Minutiae-Based Fingerprint Matching Decomposition:
Methodology for Big Data Frameworks

Daniel Peralta®", Salvador Garcia®, Jose M. Benitez¢, Francisco Herrera®

?Data Mining and Modelling for Biomedicine group, VIB Center for Inflammation Research, Ghent,
Belgium
b Department of Internal Medicine, Ghent University, Ghent, Belgium
¢ Department of Computer Science and Artificial Intelligence. University of Granada, 18071 Granada,
Spain

Abstract

Fingerprint recognition, and in particular minutiae-based matching methods, are ever more
deeply implanted into many companies and institutions. As the size of their identification
databases grows, there is a need of flexible, reliable structures for fingerprint recognition
systems. In this paper, we propose a generic decomposition methodology for minutiae-
based matching algorithms that splits the calculation of the matching scores into lower
level steps that can be carried out in parallel in a flexible manner. The decomposition
allows to adapt any minutiae-based algorithm to frameworks such as MapReduce or Apache
Spark. General and specific guidelines to enhance the performance of the adapted matching
algorithms are also described. The proposal is evaluated over two matching algorithms, two
Big Data frameworks (Apache Hadoop and Apache Spark) and two large-scale fingerprint
databases, with promising results concerning the identification time, in addition to the
reliability, scalability, distribution and availability capabilities that are provided by such
underlying frameworks.

Keywords: Biometrics, fingerprint recognition, fingerprint matching, Big Data,
MapReduce, Apache Spark

1. Introduction

Automatic fingerprint recognition has been a hot research topic during the last two
decades [17]. As specific hardware becomes more easily available, the number of institutions
and companies that use recognition techniques steadily increases over the years, along with
the number of people that are to be identified [26]. Fingerprints present various character-
istics that make them a good feature for recognition purposes such as uniqueness, size and
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distinctiveness [29]. Despite the many features that can be derived from fingerprints for
the identification, minutiae are the most widely used ones. Algorithms usually base their
computations on a set of local structures extracted from the fingerprint minutiae [31].

The recognition problem can be tackled from two different points of view. Whilst veri-
fication aims to assess whether two images correspond to the same fingerprint or not [18],
identification seeks for a given input fingerprint throughout a database of template finger-
prints [19]. As many other image matching problems, verification presents a high complexity
due to the deformations present in the images, missing parts, and the high dimensionality of
the representation space [45, 46]. Furthermore, identification is intrinsically more complex
than verification, as it involves multiple comparisons between identities. Several techniques
have been proposed to overcome the difficulties of identification, such as classification [10]
and indexing [39].

The complexity of the problem increases along with the size of the template database.
The main bottleneck when dealing with very large numbers of individuals is the identification
time, which grows linearly with the number of matchings [32]. Huge fingerprint databases
pose a challenge for fingerprint identification.

High Performance Computing (HPC) has been widely used in many computationally
intensive problems in order to accelerate the runtime by splitting the calculations among a
set of computers and processors [36]. It has been applied to the fingerprint identification
problem from several points of view. On the one hand, it allows a parallel search through
the template database that reduces the identification time [32, 25, 4, 48]. On the other hand,
HPC systems can be used to provide data redundancy and high availability [15, 28]. However,
the solutions present in the literature tackle these two benefits separately, sacrificing one on
behalf of the other. The approach presented in [4] is especially interesting, as it provides
an outstanding throughput of 35 million matches per second with a thoroughly optimized
binary version of Minutia-Cylinder Code [3] for GPUs. However, this centralized approach
does not provide redundancy or robustness against failures. The presence of more computers
increases the risk of failure during the identification. The access to the underlying data can
also pose a problem when the hardware fails.

In the last few years, several frameworks for dealing with Big Data problems using large-
scale HPC architectures have been proposed. They represent an intermediate layer between
the basic parallelization structures (such as messages, processes or threads) and the user ap-
plication, providing fault-tolerance, distributed file systems, parallel computation and high
availability. Two of the most popular among those frameworks are Apache Hadoop [42] and
Apache Spark [23]. The specialized literature already includes some proposals for applying
these frameworks for the biometric identification problem, such as load balancing strate-
gies [24], a parallelization of iris recognition [35] or proposals for enhancing security [47, 13].

In this paper, we tackle the scalable fingerprint identification problem in Big Data frame-
works. To do so, we propose a generic, flexible decomposition methodology for minutiae-
based fingerprint matching algorithms. This decomposition is directly applied to adapt such
algorithms to the described Big Data frameworks, so as to take advantage from their fault-
tolerance, reliability, scalability and parallel computing capabilities. The decomposition of
the matching process allows for a better parallelism, as well as for discarding some subsets of
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local structures that can be early detected as non-matching. Moreover, we describe various
guidelines that can be applied to the matchers to maximize these benefits.

To evaluate the proposal, the decomposition methodology and the suggested enhance-
ments are applied over two different matching algorithms (Jiang’s algorithm [22] and Minutia-
Cylinder Code [3]) for them to be executed on two frameworks: Apache Hadoop and Apache
Spark. The resulting identification systems are applied over several large-scale fingerprint
databases, proving the scalability and flexibility capacities of the proposed idea. The source
code of all the implemented algorithms is publicly available .

This manuscript is organized as follows. Section 2 presents the background on fingerprint
recognition. Section 3 details the proposed decomposition methodology, as well as several
applied cases, which are experimentally tested in Section 4. Finally, Section 5 concludes the

paper.

2. Background

This section explains the background behind the proposed fingerprint identification
decomposition methodology. First, Section 2.1 introduces the fingerprint matching prob-
lem, explaining the problems encountered when these methods are applied over very large
databases along with some of the solutions in the literature. Then, Section 2.2 describes
some frameworks for processing large databases and Big Data.

