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Abstract

A normal rational curve of the (k − 1)-dimensional projective space over Fq is an arc of size q + 1,
since any k points of the curve span the whole space. In this article we will prove that if q is odd
then a subset of size 3k − 6 of a normal rational curve cannot be extended to an arc of size q + 2.
In fact, we prove something slightly stronger. Suppose that q is odd and E is a (2k − 3)-subset
of an arc G of size 3k − 6. If G projects to a subset of a conic from every (k − 3)-subset of E
then G cannot be extended to an arc of size q + 2. Stated in terms of error-correcting codes we
prove that a k-dimensional linear maximum distance separable code of length 3k − 6 over a field
Fq of odd characteristic, which can be extended to a Reed-Solomon code of length q + 1, cannot
be extended to a linear maximum distance separable code of length q + 2.

1. Introduction

Let Vk(Fq) denote the k-dimensional vector space over Fq, the finite field with q elements.
Let PGk−1(Fq) denote the (k − 1)-dimensional projective space over Fq.
An arc S is a set of vectors of Vk(Fq) in which every subset of S of size k is a basis of

the space, i.e. every k-subset is a set of linearly independent vectors. Equivalently, an arc of
PGk−1(Fq) is a set of points in which every subset of size k spans the whole space.

The set of columns of a generator matrix of a k-dimensional linear maximum distance
separable (MDS) code over Fq is an arc of Vk(Fq) and vice-versa, so arcs and linear MDS
codes are equivalent objects. As in coding theory, we define the weight of a vector to be the
number of non-zero coordinates that it has.

A normal rational curve is a set of q + 1 vectors of Vk(Fq)

S = {(1, t, t2, . . . , tk−1) | t ∈ Fq} ∪ {(0, . . . , 0, 1)},

or equivalently a set of q + 1 points of PGk−1(Fq).
It is easy to see that a normal rational curve is an arc, since taking any k elements of S we

can form a k × k Vandermonde matrix whose determinant is non-zero. Thus, any k vectors of
S are linearly independent.

In 1986, Seroussi and Roth [8] proved that if 4 6 k 6 (q + 3)/2 then a normal rational
curve cannot be extended to an arc of size q + 2. In 1992, Storme [9] extended this result to
4 6 k 6 q + 2− 6

√
q ln q. In this article we will prove that if q is odd then a subset of size

3k − 6 of a normal rational curve cannot be extended to an arc of size q + 2. Every (k + 2)-arc
is uniquely extendable to a normal rational curve, [6, Theorem 27.5.1]. Therefore, an arc G
of size 3k − 6 > k + 2 which is contained in a normal rational curve, is contained in a unique
normal rational curve which, by the results just mentioned, cannot be extended to an arc of
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size q + 2. What we prove here is somehwat stronger, that G does not extend to any arc of size
q + 2.

Lemma 1.1 and Lemma 1.2 follow from [6, Theorem 27.5.1 and Lemma 27.5.2]. We include
a proof for the sake of completeness.

Lemma 1.1. The projection of a normal rational curve of PGk−1(Fq) from any vector of
the normal rational curve is contained in a normal rational curve of PGk−2(Fq).

Proof. Suppose we wish to project

S = {(1, t, . . . , tk−1) | t ∈ Fq} ∪ {(0, . . . , 0, 1)},

from the point

x = (1, s, s2, . . . , sk−1).

There is a change of basis matrix of Vk(Fq) that maps

(1, t, t2, . . . , tk−1) 7→ ((ct+ d)k−1, (ct+ d)k−2(at+ b), . . . , (ct+ d)(at+ b)k−2, (at+ b)k−1),

where ad 6= bc. Hence, we can find a change of basis that changes the coordinates of x to
(0, . . . , 0, 1) and fixes S set-wise. Projecting from x is equivalent to deleting the last coordinate,
so the projection of S is contained in a normal rational curve of PGk−2(Fq).

