evaluations Card, Kluve, et al. (2017) find that “job

search assistance and sanction programs emphasizing "work first" have relatively large short

term impacts on average. Training and private sector employment programs have smaller short

term impacts but larger effects in the medium and longer runs.” Since the YWP comprises both

components, it might be expected to increase the job finding rate of those who are assisted in

searching for jobs, while locking-in participants in training programmes. However, ALMPs are

also found to generally work less well for youth than for prime aged populations. Experimental

evidence in Denmark has shown that a combination of meetings, job search courses and early

activation could significantly enhance transitions from unemployment to employment. In this

case the treatment seemed even particularly effective for youth (Graversen and Van Ours, 2008).

3We refer the reader to Section 4.7 for a graph based discussion of the predictions of standard job search theory
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However, these large treatment effects appear to be largely due to the threat of participation

requirements rather than the program itself (Pedersen et al., 2012; Rosholm, 2008; Vikström et al.,

2013). In Denmark the intensity of meetings is much higher than in the Flemish YWP where

youth are invited to a first meeting only from the third month. Moreover, even if participation is

in principle mandatory this is, in contrast to Denmark, not very strictly enforced. Therefore, we

cannot expect as strong effects of the YWP as the intensified early meetings and activation in

Denmark.

Our research strategy consists in exploiting two distinct age discontinuities. First, a discontinuity

in the duration of the waiting period at age 26 that was present prior to the reform in 2012:

school-leavers younger than 26 were eligible to UI after 9 months, while those older had to wait

one year. We investigate whether this discontinuity translates in a discontinuity in a number

of labour market outcomes and, hence, provides causal evidence on the effectiveness of the

2012 reform (Imbens and Lemieux, 2008; Lee and Lemieux, 2010). Secondly, participation

in the YWP is also conditioned on an age threshold. We will therefore evaluate these two

policies simultaneously. We consider the effect on unemployment duration and transitions from

unemployment to employment. Search theory predicts that the longer waiting period may not

only induce youth to search harder for jobs, but also to be less selective in accepting job offers

(Mortensen, 1977). We therefore also consider the effect on a number of indicators of job quality,

such as the daily wage, the time spent in employment, the incidence of part-time work and annual

earnings from salaried employment.

Our analysis is based on a follow-up of all first registrations in Flanders, from July to October

between 2008 and 2010. In order to obtain information on job quality, these registers are

matched to those of diverse social security institutions. The population of interest is restricted to

individuals with at least a bachelor’s degree to avoid confounding the analysis by a hiring subsidy

targeted to youth with a lower level of education, which applied also below age 26. One might

argue that this limits the policy implications of our study, as most policy makers are primarily

interested in the effects on the most vulnerable population i.e. low-skilled youth. Nevertheless,

we believe that highly educated youth are an interesting and important target group for labour

market policy. Indeed, as depicted in Figure 4.1, in many OECD countries youth unemployment

is high, even for youth with advanced education. In some countries - i.e. Denmark, Portugal,

Slovakia and others - the unemployment rate of youth with advanced education even outnumbers
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the unemployment rate of youth with basic or intermediate education.

We are not aware of any other study that investigates the impact (of an extension) of the waiting

period. This is probably because the waiting period, if it exists, mostly lasts only a couple of days

(Tatsiramos and Ours, 2014) and job search incentives are rather induced through much stricter

job search requirements and follow-up by counsellors, especially in Australia (Langenbucher,

2015). As youths below the age of 25 are also counselled more intensively early on in the

unemployment spell, our study design allows us to disentangle the impact of both policies.

The remainder of this paper is structured as follows. In Section 4.2 we describe in more detail

the institutional setting and, in particular, the features that may influence the causal regression

discontinuity design (RDD). Section 4.3 describes the data and Section 4.4 the empirical approach.

Section 4.5 reports the results of our analysis, including some sensitivity analysis. Section 4.6

concludes with a summary of the empirical findings and a brief discussion of policy implications,

the limitations of this study, and suggestions for further research.

4.2 Institutional Framework

4.2.1 UI, the Waiting Period and Recent Reforms Regarding Youth

In Belgium a worker is eligible to UI in two instances: (i) after graduation from school conditional

on a waiting period; (ii) after involuntary dismissal from a sufficiently long-lasting job. School-

leavers are entitled to flat rate benefits, which depend on the family status and are non-means

tested. In contrast to many other countries there is no time limit to the payment of UI.

Before January 2012 the required waiting period for eligibility to UI lasted 9 months if the

applicant was younger than 26 at the end of this period, while it lasted 12 months for those

older. The period starts after school completion from the first registration as job seeker at the

regional PES. Since the secondary school year usually runs from 1 September to 30 June, first

registrations occur usually in July. However, regulations state that the waiting period cannot

start before August 1, unless registration starts after drop-out in the middle of the school year. In

order to discourage drop-out, eligibility is conditional on a minimum acquired level of education.
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During the waiting period one is supposed to be actively seeking jobs. However, before 2012 this

was not explicitly monitored and from an international perspective the imposed requirements

on job seekers are relatively lenient. Any intervening employment spell or participation in

short- to medium-run part-time vocational training counts for the waiting period. By contrast,

participation in long-term or full-time training programmes, or resumption of full-time education,

resets the waiting time to zero. The waiting period is interrupted (without reset) for any other

intervening period of inactivity, such as sickness or incarceration.

Since January 1, 2012 the waiting period for those younger than 26 was extended by three

months, so that it became as long as that for the older school-leavers. Furthermore, two additional

restrictions were imposed. First, a time limit of three years was imposed on the entitlement to

UI. However, this time limit applies only before the age of 30 for individuals living with other

household members with income above some threshold. Second, job search effort is evaluated

every 6 months since 2012 and school-leavers are only eligible to UI if they satisfy the job search

requirements. Before 2012 these evaluations were only implemented after 15 or 21 months,

respectively for those younger or older than 25. In 2015, the UI scheme for school-leavers was

further reformed. UI can no longer be claimed if older than 25 and school-leavers younger than

21 must at least have successfully completed six years of secondary education.

Apart from UI, school-leavers are entitled to means-tested social assistance. While this may

lower the financial incentives provided by the extension of the waiting period, the number of

youths claiming social assistance in our sample is nevertheless very small (i.e. less than 30

individuals in the entire sample or less than 0.4% ). This is probably because most of these

young people still live with their parents and are thus not entitled.

4.2.2 The Youth Work Plan

In 2008 the Flemish PES introduced the Youth Work Plan as a pilot project targeted at low-

educated youth in the largest Flemish cities. From 2009 onwards the YWP was extended to

everyone younger than 25 one month after registration. The YWP consists of a set of specific

actions targeted at those still unemployed three months after registration. At that moment a PES

counsellor contacts the job seeker by telephone. If impediments to work are detected, the job



4.2. Institutional Framework 95

seeker is invited for a meeting and counselling or training actions are proposed. If no action

has been undertaken after this first contact and the job seeker is still unemployed three months

later, she is invited directly to a meeting with a PES counsellor who may then propose particular

actions. To the extent that the PES strictly denies these services for those older than 25 one

month after registration, this could generate an age discontinuity close to the one that determines

the length of the waiting period. For the latter the discontinuity occurs at 26,9 months after

registration as job seeker. If the age is measured 9 months after registration, the potential age

discontinuity of the YWP would occur at the age of 25 and 8 months.4 In the analysis below we

therefore explicitly allow for this second discontinuity.

4.2.3 Policies Potentially Threatening the RDD

In the period of analysis (2008-2012) several hiring subsidies were targeted to youth below

the age of 26. These could potentially threaten our RDD. Two policies, a flat rate reduction in

employer’s social security contribution and the so-called “Activa” advantages, do not pose a

threat because they do not constitute a discontinuity or the discontinuity is at a different point.

Between 2010 and 2011 the Activa advantages were temporarily replaced by the so-called

“Win-Win” to fight the persisting crisis since 2008. The Win-Win was targeted at youth with at

most a secondary school degree who were less than 26 years old at hiring. By targeting youth

below the same age threshold as the one at which the waiting period is extended, this policy in

principle threatens our design. However, since the subsidy is targeted at youths with at most

secondary education, the RDD remains valid if the analysis is restricted to youths with a higher

educational degree: bachelors or masters. Not many observations are lost by imposing this, since

the analysis focuses on youths entering unemployment directly after their studies. Within this

target group only a small minority does not have a higher educational degree around the age

discontinuity of 26 years.

4 For the YWP the age (25 years) is measured one month after registration. Consequently, if age is measured at
the end of the waiting period, i.e. 9 months after registration, participants in the YWP should be younger than 25
years and 8 months at that point.
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4.3 Data

4.3.1 Data Sources and Sample Selection Criteria

The empirical analysis is based on Flemish PES register data of the full population registering

for the first time as job seeker between July 1 and October 31 for the years 2008 through 2013.

The PES data only informs about the potential type of UI entitlement – based on sufficient work

experience or educational attainment – not about the effective benefit entitlement, neither about

the activity state (education, employment or inactivity) prior to the first registration. They cannot,

hence, distinguish between youths who just left school and those who had some intervening spell

of employment or inactivity. Since employment spells count for the waiting period and we do

not have reliable information on the exact starting date of employment we restrict the population

in the following ways. First, since the Belgian school year ends on June 30 and the academic

year starts end of September, restricting first registrations to the July-October period targets the

group registering immediately after graduation.5 Second, we requested the Cross Roads Bank of

Social Security (CBSS) to match the register data of the PES to those of the different federal

institutions of social security in Belgium. These data contain quarterly information on salaried

and self- employment (since 2007) and monthly information on receipt of UI. Based on this

information we dropped all individuals who (i) were observed in employment prior to the first

registration; (ii) were reported to have left unemployment for a job according to the PES, but

were not found to be unemployed in the CBSS dataset; and (iii) who were observed to be entitled

to UI earlier than they could have been based on their first registration date and their age. The

latter inconsistency is likely due to measurement error, since there are only few.

We mentioned in Section 4.2.3 that we could only include school-leavers with a bachelors or

master degree, because otherwise the RDD would be confounded by a wage subsidy targeted

at low educated youth. Furthermore, since the focus of the analysis is on the impact of the

extension of the waiting period and the identification strategy is based on the discontinuity in

the duration of the waiting period at the age of 26, we restrict the sample of analysis to an age

window of 1.5 years to the left and to the right of this age. We do not consider a wider window

5 For a few observations the unemployment spell was recorded to start at a different date than the first registration.
These observations were dropped from the analysis.
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because there are only very few individuals (178) who are older than 27.5 years. Finally, we

restrict the analysis to youths entering the labour market between 2008 and 2010. The inflow in

2011 is not considered, because the waiting period of those younger than 26 was extended in

the middle of their waiting period, on January 1, 2012. The entrants in 2012 are retained for a

placebo analysis. The 2013 inflow is ignored, because the available PES registration data are

right censored at the end of November 2013. In conclusion, while the initial population consists

of 151,744 individuals, the final sample size retained for the analysis reduces to 5,495 individuals

of whom 4,495 are younger than 26 and 1,000 older. Section 4.8 indicates how the sample size

diminishes as particular selection criteria are imposed.

4.3.2 Descriptive Statistics

Table 4.1 reports the descriptive statistics of the explanatory variables retained in the empirical

analysis. All variables except the household type originate from the PES registers and are

measured at registration. The household type originates from the CBSS and is measured on

December 31 of the year preceding the first registration at the PES. Descriptive statistics are

reported for the complete sample, the group aged between 24.5 and 26 and the group aged

between 26 and 27.5. The age is calculated (with daily precision) at the (counterfactual) end of

the waiting period.

There is an asymmetry in the sample size around the age discontinuity. The majority in the

retained sample is younger than 26 as most individuals complete education before this age.

Youths ending higher education so late typically have repeated a couple of grades, since 22 or

23 is the age at which a master degree without any schooling delay would be attained. It also

explains why about three quarters of the sample have a master degree: bachelors must have

even more schooling delay to be observed in this age range. Another interesting observation

is that more than 80% of the sample were officially residing at their parent’s at the end of the

year preceding the first registration. This is an indication that the sampled individuals are still

financially dependent on their parents and that, hence, the extension of the waiting period might

not have any important financial impact.

