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1
Introduction

In this introductory chapter we describe the mathematical framework for this thesis. To
that end, we first provide a brief overview of so-called Euclidean and Hermitian Clifford
analysis and the underlying abstract radial algebra. Secondly, we explain the meaning
of analysis on superspace, comment on some of the approaches used for this study and
discuss the extension of Euclidean Clifford analysis to superspace.

Finally, we list our main goals and provide a detailed overview of the contents of the
thesis.

1.1 Euclidean and Hermitian Clifford analysis

Clifford analysis nowadays is a well established mathematical discipline constituting a
natural refinement of harmonic analysis. In its most simple setting, it focusses on the
null solutions of the Dirac operator ∂x =

∑m
j=1 ej∂xj , where the elements (e1, . . . , em)

form an orthonormal basis for Euclidean space Rm and underly the construction of the
real Clifford algebra R0,m. This setting is known as the Euclidean case (also the term
orthogonal Clifford analysis can be found in the literature). The fundamental group
leaving the Dirac operator invariant is Spin(m) which is a double covering of SO(m).
Standard references on Euclidean Clifford analysis are [16, 44, 48].

By taking the dimension even, say 2m, and introducing a so-called complex structure
J ∈ SO(2m), the fundamental elements of Hermitian Clifford analysis arise in a natural
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way from the Euclidean setting. The Hermitian case focusses on h-monogenic functions,
h-monogenicity being expressed by means of two mutually adjoint Dirac operators which
are invariant under the realization of the unitary group U(m) in Spin(2m). Indeed, the
action of the projection operators 1

2 (1± iJ) on the initial orthonormal basis (e1, . . . , e2m)

leads to the Witt basis elements (fj : j = 1, . . . ,m) and (f†j : j = 1, . . . ,m), producing a
direct sum decomposition of C2m in two components. The elements of SO(2m) leaving
those subspaces invariant generate a subgroup which is doubly covered by a subgroup
of Spin(2m) denoted SpinJ(2m), and is isomorphic with the unitary group U(m). The
Hermitian Dirac operators ∂z and ∂†z are obtained by projection of the gradient on
the aforementioned invariant subspaces, whence they are invariant under the action of
SpinJ(2m).

This Hermitian decomposition has been thoroughly studied in several papers, see for
example [9, 14]. Results concerning spherical monogenics, invariant differential opera-
tors, a Fischer decomposition and integral representation formulae (Bochner-Martinelli,
Cauchy) have already been obtained, see [9, 14, 39, 15, 1]. Furthermore, Hermitian
Clifford analysis was addressed in [64] where several complex operators ∂z, ∂†z , ∂u, ∂†u, . . .
were considered giving rise to new syzygy complexes. Those results motivated for the
first time the use of the radial algebra in the Hermitian setting, which is independent of
the choice of the dimension parameter.

The radial algebra framework is defined through an algebra R(S) generated by a set
S of abstract vector variables x, y, . . ., where classical notions of Clifford analysis are
reintroduced axiomatically. For example, Dirac operators are axiomatically defined as
endomorphisms on R(S), more precisely as a vector derivative denoted by ∂x, x ∈ S
(see e.g. [66, 70]). The radial algebra possesses some important properties, of which
the most powerful most probably is its independence of any particular dimension m,
which is now abstractly defined as a complex parameter stemming from the evaluation
∂x[x] = m. In addition, R(S) is independent of the choice of an underlying vector space
V to which the vector variables belong and of any chosen quadratic form on V . This gives
rise to important applications of the radial algebra setting in the study of the Fischer
decomposition and the Dirac complex (see e.g [21, 65, 64]).

In a number of papers [33, 68, 67] other applications have been considered such as the pos-
sibility to derive a theory of Dirac operators in superspace from the standard Euclidean
one and to give a meaning to spaces with negative integer dimension.

1.2 Clifford analysis on superspace

Superanalysis or analysis on superspace was introduced by Berezin in order to study
mathematical problems associated with the physical idea of supersymmetry, see e.g.
[6, 7]. The most important feature of superanalysis was developing a formal calculus
in a Grassmann algebra where commuting (bosonic) and anti-commuting (fermionic)
variables appear on equal footing. Nowadays, superspace and the corresponding super-
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manifolds play an important rôle in contemporary theoretical physics, e.g. in the particle
theory of supersymmetry, supergravity or superstring theories, etc.

There are different mathematical approaches for the study of superspace. A first approach
is based on differential geometry where the concept of a point of a graded manifold is pri-
mordial. In this case, the bosonic and fermionic variables are represented as co-ordinates
in the even Λ0 and odd Λ1 subspaces of some underlying graded commutative Banach
superalgebra Λ. This gives rise to considering superspaces of the form Rp|q(Λ) = Λp

0
×Λq

1
and developing an analysis based on the usual topological notions of neighbourhood,
continuity, differentiability, etc. Without claiming completeness, we refer the reader to
[72, 55, 45, 63] for an overview of this approach.

A different approach to the mathematical foundation of superanalysis is the one developed
by Berezin, Kostant and other authors, see e.g. [7, 57, 60]. This approach comes from
modern algebraic geometry, where a supermanifold is defined as a differentiable manifold
and a set of superfunctions on it as a structural sheaf. This setting allows to arrive
at a calculus on superspace which does not depend on possible representations of the
variables as co-ordinates on an underlying superalgebra. This calculus collects important
constructions such as the Berezin integral with respect to anti-commuting variables, and
the so-called Berezinian which is the analogue of the Jacobian for the change of anti-
commuting variables. The two mentioned approaches to superanalysis have been proven
to be equivalent in the categorical sense, see e.g. [5].

As mentioned before, harmonic and Euclidean Clifford analysis have been extended to
superspace by means of a representation of the radial algebra. This extension uses the
definition of a supermanifold as in the approach of Berezin and Kostant (see [7, 57]).
This theory introduces some important differential operators (such as Dirac and Laplace
operators) on the flat supermanifold Rm|2n, and uses them in the study of special func-
tions, orthogonal polynomials, integration, etc. For a nice overview on this development
we refer the reader to the Ph.D. theses [29, 22] and the papers [33, 32, 35, 31, 38, 24, 25,
26, 27, 28, 30, 34, 37, 36].

1.3 Objectives

The above-mentioned extension of Clifford analysis to superspace plays a central rôle in
our research, which has three main goals. Our first aim is to extend so-called Hermitian
Clifford analysis to superspace (Chapters 2, 3). The second goal is to provide a suitable
definition for the (super) spin group and studying the underlying group actions in both
Euclidean and Hermitian Clifford analysis in superspace (Chapters 4, 5). Finally, the
third objective is to further develop integration theory in this setting by introducing
and studying integration over general domains and surfaces in superspace depending
on bosonic and fermionic variables on equal footing (Chapters 6, 7). The remainder of
this introductory chapter is devoted to a detailed analysis of these objectives and their
achievement within the contents of this thesis.
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In order to introduce a theory of Hermitian Dirac operators in superspace, we first need to
set the correct rules that allow such a canonical extension. In Chapter 2, we deal with this
task. We first provide some basics of the classical theory of radial algebras as an abstract
approach to Euclidean Clifford analysis. The algebra of endomorphisms and the notion of
radial algebra representation will be amply discussed. With the introduction of a so-called
complex structure we arrive at the Hermitian radial algebra setting, which constitutes
an abstract version of the Hermitian monogenic function theory. An important example
of a representation of the radial algebra with a complex structure will be presented at
the level of endomorphisms.

In Chapter 3, we formulate the basic definitions needed for Hermitian Clifford analysis in
superspace. This is done by studying the corresponding representation of the Hermitian
radial algebra. To that end, we first recall the main aspects of the extension of Euclidean
Clifford analysis to this setting. In particular, the vector multipliers give rise to a natural
way of introducing a complex structure on superspace which immediately leads to the
corresponding extensions all basic objects such as Hermitian Dirac operators, complex
Euler operators, etc. Moreover, it is proven that all defined objects satisfy the abstract
relations provided in Chapter 2 for the Hermitian radial algebra.

Chapter 4 is devoted to providing a definition for the spin group in superspace as a
set of elements describing every super-rotation through Clifford multiplication. To that
end, we consider linear actions on supervector variables using both commuting and anti-
commuting coefficients in a Grassmann algebra. This allows to study the invariance of the
inner product in superspace through a classical group theoretic approach which contains
all information on the underlying symmetry superalgebras obtained in [22, 23]. We first
provide some basics on Grassmann algebras, Grassmann envelopes and supermatrices.
Next, we further develop the Clifford setting in superspace by introducing the Lie algebra
of superbivectors. An extension of this algebra is crucial in the description of the super
spin group. While studying the invariance of the bilinear form that extends the Euclidean
inner product to superspace, we obtain the so-called group of superrotations SO0 whose
Lie algebra so0 turns out to be a Grassmann envelope of osp(m|2n). It is also proven that
every super-rotation can be uniquely decomposed as the product of three exponentials
acting on some special subspaces of so0. Finally, we study the problem of defining the
spin group in this setting and its differences with the classical case. It is shown that
the compositions of even numbers of vector reflections are not sufficient to fully describe
SO0 since they only allow for an orthogonal structure and do not include the symplectic
part of SO0. Next we propose an alternative, by defining the spin group through the
exponential of extended superbivectors and showing that they indeed cover the whole
set of superrotations. In addition, we explicitly describe a subset Ξ which is a double
covering of SO0 and contains in particular every fractional Fourier transform.

The main goal of Chapter 5 is to study the action of the spin group in superspace on
superfunctions. We first study the invariance of the Dirac operator in superspace under
the classical H and L actions. In addition, we consider the Hermitian Clifford setting
in superspace, where we study the group invariance of the Hermitian inner product of
supervectors introduced in Chapter 3. The group of complex supermatrices leaving this
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inner product invariant constitutes an extension of U(m) × U(n) and is isomorphic to
the subset SOJ

0 of SO0, consisting of those elements which commute with the complex
structure J. The realization of SOJ

0 within the spin group is studied simultaneously with
the invariance under its actions of the super Hermitian Dirac system. It is interesting to
note that the spin element leading to the complex structure can be expressed in terms
of the n-dimensional Fourier transform.

Distributions in superspace constitute a very useful tool for establishing an integration
theory. In particular, distributions were used in [24] to obtain a suitable extension of
the Cauchy formula to superspace and to define integration over the superball and the
supersphere through the Heaviside and Dirac distributions, respectively. In Chapter 6, we
extend the distributional approach to integration over more general domains and surfaces
in superspace. The notions of domain and surface in superspace are defined by smooth
bosonic phase functions g. This allows to define domain integrals and oriented (as well
as non-oriented) surface integrals in terms of the Heaviside and Dirac distributions of
the superfunction g. It will be shown that the presented definition for the integrals does
not depend on the choice of the phase function g defining the corresponding domain or
surface. In addition, some examples of integration over a super-paraboloid and a super-
hyperboloid will be presented. Finally, a new distributional Cauchy-Pompeiu formula
will be obtained, which generalizes and unifies the previously known approaches.

In Chapter 7, we address the problem of establishing a Cauchy integral formula in the
framework of Hermitian Clifford analysis in superspace. To this end, we use the general
distributional approach to integration provided in Chapter 6. This allows to obtain a
successful extension of the classical Bochner-Martinelli formula to superspace by means
of the corresponding projections on the space of spinor-valued superfunctions. This is
inspired by the close relation between the theory of Hermitian monogenic functions and
the theory of holomorphic functions of several complex variables in the purely bosonic
case, see [11]. The connection between Hermitian monogenicity and holomorphicity in
superspace is established by considering a specific class of spinor-valued superfunctions
(Section 7.4). As one may have expected, the obtained (super) Hermitian Cauchy integral
formula reduces, when considering the correct projections, to a new extension of the
Bochner-Martinelli formula for holomorphic functions in superspace.

The results of Chapters 2, 3 and 5 have already been published in three articles, respec-
tively given by references [41], [42] and [43]. The results of Chapters 4, 6 and 7 have
been submitted for publication [40, 49, 8].
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2
Radial algebras

In this chapter we introduce the notion of radial algebra which describes Clifford analysis
in a more abstract setting. This notion will be used later for the introduction of Euclidean
and Hermitian Clifford analysis in superspace.

2.1 Motivation and importance of the radial algebra

Many of the special functions that play a fundamental rôle in Clifford analysis are func-
tions of zonal type i.e. functions depending of several Clifford vector variables x, y, . . .
and their inner products. Fundamental examples of such functions are the reproducing
kernel 1

k! 〈x, y〉
k and the monogenic part of its Fischer decomposition

1

k!
〈x, y〉k + a1x y〈x, y〉k−1 + · · ·+ akx

kyk,

where the coefficients a1, . . . , ak only depend on k and the dimension m. It is easy to
understand that these zonal functions are in principle the same in every dimension m;
the dimension parameter m stems from the repeated action of the Dirac operator ∂x on
the Fischer decomposition, using the evaluation ∂x[x] = −m.

These observations lead to the idea of defining an algebra R(S) of abstract vector varia-
bles and reintroducing the Dirac operators axiomatically as endomorphisms on R(S), i.e.
as vector derivatives denoted by ∂x, x ∈ S. A first account on such an axiomatization
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can be found in [66] and was inspired by the work on "geometric calculus" presented by
Hestenes and Sobczyk ([51]).

Important aspects of this radial algebra approach are:

• R(S) does not depend on a particular dimension m. The vector derivative ∂x
leads to the introduction of the abstract scalar parameter ∂x[x] = m, which can be
considered as a continuous parameter in R or even in C.

• Using the assignment x → x =
∑m
j=1 xjej , x ∈ S, we obtain a representation of

R(S) by an algebra R(S) of Clifford polynomials. This map is injective provided
that S is finite and m ≥ Card(S).

• The algebra R(S) is independent of both the choice of an underlying vector space
V on which the vector variables are defined, and the choice of a quadratic form on
V .

These aspects show the computational strength of the radial algebra since they allow to
compute symbolic expressions, depending on vector variables, following a minimal set of
rules independently of specific bilinear forms and signatures. This gives rise to special
functions in which the dimension m becomes a complex variable to which all methods of
holomorphic functions can be applied. A typical example is the Fischer decomposition,
which produces coefficients that are rational functions of m and that are valid outside
the poles of these coefficients. Also the Fischer decomposition in the case of several
vector variables is better studied in the radial algebra setting because its terms always
are unique. In the Clifford polynomial setting the relation

∑k
j=1 xjMj(x1, . . . , xk) = 0

may have non zero monogenic solutions Mj if the dimension m < 2k− 1. This gives rise
to exceptional syzygies for the Dirac complex (see [21, 65, 64]) that do not appear in the
radial algebra setting.

In a number of papers [33, 68, 67] other applications have been considered such as the
possibility to derive a theory of Dirac operators in superspace from the standard Eu-
clidean one and to give a meaning to spaces with negative integer dimension. Indeed,
to set up a Clifford calculus in superspace it is necessary to work with fundamental ob-
jects such as vector variables, directional and vector derivatives that satisfy the main
"laws" of Clifford analysis. These "laws" are provided in a natural way by the axiomatic
framework of radial algebras.

To address certain typical questions in the framework of algebras such as representation
theoretical issues, it is necessary to provide concrete representations of the radial algebra.
By a representation we mean an algebra homomorphism from R(S) to an algebra A. In
particular, vector variables may be represented through co-ordinate variables defined in
a given underlying vector space V endowed with a bilinear form. This leads to different
invariance groups depending on the specific representation. For example, in the classical
Clifford-polynomial representation we have V = Rm with the rotation group SO(m). But
in superspace the corresponding underlying vector space for the radial algebra represen-
tation has the form V = Rm|2n(Λ), where Λ denotes some graded commutative Banach
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superalgebra. With such a representation one obtains a rotation group of supermatrices
that contains SO(m)×Sp(2n) as its real projection. These results can be found in detail
in Chapter 4.

In this chapter we first recall the main algebraic properties of the radial algebra and
some of its most important endomorphisms. In this way the building blocks of Euclidean
Clifford analysis naturally arise from a specific representation of the radial algebra. To
that end we provide an overview of the results obtained in [66] together with detailed
proofs for a number of results which were not presented there. This approach will be
used later on to introduce Euclidean Clifford analysis in superspace.

In addition, we will establish a similar framework for the Hermitian setting. To that
end we introduce the so-called Hermitian radial algebra which constitutes an abstract
description of the main objects of Hermitian Clifford analysis. This will allow us later
on to define the main framework for Hermitian Clifford analysis in superspace.

2.2 Algebraic properties of the radial algebra

Definition 2.1. Given a set S of symbols x, y, z, . . . the radial algebra R(S) is defined
as the associative algebra over R freely generated by S and subject to the axiom

(A1) [{x, y}, z] = 0 for any x, y, z ∈ S,

where {a, b} = ab + ba and [a, b] = ab − ba. Elements in S are called abstract vector
variables.

Axiom (A1) intrinsically means that the anti-commutator of two abstract vector varia-
bles is a scalar, i.e. a quantity that commutes with every other element in the algebra.
It is clearly inspired by the similar property for Clifford vector variables. In order to
formalize the relation between the radial algebra and the Clifford algebra we introduce
the notion of a radial algebra representation.

Definition 2.2. A radial algebra representation is an algebra homomorphism Ψ : R(S)→
A from R(S) into an algebra A. The term representation also refers to the range
Ψ(R(S)) ⊂ A of that mapping. By convenience we denote Ψ(R(S)) by R(Ψ(S)) where
Ψ(S) := {Ψ(x) : x ∈ S}.

The easiest and at the same time most important example of a radial algebra represen-
tation is the algebra generated by standard Clifford vector variables.

Example 2.1. Consider the real Clifford algebra R0,m generated by the orthonormal basis
{e1, . . . , em} of Rm governed by the multiplication rules

ejek + ekej = −2δj,k, j, k = 1, . . . ,m.
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The classical Clifford-polynomial representation is established for a finite set S of ` ab-
stract vector variables (` ∈ N) by considering the mapping

x→ x =

m∑
j=1

xjej , x ∈ S, (2.1)

where we associate to each x ∈ S a set of m real variables {x1, . . . , xm} or equivalently, a
Clifford vector variable x defined in Rm. In this way, we obtain the set

⋃
x∈S{x1, . . . , xm}

of `m real variables that, when combined with the Clifford generators ej (j = 1 . . . ,m),
generate an algebra of Clifford-valued polynomials denoted by Am,0.

The correspondences (2.1) naturally extend to an algebra homomorphism from R(S) to
Am,0 since for any two Clifford vector variables x, y we have that

{x, y} = xy + yx = −2

m∑
j=1

xjyj , (2.2)

is a central element in Am,0, i.e. the axiom (A1) is fulfilled.

The set of ` Clifford vector variables established by (2.1) is denoted by S := {x : x ∈ S}
and the corresponding radial algebra representation in Am,0 is denoted by R(S).

This representation justifies the use of radial algebras in some applications related to
Clifford analysis. The number of elements to consider in S normally depends on the
application that is going to be treated. In this thesis it always suffices to use a finite
number of elements for S.

The simplest case is obtained for S = {x} in which case R(S) is mapped into the real
algebra of polynomials of the form xs, where x2s = (−|x|2)s and x2s+1 = x(−|x|2)s. To
have a non-trivial radial algebra for Clifford analysis, the above set of radially symmetric
functions xs is too limited. One at least needs objects of the form S = {x, u} where the
corresponding Clifford vectors are given by x→ x =

∑m
k=1 xkek and u→ u =

∑m
k=1 ukek.

Here the vector x is considered as the variable vector and u as a parameter vector.
The elements of the algebra R(S) clearly have the form F = A + Bx + Cu + Dx ∧
u where A,B,C,D are polynomials of the three variables x2, u2, x · u while x ∧ u =
1
2 [x, u]. With these two vector variables one can abstractly produce the so-called zonal
monogenic polynomials, see [44]. More in general a typical choice for S would be S =
{x1, . . . , xs} ∪ {u1, . . . , ut}, where the variables xj are the vector variables on which
functions depend and uj are additional parameter vectors. This choice for S is used
when studying monogenic functions in several vector variables x1, . . . , xs, see also [21].

The main difference between the Clifford algebra and the radial algebra lies in the fact
that the abstract vector variables x ∈ S have a merely symbolic nature; they are not
vectors belonging to an a priory defined vector space V with some dimension m and some
quadratic form on it.

Remark 2.1. The representation given in Example 2.1 maps elements in S to vector va-
riables defined in the vector space Rm which is endowed with the bilinear form B(ej , ek) =
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{ej , ek} = −2δj,k with signature (0,m). It is possible to obtain similar representations
considering Rm endowed with different bilinear forms. In particular, one can consider
the above bilinear form to have signature (p, q) (p+ q = m, p > 0). The Clifford algebra
associated to such a radial algebra representation is Rp,q := AlgR{ε1, . . . , εp, e1, . . . , eq}
governed by the rules {εj , εk} = 2δj,k, {εj , ek} = 0, {ej , ek} = −2δj,k.

Based on (2.2), we define for two vector variables x, y ∈ S the so-called dot product

x · y =
1

2
{x, y}. (2.3)

In the Clifford-polynomial representation, formula (2.2) shows that x · y = −〈x, y〉 where
〈x, y〉 =

∑m
j=1 xjyj is the Euclidean inner product in Rm.

In the study of the algebraic structure of R(S) also the wedge product of an arbitrary
number of vectors will play an important rôle; it is defined by

x1 ∧ . . . ∧ xk =
1

k!

∑
π

sgn(π) xπ(1) · · ·xπ(k), ∀x1, . . . , xk ∈ S,

where π runs over the group Sym(k) of all permutations of the set {1, . . . , k} and sgn(π)
denotes the sign of the permutation π.

As mentioned before, for the case of two vectors, this definition reduces to

x ∧ y =
1

2
[x, y], ∀x, y ∈ S. (2.4)

It can also be extended in a natural way to elements x1, . . . , xk ∈ 〈S〉 where 〈S〉 is the
R-vector space generated by S. The following properties then hold, see [66]; they are the
abstract counterparts of the corresponding properties in a Clifford algebra.

Lemma 2.1. Let x1, . . . , xk ∈ 〈S〉 then,

(i) xπ(1) ∧ . . . ∧ xπ(k) = sgn(π) x1 ∧ . . . ∧ xk;
(ii) x1 ∧ . . . ∧ xk is multilinear on 〈S〉;
(iii) x1 ∧ . . . ∧ xk = 0 if and only if x1, . . . , xk are linearly dependent;

(iv) in the set of vector variables S it holds that x1 ∧ . . .∧ xk = 0 if and only if xj = x`
for some pair j, ` ∈ {1, . . . , k}.

Lemma 2.2. Every element F (x1, . . . , x`) ∈ R(S), generated by variables x1, . . . , x` ∈ S,
can be written as

F (x1, . . . , x`) =
∑̀
k=0

∑
A

FA xj1 ∧ . . . ∧ xjk , (2.5)

where A = {j1, . . . , jk} with 1 ≤ j1 < . . . < jk ≤ `, the coefficients FA are linear
combinations of products of inner products xj · xr, and k = 0 corresponds to the real
term.
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Proof.

Since the element F (x1, . . . , x`) is, apart from a possible real term, a linear combination
of products of vector variables xk1

· · ·xks , it suffices to prove the lemma for such an
individual term. This is easily done by induction. The initial case s = 1 is trivial.
Assuming now that (2.5) is true for every product of at most s− 1 vector variables, the
product of s vectors leads to two different cases. First, if two indices in the above product
are equal, it reduces to

xk1
· · ·xks =

∑
scalar l.o.p.,

i.e., a linear combination of lower order products, on which the induction hypothesis can
be applied, whence the decomposition follows. If, on the other hand, we have s different
vector variables, as in x1 · · ·xs, we can directly see from (A1) that

sgn(π)xπ(1) · · ·xπ(s) = x1 . . . xs +
∑

scalar l.o.p.

whence x1 . . . xs = x1 ∧ . . .∧ xs +
∑

scalar l.o.p. and the decomposition again follows by
induction. �

The above lemma leads to the introduction of the k-vector structure of R(S) as follows.
Let R0(S) be the algebra generated by all scalar objects x · y, x, y ∈ S, called the scalar
subalgebra of R(S), which, by (A1), is contained in the center C(R(S)) of R(S). An
element F ∈ R(S) is called a k-vector if F may be written as a sum of elements of the
form b xj1 ∧ . . . ∧ xjk where b ∈ R0(S), xj` ∈ S. The space of all k-vectors is denoted by
Rk(S).

Remark 2.2. In the case k = 2, Rk(S) is the space of the so-called bivectors spanned
over R0(S) by the wedge product of two abstract vector variables in S, see (2.4). The
corresponding algebra of bivectors R(2)

0,m in the Clifford algebra R0,m consists of elements
of the form ∑

1≤j<k≤m

bj,k ejek, bj,k ∈ R.

The uniqueness of the decomposition (2.5) can be proven using the Clifford polynomial
representation for finitely generated radial algebras established in Example 2.1. It just
suffices to note that, for some particular choices of the dimension m of the underlying
vector space Rm, such a representation is an isomorphism. This characterization of
R{x1, . . . , x`} is given by the following result which was proven in [66].

Theorem 2.1. The map

· : R{x1, . . . , x`} → Alg{x1, . . . , x`}

defined in (2.1) is an algebra isomorphism if and only if m ≥ `.

Making use of the well-known properties of Clifford algebras we obtain the following
direct consequences.



13 2.3 Endomorphisms on the radial algebra

Corollary 2.1. Every element F ∈ R(S) may be decomposed in a unique way as a finite
sum of the form

F = [F ]0 + [F ]1 + . . .

where the operators [·]k : R(S) → Rk(S) : F → [F ]k project any given object into its
k-vector part.

Corollary 2.2. Let C(R(S)) denote the center of R(S), then the following holds:

(i) if S is infinite or has an even number of elements, then C(R(S)) = R0(S);

(ii) if S has an odd number of elements, say 2`+1, then C(R(S)) is generated by R0(S)
and the element x1 ∧ . . . ∧ x2`+1.

Corollary 2.3. The following computation rules for the product of a vector with a k-
vector hold:

(i) [x1 · · ·xk]k = x1 ∧ . . . ∧ xk;

(ii) xx1 ∧ . . . ∧ xk = [xx1 ∧ . . . ∧ xk]k−1 + [xx1 ∧ . . . ∧ xk]k+1;

(iii) [xx1 ∧ . . . ∧ xk]k+1 = x ∧ x1 ∧ . . . ∧ xk = 1
2

(
xx1 ∧ . . . ∧ xk + (−1)kx1 ∧ . . . ∧ xkx

)
;

(iv) [xx1 ∧ . . .∧ xk]k−1 = x · (x1 ∧ . . . ∧ xk) = 1
2

(
xx1 ∧ . . .∧ xk − (−1)kx1 ∧ . . .∧ xkx

)
,

and similarly for the right multiplication.

The proofs of the above results show that some identities in the radial setting can be
obtained in two ways: in a direct axiomatic way and by means of the Clifford-polynomial
representation. But this is possible only if the dimension of the chosen representation
is sufficiently high compared to the amount of vector variables involved. One example
of this issue is given by Theorem 2.1 but this is not the only one. Other conditions on
the dimension of the Clifford representation need to be considered in the study of other
problems like the Dirac complex, see for example [21, 65].

Through this thesis we mainly work with axiomatic proofs for radial algebra identities,
although some of them could be proven using the Clifford-polynomial representation. The
main reason for this is to show the computational strength of this method, independent
of a specific vector space for the vector variables.

2.3 Endomorphisms on the radial algebra

In this section, we introduce some important elements of the algebra of endomorphisms
End(R(S)) defined on the radial algebra R(S). They constitute an important piece of the
theory because, through the action of some radial algebra representations, they transform
into endomorphisms and operators of interest in classical analysis.
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Definition 2.3 (extension of Ψ from R(S) to End(R(S))). Let Ψ : R(S)→ R(Ψ(S))
be a radial algebra representation and let E ∈ End(R(S)) be an endomorphism leaving
the kernel of Ψ invariant, i.e.

E(ker Ψ) ⊂ ker Ψ, with ker Ψ := {F ∈ R(S) : Ψ(F ) = 0}. (2.6)

Then the action Ψ(E) of Ψ on E can be defined as the following endomorphism over
R(Ψ(S))

Ψ(E)[Ψ(F )] := Ψ(E[F ]), F ∈ R(S).

Remark 2.3. The compatibility condition (2.6) is necessary in order to have the en-
domorphism Ψ(E) well-defined. Indeed, Definition 2.3 is independent of the choice of
F ∈ R(S) if and only if for every pair F1, F2 ∈ R(S) such that Ψ(F1) = Ψ(F2) one has

Ψ(E(F1)) = Ψ(E(F2)), or equivalently, Ψ(E(F1 − F2)) = 0;

meaning that E(ker Ψ) ⊂ ker Ψ.

Observe that any injective radial algebra representation satisfies the condition (2.6) for
every E ∈ End(R(S)). This is the case of the Clifford-polynomial representation defined
in (2.1) if m ≥ `, see Theorem 2.1.