2.1. Fingerprint verification and identification: minutiae-based matching

The patterns of valleys and ridges that form fingerprints offer a variety of features that
can be used for discerning them [14]. Minutiae are the most used among these features,
more concretely the endings and bifurcations of the fingerprint ridges [26]. This allows us
to represent a fingerprint 7} as a set of minutiae M} each of whom can be represented as
a triplet {x,y, 0} containing its coordinates and direction.

From this point of view, the verification problem consists of comparing two sets of minu-
tiae to determine if they represent the same fingerprint [18]. A matching function is therefore
defined as Q(T;,1;) = g¢ij, where ¢;; is the matching score between a template fingerprint
T; and an input fingerprint [;. Usually ¢;; € [0,1] or ¢;; € {0,1}. Fingerprint matching
methods are divided into two categories [31]:

e Global matching methods look for the best alignment of the two minutiae sets. They
use the entire information of the fingerprints, which provides high distinctiveness, but
they tend to be computationally expensive and sensitive to distortions of the fingerprint
captures. Some of the most prominent global matching methods are published in [34,
18, 50, 20, 7.

e Local matching methods extract local structures from the minutiae sets. Then, these
local structures are compared to determine their similarity. These methods are usu-
ally invariant to translation and rotation, and less sensitive to distortions. They are

'https://github.com/dperaltac/bigdata-fingerprint
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also able to perform parts of the overall matching procedure separately using partial
information. However, they lack a global view of the fingerprint information. Some
examples of purely local methods are presented in [2, 37, 33].

Most of the recent proposals for fingerprint matching combine these two approaches into
a first local matching procedure, followed by a global consolidation step from which they
obtain the final matching score ¢;; [31]. Let T} be a template fingerprint, decomposed into a
set of local structures L! as shown in Eq. (1), where elements [}, are local structures, and
m? is the number of local structures extracted from the fingerprint. An input fingerprint ;
is decomposed analogously. The overall matching procedure is depicted in Fig. 1.
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Figure 1: Workflow of a generic matching algorithm

The identification problem consists of searching for an input fingerprint /; within a tem-
plate database of n fingerprints T' = {77, ..., T,,} [21]. Most identification systems perform n
verifications to compare [; with every template fingerprint 7;, and return the identity that
yields the maximum score:

Identity = arg max Q(1;, T3), i=1,...,n. (2)

The identification time of such an identification system increases linearly with respect to
n. Therefore, when n is very large (from tens of thousands onward) the identification time
tends to be too long for most real applications.

2.2. Frameworks for Big Data

Big data has become one of the most challenging problems in information processing
contexts [6]. The ever growing amount of potentially valuable data affects multiple research
areas, such as decision making [38], data mining [43], biology [27] or physics [11]. In conse-
quence, several frameworks have been designed over the last few years for dealing with Big
Data problems over HPC systems. These frameworks usually provide the following main
aspects simultaneously [8]:



e High availability, so that when a machine fails, the others can carry out its workload
in a transparent way regarding the user.

e Distributed data storage, so that a disk failure in one machine is tolerable and does
not involve any data loss. A side effect of this distribution is that data locality is
increased, as several computers can process the same data locally.

e Massive parallelization, by splitting the input data into small chunks that can be
loaded and processed separately by the machines. This also removes the necessity of
storing all data into the memory at the same time, which is not possible when dealing
with extremely large volumes of data.

e High data throughput, built upon the distributed data storage, which allows to load
and write the data in parallel from all the machines.

Two of the most popular frameworks with these features are Apache Hadoop [42] and
Apache Spark [23].

Apache Hadoop (along with its distributed file system HDFS) is an open-source imple-
mentation of the MapReduce paradigm, which is based on structuring the data into pairs of
key and value. These pairs are processed into two phases: map and reduce. In particular,
a typical MapReduce workflow involves three types of these pairs: the input to the map
{k1,v1}, the pool between map and reduce {ks, v2}, and the output of the reduce {ks,vs}.
In the map phase, each map operation receives a single pair, and outputs a set of pairs
resulting from processing it. The intermediate pairs for all maps are shuffled and sorted,
so that each reduce operation receives all the pairs with the same key. Therefore, there are
as many reduce operations as there are different ks keys. Finally, the result of the reduce
operations is also expressed as a set of key-value pairs, which are stored back to HDFS.

Apache Spark also uses HDFS as the underlying file system, but groups the data into
Resilient Distributed Datasets (RDD). Spark focuses on keeping these RDD in memory as
much as possible, so as to avoid the disk I/O overhead. As for the programming paradigm,
Spark is not restricted to MapReduce. Instead, it provides a set of transformations (which
convert an RDD into another RDD) and actions (which convert an RDD into some kind
of result). It also provides the possibility to work with key-value pairs. These transfor-
mations and actions can be combined at will to create different workflows (one of which is
MapReduce).

There are some works in the literature that use this kind of frameworks for biometric
identification. Kitano and Su [24] present a load balancing strategy that distributes the tem-
plate fingerprints evenly among the computing nodes for identification in a MapReduce-like
environment, so that all worker nodes will have the same amount of work even if some of
them are not operational. Their proposal loads the templates in memory prior the identifica-
tions, but does not modify or evaluate the matching algorithm itself. Shelly and Raghava [35]
describe a MapReduce adaptation for iris recognition where each mapper compares the in-
put sample with a subset of the template database and outputs the scores higher than a



threshold. Zhao et al. [49] propose a distributed and load-balancing framework for finger-
print identification, based on Hadoop and MongoDB. This proposal is two-fold: the feature
extraction is carried out on the Hadoop Image Processing Interface, and the features are
stored in a MongoDB cluster. Then, a global matching is carried out to search for an input
fingerprint, which is efficient but not translation or rotation invariant. Peer and Bule [30]
present some general guidelines for designing cloud-based fingerprint verification systems
focusing on APIs, their operation methodology and their security. Other studies focus on
the security of the biometric information, describing encryption methods that can be applied
on the input fingerprint or biometric feature before it is transferred to the servers where the
matching is actually performed [13, 9, 44].