Table 4.2 displays the descriptive statistics of the outcomes of interest. We report the number of
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Table 4.1: Descriptive Statistics of Explanatory Variables

Total <26 ≥26

Number of Individuals 5,495 4,495 1,000

Mean age at the end of the waiting period registration 25.36 25.10 26.52

Variable % % %

Gender: Female 47.68 48.59 43.60

Driver license 99.49 99.51 99.40

Education: master (other = bachelor) 75.18 74.82 76.80

Good knowledge of Dutch 94.54 94.82 92.80

Nationality: Belgian 98.23 98.40 97.50

Household type

Single or couple with children 0.42 0.42 0.40

Single 3.73 3.38 5.30

Other (couple w/o child., institution,. . . ) 3.55 3.43 4.10

Child living at parent’s house 83.99 84.92 79.80

Year of first registration at PES

2008 32.67 33.24 34.60

2009 34.43 34.73 33.10

2010 32.90 33.04 32.30

Month of first registration at PES

July 47.90 48.92 43.30

August 18.89 19.18 17.60

September 27.01 26.14 30.90

October 6.21 5.76 8.20

Equivalent household income* 23’978 24’226 22’845

Note. Descriptive statistics of sample of analysis for the RDD. First registration at Flemish PES in July-
October 2008-2010 for those aged between 24.5 and 27.5 years 9 months after registration. All variables
except the household type originate from the PES registers and are measured at the first registration. The
household type comes from the CBSS and is measured on December 31 of the year preceding the first
registration. * Measured in the calendar year prior to first registration as job seeker. This includes labour
market earnings and social security allowances of all household members excluding the school-leaver.
The income has been scaled by the “OECD-modified scale” assigning a value of 1 to the household head,
of 0.5 to each adult household member older than 18 (including the school-leaver) and 0.3 to each child.
Reported statistics are calculated after dropping 74 missing observations. In the benchmark analysis these
74 observations are retained, because this analysis does not condition on this variable.
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observations for which we have non-missing values, and the mean and percentiles (5, 25, 50, 75

and 95) of its distribution. The first variable of interest is the unemployment duration, which

comes from the PES registers and is measured at the end of each calendar month. Temporary

exits within the month are not recorded. This may lead to a slight measurement error, an issue to

which we will return. Moreover, our data are left truncated: the PES did not select individuals at

the actual first registration date, but at the end of the calendar month of this registration. This

means that individuals who have left unemployment between registration and the end of the

month are not retained. Note that we do have exact information at which date the registration of

these individuals occurred, so that we can exactly determine the potential end date of the waiting

period for each individual.

Unemployment duration is right censored at the end of the observation period in November 2013.

However, only 12 observations are right censored, which is negligible and a feature that will

be exploited in the analysis. The PES registers inform whether an exit was to employment or

another destination, labelled “inactivity” . In Table 4.2 the third variable reports the descriptive

statistics for the unemployment duration in case of an exit to employment, while the fifth one

considers exits to inactivity only. Relatively few individuals (396) leave to inactivity, so the

general distribution hardly differs. Median duration is 4 months, implying that only a minority is

unemployed throughout the complete waiting period. 95% has left unemployment within one

year. Figure 4.2 shows the profile of the hazard rates of exiting unemployment for the three

distinct groups: (i) those falling under the YWP, (ii) those not benefiting from the YWP under

the age of 26 and, (iii) those older than 26.

Based on the information of the BCSS, we constructed a number of additional outcomes measur-

ing the quality of employment. We consider the number of working days in salaried employment

in the quarter of exit from unemployment and the 4 subsequent quarters, the daily wage in the

quarter of exit, the daily wage multiplied by the number of working days in the quarter of exit

and the 4 subsequent quarters, and an indicator equal to one if a salaried worker worked part-time

in the quarter of exit and zero otherwise. We only observe these variables for individuals who

transited to salaried employment. For the daily wage in the quarter of exit, for instance, there is a

relatively large number of missing values. This may be a consequence of individuals leaving the

unemployment registers near the end of the quarter while not entering employment immediately
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Figure 4.2: Profile of the Hazard Rates by Age

Note. Survival refers to survival in unemployment. Groups are defined as stated in Section 4.3.2
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afterwards. Therefore, we also considered a second (corrected) daily wage in which we replace

the first wage by the wage measured in the subsequent quarter if this wage deviates more than

5% from the first one and is not zero or missing.

Job seekers who find a salaried job are not all the time employed in the quarter of hiring and

4 subsequent quarters: 50% works less than 270 days. If we consider that in most sectors

the workweek lasts 5 days and that an individual enters on average in the middle of a quarter,

then someone who would have worked full-time during these 4.5 quarters would have worked

292.5 days. This corresponds roughly to the number of working days of the individual at the

75th percentile, who worked 295 days. Since only about 10% worked part-time, a substantial

share of individuals have lost their job within 5 quarters. The median daily gross wage is about

C105 which means if, as is common for a full-time occupation in Belgium, 7.2 hours per day is

worked, the gross wage per hour would be about 14.6C/hour. Considering that some individuals

work part-time, this is a lower bound. Finally, we measure the earnings as the sum over the

aforementioned 5 quarters of the product of the average gross daily wage and the number of

working days in each quarter. The median individual earned C27,732 in this period, or about

C2,054/month.

4.4 The Empirical Approach

The empirical analysis aims at identifying the effect of (i) an extension of the waiting period from

9 to 12 months and (ii) the YWP on the various outcome variables described above. Identification

is based on the discontinuity of the length of the waiting period at the age of 26 prior to 2012

and the age discontinuity at 25 years and 8 months for the YWP. The forcing variable Ai is the

age of individual (i = 1,2, . . . ,N) 9 months after the first registration as job seeker in the PES6

measured in days and in deviation from the age discontinuity at 26 years. Let DWi ≡ 1[Ai ≥ 0]

denote the treatment status (extension of the waiting period) of individual i where 1[.] is the

indicator function, DYWP is an indicator if the individual is younger than 25 years and 8 months

(and hence eligible to the YWP) and zero otherwise,7 Xi the vector of explanatory variables

6 Nine months after August 1 if registration is in July (see Section 4.2.1).
7 Since the YWP was not yet implemented for the high-educated in 2008, this indicator also zero for individuals

of any age in 2008.
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listed in Table 4.1,8 and F (Ai) and F1 (Ai) two polynomial functions, assumed to be linear in the

benchmark models. The following log-linear regression equation then identifies the proportional

treatment effect βW of the extension of the waiting period and βYWP for the YWP:

log(Yi) = α+βW DWi+βYWPDYWPi+F (Ai)+DiF1 (Ai)+Xiγ+Ui (4.1)

where in the benchmark models Yi is one of the outcome variables listed in Table 4.29 and Ui the

error term. We implicitly impose the same (linear) polynomial to the left and to the right of the

age cut-off for the YWP. This assumption is made, because this cut-off at 25 and 8 months is

very close to 26, so that a different polynomial between these two cut-offs would be identified

on few data points only. Moreover, based on the graphical analysis below, this assumption does

not seem to be violated. We will test this assumption in a sensitivity analysis for those outcomes

for which we find a significant effect. We will also check for these outcomes whether the results

are sensitive to the age window and the choice of the polynomial function (Section 4.5.4).

In case the outcome variable is a duration, for some individuals this duration is bound to terminate

after the end of the observation period, or exits to a particular destination (e.g. employment)

are not observed, because an exit to another destination (e.g. to inactivity) precedes exit to the

destination of interest. These are instances of right censoring. Because the number of right

censoring is very limited (see Table 4.2), we first ignore this and run regression equation 4.1.

Subsequently, we treat right censored observations correctly by estimating the discrete duration

model as a sequence of monthly binary choices (Jenkins, 1995; Kiefer, 1988).10

Let t ∈ {2,3, . . .} and εi denote the elapsed unemployment duration and the unobserved deter-

minants of the exit rate from unemployment for individual i, assumed to be independently

distributed from the observed covariates, respectively. This allows to take the dynamic selective

sorting of the pool of unemployed over the unemployment spell into account (Salant, 1977). The

conditional discrete-time hazards h(t;Ai,Xi, εi) ≡ P(Ti = t ∣Ti ≥ t;Ai,Xi, εi) associated to these

binary choices take on the complementary log-log specification if they are derived from a

continuous time hazard model:

8 In the benchmark analyses the equivalent household income is not included as explanatory variable.
9 Since the data are left truncated at the end of the first month, we normalize the duration by subtracting one.

10 See Lammers et al. (2013) for a similar treatment of RDD within a hazard modeling framework.
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h(t;Ai,Xi, εi) = 1−exp[−exp(αt +βWtDWi+βYWPDYWPi+F (Ai)+DiF1 (Ai)+Xiγ+εi)] (4.2)

where exp(αt) is the baseline hazard, exp(βWt) and exp(βYWP) the proportional treatment

effects on the hazard of, respectively, the extension of the waiting period and the YWP. We

consider only linear polynomials. The discrete baseline is assumed to be constant within the

following sets of discrete duration months: {3,4}, {5,6}, {7,8,9}, {10,11,12}, {13,14,. . .}. As

this is an arbitrary choice, we estimate the same model with a different set of discrete duration

months as a robustness test, the results of which are available in Section 4.10. The treatment

effects are assumed to be either fixed over the complete unemployment spell (βWt = βW and

βYWPt = βYWP) or piecewise-constant. In order to determine the pattern of this piecewise-constant

function, we use the predictions of standard non-stationary job search theory. Additionally, we

estimate equation 4.1, where, for each month (counted from the first month after registration)

the outcome variable is a dummy variables taking on the value 1 if a person is not registered as

unemployed in that respective month. The results of this exercise are reported in Section 4.9.

This leads us to assume a piecewise-constant over the following sets of months: {2,3,4,5,6,7,8,9}

,{10,11,12} and { 13,14, . . .} for the extension of the waiting period and: {2,3,4,5,6,7} ,{8,9,10}

and {11,12, . . .} for the YWP.

This model is estimated by maximum likelihood. To form the likelihood function, note that the

discrete survival rate after an elapsed duration of t months is simply the product of one minus

the discrete-time hazards in all preceding periods: ∏t
s=2 (1−h(s;Ai,Xi, εi)). Consequently, if

ci denotes an indicator that is equal to zero in case of right censoring and one otherwise, then

the log-likelihood function, from which the unobserved determinants are integrated out, can be

written as follows:

logL =

N
∑

i=1
log[∫

+∞

−∞

[h(ti;Ai,Xi, εi)]
ci

ti−1

∏

s=2
(1−h(s;Ai,Xi, εi))dG(εi)] (4.3)

where G(εi) is the distribution of unobserved heterogeneity. We perform estimations in which

we either assume that there is no unobserved heterogeneity or that it is Normally distributed with
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mean zero and variance σ2 .

4.5 The Empirical Findings

4.5.1 Discontinuities in the Timing of Benefit Receipt and in the Partici-

pation in the YWP

Figure 4.3 displays how UI receipt varies over age at various unemployment durations. By

construction nobody is entitled to UI before 9 months. Let us first consider panel A. From 9

months the benefit receipt rate jumps up for those younger than 26 to 40-60%, depending on

the specific age. Not everyone is entitled, because the waiting period might be extended due to

brief interruptions of inactivity (cf. supra). Indeed, the receipt rate increases further to more than

80% after 10 months and to 90-100% in month 11. For those older than 26 a similar pattern is

observed after 12 months (Panel B). The benefit receipt rates are more unstable for this group

as a consequence of the small numbers involved: only 5% on average are unemployed for 12

months or more (Table 4.2) and the sample size of the older group is much smaller. We can

conclude that there is a clear discontinuity in the waiting period before entitlement to UI at

the age of 26. We therefore expect that, if the differential waiting period has an impact on job

search, this should show up in a discontinuity in the unemployment duration and, possibly, in the

indicators of employment quality. Even if, as a consequence of measurement error, the RDD is

not completely sharp and the treatment effects must be, hence, interpreted as “intention-to-treat”

effects.

Figure 4.4 displays the evolution of the fraction of individuals that are labelled in the YWP by

age, as measured one month after registration as job seeker.11 This fraction drops sharply at age

25. This justifies the inclusion of a second discontinuity point in the analysis at 25 years and 8

months, if age is measured at the potential start of benefit receipt, i.e. 9 months after registration

11 Note that this analysis is based on a larger dataset, since the participation indicator to the YWP is not available
in the dataset that was matched to the BCSS. Hence, we could not exclude individuals who experienced employment
prior to registration as job seeker, neither could we exclude individuals who were entitled to UI prior to the end of
the waiting period and, hence, could not be school-leavers. Individuals who registered in 2008 are excluded from
this analysis, because the YWP was then not yet implemented for the high-educated.
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Figure 4.3: UI Benefit Receipt at Various Unemployment Durations by Age

(a) From 9 to 11 Months

(b) After 12 or 13 Months

Note. Bins are defined as outlined in Section 4.5.1.
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as job seeker.

Figure 4.4: Evolution of the Fraction Labelled in the YWP by Age

Note. Bins are defined as outlined in Section 4.5.1.

4.5.2 The Effects on Unemployment Duration

Figure 4.5 displays the unemployment duration as a function of age where dots represent the

averages by age bins of 2 months. As mentioned, older school-leavers are more likely to

have repeated grades and, hence, less attractive for potential employers. This is reflected in

an increasing relationship of unemployment duration with age. However, despite the clear

discontinuity in benefit receipt at 26 and of participation in the YWP at 25 and 8 months, the

unemployment duration only drops slightly at 26 and evolves very smoothly at 25 and 8 months.

This means that benefit extension seems to have only a slight impact on job search behaviour, if

any, while the YWP not at all.
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Figure 4.5: Unemployment Duration by Age

Note. Age bins are grouped by 2 months. 0.24% of the full sample are right censored observations and,
hence, dropped.
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The graphical evidence is quite salient. The formal econometric analysis just confirms this

evidence.