Remark 2.4. It is easily seen that Ψ : End(R(S)) → End(R(Ψ(S))) is an algebra ho-
momorphism, i.e.

Ψ(E1 ◦ E2) = Ψ(E1) ◦Ψ(E2).

2.3.1 Involutions and vector multiplication

Definition 2.4 (main involution and conjugation). The main involution ·̃ and the
conjugation · are defined on R(S) by the relations

FG = GF, F̃G = F̃ G̃, F,G ∈ R(S),

x = x̃ = −x, x ∈ S.

By direct computation the following properties are obtained.

Lemma 2.3. Let x1, . . . , xk ∈ S, f ∈ R0(S) and F ∈ R(S). Then

(i) ˜̃F = F = F and F̃ = F̃ ;

(ii) f̃ = f = f ;

(iii) ˜x1 ∧ . . . ∧ xk = (−1)kx1 ∧ . . . ∧ xk;

(iv) x1 ∧ . . . ∧ xk = (−1)
k(k+1)

2 x1 ∧ . . . ∧ xk = (−1)kxk ∧ . . . ∧ x1.
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It is easily seen that the above defined main involution and conjugation are mapped
by the Clifford-polynomial representation (see Definition 2.3 and Example 2.1) into the
classical main involution and conjugation; which are defined in R0,m by

ej1 · · · ejk = (−1)kejk · · · ej1 , ˜ej1 · · · ejk = (−1)kej1 · · · ejk .

Definition 2.5 (vector multiplication). With every x ∈ S one can associate the basic
endomorphisms on R(S):

x : F → xF, x| : F → F̃ x. (2.7)

The set S ∪ S| := {x, x| : x ∈ S} generates a subalgebra of End(R(S)) which we denote
by R(S ∪ S|) and which is subject to the rules

(A1|) {x, y|} = 0, {x, y} = −{x|, y|} ∀x, y ∈ S,
(A2|) {x, y} is a central element in R(S ∪ S|) ∀x, y ∈ S.

In the same way "right" versions of the above endomorphisms may be defined:

·x : F → Fx, ·x| : F → xF̃ .

The algebra Alg{·x, ·x| : x ∈ S} ⊂ End(R(S)) is isomorphic to R(S ∪ S|) and they are
connected by the relations:

·x = x| ◦ ·̃ , ·x| = x ◦ ·̃ .

Hence, in order to study the whole subalgebra of endomorphisms of R(S) given by com-
positions of vector multiplications, it is enough to consider one of both copies (right or
left) of R(S ∪ S|) in End(R(S)). From now on we will consider only the left one, which
is given by (2.7). In this way, it holds that R(S) ⊂ R(S ∪ S|) ⊂ End(R(S)).

Remark 2.5. The possibility of seeing R(S) as a subalgebra of End(R(S)) shows the
convenience of using the abuse of notation Ψ(E) for the action of the radial algebra
representation Ψ on the endomorphism E ∈ End(R(S)). Indeed, Definition 2.3 provides
an extension of Ψ from R(S) to End(R(S)).

In the language of Clifford algebras it is well known that End(R0,m) ∼= Rm,m. This iso-
morphism is given by the following identification between the generators of both algebras

ej ←→ ej : F 7→ ejF, j = 1, . . . ,m,

εj ←→ ej | : F 7→ F̃ ej , j = 1, . . . ,m. (2.8)

Then x| is mapped, by the Clifford-polynomial representation, to the endomorphism
defined by the Rm,0 Clifford vector variable x| =

∑m
j=1 xjεj through the above corres-

pondence.
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2.3.2 Directional derivatives

Definition 2.6 (directional derivatives). For every pair x, y ∈ S the operator Dy,x ∈
End(R(S)) is defined by

(DD1) Dy,x[FG] = Dy,x[F ]G+ FDy,x[G], ∀F,G ∈ R(S),

(DD2) Dy,x[z] = δx,z y, ∀z ∈ S,

where δx,z is the Kronecker delta

Remark 2.6. For x = y the operator Dx,x corresponds to the Euler operator Ex, mea-
suring the degree of homogeneity with respect to x, as expressed in the following lemma.

Lemma 2.4. In the product x1 · · ·x` the variable x ∈ S occurs k times if and only if

Ex[x1 · · ·x`] = k x1 · · ·x`

In particular, F ∈ R(S \ {x}) if and only if Ex[F ] = 0.

Proof.

The defining relations (DD1)-(DD2) yield

Ex[x1 · · ·x`] =
∑̀
j=1

x1 · · ·Ex[xj ] · · ·x` =

(∑̀
j=1

δx,xj

)
x1 · · ·x`

where the scalar appearing between brackets clearly counts the number of occurrences
of x. �

Lemma 2.5. The directional derivative Dy,x, x, y ∈ S, satisfies the following properties:

(i) Dy,x maps R0(S) into R0(S);

(ii) D̃y,x[F ] = Dy,x[F̃ ] for all F ∈ R(S);

(iii) Dy,x[F ] = Dy,x[F ] for all F ∈ R(S).

Proof.

(i) In view of (DD1) it suffices to prove the result for the generators of R0(S); hence,
consider {w, z} for an arbitrary pair w, z ∈ S. It is easily checked that

Dy,x[{w, z}] = δx,z{y, w}+ δx,w{y, z} ∈ R0(S).

(ii) Every element in R(S) can be written as a sum of elements of the form f1F1+xf2F2,
where f1, f2 ∈ R0(S) and F1, F2 ∈ R(S \ {x}). Hence, in order to prove the result,
it suffices to consider the canonical form1 F = f1F1 + xf2F2. It then holds that

D̃y,x[F ] = ˜Dy,x[f1]F1 + ˜Dy,x[f2]xF2 + f̃2yF2 = D̃y,x[f1]F̃1 − D̃y,x[f2]xF̃2 − f2yF̃2.

1This kind of decomposition is called canonical decomposition of F with respect to x.
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On the other hand, F̃ = f1F̃1 − f2xF̃2, whence

Dy,x[F̃ ] = Dy,x[f1]F̃1 −Dy,x[f2]xF̃2 − f2yF̃2.

The equality then follows from (i) and Lemma 2.3.

(iii) As above, we may take F = f1F1 + xf2F2, for which it holds that

Dy,x[F ] = Dy,x[f1]F1 +Dy,x[f2]xF2 + f2yF2 = F1Dy,x[f1]− F2xDy,x[f2]− F2yf2.

Here one has F = f1F1 − F2xf2, whence

Dy,x[F ] = F1Dy,x[f1]− F2yf2 − F2xDy,x[f2],

and the equality again follows from (i) and Lemma 2.3. �

These properties of the directional derivative Dy,x show that it behaves as a scalar first
order differential operator, and it is easily seen to be mapped by the Clifford-polynomial
representation to the scalar operator

Dy,x =

m∑
j=1

yj∂xj (2.9)

associated to the Clifford variables x and y. Also, the following commutation relations
with the vector multiplication endomorphisms hold.

Lemma 2.6. Let x, y, z ∈ S. Then

(i) [Dy,x, z] = δx,z y;

(ii) [Dy,x, z|] = δx,z y|.

2.3.3 Vector derivative

Definition 2.7 (vector derivative). Given x ∈ S, the left and right endomorphisms
∂x[·] and [·]∂x on R(S) are defined by the axioms

(D1) ∂x[fF ] = ∂x[f ]F + f∂x[F ],

[fF ]∂x = F [f ]∂x + f [F ]∂x, ∀f ∈ R0(S), ∀F ∈ R(S);

(D2) ∂x[G] = 0, ∂x[xG] = ∂x[x]G,

[G]∂x = 0, [Gx]∂x = G[x]∂x, ∀G ∈ R(S \ {x});

(D3) [∂xF ] ∂y = ∂x [F∂y] , ∀x, y ∈ S;

(D4) ∂x[x2] = [x2]∂x = 2x, ∀x ∈ S,
∂x{x, y} = {x, y}∂x = 2y, ∀y 6= x.
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Remark 2.7. It is tacitly assumed that, for any T ⊂ S with x ∈ T , the values of
∂x[F ] and [F ]∂x for F ∈ R(T ) do not depend on whether ∂x[·] or [·]∂x are considered as
elements of End(R(T )) or as elements of End(R(S)). This assumption is referred to as
an "unpronounced axiom" in [66].

This formal vector derivative ∂x is mapped by the Clifford-polynomial representation to
(minus) the classical Dirac operator (or gradient)

− ∂x = −
m∑
j=1

ej∂xj . (2.10)

Remark 2.8. By the canonical decomposition of F ∈ R(S) it is easily seen that, under
the assumption (D1), (D2) is equivalent to

∂x[FG] = ∂x[F ]G, [GF ]∂x = G[F ]∂x, ∀F ∈ R(S), ∀G ∈ R(S \ {x}). (2.11)

Theorem 2.2. The axioms (D1)-(D4) yield a consistent definition of the endomor-
phisms ∂x[·] and [·]∂x, mapping R0(S) into R1(S). Moreover, ∂x[x] = [x]∂x = m ∈ R.

Proof.

Observe that (D1)–(D3) are satisfied by every first order Clifford differential operator
with constant coefficients; the specific nature of the vector derivative is determined by
(D4). Again writing every element of R(S) as a sum of terms of the form F = f1F1 +
xf2F2, with fj ∈ R0(S), Fj ∈ R(S \ {x}), j = 1, 2, we have, on account of (D1) and
(D2), that

∂x[F ] = ∂x[f1]F1 + ∂x[f2]xF2 + f2∂x[x]F2,

whence ∂x is determined in the whole of R(S) by its action on R0(S) and on x. For the
scalar subalgebra R0(S) we only need to determine the action of ∂x on the generators
{y, z} with y, z ∈ S. By (D2) and (D4) we have

∂x{y, z} = 2(δz,xy + δy,xz) ∈ R1(S).

So we only still need to determine ∂x[x]. Using (D3) and (D4) we obtain

2∂x[x] = ∂x
[
x2∂x

]
=
[
∂xx

2
]
∂x = 2[x]∂x,

2∂x[x] = ∂x [{x, y}∂y] = [∂x{x, y}] ∂y = 2[y]∂y.

Hence, for any pair of vectors x, y ∈ S, it holds that ∂x[x] = ∂y[y], implying that ∂x[x]
equals a constant m ∈ R, and similarly for the right action. �

Remark 2.9. The parameter m = ∂x[x] = [x]∂x is called the abstract dimension of R(S).
In the R0,m-Clifford polynomial representation m gets mapped to −∂x[x] = m.

Similar to Lemma 2.5 we can prove the following properties.
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Lemma 2.7. Let x ∈ S and F ∈ R(S). Then

(i) ∂̃x[F ] = −∂x[F̃ ] and [̃F ]∂x = −[F̃ ]∂x;

(ii) ∂x[F ] = −[F ]∂x and [F ]∂x = −∂x[F ].

Remark 2.10. The property (ii) of the above Lemma shows that, unless explicitly needed,
it suffices to study only the left action of the operator ∂x (i.e. the endomorphism ∂x[·]),
since the right action is obtained after conjugation.

Theorem 2.3. Let x, y ∈ S. Then

(i) {∂x, y} = 2Dy,x + δx,ym;

(ii) {∂x, y} = ·{∂x, y}, where ·{∂x, y} denotes the right action of the operator {∂x, y},
i.e. [F ]{∂x, y} = [F ]∂xy + [Fy]∂x.

Proof.

(i) Consider F ∈ R(S) in its canonical decomposition as before; then

y∂x[F ] = y∂x[f1]F1 + y∂x[f2]xF2 + mf2yF2

∂x[yF ] = ∂x[f1]yF1 + δx,yf1mF1 + ∂x[f2]yxF2 + 2f2yF2 −mf2yF2 + δx,ymf2xF2,

whence
{∂x, y}[F ] = {∂x, y}[f1]F1 + {∂x, y}[f2]xF2 + 2f2yF2.

Similarly,

(2Dy,x + δx,ym) [F ] = (2Dy,x + δx,ym) [f1]F1 + (2Dy,x + δx,ym) [f2]xF2 + 2f2yF2.

It thus suffices to prove that {∂x, y} and 2Dy,x + δx,ym have the same action on
scalars, or still, on the generators of R0(S). But for each pair z, w ∈ S one has

{∂x, y} [{z, w}] = y∂x{z, w}+ ∂x{z, w}y + δx,ym{z, w}
= 2δz,x{y, w}+ 2δw,x{y, z}+ δx,ym{z, w}
= (2Dy,x + δx,ym) [{z, w}] .

(ii) The above result shows that {∂x, y} is a scalar operator, for which, on account of
Lemma 2.5, it holds that

{∂x, y}[F ] = {∂x, y}[F ],

for all F ∈ R(S). The proof then follows from Lemma 2.7:

[F ]{∂x, y} = [F ]∂x y + [Fy]∂x = y∂x[F ] + ∂x[yF ] = {∂x, y}[F ] = {∂x, y}[F ].

�
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The above theorem states that the operator {∂x, y} behaves as a scalar first order diffe-
rential operator. In addition, property (ii) allows us to define the directional derivative
Dy,x from the right by means of [·]Dy,x := Dy,x[·] as it is expected from an scalar opera-
tor. This theorem also provides an alternative approach for defining the vector derivative
∂x by recursion based on (i).

The following commutation relation with the directional derivatives holds.

Theorem 2.4. Let x, y, z ∈ S. Then [Dy,x, ∂z] = −δy,z∂x.

Proof.

Writing elements of R(S) in their canonical decomposition with respect to x, z ∈ S, viz.

F = f1F1 + f2xF2 + f3zF3 + f4xzF4, fj ∈ R0(S), Fj ∈ R (S \ {x, z}) , j = 1, . . . , 4,

we obtain by Lemma 2.5

Dy,x [∂z[F ]] = Dy,x [∂z[f1]]F1 +Dy,x [∂z[f2]]xF2 + ∂z[f2]yF2 + δx,zDy,x[f2]mF2

+Dy,x [∂z[f3]] zF3 + δx,z∂z[f3]yF3 +Dy,x[f3]mF3

+Dy,x [∂z[f4]]xzF4 + ∂z[f4]yzF4 + δx,z∂z[f4]xyF4

+ (2−m + δx,zm)Dy,x[f4]xF4 + (2−m + δx,zm)f4yF4,

while

∂z [Dy,x[F ]] = ∂z [Dy,x[f1]]F1 + ∂z [Dy,x[f2]]xF2 + δx,zDy,x[f2]mF2 + ∂z[f2]yF2 + δz,yf2mF2

+ ∂z [Dy,x[f3]] zF3 +Dy,x[f3]mF3 + δx,z∂z[f3]yF3 + δx,zδz,yf3mF3

+ ∂z [Dy,x[f4]]xzF4 + (2−m + δx,zm)Dy,x[f4]xF4 + ∂z[f4]yzF4

+ (2−m + δz,ym)f4yF4 + δx,z∂z[f4]xyF4 + (2δz,y + m− δz,ym)δx,zf4yF4.

Hence

[Dy,x, ∂z] [F ] = [Dy,x, ∂z] [f1]F1 + [Dy,x, ∂z] [f2]xF2 + [Dy,x, ∂z] [f3]zF3 + [Dy,x, ∂z] [f4]xzF4

− δz,y
(
f2mF2 + δx,zf3mF3 + (m + 2δz,x − δz,xm)f4yF4

)
,

and on the other hand,

−δz,y∂x[F ] = −δz,y∂x[f1]F1 − δz,y∂x[f2]xF2 − δz,y∂x[f3]zF3 − δz,y∂x[f4]xzF4

− δz,y
(
f2mF2 + δx,zf3mF3 + (m + 2δz,x − δz,xm)f4zF4

)
.

It thus suffices to prove the equality [Dy,x, ∂z] = −δy,z∂x in the scalar subalgebra R0(S).
Direct computation yields

[Dy,x, ∂z] [fg] = [Dy,x, ∂z] [f ]g + f [Dy,x, ∂z] [g], f, g ∈ R0(S),

whence we only have to consider the generators of R0(S), for which it indeed holds that:

[Dy,x, ∂z] {u,w} = Dy,x [2(δz,wu+ δz,uw)]− ∂z [δx,u{y, w}+ δx,w{y, u}]
= −2δz,y(δx,uw + δx,wu)

= −δy,z∂x{u,w}. �



21 2.3 Endomorphisms on the radial algebra

2.3.4 Other endomorphisms

In what follows we use, for x ∈ S, the endomorphisms

∂x : F → ∂xF, ∂x| : F → F̃ ∂x. (2.12)

The endomorphism ∂x| is mapped, by the Clifford-polynomial representation, to the
differential operator defined by

− ∂x| = −
m∑
j=1

εj∂xj , (2.13)

where we are considering the identifications (2.8) for the generators εj .

Theorem 2.5. Let x, y, z ∈ S. Then the following (anti-)commutation relations hold:

(i) {∂x, y} = −{∂x|, y|} = 2Dy,x + δx,ym;

(ii) [{∂x, y}, z] = 2δx,z y;

(iii) [{∂x, y}, ∂z] = −2δz,y ∂x;

(iv) {∂x, y|} = {∂x|, y} = 0 for x 6= y;

(v) {∂x, x|} = −{∂x|, x} = B, independent of x ∈ S.

Proof.

Properties (i)-(iv) are direct consequences of Lemmas 2.6, 2.7 and Theorems 2.3, 2.4.
Now, in order to prove (v), let us first show that {∂x, x|} = {∂x|, x}. By means of the
axioms (D1), (D3) and (D4) we easily obtain for every F ∈ R(S) that

F̃ x =
1

2

(
[x2F̃ ]∂x − x2[F̃ ]∂x

)
,

whence

{∂x, x|}[F ] = ∂x[F̃ x]− ∂x[F̃ ]x

=
1

2

([
∂x[x2F̃ ]

]
∂x − ∂x[x2][F̃ ]∂x − x2∂x

[
[F̃ ]∂x

])
− ∂x[F̃ ]x

= [xF̃ ]∂x − x[F̃ ]∂x +
1

2

(
∂x[F̃ ]2x+ x2

[
∂x[F̃ ]

]
∂x − x2∂x

[
[F̃ ]∂x

])
− ∂x[F̃ ]x

= [xF̃ ]∂x − x[F̃ ]∂x

= −{∂x|, x}[F ].

We now still need to prove that this result is independent of x. For a pair x, y ∈ S with
x 6= y we have

F̃ x =
1

2

(
[F̃{x, y}]∂y − {x, y}[F̃ ]∂y

)
,



2. Radial algebras 22

whence

{∂x, x|}[F ] =
1

2

(
∂x

[
[F̃{x, y}]∂y

]
− ∂x

[
{x, y}[F̃ ]∂y

])
− ∂x[F̃ ]x

=
1

2

([
2yF̃ + {x, y}∂x[F̃ ]

]
∂y − 2y[F̃ ]∂y − {x, y}∂x

[
[F̃ ]∂y

])
− ∂x[F̃ ]x

= [yF̃ ]∂y − y[F̃ ]∂y +
1

2

(
∂x[F̃ ]2x+ {x, y}

[
∂x[F̃ ]

]
∂y − {x, y}∂x

[
[F̃ ]∂y

])
− ∂x[F̃ ]x

= [yF̃ ]∂y − y[F̃ ]∂y

= −{∂y|, y}[F ],

completing the proof. �

Remark 2.11. The new operator B is mapped by the Clifford-polynomial representation
to the R0,m-valued operator

F → −
m∑
j=1

ejF̃ ej ,

the latter being the realization in End(R0,m) ∼= Rm,m of the bivector B = −
∑m
j=1 ejεj if

one takes into account the correspondences (2.8).

Theorem 2.6. Let x, y ∈ S, f ∈ R0(S), v ∈ R1(S) and F ∈ R(S). Then,

(i) B̃[F ] = B[F̃ ] and B[F ] = B[F ];

(ii) B[fF ] = fB[F ];

(iii) [B, x] = −2x| and [B, x|] = −2x;

(iv) B[vF ] = vB[F ]− 2F̃ v and B[Fv] = B[F ]v − 2vF̃ ;

(v) [Dy,x, B] = 0;

(vi) [B, ∂x] = −2∂x| and [B, ∂x|] = −2∂x.

Proof.

(i) By direct calculation we obtain:

B̃[F ] = ∂̃x[F̃ x]− ∂̃x[F̃ ]x = ∂x[Fx]− ∂x[F ]x = B[F̃ ],

B[F ] = ∂x[F̃ x]− ∂x[F̃ ]x =
[
xF̃

]
∂x − x

[
F̃
]
∂x = B[F ].

(ii) Also here, direct calculation yields the desired property:

B[fF ] = ∂x[fF̃x]− ∂x[fF̃ ]x = f(∂x[F̃ x]− ∂x[F̃ ]x) = fB[F ].
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(iii) Observe that

xB[F ] = x[xF̃ ]∂x − x2[F̃ ]∂x,

B[xF ] = [xx̃F ]∂x − x[x̃F ]∂x = −[x2F̃ ]∂x + x[xF̃ ]∂x

= −2F̃ x− x2[F̃ ]∂x + x[xF̃ ]∂x,

whence [B, x][F ] = −2F̃ x = −2x|[F ]. On the other hand,

x|B[F ] = B̃[F ]x = ∂x[Fx]x− ∂x[F ]x2,

B[x|F ] = B[F̃ x] = ∂x[
˜̃
Fxx]− ∂x[

˜̃
Fx]x = −2xF − x2∂x[F ] + ∂x[Fx]x,

from which it follows that [B, x|][F ] = −2xF .

(iv) If v ∈ R1(S) then we can write v =
∑s
j=1 fjxj where fj ∈ R0(S) and xj ∈ S. Both

equalities then directly follow from the linearity of B and properties (ii)-(iii).

(v) By means of Lemma 2.6 and Theorem 2.4 we obtain for B = {∂z, z|} that

[Dy,x, B] = [Dy,x, ∂z z|] + [Dy,x, z| ∂z]
= [Dy,x, ∂z] z|+ ∂z[Dy,x, z|] + [Dy,x, z|]∂z + z| [Dy,x, ∂z]

= −δy,z∂x z|+ δx,z∂z y|+ δx,zy| ∂z − δy,zz| ∂x
= δx,z{∂z, y|} − δz,y{∂x, z|}

which equals zero for any z ∈ S, on account of Theorem 2.5.

(vi) Consider F in its canonical decomposition with respect to x. Then by (ii) and (iv)
we have

B[∂xF ] = B[∂x[f1]F1] +B[∂x[f2]xF2] + f2mB[F2]

= ∂x[f1]B[F1]− 2F̃1∂x[f1]

+ ∂x[f2]xB[F2]− 2∂x[f2]F̃2x+ 2xF̃2∂x[f2] + f2mB[F2].

Also, in view of property (v) and since Fj ∈ R(S \ {x}) we get

Ex[B[Fj ]] = B[Ex[Fj ]] = 0,

whence B[Fj ] ∈ R(S \ {x}) and

∂x[B[F ]] = ∂x [f1B[F1] + f2B[xF2]] = ∂x

[
f1B[F1] + f2xB[F2]− 2f2F̃2x

]
= ∂x[f1]B[F1] + ∂x[f2]xB[F2] + f2mB[F2]− 2∂x[f2]F̃2x− 2f2∂x[F̃2x].

It then follows that

[B, ∂x][F ] = −2F̃1∂x[f1] + 2xF̃2∂x[f2] + 2f2∂x[F̃2x],
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while on the other hand,

−2∂x|[F ] = −2[F̃ ]∂x = −2
(
F̃1[f1]∂x − xF̃2[f2]∂x − f2[xF̃2]∂x

)
.

But, since F2 ∈ R(S \ {x}) we obtain:

∂x[F̃2x] = ∂x[F̃2x]− ∂x[F̃2]x = B[F2] = [xF̃2]∂x − x[F̃2]∂x = [xF̃2]∂x,

which proves the first equality. The other equality can be proven in a similar
way using the (right) canonical decomposition of F with respect to x, i.e. F =
f1F1 + f2F2x. �

These properties allow us to conclude that the second order operator {∂x, ∂y} behaves,
as expected, as a scalar operator. In fact, it is mapped by the Clifford polynomial
representation to −2

∑m
j=1 ∂xj∂yj . The next result illustrates the scalar behavior of

{∂x, ∂y} in the radial algebra.

Theorem 2.7. Let x, y, z ∈ S and F ∈ R(S). Then

(i) [{∂x, ∂y}, z] = 2 (δx,z∂y + δy,z∂x);

(ii) {∂x, ∂y}[F ] = {∂x, ∂y}[F ];

(iii) {∂x, ∂y} = ·{∂x, ∂y}.

Proof.

(i) On account of Theorems 2.3 and 2.4 we obtain that:

{∂x, ∂y}z = ∂x∂yz + ∂y∂xz

= ∂x (−z∂y + 2Dz,y + δy,zm) + ∂y (−z∂x + 2Dz,x + δx,zm)

= −∂xz∂y − ∂yz∂x + 2∂xDz,y + δy,zm∂x + 2∂yDz,x + δx,zm∂y

= z{∂x, ∂y} − 2 [Dz,x, ∂y]− 2 [Dz,y, ∂x]

= z{∂x, ∂y}+ 2 (δx,z∂y + δy,z∂x) .

(ii) It suffices to prove this property for products of the form xj1 · · ·xjk with xj` ∈ S;
this is done by induction on the number of vectors. The case k = 1 is trivial. Now,
suppose that (ii) holds for F ∈ R(S) (F being a product of k− 1 vectors) then we
have to prove that

{∂x, ∂y}[zF ] = {∂x, ∂y}[zF ]

for every z ∈ S. From (i) it follows that

{∂x, ∂y}[zF ] = −{∂x, ∂y}[F ]z − 2δx,z[F ]∂y − 2δy,z[F ]∂x.
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Theorem 2.5 now yields that {∂x, z|} = δx,zB which implies

∂x[Fz] = ∂x[F ]z + δx,zB[F̃ ]

for every x, z ∈ S, F ∈ R(S). Then, using Theorem 2.6 (vi), we obtain

{∂x, ∂y}[zF ] = −
(
∂x
[
∂y[Fz]

]
+ ∂y

[
∂x[Fz]

])
= −∂x

[
∂y[F ]z + δy,zB[F̃ ]

]
− ∂y

[
∂x[F ]z + δx,zB[F̃ ]

]
= −{∂x, ∂y}[F ]z + δx,z [B, ∂y] [F̃ ] + δy,z [B, ∂x] [F̃ ]

= −{∂x, ∂y}[F ]z − 2δx,z[F ]∂y − 2δy,z[F ]∂x

= {∂x, ∂y}[zF ].

(iii) This is a direct consequence of Lemma 2.7 and the previous property. �

Thus, the endomorphisms {∂x, ∂x| : x ∈ S} generate a subalgebra of End(R(S)), subject
to the rules

{∂x, ∂y|} = 0, {∂x, ∂y} = −{∂x|, ∂y|}.

Crucial in harmonic analysis is the appearance of the Lie algebra sl(2) generated by the
Laplace operator and the norm of the vector variable. Similarly, in Euclidean Clifford
analysis one obtains a representation of the Lie superalgebra osp(1|2) with odd genera-
tors given by the Dirac operator and the vector variable. Both results can be obtained
in the radial algebra level as a consequence of Theorems 2.3, 2.4, 2.7 and Lemma 2.6.

Proposition 2.1. Let x ∈ S, then the operators x2, ∂2
x ∈ End(R(S)) generate the Lie

algebra sl(2). In particular, the representation sl(2) ⊂ End(R(S)) is given by the corre-
spondences

H =
1

2

(
Ex +

m

2

)
,

E+ =
x2

2
,

E− = −∂
2
x

2
,

where

[E+, E−] = 2H,

[H ,E±] = ±E±.
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Proposition 2.2. Let x ∈ S, then the operators x, ∂x ∈ End(R(S)) are odd generators
of the Lie superalgebra osp(1|2). In particular, the representation osp(1|2) ⊂ End(R(S))
is given by the correspondences

H =
1

2

(
Ex +

m

2

)
, F+ =

x

2
√

2
,

E+ =
x2

2
, F− =

∂x

2
√

2
,

E− = −∂
2
x

2
,

where

[E+, E−] = 2H, [H ,F±] = ±1

2
F±, {F±, F±} = ±1

2
E±,

[H ,E±] = ±E±, [E±, F∓] = −F±, {F+, F−} =
1

2
H,

[E±, F±] = 0.

2.4 Endomorphisms on R(S ∪ S|, B)

From the observations above on the endomorphisms of R(S) it follows that

R(S) ⊂ R(S ∪ S|) ⊂ R(S ∪ S|, B) ⊂ End(R(S)),

where R(S ∪ S|, B) is the algebra generated by the set of endomorphisms S ∪ S| ∪ {B}.
Making use of the isomorphism Rm,m ∼= End(R0,m) given by the relations (2.8), one
obtains that R(S ∪ S|, B) is mapped by the Clifford-polynomial representation to the
algebra R(S ∪ S|, B) generated by the bivector B = −

∑m
j=1 ejεj and Clifford vector

variables of the form

x =

m∑
j=1

xjej , x| =
m∑
j=1

xjεj .