This paper focuses on reaching a high-throughput exploration of very large databases,
delving further into both the fingerprint matching process and the exploitation of existing
Big Data frameworks. The main advantage of the proposal is its genericity: virtually any
fingerprint matching algorithm can be decomposed following the proposed methodology, so
as to benefit from the strengths of Big Data architectures such as Hadoop and Spark, includ-
ing scalability, fault tolerance and reliable storage. The accuracy of the identification is also
taken into account: very accurate matchers can be decomposed in this manner without any
changes in the logic of the algorithm. Moreover, the proposal also enables the simultaneous
search of multiple input fingerprints, increasing the parallelization level so that bulk searches
can be carried out efficiently in very large template databases.

3. Minutiae-based fingerprint matching decomposition for Big Data frameworks

In this paper, we propose a generic decomposition methodology for adapting any minutiae-
based fingerprint matching algorithm following the taxonomy in [31] to such Big Data frame-
works. The resulting identification systems are expected to be fault-tolerant, reliable and
scalable thanks to the underlying features of the Big Data frameworks.

For this purpose, the matching process is decomposed into smaller steps that can be
computed in a parallel and flexible way. This decomposition also allows to discard some of
the parts of the process in order to early detect non-matching fingerprints and accelerate
the process.

This decomposition methodology is described in Section 3.1. Its application to MapRe-
duce and Spark architectures is detailed in Sections 3.2 and 3.3, respectively. Then, this
methodology is applied over two well-known matching algorithms: Minutia Cylinder-Code
(Section 3.4) and Jiang’s algorithm (Section 3.5). Finally, Section 3.6 describes some generic
and specific enhancements that can be applied when decomposing these algorithms.

3.1. Matching decomposition

A classic matching process starts from two sets of local structures LY and L]I. , and
compares them to compute a final score g;;. In this proposal, we introduce the concept of
partial score. A partial score contains the similarity information between two non-empty
subsets of the original local structure sets: Lz,; C L;; and L]I.k - LJI- . The definition of the
partial score function p is shown in Eq. (3), where P(S) is the set of all possible non-empty
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subsets of a set S, and P is the space in which the partial scores are defined, which is
dependent on the particular matching algorithm. Note that the cardinality of L% and L]I.k
is not necessarily the same: for instance, a partial score can be computed using a single
template local structure (LY, = {I%} for some h € {1,...,m]'}) and all input local structures
(le’k; = Lf)

p:P(L;fF)xP(Lﬁ)—MJ

(3)
(L, ij) — p(Li, L;k)

Based on the concept of partial scores, we define two functions that aggregate them to
compute the final matching score ¢;; in a parallelizable and flexible manner:

e Function (), aggregates a set of k, partial scores into a single new partial score, as
shown in Eq. (4). Note that k, is the number of partial scores that are being ag-
gregated, which is not related to the number of local structures of either fingerprint.
Therefore, the output of function @), is the partial score computed from £, subsets
of local structures obtained from each of the two fingerprints. These subsets are not
necessarily disjoint, which allows for further flexibility in applying the decomposition
scheme on a given matching algorithm.

Qp,:PP)—P

kp kp 4)
k=1

k=1

e Function )y, defined in Eq. (5), is applied on a single partial score—which contains the
aggregated information of the similarity between all local structures of T; and /;—and
computes the final matching score g;;.

QfZP—>R

p(LT, L) = Q(Ti, I;) = q;5 ®)
These two functions enable the fine-grain parallelization of the matching algorithm by
allowing the aggregation of partial scores in a very flexible manner (by successively applying
function @), to any combination of local structure subsets), while maintaining a fixed func-
tion Q)5 to generate the final matching score. They also open the possibility of discarding
partial scores that are not promising or do not contain relevant information for the match-
ing, because () is simply defined on the space of partial scores and requires no additional
information.
As described so far, the decomposition proposed in this paper is composed by three
main elements: partial scores, and two aggregation functions (@), and @);). Based on this

7



decomposition, the matching process becomes as depicted in Fig. 2. The process starts from

the individual local structures, 17, ..., ZZ;nT and ljl»l, - ljl,ml, which are arbitrarily grouped into
i j

sets of the form L} C LI and LJI,€ - LJI . These sets are used to compute partial scores of
the form p(L%, LJ]k) The partial scores are aggregated by successive applications of function
(), until a single partial score is obtained, which contains information of both entire local
structure sets. Finally, function () is applied on this partial score to obtain the final numeric
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Figure 2: Workflow of the proposed matching decomposition

The adaptation of any minutiae-based matching algorithm to the proposed methodology
only requires the design of the partial score structure and the aggregation functions ), and
@y, which can often be directly derived from the original consolidation procedure.

A partial score can be safely discarded if it does not contain any useful information to
compute g;;. This is especially true in the case of algorithms that use simple consolidations,
such as adding the highest similarities among local structures [31, 3].

3.2. Translation into MapReduce

The decomposition defined in the previous section can be used to formulate the problem
in terms of the MapReduce paradigm. By embedding the decomposition into the key-value
structure of MapReduce we can directly obtain all the benefits of such an architecture: fault-
tolerance, distributed file system, massive parallelization, etc. Note that in this context
MapReduce is just one case of use: the proposed decomposition methodology could be
applied to adapt an algorithm to many other frameworks, such as Spark (Section 3.3).

The template database is composed by the local structures of all ny template fingerprints.
The local structures of some n; input fingerprints that are to be identified are extracted (in
general n; < nr). For the sake of simplicity, we consider that these local structures are
stored in the distributed file system before the matching process in MapReduce starts.