Table 4.3 summarize the findings of the estimations of the linear regression and the discrete

hazard model. In all of them the polynomial in age is specified as a linear spline. The first

four columns report the estimated bench mark treatment effects (and associated standard errors)

of the extension of the waiting period (βW ) and of the YWP (βYWP) obtained by estimating

the linear regression. The first two columns consider the (log) unemployment duration to any

destination, while in the two subsequent columns the analysis is restricted to (log) durations

ending in employment. The last two columns present the results of interest for the discrete

hazard model. The coefficients are reported in exponential form, so they can be interpreted as

multipliers of the hazard. In Column (5) we report the findings of the model that assumes a

constant proportional treatment effect throughout the unemployment spell. Column (6) shows the

results for the model that allows a time-varying treatment effect of the extension of the waiting

period, while Column (7) shows the results allowing a time-varying treatment effect of the YWP.

In line with theoretical expectations, the extension of the waiting period is found to decrease

unemployment duration. However, the extension by 3 months reduces the unemployment

duration of a 26 year old job seeker by 0.13 months (Column (1)) or 1.1% (Column (2)) only,

and is not statistically different from zero. The effect of the YWP is positive for both the linear

and the log-linear model and even closer to zero. If we only look at spells ending in employment

(Columns 3 & 4) the findings hardly alter, as only very few job seekers leave unemployment

to inactivity. The discrete hazard model in Column (5) displays a slightly larger proportional

effect of the extension on the hazard (+4.4%) and a small negative effect of the YWP (-4.7%

= (1-0.953)∗100), but these effects are again not statistically significant. The findings reported

in Column (6) show some non-monotonic variation of the extension of the waiting period in

the considered sub-periods, but the treatment effects are never significantly different from one.

Finally, in Column (7) it is shown that the YWP increases the hazard of exiting unemployment

significantly for months 8, 9 and 10. In Section 4.10 we present the complete estimation results

of these benchmark models. As an additional robustness test, we have estimated equation 4.1

where the outcome of interest is the chance to be registered as unemployed in month x, where

x takes on the value 1, one month after registration. The results of this exercise are reported
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Table 4.3: Estimation Results for Unemployment Duration and Transitions to Employment as Outcomes
of Interest

Any exit Exit to employment Exit to employment

Coef.
(1) (2) (3) (4)

Exp. (Coef.)
(5) (6) (7)

Linear Log-linear Linear Log-linear Hazard Hazard Hazard

β̂w

-0.126 -0.011 -0.156 -0.012
exp(βw)

1.044
-

1.044

(0.283) (0.049) (0.293) (0.051) (0.088) (0.083)

exp(βw2−9) -
1.047

-
(0.088)

exp(βw10−12) -
0.921

-
(0.183)

exp(βw13−∞) -
1.180

-
(0.232)

β̂ywp
0.122 0.003 0.049 -0.001

exp(βywp)
0.953 0.953

-
(0.243) (0.041) (0.246) (0.042) (0.067) (0.066)

exp(βywp2−7) - -
0.928

(0.062)

exp(βywp8−10) - -
1.385***

(0.174)

exp(βywp11−∞) - -
0.891

(0.130)

Variance 0.635*** 0.631*** 0.542***

heterogeneity (0.082) (0.082) (0.073)

N 5,483 5,483 5,087 5,087 N 5,495 5,495 4,495

R2 0.043 0.047 0.041 0.047 Log-likelihood -11338.2 -11337.6 -11334.6

Note. Heteroskedastic robust standard errors between parentheses. All models include the control
variables mentioned in Table 4.1 (except for the equivalent household income) and a linear spline in
age. In the (log-) linear models right-censored observations are dropped: 12 observations in case of
exits to any destination reported in the first two columns; an additional 396 individuals who leave from
unemployment to inactivity in case duration until exit to employment is considered. In the hazard models
the aforementioned dropped observations are right censored. “Variance heterogeneity” is the variance of
the Normal mixing distribution of the unobserved heterogeneity. * p-value less than 10%, ** p-value less
than 5%, *** p-value less than 1%.
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in Section 4.9 and largely confirm our findings. Before providing any interpretation of these

potential treatment effects we consider their effects on some indicators of quality of employment.

4.5.3 The Effects on the Quality of Employment

Figure 4.6 displays the evolution over age of various indicators of employment quality: the

log number of working days in the quarter of exit and 4 subsequent quarters, the fraction of

individuals working part-time, the (possibly corrected) log daily wage at the end of the quarter of

exit, the log of annual earnings in the quarter of exit and 4 subsequent quarters. The daily wage

and the indicator of part-time work evolve very smoothly at the two discontinuities, providing

evidence that these outcomes are not influenced by the policies. For the number of working

days and the earnings the figures are less clear. We see a spike at 25 years and 10/11 months.

This spike occurs at an instant that neither the extension of the waiting period nor the YWP is

in operation. This suggests that both policies affect the aforementioned outcomes negatively.12

This is also the robust conclusion of the formal econometric analysis below.

Table 4.4 presents the formal econometric estimates of the parameters of interest for the afore-

mentioned outcomes. Since these outcomes are only measured for individuals in salaried

employment for whom there is no missing value, we first check whether we should not be

concerned by sample selectivity (Heckman, 1974). We therefore ran a linear probability model

specified as in equation 4.1, where the dependent variable is equal to one if the considered

outcome has a non-missing value and to zero otherwise. We conclude that there is only a major

concern for the non-corrected daily wage, but not for the corrected daily wage. While this is

comforting, it is no formal proof of the absence of sample selectivity at the age discontinuities.

In line with the graphical evidence, both the YWP and the extension of the waiting period have

a small and statistically insignificant effect on the gross wage and on part-time employment.

Both policies are found to have a negative impact on hours worked and earnings, although not

statistically significant at the 5% level: the former reduces working time by 6.8% (p-value of

8.3%) and earnings by 5.4% , while for the latter these effects are -3.5% and -5.5% , respectively.

12 Note that it is unlikely that this spike just reflects lack of statistical precision due to too small bin size. This
becomes an issue only from age 26.5 onwards, because very few individuals graduate and register as unemployed at
those ages. Before age 26.5 the average outcome is fairly stable by bin, except for the aforementioned spike.
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Figure 4.6: Indicators of Quality of Employment by Age

Note. Age bins are grouped by two months. The indicators are defined as explained in Section 4.3.2.
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Because the effects on working days and earnings were barely statistically significant, we

performed a couple of sensitivity analyses on these variables. We considered (1) a narrower

window around the age discontinuity at 26, (2) a spline at the age discontinuity of 25 and

8 months rather than at the one at 26, (3) a linear and (4) quadratic function of age without

spline. These findings are reported in Section 4.11. Even if the effects remain statistically

insignificant, the findings are remarkably robust, especially for the YWP. For the extension of the

waiting period the sign of the effect is in line with standard job search theory in that job seekers

respond by lowering the job acceptance requirements, i.e. jobs with shorter expected duration

are accepted. The fact that the reservation wage is not affected is probably related to the binding

minimum wage for youth. Lowering job acceptance requirements should generally also lead to

more job acceptance and, hence, increase the job finding rate, which we did not find (Table 4.3).

This suggests that the acceptance of lower quality jobs does not accelerate job finding very much.

The significant negative impact of the YWP on days worked suggests that PES caseworkers

induced unemployed school-leavers to accept more temporary jobs and/or fixed-term contracts

then they would have done in absence of the YWP. Caseworkers could have justified this strategy

based on the argument that short-term jobs could be stepping stones to a more permanent job.

However, the empirical evidence on the effectiveness of this strategy is mixed. For instance,

stepping-stone effects have been found by Booth et al. (2002) in the UK, Ichino et al. (2008)

and Graaf-Zijl et al. (2011) in the Netherlands and Cockx and Picchio (2012) in Belgium, while

other researchers have found adverse effects, such as Güell and Petrongolo (2007) in Spain,

and Autor and Houseman (2010) in the US. Givord and Wilner (2015) in a recent paper argue

that these mixed findings may be a consequence of lumping together temporary jobs and fixed

term contracts. These authors find on French data that “although fixed-term contracts may

provide a ‘stepping-stone’ to permanent positions, temporary agency work is hardly better than

unemployment in this regard.” The PES explicitly announces on its website its partnership with

the sector of temporary work agencies and that it regards temporary jobs as ‘stepping stones’ to

regular work.13 Even if we do not have hard evidence that caseworkers indeed advice youths to

accept temporary jobs, our findings and the aforementioned empirical evidence are consistent

with this interpretation. In order to explore this further, two additional analysis on the number

13 See vdab.be/uitzendsector/samenwerking.shtml [accessed on 13/09/2016].
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of days worked are presented in Section 4.12. These confirm our hypothesis that both policies

incite youth to take up lower quality temporary jobs but that this does not result in higher job

finding probabilities, i.e. the ‘stepping-stone’ is not realised.

4.5.4 Validity Tests

We have checked for the validity of the RDD based on two standard tests. In Section 4.13 we

present the graphical tests proposed by McCrary (2008) as to demonstrate that “manipulation”

of the sorting variable does not threaten the validity of the RDD. In Section 4.14 we further

justify our approach by reporting for all outcomes the placebo tests on the 2012 data. In 2012 the

waiting period has become equally long for all age groups, so that no impact at the age threshold

of 26 should be found. This is confirmed.

4.5.5 Treatment Heterogeneity

In Section 4.3 we argued that the extension of the waiting period might not induce that important

effects on job search behaviour, because parents might financially compensate for the income

loss. The fact that more than 80% of the school-leavers lived at their parent’s at the end of the

calendar year preceding their first registration as job seeker (Table 4.1) suggests this might be

relevant. To investigate this further we split the sample in two groups depending on whether

the equivalent income from labour income and social security allowances of other household

members was either below or above the median. We only report the results from the baseline

model and for the days worked and earnings, for which we found significant effects.

In the first two columns of Table 4.5, we report these findings for the benchmark outcome, i.e.

log unemployment duration with exits to all destinations. For this outcome variable the effect of

an extension of the waiting period is qualitatively the reverse of what we would have expected

i.e. the effect is more negative for youths living in households with high equivalent income.

Standard errors are, however, again very large, so that no firm conclusion can be drawn. The

next two columns report the results for the hazard model where we allow the treatment effect

of the YWP to differ in time. Here, the effect goes in the expected direction. The significant
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positive effect found after 8 months seems to be only present for the youths living in low-income

households. Similar effects are found when looking at the number of working days (Columns 5

& 6). A longer waiting period induces low-income-youths to accept jobs that reduce working

time by 6.5%, while this reduction is only 3.2% for high-income-youths. While these effects

are not significantly different from zero, the impact of the YWP for the low-income group is

-12.3% and significant at the 5% level, in contrast to the -3.2% statistically insignificant effect

for the high-income group. Unfortunately, this ordering of the effects according to income does

not remain as clear if the effect on earnings (the last two columns of Table 4.5) is considered.

4.6 Conclusion

In this study we exploited two age cut-offs to evaluate, by an RDD, the effects of two ALMPs

targeted to youth on the transition rate from unemployment to employment and on the quality of

this employment. The first policy consisted in an extension of the waiting period from 9 to 12

months that was imposed on Belgian school-leavers before they were entitled to UI. The second

was the YWP providing more intensive counselling and training to young job seekers earlier

on in their unemployment spell. In order to avoid that the estimated treatment effect would be

confounded by a programme targeted to low educated youth, the analysis was restricted to youths

who recently graduated from a bachelor’s or master’s degree.

The study finds that such an extension of the waiting period slightly, but statistically insignifi-

cantly, increased the transition rate to employment for these highly educated youth. We argued

that a potential explanation of this small impact could be that these youths were not much

financially constrained by this extension, as most of them would still be financially dependent

on their parents’ income. However, we did not find supporting evidence for this hypothesis.

Another potential explanation could be that these youths form biased or non-rational expectations

that could make them less responsive to future incentives (Paserman, 2008; Spinnewijn, 2015).

Even if these elements could play a role, the analysis finds that future incentives do affect job

acceptance behaviour. While the extension of the waiting period did not affect the level of the

accepted wage, we did find some suggestive, but robust, evidence that it did reduce the number

of working days and, hence, earnings in the five quarters following exit from unemployment.
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This means that the extension of the waiting period induces job seekers to accept short-term job

offers more easily. These effects were found to be larger for youths living in poorer households

where job acceptance is more guided by liquidity constraints.

The YWP on the other hand did only have a significant positive impact on the exit rate from

unemployment to employment after eight months. Furthermore, as for the extension of the

waiting period, it did robustly reduce the number of working days by about 6-7%, while leaving

the wage unaffected. For youths living in households with below median equivalent income

this working time fell even by about 12%. The effect on earnings was also negative, although

slightly smaller and never statistically significant. An explanation for these findings is that PES

caseworkers advised young unemployed to accept more temporary jobs and fixed-term contracts

potentially arguing that these could be stepping stones to permanent jobs. However, our findings

point that the stepping stone hypothesis should be refuted as the reduction in working time did

not result in a significantly higher probability of exiting unemployment.

Even if the RDD approach is generally a very convincing and powerful method to identify

causal effects, we faced an important limitation in the implementation of this method. We were

confronted with two policies the participation in which was delineated by two sharp age cut-offs

which were only 4 months apart. This sizeably reduced the width of the age window to detect a

corresponding discontinuity in behaviour and hence the statistical power.

