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Abstract. In the last decade, Underwater Wireless Sensor Networks
(UWSNs) have been widely studied because of their peculiar aspects
that distinguish them from common wireless terrestrial networks. In fact,
most UWSNs use acoustic instead of radio-frequency based communica-
tions, and nodes are subject to high mobility caused by water currents.
As a consequence, specialised routing algorithms have been developed
to tackle this challenging scenario. Depth based Routing (DBR) is one
of the first protocols that have been developed to this aim, and is still
widely adopted in actual implementations of UWSNs. In this paper we
propose a stochastic analysis that aims at evaluating the performance
of UWSNs using DBR in terms of expected energy consumption and
expected end-to-end delay. Under a set of assumptions, we give expres-
sions for these performance indices that can be evaluated efficiently, and
hence they can be adopted as the basis for optimizing the configuration
parameters of the protocol.

1 Introduction

Underwater Wireless Sensor Networks (UWSNs) [2] are used for a large number
of applications which range from environmental monitoring to military purposes.
They share with their terrestrial counterparts some important factors including
the high importance of energy preservation at the nodes. This need is due to
the fact that nodes are autonomous and equipped with a battery that is difficult
or expensive to replace. Some research efforts have been done in the direction
of developing sensor nodes with the capability of harvesting energy from the
environment, however the results seem to be still at their early stages [19, 10,
9]. However, in contrast with terrestrial wireless sensor networks, most of the
UWSNs adopt acoustic communication instead of the traditional one based on
radio-frequency. This implementation choice is due to the fact that acoustic
communications cover long distances with low energy and are less prone to the
problem of interferences. However, it also poses some severe limitations on the
available bandwidth and on the propagation delay that is much higher than
that measured in terrestrial electromagnetic radio-frequency based networks. As



a consequence, most of the methods developed for the performance evaluation of
terrestrial networks (see, e.g., [3, 15, 6]) cannot be straightforwardly applied to
underwater networks. Another characteristic of UWSN is that nodes are subject
to high mobility caused by water currents. As a consequence, routing schemes
that adopt the flooding strategy only in the routing discovery phase and then
store the sequence of nodes to the destination in memory (e.g., [12]), are not
applicable. In the underwater scenario, routes continuously change and in most
of the cases the best option is that of performing a controlled flooding for each
packet transmission [7]. In order to tackle this problem, one of the earliest pro-
tocol that has been introduced is called Depth Based Routing (DBR) [21]. While
we leave the detailed descriptions of its functionalities to Section 2, here we just
recall few relevant aspects. DBR assumes that node does not know their position
but are aware of their depth thanks to the presence of sensors of pressure. The
goal of DBR is that of delivering a packet harvested in any part of the network
to the sinks which float at the surface of the water. To this aim, the protocol
relies on some algorithms among which one is inherited from the vehicular net-
work design, i.e., one that is based on holding time. Basically, every node that
receives a packet to be forwarded, waits a time which is inversely proportional
to the depth difference from the source node.

There are several parameters that need to be set to configure a network em-
ploying DBR among which the major role is played by the transmission power.
In the view of preserving the energy at the nodes, short transmissions seem to
be more convenient, however we must take into account the fact that multiple
forwarding will be required. Transmission power of a node depends on the dis-
tance required to cover through a single transmission [11]. On the other hand,
long distance transmissions tend to drain the battery quickly. From the point
of view of the reduction of the end-to-end delay, long transmissions are clearly
optimal, but this requirement must always be balanced with that of a proper
policy for energy saving.

In this paper we propose a model to study the impact of the transmission
power on the total energy consumption of the network and on the end-to-end
delay. The model is based on a set of results from the stochastic geometry re-
search field [4] as well as on the manipulation of hypergeometric functions. We
give detailed expressions for the expected energy cost and time cost per unit of
distance of a certain transmission power. These expressions are extremely fast to
evaluate and hence are appropriate for studying the optimal transmission power
under certain network conditions.

The paper is structured as follows. In Section 2 we briefly introduce the main
features of DBR. Section 3 presents our stochastic model and the derivation
of the performance indices. In Section 4 we show some numerical results and
illustrate an example of optimisation. In Section 5 we discuss some related work,
and then Section 6 gives some final remarks.
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Fig. 1: Sketch of a transmission in DBR.