The representation R(S ∪ S|, B) is included in the algebra of Rm,m-valued polynomials
and naturally admits the action of the operators Dy,x, ∂x, ∂x| defined in (2.9), (2.10)
and (2.13), respectively.

In this section we establish the same consistent extensions on the radial algebra level.
These results will used in relation with a complex structure in Section 2.6 and Section
3.3. We extend the definitions of Dy,x, ∂x, ∂x| from the initial radial algebra R(S) to
R(S∪S|, B) preserving the meaning ofDy,x as a directional derivative and of ∂x and ∂x| as
vector derivatives. This means, for example, that we have to redefine ∂x| on R(S∪S|, B)
such that it behaves as the abstract equivalent of −

∑m
j=1 εj∂xj acting on Rm,m-valued
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functions. Clearly this implies that we cannot simply apply the canonical embedding of
End(R(S)) in End(End(R(S))) by means of the composition of endomorphisms.

As stated in the previous section, we can embed R(S ∪ S|, B) in End(R(S)) by means
of left or right representations of the operators x, x|. Since both representations are
isomorphic, we will continue to consider only the left one.

2.4.1 Extension of the directional derivative

First we will extend the definition of Dy,x for x, y ∈ S to R(S ∪ S|) assuming the axiom
(DD1) valid for every pair F,G ∈ R(S ∪ S|) and extending (DD2) as follows

(DD2) Dy,x[z] = δx,z y, Dy,x[z|] = δx,z y|, z ∈ S.

Then it is easy to prove the following result.

Lemma 2.8. The extension Dy,x : R(S∪S|)→ End(R(S)) satisfies Dy,x[A] = [Dy,x, A],
for all A ∈ R(S ∪ S|).

Proof.

In view of Lemma 2.6 we have

[Dy,x, z] = δx,z y = Dy,x[z], [Dy,x, z|] = δx,z y| = Dy,x[z|].

The result then follows by induction since for every pair A,C ∈ R(S ∪ S|) it holds that

[Dy,x, AC] = [Dy,x, A]C +A [Dy,x, C] .

�

This property allows us to extend the notion of directional derivative to the whole space
End(R(S)) by Dy,x[A] := [Dy,x, A] for all A ∈ End(R(S)). Properties of this extension
are:

• Dy,x maps R(S) into R(S) and R(S|) into R(S|);

• Dy,x[∂z] = [Dy,x, ∂z] = −δy,z∂x;

• Dy,x[B] = [Dy,x, B] = 0.

2.4.2 Extension of the vector derivative

In order to define a consistent action of the vector derivatives on R(S ∪ S|) we have to
keep in mind that every element of R(S ∪ S|) acts on R(S) basically as a multiplication.
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In Clifford analysis the action of the Dirac operator on a product of Clifford-valued
functions is given by

∂x[AF ] = ∂x[A]F +
◦
∂x[A

◦
F ],

where we used the so-called Hestenes overdot notation:

◦
∂x[A

◦
F ] =

m∑
j=0

ejA∂xj [F ].

This inspires us for the abstract definition of ∂x and ∂x| on R(S ∪ S|).

Definition 2.8. The operators ∂x·, ∂x|· : R(S ∪ S|)→ End(R(S)) are defined as follows

∂x(A)[F ] = ∂x [A[F ]]−
◦
∂x[A[

◦
F ]], ∀A ∈ R(S ∪ S|), ∀F ∈ R(S),

∂x|(A)[F ] = ∂x| [A[F ]]−
◦
∂x|[A[

◦
F ]], ∀A ∈ R(S ∪ S|), ∀F ∈ R(S),

where the abstract overdot action is defined recursively by

(OD1)
◦
∂x[1[

◦
F ]] = ∂x[F ]

(OD|1)
◦
∂x|[1[

◦
F ]] = ∂x|[F ]

(OD2)
◦
∂x[yA[

◦
F ]] = −y

◦
∂x[A[

◦
F ]] + 2A[Dy,x[F ]]

(OD|2)
◦
∂x|[yA[

◦
F ]] = −y

◦
∂x|[A[

◦
F ]]

(OD3)
◦
∂x[y|A[

◦
F ]] = −y|

◦
∂x[A[

◦
F ]]

(OD|3)
◦
∂x|[y|A[

◦
F ]] = −y|

◦
∂x|[A[

◦
F ]]− 2A[Dy,x[F ]].

Remark 2.12. The defining rules (OD1)- (OD|3) for the abstract overdot action are
clearly inspired by the corresponding similar actions in the Clifford setting. For instance,
the relation (OD2) corresponds to the following property in the Clifford representation.

−
◦
∂x[yA

◦
F ] = −

m∑
j=1

ejyA∂xj [F ]

= −
m∑
j=1

(−yej − 2yj)A∂xj [F ]

= y

m∑
j=1

ejA∂xj [F ] + 2A

m∑
j=1

yj∂xj [F ]

= −y
(
−
◦
∂x[A

◦
F ]

)
+ 2ADy,x[F ].

It now is easy to derive the recursive formulae for ∂x and ∂x|.
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Theorem 2.8. Let A ∈ R(S ∪ S|) then

(i) ∂x[yA] = −y∂x[A] + 2Dy,x[A] + δx,ymA;

(ii) ∂x[y|A] = −y|∂x[A] + δx,yBA;

(iii) ∂x|[yA] = −y∂x|[A]− δx,yBA;

(iv) ∂x|[y|A] = −y|∂x|[A]− 2Dy,x[A]− δx,ymA.

Proof.

By Theorems 2.3 and 2.5 and Lemma 2.8 we obtain for every F ∈ R(S) that

∂x(yA)[F ] = ∂x [yA[F ]]−
◦
∂x[yA[

◦
F ]]

= −y∂x[A[F ]] + 2Dy,x[A[F ]] + δx,ymA[F ] + y
◦
∂x[A[

◦
F ]]− 2A[Dy,x[F ]]

= −y(∂x[A[F ]]−
◦
∂x[A[

◦
F ]]) + 2 [Dy,x, A] [F ] + δx,ymA[F ]

= (−y∂x[A] + 2Dy,x[A] + δx,ymA)[F ],

and also

∂x(y|A)[F ] = ∂x [y|A[F ]]−
◦
∂x[y|A[

◦
F ]]

= −y|∂x[A[F ]] + δx,yB[A[F ]] + y|
◦
∂x[A[

◦
F ]]

= −y|∂x(A)[F ] + δx,yB[A[F ]].

Moreover,

∂x|(yA)[F ] = ∂x| [yA[F ]]−
◦
∂x|[yA[

◦
F ]]

= −y∂x|[A[F ]]− δx,yB [A[F ]] + y
◦
∂x|[A[

◦
F ]]

= −y∂x|(A)[F ]− δx,yB[A[F ]],

and

∂x|(y|A)[F ] = ∂x| [y|A[F ]]−
◦
∂x|[y|A[

◦
F ]]

= −y|∂x|[A[F ]]− 2Dy,x[A[F ]]− δx,ymA[F ] + y|
◦
∂x|[A[

◦
F ]] + 2A[Dy,x[F ]]

= −y|(∂x|[A[F ]]−
◦
∂x|[A[

◦
F ]])− 2 [Dy,x, A] [F ]− δx,ymA[F ]

= (−y|∂x|[A]− 2Dy,x[A]− δx,ymA)[F ].

�
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These recursive relations thus provide an alternative definition of the left operators ∂x
and ∂x| on R(S∪S|). A similar approach is possible for the right operators ·∂x, and ·∂x|,
which can be defined by [1]∂x = 0 = [1]∂x| and

[Ay]∂x = −[A]∂x y + 2Dy,x[A] + δx,ymA;

[Ay|]∂x = −[A]∂x y| − δx,yAB; (2.14)
[Ay]∂x| = −[A]∂x| y + δx,yAB;

[Ay|]∂x| = −[A]∂x| y| − 2Dy,x[A]− δx,ymA.

Remark 2.13. As for the left actions, the recursive relations (2.14) for the right actions
of the operators ∂x and ∂x| are inspired by similar properties that hold in the Clifford
setting. For example, the last relation in (2.14) corresponds to the following Clifford
property:

−[Ay|]∂x| = −
m∑
j=1

∂xj [Ay|]εj

= −
m∑
j=1

(
∂xj [A] y| εj + δx,yA

)
= −

m∑
j=1

∂xj [A]
(
−εj y|+ 2yj

)
− δx,ymA

= −
(
−[A]∂x|

)
y| − 2Dy,x[A]− δx,ymA.

Taking into account also the mapping properties of Dy,x it can easily be verified that:

• ∂x : R(S) 7→ R(S);

• ∂x| : R(S|) 7→ R(S|);
• ∂x, ∂x| : R(S ∪ S|) 7→ R(S ∪ S|, B).

We may thus extend the definition of ∂x and ∂x| to R(S∪S|, B). To this end, we first need
to define ∂x[B], ∂x|[B] and then to find the corresponding recursion formulae involving
B. In order to evaluate the action of the vector derivatives on B we will extend their
domain of definition.

Definition 2.9. [operator independent of x] An operator A ∈ End(R(S)) is called
independent of x ∈ S if

Ex[A] ≡ [Ex, A] = 0.

The subalgebra of endomorphisms independent of x is denoted by Ix.

For an Rm,m-valued polynomial A, independent of the vector variable x in the Clifford-
polynomial representation, we have

∂x[AF ] =

m∑
j=0

ej∂xj [AF ] =

m∑
j=0

ejA∂xj [F ] =
◦
∂x[A

◦
F ],
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whence it seems logical to define on the abstract radial algebra level the overdot action
of ∂x, ∂x| on elements of Ix in the canonical way by means of composition, meaning that

◦
∂x[A[

◦
F ]] := ∂x[A[F ]],

◦
∂x|[A[

◦
F ]] := ∂x| [A[F ]] for all A ∈ Ix.

As a consequence, Definition 2.8 gives,

∂x[A] = ∂x|[A] = 0, for all A ∈ Ix.

Since Theorem 2.6 (v) states that B ∈ Ix for all x ∈ S, it follows that ∂x[B] = ∂x|[B] = 0.

We now are able to define ∂x and ∂x| on R(S ∪ S|, B) using Definition 2.8 for every
A ∈ R(S ∪S|, B) and extending the definition of the overdot action to R(S ∪S|, B). Ad-
ditionally to the axioms (OD1)-(OD3), (OD|1)-(OD|3), two new axioms are needed,
prescribing the corresponding recursion relations involving B:

(OD4)
◦
∂x[BA[

◦
F ]] = B

◦
∂x[A[

◦
F ]] + 2

◦
∂x|[A[

◦
F ]],

(OD|4)
◦
∂x|[BA[

◦
F ]] = B

◦
∂x|[A[

◦
F ]] + 2

◦
∂x[A[

◦
F ]].

Then the results of Theorem 2.8 remain valid, together with the new relations

∂x[BA] = B∂x[A] + 2∂x|[A], ∂x|[BA] = B∂x|[A] + 2∂x[A]. (2.15)

Indeed, in view of Theorem 2.6, one easily obtains, for every F ∈ R(S), that

∂x(BA)[F ] = ∂x[BA[F ]]−
◦
∂x[BA[

◦
F ]]

= B∂x[A[F ]] + 2∂x|[A[F ]]−
(
B
◦
∂x[A[

◦
F ]] + 2

◦
∂x|[A[

◦
F ]]

)
= B

(
∂x[A[F ]]−

◦
∂x[A[

◦
F ]]

)
+ 2

(
∂x|[A[F ]]−

◦
∂x|[A[

◦
F ]]

)
= (B∂x[A] + 2∂x|[A]) [F ],

and also,

∂x|(BA)[F ] = ∂x|[BA[F ]]−
◦
∂x|[BA[

◦
F ]]

= B∂x|[A[F ]] + 2∂x[A[F ]]−
(
B
◦
∂x|[A[

◦
F ]] + 2

◦
∂x[A[

◦
F ]]

)
= B

(
∂x|[A[F ]]−

◦
∂x|[A[

◦
F ]]

)
+ 2

(
∂x[A[F ]]−

◦
∂x[A[

◦
F ]]

)
= (B∂x|[A] + 2∂x[A]) [F ].

Again we can define the right versions ·∂x, ·∂x| on R(S ∪ S|, B) in a similar way, where

[AB]∂x = [A]∂xB − 2[A]∂x| [AB]∂x| = [A]∂x|B − 2[A]∂x.
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Remark 2.14. As in the previous definitions, the above relations are inspired by similar
properties in the Clifford setting. In particular, one has

−[AB]∂x = −
m∑
j=1

∂xj [A]B ej = −
m∑
j=1

∂xj [A] (ejB − 2εj) =
(
−[A]∂x

)
B − 2

(
−[A]∂x|

)
.

Indeed, it suffices to observe that B = −
∑m
j=1 ejεj and in consequence, [B, ej ] = −2εj.

Following the previous recursive approach it now is possible to prove similar properties
to (D1)-(D4).

Theorem 2.9. The algebra R(S ∪ S|, B) is subject to (A1|) and moreover

(A2|) {x, y} is a central element in R(S ∪ S|, B), ∀x, y ∈ S.
(A3|) [B, x] = −2x|, [B, x|] = −2x, ∀x ∈ S.

In addition, ∂x, ∂x| ∈ End(R(S ∪ S|, B)) are such that

(D1|) ∂x[fF ] = ∂x[f ]F + f∂x[F ], ∂x|[fF ] = ∂x|[f ]F + f∂x|[F ],

[fF ]∂x = F [f ]∂x + f [F ]∂x, [fF ]∂x| = F [f ]∂x|+ f [F ]∂x|,
f ∈ R0(S ∪ S|) := AlgR {{x, y} : x, y ∈ S ∪ S|} = R0(S), F ∈ R(S ∪ S|, B),

(D2|) ∂x[FG] = ∂x[F ]G, [GF ]∂x = G[F ]∂x, G ∈ R
(

(S \ {x}) ∪ (S| \ {x|}) , B
)
,

∂x|[FG] = ∂x|[F ]G, [GF ]∂x| = G[F ]∂x|,

(D3|) ∂x[x] = −∂x|[x|] = [x]∂x = −[x|]∂x| = m,

∂x[x|] = −∂x|[x] = B = −[x|]∂x = [x]∂x|,

(D4|) ∂x[x2] = [x2]∂x = 2x, ∂x|[x|2] = [x|2]∂x| = −2x|, x ∈ S,
∂x{x, y} = {x, y}∂x = 2y, ∂x|{x|, y|} = {x|, y|}∂x| = −2y|, x 6= y.

(D5|) [B, ∂x] = −2∂x|, [B, ∂x|] = −2∂x.

The operator ∂x thus is the vector derivative in R(S) and ∂x| is the vector derivative in
R(S|).

Proof.

Properties (A1|) and (A3|) were previously obtained, as is the case for the commutation
of {x, y} with every element of S∪S|, meaning that for (A2|) we only still have to check
the commutation of {x, y} with B:

[B, {x, y}] = [B, x]y + x[B, y] + [B, y]x+ y[B, x] = −2{x|, y} − 2{x, y|} = 0.

Let us now compute the basic evaluations, starting with (D3|)-(D4|):
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• ∂x[x] = −∂x|[x|] = [x]∂x = −[x|]∂x| = m.

Observe that by (OD2) we have
◦
∂x[x

◦
F ] = −x∂x[F ] + 2Ex[F ], whence Theorem

2.3 yields

∂x(x)[F ] = ∂x[xF ]−
◦
∂x[x

◦
F ] = −x∂x[F ] + 2Ex[F ] + mF −

◦
∂x[x

◦
F ] = mF,

implying that ∂x[x] = m. In a similar way [x]∂x = −∂x|[x|] = −[x|]∂x| = m are
proven.

• ∂x[x2] = [x2]∂x = 2x, ∂x|[x|2] = [x|2]∂x| = −2x|.

It is easy to check that
◦
∂x[x2

◦
F ] = −x

◦
∂x[x

◦
F ] + 2xEx[F ] = x2∂x[F ]. Then

∂x(x2)[F ] = ∂x[x2F ]−
◦
∂x[x2

◦
F ] = 2xF + x2∂x[F ]− x2∂x[F ] = 2xF

implying that ∂x[x2] = 2x, while for the right action

[x2]∂x = −[x]∂x x+ 2Ex[x] + mx = 2x.

The corresponding properties for ∂x| are proven in a similar way.

• ∂x{x, y} = {x, y}∂x = 2y, ∂x|{x|, y|} = {x|, y|}∂x| = −2y|, x 6= y.

In this case, it holds that

◦
∂x[{x, y}

◦
F ] =

◦
∂x[xy

◦
F ] +

◦
∂x[yx

◦
F ]

= −x
◦
∂x[y

◦
F ] + 2yEx[F ]− y

◦
∂x[x

◦
F ] + 2xDy,x[F ]

= x (y∂x[F ]− 2Dy,x[F ]) + 2yEx[F ] + y (x∂x[F ]− 2Ex[F ]) + 2xDy,x[F ]

= {x, y}∂x[F ],

whence
∂x({x, y})[F ] = ∂x [{x, y}F ]−

◦
∂x[{x, y}

◦
F ] = 2yF,

implying that ∂x{x, y} = 2y. On the other hand,

{x, y}∂x = [xy]∂x + [yx]∂x = −[x]∂x y + 2Dy,x[x]− [y]∂x x+ 2Ex[y] + my = 2y.

Again, the proof of the corresponding properties for ∂x| runs along similar lines.

• ∂x[x|] = −∂x|[x] = B = −[x|]∂x = [x]∂x|
On account of Theorem 2.5 we have

∂x(x|)[F ] = ∂x[x|F ]−
◦
∂x[x|

◦
F ] = ∂x[x|F ] + x| ∂x[F ] = {∂x, x|}[F ] = B[F ],

∂x|(x)[F ] = ∂x|[xF ]−
◦
∂x|[x

◦
F ] = ∂x|[xF ] + x ∂x|[F ] = {∂x|, x}[F ] = −B[F ].

On the other hand [x|]∂x = −[1]∂x x| −B = −B, and [x]∂x| = −[1]∂x|x+B = B.
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Next we check (D1|).

In view of (A1|) it holds that R0(S ∪S|) = R0(S). It now suffices to prove the property
for the generators of R0(S), since, if f, g ∈ R0(S) satisfy (D1|) for every F ∈ R(S ∪ S|),
we have

∂x[fgF ] = (∂x[f ]g + f∂x[g])F + fg∂x[F ] = ∂x[fg]F + fg∂x[F ],

[fgF ]∂x = F (g [f ]∂x + f [g]∂x) + fg [F ]∂x = F [fg]∂x + fg [F ]∂x,

∂x|[fgF ] = (∂x|[f ]g + f∂x|[g])F + fg∂x|[F ] = ∂x|[fg]F + fg∂x|[F ],

[fgF ]∂x| = F (g [f ]∂x|+ f [g]∂x|) + fg [F ]∂x| = F [fg]∂x|+ fg [F ]∂x|,

whence also fg satisfies (D1|).

Now, invoking Theorem 2.8, we obtain for every pair y, z ∈ S and F ∈ R(S ∪ S|) that:

∂x[{y, z}F ] = ∂x[yzF ] + ∂x[zyF ]

= −y∂x[zF ] + 2Dy,x[zF ] + δx,ymzF − z∂x[yF ] + 2Dz,x[yF ] + δx,zmyF

= −y (−z∂x[F ] + 2Dz,x[F ] + δx,zmF ) + 2zDy,x[F ] + 2δx,zyF + δx,ymzF

− z (−y∂x[F ] + 2Dy,x[F ] + δx,ymF ) + 2yDz,x[F ] + 2δx,yzF + δx,zmyF

= {y, z}∂x[F ] + 2 (δx,zy + δx,yz)F

= {y, z}∂x[F ] + ∂x[{y, z}]F,

and also, in view of (A3|),

∂x|[{y, z}F ] = ∂x|[yzF ] + ∂x|[zyF ]

= −y∂x|[zF ]− δx,yBzF − z∂x|[yF ]− δx,zByF
= −y (−z∂x|[F ]− δx,zBF )− δx,yBzF − z (−y∂x|[F ]− δx,yBF )− δx,zByF
= {y, z}∂x|[F ]− δx,z[B, y]F − δx,y[B, z]F

= {y, z}∂x|[F ] + 2 (δx,zy|+ δx,yz|)F
= {y, z}∂x|[F ] + ∂x|[{y, z}] F.

In the same way, using now (2.14), we get

[{y, z}F ]∂x = [Fyz]∂x + [Fzy]∂x

= −[Fy]∂x z + 2Dz,x[Fy] + δz,xmFy − [Fz]∂x y + 2Dy,x[Fz] + δy,xmFz

= − (−[F ]∂x y + 2Dy,x[F ] + δy,xmF ) z + 2Dz,x[F ]y + 2δx,yFz + δz,xmFy

− (−[F ]∂x z + 2Dz,x[F ] + δz,xmF ) y + 2Dy,x[F ]z + 2δx,zFy + δy,xmFz

= [F ]∂x {y, z}+ 2F (δx,yz + δx,zy)

= [F ]∂x {y, z}+ F [{y, z}]∂x,
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and moreover, in view of (A3|),

[{y, z}F ]∂x| = [Fyz]∂x|+ [Fzy]∂x|
= −[Fy]∂x| z + δx,zFyB − [Fz]∂x| y + δx,yFzB

= − (−[F ]∂x| y + δx,yFB) z + δx,zFyB − (−[F ]∂x| z + δx,zFB) y + δx,yFzB

= [F ]∂x| {y, z} − δx,yF [B, z]− δx,zF [B, y]

= [F ]∂x| {y, z}+ 2F (δx,zy|+ δx,yz|)
= [F ]∂x| {y, z}+ F [{y, z}]∂x|.

Then the validity of (D1|) follows from the previous computations.

In order to prove (D2|), first note that all x, y ∈ S with y 6= x we have

∂x[y] = −y∂x[1] + 2Dy,x[1] = 0, ∂x[y|] = −y|∂x[1] = 0,

∂x|[y] = −y∂x|[1] = 0, ∂x|[y|] = −y|∂x|[1]− 2Dy,x[1] = 0,

[y]∂x| = −[1]∂x| y = 0, [y|]∂x| = −[1]∂x| y| − 2Dy,x[1] = 0,

[y]∂x = −[1]∂x y + 2Dy,x[1] = 0, [y|]∂x = −[1]∂x y| = 0.

Hence it can be proven as a consequence of Theorem 2.8 and formulae (2.14) that

∂x[G] = [G]∂x = ∂x|[G] = [G]∂x| = 0,

for every G ∈ R
(

(S \ {x}) ∪ (S| \ {x|}) , B
)
.

The (left) canonical decomposition in R(S ∪ S|, B) with respect to x ∈ S has the form

F = f1F1 + f2xF2 + f3x|F3 + f4xx|F4,

where fj ∈ R0(S) and Fj ∈ R
(

(S \ {x}) ∪ (S| \ {x|}) , B
)
. Then,

∂x[FG] = ∂x[f1]F1G+ ∂x[f2]xF2G+ f2∂x[xF2G] + ∂x[f3]x|F3G

+ f3∂x[x|F3G] + ∂x[f4]xx|F4G+ f4∂x[xx|F4G].

However by Theorem 2.8 we have,

∂x[xF2G] = −x∂x[F2G] + 2Ex[F2G] + mF2G = mF2G = ∂x[xF2]G,

∂x[x|F3G] = −x|∂x[F3G] +BF3G = BF3G = ∂x[x|F3]G,

∂x[xx|F4G] = −x∂x[x|F4G] + 2Ex[x|F4G] + mx|F4G = −xBF4G+ 2x|F4G+ mx|F4G

= ∂x[xx|F4]G,

whence ∂x[FG] = ∂x[F ]G is obtained by direct computation. In the same way, we
compute

∂x|[FG] = ∂x|[f1]F1G+ ∂x|[f2]xF2G+ f2∂x|[xF2G] + ∂x|[f3]x|F3G

+ f3∂x|[x|F3G] + ∂x|[f4]xx|F4G+ f4∂x|[xx|F4G],
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and using again Theorem 2.8 we obtain,

∂x|[xF2G] = −x∂x|[F2G]−BF2G = −BF2G = ∂x|[xF2]G,

∂x|[x|F3G] = −x|∂x|[F3G]− 2Ex[F3G]−mF3G = −mF3G = ∂x|[x|F3]G,

∂x|[xx|F4G] = −x∂x|[x|F4G]−Bx|F4G = mxF4G−Bx|F4G = ∂x|[xx|F4]G.

Hence, ∂x|[FG] = ∂x|[F ]G directly follows.

In order to prove the statements regarding to the actions from the right we follow the
same order of ideas. The right canonical decomposition for elements of R(S∪S|, B) with
respect to x ∈ S has the form

F = f1F1 + f2F2x+ f3F3x|+ f4F4xx|.

We then compute

[GF ]∂x = GF1 [f1]∂x +GF2x [f2]∂x + f2 [GF2x]∂x +GF3x| [f3]∂x

+ f3 [GF3x|]∂x +GF4xx| [f4]∂x + f4 [GF4xx|]∂x,

and

[GF ]∂x| = GF1 [f1]∂x|+GF2x [f2]∂x|+ f2 [GF2x]∂x|+GF3x| [f3]∂x|
+ f3 [GF3x|]∂x|+GF4xx| [f4]∂x|+ f4 [GF4xx|]∂x|.

Now, in virtue of (2.14), we obtain

[GF2x]∂x = −[GF2]∂x x+ 2Ex[GF2] + mGF2 = mGF2 = G [F2x]∂x,

[GF3x|]∂x = −[GF3]∂x x| −GF3B = −GF3B = G [F3x|]∂x,
[GF4xx|]∂x = −[GF4x]∂x x| −GF4xB = −mGF4x| −GF4xB = G [F4xx|]∂x,

and

[GF2x]∂x| = −[GF2]∂x| x+GF2B = GF2B = G [F2x]∂x|,
[GF3x|]∂x| = −[GF3]∂x| x| − 2Ex[GF3]−mGF3 = −mGF3 = G [F3x|]∂x|,

[GF4xx|]∂x| = −[GF4x]∂x| x| − 2Ex[GF4x]−mGF4x

= −GF4Bx| − 2GF4x−mGF4x = G [F4xx|]∂x|.

Then both results [GF ]∂x = G[F ]∂x and [GF ]∂x| = G[F ]∂x| follow by direct computa-
tion.

Finally, (D5|) is obtained as an application of (2.15) which completes the proof of the
theorem. �

In Table 2.1, we summarize the main endomorphisms of R(S) and R(S ∪ S|, B) studied
until now, together with their Clifford-polynomial representation.
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Now, in general, every property of the vector derivatives in R(S) can be generalized to
the R(S ∪S|, B) setting. For example, the next result is a generalization of Theorem 2.5
(v).

Lemma 2.9. Let x ∈ S, then for every F ∈ R(S ∪ S|, B) we have

∂x[Fx]− ∂x[F ]x = [xF ]∂x − x[F ]∂x := B1[F ], (2.16)
∂x|[Fx]− ∂x|[F ]x = ([x|F ]∂x − x|[F ]∂x) := B2[F ], (2.17)
∂x|[Fx|]− ∂x|[F ]x| = [x|F ]∂x| − x|[F ]∂x| := B3[F ], (2.18)
∂x[Fx|]− ∂x[F ]x| = ([xF ]∂x| − x[F ]∂x|) := B4[F ]. (2.19)

In addition, the operators Bj do not depend on x, j = 1, . . . , 4.

Remark 2.15. Note that these operators are mapped by the Clifford-polynomial repre-
sentation to the Clifford operators

B1[F ] = −
m∑
j=1

ejFej , B2[F ] = −
m∑
j=1

εjFej ,

B3[F ] = −
m∑
j=1

εjFεj , B4[F ] = −
m∑
j=1

ejFεj .

Proof.

Observe that all operators involved in (2.16)-(2.19) are R0(S)-linear. Then, as every
element of R(S ∪ S|, B) is a linear combination of terms of the form F = V1 · · ·Vk with
Vj ∈ S ∪ S| ∪ {B}, it suffices to prove the lemma for such terms.

We will proceed by induction on k. For k = 0 we have F = 1, whence it is easily obtained
that

∂x[x]− ∂x[1]x = m = [x]∂x − x[1]∂x,

∂x|[x]− ∂x|[1]x = −B = ([x|]∂x − x|[1]∂x),

∂x|[x|]− ∂x|[1]x| = −m = [x|]∂x| − x|[1]∂x|,
∂x[x|]− ∂x[1]x| = B = ([x]∂x| − x[1]∂x|),

with m and B clearly not depending on x.