We nevertheless can formulate some policy conclusions. It is important to note that these apply

to the population of this study: highly educated school-leavers and that they cannot easily be

generalized beyond this group. First, our analysis revealed that an extension of the waiting period

either did not enhance much the transition rate to employment or, if it did, it did so at the cost of

reduced working time and, hence, earnings. This suggests that threatening with a sanction is not

the right method to activate youth and supportive measures might work better. However, the YWP

is precisely offering this kind of support and our analysis revealed that this approach produced

very similar, if any, effects as the one that involves a financial sanction. Part of the explanation is

that caseworkers might have given misleading advice that temporary jobs are stepping stones

to long-term employment. Another reason is that the YWP was not sufficiently intensive.

As mentioned, experimental evidence suggests that very intensive (fortnightly) meetings with

caseworkers can generate significantly positive effects on the job-finding rate.
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4.7 Appendix A: Job Search Theory

A waiting period is the mirror image of a time limit on UI eligibility. With a time limit the job

seeker is informed at entry that the UI benefit will expire after a predetermined period. In the

case of a waiting period, UI benefits are zero at the onset of unemployment and will become

strictly positive after a predetermined period. We expect therefore that the predicted behaviour

should be the mirror image of the one predicted for the case of time limit.

Mortensen (1977) is the first to use non-stationary job search theory to describe the predictions

of a time limit in UI on the job search behaviour of rational forward looking individuals. He

proves that a job seeker gradually increases job search effort and reduces the reservation wage (or,

equivalently, increases the job acceptance probability) as she approaches the moment of benefit

exhaustion. This empirical prediction has been largely confirmed in the literature (Tatsiramos

and Ours, 2014), although that empirical studies generally find a more abrupt than predicted

increase in the job finding rate just before benefit exhaustion, followed by drop immediately

afterwards.14

In Figure 4.7 we depict the predictions of standard job search theory of an extension of the

waiting period from 9 to 12 months. Before the extension the unemployed are not yet claiming

UI benefits. Hence, they will then search harder for jobs than when they are entitled to UI.

Nevertheless, in anticipation of the entitlement, they will gradually decrease job search effort

until the flat rate benefit is paid out. Since this benefit never expires, job search effort remains

constant after that point. An extension of the waiting period from 9 to 12 months should induce

a parallel shift of the search effort to the right, because rational forward looking individuals

make identical decisions in case the future profile of UI benefits is the same. Job search theory

therefore predicts that an extension of the waiting period should unambiguously increase the job

finding rate throughout the unemployment spell. Depending on the form of the utility function,

the time profile may be concave or convex (linear, for simplicity, in Figure 4.7) close to the start

of benefit entitlement. Hence, we cannot make general predictions regarding the unemployment

14 Mortensen (1977) show that such spikes in the job finding rate could theoretically emerge if income and leisure
are strict substitutes. Boone and Ours (2012), however, explain that such an assumption is not realistic. Card, Chetty,
et al. (2007) attribute part of the spike to measurement error, but according to Boone and Ours (2012, p. 415) this
cannot be the full story. Last mentioned authors argue that the spike may be generated by the fact that UI recipients
may prefer delaying the beginning of a job until unemployment benefits have expired.
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duration at which the maximal impact should be attained. However, because job seekers discount

the future, the difference in job search behaviour is expected to diminish closer to the onset of

the unemployment spell.

Figure 4.7: Stylized Impact on the Job Finding Rate of an Extension of the Waiting Period
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4.8 Appendix B: Reduction of Sample Size after Imposition

of Selection Criteria

The initial population consists of 151,744 individuals. We make consecutively the following

selections:

• Delete individuals with the onset of unemployment at a different date than the first

registration: 197 individuals (0.13%); observations left: 151,547;

• Delete individuals entering unemployment in 2011, 2012 and 2013: 76,716 individuals

(50.62%); observations left: 74,831;

• Delete individuals with at most a secondary education degree: 43,150 individuals (57.66%);

observations left: 31,681;

• Delete individuals who have worked prior to the onset of the waiting period: 9,003

individuals (28.42%); observations left: 22,678;

• Delete individuals finding a job according to the PES, but not found to be employed in the

corresponding quarter in the social security files: 432 individuals (1.90%); observations

left: 22,246;

• Delete individuals who receive UI benefit before the end of the waiting period: 80 individ-

uals (0.36%); observations left: 22,166;

• Retain individuals within an age window of 3 years around the age discontinuity at 26

years (1.5 years to the left and to the right): 16,479 individuals deleted to the left of

the discontinuity (74.34%) and 192 individuals to the right of the discontinuity (3.38%);

observations left: 5,495. The final sample for analysis consists of 5,495 individuals.
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4.9 Appendix C: Linear Probability Model for the Prob-

ability of Not Being Unemployed x Months After Registra-

tion

Table 4.6: Estimation Results by Month for the Probability of Not Being Unemployed

Not unemployed x months after registration

1 month 2 months 3 months 4 months 5 months 6 months 7 months 8 months 9 months 10 months 11 months 12 months 13 months

β̂w -0.006 -0.019 0.014 0.004 -0.013 -0.016 -0.024 -0.027 0.003 -0.007 0.004 -0.025 -0.033

(0.023) (0.031) (0.031) (0.030) (0.029) (0.028) (0.027) (0.025) (0.024) (0.023) (0.023) (0.024) (0.023)

β̂ywp 0.003 0.004 0.014 0.022 -0.000 0.032 0.036 0.046** 0.033* 0.022 0.006 -0.010 -0.003

(0.019) (0.026) (0.026) (0.025) (0.024) (0.023) (0.022) (0.021) (0.020) (0.019) (0.019) (0.020) (0.019)

N 5,507 5,507 5,507 5,507 5,507 5,507 5,507 5,507 5,507 5,507 5,507 5,507 5,507

R² 0.046 0.037 0.050 0.050 0.038 0.042 0.041 0.035 0.037 0.038 0.033 0.019 0.019

Note: Heteroskedastic robust standard errors between parentheses. All models include control variables mentioned in Table 4.1 (apart from the equivalent
household income) and a linear spline in age. * p-value less than 10%, ** p-value less than 5%, *** p-value less than 1%.
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Figure 4.8: Estimation Results by Month for the Probability of Not Being Unemployed

Note. Age bins are grouped by two months. The indicators are defined as explained in Section 4.5.

4.10 Appendix D: Complete Estimation Results for the

Benchmark Outcome

Unemployment duration is the benchmark outcome for our analysis. In this appendix we

report the full estimation results (except for the region dummies and the year and monthly

entry dummies) for both the linear regression model defined by Equation 4.1 and the

hazard model defined by Equation 4.2. The full estimation results for the other outcomes

can be obtained from the authors upon request.
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Table 4.7: Estimation Results for the Benchmark Outcomes

Coef. (1) (2) Exp. Coef. (3) (4) (5) (6)

Linear Log-linear Hazard Hazard Hazard Hazard

β̂w -0.126 -0.108 exp(βw) 1.040
-

1.046 1.046

(0.283) (0.049) (0.083) (0.084) (0.084)

- -
exp(βw2−9)

-
1.044

- -
(0.084)

- -
exp(βw10−12)

-
0.829

- -
(0.154)

- -
exp(βw13−∞)

-
1.267

- -
(0.234)

β̂ywp 0.122 0.003 exp(βywp) 0.960 0.959 0.952
-

(0.243) (0.041) (0.064) (0.063) (0.063)

- -
exp(βywp2−7)

- - -
0.928

(0.062)

- -
exp(βywp8−10)

- - -
1.385***

(0.174)

- -
exp(βywp11−∞)

- - -
0.891

(0.130)

Age 0.001** 0.001 1.000** 1.000** 1.000** 1.000**

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Age*β̂w 0.002 0.001 1.000 1.000 1.000 1.000

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Female -0.737*** -0.152*** 1.323*** 1.322*** 1.321*** 1.321***

(0.106) (0.020) (0.047) (0.047) (0.047) (0.047)

Dutch -0.789** -0.184*** 1.365*** 1.366*** 1.520*** 1.520***

(0.289) (0.052) (0.116) (0.116) (0.135) (0.135)

Bel -1.126* -0.176* 1.344** 1.343** 1.346** 1.346**

(0.580) (0.091) (0.181) (0.180) (0.185) (0.185)

Driver’s license -1.751 -0.035 1.163 1.166 1.216 1.216

(1.708) (0.190) (0.286) (0.286) (0.305) (0.305)

Master -0.097 0.029 0.977 0.977 0.950 0.950

(0.132) (0.024) (0.039) (0.039) (0.038) (0.038)

Family status

- family 1.966* 0.291 0.509** 0.510** 0.423*** 0.423***

(1.066) (0.198) (0.140) (0.140) (0.124) (0.124)

- single 0.406 0.066 0.878 0.879 0.816* 0.816*

(0.285) (0.057) (0.093) (0.093) (0.087) (0.087)

- children 1.041*** 0.237*** 0.634** 0.635*** 0.620*** 0.620***

(0.128) (0.032) (0.040) (0.040) (0.039) (0.039)

- other 0.437 0.072 0.820* 0.822* 0.800** 0.800**

(0.324) (0.061) (0.090) (0.090) (0.088) (0.088)

Region dummies YES YES YES YES YES YES

Entry dummies YES YES YES YES YES YES

λ2−3 2.133*** 2.124***

(0.119) (0.118)
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λ4−5 2.166*** 2.148***

(0.214) (0.212)

λ6−8 2.482*** 2.454***

(0.328) (0.324)

λ9−11 2.327*** 2.419***

(0.393) (0.422)

λ12+ 1.933** 1.791**

(0.419) (0.406)

λ2−4 2.077*** 2.072***

(0.109) (0.109)

λ5−7 2.117*** 2.105***

(0.197) (0.196)

λ8−10 2.051*** 1.653***

(0.273) (0.241)

λ11+ 1.637*** 1.645***

(0.295) (0.305)

cst 7.027*** 1.287*** 0.120*** 0.120*** 0.103*** 0.104***

(1.847) (0.219) (0.036) (0.036) (0.031) (0.031)

Variance 0.588*** 0.581*** 0.547*** 0.542***

heterogeneity (0.076) (0.076) (0.073) (0.073)

N 5,483 5,483 N 5,495 5,495 5,495 5,495

R2 0.043 0.047 log-likelihood -11884.9 -11883.2 -11341.1 -11334.6

Note. Heteroskedastic robust standard errors between parentheses. All models include the control variables mentioned in Table 4.1

(except for the equivalent household income) and a linear spline in age. In the (log-) linear models right-censored observations are

dropped: 12 observations in case of exits to any destination reported in the first two columns; an additional 396 individuals who leave

from unemployment to inactivity in case duration until exit to employment is considered. In the hazard models the aforementioned

dropped observations are right censored. “Variance heterogeneity” is the variance of the Normal mixing distribution of the unobserved

heterogeneity. * p-value less than 10%, ** p-value less than 5%, *** p-value less than 1%.
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4.11 Appendix E: Sensitivity Analysis for Days Worked

and Annual Earnings

Table 4.8: Estimation Results for Days Worked and Annual Earnings

Days worked Annual earnings

Coef.
(1) (2) (3) (4) (5) (6) (7) (8)

Age window Spline YWP No spline Quad. spline Age window Spline YWP No spline Quad. spline

β̂w -0.054 0.016 -0.015 -0.045 -0.069 -0.050 -0.035 -0.070

(0.054) (0.061) (0.043) (0.047) (0.072) (0.085) (0.057) (0.064)

β̂ywp -0.069 -0.057 -0.058 -0.063 -0.048 -0.080 -0.044 -0.049

(0.048) (0.054) (0.038) (0.038) (0.064) (0.069) (0.050) (0.049)

N 2,832 3,213 4,785 4,785 2,762 3,156 4,689 4,689

R2 0.023 0.021 0.024 0.024 0.035 0.041 0.036 0.037

Note. Heteroskedastic robust standard errors between parentheses. All models include control variables mentioned in Table 4.1 (apart from the equivalent
household income) and a linear spline in age. All reported results are based on log-linear regressions of the associated indicator of employment quality as
specified in equation 4.1. In columns (1) and (5) the specification is as in the benchmark, but the age window is narrowed down to 1 year to the left and
right of the discontinuity at 26 years; in columns (2) and (6) the spline is set at the 25 years and 8 months (i.e. the discontinuity of the YWP) and the effect
of the waiting period is captured by a dummy variable at 26 years; in columns (3) and (7) the specification is linear in age without any spline; in columns (4)
and (8) the specification is quadratic in age without any spline. * p-value less than 10%, ** p-value less than 5%, *** p-value less than 1%.
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4.12 Appendix F: Additional Analyses for Days Worked

In order to get a fuller picture of the pattern of the number of working days after exit

out of unemployment we consider two distinct outcomes: the (i) the days worked in the

quarter of exit and the subsequent quarter and (ii) the days worked in the next 3 quarters.

These results are portrayed in Column (1) and Column (2) of the table below. Column (3)

shows the result of an extra sensitivity test where we include all individuals, regardless of

whether or not they have left unemployment. We include the number of days worked in

the quarter of entry into unemployment and the four subsequent quarters. If an individual

did not work, this value was set to zero. In this way we test whether the effect we found

on days worked is not the result of a composition effect in the exit to employment.