2 Depth Based Routing

DBR is an opportunistic routing protocol defined for UWSNs which works in
a very simple manner. We give the explanation in the case of omnidirectional
antennas following the schema of Figure 1. Recall that the goal of the model is
that of delivering a packet to the nodes floating on the surface. Suppose that
node x0 transmits a packet that cannot reach the surface due to the limited
transmission radius. The packet contains the depth of x0 and each node that
receives it correctly computes the depth difference between itself and x0. One
of the configuration parameters of the protocol is the depth threshold: every
node whose depth difference is lower than the depth threshold is not an eligible
forwarder. This parameter is used to prevent short range communications, but
in some cases it can also assume negative values in order to avoid the problems
connected with local minima in the network topology [14], i.e., situations in
which a node wants to transmit a packet to the surface and is at a lowest depth
than its neighbours but cannot reach the surface in one step. In our paper we
assume the depth threshold to be 0, i.e., we assume all the nodes that have lower
depth than the sender to be eligible forwarders. Among the eligible forwarders
we choose the forwarding node as follows: each node computes a delay whose
duration is inversely proportional to the depth difference. This delay is called
holding time. Then, the node behaves as follows: it keeps the packet in its holding
queue for the duration of the holding time. If during this period it listens to a
retransmission of the packet, then it cancels it from its holding queue otherwise,
at its expiration, it forwards the packet. In an ideal situation this mechanism
has two effects: it prevents packet collisions and redundant transmissions and
chooses the node that is closest to the surface as packet forwarder in a completely
distributed way. In our paper we assume the holding time mechanism to work in
the ideal way, in other words a node with depth difference d will be a forwarder
if and only if two conditions are satisfied:

1. It correctly receives the packet,
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Fig. 2: Graphical representation of the model studied in Section 3.

2. All the nodes that are closer to the surface than itself fail to correctly receive
the packet.

In the example of Figure 1, node x1 will be the forwarder if and only if it correctly
receives the packet sent by x0 while x2 and x3 fail.

3 A model for multi-hop protocol with directional
antenna

We consider a model where a node x0 sends a data packet in a certain direction
(e.g., toward the surface). Following convention of DBR[21], We assume that
the locations of the candidate relay nodes on that direction are independent and
uniformly distributed (see Figure 2). If we assume that we have n potential relay
nodes in a radius R, we can use the results from order statistics to characterise
the distribution of the i-th node. Let X∗(i) be the random variable denoting the
distance from x0 to the i-th node, with 1 ≤ i ≤ n. Then, the p.d.f. of X∗(i) is that
of the marginal i-th order statistics of n independent uniform random variables
in the real interval (0, R) that corresponds to a rescaled Beta distribution:

f∗X(i)
(x) = n

(
n− 1

i− 1

)
xi−1(R− x)n−i

Rn
,

where x is the distance from x0. For practical purposes, we cannot characterise
the exact number of nodes n in a distance R, but in many cases we know the
expected density of the nodes. Hence, we let n→∞ and R→∞, as follows:

lim
n→∞
R→∞

n

R
= δ , (1)

where δ ∈ R+ is the expected number of nodes per unit of distance (density) of
the network. Now, let X(i) be the r.v. associated with the distance between x0
and the i-th node, and let fX(i) be its p.d.f.

Proposition 1. The p.d.f. of the location of the i-th node on the line in a net-
work with density δ is given by:

fX(i)
(x) =

δie−δxxi−1

(i− 1)!
. (2)



Proof. We have to compute the limit:

lim
n→∞
R→∞

f∗X(i)
(x) ,

under the constraint (1). We can write:

lim
n→∞
R→∞

f∗X(i)
(x) = lim

n→∞
n

(
n− 1

i− 1

)
xi−1(nδ − x)n−i(

n
δ

)n = lim
n→∞

n!

(i− 1)!(n− i)!

·
xi−1

(
n
δ − x

)n−i(
n
δ

)n =
xi−1

(i− 1)!
lim
n→∞

n!

(n− i)!
δi

(n− δx)i

(
1− δx

n

)n
=

δixi−1

(i− 1)!
lim
n→∞

n!

(n− i)!(n− δx)i︸ ︷︷ ︸
1

lim
n→∞

(
1− δx

n

)n
︸ ︷︷ ︸

e−δx

=
δie−δxxi−1

(i− 1)!
,

that completes the proof. ut

Notice that, according to Proposition 1 the p.d.f. of X(i) is that of a Gamma
r.v. with shape i and rate δ. In other words, not surprisingly, we obtain a ho-
mogeneous Poisson point process on the line, where the distribution of the i-th
distant node from the origin x0 is given by the sum of i independent exponential
r.v.s with rate δ.

The following proposition will play an important role in the analysis that we
propose, since it gives the probability that all the nodes more distant than a
certain threshold y fail to receive a packet sent by x0.