Lemma 1.2. The projection of a normal rational curve of PGk−1(Fq) from any k − 3 vectors
of the normal rational curve is contained in a conic of PG2(Fq).

Proof. Let D = {x1, . . . , xk−3} be k − 3 vectors of the normal rational curve. By
Lemma 1.1, the projection of a normal rational curve of PGk−1(Fq) from x1 is contained
in a normal rational curve of PGk−2(Fq). Projecting this projection from the projection of x2
we obtain a set contained in a normal rational curve of PGk−3(Fq). Continuing in this way we
see that the projection from D of the normal rational curve is contained in a normal rational
curve (i.e. a conic) of PG2(Fq).

The aim of this article is to prove the following theorem.

Theorem 1.3. Suppose q is odd and G is an arc of PGk−1(Fq) of size 3k − 6. Suppose
that E is a subset of G of size 2k − 3 and that G projects to a subset of a conic from every
(k − 3)-subset of E. Then G cannot be extended to an arc of size q + 2.

The following theorem follows immediately from Lemma 1.2 and Theorem 1.3.

Theorem 1.4. If q is odd then a subset of 3k − 6 points on a normal rational curve of
PGk−1(Fq) cannot be extended to an arc of size q + 2.

Stated in terms of error-correcting codes, Theorem 1.4 says the following.
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Theorem 1.5. A k-dimensional linear maximum distance separable code of length 3k − 6
over a field Fq of odd characteristic, which can be extended to a Reed-Solomon code of length
q + 1, cannot be extended to a linear maximum distance separable code of length q + 2.

Note that some authors refer to the Reed-Solomon code as the cyclic code of length q − 1,
obtained from the normal rational curve by deleting the columns (1, 0, . . . , 0) and (0, . . . , 0, 1)
in the generator matrix, and the code of length q + 1 as the doubly-extended Reed-Solomon
code.

2. A set of equations associated with an arc

Let det(v1, . . . , vk) denote the determinant of the matrix whose i-th row is vi, a vector of
Vk(Fq). If C = {p1, . . . , pk−1} is an ordered set of k − 1 vectors then we write

det(u,C) = det(u, p1, . . . , pk−1),

where we evaluate the determinant with respect to a fixed canonical basis.
Throughout S will be an arbitrarily ordered arc of size q + k − 1− t of Vk(Fq).
Let C be a subset of S of size k − 1. There is a non-zero element αC ∈ Fq, such that the

following lemma holds, see [2, Lemma 7.20] or [3, Lemma 17].

Lemma 2.1. Let E be a subset of S of size k + t. For any subset A of E of size k − 2,∑
C

αC

∏
z∈E\C

det(z, C)−1 = 0,

where the sum runs over the subsets C of E of size k − 1 containing A.

It is important to note that αC does not depends on E or A, so Lemma 2.1 gives us a lot of
equations involving the same quantity, αC . This is what we are going to exploit.

In this article we will use the following set of equations, which are deduced from the equations
in Lemma 2.1.

Lemma 2.2. Suppose that q is odd. Let E be a subset of S of size k + t− 1 and let
e ∈ S \ E. For any subset D of E of size k − 3,∑

C

αC

∏
z∈(E∪{e})\C

det(z, C)−1 = 0,

where the sum runs over the subsets C of E of size k − 1 containing D.

Proof. Let us call the equation in Lemma 2.1, eq(A). Then for any D which is a subset of
E of size k − 3, consider

−eq(D ∪ {e}) +
∑

a∈E\(D∪{e})

eq(D ∪ {a}).

The terms for which e ∈ C cancel and the terms for which e 6∈ C appear twice. Since q is odd
we obtain the equation stated in the lemma.

Lemma 2.2 demonstrates that the set of equations we obtain from Lemma 2.1 for q odd,
behaves very differently from the set of equations we obtain from Lemma 2.1 for q even. Indeed,
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for q odd, the equations in Lemma 2.2 imply that for a fixed subset E of size k + t− 1, all the
elements of S \ E must satisfy the some set of equations, one equation for each subset D of E
of size k − 3.