The input of the map function is composed by the identifier of a fingerprint as the key
and one of its local structures as the value. Then, for each input fingerprint /;, the map
computes the local matches between the local structure it received and all those in LJI-7 and
aggregates them to produce a partial score:



Map(k}17’l}1) — list ({kQ,UQ}, \V/] € {]_, ,TLZ})
k?l = i, V1 = ZT (6)
ko = {05}, v =p({li} L))

Note that the map produces n; output records for each input record. The partial scores
produced thus are sent to the reduce phase, using the identifiers of the two fingerprints
involved as key. Each reduce function merges all the partial scores for a given pair of
template and input fingerprints to produce the final matching score as shown in Eq. (7).
These scores are written to the distributed file system.

Reduce(ks, list(vy)) — {ko,v3}

list(vy) = { L Lh | UL } (7)
vy = Qf(Qp(lZSt(W))) = Q(T;, 1)

Additionally, an intermediate combine phase aggregates sets of partial scores, so as to
minimize the network and disk traffic between mappers and reducers and to maximize the
parallelism. In MapReduce the combiner can be applied multiple times (or none) over
the records, which implies it has to be associative and commutative [42]. The proposed
decomposition complies naturally with these requirements thanks to the definition based on
sets:

Combine(ky, list(vg)) — {ko, v}
list(ve) = {p(Li, L) | L}, c LT}

(8)
= @Qp(list(vy)) <U L, L )

Fig. 3a depicts the overall workflow of our proposal within MapReduce. Fig. 3b focuses
on what happens inside each map task. The local matching is performed within the maps
whereas the consolidation step is split among the map, combine and reduce phases.

In addition to the optimization provided by the combiner, partial scores that are not of
use for further aggregations can be discarded in the map or combine phases. This further
decreases both the communication between the phases of MapReduce and the computational
load of the reduce phase. The local structures of each input fingerprint are accessed from
every map operation. Therefore, they should be accessible from the computing nodes in
a fast manner. A broadcast or distributed cache support speeds up the entire matching
process in such a case.
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3.3. Translation into Spark

The proposed decomposition methodology not only applies to MapReduce. It can also be
used to design efficient an identification framework within Apache Spark [23], as described
in Algorithm 1.

The first step of the identification within Spark is to broadcast the input local structures
so that they are readily available in all the computing nodes. Then, the template local
structures are grouped by their key, which allows all the local structures of the same template
fingerprint to be located within the same node, to eliminate any further communication.
For each template local structure [ and each input fingerprint I;, the score p({l}.}, L]I- ) is
computed, forming an RDD of partial scores with keys ¢, j. The scores with the same key
are aggregated one by one using the function @), defined in Eq. (4).

Once all the scores for the same key have been aggregated, the function ) is applied
over each resulting partial score to obtain the set of final matching scores.

Algorithm 1 Pseudocode of the adaptation of the decomposition to Spark

InputRDD < ReadRDD(inputs)
Broadcast(InputRDD)
TemplateRDD <— ReadRDD(templates)
TemplateRDD.GroupByKey/()
for all [}, € TemplateRDD do
for all Lf € InputRDD do
ps < p({l}}, L)
psRDD.insert({{%, j }, ps)
end for
end for
FinalpsRDD <— psRDD.reduceByKey(Q,)
ScoresRDD < FinalpsRDD.mapValues(Q)y)

3.4. Use case: Minutia Cylinder-Code
In order to demonstrate a practical application of the proposed generic methodology,
Section 3.4.1 describes the well-known MCC matching algorithm [3]. Then, Section 3.4.2
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details how it can be decomposed into the terms of the proposed methodology.

3.4.1. The Minutia Cylinder-Code matching algorithm

MCC uses local structures called cylinders. A cylinder contains the information about
a minutia neighborhood; therefore, a fingerprint contains as many cylinders as minutiae.
Ultimately, the cylinder is encoded as a vector of real numbers of size N,N,N;. Note that
whilst the original authors of MCC suggest the use of binary vectors for more efficiency, we
choose the real-coded version as it provides more accurate results.

The local matching consists of computing the similarity between each pair of cylinders
(one of T; and one of [;), obtaining a matrix I', where v is a similarity function:

L el0,1™ ™ Tr,s] =~ 1) 9)

Cappelli et al. [3] propose four consolidation techniques to compute the global score. In
this paper we focus on two of them: Local Similarity Sort (LSS) and Local Similarity Sort
with Relaxation (LSSR).

LSS consists of averaging the np best local similarities within I'.  The global score
Qrss(T;, 1;) is computed as defined in Eq. (10), where I' is a vector containing the lo-
cal similarities in I' in decreasing order, |-]| is the rounding operator, and min,,, max,,,
up and 7p are constants.

AV

Qrss(Ti, 1) = - (10)

np = i, + (2, o, 70)) - (M0, = min, ) (1)
n = min{m!,m]} (12

Zom) = s (13)

This consolidation is very simple as it does not require of any information from the local
structures besides their number (m; and m}).

LSSR is a more complex approach, involving n,.; relaxation steps. First, the most similar
ng pairs of cylinders are selected. Then, each relaxation step k computes a new similarity A\
for each pair t = (1, s;) as shown in Eq. (14), where wg € [0, 1] is a weighting factor, p is a
function measuring the compatibility between two pairs of local structures and \) = T'[ry, s].

Af:wR.Af*w nR_l Zpts Akt (14)

s;ét
Once the relaxed similarity values /™' have been computed, the efficiency ¢; of the
relaxation is defined:
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)\?rel
A

The global score is computed by averaging the relaxed similarities that have the np
highest efficiencies.

(15)

€t =

3.4.2. MCC decomposition

The local structures used by MCC are the cylinders. Therefore, both the template
database and the input fingerprints are represented by sets of cylinders.

The LSS consolidation consists of averaging the np best local similarities. In a simplistic
approach, a partial score p(L? | L]Ik,) would be a subset of I' (denoted I'y,) that only contains
the rows and columns related to the local structures in L% and L!,. However, as we are
only interested in the np best similarities the formulation can be optimized as shown in
Eq. (16), where I} is the set of n/, best similarities within I'y and n, is an upper bound of
np. The number of template local structures that are used to compute I} is needed in order
to eventually compute the actual value of np within Q).