Proposition 2. The probability that all the nodes located after a certain thresh-
old y fail to receive a packet sent by x0 is:

pf(y) = exp

(
− δ
λ
e−λy

)
. (3)

Proof. Let us consider an arbitrary node whose location is conditioned in the
interval (y,R), y > 0, R → ∞, and recall that we are assuming that a node at
distance x will successfully receive a packet sent by x0 with probability e−λx,
λ > 0 [14]. Then we have that the probability that such a node fails to receive
a packet is:

pfs(y) =

∫ R

y

(1− e−λx)
1

R− y
dx = 1 +

e−λR − e−λy

λ(R− y)
.

Therefore, we can compute the probability that all the nodes are farther than y
from x0 fail to receive a packet (recall that both the location and the events of
correct packet reception are independent) and let R→∞:

pf(y) = lim
n→∞
R→∞

(
1 +

e−λR − e−λy

λ(R− y)

)n
,



that under the constraint (1) can be written as:

pf(y) = lim
n→∞

(
1 +

e−λ
n
δ − e−λy

λ(nδ − y)

)n
,

and rewritten as:

lim
n→∞

(
1 +

e−
λ
δ nδ

λn− λyδ
− 1

n
e−λy

δ

λ− λyδ
n

)n
.

Now the proof the proposition follows easily. ut

Example 1. Let us consider a network in which the maximum distance covered
by a successfully received packet is 250m, i.e., λ = 1/250 in a network with a
density of 10 nodes per km, i.e., δ = 0.01 nodes per meter. In Figure 3a we show
the probability that all the nodes after a certain y fail to receive a packet sent
by x0, pf(y).

Notice that by setting y = 0 in Equation (3) we can compute the probability
that all the nodes fail to receive the packet as:

pf(0) = e−δ/λ . (4)

Now recall that i-th node will be the forwarder of a packet if and only if the
following conditions are satisfied:

1. Node i, placed at X(i), correctly receives the packet from x0;
2. All the nodes X(i+1), X(i+2), . . . fail to receive the packet.

Hence, the probability Pi that the forwarder will be the i-th node is:

Pi =

∫ ∞
0

fX(i)
(x)e−λxpf(x)dx , (5)

which can be obtained by the independence assumption of the event of correct
reception of a packet. Since E[X(i)] = i/δ, we have that the expected distance
covered by a transmission is:

L =

∑∞
i=0 iPi
δ

.

Unfortunately, it is not easy to find a closed form expression for Pi, but since
we are interested just in an expectation we can proceed as follows. Let T be the
r.v. that takes value i with probability Pi, then we have:

L =
E[T ]

δ
.

The following proposition gives the expression for E[T ] and hence for L.



Theorem 1. In a network with density δ and probability of correct reception
e−λx, with x the distance between source and destination is E[T ]/δ where the
expected forwarder in the network E[T ] can be computed as:

E[T ] = 1− e−δ/λ +
δ

λ

(
γ + E1

(
δ

λ

)
+ log

(
δ

λ

))
,

γ ' 0.577216 is Euler’s constant, and

E1(x) =

∫ ∞
x

1

t
e−tdx ,

is the exponential integral function [16, Ch. 6.2].

Proof. We compute E[T ] as
∑∞
i=1 Pr{T ≥ i}. For i ≥ 2 by conditioning on the

position x of the (i− 1)th node the probability that at least one node in (x,∞)
will retransmit the packet, i.e.:

Pr{T ≥ i} =

∫ ∞
0

fX(i−1)
(x)(1− e− δe

−λx
λ )dx , i ≥ 2 (6)

while Pr{T ≥ 1} = 1 − e−δ/λ. Integral (6) can be shown to converge to 1 −
(i−1)F(i−1)(a;b; z) where

a =

(
δ

λ
, . . . ,

δ

λ

)
and

b =

(
1 +

δ

λ
, . . . , 1 +

δ

λ

)
and c = −δ/λ.

Remark 1. The generalized hypergeometric function pFq(a,b; z), where a =
(a1, . . . , ap), b = (b1, . . . , bq), is defined as:

pFq(a,b; z) =

∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n!
, (7)

where a ∈ Rp, b ∈ Rq, z ∈ C and (ai)0 = 1, (ai)n = a(a+ 1) · · · (a+n−1) is the
Pochhammer’s symbol. It is well-known that if p < q+1 then the series converges
(absolutely) for any finite z [16, Ch. 16]. In our case, we have p = q = i− 1 and
hence the convergence is proved.