Table 4.9: Estimation Results Days Worked (Additional Analyses)

Days worked

(1) (2) (3)

Early interval Later interval Sensitivity test

Coef. Log-lin. Log-lin. Lin.

β̂w -0.0879* 0.00582 -10.462*

(0.0478) (0.0432) (6.322)

β̂ywp -0.0701* -0.0392 -11.072**

(0.0382) (0.0359) (5.247)

N 4,783 4,626 5,495

R2 0.013 0.023 0.023

Note. Heteroskedastic robust standard errors between parentheses. All models include control variables
mentioned in Table 4.1 (apart from the equivalent household income) and a linear spline in age. All
reported results are based on log-linear regressions of the days worked as specified in equation 4.1. *
p-value less than 10%, ** p-value less than 5%, *** p-value less than 1%.

Finally, we re-estimate the model as in Column (1) and (2) of Table 4.9 for the sample

divided by the equivalent household income. As is clear from the paper the significant

decrease in the number of working days at the beginning of the employment spell is only
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prevalent for youth coming from low income households.

Table 4.10: Additional Heterogeneity Analyses for Days Worked

Days worked - early Days worked - late

Coef. Income ≤ median Income > median Income ≤ median Income > median

β̂w -0.116* -0.075 -0.015 0.012

(0.067) (0.071) (0.066) (0.058)

β̂ywp -0.128** -0.030 -0.022 -0.071

(0.052) (0.058) (0.056) (0.046)

N 2,36 2,357 2,276 2,29

R2 0.018 0.012 0.034 0.023

Note. Heteroskedastic robust standard errors between parentheses. All models include control variables
mentioned in Table 4.1 (apart from the equivalent household income) and a linear spline in age. All
reported results are based on log-linear regressions of the days worked as specified in equation 4.1. *
p-value less than 10%, ** p-value less than 5%, *** p-value less than 1%.
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Figure 4.9: Days Worked (Ealry and Later Interval)

Note. Age bins are grouped by two months. The indicators are defined as explained in Section 4.3.2.
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4.13 Appendix G: Graphical Tests to Detect Manipula-

tion of the Forcing Variable

Figure 4.10: Manipulation Tests

Note. Age bins are grouped by two months. The manipulation tests are defined in Section 4.5.4.

4.14 Appendix H: Placebo Test on First Registrations at

the PES in 2012
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Table 4.11: Estimation Results for the Placebo Test

Duration in unemployment

Any exit Exit to employment

Coef.
(1) (2) (3) (4)

Exp. Coef.
(5) (6)

Linear Log-linear Linear Log-linear Hazard Hazard

β̂w

-0.058 0.013 0.220 0.070
exp(βw)

1.060
-

(0.424) (0.097) (0.426) (0.100) (0.191)

- - - - exp(βw2−9) -
1.040

(0.188)

- - - - exp(βw10−12) -
1.076

(0.324)

- - - - exp(βw13−∞) -
1.679

(0.569)

β̂ywp
-0.589 -0.182 -0.366 -0.130

- - -
(0.389) (0.091) (0.394) (0.095)

Variance 0.807*** 0.798**

heterogeneity (0.172) (0.174)

N 1,826 1,826 1,676 1,676 N 1,950 1,950

R2 0.055 0.069 0.052 0.068 Log-likelihood -4208.10 -4206.90

(7) (8) (9) (10) (6)

Days worked Dummy parttime Daily wage Daily wage (cor.) Annual earnings

Coef. Exit to employment

β̂w

0.163 0.028 0.018 0.035 0.074

(0.106) (0.041) (0.027) (0.027) (0.134)

β̂ywp

0.064 -0.039 0.034 0.031 0.052

(0.098) (0.038) (0.025) (0.024) (0.126)

N 1,585 1,585 1,451 1,515 1,546

R2 0.059 0.065 0.091 0.081 0.077

Note. Heteroskedastic robust standard errors between parentheses. All models include the control
variables mentioned in Table 4.1 (except for the equivalent household income) and a linear spline in
age. In the (log-) linear models right-censored observations are dropped: 12 observations in case of
exits to any destination reported in the first two columns; an additional 396 individuals who leave from
unemployment to inactivity in case duration until exit to employment is considered. In the hazard models
the aforementioned dropped observations are right censored. “Variance heterogeneity” is the variance of
the Normal mixing distribution of the unobserved heterogeneity. * p-value less than 10%, ** p-value less
than 5%, *** p-value less than 1%.



Chapter 5

The Signal of Applying for a Job Under

a Vacancy Referral Scheme1

5.1 Introduction

In order to alter the trend of persistent unemployment over recent decades, the majority

of OECD countries have invested vast amounts of public funds in active labour market

policies (ALMPs) (J. P. Martin, 2014; J. Martin and Grubb, 2001). These investments have

logically resulted in a surge in micro-econometric research evaluating the effectiveness of

these policy instruments (Card et al., 2010, 2017; Greenberg et al., 2003; Heckman et al.,

1999; Kluve, 2010; Liechti et al., 2017). The results of these evaluations are mixed at

best. Overall, the effectiveness of ALMPs in terms of exit out of unemployment depends

largely on the type of ALMP, its target group and the time horizon of the evaluation (Card

et al., 2010, 2017; Kluve, 2010; J. Martin and Grubb, 2001). Moreover, the few studies

that have taken the costs of these programmes into account indicate that the benefits of

ALMPs do not outweigh their costs (Albanese et al., 2016; Card et al., 2017; Crépon et al.,

2013; Jespersen et al., 2008). The ALMP central to this study, a job-vacancy referral

scheme, exhibits the same mixed effectiveness. While some studies find positive results

of this kind of programme with respect to exit out of unemployment (Bollens and Cockx,

2017; Fougère et al., 2009; Van den Berg and Vikström, 2014), others find no impact at
1In collaboration with Stijn Baert, Ralf Caers, Marijke De Couck, and Valentina Di Stasio.
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all (Engström et al., 2012; Van den Berg and Van der Klaauw, 2006). Moreover, some

of the studies that present positive effects of job-vacancy referrals show that the higher

job-finding rate as a result of referral goes hand in hand with a lower job quality (Van

den Berg, Hofmann, et al., 2016; Van den Berg and Vikström, 2014).

Measuring the effectiveness of these policies in terms of their desired outcomes is in no

doubt important. However, if the aim is to reform ALMPs to increase their effectiveness,

we need to go beyond measuring and look at possible explanations for the unsatisfactory

effectiveness. One possible explanation documented in the literature is the signal associated

with ALMPs. Signalling theory states that when individuals are faced with limited

information, they will use particular components of this information to predict unobserved

factors (Arrow et al., 1973; Blanchard and Diamond, 1994; Moscarini, 1997; Spence, 1978;

Vishwanath, 1989). In this respect, we can expect a positive as well as a negative signal sent

to prospective employers by a job-vacancy referral.2 On the one hand, candidates applying

for a position at the request of a public employment service (PES) have gone through an

initial screening process and have been deemed suitable for the position by the PES. In

other words, the vacancy referral could be seen as a signal of improved suitability (Bellis

et al., 2011). On the other hand, employers could see referred applicants as candidates

who do not have the ability to succeed in the labour market on their own and/or only apply

to comply with benefit rules (Bellis et al., 2011; Bonoli and Hinrichs, 2012; Ingold and

Stuart, 2015). As a consequence, being referred to a vacancy has been theoretically related

to lower intellectual and/or social abilities (Bellis et al., 2011; Ingold and Stuart, 2015),

lower trainability (Thurow, 1975), negative evaluation by previous employers (Banerjee,

1992; Bikhchandani et al., 1992) and, most commonly cited, lower motivation (Bonoli and

Hinrichs, 2012; Ingold and Stuart, 2015).

The existing empirical literature on the signal of ALMPs is limited and mainly of a

qualitative nature (Bellis et al., 2011; Bonoli and Hinrichs, 2012; Ingold and Stuart, 2015;

Liechti et al., 2017). Little or no causal evidence has been presented for signalling as an

explanation for the limited effectiveness of these policies. Falk et al. (2005) and Liechti

2 Throughout the present article, we assume that employers are aware if a candidate has been referred to a
vacancy. As explained in Subsection 5.2.1, this is a realistic assumption in the case of the referral scheme central to
our study.
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et al. (2017) are notable exceptions. By means of a field experiment, Falk et al. (2005)

measure how completing a computer training programme impacts job-finding rates. More

concretely, they compare the call-back rates for job candidates with and without this kind

of training. They find that completing a computer training programme does not yield

higher call-back rates. Liechti et al. (2017) quantify the signalling value of different types

of ALMPs, including training programmes and subsidised employment, by means of a

factorial survey experiment. They find that employers do take ALMP participation into

account when making hiring decisions, but the signalling effect of this participation can be

both positive as well as negative, depending on the potential candidate’s distance from the

labour market.

In this study, we investigate the signalling value of a distinct type of ALMP: a job-vacancy

referral. To this aim, we conduct a state-of-the-art vignette experiment with human

resource (HR) professionals. We ask these participants to make fictitious hiring decisions

concerning job candidates described on vignettes. Half of these candidates are indicated as

applying under a job-vacancy referral scheme. Besides being rated in terms of hireability,

these fictitious candidates are evaluated on statements related to the five potential signals

sent by applying in the context of a referral as listed above (motivation, intellectual abilities,

social abilities, trainability, and previous unfavourable evaluation by other employers). The

data collected by means of this experiment allow us to answer three research questions.

R1: Does applying for a job under a job-vacancy referral scheme yield lower hiring

chances?

R2: Is the signalling effect of applying for a job under a vacancy referral scheme heteroge-

neous by candidate and participant characteristics?

R3: Which particular signals are sent by applying for a job under a vacancy referral

scheme?

The present study complements the work by Falk et al. (2005) and Liechti et al. (2017)

by quantifying the signalling value of a different type of ALMP. In addition, by means

of answering R3, we contribute to this literature by being the first to investigate which

signal(s) is (are) particularly sent by participation in ALMPs in general and applying under

a vacancy referral scheme in particular. This is of particular policy relevance because it
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shows which prejudices against the unemployed applying for jobs under a job-vacancy

referral scheme should be compensated for.

The remainder of the study is structured as follows. Section 5.2 describes the institutional

setting, our experimental design, and the realised data collection. Our research questions

are answered in Section 5.3, where results from analysis of the experimental data are

presented. Section 5.4 concludes, focussing on both the academic and policy implications

of our research.

5.2 Experiment

To answer R1, R2, and R3, we conducted a vignette experiment. In this kind of experiment,

participants are asked to judge fictitious descriptions (presented on vignettes) that differ

on a pre-defined number of variables (the vignette factors), which are randomly assigned a

value (the vignette-levels; Auspurg and Hinz, 2014; Jasso, 2006; Rossi and Nock, 1982;

R. M. Sauer, 2015). As a consequence of these design features, correlation between the

vignette factors are minimised to a value close to 0 (Rossi and Nock, 1982), a situation

which rarely occurs outside an experimental setting. The biggest advantage of vignette

experiments is, therefore, that they enable scholars to give a causal interpretation to the

measured effects of the included vignette factors on human decisions (Damelang and

Abraham, 2016; Wallander, 2009). Moreover, as opposed to field experiments, vignette

experiments have the added benefit of creating the opportunity to ask additional questions

to unravel the thinking process behind certain decisions and, consequently, to shed light

on why we observe certain phenomena.

Vignette experiments have recently been the method of choice for a number of prominent

studies in sociology and economics investigating human judgement (Ambuehl and Ocken-

fels, 2017; Auspurg, Hinz, and C. Sauer, 2017; Eriksson and Rooth, 2014; Mathew, 2017;

Rivera and Tilcsik, 2016). In particular, this type of experiment has been increasingly

used to study dynamics in hiring decisions (Auer et al., 2018; Damelang and Abraham,

2016; Di Stasio, 2014; Di Stasio and Gërxhani, 2015; Liechti et al., 2017; McDonald,

2017; Van Belle et al., 2017; Van Hoye and Lievens, 2003). In this application of the
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vignette experimentation framework, participants have to judge fictitious candidates with

divergent characteristics as vignette factors. As a consequence, these vignette experiments

closely mimic real-life hiring situations, where HR professionals also take a number of

characteristics into account when making hiring decisions. In our application, we included

as a vignette factor whether job candidates applied to this vacancy under a job-vacancy

referral system or on their own initiative. Exogenous variation in this factor would be hard

to find in observational data.

The next subsections describe the specific institutional framework under study, the design

of our vignettes, and the data gathering process. We return to some potential limitations of

our experimental design in Section 5.4.

5.2.1 Institutional Framework

Our study focusses on a job-vacancy referral scheme implemented by the PES of Flanders,

the northern part of Belgium. In essence, this scheme matches open vacancies with

jobseekers and, subsequently, forces jobseekers to apply for the vacancies matched to them.

There are two types of possible referrals. In the case of a classic referral, a case worker,

possibly aided by matching software, matches an open vacancy with an unemployed

benefit recipient, who is then obliged to apply for it. In the alternative type of referral,

the caseworker invites the unemployed person for a meeting, during which they go over a

set of potentially relevant vacancies. If the unemployed person and the caseworker agree

that a particular vacancy suits the person’s profile, (s)he is obliged to apply. In both cases,

non-compliance with the referral may result in a reduction or loss of benefits. In the

context of monitoring this compliance, the PES informs the employer about the referral.