Prss(Li, L) = {| L[, T} (16)

Wp = Mt + [(Z(m!, ip, 7p)) - (M0 — Mt )] (17)

The aggregation function @), for a set of partial scores consists of selecting the n, best

similarities among all those included in the partial scores. The number of template local

structures involved is obtained by adding the first term of all partial scores. Note that this

requires the aggregated L} to be disjoint, which complies with the proposed MapReduce

and Spark implementations. Finally, once a partial score that involves all the template local

structures is obtained, the actual np value can be computed and the best np similarities
can be averaged to produce the matching score.

ZZ’H T

QfLSSR ({m;a }) (18)

Note that similarities that are equal to zero do not have any influence on the final score.
The partial scores that only contain zero-valued similarities can be safely removed to reduce
the network overhead and simplify the process.

The decomposition approach for LSSR is similar. In this case not only the similarity
values are needed to compute the matching score, but also the minutiae themselves. Addi-
tionally, ng local similarities are needed instead of np ones (note that in general np < ng).
Therefore, the partial score is defined to contain a set of m§ local similarities (mJI is an upper
bound of ng) along with the involved minutiae (ML and M, for the template and input

js?
fingerprints respectively) and the value |L}

pussn(Lig, L) = {|Lik |, {{Mi, M, T, s]} | V[r, s] € T }} (19)

The aggregation function is analogous to that of LSS, with the exception that the minu-
tiae are included into the partial score. Once the partial score ppssn (L7, LJI» ) is obtained,
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the matching score can be computed from the ng best local similarities and the associated
minutiae as described in Section 3.4.1.

3.5. Use case: Jiang’s algorithm

The proposed methodology has also been applied to the matching algorithm proposed
by Jiang and Yau [22], which is described in Section 3.5.1. Section 3.5.2 explains the
decomposition for this algorithm.

3.5.1. Jiang’s matching algorithm

This algorithm uses local structures based on the N,, nearest neighbors of each minutia.
Each local structure is described as a vector of real numbers, which can be compared by a
function . The similarity matrix between all pairs of local structures follows the form of
Eq. (9). In this work, we do not use the type and ridge count of the minutiae so as to only
use the mandatory parts of the ISO 19794-2 standard [1]. The use of minutiae type can
often be misleading in matching, and the accuracy loss caused by not using the ridge count
is compensated by increasing the number of neighboring minutiae.

The global matching consists of fixing the best-matched pair of local structures, and
aligning all the other minutiae according to this pairing. A rotation and translation invariant
vector Fgp is obtained from every minutia. Then, a matching certainty level mli(r,s) is
computed for every pair of aligned minutiae:

. S if |[Fgl — Fgl'| < bl
0, otherwise
The final matching score is computed as follows:
>_mi(r,s)
QJiang(E? ]]) - o (21)

max{m,, m!}

To improve the accuracy, this procedure is repeated for the ngpsr best local matches
considered for the alignment and the maximum score is returned, as suggested in [26].

3.5.2. Jiang’s algorithm decomposition
The local structures used by the algorithm are real vectors. As the minutiae information
itself is also needed for the global consolidation, the coordinates and angle of each minutia
are also included within the corresponding local structure when stored into the system.
The partial score for this algorithm can be defined as:

p.liang(LZ;g7 L‘g) = {{szk—‘7 }7 Fk} (22)

where [y is the set of ngrpsr maximum local similarities among those obtained by com-
paring the local structures in L) with those in LJI- . Therefore, the aggregation function @,
simply returns the union of the Lz,; sets it receives, along with the ngpsr maximum local
similarities in I'y,.
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The final aggregation function )¢ performs the ngpgr global matchings and returns the
maximum matching score, as defined in Eq. (20) and Eq. (21).

3.6. Enhancing the performance of the matching decomposition

Once the decomposition scheme has been designed, it is possible to analyze the expected
performance of the matching and to provide guidelines for its enhancements.

Table 1 shows the value of the different factors that determine the performance of the
approach both for MapReduce and Spark, denoting the average number of local structures
per fingerprint by m. Note that in MapReduce, the number of combiners (and therefore
the number of applications of (),) depends on many internal parameters and cannot be
determined a priori. Nevertheless, the complexity of ), usually depends on the size of its
parameters. If the function is applied few times each application would aggregate many
partial scores, which can be slow, while a large number of applications would involve small
sets of partial scores, each of which can be computed faster. The main bottleneck for the
MapReduce approach would be the total size of the key-value pairs after the combiner,
which are transmitted to the reducers via HDFS. For Spark the bottleneck mainly involves
the number of operations that are performed.

Table 1: Factors that determine the performance of the approach for MapReduce and Spark. The specific
parameters of Jiang’s algorithm and MCC are extracted from their original publications.

Factor Value

Bytes of Jiang local structure 8-3-N,

Bytes of Jiang local structure (enhanced) 4-2-N,+ N,

Bytes of cylinder 8 Ny Ny Ny

Bytes of cylinder (improved) 4-Ny-Ny-Ny+4
Database key-value pairs

Number of maps ngm

Partial score creations

Key-value pairs after map nrnm

Key-value pairs after combiner Between npn;m and nyng

Number of reduces
Output key-value pairs neng
Number of applications of Q)

The enhancements must focus on optimizing the removal of non-promising partial scores
and on reducing the size of local structures and partial scores. Along these lines, our
enhanced implementation used single precision floating point numbers and angles quantized
to 256 values as in [4]. Further specific optimizations have been applied to the two matchers
that constitute the cases of use for this paper. In particular, the resulting local structure
size is shown in Table 1.