Since S is an arc, every (k − 1)-subset C = {p1, . . . , pk−1} of S spans a hyperplane. In the
dual space this hyperplane is a vector. To explicitly work with this vector we set up a duality
between Vk(Fq) and its dual space. Let

xj = (−1)j+1 det(p1, . . . , pk−1),

where the j-th coordinate of p1, . . . , pk−1 has been deleted.
This allows us to write

det(u,C) = u · x,

where x = (x1, . . . , xk) and · is the standard scalar product, which by abusing notation slightly,
we will write as u · C.

We will use the word point for a 1-dimensional subspace of Vk(Fq) and line for a 2-
dimensional subspace of Vk(Fq) and likewise for the dual space. Thus, in the dual space,
the subspace spanned by a set C of (k − 1) vectors of S is a point and the subspace spanned
by a set A of k − 2 vectors of S is a line. Again, we will abuse notation slightly and refer to C
as a point of the dual space and A as a line of the dual space.

In the following lemma, X = (X1, . . . , Xk).

Lemma 2.3. Suppose that A and U are disjoint subsets of an arc of Vk(Fq) of sizes k − 2
and n+ 1 respectively. If

ψ(X) =
∑
w∈U

λw
∏

u∈U\{w}

(u ·X),

for some λw ∈ Fq, is zero at n+ 1 points on the line A, then ψ ≡ 0.

Proof. The polynomial ψ is of degree n. By choosing a basis which includes the elements
of A, we see that its restriction to the line A is a homogeneous polynomial in two variables. If
it is zero at n+ 1 distinct points then it is identically zero on the line A. Explicitly, suppose
A = {a1, . . . , ak−2} and that we choose a basis of Vk(Fq) in which the last k − 2 vectors are the
elements of A. Then, in the dual space, a vector x on the line A has coordinates (x1, x2, 0, . . . , 0),
for some x1, x2 ∈ Fq, and so u · x = u1x1 + u2x2.

Let w0 ∈ U . Then

0 = ψ(A ∪ {w0}) = λw0

∏
u∈U\{w0}

det(u,A ∪ {w0}),

and so λw0
= 0. Note that all the determinants are non-zero since A ∪ U is an arc.

3. Arcs in spaces of odd characteristic

We will suppose from now on that q is odd and k > 5. Note that Theorem 1.3 holds for k = 2,
3 and 4 since there are no arcs of size q + 2 in these spaces when q is odd, see for example [6]
or [5].

Let n be a non-negative integer such that n 6 |S| − k − t.
Let G be a subset of S of size k + t+ n, which will remain fixed and let E be a subset of G

of size k + t− 1, which will also remain fixed. Let U = G \ E. Let A be a subset of E of size
k − 2 which for the most part will also remain fixed.
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We define a matrix Pn whose rows are indexed by the (k − 1)-subsets C of E which contain
a (k − 3)-subset of A. The columns of Pn are indexed by pairs (D,w), where D is a subset of
A of size k − 3 and w ∈ U . The (C, (D,w)) entry of Pn is∏

u∈U\{w}

det(u,C),

if C contains D and zero otherwise.
Note that, by definition, the matrix Pn depends only on G and not on S.

Lemma 3.1. There is no vector of weight one in the column space of Pn.

Proof. Let v be the row vector whose coordinates are indexed by the (k − 1)-subsets C of
E which contain a (k − 3)-subset of A and whose C entry is

αC

∏
z∈G\C

det(z, C)−1.

Note that all the coordinates in v are non-zero.
The standard scalar product of v with the (D,w) column of Pn is∑

αC

∏
z∈G\C

det(z, C)−1
∏

u∈U\{w}

det(u,C) =
∑

αC

∏
z∈(E∪{w})\C

det(z, C)−1,

where the sum runs over the subsets C of E of size k − 1 containing D. By Lemma 2.2, this
sum is zero.