Now, by using the definition of generalised hypergeometric series (see Equa-
tion (7)), we can rewrite Integral (6) as:

Pr{T ≥ i} = 1−
∞∑
k=0

[
(δ/λ)k

(1 + δ/λ)k

]i−1(
− δ
λ

)k
1

k!

= 1−
∞∑
k=0

(
δ

δ + kλ

)i−1(
− δ
λ

)k
1

k!
.



Notice that the last expression for i = 1 gives exactly 1−e−δ/λ and hence we can
extend its validity for i ≥ 1. By noting that Pr{T = i} = Pr{T ≥ i} − Pr{T ≥
i+ 1}, and since the series are absolutely convergent, we have:

Pr{T = i} =

∞∑
k=0

(
δ

δ + kλ

)i−1(
− δ
λ

)k ( −kλ
δ + kλ

)
1

k!
.

Let us now compute E[T ]:

E[T ] =

∞∑
i=1

Pr{T ≥ i} =

∞∑
i=1

(
1−

∞∑
k=0

(
δ

δ + kλ

)i−1(
− δ
λ

)k
1

k!

)

that can be rewritten as:

∞∑
i=1

(
1− 1−

∞∑
k=1

(
δ

δ + kλ

)i−1(
− δ
λ

)k
1

k!

)

= −
∞∑
k=1

(
− δ
λ

)k
1

k!

∞∑
i=1

(
δ

δ + kλ

)i−1
.

Observe that δ/(δ + kλ) < 1 by hypothesis and hence we can write:

E[T ] = −
∞∑
k=1

(
− δ
λ

)k
1

k!

(
δ + λk

λk

)
. (8)

We can rewrite Series (8) as:

E[T ] = −

( ∞∑
k=1

(
− δ
λ

)k
1

k!

)
−

( ∞∑
k=1

(
− δ
λ

)k
1

k!k

δ

λ

)
.

From the observation that:

∞∑
k=1

(
− δ
λ

)
1

k!
= e−δ/λ − 1

and by [16, Eq. 6.6.2]:

∞∑
k=1

(
− δ
λ

)k
1

k!k

δ

λ
=
δ

λ

∞∑
k=1

(
− δ
λ

)k
1

k!k
= − δ

λ

(
γ + log

(
δ

λ

)
+ E1

(
δ

λ

))
,

the theorem is proved. ut



3.1 Analysis of the energy consumption

In the light of Theorem 1 we can draw some conclusions on the optimal trans-
mission power for the sender node. Recall that the probability for a node to
correctly receive a packet sent at distance d is e−λd, i.e., high values of param-
eter λ model a system in which the expected transmission length is short. We
model the energy consumed for a transmission as function of λ as follows:

En(λ) = G
1

λα
, (9)

where G is a normalising constant, and α is a parameter that depends on some
environmental factors like the depth of the node, the salinity and the spreading
coefficient [20]. Indeed, in underwater networks, the transmission power is con-
sumed by the spreading of the signal and by its attenuation. The latter factor
depends on the frequency adopted by the network as stated by Thorp’s formula
[5], but it tends to be lower for lower frequencies. The spreading coefficient, is
lower than that of terrestrial networks, i.e., its value is between 1 and 2. In our
case we can assume α > 1, and we compute the expected energy consumption
for unit of distance as:

Cons(λ) =
En(λ)

L
,

where L is computed thanks to Theorem 1. It can be shown that for α > 1
(which is the case for practical scenarios), we have that Cons(λ)→ 0 as λ→∞,
whereas Cons(λ)→∞ as λ→ 0. This confirms the idea that, from the point of
view of the energy consumption, it is more convenient to perform many multi
hop short transmissions rather than long transmissions. However, as we will
see in Section 3.2, the energy consumption is not the only requirement of an
UWSNs, i.e., we have to consider also the problem of the end-to-end delay.
Short transmissions require the packet to be sent multiple times for a correct
reception and the multi-hop mechanism used by protocols such as DBR requires
to wait for the holding time to expire at each forwarding/retransmission step.
We will study the trade off between energy saving and low end to end delay in
the following sections. In Figure 3b and 3c we show the plots of Cons(λ)/G for
some practical values of α = 1.2 and α = 1.5 [17]. Notice that in the first plot
the function still tends to∞ for λ→ 0 even if the scale has been chosen to show
the maximum around 100.