For MCC, the LSS consolidation can be further simplified by setting the value of np to a
fixed value, eliminating the need for |L% | in Eq. (16). The value np was also divided by two,
to reduce the size of partial scores for LSSR. Furthermore, the norm of the feature vector
(used to compute the similarity) was stored within the local structure.
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For Jiang’s algorithm, the size of the neighborhood was increased from 2 to 4, and a
bounding box was applied when computing the local similarity, so that two local structures
with very different angles or locations are never matched. From the implementation point
of view, the feature vector was split in two, as now the angle differences can be efficiently
encoded in a vector of bytes. Finally, the global consolidation step was substituted by a
sum of the local similarities so that the partial score in Eq. (22) can become simply {T'},
and ml is replaced by I' in Eq. (21).

4. Experiments and analysis

This section presents the experimental results that verify the performance of the proposal.
Sections 4.1 and 4.2 perform the analysis of the decomposition scheme for two different
databases. Finally, Section 4.3 presents a study on the scalability of the proposal.

The two described matchers have been implemented both in Apache Hadoop (in Java)
and Apache Spark (in Scala). The MPI-based parallel system® presented in [32], imple-
mented in C++, is used as a reference to compare the results.

All the experiments described in this section were carried out on a cluster of 20 computing
nodes (2 Intel Xeon E5-2600 2.00GHz, 64GB RAM each) plus a header node (2 Intel Xeon
E5-2600 2.00GHz, 32GB RAM), connected by a QDR Infiniband network. Cloudera Hadoop
5.3.1 (Hadoop 2.5), Spark 1.5.2 and OpenMPI 1.8.7 were used for the performed experiments.
All fingerprint minutiae were extracted using NIGOS mindtct [41], with the parameters
presented in Table 2. We used the parameters provided in the respective original publications
for both algorithms. Note that all accuracy results are computed for a 0% False Positive
Rate (FPR).

Table 2: Parameters for the methods used in the experimentation

Parameters Ref.
wg = 1,wp = 0.3y = 0.3
. Wy, = 0,w; = 0, Nppsr = 5

Jiang | o BGy =8, BG, = Z BGy =1 221
Enhanced version: N,, =4, Local bounding box: {250, 250,96}
R = 7O,NS = 8,1“\“21 = 6,0’S = %,Gd = %ﬂ-
py = 0.01, 7y = 400, w = 50, minyc = 0.75
miny = 4, miny g = 0.60,09 = %,mawnv =12

MCC Floating-point-based version: enabled, pp = 20 3]
wg = 0.5, pf = 5,7p = 0.6, min,, = 4,70 = —1.6
py=55,75 = =30, 5 = 5,78 = =30,n0 = 5
Enhanced version: np = 10

mindtet 9utput format = ANSI INCITS 378-2004 1]
image enhancement = enabled

4.1. SFinGe large database

A database of 400 000 template fingerprints was generated by means of the SFinGe
software [5, 26] in order to test the proposal over a large database. A set of 10 000 input fin-
gerprints was built by taking one additional impression of 5000 of the template fingerprints,

'https://github.com/dperaltac/mpi-afis
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plus an additional set of 5000 fingerprints with no match in the database. The parameters
used to generate the database are listed in Table 3. Note that no other fingerprints were
added to the database, so as to obtain a homogeneous set of fingerprints that will allow us
to compute meaningful statistics, as shown in Table 4.

Table 3: Parameter specification to generate the SFinGe database

Scanner parameters Generation parameters
Acquisition area: 14.6mm x 19.6mm. | Impressions per finger: 25.
Resolution: 500 dpi. Class distribution: Natural.

Image size: 288 x 384. Varying quality and perturbations.
Background type: Optical. Generate pores: enabled.
Background noise: Default. Save ISO templates: enabled.
Crop borders: 0 x 0. Output file type: WSQ.

Table 4: Statistics of the SFinGe database

Template | Input
Number of template fingerprints (ny and nj) 400 000 10 000

Average number of local structures () 55.47 50.14
Jiang 3.25E4+09 | 2.38E407
Size in bytes Jiang (enhanced) 2.75E+09 | 1.76E+407
Cylinders 6.41E+10 | 7.92E408
Cylinders (enhanced) 3.29E+10 | 3.81E408

Even though the same algorithms were implemented in the three compared frameworks
(MPI, Hadoop and Spark), the accuracy results differ slightly. This is caused by the floating
point operations errors that may accumulate along the matching computations. Table 5
shows how the TPR (True Positive Rate) obtained for the SFinGe database is very similar for
the three compared frameworks, even though not exactly equal. However, these differences
can safely be considered as negligible in any practical context. The enhancements applied
to the matchers do have effects on the accuracy: Jiang’s algorithm suffers a loss of TPR in
this case, while LSS improves its accuracy, thanks to the larger value used for np.

Table 5: TPR obtained with the SFinGe database (for 0% FPR)

Jiang MCC (LSS) MCC (LSSR)
Orig. Enhan. Orig. Enhan. Orig. Enhan.
MPI 0.710 - 0.669 - 0.949 -

Hadoop 0.711 0.507 0.681 0.751 0.952 0.951
Spark 0.712 0.507 0.677 0.766 0.950 0.948

Table 6 shows the average identification times for the three frameworks, and matchers,
along with their enhancements. Fig. 4 displays the number of thousands of matches per
second performed with each configuration. Hadoop turns out to be the slowest option, due
to the amount of disk accesses performed between the map and reduce phases.

However, the times obtained with Spark are lower than those obtained with MPI, which
is a very noticeable result. Even though the template database resides in memory for both
frameworks, Scala is considered to be slower than C++ because of its use of the bytecode
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Table 6: Average identification times in seconds with the SFinGe database

Jiang MCC (LSS) MCC (LSSR)
Orig. Enhan. Orig. Enhan. Orig. Enhan.
MPI 0.5003 - 2.5872 - 3.4591 -
Hadoop 3.7925 0.2005 7.4802 3.5902 14.9461  5.8687
Spark 0.3928 0.1661 2.0968 1.8003 3.5360 3.1624

Ratios
Hadoop/MPI 7.5802 0.4008 2.8552 1.3877 4.2259  1.6966
Spark/MPI 0.7851 0.3320 0.8045 0.6958  0.9782 0.9142

2500 —
gZOOO = I Framework
E MPI
- 1500 Hadoop
=}
Q
%1000_ || Hadoop (enh.)
8 Spark
c 4 Spark (enh.
S 500 park (enh.)