Therefore, if there is a vector r of weight one in the column space of Pn then v · r = 0. This
implies one of the coordinates of v is zero, which it is not.

The aim of the rest of the article will be to prove that if n = t then, under the projection
hypothesis, Pk−3 does have a vector of weight one in its column space. This will then contradict
Lemma 3.1. Recall that we are supposing that G extends to an arc of size q + k − 1− t. Thus,
if n = t = k − 3, then we are supposing the G extends to an arc S of size q + 2.

Let D be a subset of A of size k − 3. Since D is a set of k − 3 linearly independent vectors,
the subspace 〈D〉 has dimension k − 3 and the quotient space Vk(Fq)/〈D〉 has dimension 3.
Let

G/D = {g + 〈D〉 | g ∈ G \D}

denote the set of t+ n+ 3 vectors in this quotient space obtained from the vectors of G \D.
Let e be a fixed element of E \A.
Let MD be the matrix whose rows are indexed by (k − 1)-subsets C = D ∪ L, where L is a

2-subset of E \A and whose n+ 1 columns are indexed by w ∈ U and whose (C,w) entry is∏
u∈U\{w}

det(u,C) =
∏

u∈U\{w}

(u · C).

Observe that MD is a submatrix of Pn.

Lemma 3.2. If G projects to a subset of a conic from D then the row space of MD is
spanned by the rows indexed by C = D ∪ {e, b}, where b ∈ E \ (A ∪ {e}).

Proof. Since G projects to a subset of a conic from D, we have that G/D is contained in
the set of zeros of a homogeneous polynomial fD in 3 variables and of degree 2.
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Let W = {w1, w2, w3} be a subset of U of size 3. Consider the 3× 3 submatrix M of MD

whose columns are indexed by w ∈W , and whose rows are indexed by D ∪ {e, a}, D ∪ {e, b}
and D ∪ {a, b}. Define gD to be the polynomial of degree two, which is the determinant of M
where we replace w1 by X. The C-row in this determinant is

(
∏

u∈U\{w1}

(u · C), (X · C)
∏

u∈U\{w1,w2}

(u · C), (X · C)
∏

u∈U\{w1,w3}

(u · C)).

By changing the basis so that the basis includes the elements ofD, gD(X) will be a homogeneous
polynomial in three variables. Clearly gD(w2) = gD(w3) = 0 since the determinant will have
repeated columns. Moreover gD(a) = 0, since the determinant will have a 2× 2 submatrix of
zeros. Similarly, gD(b) = 0 = gD(e) = 0. Thus gD is the unique polynomial, up to scalar factor,
whose set of zeros contains these five vectors of the quotient space. Hence, gD is a scalar
multiple of fD. Therefore, gD(w1) is also zero and the determinant of M is zero.

Since every 3× 3 submatrix M of MD has rank two, the 3× (n+ 1) matrix whose columns
are indexed by w ∈ U , and whose rows are indexed by D ∪ {e, a}, D ∪ {e, b} and D ∪ {a, b}
has rank two. Therefore, in MD, the row indexed by D ∪ {a, b} must be a linear combination
of the rows indexed by D ∪ {e, a} and D ∪ {e, b}.

Lemma 3.3. If G projects to a subset of a conic from D and n > t then there exist λw ∈ Fq

such that

ψD(X) =
∑
w∈U

λw
∏

u∈U\{w}

(u ·X) 6≡ 0,

is zero at D ∪ L, for all 2-subsets L of E \A.

Proof. By Lemma 3.2, the matrix MD has rank at most t 6 n. Since MD has n+ 1 columns
there are elements λw ∈ Fq, not all zero, such that∑

w∈U
λwvw = 0,

where vw is the column of MD indexed by w. Since it is zero, the C coordinate of this linear
combination is zero. However, it is also the evaluation of ψD at C. Thus, we have that ψD(C) =
0 for all C = D ∪ L, where L is a 2-subset of E \A.