This happens at, or soon after, the time of referral.3 So, in principle, the employer is aware

that a candidate is referred by the PES prior to this candidate’s actual job application.4

Bollens and Cockx (2017) used a timing-of-events approach to investigate the effective-

ness of this job-vacancy referral scheme in terms of entry to employment. They found

3 More concretely, this happens automatically via a software program for employers with a profile in the PES
database and manually—but very soon after the matching is done—for employers without such a profile.

4 The information on the referral procedure was given to us by caseworkers of the PES in Flanders. A transcript
of this information is available upon request.
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substantial positive treatment effects both during the month of the referral and over the

course of the following months. However, the positive total effect of the referral measured

by Bollens and Cockx (2017) combines supply-side and demand-side effects of the pro-

gramme so that it does not rule out a negative signalling effect of this job-vacancy referral

scheme. Moreover, at the time of the evaluation performed by Bollens and Cockx (2017),

employers were informed about the referral in approximately only 25% of the cases, so

that demand-side dynamics might have been less influential then.

5.2.2 Vignette Design

We asked a sample of HR professionals described in the subsection below to evaluate a set

of five vignettes, each describing one potential fictitious candidate for an open vacancy.

These job applicants differed in the six vignette factors defined in Table 5.1. The main

factor of interest was the one indicating whether or not candidates were referred to the

position by the PES.5 More precisely, and in line with reality, candidate summaries could

either mention that the candidate applied for the position directly or was referred by the

PES. In the latter case, it was mentioned explicitly that this entailed that the candidate

was obliged to apply for this suitable vacancy. Besides this factor, applicants differed

in gender (male or female), educational attainment (secondary education certificate or

bachelor’s degree), previous work experience (two or five years), whether they mentioned

social activities (none or volunteering activities), and unemployment duration prior to the

application (1 to 36 months). These vignette factors were chosen on the basis of a literature

review of drivers of job-application success (Damelang and Abraham, 2016; Di Stasio,

2014; Di Stasio and Gërxhani, 2015; Liechti et al., 2017; Van Belle et al., 2017) and an

interview with three HR professionals.6 In addition, we ran a pilot study with 30 master’s

students in Economics to test whether our vignettes were perceived as plausible and that

no crucial information was omitted.

After fully crossing all vignette levels for the six mentioned factors, we obtained a vignette

universe of 1,152 (i.e. 2 × 2 × 2 × 2 × 2 × 36) vignettes. We used a D-efficient randomi-

5 As argued in Subsection 5.2.1, it is highly likely that a Flemish employer is aware that a candidate is referred
to a position by the PES so that this is a realistic vignette factor.

6 Transcripts of these interviews are available upon request.
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Table 5.1: Vignette factors and levels

Vignette factors Vignette levels

Gender {Male, Female}

Highest obtained educational certification {Secondary education, Bachelor’s degree}

Previous work experience {Two years’ experience, Five years’

experience}

Mentioned social activities {None, Volunteering}

Unemployment duration {1 month, 2 months, . . . , 36 months}

Referral {Referred by the PES, Direct application}

Note. PES stands for the Public Employment Service (of Flanders). The factorial product of the vignette
levels (2 × 2 × 2 × 2 × 36 × 2) resulted in 1,152 possible combinations. Sets of five vignettes were drawn
from this vignette universe using a D-efficient design (D-efficiency: 99.809; Auspurg & Hinz, 2014)
and distributed at random to the participants as described in Subsection 5.2.2. This guaranteed that the
vignette factors were nearly orthogonal, as shown in Table 5.5.

sation to minimise correlation between the different vignette factors. More concretely,

following the algorithm in Auspurg and Hinz (2014), we selected 60 sets of 5 vignettes,

allowing us to achieve a D-efficiency of 99.809.7 Each participant was randomly assigned

one of these 60 sets. The resulting correlations between our vignette factors can be found

in Table 5.5 (in Appendix A) and show that our randomisation approach was successful.

5.2.3 Data Collection

We conducted our experiment in January 2017 with Flemish recruiters. The experiment

was part of a large-scale survey performed with individuals that selected themselves in

a database of volunteers for participation in research on human resource management.

At the start of this survey, the participants were asked whether they had been actively

involved in the hiring process a minimum of five times during the past year. Participants

who answered this question in a positive way had a 50% probability of being assigned to

7 This design maximises both orthogonality and level balance, thereby enhancing statistical precision (Auspurg
and Hinz, 2014). Formally, this approach maximises the D-efficiency, which is given by the following formula:,where
is the vector of the vignette variables, indicates the number of vignettes in the sample and presents the number of
regression coefficients (including the intercept) in the analysis of the experimental data. For more information, we
refer to (Auspurg and Hinz, 2014).
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our experiment (and a 50% probability of being assigned to the experiment of (Van Belle

et al., 2017)). In total, 234 recruiters took part in our experiment. Of these respondents, 29

left one or more questions unanswered, leaving us with a total sample of 205 participants.

Each participant rated five vignettes, yielding a total of 1,025 at the participant-vignette

level.8

As a first step, each participant received experimental instructions. They were introduced

to their role as a recruiter for a fictitious company supplying building materials. In this

role, they were responsible for filling an open vacancy for a new counter assistant—we

selected this occupation because it is common in a number of industries, thus increasing

the probability that participants would be familiar with it. Participants were informed

that the successful candidate had to be (i) customer orientated, (ii) service minded, and

(iii) commercially orientated. Moreover, the company was looking for someone able to

perform administrative tasks in an efficient and reliable way. No specific education or

work experience was required. Subsequently, each participant was shown five vignettes

(as described in the previous section). It was stressed that all five candidates had passed

an initial screening by an administrative staff member. In line with the literature, the

applicants’ characteristics were presented in a tabulated way. Participants, though aware of

participating in an experiment, were not informed of the goal or the topic of the experiment,

which was framed in rather general terms.

With this information in hand, participants were asked to reveal, for each candidate, their

hiring intentions. They were specifically asked to rate the statements ‘The probability

that I will invite this candidate for a job interview is high’ and ‘The probability that I will

hire this candidate for the position is high’ on a 7-point Likert scale. In the remainder of

this article, these scales will be referred to as the ‘interview scale’ and the ‘hiring scale’,

respectively.

In addition, in view of answering R3, participants were prompted to rate five statements

(also on a 7-point Likert scale) linked to the different signals that could be sent by a job-

vacancy referral prevalent in the literature and as described in Section 5.1. So, perceptions

8 (Liechti et al., 2017) argue that the response rate in this type of experiment is of lesser importance as long as
each profile is judged by multiple participants. This is the case here, as each profile was judged by an average of
3.417 participants (i.e. 205 [respondents] divided by 60 [sets of profiles]).
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concerning the candidates’ (i) motivation, (ii) intellectual abilities, (iii) social abilities,

(iv) trainability, and (v) previous unfavourable evaluation by other employers were tested.

The statements used can be found in Table 5.6. We limited the experimental survey to

one statement per signal to keep the overall time taken up by the experiment within a

reasonable limit (taking into account that each respondent was asked to review multiple

profiles).

Finally, in view of answering R2, some personal characteristics of the respondents were

surveyed, including their gender, age, nationality, educational attainment, frequency of

hiring, and experience with the hiring process.

Panel A of Table 5.2 presents some summary statistics concerning the participants in our

experiment. Participants had an average age of about 43 years, with most being Belgian

nationals and having some form of tertiary education. They were slightly more likely to

be female than male. A total of 46.8% of the respondents indicated that they recruited

someone on at least a weekly basis, while 55.1% indicated having at least ten years’

experience as a recruiter.

In columns (2) and (3) of Table 5.2 the research sample is split by the referral status

of the judged job candidate. Column (4) presents the difference between these two

columns as well as the results of a t-test to determine whether these differences are

statistically significant. Given that each respondent judged five candidate profiles, our data

are inherently nested. We control for this by clustering at the participant level. Overall,

the information in Panel A of Table 5.2 allows us to conclude that referral status was

successfully randomised over the participants.

5.3 Results

5.3.1 Does Applying for a Job Under a Job Referral Scheme Yield

Lower Hiring Chances?

A first indication of the signalling effect of applying for a job under a job-vacancy referral

scheme is given in Figure 5.1. On the left-hand side, the average rating on the interview
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Table 5.2: Summary Statistics by Referral Status of the Candidate

Mean

Full sample Subsample Subsample: Difference:

Referral No referral (3) - (2)

N = 1,025 N = 521 N = 504

(1) (2) (3) (4)

A. Participant characteristics

Female gender 0.566 0.564 0.567 -0.003 [0.228]

Age 43.024 43.177 42.867 0.310 [0.966]

Foreign nationality 0.093 0.094 0.091 0.003 [0.345]

Highest obtained educational certification

Secondary education or lower 0.093 0.100 0.085 0.014* [1.860]

Tertiary education: outside university 0.429 0.436 0.423 0.013 [0.950]

Tertiary education: university 0.478 0.464 0.492 -0.028** [1.993]

Frequency of hiring: weekly 0.468 0.468 0.468 0.001 [0.005]

Experience as HR professional: ≤ 10 years 0.551 0.559 0.544 0.015 [1.074]

B. Evaluation: interview and hiring decisions

Interview scale 4.329 4.006 4.663 -0.657*** [6.548]

Hiring scale 3.739 3.422 4.065 -0.643*** [7.324]

C. Evaluation: perceived candidate traits

Perceived motivation 4.115 3.635 4.611 -0.976*** [11.736]

Perceived intellectual abilities 4.774 4.678 4.873 -0.195*** [3.054]

Perceived social abilities 4.386 4.290 4.861 -0.196*** [3.173]

Perceived trainability 4.433 4.288 4.583 -0.295*** [4.649]

Perceived evaluation by other employers 3.629 3.582 3.679 -0.097 [1.207]

Note. More information concerning the scales mentioned in Panel B and Panel C can be found in
Subsection 5.2.3. T-tests are performed to test whether the presented differences are significantly different
from 0. Standard errors are corrected for clustering of the observations at the participant level. *** (**)
((*)) indicates significance at the 1% (5%) ((10%)) significance level. T-statistics are between brackets.
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and hiring scales by referral status is depicted. It is clear that candidates referred to the

vacancy by the PES are both less likely to be invited for an interview (p = 0.000) and less

likely to be hired (p = 0.000) for the position. The average rating on the interview (hiring)

scale is 0.657 (0.643) lower for referred candidates than for direct applicants. In other

words, given that the standard deviation of the interview (hiring) scale is 1.608 (1.414),

being referred to the vacancy decreases the probability of an interview (getting hired) by

40.9% (45.5% ) of a standard deviation. The same information can be inferred from Panel

B of Table 5.2.

Due to our experimental set-up—the referral dummy is, by design, uncorrelated with

any of the other observable candidate characteristics—these effects can be given a causal

interpretation. In addition, due to the random allocation of vignette sets to participants, we

do not expect any correlation with the participant characteristics. This is also confirmed

when we estimate the following econometric model:

Y = α+βCC+γPC+δREF +ε (5.1)

In this model, REF is the candidate’s referral status (1 in case of referral, 0 in case of direct

application); CC is the vector of the other vignette factors mentioned in Subsection 5.2.2;

and PC is the vector of participant characteristics mentioned in the same subsection. The

dependent variable of this model, Y , can be either the interview or hiring scale. β, γ,

and δ are the (vectors of) parameters associated with CC, PC, and REF and α represents

the intercept in this equation. Finally, standard error ε is corrected for clustering of the

observations at the participant level.

The estimation results of this model are reported in column (1) of Table 5.3 and Table 5.7,

with the interview and hiring scales as respective outcomes. Again, in Panel A of this table,

we observe that candidates who are referred to the position by the PES are less likely to

be invited for an interview—the related coefficient is substantial in both economic and

statistical terms. This clearly indicates that being referred to a position by the PES has a

negative signalling effect in respect of employers. This finding corroborates the qualitative

evidence on the signalling effect of ALMP participation mentioned in Section 5.1 (Bellis

et al., 2011; Bonoli and Hinrichs, 2012; Ingold and Stuart, 2015). Moreover, the negative



Figure
5.1:

D
ifferences

in
A

verage
R

atings
by

R
eferralStatus

ofthe
C

andidate

N
ote.M

ore
inform

ation
concerning

the
used

scales
can

be
found

in
Subsection

5.2.3.T-tests
are

perform
ed

to
testw

hetherthe
presented

differences
are

significantly
differentfrom

0.Standard
errors

are
corrected

forclustering
ofthe

observations
atthe

participantlevel.

146



5.3. Results 147

signal of a job-vacancy referral could be part of the explanation for the unsatisfactory

results of these programmes in terms of employment outcomes. Finally, our finding

indicates that the positive effect of the Flemish referral system on employment outcomes,

as found in (Bollens and Cockx, 2017), could be even larger if this adverse signalling

effect could be reduced. We return to this point in Section 5.4.

Concerning the other vignette factors, the estimated coefficients all have the expected signs.