0- B lm

I I I
Jiang MCC (LSS) MCC (LSSR)
Matcher

Figure 4: Throughput for the three tested frameworks.

over the Java Virtual Machine [16]. This improvement in the computing time is produced
by the proposed decomposition methodology. The use of partial scores increases the level of
parallelism, so that the overall matching process is composed by many small computations
that can be performed independently. This structure allows to identify bunches of input
fingerprints in a flexible way, reusing efficiently the information of the template local struc-
tures for several sets of input local structures. Finally, the possibility of safely discarding
partial scores enhances the matching process as it allows the early detection of non-matching
fingerprints or non-similar fingerprint parts, reducing the overall computation.

An additional factor to take into account is that the flexibility of the Spark RDD model
allows the machines to divide the data into small chunks and process them in parallel, so
that when a core finishes processing a chunk it can tackle a new one. In other terms, the
partitioning of the database performed by the MPI approach is more static than the one
performed by Spark. Therefore, the idle time of the cores is reduced in the latter framework.

As for the enhancements carried out on the matchers, there is a significant gain of time in
all cases, especially when Hadoop is used, assessing an important reduction of the network
and storage workload. The enhanced version of Jiang’s matcher attained more than 2 million
matches per second.

GPUs have been used by other researchers to develop thoroughly optimized versions of
the matching algorithms. Table 7 shows some of the best results reported in the literature
so far on SFinGe fingerprints, to the best of the authors’ knowledge. Both the hardware

17



and the parameters used to generate the database vary among these works, which prevents
a fair comparison. However, the table gives us an outline of what might be expected from
fine-grain optimizations of the matchers in high performance architectures. In general, our
proposal has a throughput higher than that obtained by a single server with several GPUs,
except in the case of the binary version of MCC implemented in [4].

Table 7: Throughput (in thousands of matches per second) obtained by GPU implementations of the
matchers.

Hardware Average minutiae Templates Cores Jiang MCC (LSS) MCC (LSSR)
GPU-based proposals
Gutiérrez et al. [12] 2 x Nvidia Tesla M2090 40.7 100000 1024 - 97.7 54.4
Lastra et al. [25] 2 > Nvidia Tesla K20m 51.8 800000 6016 1500.00 - -

2 x Nvidia Tesla M2090

Cappelli et al. [4] 4 x Tesla C2075 GPUs 32.3 250000 1792 - 35221.40 -
Our proposal
Hadoop 105.47 53.47 26.76
IS{I:(iircl){op (enhanced) 20 x 2 x Intel Xeon E5-2620 55.5 400000 480 18;232 1?2’47; légig
Spark (enhanced) 2407.88 222.19 126.49

In order to carry out an objective comparison of these results, some of the approaches
listed in Table 7 have been applied to the same SFinGe database used to test our proposal,
which contains 400 000 templates. The results obtained, which can be seen in Table 8, show
a reduction of the throughput with respect to that presented in the original papers. In the
case of MCC, this difference accounts for the higher number of minutiae of the fingerprints
in our SFinGe dataset, in combination with the quadratic complexity order of MCC with
respect to the minutiae set size. The throughput drop of Jiang’s algorithm is larger and
cannot be explained exclusively by the increase of minutiae: the offline pre-processing of the
local matching performed in the original paper was not carried out in our experiments to
keep the experimental environment consistent with the rest of algorithms.

Naturally, the throughput achieved by the GPU algorithms is higher than that obtained
with a single CPU. However, one of the strengths of the Big Data frameworks tested with
our decomposition proposal is their scalability in terms of number of computing nodes.
The obtained results reaffirm this point: the approach described in this paper can obtain a
throughput significantly higher than that of the state-of-the art GPU implementations due
to its multi-node scaling capabilities.

Table 8: Throughput (in thousands of matches per second) obtained by GPU implementations of the
matchers over the SFinGe database.

Hardware Cores Jiang [25] MCC (LSS) [12] MCC (LSSR) [12]
2 x Nvidia Tesla M2090 1024 174.50 36.33 26.98

2 x Nvidia Tesla K20m
2 % Nvidia Tesla M2090 6016 345.92 51.85 41.19

Table 9 presents some statistics about the executions in Hadoop for the three tested
matchers. For the sake of clarity, only the enhanced versions are shown. The table shows
that the combine phase is well optimized, as the number of partial scores that are passed to
the reducer is very low, requiring less network traffic during the shuffle phase. Most of the
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computing time is spent on the map phase, which computes all the local similarities. The
computation of the partial scores is efficiently performed within the combiners and reducers.

Table 9: Statistics of the executions with Hadoop

Jiang MCC (LSS) MCC (LSSR)

Number of maps 2.00E+07 1.99E+07 1.99E+07
Number of combines 9.26E+09 1.02E4+10 9.65E+09
Number of reduces 4.00E+09 4.00E+09 4.00E+09
Combine inputs 2.21E+01 2.00E+01 2.12E+401
Reduce inputs 1.00E+00 2.56E+400 2.53E4-00
Map time 8.38E+01 4.14E+02 6.63E+02
Combine time 2.83E-02 4.93E-02 8.36E-02
Reduce time 3.04E-03 3.40E-06 6.64E-03

Table 10 shows the time of each phase of the Spark workflow. Note that the phases are
executed concurrently, so that the overall time is far lower than the sum of the times of
the individual phases. First, the database loading is performed in parallel throughout the
computing nodes, so that it can be done quickly from the distributed file system, taking
into account the size of the data that is loaded. The broadcast of the input fingerprints
consumes more time for each fingerprint, but is still acceptable for any practical purpose.
The main part of the time is taken by the computation of the matching and the writing of
the result to HDFS, both of which consume a similar amount of time.