Now assuming that all the statements (2.16)-(2.19) hold for every product F of at most
k elements from S ∪S| ∪ {B}, it should be proven that (2.16)-(2.19) remain valid for yF ,
y|F and BF . From (2.15) we obtain the following relations

∂x[BFx]− ∂x[BF ]x = B (∂x[Fx]− ∂x[F ]x) + 2 (∂x|[Fx]− ∂x|[F ]x) ,

[xBF ]∂x − x[BF ]∂x = B([xF ]∂x − x[F ]∂x) + 2([x|F ]∂x − x|[F ]∂x),
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and

∂x|[BFx]− ∂x|[BF ]x = B(∂x|[Fx]− ∂x|[F ]x) + 2(∂x[Fx]− ∂x[F ]x),

[x|BF ]∂x − x|[BF ]∂x = B([x|F ]∂x − x|[F ]∂x) + 2([xF ]∂x − x[F ]∂x).

Moreover,

∂x|[BFx|]− ∂x|[BF ]x| = B (∂x|[Fx|]− ∂x|[F ]x|) + 2 (∂x[Fx|]− ∂x[F ]x|) ,
[x|BF ]∂x| − x|[BF ]∂x| = B([x|F ]∂x| − x|[F ]∂x|) + 2([xF ]∂x| − x[F ]∂x|),

and also

∂x[BFx|]− ∂x[BF ]x| = B(∂x[Fx|]− ∂x[F ]x|) + 2(∂x|[Fx|]− ∂x|[F ]x|),
[xBF ]∂x| − x[BF ]∂x| = B([xF ]∂x| − x[F ]∂x|) + 2([x|F ]∂x| − x|[F ]∂x|).

Combining the above equalities and using the induction hypothesis, it is shown that BF
satisfies (2.16)-(2.19).

Let us prove now that yF , y ∈ S, satisfies (2.16)-(2.17). From the recursive formulae in
Theorem 2.8 we obtain

∂x[yFx]− ∂x[yF ]x = −y∂x[Fx] + 2Dy,x[Fx] + δx,ymFx

+ (y∂x[F ]− 2Dy,x[F ]− δx,ymF )x

= −y (∂x[Fx]− ∂x[F ]x) + 2Fy,

while for both cases x = y and x 6= y we have

[xyF ]∂x − x[yF ]∂x = [{x, y}F − yxF ] ∂x − x[yF ]∂x = 2Fy − y ([xF ]∂x − x[F ]∂x) .

Hence, yF satisfies (2.16). In order to prove (2.17) for yF , it is convenient to use the
following property:

yF = yV1 · · ·Vk = λV1 · · ·Vk y +
∑

scalar l.o.p., where λ ∈ R.

In view of the induction hypothesis, this means that proving (2.17) for yF is equivalent
to proving it for Fy. To this end, observe that

∂x|[Fyx]− ∂x|[Fy]x = 2y|F − (∂x|[Fx]− ∂x|[F ]x) y,

again for both cases x = y and x 6= y. Also from (2.14) we get

[x|Fy]∂x − x|[Fy]∂x = −[x|F ]∂x y + 2Dy,x[x|F ] + x| ([F ]∂x y − 2Dy,x[F ])

= − ([x|F ]∂x − x|[F ]∂x) y + 2y|F,

from which it easily follows that (2.17) holds for Fy and hence for yF .
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The statements (2.18)-(2.19) can be proven for y|F following the same order of ideas.
Indeed, from Theorem 2.8 one obtains

∂x|[y|Fx|]− ∂x|[y|F ]x| = −y|∂x|[Fx|]− 2Dy,x[Fx|]− δx,ymFx|
− (−y|∂x|[F ]− 2Dy,x[F ]− δx,ymF )x|

= −y| (∂x|[Fx|]− ∂x|[F ]x|)− 2Fy|,

while for both cases x = y and x 6= y one has

[x|y|F ]∂x| − x|[y|F ]∂x| =
[
{x|, y|}F − y|x|F

]
∂x| − x|[y|F ]∂x|

= −2Fy| − y| ([x|F ]∂x| − x|[F ]∂x|) .

Comparing the previous two formulae, it follows that y|F satisfies (2.18). In order to
prove (2.19) for y|F , we now use the property

y|F = y|V1 · · ·Vk = λV1 · · ·Vk y|+
∑

scalar l.o.p., where λ ∈ R,

from which it follows that proving (2.19) for y|F is equivalent to proving it for Fy|. Now,
observe that

∂x[Fy|x|]− ∂x[Fy|]x| = −2yF − (∂x[Fx|]− ∂x[F ]x|) y|.

Moreover, from (2.14) we get

[xFy|]∂x| − x[Fy|]∂x| = −[xF ]∂x| y| − 2Dy,x[xF ]− x (−[F ]∂x| y| − 2Dy,x[F ])

= − ([xF ]∂x| − x[F ]∂x|) y| − 2yF.

Hence, y|F satisfies (2.19).

The proof that y|F satisfies (2.16)-(2.17) directly follows from the identity By − yB =
−2y|. Similarly, the proof that yF satisfies (2.18)-(2.19) follows from the identity By| −
y|B = −2y. In this way, we have proven that (2.16)-(2.19) hold for every F ∈ R(S∪S|, B).

Finally, the independence of the operators Bj of x can be proven very easily. For instance,
for B1, the equality

∂x[Fx]− ∂x[F ]x = ∂y[Fy]− ∂y[F ]y, x, y ∈ S,

is obtained by induction as a direct consequence of the recursion formulae in Theorem
2.8. �

It now is possible to prove by induction some generalizations of Theorem 2.6 (vi).

Lemma 2.10. Let x ∈ S. Then

{B1, ∂x} = 2(·∂x), {B2, ∂x} = 0, {B3, ∂x} = 0, {B4, ∂x} = 2(·∂x|),
{B1, ·∂x} = 2∂x, {B2, ·∂x} = 2∂x|, {B3, ·∂x} = 0, {B4, ·∂x} = 0,

{B1, ∂x|} = 0, {B2, ∂x|} = −2(·∂x), {B3, ∂x|} = −2(·∂x|), {B4, ∂x|} = 0,

{B1, ·∂x|} = 0, {B2, ·∂x|} = 0, {B3, ·∂x|} = −2∂x|, {B4, ·∂x|} = −2∂x.
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Finally, as a direct consequence of Lemmas 2.9 and 2.10, we can obtain, applying the
same induction procedure, the following important generalization of (D3).

Theorem 2.10. The operators ∂x, ∂x| satisfy in R(S ∪ S|, B)

[∂xF ] ∂y = ∂x [F∂y] , [∂x|F ] ∂y = ∂x| [F∂y] , ∀x, y ∈ S,
[∂xF ] ∂y| = ∂x [F∂y|] , [∂x|F ] ∂y| = ∂x| [F∂y|] .

2.5 Hermitian radial algebra

In this section we introduce the Hermitian radial algebra which constitutes an abstract
version of the Hermitian monogenic function theory. In [64] the Hermitian radial algebra
was introduced by means of a set of abstract complex variables and the corresponding
constraints. In this thesis, it is more convenient to start from a classical radial algebra
and to introduce a complex structure on it. This approach induces the one from [64] as
a consequence.

2.5.1 Complex structure

Inspired by the classical complex structure in R2m we give the following definition of a
complex structure on the radial algebra R(S).

Definition 2.10 (abstract complex structure). Let J : S → J(S) be a bijective map
which produces a new set J(S) of abstract vector variables which is a disjoint copy of S,
i.e. S ∩ J(S) = ∅. Moreover consider the algebra R(S ∪ J(S),B) generated over the real
numbers by the set S ∪ J(S) and a new symbol B. The pair (J,B) is called a complex
structure if on R(S ∪ J(S),B) there holds:

(AH1) {x, y} = {J(x), J(y)}, {J(x), y} = −{x, J(y)} ∀x, y ∈ S,
(AH2) {x, y} and {J(x), y} are central elements, ∀x, y ∈ S,
(AH3) [B, x] = −2J(x), [B, J(x)] = 2x, ∀x ∈ S.

Since the algebraic rôle of B is determined by J through the axiom (AH3), the term
"complex structure" will refer only to J from now on. The algebra R(S ∪ J(S),B) is
called a radial algebra with complex structure.

Remark 2.16. As before, we will use the notation

R0(S ∪ J(S)) := AlgR {{x, y}, {J(x), y} : x, y ∈ S}

for the scalar subalgebra of R(S ∪ J(S),B).

Definition 2.11. A representation of the radial algebra with complex structure R(S ∪
J(S),B) is an algebra homomorphism Ψ from R(S ∪ J(S),B) into an algebra A. The



2. Radial algebras 42

term representation also refers to the range Ψ(R(S ∪ J(S),B)) ⊂ A of that mapping. In
particular, the complex structure J defines a map over the set Ψ(S) ⊂ A by

Ψ(x)→ Ψ(J(x)), x ∈ S.

Such a map is called "a complex structure on the representation R(Ψ(S))" and is denoted
by Ψ(J).

Remark 2.17. The restriction to R(S) of an algebra homomorphism Ψ : R(S∪J(S),B)→
A clearly constitutes a representation for the radial algebra R(S), see Definition 2.2. But
the inverse statement does not hold, i.e. not every representation for R(S) can be extended
to a representation of R(S ∪ J(S),B). This is well illustrated by the Clifford-polynomial
representation described in Example 2.1. Indeed, if the representation · can be extended
from R(S) to R(S ∪ J(S),B), then J gets mapped to a linear operator J that satisfies
in R(S) the rules (AH1)-(AH3). In particular, (AH1) implies that J ∈ O(m) and
that J2 = −Im, where Im is the identity matrix. This last condition clearly forces the
dimension m to be even. Hence, the Clifford-polynomial representation can be extended
to a representation of the radial algebra with complex structure only if the dimension m
is even.

Taking the dimension in Example 2.1 now to be 2m we map J to the complex structure
on R2m given by

J =

[
0 Im
−Im 0

]
.

In this way, the Clifford-polynomial representation gets extended from R(S) to R(S ∪
J(S),B) by considering the mapping

x→ x =

m∑
j=1

(xjej + xm+jem+j), J(x)→ J(x) =

m∑
j=1

(xm+jej − xjem+j),

while the element B is mapped to the bivector

B =

m∑
j=1

ejem+j .

It is easily seen that this map constitutes a homomorphism from R(S ∪ J(S),B) to the
algebra A2m,0 of R0,2m-valued polynomials. Indeed, the elements x, J(x), B generate an
algebra, denoted by R(S ∪ J(S),B), which satisfies (AH1)-(AH3). The complex struc-
ture J on R2m is the one used for introducing the so-called Hermitian Clifford analysis,
see e.g. [9, 14].

The map J : S → J(S) is extended to the whole algebra R(S ∪J(S),B) by linearity, and
by the additional rules

J(FG) = J(F )J(G), ∀F,G ∈ R(S ∪ J(S),B), (2.20)
J(B) = B, J(J(x)) = −x, ∀x ∈ S. (2.21)
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This extension is consistent with (AH1)-(AH3); in particular, direct computation shows
that

J
(
{x, y}

)
= {x, y}, J ({J(x), y}) = {J(x), y}, for all x, y ∈ S.

This means, together with (2.20), that J is the identity map on R0(S ∪ J(S)).

Remark 2.18. Given a representation Ψ of the radial algebra with complex structure
R(S ∪J(S),B) (see Definition 2.11), the complex structure Ψ(J) defined on Ψ(S) can be
extended to the whole algebra Ψ(R(S∪J(S),B)) also by means of the rules (2.20)-(2.21).

In the particular case of the Clifford-polynomial representation, the complex structure J
gets extended to an algebra automorphism in the algebra A2m,0 of Clifford-valued poly-
nomials.

Proposition 2.3. J is an algebra automorphism on R(S ∪ J(S),B).

Proof.

Every element of R(S ∪ J(S),B) can be written as a combination of terms of the form
f x1 · · ·x` J(y1) · · · J(yk)Bs, with f ∈ R0(S ∪ J(S)) and x1, . . . , x`, y1, . . . , yk ∈ S. The
result then follows from

J2
(
f x1 · · ·xlJ(y1) · · · J(yk)Bs

)
= (−1)l+kf x1 · · ·xlJ(y1) · · · J(yk)Bs.

�

The conjugation can be easily redefined in this context by the rules

B = −B, x = −x, J(x) = −J(x), x ∈ S,

ab = b a, a, b ∈ R(S ∪ J(S),B).

Also the definition of the vector derivatives ∂x and ∂J(x) is extended from R(S) and
R(J(S)) to R(S ∪ J(S),B) by the following axioms:

(DH1) ∂x[fF ] = ∂x[f ]F + f∂x[F ], ∂J(x)[fF ] = ∂J(x)[f ]F + f∂J(x)[F ],

[fF ]∂x = F [f ]∂x + f [F ]∂x, [fF ]∂J(x) = F [f ]∂J(x) + f [F ]∂J(x),

for f ∈ R0(S ∪ J(S)) and F ∈ R(S ∪ J(S),B),

(DH2) ∂x[G] = [G]∂x = ∂J(x)[G] = [G]∂J(x) = 0,

∂x[xG] = ∂x[x]G

∂x[J(x)G] = ∂x[J(x)]G

∂J(x)[xG] = ∂J(x)[x]G

∂J(x)[J(x)G] = ∂J(x)[J(x)]G

∂x[xJ(x)G] = ∂x[xJ(x)]G

∂J(x)[xJ(x)G] = ∂J(x)[xJ(x)]G



[Gx]∂x = G[x]∂x

[GJ(x)]∂x = G[J(x)]∂x

[Gx]∂J(x) = G[x]∂J(x)

[GJ(x)]∂J(x) = G[J(x)]∂J(x)

[GxJ(x)]∂x = G[xJ(x)]∂x

[GxJ(x)]∂J(x) = G[xJ(x)]∂J(x)

for G ∈ R
(

(S \ {x}) ∪ J (S \ {x}) ,B
)
,
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(DH3) ∂x[x] = [x]∂x = m = ∂J(x)[J(x)] = [J(x)]∂J(x),

∂x[J(x)] = −[J(x)]∂x = 2B = −∂J(x)[x] = [x]∂J(x).

where m denotes the abstract dimension of R(S),

(DH4)


∂x[x2] = [x2]∂x = 2x, ∂J(x)[x

2] = [x2]∂J(x) = 2J(x),

∂x[xJ(x)] = (m + 2)J(x)− 2xB, [xJ(x)]∂x = −(m− 2)J(x)− 2xB,
∂J(x)[xJ(x)] = −(m + 2)x− 2J(x)B, [xJ(x)]∂J(x) = (m− 2)x− 2J(x)B,

for x ∈ S, and{
∂x{x, y} = {x, y}∂x = 2y = ∂J(x) {J(x), y} = {J(x), y} ∂J(x),

∂J(x){x, y} = {x, y}∂J(x) = 2J(y) = −∂x{J(x), y} = −{J(x), y}∂x,
for x, y ∈ S, x 6= y.

Following the same idea as in Definition 2.3, the action of every representation Ψ of
R(S ∪ J(S),B) on the algebra of endomorphisms on R(S ∪ J(S),B) can be defined by

Ψ(E) [Ψ(F )] := Ψ(E[F ]), E ∈ End (R(S ∪ J(S),B)) , F ∈ R(S ∪ J(S),B). (2.22)

Remark 2.19. Following (2.22), it is easily seen that the vector derivatives ∂x, ∂J(x)

are mapped by the Clifford polynomial representation to the Dirac operators:

−∂x = −
m∑
j=1

(ej∂xj + em+j∂xm+j
), −∂J(x) = J(−∂x) = −

m∑
j=1

(ej∂xm+j
− em+j∂xj ),

respectively. The abstract dimension m gets mapped in this case to 2m.

Remark 2.20. Similar to Remark 2.8 we here have that (DH2) is equivalent to{
∂x[FG] = ∂x[F ]G,

[GF ]∂x = G[F ]∂x,

{
∂J(x)[FG] = ∂J(x)[F ]G,

[GF ]∂J(x) = G[F ]∂J(x).

where F ∈ R(S ∪ J(S),B) and G ∈ R
(

(S \ {x}) ∪ J (S \ {x}) ,B
)
.

Following Theorem 2.2 it can be proven that (DH1)-(DH4) lead to a consistent defini-
tion of the endomorphisms ∂x and ∂J(x). Indeed, in this case the canonical decomposition
with respect to x ∈ S is given by

F = f1F1 + f2xF2 + f3J(x)F3 + f4xJ(x)F4,

where fj ∈ R0(S∪J(S)) and Fj ∈ R
(

(S \ {x})∪J (S \ {x}) ,B
)
. Consequently, (DH1)-

(DH4) lead to

∂x[F ] = ∂x[f1]F1 + ∂x[f2]xF2 + f2mF2 + ∂x[f3]J(x)F3 + 2f3BF3

+∂x[f4]xJ(x)F4 + (m + 2)f4J(x)F4 − 2f4xBF4,

∂J(x)[F ] = ∂J(x)[f1]F1 + ∂J(x)[f2]xF2 − 2f2BF2 + ∂J(x)[f3]J(x)F3 + mf3F3

+∂J(x)[f4]xJ(x)F4 − (m + 2)f4xF4 − 2f4J(x)BF4.
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The introduction of the complex structure J also enables us to extend the notion of
directional derivative. For every pair x ∈ S, y ∈ S ∪ J(S), the map Dy,x ∈ End(R(S ∪
J(S),B)) is defined by an adequate extension of (DD1) and the following version of
(DD2):

(DDH2) Dy,x[z] = δx,zy, Dy,x[J(z)] = δx,zJ(y), z ∈ S,
Dy,x[B] = 0.

This extension allows to consider directional derivatives of the form DJ(y),x with y ∈ S.
In that case we obtain from the previous axiom that

DJ(y),x[z] = δx,zJ(y), DJ(y),x[J(z)] = −δx,zy.

Remark 2.21. Dy,x is mapped by the Clifford polynomial representation to

Dy,x =

m∑
j=1

(yj∂xj + ym+j∂xm+j )

while DJ(y),x corresponds to the twisted scalar operator

DJ(y),x =

m∑
j=1

(ym+j∂xj − yj∂xm+j
).

Similar to Lemmas 2.5 and 2.6 we have the following properties.

Lemma 2.11. Let x, z ∈ S and y ∈ S ∪ J(S). Then

(i) Dy,x maps R0(S ∪ J(S)) into R0(S ∪ J(S));

(ii) Dy,x[F ] = Dy,x[F ], ∀F ∈ R(S ∪ J(S),B);

(iii) [Dy,x, z] = δx,zy, [Dy,x, J(z)] = δx,zJ(y);

(iv) [Dy,x,B] = 0.

Lemma 2.12. The complex structure J satisfies the following properties:

(i) J(∂x[F ]) = ∂J(x)[J(F )], ∀x ∈ S;

(ii) J(∂J(x)[F ]) = −∂x[J(F )], ∀x ∈ S;

(iii) J(Dy,x[F ]) = Dy,x[J(F )], ∀x ∈ S, y ∈ S ∪ J(S).

Proof.

Using the canonical decomposition of F ∈ R(S ∪ J(S),B), then applying ∂J(x), ∂x and
Dy,x to

F = f1F1 + f2xF2 + f3J(x)F3 + f4xJ(x)F4,
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and
J(F ) = f1J(F1) + f2J(x)J(F2)− f3xJ(F3)− f4J(x)xJ(F4)

and comparing the obtained results, it is directly seen that the statements (i)− (iii) only
still have to be proven for the generators of R0(S ∪ J(S)). For (i) and (ii) we easily
obtain

J (∂x[{y, z}]) = 2 (δz,xJ(y) + δy,xJ(z)) = ∂J(x)[{y, z}],
J (∂x[{J(y), z}]) = 2 (δy,xz − δz,xy) = ∂J(x)[{J(y), z}],

and

J
(
∂J(x)[{y, z}]

)
= −2 (δz,xy + δy,xz) = −∂x[{y, z}],

J
(
∂J(x)[{J(y), z}]

)
= 2 (δy,xJ(z)− δz,xJ(y)) = −∂x[{J(y), z}].

The property (iii) directly follows from Lemma 2.11 (i) and from the fact that J is the
identity operator when restricted to R0(S ∪ J(S)). �

The above lemma provides an alternative definition for ∂J(x) given by the action of J on
∂x, i.e.

∂J(x)[J(F )] = J(∂x[F ])

or ∂J(x) = J(∂x) for short. Now the corresponding recursive formulae for ∂x and ∂J(x)

are proven.

Theorem 2.11. Let x, y ∈ S and F ∈ R(S ∪ J(S),B). Then

∂x[yF ] = −y∂x[F ] + 2Dy,x[F ] + δx,ymF, (2.23)
∂x[J(y)F ] = −J(y)∂x[F ] + 2DJ(y),x[F ] + 2δx,yBF, (2.24)
∂x[BF ] = B∂x[F ] + 2∂J(x)[F ], (2.25)

∂J(x)[yF ] = −y∂J(x)[F ]− 2DJ(y),x[F ]− 2δx,yBF,
∂J(x)[J(y)F ] = −J(y)∂J(x)[F ] + 2Dy,x[F ] + δx,ymF,

∂J(x)[BF ] = B∂J(x)[F ]− 2∂x[F ].

Proof.

We restrict ourselves to formulae (2.23)–(2.25), which yield the other three by application
of J and the results of Lemma 2.12. Now, (2.23)–(2.25) look very similar to Theorems 2.3
and 2.8, whence their proofs will follow the same order of ideas. However, they are tech-
nically much more involved since the canonical decomposition now contains additional
terms corresponding to the complex structure. Since (2.23) has already been proven in
the radial algebra R(S), we will give here the main ideas of the proofs of (2.24)–(2.25).

From the action of ∂x on F = f1F1 + f2xF2 + f3J(x)F3 + f4xJ(x)F4 it follows that

J(y)∂x[F ] = J(y)∂x[f1]F1 + J(y)∂x[f2]xF2 + J(y)∂x[f3]J(x)F3 + J(y)∂x[f4]xJ(x)F4

+ f2mJ(y)F2 + 2f3J(y)BF3 + (m + 2)f4J(y)J(x)F4 − 2f4J(y)xBF4.
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We now compute ∂x[J(y)F ] with

J(y)F = f1J(y)F1 + f2J(y)xF2 + f3J(y)J(x)F3 + f4J(y)xJ(x)F4,

using (DH3)-(DH4). We consecutively find

∂x[J(y)] = 2δx,yB,
∂x[J(y)x] = −(m− 2)J(y) + 2δx,yBx,

∂x[J(y)J(x)] = 2y − 2BJ(y) + 2δx,yBJ(x),

∂x[J(y)xJ(x)] = 2J(y)J(x) + 2{x, J(y)}B − (m + 2){x, y}+ (m + 2)J(x)J(y)

− 2xJ(y)B − 2xy + 2δx,y xJ(x)B,

yielding

∂x[J(y)F ] = ∂x[f1]J(y)F1 + ∂x[f2]J(y)xF2 + ∂x[f3]J(y)J(x)F3 + ∂x[f4]J(y)xJ(x)F4

+ (2−m)f2J(y)F2 + 2f3yF3 − 2f3BJ(y)F3 + 2f4J(y)J(x)F4

+ 2f4{x, J(y)}BF4 − (m + 2)f4{x, y}F4 + (m + 2)f4J(x)J(y)F4

− 2f4xJ(y)BF4 − 2f4xyF4 + 2δx,y (f1BF1 + f2BxF2 + f3BJ(x)F3)

+ 2δx,yf4BxJ(x)F4.

Eventually we obtain,

{∂x, J(y)}[F ] = {∂x, J(y)}[f1]F1 + {∂x, J(y)}[f2]xF2 + {∂x, J(y)}[f3]J(x)F3

+ {∂x, J(y)}[f4]xJ(x)F4 + 2f2J(y)F2 − 2f3yF3 + 2f4J(y)J(x)F4

− 2f4xyF4.

On the other hand, it is easily seen that(
2DJ(y),x + 2δx,yB

)
[F ] =

(
2DJ(y),x + 2δx,yB

)
[f1]F1 +

(
2DJ(y),x + 2δx,yB

)
[f2]xF2

+
(
2DJ(y),x + 2δx,yB

)
[f3]J(x)F3

+
(
2DJ(y),x + 2δx,yB

)
[f4]xJ(x)F4

+ 2f2J(y)F2 − 2f3yF3 + 2f4J(y)J(x)F4 − 2f4xyF4,

whence, in order to prove (2.24), it now suffices to show that {∂x, J(y)} and 2DJ(y),x +
2δx,yB coincide on the generators of R0(S ∪ J(S)). Direct computation indeed shows
that

{∂x, J(y)}[{z, w}] = 2
(
δx,z{w, J(y)}+ δx,w{z, J(y)}

)
+ 2δx,yB{z, w},

{∂x, J(y)}[{J(z), w}] = 2
(
δx,w{z, y} − δx,z{w, y}

)
+ 2δx,yB{J(z), w},

which coincide with
(
2DJ(y),x + 2δx,yB

)
[{z, w}] and

(
2DJ(y),x + 2δx,yB

)
[{J(z), w}] res-

pectively.
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In order to prove (2.25) we first observe

B∂x[F ] = B∂x[f1]F1 + B∂x[f2]xF2 + B∂x[f3]J(x)F3 + B∂x[f4]xJ(x)F4

+ f2mBF2 + 2f3B2F3 + (m + 2)f4BJ(x)F4 − 2f4BxBF4.

We now compute ∂x[BF ] using (A3|) and (DH3)-(DH4). We consecutively find

∂x[Bx] = ∂x[xB − 2J(x)] = (m− 4)B,
∂x[BJ(x)] = ∂x[J(x)B + 2x] = 2B2 + 2m,

∂x[BxJ(x)] = ∂x[xJ(x)B] = (m + 2)J(x)B − 2xB2

= (m + 2)BJ(x)− 2(m + 2)x− 2BxB − 4J(x)B,

which yields

∂x[BF ] = ∂x[f1]BF1 + ∂x[f2]BxF2 + ∂x[f3]BJ(x)F3 + ∂x[f4]BxJ(x)F4

+ (m− 4)f2BF2 + 2f3B2F3 + 2f3mF3 + (m + 2)f4BJ(x)F4

− 2(m + 2)f4xF4 − 2f4BxBF4 − 4f4J(x)BF4.

Then we obtain

[∂x,B][F ] = [∂x,B][f1]F1 + [∂x,B][f2]xF2 + [∂x,B][f3]J(x)F3 + [∂x,B][f4]xJ(x)F4

− 4f2BF2 + 2f3mF3 − 2(m + 2)f4xF4 − 4f4J(x)BF4.

On the other hand, it is easily seen that

2∂J(x)[F ] = 2∂J(x)[f1]F1 + 2∂J(x)[f2]xF2 + 2∂J(x)[f3]J(x)F3 + 2∂J(x)[f4]xJ(x)F4

− 4f2BF2 + 2f3mF3 − 2(m + 2)f4xF4 − 4f4J(x)BF4,

whence it suffices to show that the operators [∂x,B] and 2∂J(x) coincide on the generators
of R0(S ∪ J(S)). To that end, observe that

[∂x,B]{y, z} =
[
∂x[{y, z}],B

]
= 2J

(
∂x[{y, z}]

)
= 2∂J(x)[{y, z}],

[∂x,B]{J(y), z} =
[
∂x[{J(y), z}],B

]
= 2J

(
∂x[{J(y), z}]

)
= 2∂J(x)[{J(y), z}].

�

Using the recursion formulae for the vector and directional derivatives given in Lemma
2.11 and Theorem 2.11 one can proof the following extensions of Theorems 2.4 and 2.7
to the Radial algebra with complex structure.

Proposition 2.4. Let x, y ∈ S. Then in R(S ∪ J(S),B) one has:

i) {∂x, ∂y} = {∂J(x), ∂J(y)},

ii) {∂J(x), ∂y} = −{∂x, ∂J(y)}.
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Proposition 2.5. Let x, y, z ∈ S. Then in R(S ∪ J(S),B) one has:

i) [Dy,x, ∂z] = −δy,z∂x,

ii) [Dy,x, ∂J(z)] = −δy,z∂J(x),

iii) [DJ(y),x, ∂J(z)] = −δy,z∂x,

iv) [DJ(y),x, ∂z] = δy,z∂J(x).

Proposition 2.6. Let x, y, z, w ∈ S. Then in R(S ∪ J(S),B) one has:

i) [Dy,x, Dw,z] = δx,wDy,z − δy,zDw,x,

ii) [DJ(y),x, DJ(w),z] = δy,zDw,x − δx,wDy,z,

iii) [DJ(y),x, Dw,z] = δx,wDJ(y),z − δy,zDJ(w),x.

2.5.2 Hermitian radial algebra

We now introduce the vector variables and operators in the Hermitian setting using the
above complex structure J . To this end, let RC(S ∪ J(S),B) be the complexification of
R(S ∪ J(S),B), i.e.

RC(S ∪ J(S),B) = R(S ∪ J(S),B)⊕ i R(S ∪ J(S),B),

where i denotes the imaginary unit in C (i2 = −1) and commutes with every element in
R(S ∪ J(S),B).