While gender has no effect on the likelihood of being invited for an interview, having a

bachelor’s degree (as opposed to a secondary-level education) and having five (as opposed

to two) years’ professional experience clearly enhances one’s chances of being invited,

as does mentioning volunteering activities.9 On the other hand, in line with what was

found by Van Belle et al. (2017), the longer a candidate has been unemployed prior to

the position, the lower her/his chances of being invited for an interview. If we turn to the

coefficients related to the participant characteristics (in Panel B of Table 5.3), we see that

female and older recruiters are more lenient in their judgement, while recruiters who are

involved in the hiring process at least once a week tend to be stricter.

The corresponding estimation results when adopting the hiring scale as the outcome

variable (Table 5.7, column (1)) are largely in line with the discussed results when using

the interview scale as the dependent variable. However, the significant effect of recruiter

gender disappears.

5.3.2 Is this Effect Heterogeneous by Candidate and Subject Char-

acteristics?

To determine whether the signalling effect of the job-vacancy referral depends on other

candidate characteristics, we re-estimate equation 5.1 including interaction terms between

9 The fact that mentioning volunteering activities appears to have a larger effect on one’s hiring chances than
having completed a higher education programme or having three years of additional work experience might seem
surprising. However, this result is in line with what is found by Baert and Vujić (in press), who show by means
of a field experiment that job candidates mentioning volunteering receive one-third more interview invitations.
Moreover, multiple studies have shown that volunteering activities appear to have a positive impact on earnings
(Cozzi et al., 2013; Day and Devlin, 1997, 1998; Detollenaere et al., 2017; Hackl et al., 2007; Prouteau and Wolff,
2006; R. M. Sauer, 2015) and that this volunteer work, when done by ethnic minorities, may even cancel out ethnic
discrimination in the labour market (Baert et al., 2016).
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Table 5.3: Multivariate Analysis: Regression Analysis with Interview Scale as Outcome

Explanatory variables (1) (2) (3)

A. Candidate characteristics

Female gender 0.075 (0.074) 0.036 (0.117) 0.083 (0.074)

Bachelor’s degree 0.344*** (0.083) 0.385*** (0.123) 0.356*** (0.083)

Five years’ experience 0.265*** (0.080) 0.360*** (0.111) 0.264*** (0.079)

Unemployment duration -0.053*** (0.004) -0.057*** (0.005) -0.053*** (0.004)

Volunteering 0.356*** (0.067) 0.388*** (0.108) 0.360*** (0.068)

Referral -0.655*** (0.090) -0.690*** (0.260) -0.590*** (0.500)

Referral x Female gender 0.067 (0.179)

Referral x Bachelor’s degree -0.096 (0.176)

Referral x Five years’ experience -0.185 (0.187)

Referral x Unemployment duration 0.009 (0.007)

Referral x Volunteering -0.048 (0.169)

B. Participant characteristics

Female gender 0.341** (0.161) 0.344** (0.161) 0.363** (0.167)

Age 0.027*** (0.009) 0.027*** (0.009) 0.018* (0.010)

Highets obtained educational certification

Secondary education and lower 0.005 (0.269) -0.002 (0.270) -0.216 (0.319)

Tertiary education: outside university 0.074 (0.147) 0.067 (0.148) 0.119 (0.164)

Tertiary education: university (reference)

Frequency of hiring: weekly -0.393** (0.168) -0.391** (0.168) -0.460** (0.191)

Experience as HR professional: ≥ 10 years -0.239 (0.177) -0.240 (0.178) -0.153 (0.198)

Referral x Female gender -0.044 (0.177)

Referral x Age 0.017 (0.011)

Referral x Secondary education and lower 0.405 (0.305)

Referral x Tertiary education -0.077 (0.187)

Referral x Frequency of hiring: weekly 0.120 (0.183)

Referral x Experience as a HR professional: ≥ 10 years -0.182 (0.205)

Observations 1,025

Note. The presented statistics are coefficient estimates and standard errors in parentheses for the regression
model outlined in Subsection 5.3.2. Standard errors are corrected for clustering of the observations at the
participant level. *** (**) ((*)) indicates significance at the 1% (5%) ((10%)) significance level.
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the referral dummy and each of the five other vignette factors. After including these

interactions, the remaining coefficient of the referral dummy should be interpreted as

the effect of a referral for a reference candidate, i.e. a male candidate with high school

certification and two years’ experience who has been unemployed for zero months and

did not mention any social activities on his CV. The results of this exercise are reported

in column (2) of Table 5.3 and Table 5.7. We find that the signalling value of the job-

vacancy referral scheme is not moderated by any of the other candidate characteristics.

In particular, it is interesting to note that the negative effect of a PES referral does not

vary with the length of the unemployment spell. If we observed such an interaction effect,

this could have been interpreted as suggestive evidence of employers assuming that the

long-term unemployed simply apply via the PES to keep receiving benefits (without being

intrinsically motivated to fill the vacancy).

Secondly, in column (3) of Table 5.3 and Table 5.7 we present the results of a similar

analysis to study whether the effect of the job-vacancy referral is heterogeneous by type of

recruiter. More concretely, compared to column (1), interaction terms between referral

and the participant characteristics are adopted. In contrast to the candidate characteristics,

the observed participant characteristics are not experimentally controlled and can, as a

consequence, correlate with unobserved participant traits. Thus, the interaction effects

presented in column (3) cannot be given a causal interpretation. However, we find that

the effect of being referred to a vacancy is not heterogeneous by any of the participant

characteristics.

5.3.3 Which Signals Are Sent by Applying for a Job Under a Job

Referral Scheme?

In this subsection, we explore what exactly is signalled by the job-vacancy referral scheme,

thereby examining why applying via a referral decreases one’s hiring chances. The

right-hand side of Figure 5.1 (and Panel C of Table 5.2) gives us a first indication of the

empirical importance of the possible signals put forward in the literature and enumerated

in Section 5.1. It is revealed that the candidates who apply for the open vacancy directly,

without action by the PES, score better, on average, on all five statements related to these



150 5. The Signal of Applying for a Job Under a Vacancy Referral Scheme

signals than those candidates who have been referred to the vacancy by the PES. So,

referred candidates are, indeed, perceived as less motivated, less intellectually gifted,

less socially gifted and less trainable, as well as having been rejected more often by

other employers. These perceptions are statistically significant (at the 1% level), with the

exception of the last one. In terms of economic significance, it is striking that the effect of

referral on perceived motivation of the candidate is substantially higher than its effect on

the other perception scales.

Finally, we estimate a mediation model, where these five potential signals related to

referral are included jointly. This has two important advantages. Firstly, we can estimate

the prominence of each signal independently. This is important as the signals potentially

correlate with each other.10 Secondly, in addition to looking at the impact of the referral on

the signals, the model takes the importance of the signals in terms of invitation (or hiring)

probability into account as well. This enables us to look at what part of the total effect

of the referral on hiring is explained by each signal. The estimated model consists of the

following system of equations (in line with Hayes (2013) and Van Belle et al. (2017)):

Mi = αi+βiCC+γiPC+δiREF +εi (5.2)

Y = α
′
+β

′CC+γ
′PC+δ

′

REF +θM+ε
′ (5.3)

In this system, CC, PC, REF , and Y are the same variables as those defined in the

context of equation 5.1. In addition, M is the vector of mediators capturing perceived

motivation, intellectual abilities, social abilities, trainability, and evaluation by other

employers, respectively. βi, γi, and δi are the (vectors of) parameters associated with CC,

PC, and REF in the equations with Mi as a dependent variable, and αi represents the

intercept in these equations. β′, γ′, δ′, and α′ are the corresponding parameters in the

equation with Y as a dependent variable. Finally, θ is the vector parameters associated

with the mediating signals in the latter equation. As a consequence, δ′ is the remaining

direct effect of the referral after controlling for the five mediators. The products δiθi are
10 Indeed, these correlations range from r = 0.135 (between perceived social abilities and perceived evaluation by

other employers) to r = 0.632 (between perceived social abilities and trainability).
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the indirect effects of the referral on Y through each mediator Mi. In line with Hayes

(2013), we estimate this system of six equations simultaneously and, as before, correct the

standard errors εi and ε′ for clustering of the observations at the participant level.

The main results of this analysis with the interview scale (hiring scale) as the outcome are

reported in Figure 5.2 (Figure 5.3). The corresponding full estimation results are reported

in Table 5.4 (Table 5.8). Just as was the case with the overall signalling effect discussed

in Section 5.3.1, the effect of the referral on each of the five perceptions concerning the

candidate (i.e. the δi in our model) can be interpreted as causal effects as a consequence

of the random assignment of a referral to the vignettes. In contrast, the effect of these

perceptions on the interview (and hiring) scale (i.e. the θi in our model) cannot be given

a causal interpretation as the included mediators could correlate with other, unobserved,

signals related to applying under a job-vacancy referral system. As a consequence, also

the mediation effects δiθi should be seen as associations rather than as causal effects. We

return to this point in Section 5.4.

The left-hand side of Figure 5.2 shows the effect of the referral on each of the five mediators.

Also after controlling for the other mediators, candidates with a referral are perceived

as being less motivated, possessing less intellectual and social abilities, and being less

trainable. Again, the impact of a referral on perceived motivation is substantially larger

than its impact on any of the other potential signals. Finally, being referred to the vacancy

does not have any effect on the perceived evaluation by other employers, and in terms of

magnitude.

The right-hand side of Figure 5.2 reports the effect of the different signals on the likelihood

of being invited for a job interview. We find that having higher perceived motivation,

higher perceived intellectual or social abilities, and a better perceived evaluation by other

employers all significantly enhance one’s chances of being invited for a job interview.

In contrast with what is expected based on queuing theory (Thurow, 1975), we find that

perceived trainability does not have any impact on the probability of being invited for a

job interview.

By multiplying the left- and right-hand sides of this figure, we can decompose the total

effect of a referral on the likelihood of being invited for a job interview (δ = − 0.655;
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p = 0.000) found in Subsection 5.3.1 into a remaining direct effect and indirect effects

via perceptions concerning the candidate’s motivation, intellectual ability, social ability,

trainability, and evaluation by other employers. We find a substantial mediation effect

related to perceived motivation (δ1θ1 = − 0.492; p = 0.000): 75.1% (i.e. − 0.492/− 0.655)

of the total effect of a referral on the interview probability is explained by this referral

constituting a negative signal of motivation. Additionally, being referred to a vacancy also

constitutes a signal of lesser intellectual (δ2θ2 = − 0.042; p = 0.010) and social (δ3θ3 =

− 0.027; p = 0.043) abilities. However, these coefficients are very small compared to the

mediation effect related to perceived motivation. The measured direct effect (δ
′

= − 0.090;

p = 0.235) is the part of the total effect that remains unexplained by the inclusion of the

mediators. Given that this direct effect is not significantly different from zero, we can infer

that the signals included in our mediation model fully explain the effect of a referral on

interview chances.

These findings corroborate the evidence from qualitative research suggesting that referral

is seen as a signal of lower motivation (Bellis et al., 2011; Ingold and Stuart, 2015).

They seem to indicate that employers do view the candidates who apply via the PES

as candidates who mainly apply in order to continue receiving benefits, which contrasts

with the insignificant interaction effect between referral and unemployment duration, as

elaborated on in Subsection 5.3.2.

The results of the mediation analysis with the probability of being hired for the position

as the outcome variable are largely similar to the results with the probability of a job

interview as the outcome variable.

5.4 Conclusion

This article contributed to the literature on the effectiveness of active labour market poli-

cies. As argued, the evaluation literature has mainly focused on measuring the overall

effectiveness of these programmes, with mixed results. Therefore, in our opinion, the

logical next step to take in this literature is to explain why this unsatisfactory effectiveness

exists. In this study, we investigated the signalling effect of applying for a job through
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a vacancy referral scheme. Based on a vignette experiment with HR professionals, we

provided first causal evidence for a large negative effect of being referred on one’s prob-

ability of getting invited to a job interview and finally getting the job. In addition, our

experimental design allowed us to explore what exactly is signalled by a job-vacancy

referral, testing five potential signals documented in the literature: lower motivation, lower

intellectual abilities, lower social abilities, lower trainability, and poor evaluation by other

employers. The single most important explanation appeared to be that candidates applying

for a position after a PES referral were perceived as significantly less motivated. This

corroborates earlier qualitative findings by Bonoli and Hinrichs (2012), Bellis et al. (2011),

and Ingold and Stuart (2015).

Besides their academic relevance, our results have substantial policy implications. Our

findings are consistent with two possible scenarios. Either the referred candidates are

indeed less motivated and the employers act on the basis of earlier experience, or the

referred candidates are, in reality, at least on average, not less motivated than general

candidates. In the first situation, it is important to know whether those referred are

intrinsically less motivated or whether it is the referral which causes the lower motivation.

If those referred are intrinsically less motivated, the PES should link the referrals to other

policies to increase the benefit recipient’s motivation. If it is the referral that is lowering

the benefit recipient’s motivation, one might question the usefulness of the referral scheme.