3.2 Analysis of the end-to-end delay

In this section we introduce a performance index that measures the speed at
which a packet is forwarded in the network. To this aim, we measure the expected
time required by a packet to cover a unit of distance. Notice that when none
of the eligible forwarders correctly receives the packet sent by x0 this has to be
resent and the holding time must be newly waited. Let τ be the time required



by the transmission of the packet. Then, the expected time to cover a unit of
distance is given by:

Time(λ) =
Tr(λ)τ

E[L|correct transmission]
, (10)

i.e., the expected number of transmissions Tr(λ) required to get a successful
packet forwarding multiplied by the time required by each transmission and di-
vided by the conditional expectation of the distance covered by one transmission.
By the independent assumption, Tr(λ) is the expected value of a geometric ran-
dom variable whose failure probability is given by Equation (4). Equation (4)
can be used also for the computation of the conditional expectation and after
simplifying Equation (10) we obtain:

Time(λ) =
τ

L
.

In Figure 3d we show the plot of Time(λ)/τ for α = 1.5. As expected, we have
that:

lim
λ→∞

Time(λ) =∞ , lim
λ→0

Time(λ) = 0 .

4 Numerical evaluation and optimisation

In this section we study a simple instance of optimization problem. From the
previous sections, we observed that from the point of view of the expected en-
ergy consumption it is more convenient to perform multiple transmissions with
small range to deliver a packet, whereas in order to minimize the end-to-end
delay we should maximise the transmission power. We can study this trade off
by introducing a cost function defined as the linear combination of these two
performance indices:

Cost(λ) = a · Cons(λ) + b · Time(λ) ,

where a, b ≥ 0 are some weight constants. Considering that the propagation
speed of acoustic signals in the underwater environment is v0 = 1500m/s, we
take 2s for the sum of the holding time and the sending time. Since the energy
consumption strongly depends on the technical implementation of the acoustic
modems, we assume as basic unit of measure for the energy, the energy ε required
to have 1/λ = 100m, which implies G = 1000. We take b = 1m/s and a varying
from 0.5m/ε to 1.5m/ε. In Figure 3e we show the graphical solution to the
optimisation problem. Unfortunately, the minimisation of the cost function does
not admit an explicit solution, however simple numerical approaches can be
adopted to solve the problem.

We now study the relation between the node density and the optimal trans-
mission range. Let λ∗ be the solution of the optimisation problem:

λ∗ = argminλ {Cost(λ)} . (11)



In Figure 4a we show λ∗ as function of δ. We notice that for very low node
densities, the model suggests a strategy that prefers to repeat many short range
transmission, i.e., it relies on redundant transmissions to deliver a packet. The
optimal transmission power has a maximum around δ = 0.006 but then it de-
creases again since the nodes are so dense that the protocol can achieve good
performance with low energy. The fact that λ∗ is not a monotonic function of the
node densities does not mean that the protocol cannot take advantage when we
move from δ = 0.002 to 0.05 as shown by Figures 4b and 4c. These two figures
show the plots of the expected energy consumption and delay per meter asso-
ciated with λ∗. We observe that, as expected, higher node densities give lower
costs and hence better performance.

5 Related work

Underwater networks have drawn a lot of attention in the latest years. The pecu-
liarity of these networks requires to adjust the opportunistic protocols defined for
vehicular networks. However, while for vehicular (terrestrial) networks, several
analytical models have been proposed (see, e.g., [1]), less results are available for
underwater networks. In [8] the authors optimize some performance indices for
a generic multi hop protocol in UWSNs with respect to the optimal number of
forwarding. With respect to this work, we focus on a specific protocol and solve
the optimization problem based on its parameter configurations. In fact, given
the optimal number of hops, it is not clear how one should configure the protocol
parameters to reach that condition. In [13] the authors propose a performance
evaluation of a Aloha-like communication protocol for UWSNs in a time-slotted
setting. [18] proposes a Markovian model for a single acoustic channel but there
is no consideration for the multi-hop behaviour of DBR.

6 Conclusion

In this paper we have proposed a model for an opportunistic routing protocol
for UWSNs, namely DBR. Despite the assumptions done to allow for an ana-
lytical tractability of the performance indices, the model gives an insight on the
impact of the parameter settings on the behaviour of the protocol. Specifically,
two important performance indices have been considered: the expected energy
consumption and delay for unit of distance covered by one hop transmission.
Based on these performance indices, or on a combination of the two, one can
optimise the most important parameter which is the transmission power. Future
works include the extension of the model in order to cope with the 3D charac-
teristic of omnidirectional antennas and to allow non homogeneous deployment
of the network nodes. In the latter case, the model could be used also for deter-
mining the optimal node deployment for a homogeneous energy consumption of
the nodes, and hence for a longer lifetime of the network.
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