We define in RC(S ∪ J(S),B) the involution ·† known as the Hermitian conjugation, by

(a+ ib)† = a− ib, a, b ∈ R(S ∪ J(S),B). (2.26)

The complex vector variables are elements of the (mutually conjugate) sets

SC :=

{
Z =

1

2

(
x+ iJ(x)

)
: x ∈ S

}
,

S†C :=

{
Z† = −1

2

(
x− iJ(x)

)
: x ∈ S

}
.

These complex abstract vector variables generate, together with B, the Hermitian radial
algebra:

R(SC, S
†
C,B) = AlgC{SC ∪ S†C ∪ {B}} ⊂ RC(S ∪ J(S),B),

which submits to the following rules (equivalent to (AH1)-(AH3)):

(AH1*) {Z,U} = 0, {Z†, U†} = 0, ∀Z,U ∈ SC,

(AH2*) [V, {Z,U†}] = 0, [V †, {Z,U†}] = 0, ∀Z,U, V ∈ SC,

(AH3*) [B, Z] = 2iZ, [B, Z†] = −2iZ†, ∀Z ∈ SC.
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Every representation Ψ of the radial algebra with complex structure R(S ∪ J(S),B)

naturally defines a representation of the Hermitian radial algebra R(SC, S
†
C,B) generated

by the elements

Ψ(Z) :=
1

2
(Ψ(x) + iΨ(J(x))) , Ψ(Z†) := −1

2
(Ψ(x)− iΨ(J(x))) , x ∈ S;

and Ψ(B).

Remark 2.22. In the Clifford polynomial representation, the actions of the projection
operators ± 1

2 (1 ± iJ) on the R0,2m-valued vector variables x generate the maps Z and
Z† of the complex abstract vector variables Z and Z† respectively, i.e.

Z −→ Z =
1

2
(1 + iJ)[x] =

1

2

m∑
j=1

(xj + ixm+j)(ej − iem+j) =

m∑
j=1

zjfj ,

Z† −→ Z† = −1

2
(1− iJ)[x] = −1

2

m∑
j=1

(xj − ixm+j)(ej + iem+j) =

m∑
j=1

zcj f
†
j ,

where zj := xj + ixm+j, zcj := xj − ixm+j and

fj =
1

2
(1 + iJ)[ej ] =

1

2
(ej − iem+j), j = 1, . . . ,m,

f†j = −1

2
(1− iJ)[ej ] = −1

2
(ej + iem+j), j = 1, . . . ,m, (2.27)

are the well-known Witt basis elements.

Next the Hermitian vector derivatives ∂Z , ∂Z† ∈ End
(
R(SC, S

†
C,B)

)
are given by

∂Z :=
1

4

(
∂x − i∂J(x)

)
, ∂Z† := −1

4

(
∂x + i∂J(x)

)
,

where clearly ∂x, ∂J(x) are assumed to be linear in the complexification of R(S∪J(S),B).
The operators ∂Z , ∂Z† satisfy the following relations, equivalent to (DH1)-(DH4):

(DH1*) ∂Z [fF ] = ∂Z [f ]F + f∂Z [F ], ∂Z† [fF ] = ∂Z† [f ]F + f∂Z† [F ],

[fF ]∂Z = F [f ]∂Z + f [F ]∂Z , [fF ]∂Z† = F [f ]∂Z† + f [F ]∂Z† ,

f ∈ R0(SC, S
†
C,B) := AlgC{{Z,U} : Z,U ∈ SC ∪ S†C}, F ∈ R(SC, S

†
C,B),

(DH2*)


∂Z [G] = [G]∂Z = 0,

∂Z [ZG] = ∂Z [Z]G,

[GZ]∂Z = G[Z]∂Z

∀G ∈ AlgC
(

(SC \ {Z}) ∪ S†C ∪ {B}
)
,


∂Z† [G] = [G]∂Z† = 0,

∂Z† [Z
†G] = ∂Z† [Z

†]G,

[GZ†]∂Z† = G[Z†]∂Z†

∀G ∈ AlgC
(
SC ∪

(
S†C \ {Z

†}
)
∪ {B}

)
,
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(DH3*) ∂Z [Z] =
1

2
(
m

2
+ iB), ∂Z† [Z

†] =
1

2
(
m

2
− iB),

[Z]∂Z =
1

2
(
m

2
− iB), [Z†]∂Z† =

1

2
(
m

2
+ iB),

(DH4*) ∂Z(U,Z) = U† = (U,Z)∂Z ,

∂Z†(Z,U) = ∂Z†(U
†, Z†) = U = (U†, Z†)∂Z† ,

for all Z,U ∈ SC, and where (U,Z) := {U†, Z}.

Remark 2.23. The vector derivatives ∂Z and ∂Z† are mapped by the Clifford-polynomial
representation to the Hermitian Dirac operators in the Clifford setting:

∂Z = −1

4

(
∂x − i∂J(x)

)
= −1

4

m∑
j=1

(ej + iem+j)(∂xj − i∂xm+j ) =

m∑
j=1

f†j∂zj ,

∂Z† =
1

4

(
∂x + i∂J(x)

)
=

1

4

m∑
j=1

(ej − iem+j)(∂xj + i∂xm+j
) =

m∑
j=1

fj∂zcj ,

where ∂zj := 1
2 (∂xj − i∂xm+j ) and ∂zcj := 1

2 (∂xj + i∂xm+j ) as usual.

Remark 2.24. Note that on the polynomial level Z and Z† behave as independent va-
riables, as illustrated by ∂Z [Z†] = ∂Z† [Z] = 0. This is also noticeable in the relations
(DH4*) which are valid for every Z,U ∈ SC including Z = U .

Remark 2.25. As in the previous cases, we can easily prove that (DH2*) is equivalent
to{
∂Z [FG] = ∂Z [F ]G,

[GF ]∂Z = G[F ]∂Z ,
∀F ∈ R(SC, S

†
C,B), ∀G ∈ AlgC

(
(SC \ {Z}) ∪ S†C ∪ {B}

)
,{

∂Z† [FG] = ∂Z† [F ]G,

[GF ]∂Z† = G[F ]∂Z† ,
∀F ∈ R(SC, S

†
C,B), ∀G ∈ AlgC

(
SC ∪

(
S†C \ {Z

†}
)
∪ {B}

)
.

In [64], (AH1*)-(AH3*) and (DH1*)-(DH4*) were used to define the Hermitian
radial algebra. Here, we have obtained them by the introduction of a complex structure
J subject to (AH1)-(AH3) and (DH1)-(DH4). Conversely, the complex structure can
also be obtained from the Hermitian radial algebra; indeed, it suffices to consider

x = Z−Z†, J(x) = −i(Z+Z†), ∂x = 2 (∂Z − ∂Z†) , ∂J(x) = 2i (∂Z + ∂Z†) , ∀Z ∈ SC.

On account of Theorem 2.11 direct computation yields the following recursion formula
for ∂Z :

∂Z [UF ] = −U∂Z [F ] +
1

2

(
Dy,x + iDJ(y),x

)
[F ] +

1

4
δZ,U (m + 2iB)F,
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where Z = 1
2 (x+ iJ(x)), U = 1

2 (y + iJ(y)) and F = F1 + iF2 with F1, F2 ∈ R(S ∪
J(S),B). In this way we obtain the complex directional derivativeDU,Z and its Hermitian
conjugate D†U,Z given by

DU,Z :=
1

2

(
Dy,x + iDJ(y),x

)
, D†U,Z :=

1

2

(
Dy,x − iDJ(y),x

)
. (2.28)

Remark 2.26. The Clifford polynomial representation maps DU,Z and D†U,Z to the com-
plex differential operators respectively

DU,Z =
1

2

(
Dy,x + iDJ(y),x

)
=

1

2

m∑
j=1

(yj + iym+j)(∂xj − i∂xm+j
) =

m∑
j=1

uj∂zj ,

D†U,Z =
1

2

(
Dy,x − iDJ(y),x

)
=

1

2

m∑
j=1

(yj − iym+j)(∂xj + i∂xm+j ) =

m∑
j=1

ucj∂zcj .

From the definitions of Dy,x and DJ(y),x we can easily obtain the following properties of
the complex directional derivatives, which can be used also as defining relations:

DU,Z [FG] = DU,Z [F ]G+ FDU,Z [G], DU,Z [W ] = δZ,WU, DU,Z [W †] = 0,

D†U,Z [FG] = D†U,Z [F ]G+ FD†U,Z [G], D†U,Z [W †] = δZ,WU
†, D†U,Z [W ] = 0. (2.29)

For Z = U we obtain the Hermitian Euler operators EZ := DZ,Z and EZ† := D†Z,Z . As
it is expected, these Euler operators yield the respective degrees of the variables Z and
Z† in every product of vector variables; this property immediately follows from (2.29).

Lemma 2.13. Let Vj ∈ SC ∪ S†C, j = 1, . . . , s. Then:

• Z occurs k times in V1 · · ·Vs if and only if EZ [V1 · · ·Vs] = kV1 · · ·Vs;

• Z† occurs ` times in V1 · · ·Vs if and only if EZ† [V1 · · ·Vs] = `V1 · · ·Vs.

Summarizing, we can now rephrase the recursion formulae given in Theorem 2.11 as
follows:

{∂Z , U} = DU,Z + 1
2δZ,U (m

2 + iB),

{∂Z , U†} = 0,

[∂Z ,B] = 2i∂Z ,


{∂Z† , U†} = D†U,Z + 1

2δZ,U (m
2 − iB),

{∂Z† , U} = 0,[
∂†Z ,B

]
= −2i∂Z† .

(2.30)

Similar to the Euclidean case, it is known form Hermitian Clifford analysis that the
complex vector variables Z,Z† and the Hermitian Dirac operators ∂Z , ∂Z† generate the
Lie superalgebra sl(1|2), see [12]. This result also holds in the Hermitian radial algebra
and can be proven as a consequence of the commutation relations given in Propositions
2.4, 2.5 and 2.6.
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Proposition 2.7. Let Z = 1
2

(
x+iJ(x)

)
∈ SC, x ∈ S. Then the operators Z,Z†, ∂Z , ∂Z† ∈

End(R(SC, S
†
C,B)) are odd generators of the Lie superalgebra sl(1|2). The representation

sl(1|2) ⊂ End(R(SC, S
†
C,B)) is given by the correspondences

H =
1

2

(
Ex +

m

2

)
=

1

2

(
EZ + EZ† +

m

2

)
, G+ = − Z√

2
,

E+ =
x2

2
= −1

2
{Z,Z†}, G− =

√
2∂Z† ,

E− = −∂
2
x

2
= 2{∂Z , ∂Z†}, G+ =

Z†√
2
,

L = − i
2

(
DJ(x),x + B

)
=

1

2
(EZ − EZ† − iB) , G− =

√
2∂Z ,

where

[E+, E−] = 2H, [H ,G±] = ±1

2
G±, {G±, G±} = 0 = {G±, G±},

[H ,E±] = ±E±, [H ,G±] = ±1

2
G±, {G±, G∓} = 0 = {G±, G∓},

[L ,H ] = [L,E±] = 0, [E±, G±] = [E±, G±] = 0, {G±, G±} = E±,

[E±, G∓] = −G±, {G±, G∓} = L∓H,
[E±, G∓] = G±,

[L ,G±] =
1

2
G±,

[L ,G±] = −1

2
G±.

2.6 Relation between R(S ∪ S|, B) and R(S ∪ J(S),B)

In the R0,2m-Clifford representation we have, by the identification em+j = iεj for j =
1, . . . ,m, that the vector variables can be written as

x =

m∑
j=1

xjej + i

m∑
j=1

xm+jεj = a+ ib|,

(2.31)

J(x) =

m∑
j=1

xm+jej − i
m∑
j=1

xjεj = b− ia|,

with a, b ∈ R0,m and a|, b| ∈ Rm,0. An abstract equivalent of this approach can also
be developed in the radial algebra setting. In Section 2.3 we obtained from R(S) the
superset R(S ∪ S|, B) on the level of the endomorphisms, after which, in Section 2.4,
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we defined the corresponding generalizations of the operators Dy,x, ∂x, ∂x| on this new
algebraic structure. From this setting it is possible to obtain a representation of the
radial algebra with complex structure R(S ∪ J(S),B).

In order to establish such a representation, we need two different radial algebras R(S)
and R(S1) where S = {x, y, . . .} and S1 = {a, b, . . .} are disjoint sets of ` and 2` abstract
vector variables, respectively. We assign to each x ∈ S an ordered pair Ox = (a, b) of
elements of S1 such that the associated family of subsets {Cx = {a, b} : x ∈ S} constitutes
a partition of S1. Let us now introduce the mapping

x→ X = a+ ib|, Ox = (a, b), x ∈ S,

from S to the set S2 = {a+ ib| : (a, b) = Ox, x ∈ S} composed of "abstract doubled vector
variables". It is clearly seen that S2 is a subset of the complexification of the algebra
R(S1 ∪ S1|, B1) ⊂ End(R(S1)), see Section 2.3. Here, B1 denotes the corresponding B
operator on R(S1), i.e.

B1 = {∂a, a|}, for all a ∈ S1.

We also denote by m1 the abstract dimension corresponding to R(S1), i.e.

m1 = ∂a[a], for all a ∈ S1.

In view of (A1)-(A1|) we obtain for every pair X = a+ ib| and Y = c+ id| in S2 that

{X,Y } = {a, c} − {b|, d|} = {a, c}+ {b, d}, (2.32)

which clearly commutes with every element in R(S1 ∪ S1|, B1). Then S2 satisfies (A1)
and in consequence it generates a radial algebra representation R(S2) of R(S).

It is possible to define a complex structure J2 on R(S2) by

J2(X) = J2(a+ ib|) = b− ia|, ∀X ∈ S2, (2.33)

and the corresponding vector derivatives are given by

∂X := ∂a + i∂b|, ∂J2(X) := ∂b − i∂a|. (2.34)

This map J2 in fact is a complex structure. Indeed, J2(S2) is a disjoint copy of S2 and
it is carefully checked below that (AH1) -(AH3) are fulfilled.

We first check (AH1)-(AH2). Using (A1|) and (2.32) we obtain

{J2(X), J2(Y )} = {b− ia|, d− ic|} = {b, d} − {a|, c|} = {a, c}+ {b, d} = {X,Y },

and also

{J2(X), Y } = {b− ia|, c+ id|} = {b, c} − {a, d},
{X, J2(Y )} = {a+ ib|, d− ic|} = {a, d} − {b, c}.
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Consequently, {X,Y }, {J2(X), Y } are central elements and {J2(X), Y } = −{X, J2(Y )}.

Next, in order to check (AH3), we first need to obtain a candidate to represent the
element B in this setting. To this end we compute the action ∂X [J2(X)]; by Theorem
2.9 (D3|) we have

∂X [J2(X)] = (∂a + i∂b|) (b− ia|) = −i (∂a[a|]− ∂b|[b]) = −2iB1.

Then on view of (A3|) we get

[−iB1, X] = [−iB1, a+ ib|] = [B1, b|]− i[B1, a] = −2b+ 2ia| = −2J2(X),

[−iB1, J2(X)] = [−iB1, b− ia|] = −[B1, a|]− i[B1, b] = 2a+ 2ib| = 2X.

This way, we have proven that the correspondences

x→ X = a+ ib|, J(x)→ J2(X) = b− ia|, B → −iB1,

define a representation of the radial algebra with complex structure R(S ∪ J(S),B) into
the complexification of R(S1 ∪ S1|, B1). Such a representation will be denoted by

Ψ2 : R(S ∪ J(S),B)→ R(S2 ∪ J2(S2),−iB1).

As mentioned before, by this representation the vector derivatives ∂x, ∂J(x) get mapped
into the operators ∂X , ∂J2(X) defined in (2.34).

Proposition 2.8. The operators ∂X , ∂J2(X) satisfy (DH1)- (DH4).

Proof.

It suffices to check (DH3)-(DH4), since (DH1) and (DH2) are direct consequences of
(D1|) and (D2|). For (DH3) we obtain, on account of (D3|),

∂X [X] = (∂a + i∂b|)(a+ ib|) = ∂a[a]− ∂b|[b|] = 2m1,

∂J2(X)[J2(X)] = (∂b − i∂a|)(b− ia|) = ∂b[b]− ∂a|[a|] = 2m1,

∂J2(X)[X] = (∂b − i∂a|)(a+ ib|) = i(∂b[b|]− ∂a|[a]) = 2iB1,

The corresponding right actions can be computed in a similar way. From these equalities,
we see that the abstract dimension corresponding to the radial algebra R(S2), generated
by the doubled vector variables, is in fact the double of the abstract dimension m1 of
R(S1).

To prove (DH4), we first observe that

X2 = (a+ ib|)2 = a2 − b|2 + i{a, b|} = a2 + b2.

Then by (D4|) we obtain

∂X [X2] = (∂a + i∂b|)(a2 + b2) = ∂a[a2] + i∂b|[b2] = 2a+ i2b| = 2X,

∂J2(X)[X
2] = (∂b − i∂a|)(a2 + b2) = ∂b[b

2]− i∂a|[a2] = 2b− i2a| = 2J2(X).
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The computations for [X2]∂X and [X2]∂J2(X) are similar. For the product XJ2(X) we
have XJ2(X) = (a + ib|)(b − ia|) = (ab + b|a|) + i(b|b − aa|). Using Theorems 2.8 and
2.9 we obtain

∂X [XJ2(X)] = (∂a + i∂b|)
[
(ab+ b|a|) + i(b|b− aa|)

]
=
(
∂a[ab+ b|a|]− ∂b|[b|b− aa|]

)
+ i

(
∂a[b|b− aa|] + ∂b|[ab+ b|a|]

)
=
(

2m1b− 2b|B1 + 2b
)

+ i
(

2aB1 − 2a| − 2m1a|
)

= (2m1 + 2)(b− ia|) + 2(a+ ib|)iB1

= (2m1 + 2)J2(X) + 2X iB1,

∂J2(X)[XJ2(X)] = (∂b − i∂a|)
[
(ab+ b|a|) + i(b|b− aa|)

]
=
(
∂b[ab+ b|a|] + ∂a|[b|b− aa|]

)
+ i

(
− ∂a|[ab+ b|a|] + ∂b[b|b− aa|]

)
=
(

2a− 2m1a+ 2B1a|
)

+ i
(

2B1b+ 2b| − 2m1b|
)

= (−2m1 + 2)(a+ ib|) + 2iB1(b− ia|)
= (2− 2m1)X + 2iB1 J2(X)

= −(2 + 2m1)X + 2J2(X) iB1.

and similarly for the corresponding right actions. Finally we have, for X = a + ib|,
Y = c+ id| in S with X 6= Y ,

∂J2(X){J2(X), Y } = (∂b − i∂a|)({b, c} − {a, d})
= ∂b{b, c}+ i∂a|{a, d} = 2c+ 2id| = 2Y,

∂X{X,Y } = (∂a + i∂b|)({a, c}+ {b, d})
= ∂a{a, c}+ i∂b|{b, d} = 2c+ 2id| = 2Y,

∂J2(X){X,Y } = (∂b − i∂a|)({a, c}+ {b, d})
= ∂b{b, d} − i∂a|{a, c} = 2d− 2ic| = 2J2(Y ),

∂X{J2(X), Y } = (∂a + i∂b|)({b, c} − {a, d})
= −∂a{a, d}+ i∂b|{b, c} = −2d+ 2ic| = −2J2(Y ).

and in much the same way {J2(X), Y }∂J2(X), {X,Y }∂X , {X,Y }∂J2(X) and {J2(X), Y }∂X
can be computed. �

To complete the scheme, let us now finally investigate the form of the directional deriva-
tives in this setting.

Proposition 2.9. By the representation Ψ2 the directional derivatives Dy,x ∈ End(R(S∪
J(S),B)), x ∈ S, y ∈ S ∪ J(S), get mapped to the operators

DY,X = Dc,a +Dd,b, DJ2(Y ),X = Dd,a −Dc,b,

where X = a+ ib|, Y = c+ id| ∈ S2.
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Proof.

Using Theorem 2.8 and taking into account that a 6= d and b 6= c we obtain

2DY,X = {∂X , Y } − δX,Y 2m1

= {∂a + i∂b|, c+ id|} − 2δX,Ym1

= ({∂a, c} − {∂b|, d|}) + i ({∂a, d|}+ {∂b|, c})− 2δX,Ym1

= (2Dc,a + δa,cm1 + 2Dd,b + δb,dm1)− 2δX,Ym1

= 2 (Dc,a +Dd,b) .

In a similar way we obtain DJ2(Y ),X = Dd,a −Dc,b. �

Given any representation R(Ψ(S1)) of the radial algebra R(S1), the representation Ψ2

shows a way of defining a complex structure. Indeed, the composition

Ψ ◦Ψ2 : R(S ∪ J(S),B)→ Ψ(R(S2 ∪ J2(S2),−iB1)) (2.35)

is a representation for R(S ∪ J(S),B) with vector variables

Ψ(X) = Ψ(a) + iΨ(b|), a, b ∈ S1, (2.36)

and complex structure

Ψ(J2(X)) = Ψ(b)− iΨ(a|), a, b ∈ S1. (2.37)

Formulae (2.31) show that this is the case for the Clifford polynomial representation
· 2m of R(S ∪ J(S),B) into A2m,0 given in Remark 2.17. Indeed, the mapping · 2m is
the composition of the representation · m from R(S1) into Am,0 given in example 2.1
with Ψ2. In other words, the following diagram is commutative:

R(S ∪ J(S),B) R(S2 ∪ J2(S2),−iB1)

R(S ∪ J(S),B)

Ψ2

· 2m

· m

We summarize the main aspects of this representation in Table 2.2.

2.7 Concluding remarks

In this chapter we have carefully developed the radial algebra and the Hermitian radial
algebra, as the respective correct abstract frameworks for Euclidean and Hermitian Clif-
ford analysis, starting from results already stated in [66] and inspired by an alternative
approach in [64]. In the next chapter the Hermitian framework will be combined with
the abstract setting for Clifford calculus on superspace, developed in [33], in order to
establish Hermitian Clifford analysis in superspace.
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3
Hermitian Clifford analysis on superspace

In the previous chapter we have introduced the so-called Hermitian radial algebra in
order to establish the rules allowing for a canonical extension of Hermitian Clifford anal-
ysis to superspace. The objective of the current chapter now is to explicitly introduce
the fundamental objects of Hermitian Clifford analysis in the superspace setting. This
construction is inspired by the successful extension of orthogonal Clifford analysis to
superspace, see [33, 68, 32, 69, 71, 67]. In particular the radial algebra was proven to
be an efficient tool for giving a meaning to vector spaces of negative dimension, and
defining the fundamental objects of Clifford analysis, such as vector variables and vector
derivatives, in such a case.

In this chapter we first provide a brief overview on the superanalysis framework. Then we
establish the corresponding representation of the radial algebra in superspace together
with the mapping of the main radial algebra endomorphisms into this setting. In addi-
tion, we will establish the notion of a complex structure, as well as its realization as a
bivector, which then will lead to the Witt basis, the Hermitian vector variables, the Her-
mitian vector derivatives and the complex Euler operators in superspace. These notions
constitute the starting point for the study of this representation of the Hermitian radial
algebra. In the next chapters we plan to address some other classical issues such as the
underlying group structure, spin representations, invariance of the Dirac operators under
spin actions and also Bochner-Martinelli formulae in the Hermitian superspace setting.
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3.1 Preliminaries on superanalysis

In this section we introduce the building blocks of analysis in superspace, see e.g. [7, 72,
55]. We first give a short introduction to superspaces and commutative superalgebras. In
this setting, we provide a brief overview to differential calculus on a commutative Banach
superalgebra following the approach by Vladimirov and Volovich [72]. This approach will
not be used it in this thesis, but it illustrates how superanalysis works when one considers
co-ordinates defined on an underlying superalgebra. Then we introduce our approach to
superanalysis which follows the extension of harmonic and Clifford analysis to superspace
(see [32, 33, 35, 31]). It considers commuting and anti-commuting variables in a purely
symbolic way, defining an associated supermanifold as in the approach of Berezin, see
[7].

3.1.1 Differential calculus on a commutative Banach superalge-
bra

We recall that a vector space V over the field K (in this thesis K will always be R or C)
is Z2-graded (also called super vector space) if it decomposes as the direct sum of two
subspaces

V = V0 ⊕ V1, {0, 1} ∈ Z2 = Z/2Z.

Vectors that are elements of either V0 or V1 are said to be homogeneous. The parity of
a nonzero homogeneous element is even or odd according to whether it is in V0 or in V1,
respectively. This is, V0 is the subspace of all even elements and V1 is the subspace of all
odd elements.

Example 3.1. The easiest example of a graded vector space is V = Kp,q with standard
basis consisting of the vectors e1, . . . , ep, è1, . . . , èq, where

ej = (0, . . . , 1, . . . , 0)
T
, with 1 on the j-th position, j = 1, . . . , p,

èj = (0, . . . , 1, . . . , 0)
T
, with 1 on the (p+ j)-th position, j = 1, . . . , q.

The elements e1, . . . , ep span the subspace Kp,0 of even elements and è1, . . . , èq span the
subspace K0,q of odd elements. As a vector space Kp,q is clearly isomorphic to Kp+q.

A superalgebra Λ over K is an algebra over K such that it constitutes a Z2-graded vector
space Λ = Λ0 ⊕ Λ1, and the multiplication on Λ preserves the gradation, i.e.

Λj Λk ⊂ Λj+k, for j, k ∈ Z2.

In particular, the subspace Λ0 is a subalgebra of Λ. In the superalgebra Λ we introduce
the gradation automorphism ·∗ : Λ→ Λ by{

v∗ = v, v ∈ Λ0,

v̀∗ = −v̀, v̀ ∈ Λ1,
(AB)∗ = A∗B∗, A,B ∈ Λ. (3.1)



61 3.1 Preliminaries on superanalysis

Note that ·∗ is an involution, i.e. (A∗)∗ = A. In addition, A∗ = A if and only if A ∈ Λ0.

A superalgebra Λ = Λ0 ⊕ Λ1 is said to be (super)commutative if arbitrary homogeneous
elements satisfy

vw = wv, v̀ẁ = −ẁv̀, vẁ = ẁv, v, w ∈ Λ0, v̀, ẁ ∈ Λ1.

Thus, even elements and elements of different parities commute, while odd elements
anti-commute. It then holds that

v̀A = A∗v̀, v̀ ∈ Λ1, A ∈ Λ.

One approach to superanalysis consists in defining a differential calculus over a commu-
tative superalgebra Λ, see e.g. [72]. To that end it is convenient to consider an identity
element 1 ∈ Λ0. In that way one may see the field K ⊂ Λ0 as a subalgebra of Λ. In
addition, it is necessary to equip the commutative superalgebra Λ with a Banach space
structure, by introducing a norm ‖ · ‖Λ : Λ→ R which satisfies the condition

‖ab‖Λ ≤ ‖a‖Λ ‖b‖Λ, a, b ∈ Λ, ‖1‖Λ = 1, (3.2)

where Λ0 and Λ1 are closed subspaces. Observe that the inequality (3.2) ensures that
the multiplication operation is continuous. Such an algebra is said to be a commutative
Banach superalgebra.

The annihilator of the set of odd elements (Λ1-annihilator) is introduced by

⊥Λ1 := {a ∈ Λ : v̀ a = a v̀ = 0, ∀v̀ ∈ Λ1}.

Example 3.2 (Grassmann algebras). An example of commutative Banach superalge-
bra is provided by any Grassmann algebra of dimension 2N generated over K by the odd
canonical generators f1 . . . , fN satisfying the conditions fjfk+fkfj = 0. In case we need
to explicitly indicate the system of odd generators, we denote our Grassmann algebra by
G(f1 . . . , fN ) and when only their number is important we write GN . When necessary,
we make a distinction between the real and the complex Grassmann algebras by using the
notation KGN (K = R or C).

A basis for GN consists of elements of the form f∅ = 1, fA = fj1 · · · fjk for A =
{j1, . . . , jk} (1 ≤ j1 < . . . < jk ≤ N). Hence an arbitrary element a ∈ GN has the form

a =
∑

A⊂{1,...,N}

aAfA, aA ∈ K. (3.3)

Every a ∈ GN may be written as the sum a = a0 + a of a number a0 := a∅ ∈ K and a
nilpotent element a =

∑
|A|≤1 aAfA (in particular aN+1 = 0). The elements a0, a are

called the body and the nilpotent part of a ∈ GN , respectively.

In this case we will denote the even and odd subspaces by G
(ev)
N and G

(odd)
N , respectively.

The space G
(ev)
N (respectively, G(odd)

N ) consists of the elements for which each term in the
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expansion (3.3) contains only an even (respectively, odd) number of generators. In this
way, the gradation automorphism (3.1) is given by a∗ =

∑
A⊂{1,...,N}(−1)|A|aAfA.