In light of Lemma 3.3, we will now take n = t.
Let

vD =
∑
w∈U

λwvD,w,

where vD,w is the column of Pn indexed by (D,w). Note that the C-coordinate of vD is the
evaluation of ψD if C ⊃ D and zero otherwise.

By Lemma 3.3, the C-coordinate in vD is zero if C = D ∪ L, for some 2-subset L of E \A,
so the only possibly non-zero coordinates of vD are indexed by (k − 1)-subsets C = A ∪ {b},
for some b ∈ E \A.

Let us define a (t+ 1)× (k − 2) matrix Qt, whose rows are indexed by (k − 1)-subsets C =
A ∪ {b}, for some b ∈ E \A and whose columns are the restriction of vD to these C coordinates.
So the columns are indexed by the (k − 3)-subsets D of A. The following lemmas follow almost
immediately from this discussion and the definition of Qt.

Lemma 3.4. The C entry of the D column of Qt is ψD(C).
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Proof. The D column of Qt is the vector vD, where we only take the coordinates indexed by
C = A ∪ {b} for some b ∈ E \A. Since D is a subset of A and C = A ∪ {b} for some b ∈ E \A,
we have that C ⊃ D and as noted above, the C coordinate of vD in this case, is the evalutaion
of ψD at C.

Lemma 3.5. If there is a vector of weight one in the column space of Qt then there is a
vector of weight one in the column space of Pt.

Proof. If we extend a vector in the column space of Qt with zero entries in the coordinates
indexed by (k − 1)-subsets C, where C does not contain A but C does contain a (k − 3)-subset
of A, then we obtain a vector in the column space of Pt, since we constructed the columns of
Qt by deleting these zero coordinates from a vector in the column space of Pt.

The aim now will be to show that if n = t = k − 3 then there is a (k − 2)-subset A of G for
which Qk−3 has a vector of weight one in its column space. Then Lemma 3.5 will imply that
Pk−3 has a vector of weight one in its column space, which contradicts Lemma 3.1. Recall that
if n = t = k − 3, then we are supposing the G extends to an arc S of size q + 2.

4. Arcs that extend to arcs of size q + 2

Suppose now that n = t = k − 3.
Thus G is an arc of size 3k − 6 which extends to an arc of size q + 2, E is a subset of G of

size 2k − 4, A is a subset of E of size k − 2 and D is a subset of A of size k − 3.

Lemma 4.1. If G projects to a subset of a conic from all (k − 3)-subsets of E then ψD(C) =
0 for all C ⊆ E \ (A \D). Moreover, ψD(E \D) 6= 0.

Proof. Let D and D′ be (k − 3)-subsets of E \ {a}, where {a} = A \D. Suppose that |D′ ∩
D| = k − 4.

By hypothesis, G projects to a subset of a conic from D and D′. By Lemma 3.3, with
A = D ∪ {a} and A = D′ ∪ {a} respectively, there is a ψD and ψD′ which are both zero at
D ∪D′ ∪ {b}, for all b ∈ E \ (D ∪D′ ∪ {a}).

There are n+ 1 = t+ 1 coefficients λw in the definition of ψD and there are t elements in
b ∈ E \ (D ∪D′ ∪ {a}). So up to scalar multiple, ψD is determined by the equations ψ(D ∪
D′ ∪ {b}) = 0. Note that for each b, the equation ψ(D ∪D′ ∪ {b}) = 0 gives an independent
condition, since for each b this is a distinct point on the line D ∪D′.

However, ψD′ is determined by the same set of equations, so we conclude that ψD and ψD′

are scalar multiples of each other.
Since ψD′(D′ ∪ L′) = 0, for all 2-subsets L′ of E \ (D′ ∪ {a}), we have that ψD(D′ ∪ L′) = 0.
Now, repeating the above with D replaced with D′ and D′ replaced with D′′, where |D′ ∩

D′′| = k − 4 and |D ∩D′′| = k − 5, we have that ψD(D′′ ∪ L′′) = 0 for all 2-subsets L′′ of E \
(D′′ ∪ {a}). Continuing in this way we conclude that ψD(C) = 0 for all (k − 1)-subsets C of
E \ {a}.