Table 10: Average time (in seconds) for each step in Spark

Jiang MCC (LSS) MCC (LSSR)

Load templates (total) 6.3490 37.9890 36.4620
Load + broadcast inputs 0.0011 0.0208 0.0251
Matching 0.1631 1.7802 3.0211
Writing 0.1674 1.7951 3.0382

4.2. NIST-SD14 database

The NIST-SD14 database [40] is composed by two impressions of 27 000 rolled finger-
prints. In these experiments, the first impressions of the fingerprints were used as templates,
whilst 1000 second impressions were randomly selected to be used as input fingerprints. The
statistics of the database are shown in Table 11.

Table 11: Statistics of the NIST-SD14 database

Template | Input

Number of template fingerprints (ny and n) 27 000 1000
Average number of local structures (m) 213.31 199.253
Jiang 8.96E+08 | 8.55E+06

Size in bytes Jiang (enhanced) 7.50E+08 | 6.48E+06
Cylinders 1.84E+10 | 3.31E+08

Cylinders (enhanced) 9.25E+09 | 1.60E+08

Table 12 shows the TPR for this database. Again, the floating point operations cause
slight differences in the accuracy of the algorithms, although they can be safely ignored.
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However, in this case the enhanced version of Jiang’s algorithm obtains much better accuracy,
assessing its value for rolled prints. The same behavior can be seen with MCC: this indicates
that the enhanced approaches, which privilege the local phase of the matching over the global
consolidation, work better with rolled prints than with the plain ones generated by SFinGe.

Table 12: TPR obtained with the NIST-SD14 database (for 0% FPR)

Jiang MCC (LSS) MCC (LSSR)
Orig. Enhan. Orig. Enhan. Orig. Enhan.
MPI 0.259 - 0.315 - 0.799 -

Hadoop 0.258 0.511 0.341 0.348 0.799 0.845
Spark 0.258 0.482 0.341 0.352 0.803 0.837

The average identification times and the throughput, shown in Table 13 and Fig. 5 re-
spectively, corroborate the results obtained with the artificially generated database. The
enhancement has been able to significantly decrease the execution time in all cases. Hadoop
is still the slowest framework, but now Spark is significantly faster than MPI, with a much
larger difference than with SFinGe. This behavior is due to the higher number of minu-
tiae (and therefore local structures) present in the rolled fingerprints of NIST-SD14. This
increases the amount of pairings between the local structures of both templates and input
fingerprints, which in turn results in a more fine-grained decomposition of the matching
process that allows a better parallelism. As the computation of a single matching between
two fingerprints now requires more aggregations of partial scores, the partial scores that are
discarded cause a larger saving of computational resources.

Table 13: Average identification times in seconds with the NIST-SD14 database

Jiang MCC (LSS) MCC (LSSR)

Orig. Enhan. Orig. Enhan. Orig. Enhan.
MPI 1.1206 - 3.0010 - 4.7101 -
Hadoop 3.6140 1.0031 7.6840 3.6608 14.5230 6.9196
Spark 0.3280 0.1319 2.3338 2.0315 4.1742 2.8834

Ratios
Hadoop/MPI 3.2250 0.8951 2.5605 1.2199  3.0833 1.4691
Spark/MPI 0.2927 0.1167 0.7777 0.6770  0.8862 0.6122

4.8. Study on the scalability of the proposal

A key objective in the design of the proposed decomposition scheme is to allow for scalable
identification systems. This section evaluates the scalability with Hadoop and Spark, using
subsets of several sizes of the SFinGe database. The number of input fingerprints was set
to 10% the number of templates in each case, half of them being impostor identities, up to
a maximum of 10 000. Therefore, 4 - 10° matches were computed for the largest database.

Figure 6 shows the throughput with Hadoop and Spark and the three matchers, as a
function of the size of the template database. The plot shows that although Spark has a
throughput higher than that of Hadoop, both frameworks present the same behavior when
the number of templates is increased: as the computing time becomes larger in proportion
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to the communication times, the throughput steadily increases until it remains constant for
very large databases. These results assess the scalability of the proposed decomposition
scheme in accordance with the tested Big Data frameworks.
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Figure 6: Throughput of the enhanced matchers for different database sizes.

5. Conclusion

Fingerprint identification within very large databases has become a challenging problem
for many companies and institutions. There is a need of scalable, flexible methodologies for
dealing with this problem. With the raise of Big Data oriented technologies in the last years,
new environments highlight as suitable for implanting efficient, highly reliable fingerprint

identification systems.

A generic decomposition methodology for fingerprint matching has been proposed in
this paper, along with its application on two of the most popular frameworks for Big Data
computing: Apache Hadoop and Apache Spark. The computation of the final matching score
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for two fingerprints is split at a finer level, defining partial scores between subsets of local
structures. These partial scores can be computed independently and merged afterwards,
which defines a very flexible procedure and allows some of the partial scores to be discarded.
Furthermore, generic and specific guidelines to enhance the performance of the matchers are
provided. This methodology was applied over two well-known matching algorithms of the
scientific literature.

The experimental results over two large databases reveal a very promising behavior of
the proposed decomposition, which is further improved by the application of the aforemen-
tioned guidelines. The possibility to discard parts of the matching process enhances the
identification time by reducing the communication and synchronization necessities of the
system.

Finally, it is noteworthy that the proposed decomposition is generic enough so as not to
be limited to minutiae-based fingerprint matching algorithms. It only requires an adequate
definition of local structures, partial scores and aggregation functions; thus, other types
of matching can be adapted to the proposal as well. Moreover, the approach can also be
applied on biometric features other than fingerprints.
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