The structure of a Banach superalgebra is introduced in GN with the norm ‖a‖G =∑
A |aA| for a ∈ GN written in the form (3.3).

The annihilator ⊥G(odd)
N is easily seen to be ⊥G(odd)

N = {λf1 . . . , fN : λ ∈ K}.

Given the graded vector space Rp,q and a commutative Banach superalgebra Λ = Λ0⊕Λ1

over R, the superspace Rp,q(Λ) of dimension (p, q) over Λ is defined as

Rp,q(Λ) = Λ0 × · · · × Λ0︸ ︷︷ ︸
p

×Λ1 × · · · × Λ1︸ ︷︷ ︸
q

= Λp
0
× Λq

1
. (3.4)

The superspace Rp,q(Λ) becomes a Banach space if, for every supervector

x = (x, x̀) = (x1, . . . , xp, x̀1, . . . , x̀q) ∈ Rp,q(Λ),

we consider the norm

‖x‖2p,q =

p∑
j=1

‖xj‖2Λ +

q∑
j=1

‖x̀j‖2Λ.

Note that the superspace is Rp,q(Λ) is a Λ0-module.

In the approach to superanalysis developed by Vladimirov and Volovich (see [72]), the
superspace Rp,q(Λ) plays the same rôle in superanalysis as the space Rp in classical
analysis. They study functions F : U → Λ where U is an open set of Rp,q(Λ). Observe
that in particular, if Λ0 = R and Λ1 = {0}, then Rp,0 = Rp.

In the works [55, 72], it has been seen that the Λ1-annihilator plays an important rôle
in the study of super-differentiable functions. For example, two different polynomials in
anti-commuting variables may define the same Λ-valued function if the Λ1-annihilator is
different of {0}. This is easily seen if one considers Λ = GN ; in this case the polynomial
x̀1x̀2 . . . x̀N+1 is identically zero. This fact has important consequences in the super-
differentiation theory such as the non-uniqueness of the odd derivatives if ⊥Λ1 6= {0},
see [72]. On the other hand, for ⊥Λ1 = {0} two useful and convenient properties are
fulfilled:

1. two polynomials define the same function if and only if they are identical;

2. the odd derivative is unique according to the definition given in [72].

For the sake of simplicity, one may consider the superalgebra Λ such that ⊥Λ1 = {0}. By
this restriction one does not lose generality since every graded-commutative superalgebra
can be embedded in a superalgebra where the annihilator of the odd subspace equals to
{0}.
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Definition 3.1 (super-differentiability [55, 72]). A function F : U → Λ is said to
be super-differentiable at the point x ∈ U if there exist elements F1(x), . . . , Fp(x) and
F`

1(x), . . . , F`
q(x) in Λ such that

F (x + y) = F (x) +

p∑
j=1

yjFj(x) +

q∑
j=1

ỳjF
`
j(x) + τ(x,y), (3.5)

where

lim
‖y‖p,q→0

‖τ(x,y)‖Λ
‖y‖p,q

= 0.

The elements Fj(x) are called (bosonic or even) partial derivatives of F with respect to
xj, j = 1, . . . , p, while the elements F`

k(x) are called (fermionic or odd) partial derivatives
of F with respect to x̀k, , k = 1, . . . , q. They are respectively denoted by

Fj(x) = ∂xj [F ](x) =
∂F

∂xj
(x), F`

k(x) = ∂x̀k [F ](x) =
∂F

∂x̀k
(x).

The even derivatives ∂xj always are uniquely defined. As mentioned before, the as-
sumption ⊥Λ1 = {0} ensures that the odd fermionic derivatives ∂x̀j also are unique, see
[72, 55].

Remark 3.1. The partial derivatives defined in (3.5) are called left derivatives. Right
derivatives can be introduced similarly, but then we must replace the expression (3.5) by

F (x + y) = F (x) +

p∑
j=1

Fj(x)yj +

q∑
j=1

F`
j(x)ỳj + τ(x,y).

It is readily seen that the right and left derivatives with respect to x1 . . . , xp are identical,
but those with respect to x̀1, . . . , x̀q are, in general, different. The left and right odd
derivatives of a superfunction F are denoted by ∂x̀k [F ] = ∂

∂x̀k
F and [F ]∂x̀k = F ∂

∂x̀k
,

respectively.

Example 3.3. Letting the operator ∂x̀j act on the product x̀j x̀k, with j 6= k, we obtain

∂x̀j [x̀j x̀k] = x̀k

while
[x̀j x̀k]∂x̀j = −[x̀kx̀j ]∂x̀j = −x̀k.

The above notion of even partial derivative clearly coincides with the classical partial
derivative of real analysis when Λ0 = R. It is easily proven that classical properties
such as the Leibniz formula and the chain rule still hold for even differentiation. Similar
properties also hold for the odd derivatives, but they require minor modifications related
to the Z2-gradation of Λ, see [55, pp. 14-15] for more details.
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3.1.2 Supermanifolds and superanalysis

Next to the approach in the previous section, calculus in superspace can also be developed
independently of the underlying Banach superalgebra Λ. Instead of co-ordinates on Λ0,
Λ1, we consider in this thesis variables in a purely symbolic way. This is, the set of
commuting (bosonic) and anti-commuting (fermionic) variables consist of independent
symbols x1, . . . , xp, x̀1, . . . , x̀q; which gives rise to the supervector variable

x = (x, x̀) = (x1, . . . , xp, x̀1, . . . , x̀q) . (3.6)

The algebra generated by these variables over the field K is denoted by KP and is given
by

KP := AlgK(x1, . . . , xp, x̀1, . . . , x̀q) = K[x1, . . . , xp]⊗Gq,

where Gq = G(x̀1, . . . , x̀q) is the Grassmann algebra generated by the anti-commuting
variables x̀1, . . . x̀q.

The bosonic and fermionic partial derivatives ∂xj = ∂
∂xj

, ∂x̀j = ∂
∂x̀j

are defined as
endomorphisms on KP by the relations

∂xj [1] = 0,

∂xjxk − xk∂xj = δj,k,

∂xj x̀k = x̀k∂xj ,


∂x̀j [1] = 0,

∂x̀j x̀k + x̀k∂x̀j = δj,k,

∂x̀jxk = xk∂x̀j ,

(3.7)

which can be recursively applied for both left and right actions. From this definition it
immediately follows that

∂xj∂xk = ∂xk∂xj , ∂x̀j∂x̀k = −∂x̀k∂x̀j , ∂xj∂x̀k = ∂x̀k∂xj .

Remark 3.2. When the variables xj, x̀j are represented by co-ordinates with values in
Λ0 and Λ1 respectively, the notion of partial derivatives given in (3.7) coincides with
Definition 3.1 at the polynomial level.

For the study of more general functions in superanalysis we consider the definition of
a supermanifold as in the approach of Berezin and Kostant, see [7, 57, 22]. A sheaf O
of algebras on a p-dimensional manifoldM0, maps every open subset U inM0 into an
algebra O(U). This mapping is subject to well-know conditions, see [7, 57]. The standard
example is the structure sheaf that maps every open subset U ∈M0 to the commutative
algebra C∞(U) of complex-valued smooth functions on U ; this sheaf is denoted by C∞M0

.
A supermanifold of dimension p|q then is defined as a ringed space M = (M0,OM),
where M0 is an underlying smooth p-dimensional manifold and OM is the structure
sheaf that maps every open subset U ∈ M0 into the algebra C∞(U) ⊗ Gq of smooth
functions in U with values in the Grassmann algebra Gq. Such a sheaf OM is denoted
by C∞M0

⊗Gq.

Associated to the variables x1, . . . , xp, x̀1, . . . , x̀q we consider the flat supermanifold

Rp|q = (Rp,ORp|q ) = (Rp, C∞Rp ⊗Gq) ;
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where Gq = G(x̀1, . . . , x̀q) is the Grassmann algebra generated by the anti-commuting
variables x̀1, . . . x̀q. The full algebra of functions in this supermanifold is C∞(Rp) ⊗ Gq
which consists of superfunctions of the supervector variable x = (x, x̀) of the form

F (x) = F (x, x̀) =
∑

A⊂{1,...,q}

FA(x) x̀A, (3.8)

where x̀A is defined as x̀j1 . . . x̀jk with A = {j1, . . . , jk} (1 ≤ j1 < . . . < jk ≤ q), and
FA ∈ C∞(Rp). Similarly, one may consider other spaces of superfunctions of the form
F ⊗ Gq where F = Ck(Ω), L2(Ω), . . . , with Ω ⊂ Rp. In general, the bosonic functions
FA in (3.8) are complex-valued. We say that F is a real superfunction when all elements
FA are real-valued.

The bosonic and fermionic partial derivatives defined in (3.7) for KP naturally extend
to C1(Ω) ⊗ Gq (Ω ⊂ Rm is an open subset). For every F ∈ C1(Ω) ⊗ Gq one can easily
verify that

∂x̀j [F ] = −[F ∗]∂x̀j ,
(
∂x̀j [F ]

)∗
= −∂x̀j [F ∗]. (3.9)

where ·∗ is the gradation automorphism for the Grassmann algebraGq defined in Example
3.2, i.e.

F ∗(x) =
∑

A⊂{1,...,q}

(−1)|A|FA(x)x̀A.

In the same way, the following Leibniz formulae can be easily proven.

Theorem 3.1 (Leibniz formulae [7, p. 75]). The formulae

∂xj [FG] = ∂xj [F ]G+ F ∂xj [G], j = 1, . . . , p,

∂x̀j [FG] = ∂x̀j [F ]G+ F ∗ ∂x̀j [G] j = 1, . . . , q, (3.10)
[FG]∂x̀j = F ([G]∂x̀j ) + ([F ]∂x̀j )G

∗, j = 1, . . . , q,

hold for F,G ∈ C1(Ω)⊗Gq.

The body F0 and the nilpotent part F of a superfunction F (x) of the form (3.8) are
obtained by writing F (x) = F0(x) + F(x, x̀) where

F0(x) = F∅(x), and F(x, x̀) =
∑
|A|≥1

FA(x) x̀A.

Definition 3.2. Consider a superfunction F =
∑
A FAxA ∈ C∞(R`) ⊗ Gs, even real-

valued superfunctions yj(x) ∈ C∞(Ω)⊗G(ev)
q , j = 1, . . . , ` and odd superfunctions ỳk(x) ∈

C∞(Ω) ⊗ G
(odd)
q , k = 1, . . . , s with Ω an open subset of Rp. We expand every yj as the

sum of its body and its nilpotent part, i.e. yj(x) = [yj ]0(x) + yj(x). The composed
superfunction F (y(x)) = F (y1(x), . . . , y`(x), ỳ1(x), . . . , ỳs(x)) ∈ C∞(Ω)⊗Gq is defined
as

F (y(x)) =
∑

A⊂{1,...,s}

FA(y1(x), . . . , y`(x)) ỳA(x),



3. Hermitian Clifford analysis on superspace 66

where the even superfunctions FA(y1(x), . . . , y`(x)) are determined by means of the Taylor
expansion as

FA(y1(x), . . . , y`(x)) =
∑

k1,...,k`≥0

F
(k1,...,k`)
A ([y1]0(x), . . . , [y`]0(x))

k1! · · · k`!
y1(x)k1 · · ·y`(x)k` ,

and ỳA(x) = ỳj1(x) . . . ỳjk(x) for A = {j1, . . . , jk} (1 ≤ j1 < . . . < jk ≤ s).

Remark 3.3. Note that the series in the above definition of FA is finite in view of the
nilpotency of yj(x). Moreover, it is clear that Definition 3.2 can be used for functions
that are not C∞ as long as all the derivatives appearing in the formula exist.

Using this definition for composition of superfunctions it is possible to prove the following
chain rule in superspace, see e.g. [7, p. 75]

Theorem 3.2 (Chain rule [7, 33]). Consider the composed superfunction F (y(x)) ∈
C∞(Ω)⊗Gq under the same conditions of Definition 3.2. Hence,

∂F

∂xk
=
∑̀
j=1

∂yj
∂xk

∂F

∂yj
+

s∑
j=1

∂ỳj
∂xk

(
∂

∂ỳj
F

)
, k = 1, . . . , p,

∂

∂x̀k
F =

∑̀
j=1

(
∂

∂x̀k
yj

)
∂F

∂yj
+

s∑
j=1

(
∂

∂x̀k
ỳj

)(
∂

∂ỳj
F

)
, k = 1, . . . , q,

F
∂

∂x̀k
=
∑̀
j=1

∂F

∂yj

(
yj

∂

∂x̀k

)
+

s∑
j=1

(
F

∂

∂ỳj

)(
ỳj

∂

∂x̀k

)
, k = 1, . . . , q.

3.2 Radial algebra representation is superspace

In [31, 33, 34, 35, 37] the theory of harmonic and Clifford analysis in superspace has been
developed. We now introduce the building blocks of such a theory following the radial
algebra representation approach.

In order to establish the Clifford setting in superspace we consider the homogeneous basis
e1, . . . , em, è1, . . . , è2n of Rm,2n endowed with an orthogonal and a symplectic structure.
This is done by means of the commutation rules

ejek + ekej = −2δj,k, ej èk + èkej = 0, èj èk − èkèj = gj,k, (3.11)

where the symplectic form gj,k is defined by

g2j,2k = g2j−1,2k−1 = 0, g2j−1,2k = −g2k,2j−1 = δj,k, j, k = 1, . . . , n.

The even dimension of the odd subspace R0,2n is needed to enable the symplectic struc-
ture. Following the above relations, elements in Rm,2n generate an infinite dimensional
algebra denoted by Cm,2n.
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Remark 3.4. The elements èj, and the algebra C0,2n generated by them, may be rep-
resented by polynomial differential operators in n dimensions where we introduce real
variables aj and the corresponding derivatives ∂aj (j = 1, . . . , n) and make the assign-
ments :

è2j−1 → ∂aj , è2j → aj , j = 1, . . . , n, (3.12)

see [68]. One indeed has the "Weyl algebra defining relations"

∂aj ak − ak ∂aj = δj,k

as operators on polynomials in a1, . . . , an. This approach is entirely consistent with the
defining relations of the algebra generated only by the èj’s. When working with the whole
set of Clifford generators ej and èj which satisfy the anti-commuting relation ej èk =
−èkej, the identification (3.12) no longer holds. However, if one introduces an extra
orthogonal Clifford algebra generator em+1 with

e2
m+1 = −1, and em+1ej = −ejem+1, (j = 1, . . . ,m),

one may make the assignment

è2j−1 → em+1∂aj , è2j → −em+1aj , j = 1, . . . , n.

In this way, it is proven that there exists a non-trivial algebra generated by the whole set
{e1, . . . , em, è1 . . . , è2n} subject to the defining relations (3.11).

The classical representation of the radial algebra R(S) in superspace, where S is a finite
set composed by ` abstract vector variables (` > 1), starts with the mapping

x→ x = x+ x̀ =

m∑
j=1

xjej +

2n∑
j=1

x̀j èj , x ∈ S, (3.13)

between S and the set of independent supervector variables S = {x : x ∈ S}. For each
x ∈ S we consider in (3.13) m bosonic variables x1, . . . , xm and 2n fermionic variables
x̀1, . . . , x̀2n. The projections x =

∑m
j=1 xjej and x̀ =

∑2n
j=1 x̀j èj are called the bosonic

and fermionic vector variables, respectively. The set of independent supervector variables
S, obtained through the correspondence (3.13), generates a radial algebra representation
R(S) as we will show next.

Let us define the sets V AR and V AR`of bosonic and fermionic variables

V AR =
⋃
x∈S

{x1, . . . , xm}, V AR`=
⋃
x∈S

{x̀1, . . . , x̀2n} (3.14)

respectively, where the sets {x1, . . . , xm} and {x̀1, . . . , x̀2n} correspond to the bosonic
and fermionic vector variables associated to each x ∈ S through the correspondences
(3.13). In this way, V AR contains m` bosonic variables and V AR`contains 2n` fermionic
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variables. They give rise to the algebra of super-polynomials V = AlgR{V AR ∪ V AR }̀
which is extended to the algebra of Clifford-valued super-polynomials

Am,2n = V ⊗ Cm,2n,

where the elements of V commute with the elements of Cm,2n.

The algebra V clearly is Z2-graded. Indeed, V = V0 ⊕ V1 where V0 consists of all
commuting super-polynomials and V1 consists of all anti-commuting super-polynomials
in V.

Note that in the bosonic case, elements in V AR generate an infinite dimensional polyno-
mial algebra, while the elements ej generate a finite dimensional Clifford algebra. Con-
versely, in the fermionic case, elements in V AR`generate a finite dimensional Grassmann
algebra, and the elements èj generate an infinite dimensional Weyl algebra. The super-
vector variables x ∈ S properly combine these properties, whence the correspondence
(3.13) defines a radial algebra representation

Ψm,2n : R(S)→ Am,2n. (3.15)

Indeed, the fundamental axiom (A1) is fulfilled in this setting since for every pair x,y ∈ S

{x,y} = −2

m∑
j=1

xjyj +

n∑
j=1

(x̀2j−1ỳ2j − x̀2j ỳ2j−1) (3.16)

is a central element in Am,2n. Formula (3.16) is normally used to define a generalized
inner product in superspace (see Chapter 4).

It is important to note that R(S) is a subalgebra strictly contained in Am,2n. This can
be easily seen by noticing that elements of the form vèj , v̀ej with v ∈ V AR, v̀ ∈ V AR`do
not belong to R(S). From now on, we will refer to the representation R(S) as the radial
algebra embedded in Am,2n. Such a representation allows to develop a nice extension of
Clifford analysis to superspace as it was shown in [33, 32].

Remark 3.5. Consider the variables in V AR and V AR`represented as co-ordinates with
values in Λ0 and Λ1 respectively as in the Vladimirov-Volovich approach, see Section
3.1.1. Then, in the above representation of the radial algebra, the corresponding underly-
ing vector space on which the vector variables x are defined is given by V = Rm,2n(Λ). It
is easily seen that the algebra generated by all vectors in Rm,2n(Λ) is strictly contained in
A⊗Cm,2n. In particular, Rm,2n(Λ) does not contain the symplectic Clifford generators èj
(j = 1, . . . , 2n). This makes the notion of vector variable in this supersymmetry setting
more restrictive than in the Clifford-polynomial representation. We recall that in that
case, the corresponding underlying vector space is V = Rm which contains all orthogonal
Clifford generators ej (j = 1, . . . ,m).

The difference is seen by noticing that the orthogonal Clifford generators satisfy the axiom
(A1) since {ej , ek} always is a scalar. But that is not the case for the anti-commutator
{èj , èk} of symplectic Clifford generators. To obtain a representation of the radial algebra
in superspace it is necessary to combine the symplectic generators èj with anti-commuting
variables. In that way we get the commuting element {v̀èj , ẁèk} = v̀ẁ[èj , èk].
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3.2.1 Representation of the main endomorphisms

The endomorphisms defined in Section 2.3 on the radial algebra R(S) can be naturally
mapped by Ψm,2n into the algebra of endomorphisms over R(S), see Definition 2.3. In
this section we will describe the extension of some of these endomorphisms from R(S) to
Am,2n.

Conjugation: The conjugation admits an extension from the radial algebra represen-
tation R(S) to Am,2n . In fact, we can define · ∈ End(Am,2n) by means of the following
rules:

i) · is the identity map on V.

ii) ej1 · · · ejk èl1 · · · èls = (−1)k+
s(s+1)

2 èls · · · èl1ejk · · · ej1 .

This extension still is an involution on Am,2n but the anti-automorphism property, i.e.
FG = GF , which is fulfilled in the radial algebra is no longer satisfied in Am,2n. For
example, observe that

èj èk = −èkèj 6= èkèj = èk èj ,

and
v̀ej ẁek = v̀ẁekej 6= −v̀ẁekej = ẁek v̀ej .

Main involution: The main involution can also be extended from the radial algebra to
Am,2n. The algebra homomorphism ·̃ can be defined in a natural way by

i) ·̃ is the identity map on V.

ii) ẽj = −ej , ẽ̀j = −èj .

iii) F̃G = F̃ G̃.

Its restricted actions to the bosonic and the fermionic part respectively are called the
bosonic and fermionic main involutions and are defined by the following relations:

Bosonic main involution ·̃ b

i) ·̃ b is the identity map on V,

ii) ẽj
b = −ej , ẽ̀j

b
= èj ,

iii) F̃G
b

= F̃ b G̃b.

Fermionic main involution ·̃ f

i) ·̃ f is the identity map on V,

ii) ẽj
f = ej , ẽ̀j

f
= −èj ,

iii) F̃G
f

= F̃ f G̃f .

It is easily seen that the main involution ·̃ is the composition of its bosonic and fermionic
restrictions.

The fermionic main involution is closely related to the Z2-gradation of the superalgebra
V. The gradation automorphism ·∗ defined for Grassmann algebras in Example 3.2 can
be extended to Am,2n by means of the rules:
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i) v∗ = v and v̀ ∗ = −v̀ for every v ∈ V AR, v̀ ∈ V AR .̀

ii) ·∗ is the identity map in Cm,2n.

iii) (FG)∗ = F ∗G∗.

Observe that the restriction of ·∗ to the radial algebra R(S) coincides with the fermionic
main involution. In fact, for every vector variable x ∈ S we have:

x̃f =

m∑
j=1

xjej −
2n∑
j=1

x̀j èj = x∗.

In addition this grading automorphism is such that

v̀F = F ∗ v̀; F ∈ Am,2n, v̀ ∈ V AR .̀

Vector derivative: The partial derivatives with respect to the variables in V AR∪V AR`
are defined as endomorphisms in V by means of the recursive relations (3.7). We recall
that in this case we are considering p = m` bosonic variables and q = 2n` fermionic va-
riables. These derivatives trivially extend to Am,2n by means of the commuting relations

∂xjej = ej∂xj , ∂xj èj = èj∂xj , ∂x̀jej = ej∂x̀j , ∂x̀j èj = èj∂x̀j . (3.17)

The bosonic Dirac operator ∂x and the fermionic Dirac operator ∂x̀ associated to the
vector variable x ∈ S are introduced by

∂x =

m∑
j=1

ej∂xj , ∂x̀ = 2

n∑
j=1

(
è2j∂x̀2j−1

− è2j−1∂x̀2j

)
. (3.18)

The representation of the vector derivative in R(S) is obtained by means of the left and
right super Dirac operators which are defined by

∂x· = ∂x̀ · −∂x· ; F → ∂x̀[F ]− ∂x[F ] = ∂x[F ],

·∂x = − · ∂x̀ − ·∂x ; F → −[F ]∂x̀ − [F ]∂x = [F ]∂x.

Indeed, in [33] it was proven that the above operators satisfy all axioms (D1)- (D4)
used in the definition of vector derivative on the level of radial algebra. In this case the
abstract dimension is mapped to ∂x[x] = [x]∂x = m − 2n =: M . This parameter M is
called the superdimension.

On the radial algebra level, the left and right actions of the vector derivative are con-
nected by means of the conjugation since ∂x[F ] = −[F ]∂x holds for every F ∈ R(S), see
Lemma 2.7. This property, however, is fully dependent on the radial algebra structure,
constituting the reason why the above relation is no longer fulfilled in general on Am,2n.
For example, for the element F = x̀2j−1 we obtain that

∂x[F ] = ∂x̀[F ] = 2è2j = −2è2j , while − [F ]∂x = [F ]∂x̀ = 2è2j .
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Remark 3.6. In [23], a slightly different super Dirac operator was considered in order
to obtain an osp(m|2n)-symmetry. The supervector variable in that setting was defined
as

X =

m∑
j=0

XjEj +

2n∑
j=1

Xm+jEm+j ,

corresponding to a super Dirac operator of the form

∂X =

m∑
j=0

∂XjEj +

2∑
j=1

(
∂Xm+j

Em+n+j − ∂Xm+n+j
Em+j

)
,

where X1, . . . , Xm are bosonic variables, Xm+1, . . . , Xm+2n are fermionic variables and
the elements Ek, k = 1, . . . ,m+2n, generate a super Clifford algebra subject to the rules,

EkE` + E`Ek = −2δk,`, 1 ≤ k, ` ≤ m,
EkEm+` + Em+`Ek = 0, 1 ≤ k ≤ m, 1 ≤ ` ≤ 2n,

Em+kEm+` − Em+`Em+k = 0, 1 ≤ k, ` ≤ n,
Em+kEm+n+` − Em+n+`Em+k = 2δk,`, 1 ≤ k, ` ≤ n,

Em+n+kEm+n+` − Em+n+`Em+n+k = 0, 1 ≤ k, ` ≤ n.

The main difference between this setting and the one considered in the underlying thesis is
that the fermionic variables anti-commute with the symplectic generators. More precisely,

Xm+jEm+k = −Em+kXm+j , 1 ≤ j, k ≤ 2n, (3.19)

while the other commutation rules remain the same, i.e. XjEk = EkXj and XkEj =
EjXk for 1 ≤ j ≤ m, 1 ≤ k ≤ m+ 2n. Nevertheless, both approaches are closely related
since both of them allow for a radial algebra representation. The explicit connection
between both settings is given in terms of the fermionic main involution by means of the
following transformations:

Xj = xj , Ej = ej , ∂Xj = ∂xj , j = 1 . . . ,m,

Xm+j =
−i√

2
x̀2j−1 ·̃ f , Em+j = i

√
2 ·̃ f è2j−1, ∂Xm+j

= i
√

2 ∂x̀2j−1
·̃ f , j = 1 . . . , n,

Xm+n+j =
−i√

2
x̀2j ·̃ f , Em+n+j = i

√
2 ·̃ f è2j , ∂Xm+n+j = i

√
2 ∂x̀2j ·̃ f , j = 1 . . . , n.

The involution ·̃ f is very useful in this context since it squares to the identity operator
and anti-commutes with the èj’s. Hence, we obtain

Xm+jEm+j = x̀2j−1è2j−1, Xm+n+jEm+n+j = x̀2j è2j , j = 1 . . . , n,

∂Xm+j
Em+n+j = −2∂x̀2j−1

è2j , ∂Xm+n+j
Em+j = −2∂x̀2j

è2j−1, j = 1 . . . , n,

yielding X = x and ∂X = −∂x. As mentioned before, the relations (3.19) allow for
an orthosymplectic symmetry of ∂X, see [23]. In Chapters 4 and 5, we approach this
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situation from a group theoretical point of view. In particular, we prove that the operator
∂x is spin invariant, which is equivalent to saying that it is invariant under the action
of a Grassmann envelope of osp(m|2n).

Vector multipliers: In the Clifford-polynomial representation the vector multipliers
x and x| can be easily redefined using the basis multipliers ej and ej |, see (2.8). In
particular, this means that the ·| action is linear with respect to the variables xj . Based on
the same idea, we define the following basis multipliers in the superspace representation:

ej : F → ejF, ej | : F → F̃ ej ,

èj : F → ejF, èj | : F → F̃ bèj .

They make it possible to write the x| operator defined on the radial algebra R(S) as

x| = x|+ x̀| =
m∑
j=1

xjej |+
2n∑
j=1

x̀j èj |.

In fact, for every F ∈ Am,2n we have that

x|[F ] =

m∑
j=1

xjF̃ ej +

2n∑
j=1

x̀jF̃
bèj =

m∑
j=1

F̃ xjej +

2n∑
j=1

(
F̃ b
)∗
x̀j èj .

In particular, for F ∈ R(S) we obtain F̃ =
(
F̃ b
)∗

and in consequence x|[F ] = F̃x.

Using the identifications:

em+j = iej | j = 1, . . . ,m,
è2n+j = ièj | j = 1, . . . , 2n,

(3.20)

it is easily proven that the operators e1, . . . , em, em+1, . . . , e2m, è1, . . . , è2n, è2n+1, . . . , è4n

satisfy the commutation relations given in (3.11), i.e. they generate the algebra C2m,4n.

For future computations we will need the following relations that can be easily proven
using mathematical induction and the recursion formulae (3.7).

Lemma 3.1. Let x = x+ x̀ be a supervector variable. Then the following identities hold
in Am,2n[

∂xj , ·
]

= 0,
[
∂x̀j , ·

]
= 0,

[
∂xj , ej |

]
= 0,

{
∂x, ·̃ b

}
= 0,

[
∂x̀, ·̃ b

]
= 0,[

∂xj , ·̃ b
]

= 0,
[
∂x̀j , ·̃ b

]
= 0,

[
∂x̀j , ej |

]
= 0,

[
∂x, ·̃ f

]
= 0,

{
∂x̀, ·̃ f

}
= 0,[

∂xj , ·̃ f
]

= 0,
[
∂x̀j , ·̃ f

]
= 0,

[
∂xj , èj |

]
= 0,

{
∂x, ·̃

}
= 0,

{
∂x̀, ·̃

}
= 0,[

∂xj , ·̃
]

= 0,
[
∂x̀j , ·̃

]
= 0,

[
∂x̀j , èj |

]
= 0,

[
∂x, · ∗

]
= 0,

{
∂x̀, · ∗

}
= 0,[

∂xj , ·∗
]

= 0,
{
∂x̀j , ·∗

}
= 0,

In addition, for every F ∈ Am,2n one has that ∂v̀[F ] = −[F ∗]∂v̀.
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Remark 3.7. The results in Lemma 3.1 are an extension to Am,2n of the formulae (3.9).