If ψD(E \D) = 0 then ψD has t+ 1 zeros on the line E \A. By Lemma 2.3, this implies
that ψD ≡ 0, which it is not by Lemma 3.3. Therefore, ψD(E \D) 6= 0, which completes the
proof.
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Lemma 4.2. If n = t = k − 3 and G projects to a subset of a conic from every (k − 3)-subset
D of E then there is a vector of weight one in the column space of Qt.

Proof. Since t = k − 3 the matrix Qt is a square matrix. By Lemma 3.4, a column of Qt

is the evaluation of ψD(X) at the (k − 1)-subsets C of A ∪ {b}, where b ∈ E \A. If Qt does
not have full rank then there is a linear combination of the columns which is zero. The C
coordinate of a linear combination of the columns is the evaluation of

ψA(X) =
∑

µDψD(X),

for some µD ∈ Fq, not all zero, where the sum runs over the (k − 3)-subsets D of A.
If ψA is zero at all points A ∪ {b}, where b ∈ E \A then it is zero at t+ 1 points on the line

A. By Lemma 2.3, ψA ≡ 0. However, for a subset D of E of size k − 3,

ψA(E \D) = µDψD(E \D),

and by Lemma 4.1, ψD(E \D) 6= 0. Therefore µD = 0, which implies that the columns of Qt

are linearly independent. Since Qt is a square matrix there is a vector of weight one in the
column space of Qt.

We can now prove Theorem 1.3.

Proof. (of Theorem 1.3) Let G be an arc of Vk(Fq) of size 3k − 6 and suppose that E is a
subset of G of size 2k − 3 and that G projects to a subset of a conic from every (k − 3)-subset
of E. Suppose that G extends to an arc of size S of size q + 2, so t = k − 3.

By Lemma 4.2, there is a vector of weight one in the column space of Qk−3. By Lemma 3.5,
there is a vector of weight one in the column space of Pk−3, which contradicts Lemma 3.1.

5. Comments

It is a long-standing conjecture, dating back to the 1950’s, that there are no arcs of size q + 2
for 4 6 k 6 q − 2, see [5], [7] or [10] for example. It was proven in [1] that the conjecture is
true for q prime.

This article can be considered as an example of how the system of equations in Lemma 2.1
can be used to prove results about arcs and try to verify this conjecture when q is not a prime.
It is by no means easy, but this article at least demonstrates that it is possible.

With regard to the result itself, the hypothesis that the projections lie on a conic may not be
necessary. Indeed, computations of explicit examples indicate that this is in fact the worst-case
scenario. In other words, it is only in this case that have to take n so large to prove that
Pn has a vector of weight one in its column space, assuming that G extends to a (q + 2)-arc.
For other arcs, it appears that Pn has a vector of weight one in its column space for smaller
n. However, Qn does not have a vector of weight one in its column space, if we remove the
projection hypothesis, so one must consider the larger matrix Pn in this case.

In [4] it is conjectured that a larger matrix Mn has full rank and in [3] that it has a
vector of weight one in its column space, for any arc where k 6 p+ n(p− 2) and where p is
the characteristic of Fq. Again, we are assuming that G extends to a (q + 2)-arc. This would
imply that there are no arcs of size q + 2 for k 6 (pq − 2q + 6p− 10)/(2p− 3). We conjecture
that the same is true for the smaller matrix Pn. In other words we conjecture that Pn has
a vector of weight one in its column space, for any arc that extends to a (q + 2)-arc, when
k 6 p+ n(p− 2), which would contradict Lemma 3.1 and imply that there are no arcs of size
q + 2 for k 6 (pq − 2q + 6p− 10)/(2p− 3).
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