If, on the other hand, the second scenario is the true scenario, it is important to reverse

the negative perception of referred applicants. We see two ways of doing this. One

way would be simply not to inform employers of the referral status of applicants. As

aforementioned, at the time of Bollens and Cockx’s (2016) study, the employer was only

informed of a candidate being referred by the PES in approximately 25% of the cases. As

they found a large positive effect of the referral on job-finding probabilities, this suggests

that not informing employers about a referral could indeed mitigates the negative effect on

hiring probabilities. However, if the unemployed person is aware that the employer is not

informed about the existence of the referral, and consequently, the PES cannot effectively

monitor compliance, this might lower the overall effectiveness of the referral as there will

no longer be a threat effect. Another way would entail the PES informing employers better

that the referred candidates have gone through an initial screening and should therefore



156 5. The Signal of Applying for a Job Under a Vacancy Referral Scheme

be a better match to the vacancy than other candidates. Overall, our findings suggest that

there is room for improvement in the implementation of the vacancy referral scheme in

Flanders.

We end this article by acknowledging some limitations inherent to our experimental

approach. Firstly, contrary to field experiments, the data collection within a vignette

experiment does not take place under real-life circumstances, and participants are aware

that they are taking part in an experiment. This creates the risk of participants answering

in a socially desirable way. However, we believe this to be less of a concern in our vignette

experiment for a number of reasons. An important feature of a vignette experiment is that

each participant is shown only a small number of vignettes, and these vary on a number of

factors. Therefore, it is very difficult for the participant to ascertain the socially desirable

answer (Auspurg, Hinz, C. Sauer, and Liebig, 2014; Liechti et al., 2017; Mutz, 2011).

Vignette experiments have been able to identify unequal treatment, even when used to

investigate socially sensitive topics such as unequal treatment based on gender and race

(Auspurg and Hinz, 2014). Moreover, if we did record some socially desirable answers in

our experiment, the results described in this study could be seen as a lower bound of the

true effects. To determine whether or not this is the case, it would be interesting to replicate

our study by means of a field experiment, although it would not be straightforward to

inform employers on the referral status of applicants in a realistic way, and this type of

experiment would not allow insight into the specific signals of a job-vacancy referral

scheme. Secondly, it is important to recall that we only measured the effect of referral

on hiring for individuals with a specific profile applying for a specific position. As a

consequence, we cannot say to what extent our results are generalisable to settings with

different jobs and candidate profiles. Further research is necessary to ensure the robustness

of our results in another setting (see also Van Belle et al., 2017). Thirdly, as mentioned

in Section 5.3.3, we cannot give a causal interpretation to our mediation analysis aimed

at decomposing the overall effect of referral on hiring chances into a direct effect and

five indirect effects via the particular signals theoretically related to a referral. While

the treatment of a referral is randomly assigned to the fictitious job candidates within

our experiment, the five potential signals related to this referral are not experimentally

manipulated. As a consequence, they may correlate with other, unobserved, perceptions.
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Nevertheless, we believe that the suggestive evidence for our overall (and causal) negative

signalling effect of applying for a vacancy under a referral scheme being, to a large extent,

explained by a negative (and causal) impact of applying under this scheme on signalled

motivation is a substantial input for further research.
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5.5 Appendix A: Additional Figures and Tables

Table 5.5: Correlations between vignette factors

1 2 3 4 5 6

1 Gender 1.000

2 Highest obtained educational certification -0.009 1.000

3 Previous work experience -0.081 0.058 1.000

4 Mentioned social activities -0.020 0.006 -0.009 1.000

5 Unemployment duration -0.007 0.030 0.024 -0.037 1.000

6 Referral -0.017 -0.038 0.077 0.011 -0.001 1.000

Note. Cramer’s V is reported as all values being categorical. These statistics are based on the full sample
of 1,025 observations.
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Table 5.6: Signals and Accompanying Statements

Signal Statement

Perceived motivation I think this person will be sufficiently motivated to perform

properly in this job.

Perceived intellectual abilities I think this person possesses sufficient intellectual abilities to

perform properly in this job.

Perceived social abilities I think this person possesses sufficient social abilities to per-

form properly in this job.

Perceived trainability I think this person will be easy to train.

Perceived evaluation by other

employers

I think this person has often been rejected by other employers.

Note. All statements are translated from Dutch. The scale with respect to the perceived evaluation by
other employers is reverse scored.
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Table 5.7: Multivariate Analysis: Regression Analysis with Hiring Scale as Outcome

Explanatory variables (1) (2) (3)

A. Candidate characteristics

Female gender 0.144** (0.068) 0.209* (0.108) 0.148** (0.069)

Bachelor’s degree 0.325*** (0.074) 0.401*** (0.107) 0.328*** (0.073)

Five years’ experience 0.223*** (0.068) 0.303*** (0.103) 0.217*** (0.068)

Unemployment duration -0.043*** (0.004) -0.042*** (0.005) -0.043*** (0.004)

Volunteering 0.298*** (0.066) 0.308*** (0.102) 0.305*** (0.066)

Referral -0.634*** (0.079) -0.381* (0.229) -0.635*** (0.166)

Referral × Female gender -0.144 (0.163)

Referral × Bachelor’s degree -0.153 (0.148)

Referral × Five years’ experience -0.156 (0.168)

Referral × Unemployment spell -0.001 (0.007)

Referral × Volunteering -0.035 (0.160)

B. Participant characteristics

Female gender 0.124 (0.137) 0.128 (0.136) 0.195 (0.151)

Age 0.013** (0.007) 0.013* (0.007) 0.014* (0.008)

Highest obtained educational certification

Secondary education or lower -0.177 (0.217) -0.191 (0.219) -0.362 (0.268)

Tertiary education: outside university 0.029 (0.130) 0.021 (0.131) 0.123 (0.153)

Tertiary education: university (reference)

Frequency of hiring: weekly -0.369** (0.143) -0.366** (0.143) -0.462*** (0.163)

Experience as HR professional: ≥ 10 years -0.199 (0.138) -0.198 (0.139) -0.246 (0.160)

Referral × Female gender -0.142 (0.160)

Referral × Age -0.002 (0.009)

Referral × Secondary education or lower 0.328 (0.281)

Referral × Tertiary education: outside university -0.182 (0.165)

Referral × Frequency of hiring: weekly 0.172 (0.167)

Referral × Experience as HR professional: ≥ 10 years 0.090 (0.181)

Observations 1,025

Note. The presented statistics are coefficient estimates and standard errors in parentheses for the regression
model outlined in Subsection 5.3.2. Standard errors are corrected for clustering of the observations at the
participant level. *** (**) ((*)) indicates significance at the 1% (5%) ((10%)) significance level.
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Chapter 6

General Conclusion to the Dissertation

In this dissertation I have studied unemployment from two perspectives. On the one hand,

I have analysed some of the potential causes for an unemployment spell to turn into long-

term unemployment, while on the other hand, I have estimated the effectiveness of labour

market policies implemented in order to limit the duration of unemployment or to alleviate

its negative consequences. Unemployment, and especially long-term unemployment

entails large costs for the unemployed individual and for society as a whole, and this is

especially true when the unemployment spell occurs at the beginning of ones working life.

Furthermore, the incidences of both long-term unemployment and youth unemployment

are still at relatively high levels in the current post-crisis economy. Therefore, the topic

and the conclusions of this dissertation are particular relevant from an academic point of

view as well as from a policy perspective. Indeed, in order to tackle the issue related to

persistent unemployment, we first need to gain insight in the reasons why we observe this

phenomenon. Likewise, policies developed to improve labour markets, prevent long-term

unemployment and temper the negative income effects of temporary unemployment spells

should be rigorously evaluated, both from a micro and from a macro point of view.

This general conclusion serves three purposes. Firstly, I will briefly summarize the main

findings of the four chapters of this dissertation. Secondly, I will review limitations of

the current research and propose a number of avenues for future research. Finally, some

take-away messages for policy makers, employers and the long-term unemployed will be
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provided.

6.1 Summary of the main findings

Given that the four papers in this dissertation approach the same subject–unemployment–

from different points of view, it is not straight-forward to draw an overall conclusion from

the dissertation. Instead, I will summarize the conclusions from the different chapters and

draw some links.

As stated in the introduction of this dissertation, in order to design policies minimising the

incidence of long-term unemployment, it is crucial to know what causes this long-term

unemployment. This is the aim of the first study of this dissertation. Here, we considered

the mechanisms behind the observation that part of the negative duration dependence

in unemployment is caused by a negative sorting in hiring (Eriksson and Rooth, 2014;

Kroft et al., 2013). Our vignette experiment revealed that employers are indeed reluctant

to hire job candidates with a long history of unemployment, providing further evidence

for a substantial scarring effect of unemployment. Moreover, our experimental design

allowed us to shed light on the reasons underlying this observation. We find that this

reluctance to hire long-term unemployed is to a large extent mediated by the perception of

unemployment as signalling lower intellectual and social capabilities and, in particular, a

lower motivation. In addition, we find no evidence that employers believe the unemployed

to have lost their skills over the course of their unemployment spells. These findings have

some important consequences for the ideal design of labour market policies, which are at

the centre of the other studies of this dissertation.

The second study undeniably shows that–overall–there is a large scope for labour market

policies to alleviate unemployment. This study looks at labour market policies from a

macroeconomic perspective by means of a panel model using data on expenditures in

active and passive policies for 58 advanced and emerging economies. We provide robust

evidence that spending in active labour market policies (ALMPs) ameliorates the state

of the labour market. The interaction with spending in passive labour market policies is

nevertheless crucial. Indeed, additional spending in ALMPs only decreases unemployment
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under the condition that a sufficient amount is spent in passive labour market policies,

which also have a potential positive labour market effect if large enough amounts are spent

on ALMPs.

While this second study showed large potential impacts of the interaction between active

and passive policies, not all such policies live up to this potential. The third study of this

dissertation estimates the effectiveness of a particular Belgian (Flemish) policy–combining

both an active and a passive component–using a Regression Discontinuity design. Indeed,

an increase in the waiting period for young jobseekers from 9 to 12 months did not

significantly increase the transition from unemployment to employment while the youth

work plan–an ALMP providing intensified counselling–did only enhance the exit rate out

of unemployment after 8 months but did robustly decrease the number of working days,

especially for youths living in poorer households.

Finally, given that not all labour market policies are effective in obtaining the desired

outcome, an important question is why this is the case. In the fourth study we shed light

on one potential explanation, namely the negative signal associated with participation in

labour market policies. For the purpose of this study, we focus on one ALMP in particular,

a job vacancy referral scheme in Flanders, Belgium. By means of a vignette experiment

with HR professionals, we find evidence for a large negative effect of being referred on the

probability of getting invited for a job interview and consequently getting the job. As in

the first chapter, our experimental design allowed us to unravel the mechanisms behind this

crude result. The single most important explanation appears to be that candidates applying

for the position after receiving a referral by the public employment service are perceived

as significantly less motivated. This study thus confirms the importance of the signalling

value of labour market policies as a potential explanation for their limited effectiveness

6.2 Suggestions for future research

Current research in the domain of labour economics and labour market policy evaluation

is focussed on measuring the effectiveness of policies. However, what will be central for

future research in the domain, in my opinion, will be the “why question”. Indeed, a lot of
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“why questions” remain. Why do employers consider long term unemployed to be less

motivated? Why is the interaction between active and passive labour market policies so

important? Why are certain labour market policies less effective than others in decreasing

unemployment? Why do employers see participation in certain labour market programs as

a negative signal? Finding an answer to these questions and uncovering the mechanisms

behind observations is crucial from an academic point of view, but also for policy makers.

In order to find the cure for long-term unemployment we have to start with the correct

diagnosis.

Secondly, the current research has unveiled the importance of studying these questions

using an integrated approach. If we only focus on active labour market policies without

taking the interaction with passive policies into account, important implications could be

lost. Also, when evaluating specific labour market policies, it seems imperative to take

both the demand and the supply side factors influenced by the policy into account. Indeed,

looking at both sides of the labour market can provide a valuable insight into why certain

policies do not live up to their potential.

Finally, an important question which has up to know remained underexplored is how the

research findings generalise to different contexts. It is not because a certain policy appears

to work in a specific country for a specific population that it will work when implemented

elsewhere. Again it is important to investigate whether these results are generalizable and

if not, why this might be the case.

6.3 Take-away messages

Regardless of these remaining questions, this dissertation provides some important policy

implications. As an unemployment spell is clearly seen as a negative signal by employers

it is crucial for labour market policy to activate the unemployed early in the unemployment

spell. In instances where early activation is unsuccessful it is important to attenuate the

signal that these unemployed would be less motivated. Another key aspect for effective

labour market policy is the interaction between active and passive labour market policies,

as both seem to enhance each other in a robust way. This does nevertheless not imply
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that all policies combining an active and passive component are effective in improving

labour market outcomes, as is shown by the third chapter. Moreover, the negative stigma

associated with certain labour market policies might lower the effectiveness of certain

policies. Policy makers should take these factors into account when designing labour

market policies.

The results in this dissertation also have some implications for other labour market actors,

namely employers and the unemployed. In the war for talent and with the ageing society

in mind, we need all able individuals to contribute their labour. In order to achieve this,

recruiters should be trained not to discriminate against certain candidates, including on

the basis of their unemployment histories. Finally, the knowledge that employers see a

long unemployment spell (or participation in certain programs) as a negative signal of

motivation is also important for job seekers who could as a result avoid long unemployment

spells or better emphasize their motivation in their job application.
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