Lemma 3.2. Let F,G ∈ Am,2n. Then one has
∂xj [FG] = ∂xj [F ]G,

[GF ]∂xj = G[F ]∂xj , if G ∈ AlgR
((
V AR \ {xj}

)
∪ V AR

)̀
⊗ Cm,2n,

∂xj [G] = 0 = [G]∂xj ,


∂x̀j [FG] = ∂x̀j [F ]G,

[GF ]∂x̀j = G[F ]∂x̀j , if G ∈ AlgR
(
V AR ∪

(
V AR`\ {x̀j}

))
⊗ Cm,2n,

∂x̀j [G] = 0 = [G]∂x̀j .

Operator B: Following the radial algebra approach of Theorem 2.5 and using Lemmas
3.1 and 3.2, we compute the representation of the operator B = {∂x, x|} acting on
F ∈ Am,2n as follows:

{∂x,x|}[F ] = ∂x
[
x|[F ]

]
+ x|

[
∂x[F ]

]
= (∂x̀ − ∂x) (x|[F ] + x̀|[F ]) + (x|+ x̀|)

(
∂x̀[F ]− ∂x[F ]

)
=
(
−∂x

[
F̃ x
]

+ ∂x

[
F̃
]
x
)

+
(
−∂x

[(
F̃ b
)∗
x̀
]

+ ∂x

[(
F̃ b
)∗]

x̀
)

+
(
∂x̀

[
F̃ x
]
− ∂x̀

[
F̃
]
x
)

+
(
∂x̀

[(
F̃ b
)∗
x̀
]
− ∂x̀

[(
F̃ b
)∗]

x̀
)

=
(
−∂x

[
F̃ x
]

+ ∂x

[
F̃
]
x
)

+
(
∂x̀

[(
F̃ b
)∗
x̀
]
− ∂x̀

[(
F̃ b
)∗]

x̀
)
.

However, Remark 2.11 shows that

−∂x
[
F̃ x
]

+ ∂x

[
F̃
]
x = −

m∑
j=1

ejF̃ ej .

On the other hand,

∂x̀

[(
F̃ b
)∗
x̀
]

= 2

 n∑
j=1

(
è2j∂x̀2j−1 − è2j−1∂x̀2j

) (
2n∑
k=1

x̀kF̃
bèk

)

= 2
∑

1≤j≤n
1≤k≤2n

è2j

(
δ2j−1,k F̃

bèk − x̀k∂x̀2j−1
[F̃ b]èk

)
− 2

∑
1≤j≤n

1≤k≤2n

è2j−1

(
δ2j,k F̃

bèk − x̀k∂x̀2j
[F̃ b]èk

)
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yielding,

∂x̀

[(
F̃ b
)∗
x̀
]

= 2
∑

1≤j≤n
1≤k≤2n

(
δ2j−1,k è2jF̃

bèk − δ2j,k è2j−1F̃
bèk

)
+

+ 2
∑

1≤j≤n
1≤k≤2n

(
è2j∂x̀2j−1 [(F̃ b)∗]x̀kèk − è2j−1∂x̀2j [(F̃

b)∗]x̀kèk

)

= 2

n∑
j=1

(
è2jF̃

bè2j−1 − è2j−1F̃
bè2j

)
+ ∂x̀

[(
F̃ b
)∗]

x̀.

We thus get

{∂x,x|}[F ] = −
m∑
j=1

ejF̃ ej + 2

n∑
j=1

(
è2jF̃

bè2j−1 − è2j−1F̃
bè2j

)
.

We can now write the representation of the operator B = {∂x, x|} in superspace as a
special "bivector" B in C2m,4n:

B = −
m∑
j=1

ejej |+ 2

n∑
j=1

(è2j è2j−1| − è2j−1è2j |)

= i

 m∑
j=1

ejem+j + 2

n∑
j=1

(è2j−1è2n+2j − è2j è2n+2j−1)

 .

In Am,2n we can also define the bosonic and fermionic differential operators

∂x| =
m∑
j=1

ej | ∂xj , ∂x̀| = 2

n∑
j=1

(
è2j | ∂x̀2j−1

− è2j−1| ∂x̀2j

)
.

They lead to the representation of the endomorphism ∂x| (see (2.12)) in this setting;
which is given by the super differential operator ∂x| = ∂x̀| − ∂x| acting from the left.
Using Lemma 3.1 we can compute the action of this operator as follows,

∂x|[F ] = ∂x̀|[F ]− ∂x|[F ]

= 2
n∑
j=1

(
è2j | ∂x̀2j−1

[F ]− è2j−1| ∂x̀2j
[F ]
)
−

m∑
j=1

ej | ∂xj [F ]

= 2

n∑
j=1

(
∂x̀2j−1

[F̃ b]è2j − ∂x̀2j
[F̃ b]è2j−1

)
−

m∑
j=1

∂xj [F̃ ]ej

= −2

n∑
j=1

(
[(F̃ b)∗]∂x̀2j−1 è2j − [(F̃ b)∗]∂x̀2j è2j−1

)
−

m∑
j=1

[F̃ ]∂xjej

= −[(F̃ b)∗]∂x̀ − [F̃ ]∂x.
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Then, for F ∈ R(S) we have ∂x|[F ] = [F̃ ]∂x (see (2.12)). As it was proven in Theorem
2.5, the equality −{∂x|,x} = B holds on the radial algebra R(S). By straightforward
computation we can check that it remains valid in Am,2n.

3.3 Complex structures

Following the approach given in (2.35), we obtain a representation of the radial algebra
with complex structure R(S ∪ J(S),B) in superspace by means of the composition

Ψm,2n ◦Ψ2 : R(S ∪ J(S),B)→ A2m,4n.

Here, the doubled vector variables Ψm,2n(X), see (2.36), have the form

x =

m∑
j=1

xjej +

2n∑
j=1

x̀j èj + i

 m∑
j=1

xm+jej |+
2n∑
j=1

x̀2n+j èj |

 =

2m∑
j=1

xjej +

4n∑
j=1

x̀j èj = x+ x̀,

while the action of the complex structure J := Ψm,2n(J2), see (2.37), is given by

J (x) = J (x) + J (x̀) =

m∑
j=1

(xm+jej − xjem+j) +

2n∑
j=1

(x̀2n+j èj − x̀j è2n+j).

In other words, the representation Ψ2n,4n defined in (3.15) extends to the homomorphism
Ψm,2n ◦ Ψ2 from R(S ∪ J(S),B) into R(S ∪ J (S),−iB) ⊂ A2m,4n by means of the
commutative diagram

R(S ∪ J(S),B) R(S2 ∪ J2(S2),−iB1)

R(S ∪ J (S),−iB)

Ψ2

Ψ2m,4n

Ψm,2n (3.21)

For the sake of simplicity, we have abused of the notations x and S used in the previous
sections for the representation Ψm,2n. In case we explicitly need to indicate the dimen-
sions p, 2q of the representation Ψp,2q we use the notations x ∈ Ap,2q and S ⊂ Ap,2q.

The complex structure J can be extended from R(S ∪ J (S),−iB) to an algebra auto-
morphism on A2m,4n by means of the following relations:

i) J is the identity map on V.

ii)
J (ej) = −em+j , J (em+j) = ej , j = 1, . . . ,m,
J (èj) = −è2n+j , J (è2n+j) = èj , j = 1, . . . , 2n.

iii) J (FG) = J (F )J (G), F,G ∈ A2m,4n.
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The restriction of J to C2m,0 = R0,2m exactly yields the complex structure J used in
classical Hermitian Clifford analysis, see [14, 9] and Remark 2.17. On the other hand,
the restriction to C0,4n = AlgR(è1, . . . , è4n) brings new insights to this study since it acts
on objects of a different nature.

In order to study the action of J on C0,4n let us consider the representation (3.12) of
C0,4n in terms of polynomial differential operators. In this particular case, one needs 2n
real variables aj , bj (j = 1, . . . , n) and the assignments

è2j−1 → ∂aj , è2j → aj , è2n+2j−1 → ∂bj , è2n+2j → bj . (3.22)

In the closure of the set of polynomials in the variables aj , bj we may consider the element

ei〈a,b〉 = exp

i n∑
j=1

ajbj

 =

n∏
j=1

eiajbj , where eiajbj =

∞∑
k=0

(iajbj)
k

k!
.

This function works as a "projection wall" under the action of the above Weyl generators,
i.e.

∂aje
i〈a,b〉 = i bj e

i〈a,b〉, ∂bje
i〈a,b〉 = i aj e

i〈a,b〉.

These relations yield a projection J of the complex structure J . Indeed, by letting
J (è2j−1) and J (è2j) act on ei〈a,b〉 we obtain, using the substitutions (3.22), that

J (è2j−1)
[
ei〈a,b〉

]
= −∂bjei〈a,b〉 = −aj iei〈a,b〉 = −è2j

[
iei〈a,b〉

]
,

J (è2j)
[
ei〈a,b〉

]
= −bjei〈a,b〉 = ∂aj ie

i〈a,b〉 = è2j−1

[
iei〈a,b〉

]
.

In this way, we define the projection morphism J : C0,4n → C0,2n by means of the relation

J (èj)
[
ei〈a,b〉

]
= i1−b

j
2n+1c J(èj)

[
ei〈a,b〉

]
, j = 1, . . . , 4n.

This operator J projects the whole action of J onto the algebra C0,2n = AlgR(è1, . . . , è2n).
In particular,

J(è2j−1) = −J(è2n+2j) = −è2j , J[è2j ] = J(è2n+2j−1) = è2j−1.

This avoids the "redundancy" caused by doubling the already doubled fermionic part.
The above relations allow to extend the radial algebra representation Ψ2m,2n : R(S) →
A2m,2n to a representation of R(S∪J(S),B), where only the bosonic dimension has been
doubled. Indeed, the restriction of J to C0,2n can be extended to an algebra automorphism
of A2m,2n as follows

i) J is the identity in V.

ii)
J(ej) = −em+j , J(em+j) = ej , j = 1, . . . ,m,
J(è2j−1) = −è2j , J(è2j) = è2j−1, j = 1, . . . , n.

iii) J(FG) = J(F )J(G), F,G ∈ A2m,2n.

In the next section we will show that, indeed, J satisfies the complex structure axioms
(AH1)-(AH3).
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3.3.1 Verification of the complex structure axioms

Here we verify that the action of J on the radial algebra R(S) embedded in A2m,2n

satisfies the complex structure axioms, i.e. that J is a complex structure on R(S) ⊂
A2m,2n.

We recall that, in this setting, the supervector variables take the form

x = x+ x̀ =

m∑
j=1

(xjej + xm+jem+j) +

n∑
j=1

(x̀2j−1è2j−1 + x̀2j è2j) ,

and the action of J is given by,

J(x) = J(x) + J(x̀) =

m∑
j=1

(xm+jej − xjem+j) +

n∑
j=1

(x̀2j è2j−1 − x̀2j−1è2j) . (3.23)

Checking (AH1)-(AH2):

{x,y} = {J(x),J(y)}, {J(x),y} = −{x,J(y)} x,y ∈ S.

We clearly have

{x, y} = −2

m∑
j=1

(xjyj + xm+jym+j) = {J(x),J(y)},

{x, ỳ} =
∑
j,k

xj ỳk{ej , èk} = 0 = {J(x),J(ỳ)},

{x̀, ỳ} =
∑
j,k

x̀j ỳk[èj , èk] =

n∑
j=1

x̀2j−1ỳ2j − x̀2j ỳ2j−1.

and also

{J(x̀),J(ỳ)} =

n∑
j,k=1

{x̀2j è2j−1 − x̀2j−1è2j , ỳ2kè2k−1 − ỳ2k−1è2k}

=

n∑
j,k=1

−x̀2j ỳ2k−1[è2j−1, è2k]− x̀2j−1ỳ2k[è2j , è2k−1]

=

n∑
j=1

x̀2j−1ỳ2j − x̀2j ỳ2j−1.

Hence we conclude

{x,y} = −2

m∑
j=1

(xjyj + xm+jym+j) +

n∑
j=1

x̀2j−1ỳ2j − x̀2j ỳ2j−1 = {J(x),J(y)},



3. Hermitian Clifford analysis on superspace 78

which clearly is a central element in A2m,2n. On the other hand, we have

{J(x), y} = −2

m∑
j=1

(xm+jyj − xjym+j) = −{x,J(y)},

{J(x), ỳ} =
∑
j,k

{xm+jej − xjem+j , ỳkèk} = 0 = {x,J(ỳ)},

{J(x̀), ỳ} =

n∑
j,k=1

{x̀2j è2j−1 − x̀2j−1è2j , ỳ2k−1è2k−1 + ỳ2kè2k}

=

n∑
j,k=1

x̀2j ỳ2k[è2j−1, è2k]− x̀2j−1ỳ2k−1[è2j , è2k−1]

=

n∑
j=1

x̀2j−1ỳ2j−1 + x̀2j ỳ2j

and

{x̀,J(ỳ)} =

n∑
j,k=1

{x̀2j−1è2j−1 + x̀2j è2j , ỳ2kè2k−1 − ỳ2k−1è2k}

=

n∑
j,k=1

−x̀2j−1ỳ2k−1[è2j−1, è2k] + x̀2j ỳ2k[è2j , è2k−1]

= −
n∑
j=1

x̀2j−1ỳ2j−1 + x̀2j ỳ2j .

Thus we obtain

{J(x),y} = −2

m∑
j=1

(xm+jyj − xjym+j) +

n∑
j=1

(x̀2j−1ỳ2j−1 + x̀2j ỳ2j) = −{x,J(y)},

which also is a central element in A2m,2n. �

Checking the axiom (AH3) requires the introduction of a suitable element B ∈ A2m,2n.
In accordance with axiom (DH3) we have that such an element B is determined by the
action of the vector derivative ∂x on J(x). Thus we define,

B :=
1

2
∂x[J(x)] =

1

2
(∂x̀ − ∂x) (J(x) + J(x̀)) =

1

2

(
∂x̀[J(x̀)]− ∂x[J(x)]

)
=

m∑
j=1

ejem+j −
2n∑
j=1

èj
2. (3.24)

This definition is consistent with (2.21) since J(B) = B.

Checking (AH3):

[B,x] = −2J(x), [B,J(x)] = 2x, x ∈ S.
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Let us write B := Bb −Bf with Bb =
∑m
j=1 ejem+j and Bf =

∑n
j=1

(
è 2

2j−1 + è 2
2j

)
. We

immediately obtain,

[Bb, x] =
∑
j,k

xk[ejem+j , ek] = −2

m∑
j=1

(xm+jej − xjem+j) = −2J(x),

[Bb, x̀] =
∑
j,k

x̀k[ejem+j , èk] = 0 =
∑
j,k

xk[è 2
j , ek] = [Bf , x],

[Bf , x̀] =

2n∑
j,k=1

[
è 2
j , x̀kèk

]
=

n∑
j,k=1

x̀2k

[
è 2

2j−1, è2k

]
+ x̀2k−1

[
è 2

2j , è2k−1

]
= 2

n∑
j=1

(x̀2j è2j−1 − x̀2j−1è2j) = 2J(x̀).

Then we conclude that

[B,x] = [Bb, x]− [Bf , x̀] = −2J(x)− 2J(x̀) = −2J(x).

The other statement in (AH3) is obtained by applying J to the above relation. �

In this way we have proven that the mapping Ψ2m,2n : R(S ∪ J(S),B) → A2m,2n given
by

x→ x, J(x)→ J(x), B → B, (3.25)

constitutes a representation of the radial algebra with complex structure R(S ∪ J(S),B)
in A2m,2n. The range Ψ2m,2n (R(S ∪ J(S),B)) will be denoted by R(S ∪ J(S),B).

We now possess of all elements to complete the commutative diagram (3.21) as follows,

R(S ∪ J(S),B) R(S2 ∪ J2(S2),−iB1)

R(S ∪ J(S),B) R(S ∪ J (S),−iB)

Ψ2

Ψ2m,4n

Ψ2m,2n Ψm,2n

PJ ,J

where the algebra homomorphism

PJ ,J : R(S ∪ J (S),−iB) ⊂ A2m,4n → R(S ∪ J(S),B) ⊂ A2m,2n

is defined by

x ∈ A2m,4n → x ∈ A2m,2n,

J (x) ∈ A2m,4n → J(x) ∈ A2m,2n,

−iB ∈ A2m,4n → B ∈ A2m,2n.
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3.3.2 Vector derivatives ∂x and ∂J(x)

In Section 2.5.1, the vector derivatives ∂x, ∂J(x) were extended from R(S) and R(J(S)),
respectively, to endomorphisms in R(S ∪ J(S),B). The goal of this section is to study
the corresponding vector derivatives ∂x, ∂J(x) (see (2.22)) in the above described radial
algebra representation R(S ∪ J(S),B) ⊂ A2m,2n.

We first observe that the partial derivatives ∂xj , ∂x̀j always commute with the complex
structure J. Then, the corresponding action of J on the super Dirac operator ∂x can be
easily seen by means of the following bosonic and fermionic twisted Dirac operators on
A2m,2n:

∂J(x) := J(∂x) =

m∑
j=1

(
ej∂xm+j − em+j∂xj

)
,

∂J(x̀) := J(∂x̀) = 2

n∑
j=1

(
è2j−1∂x̀2j−1 + è2j∂x̀2j

)
,

where ∂x, ∂x̀ are defined as in (3.18), i.e.

∂x =

m∑
j=1

(
ej∂xj + em+j∂xm+j

)
,

∂x̀ = 2

n∑
j=1

(
è2j∂x̀2j−1 − è2j−1∂x̀2j

)
.

The twisted super Dirac operator ∂J(x) then is defined by{
∂J(x)· := J(∂x·) = ∂J(x̀) · −∂J(x)· ,
·∂J(x) = J(·∂x) = − · ∂J(x̀) − ·∂J(x),

where

{
∂x· = ∂x̀ · −∂x· ,
·∂x = − · ∂x̀ − ·∂x.

(3.26)

This means that the above actions are subject to the relations:{
J(∂x[F ]) = ∂J(x)[J(F )],

J([F ]∂x) = [J(F )]∂J(x),

{
J(∂J(x)[F ]) = −∂x[J(F )],

J([F ]∂J(x)) = −[J(F )]∂x,
(3.27)

for every F ∈ A2m,2n.

Similar properties to (3.27) are satisfied by the vector derivatives ∂x, ∂J(x) at the radial
algebra level, see Lemma 2.12. In fact, the operators ∂x and ∂J(x) are the corresponding
representations of ∂x and ∂J(x) in superspace. In order to show that this is true, we
now verify that the definitions (3.26) are in agreement with the axioms (DH1)-(DH4)
established in the radial algebra setting. We first check the basic evaluations.

Checking (DH3)

∂x[x] = [x]∂x = M = ∂J(x)[J(x)] = [J(x)]∂J(x),

∂x[J(x)] = −[J(x)]∂x = 2B = −∂J(x)[x] = [x]∂J(x).
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It is known from [33] that ∂x[x] = [x]∂x = 2m−2n =: M , since ∂x represents the original
vector derivative in A2m,2n. Then applying J and using (3.27) we obtain ∂J(x)[J(x)] =
[J(x)]∂J(x) = 2m− 2n.

The relation ∂x[J(x)] = 2B was the one used in (3.24). Furthermore,

−[J(x)]∂x = (J(x) + J(x̀))
(
∂x̀ + ∂x

)
= [J(x)]∂x + [J(x̀)]∂x̀

= 2

n∑
j=1

(−è 2
2j−1 − è

2
2j) +

m∑
j=1

(−em+jej + ejem+j)

= 2B.

Applying J on the above equalities and using again (3.27) we conclude that −∂J(x)[x] =
2B = [x]∂J(x). �

Checking (DH4)
∂x[x2] = [x2]∂x = 2x, ∂J(x)[x

2] = [x2]∂J(x) = 2J(x),

∂x[xJ(x)] = (M + 2)J(x)− 2xB, [xJ(x)]∂x = −(M − 2)J(x)− 2xB,

∂J(x)[xJ(x)] = −(M + 2)x− 2J(x)B, [xJ(x)]∂J(x) = (M − 2)x− 2J(x)B,

for x ∈ S, and{
∂x{x,y} = {x,y}∂x = 2y = ∂J(x) {J(x),y} = {J(x),y} ∂J(x),

∂J(x){x,y} = {x,y}∂J(x) = 2J(y) = −∂x{J(x),y} = −{J(x),y}∂x,
for x,y ∈ S,x 6= y.

The equalities ∂x[x2] = [x2]∂x = 2x and ∂x{x,y} = {x,y}∂x = 2y (x 6= y) were
obtained in [33]. Letting act J on each of the previous relations we get,

∂J(x)[x
2] = [x2]∂J(x) = 2J(x), and ∂J(x){x,y} = {x,y}∂J(x) = 2J(y).

We also find

∂x[xJ(x)] =
(
∂x̀ − ∂x

)
(x̀+ x) (J(x) + J(x̀))

=
(
∂x̀ − ∂x

) [
xJ(x) + xJ(x̀) + x̀J(x) + x̀J(x̀)

]
= −∂x̀ [J(x̀)x] + ∂x̀ [x̀J(x)] + ∂x̀ [x̀J(x̀)]− ∂x [xJ(x)]− ∂x [xJ(x̀)] + ∂x [J(x)x̀] .

However

∂x̀ [J(x̀)x] = ∂x̀ [J(x̀)]x = −2Bf x, ∂x̀ [x̀J(x)] = ∂x̀ [x̀] J(x) = −2nJ(x),

∂x [xJ(x̀)] = ∂x [x] J(x̀) = −2mJ(x̀), ∂x [J(x)x̀] = ∂x [J(x)] x̀ = −2Bb x̀,
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∂x̀ [x̀J(x̀)] = 2

n∑
j=1

è2j∂x̀2j−1
[x̀J(x̀)]− è2j−1∂x̀2j

[x̀J(x̀)]

= 2

n∑
j=1

è2j

(
è2j−1J(x̀) + x̀è2j

)
− è2j−1

(
è2jJ(x̀)− x̀è2j−1

)

= 2

 n∑
j=1

è2j è2j−1 − è2j−1è2j

J(x̀) + 2

n∑
j=1

(
è2j−1x̀è2j−1 + è2j x̀è2j

)

= −2nJ(x̀) + 2

n∑
j=1

(
è 2

2j−1 x̀− è2j−1x̀2j + è 2
2j x̀+ è2j x̀2j−1

)
= −(2n+ 2)J(x̀) + 2Bf x̀

and

∂x [xJ(x)] =

m∑
j=1

ej

(
ejJ(x)− xem+j

)
+ em+j

(
em+jJ(x) + xej

)
= −2mJ(x) +

m∑
j=1

(
em+j x ej − ej x em+j

)
= −2mJ(x) +

m∑
j=1

(
2ejem+j x+ 2xm+jej − 2xjem+j

)
= (−2m+ 2)J(x) + 2Bb x.

Then we conclude that

∂x[xJ(x)] = 2Bf x− 2nJ(x)− (2n+ 2)J(x̀) + 2Bf x̀

− (−2m+ 2)J(x)− 2Bb x+ 2mJ(x̀)− 2Bb x̀

= (2Bf − 2Bb)x+ (2Bf − 2Bb)x̀

+ (2m− 2n− 2)J(x) + (2m− 2n− 2)J(x̀)

= (2m− 2n− 2)J(x)− 2Bx

= (2m− 2n+ 2)J(x)− 2xB. (3.28)

Letting act J on (3.28) we obtain:

∂J(x)[xJ(x)] = −(M + 2)x− 2J(x)B, (3.29)

and conjugating both (3.28) and (3.29), we get

[xJ(x)]∂x = −(M − 2)J(x)− 2xB, and [xJ(x)]∂J(x) = (M − 2)x− 2J(x)B.
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Furthermore we have

∂x{J(x),y} =
(
∂x̀ − ∂x

)−2

m∑
j=1

(xm+jyj − xjym+j) +

n∑
j=1

(x̀2j−1ỳ2j−1 + x̀2j ỳ2j)


= 2

m∑
j=1

(em+jyj − ejym+j) + 2

n∑
j=1

(è2j ỳ2j−1 − è2j−1ỳ2j)

= −2J(y)− 2J(ỳ) = −2J(y)

=

−2

m∑
j=1

(xm+jyj − xjym+j) +

n∑
j=1

(x̀2j−1ỳ2j−1 + x̀2j ỳ2j)

(−∂x̀ − ∂x)
= {J(x),y}∂x.

Finally, from the action of J on the above relations we obtain

∂J(x) {J(x),y} = 2y = {J(x),y} ∂J(x).

�

Checking (DH1)

∂x[fF ] = ∂x[f ]F + f∂x[F ], ∂J(x)[fF ] = ∂J(x)[f ]F + f∂J(x)[F ],

[fF ]∂x = F [f ]∂x + f [F ]∂x, [fF ]∂J(x) = F [f ]∂J(x) + f [F ]∂J(x),

f ∈ R0(S ∪ J(S)), F ∈ R(S ∪ J(S),B).

It suffices to prove (DH1) just for those f generating R0(S∪J(S)), which are given by the
anti-commutators {x,y}, x2, {J(x),y} with x,y ∈ S. By straightforward computation
we obtain for every F ∈ A2m,2n that

∂x[{x,y}F ] = 2yF + {x,y}∂x[F ],

∂x[x2F ] = 2xF + x2∂x[F ],

∂x[{J(x),y}F ] = −2J(y)F + {J(x),y}∂x[F ],


[{x,y}F ]∂x = 2Fy + {x,y}[F ]∂x,

[x2F ]∂x = 2Fx + x2[F ]∂x,

[{J(x),y}F ]∂x = −2FJ(y) + {J(x),y}[F ]∂x.

Finally, the other relations can be obtained by means of the action of J on the above
equalities. �

The statement in (DH2) being a trivial consequence of Lemma 3.2, we omit its proof.
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3.3.3 Directional derivatives

We now are able to obtain explicit expressions for the directional derivatives Dy,x and
DJ(y),x in the representation R(S ∪ J(S),B). From the radial algebra framework (see
Theorem 2.11) it is known that

{∂x,y} = 2Dy,x + δx,yM, {∂x,J(y)} = 2DJ(y),x + 2δx,yB.

For the operator {∂x,y} we first obtain

{∂x,y} =

−
2m∑
j=1

ej∂xj + 2

n∑
j=1

(
è2j∂x̀2j−1

− è2j−1∂x̀2j

)
,

2m∑
k=1

ykek +

2n∑
k=1

ỳkèk


= −

2m∑
j,k=1

{
ej∂xj , ykek

}
−

∑
1≤j≤2m
1≤k≤2n

{
ej∂xj , ỳkèk

}
+ 2

∑
1≤j≤n

1≤k≤2m

({
è2j∂x̀2j−1

, ykek
}
−
{
è2j−1∂x̀2j

, ykek
})

+ 2
∑

1≤j≤n
1≤k≤2n

({
è2j∂x̀2j−1 , ỳkèk

}
−
{
è2j−1∂x̀2j , ỳkèk

})
.

However, from (3.11) and (3.7), we obtain the following relations for every pair v, w ∈
V AR and every pair v̀, ẁ ∈ V AR`(see (3.14)):

{ej∂v, ekw} = −δv,wekej − 2δj,kδv,w − 2δj,kw∂v,

{ej∂v, èkv̀} = 0 = {èj∂v̀, ekv},
{è2j∂v̀, èkẁ} = δv̀,ẁ èkè2j − δ2j−1,k δv̀,ẁ + δ2j−1,k ẁ ∂v̀,

{è2j−1∂v̀, èkẁ} = δv̀,ẁ èkè2j−1 + δ2j,k δv̀,ẁ − δ2j,k ẁ ∂v̀,

whence,

{∂x,y} = −
2m∑
j,k=1

(
−δx,yδj,kekej − 2δj,kδx,y − 2δj,kyk∂xj

)
+ 2

∑
1≤j≤n

1≤k≤2n

(
δx,yδ2j−1,k èkè2j − δ2j−1,k δx,y + δ2j−1,k ỳk ∂x̀2j−1

)
− 2

∑
1≤j≤n

1≤k≤2n

(
δx,yδ2j,k èkè2j−1 + δ2j,k δx,y − δ2j,k ỳk ∂x̀2j

)
,
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and consequently,

{∂x,y} =

2m∑
j=1

(
δx,y + 2yj∂xj

)
+ 2

n∑
j=1

δx,y(è2j−1è2j − è2j è2j−1 − 2)

+ 2

n∑
j=1

ỳ2j−1∂x̀2j−1
+ ỳ2j∂x̀2j

= δx,y(2m− 2n) + 2

 2m∑
j=1

yj∂xj +

2n∑
j=1

ỳj∂x̀j

 .

Similarly, for the operator {∂x,J(y)}, we obtain

{∂x,J(y)} =

{
∂x̀ − ∂x,

2m∑
k=1

(ym+kek − ykem+k) +

2n∑
k=1

(ỳ2kè2k−1 − ỳ2k−1è2k)

}

= −
m∑

j,k=1

{
ej∂xj , ekym+k

}
−
{
ej∂xj , em+kyk

}
−

m∑
j,k=1

{
em+j∂xm+j

, ekym+k

}
−
{
em+j∂xm+j

, em+kyk
}

+ 2

n∑
j,k=1

{
è2j∂x̀2j−1

, è2k−1ỳ2k

}
−
{
è2j∂x̀2j−1

, è2kỳ2k−1

}
+ 2

n∑
j,k=1

−
{
è2j−1∂x̀2j

, è2k−1ỳ2k

}
+
{
è2j−1∂x̀2j

, è2kỳ2k−1

}
,

which leads to

{∂x,J(y)} = −
m∑

j,k=1

(
−2δj,k ym+k∂xj + δx,y δj,k em+kej − δx,y δj,k ekem+j + 2δj,k yk∂xm+j

)
+ 2

n∑
j,k=1

(
δj,k ỳ2k∂x̀2j−1 − δx,y δj,k è2kè2j − δx,y δj,k è2k−1è2j−1 − δj,k ỳ2k−1∂x̀2j

)
= 2

m∑
j=1

(
δx,yejem+j + ym+j∂xj − yj∂m+j

)
+ 2

n∑
j=1

(
− δx,y(è 2

2j−1 + è 2
2j) + ỳ2j∂x̀2j−1

− ỳ2j−1∂x̀2j

)

= 2δx,yB + 2

 m∑
j=1

(ym+j∂xj − yj∂xm+j
) +

n∑
j=1

(ỳ2j∂x̀2j−1
− ỳ2j−1∂x̀2j

)

 .
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Then, we have found the following expressions for the directional derivatives

Dy,x = Dy,x +Dỳ,x̀ =

2m∑
j=1

yj∂xj +

2n∑
j=1

ỳj∂x̀j ,

DJ(y),x = DJ(y),x +DJ(ỳ),x̀ =

m∑
j=1

(ym+j∂xj − yj∂xm+j
) +

n∑
j=1

(ỳ2j∂x̀2j−1
− ỳ2j−1∂x̀2j

),

which lead to the Euler operator

Ex := Dx,x =

2m∑
j=1

xj∂xj +

2n∑
j=1

x̀j∂x̀j .

As it is known, Ex measures the degree of homogeneity in the supervector variable x of
every element of the radial algebra embedded inA2m,2n. This situation can be generalized
to the polynomial setting.

In the algebra RP := R[x1, . . . , x2m]⊗G(x̀1, . . . , x̀2n), we say that a polynomial Rk(x) =
Rk(x1, . . . , x2m, x̀1, . . . , x̀2n) is homogeneous of degree k ∈ N∪{0} if, for every λ ∈ R\{0},
it holds that

Rk(λx) = λkRk(x).

The vector space of homogeneous polynomials of degree k in RP is denoted by RPk.
A basis for RPk consist of elements of the form xα1

1 · · ·x
α2m
2m x̀β1

1 · · · x̀
β2n

2n where αj ∈ N,
βj ∈ {0, 1} and with

∑2m
j=1 αj +

∑2n
j=1 βj = k. It is moreover easily seen that RPk is a

finite dimensional vector space with dimension

dimRPk =

min(k,2n)∑
j=0

(
2n

j

)(
k − j + 2m− 1

2m− 1

)
.

It can be directly verified that RPk is an eigenspace of Ex with eigenvalue k. The same
conclusion holds for RPk ⊗ C2m,2n.

3.4 Hermitian setting in superspace

In the complexification CA2m,2n of A2m,2n we define the involution ·† as

(a+ ib)† = a− ib, a, b ∈ A2m,2n,

which is an extension to CA2m,2n of the Hermitian conjugation over the complexification
of the radial algebra representation with complex structure R(S ∪ J(S),B), see (2.26).

The corresponding representation on superspace of the Hermitian radial algebra intro-
duced in Section 2.5.2 will be denoted by R(SC,S

†
C,B). It is generated over the complex
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numbers by the sets of Hermitian vector variables

SC =

{
Z =

1

2

(
x + iJ(x)

)
: x ∈ S

}
, S†C =

{
Z† = −1

2

(
x− iJ(x)

)
: x ∈ S

}
,

and the element B defined in (3.24). The complex vector variables Z, Z† in superspace
can be written as

Z =
1

2

(
x + iJ(x)

)
=

1

2

(
x+ iJ(x)

)
+

1

2

(
x̀+ iJ(x̀)

)
=: Z + Z`,

Z† = −1

2

(
x− iJ(x)

)
= −1

2

(
x− iJ(x)

)
− 1

2

(
x̀− iJ(x̀)

)
=: Z† + Z

†̀
,

where the bosonic Hermitian vector variables Z and Z† are defined as in Remark 2.22,
i.e.

Z =
1

2

(
x+ iJ(x)

)
=

1

2

m∑
j=1

(xj + ixm+j)(ej − iem+j) =

m∑
j=1

zjfj , (3.30)

Z† = −1

2

(
x− iJ(x)

)
= −1

2

m∑
j=1

(xj − ixm+j)(ej + iem+j) =

m∑
j=1

zcj f
†
j , (3.31)

while the fermionic Hermitian vector variables Z` and Z
†̀
are given by

Z` =
1

2

(
x̀+ iJ(x̀)

)
=

1

2

n∑
j=1

(x̀2j−1 + ix̀2j)(è2j−1 − iè2j) =

n∑
j=1

z̀jfj̀ , (3.32)

Z
†̀

= −1

2

(
x̀− iJ(x̀)

)
= −1

2

n∑
j=1

(x̀2j−1 − ix̀2j)(è2j−1 + iè2j) =

n∑
j=1

z̀cj fj̀
†. (3.33)

Together with the commuting complex variables zj = xj + ixm+j and zcj = xj − ixm+j ,
we consider in this representation the anti-commuting variables z̀j = x̀2j−1 + ix̀2j and
z̀cj = x̀2j−1 − ix̀2j . Moreover, the Witt basis introduced in (2.27) gets extended to{

fj = 1
2 (ej − iem+j),

f†j = − 1
2 (ej + iem+j),

{
fj̀ = 1

2 (è2j−1 − iè2j),

fj̀
† = − 1

2 (è2j−1 + iè2j).

It is easily seen that these Witt basis elements generate the complexification of C2m,2n
and are subject to the following commutation rules

fjfk + fkfj = 0,

f†jf
†
k + f†kf

†
j = 0,

fjf
†
k + f†kfj = δj,k,


fj̀ fk̀ − fk̀ fj̀ = 0,

fj̀
† fk̀
† − fk̀

† fj̀
† = 0,

fj̀ fk̀
† − fk̀

† fj̀ = − i
2δj,k,{

fjfk̀ + fk̀ fj = 0,

fjfk̀
† + fk̀

† fj = 0,

{
f†jfk̀ + fk̀ f

†
j = 0,

f†jfk̀
† + fk̀

† f†j = 0.
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As mentioned in Section 2.5.2, the Hermitian radial algebra representation R(SC,S
†
C,B)

submits to the rules (AH1*)-(AH3*). In particular, {Z,U†} is a commuting object in
the whole algebra CA2m,2n and has the form

{Z,U†} =

m∑
j=1

zju
c
j −

i

2

n∑
j=1

z̀j ù
c
j . (3.34)

The complex conjugation ·c acts on the complexification of V as the corresponding res-
triction of ·†, whence it is clear that

{Z,U†}c =

m∑
j=1

zcjuj +
i

2

n∑
j=1

z̀cj ùj =

m∑
j=1

ujz
c
j −

i

2

n∑
j=1

ùj z̀
c
j = {U,Z†},

meaning that formula (3.34) can be used as a generalized Hermitian inner product.

We also introduce the left and right actions of the Hermitian vector derivatives in this
setting using radial algebra notions. These are

∂Z :=
1

4

(
∂x − i∂J(x)

)
, ∂Z† := −1

4

(
∂x + i∂J(x)

)
, (3.35)

which are valid for both left and right actions of the operators ∂Z, ∂Z† . These actions
can be re-written as

∂Z· =
1

4

(
∂x · −i∂J(x) ·

)
=

1

4

(
∂x̀ · −i∂J(x̀) ·

)
− 1

4

(
∂x · −i∂J(x) ·

)
= ∂Z̀ ·+∂Z ·,

∂Z† · = −
1

4

(
∂x ·+i∂J(x) ·

)
= −1

4

(
∂x̀ ·+i∂J(x̀) ·

)
+

1

4

(
∂x ·+i∂J(x) ·

)
= ∂Z̀† ·+∂Z† ·,

·∂Z =
1

4

(
· ∂x − i · ∂J(x)

)
=

1

4

(
− ·∂x̀ + i · ∂J(x̀)

)
− 1

4

(
· ∂x − i · ∂J(x)

)
= − · ∂Z̀ + ·∂Z ,

·∂Z† = −1

4

(
· ∂x + i · ∂J(x)

)
=

1

4

(
· ∂x̀ + i · ∂J(x̀)

)
+

1

4

(
· ∂x + i · ∂J(x)

)
= − · ∂Z̀† + ·∂Z† .

The operators ∂Z and ∂Z† are the bosonic Hermitian Dirac operators defined in Remark
2.23, i.e.

∂Z = −1

4

(
∂x − i∂J(x)

)
=

m∑
j=1

f†j ∂zj , ∂Z† =
1

4

(
∂x + i∂J(x)

)
=

m∑
j=1

fj ∂zcj ,

while the fermionic Hermitian Dirac operators ∂Z̀ and ∂Z̀† are given by

∂Z̀ =
1

4

(
∂x̀ − i∂J(x̀)

)
= 2i

n∑
j=1

fj̀
† ∂z̀j , ∂Z̀† = −1

4

(
∂x̀ + i∂J(x̀)

)
= −2i

n∑
j=1

fj̀ ∂z̀cj .

where

∂zj =
1

2
(∂xj − i∂xm+j ), ∂zcj =

1

2
(∂xj + i∂xm+j ),

∂z̀j =
1

2
(∂x̀2j−1 − i∂x̀2j ), ∂z̀cj =

1

2
(∂x̀2j−1 + i∂x̀2j ),
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are the classical Cauchy-Riemann operators and their conjugates with respect to the
variables zj and z̀j .

As it was shown in Section 2.5.2, the operators ∂Z and ∂Z† satisfy the relations (DH1*)-
(DH4*). These relations can also be checked using the above explicit expressions, e.g.:

∂Z[Z] = ∂Z̀ [Z`] + ∂Z [Z] = 2i

n∑
j=1

fj̀
† fj̀ +

m∑
j=1

f†j fj =
1

2
[(m− n) + iB] .

We also obtain explicit formulae for the complex directional derivatives in superspace
following the radial algebra approach. In fact, for every pair of Hermitian vector variables
Z = 1

2 (x + iJ(x)) and U = 1
2 (y + iJ(y)) we have (see (2.28))

DU,Z =
1

2

(
Dy,x + iDJ(y),x

)
= DU,Z +DÙ ,Z̀ ,

D†U,Z =
1

2

(
Dy,x − iDJ(y),x

)
= D†U,Z +D†

Ù ,Z̀
.

where the bosonic and fermionic directional derivatives and their Hermitian conjugates
are given by DU,Z = 1

2

(
Dy,x + iDJ(y),x

)
=
∑m
j=1 uj∂zj ,

DÙ ,Z̀ = 1
2

(
Dỳ,x̀ + iDJ(ỳ),x̀

)
=
∑n
j=1 ùj∂z̀j ,D

†
U,Z = 1

2

(
Dy,x − iDJ(y),x

)
=
∑m
j=1 u

c
j ∂zcj ,

D†
Ù ,Z̀

= 1
2

(
Dỳ,x̀ − iDJ(ỳ),x̀

)
=
∑n
j=1 ù

c
j ∂z̀cj .

By the formulae (2.30) obtained for the Hermitian radial algebra we have that

{∂Z,U} = DU,Z +
1

2
δZ,U

(
(m− n) + iB

)
, {∂Z† ,U†} = D†U,Z +

1

2
δZ,U

(
(m− n)− iB

)
,

hold in the representation R(SC,S
†
C,B). Moreover, it can be easily checked that the

above relations remain valid in CA2m,2n.

In the case where Z = U we obtain the Hermitian Euler operators

EZ = DZ,Z =

m∑
j=1

zj∂zj +

n∑
j=1

z̀j∂z̀j and EZ† = D†Z,Z =

m∑
j=1

zcj ∂
c
zj +

n∑
j=1

z̀cj ∂z̀cj ,

which split the Euler operator Ex as Ex = EZ + EZ† .

It follows from Lemma 2.13 that EZ and E†Z measure the degree of homogeneity of the
vector variables Z and Z†, respectively, on every element of the Hermitian radial algebra
representation R(SC,S

†
C,B). As expected, also this property generalizes to

CP = C[x1, . . . , x2m]⊗G(x̀1, . . . , x̀2n).
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To this end, we refine the notion of a k-homogeneous polynomial to a (bi-)homogeneous
polynomial of degree (p, q) with p + q = k. We first note that every polynomial in
the variables (x1, . . . , x2m, x̀1, . . . , x̀2n) may be written as a polynomial in the variables
(z1, . . . , zm, z

c
1, . . . , z

c
m, z̀1, . . . , z̀n, z̀

c
1, . . . , z̀

c
n). Hence, a polynomial

Rp,q(Z,Z
†) = Rp,q(z1, . . . , zm, z

c
1, . . . , z

c
m, z̀1, . . . , z̀n, z̀

c
1, . . . , z̀

c
n) ∈ CP

is said to be homogeneous of degree (p, q), p, q ∈ N2 ∪ {0}, if for all λ ∈ C \ {0} it holds
that

Rp,q(λZ, λcZ†) = λp (λc)
q
Rp,q(Z,Z

†).

The space of all homogenous polynomials of degree (p, q) in CP is denoted by CPp,q. A
basis for CPp,q consists of the elements

zα1
1 · · · zαmm z̀β1

1 · · · z̀
βn
n (zc1)γ1 · · · (zcm)γm (z̀c1)δ1 · · · (z̀cn)δn

where αj , γj ∈ N, βj , δj ∈ {0, 1} and with
∑m
j=1 αj+

∑n
j=1 βj = p,

∑m
j=1 γj+

∑n
j=1 δj = q.

It easily follows that CPp,q is a finite dimensional complex vector space with dimension

dimCPp,q =

min(n,p)∑
j=0

(
n

j

)(
p− j +m− 1

m− 1

)min(n,q)∑
j=0

(
n

j

)(
q − j +m− 1

m− 1

) .
In addition the following decomposition holds:

CPk =

k⊕
j=0

CPj,k−j .

In the previous section, it was mentioned that CPk is the eigenspace of Ex corresponding
to the eigenvalue k. A similar property can be proven in the Hermitian context.

Lemma 3.3. If Rp,q(Z,Z†) is a homogeneous polynomial of degree (p, q) then

EZ[Rp,q] = pRp,q, and EZ† [Rp,q] = qRp,q.

Proof.

Differentiating with respect to the complex variable λ and applying the chain rule (see
Theorem 3.2), we have on the one hand

∂λRp,q(λZ, λcZ†) =

m∑
j=1

zj∂zjRp,q(λZ, λcZ†) +

n∑
j=1

z̀j∂z̀jRp,q(λZ, λcZ†)

= EZRp,q(λZ, λcZ†),

and on the other hand,

∂λRp,q(λZ, λcZ†) = ∂λ
[
λp (λc)

q
Rp,q(Z,Z

†)
]

= pλp−1 (λc)
q
Rp,q(Z,Z

†),

whence,
EZRp,q(λZ, λcZ†) = pλp−1 (λc)

q
Rp,q(Z,Z

†).

In particular, for λ = 1 we have EZ[Rp,q] = pRp,q. The proof of the other relation is
similar. �
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3.5 Concluding remarks

We have carefully introduced the defining objects for Hermitian Clifford analysis in su-
perspace through the rules determined by the Hermitian radial algebra. These rules
provide a straightforward way of defining a suitable complex structure in this setting,
giving rise to the introduction of all basic elements in the Hermitian Clifford calculus.
This complex structure can be seen either as a special automorphism on A2m,2n or as
the action of the special bivector B through its commutator with vector variables. This
action of B allows to interpret the complex structure as a special element of the set of
superrotations. In Chapters 4 and 5 this theory will be further developed. This will in-
clude a deep study of the group realization of rotations in superspace and the invariance
of the super Dirac operators under the action of these groups.

In Table 3.1, we summarize the main aspects of the Clifford-polynomial representation
and the representation in superspace of the radial algebra R(S).
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4
The Spin group in superspace

The notion of inner product in the radial algebra R(S) can be abstractly defined as

〈x, y〉 = −x · y = −1

2
{x, y}

for x, y ∈ S, see (2.3). In the Clifford-polynomial representation this formula clearly
coincides with the Euclidean inner product in Rm. The most important invariance group
in this case is the set of rotations SO(m) which is doubly covered by the spin group

Spin(m) :=


2k∏
j=1

wj : k ∈ N, wj ∈ Sm−1

 ,

where Sm−1 = {w ∈ Rm : w2 = −1} denotes the unit sphere in Rm. The relation between
Spin(m) and SO(m) is easily seen through the Lie group representation h : Spin(m) →
SO(m)

h(s)[x] = sxs, s ∈ Spin(m), x ∈ Rm,

which describes the action of every element of SO(m) in terms of Clifford multiplica-
tion. Such a description of the spin group follows from the Cartan-Dieudonné theorem
which states that every orthogonal transformation in an m-dimensional symmetric bili-
near space can be written as the composition of at most m reflections. Basic references
for this setting are [16, 44, 48].

In this chapter we study the similar situation in the radial algebra representation R(S) ⊂
Am,2n in superspace, where the Cartan-Dieudonné theorem is no longer valid. The main



4. The Spin group in superspace 94

goal is to properly define the spin group in superspace as a set of elements describing
every super-rotation through Clifford multiplication. To that end, we consider linear
actions on supervector variables using both commuting and anti-commuting coefficients
in a Grassmann algebra G(f1, . . . , fN ). This makes it possible to study the group of
supermatrices leaving the inner product invariant and to define in a proper way the
spin group in superspace. It is worth noticing that the superstructures are absorbed
by the Grassmann algebras leading to classical Lie groups and Lie algebras instead of
supergroups or superalgebras.

We start with some preliminaries on Grassmann algebras, Grassmann envelopes and su-
permatrices in Section 4.1. In particular, we carefully recall the notion of an exponential
map for Grassmann numbers and supermatrices as elements of finite dimensional asso-
ciative algebras. In Section 4.2 we further develop the Clifford setting in superspace
by introducing the Lie algebra of superbivectors. An extension of this algebra plays an
important rôle in the description of the super spin group. The use of the exponential
map in such an extension (which takes us out of the radial algebra) necessitates the
introduction of the corresponding tensor algebra. Section 4.3 is devoted to the study
of the invariance of the “inner product” in superspace. There, we study several groups
of supermatrices and in particular, the group of superrotations SO0 and its Lie algebra
so0, which combine both orthogonal and symplectic structures. We prove that every
superrotation can be uniquely decomposed as the product of three exponentials acting
on some special subspaces of so0. Finally, in Section 4.4 we study the problem of defining
the spin group in this setting and its differences with the classical case. We show that
the compositions of even numbers of vector reflections do not suffice to fully describe
SO0 since they only show an orthogonal structure and don’t include the symplectic part
of SO0. Next we propose an alternative, by defining the spin group through the expo-
nential of extended superbivectors and we show that they indeed cover the whole set of
superrotations. In particular, we explicitly describe a subset Ξ which is a double covering
of SO0 and contains in particular every fractional Fourier transform.

4.1 Linear algebra in Kp,q(GN)

In this section we provide some preliminaries on the Grassmann algebras of coefficients,
Grassmann envelopes and the algebra of supermatrices. The distinction between real and
complex Grassmann coefficients will be necessary throughout the entire study of linear
actions on supervector variables. For that reason, the notation KGN (K = R or C) will
be used for the Grassmann algebra of coefficients in Chapters 4 and 5.

4.1.1 Grassmann algebras and Grassmann envelopes

The Grassmann algebra KGN = KG
(ev)
N ⊕KG

(odd)
N was introduced as a Banach commu-

tative superalgebra in Example 3.2. Following the general form (3.3) of the elements in
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KGN , we define the space of homogeneous elements of degree k by

KG
(k)
N = spanK{fA : |A| = k},

where in particular KG
(k)
N = {0} for k > N . It then easily follows that

KGN =

N⊕
k=0

KG
(k)
N , KG

(k)
N KG

(`)
N ⊂ KG

(k+`)
N .

In addition, the even and odd subspaces can be written as

KG
(ev)
N =

⊕
k≥0

KG
(2k)
N , KG

(odd)
N =

⊕
k≥0

KG
(2k+1)
N .

The projection of KGN on its k-homogeneous part is denoted by [·]k : KGN → KG
(k)
N ,

i.e. [a]k =
∑
|A|=k aAfA. As in Example 3.2, we denote the body of a ∈ KGN by

[a]0 = a∅ =: a0 and its nilpotent part by a ∈ KG+
N :=

⊕N
k=1 KG

(k)
N . It is easily seen that

the projection [·]0 : KGN → K is an algebra homomorphism, i.e.

[ab]0 = a0b0, a, b ∈ KGN .

Lemma 4.1. Let a ∈ KGN such that a2 ∈ K \ {0}. Then a ∈ K.

Proof.

Let us write

a =

N∑
j=0

[a]j ,

with [a]j ∈ KG
(j)
N . If a /∈ K, let us consider k ∈ {1, . . . , N} to be the smallest integer

such that [a]k 6= 0. Then,
a2 = a2

0 + 2a0 [a]k + b ∈ K,

where b ∈
⊕

j>k KG
(j)
N . This implies that [a]k = 0, which is a contradiction. Then,

a ∈ K. �

The exponential of a ∈ KGN , denoted by ea or exp(a), is defined by the power series

ea =

∞∑
j=0

aj

j!
. (4.1)

Proposition 4.1. The series (4.1) converges for every a ∈ KGN and ea is a continuous
function in KGN .
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Proof.

We recall that KGN is a Banach space with the norm ‖ · ‖G : KGN → R defined by

‖a‖G =
∑

A⊂{1,...,N}

|aA|, a ∈ KGN .

In particular, this norm satisfies the inequality

‖ab‖G ≤ ‖a‖G ‖b‖G, a, b ∈ KGN .

Then, it follows that
∞∑
j=0

‖aj‖G
j!

≤
∞∑
j=0

‖a‖jG
j!

= e‖a‖G

whence (4.1) (absolutely) converges in KGN . Now consider the ball BR := {a ∈ KGN :
‖a‖G ≤ R} for some R > 0, where it holds that

‖aj‖G
j!

≤
‖a‖jG
j!
≤ Rj

j!
.

Since the series
∑∞
j=0

Rj

j! converges, we have by theWeierstrassM -criterium that
∑∞
j=0

aj

j!
uniformly converges in BR and ea thus is continuous in BR. Then, ea is continuous in
KGN . �

Now consider a Z2-graded vector space Kp,q = Kp,0 ⊕ K0,q with standard homogeneous
basis e1, . . . , ep, è1, . . . , èq, as introduced in Example 3.1. In [7, p. 91], the Grassmann
envelope Kp,q(GN ) was defined as the set of Grassmann supervectors1

w = w + ẁ =

p∑
j=1

wjej +

q∑
j=1

ẁj èj , where wj ∈ KG
(ev)
N , ẁj ∈ KG

(odd)
N . (4.2)

Remark 4.1. The Grassmann envelope of a general graded K-vector space V = V0 ⊕ V1

is similarly defined as

V (GN ) =
(
KG

(ev)
N ⊗ V0

)
⊕
(
KG

(odd)
N ⊗ V1

)
.

The set Kp,q(GN ) is a K-vector space of dimension 2N−1(p+q), inheriting the Z2-grading
of Kp,q, i.e.

Kp,q(GN ) = Kp,0(GN )⊕K0,q(GN ),

where Kp,0(GN ) denotes the subspace of vectors of the form (4.2) with ẁj = 0, and
K0,q(GN ) denotes the subspace of vectors of the form (4.2) with wj = 0. The sub-
spaces Kp,0(GN ) and K0,q(GN ) are called the Grassmann envelopes of Kp,0 and K0,q,
respectively.

1Observe that Kp,q(GN ) is the superspace of dimension (p, q) over KGN defined in (3.4).
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In Kp,q(GN ), there exists a subspace which is naturally isomorphic to Kp,0. It consists of
vectors (4.2) of the form w =

∑m
j=1 wjej with wj ∈ K. The map [·]0 : Kp,q(GN )→ Kp,0

defined by [w]0 =
∑p
j=1 [wj ]0 ej will be useful.

We recall that the standard basis of Kp,q is represented by column vectors, see Example
3.1. In this basis, elements of Kp,q(GN ) take the form w = (w1, . . . , wp, ẁ1, . . . , ẁq)

T .

4.1.2 Supermatrices

The Z2-grading of Kp,q yields the Z2-grading of the space End (Kp,q) of endomorphisms
on Kp,q. This space is isomorphic to the space Mat(p|q) of block matrices of the form

M =

(
A B`

C` D

)
=

(
A 0
0 D

)
+

(
0 B`

C` 0

)
(4.3)

where2 A ∈ Kp×p, B`∈ Kp×q, C`∈ Kq×p and D ∈ Kq×q. The first term in (4.3) is the
even part of M and the second term is the odd one.

Remark 4.2. The super vector space Mat(p|q) is a Lie superalgebra with the Lie super-
bracket given by the graded commutator,

[X,Y ] = XY − (−1)|X||Y |Y X

for homogeneous elements X,Y ∈ Mat(p|q). Here the grading function |X| is defined as
0 if X is even and 1 if X is odd. When seen as a Lie superalgebra, Mat(p|q) is denoted
by gl(p|q)(K). It is easily seen that the Grassmann envelope of any Lie subsuperalgebra
of gl(p|q)(K) is a classical Lie algebra.

The Grassmann envelope of Mat(p|q) is denoted by Mat(p|q)(KGN ) and consists of ma-
trices of the form (4.3), however with entries in KGN (namely, even entries for A, D and
odd entries for B`, C`). Elements in Mat(p|q)(KGN ) are called supermatrices.

The Z2-grading of Mat(p|q)(KGN ), inherited from Mat(p|q), together with the usual ma-
trix multiplication, provides a superalgebra structure on this Grassmann envelope. More
precisely, for any k ∈ N, let Mat(p|q)(KG

(k)
N ) be the space of all homogeneous superma-

trices of degree k. This is, Mat(p|q)(KG
(2k)
N ) consists of all diagonal block matrices(

A 0
0 D

)
, A ∈

(
KG

(2k)
N

)p×p
, D ∈

(
KG

(2k)
N

)q×q
,

while Mat(p|q)(KG
(2k+1)
N ) consists of all off-diagonal block matrices(

0 B`

C` 0

)
, B`∈

(
KG

(2k+1)
N

)p×q
, C`∈

(
KG

(2k+1)
N

)q×p
.

2Given a set S, we use the notation Sp×q to refer to the set of matrices of order p× q with entries in
S.
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These subspaces define a grading in Mat(p|q)(KGN ) by

Mat(p|q)(KGN ) =

N⊕
k=0

Mat(p|q)(KG
(k)
N ),

Mat(p|q)(KG
(k)
N ) Mat(p|q)(KG

(`)
N ) ⊂ Mat(p|q)(KG

(k+`)
N ).

Then, clearly, every supermatrix M can be written as the sum of a body matrix M0 ∈
Mat(p|q)(KG

(0)
N ) and a nilpotent element M∈Mat(p|q)(KG+

N ) :=
⊕N

k=1 Mat(p|q)(KG
(k)
N ).

In accordance with the general ideas valid for Grassmann algebras and Grassmann en-
velopes we define the algebra homomorphism

[·]0 : Mat(p|q)(KGN )→ Mat(p|q)(KG
(0)
N )

as the projection:

M =

(
A B`

C` D

)
−→

(
A0 0
0 D0

)
= M0 = [M ]0

where A0 and D0 are the body projections of A and D on Kp×p and Kq×q respectively.
We recall that Mat(p|q)(KG

(0)
N ) is equal to the even subalgebra of Mat(p|q). Given a set

of supermatrices S we define [S]0 = {[M ]0 : M ∈ S}.

Every supermatrix M defines a linear operator on Kp,q(GN ) which acts on a Grassmann
supervector w = w + ẁ by left multiplication with its column representation:

Mw =

(
A B`

C` D

)(
w
ẁ

)
=

(
Aw +B`ẁ
C`w +Dẁ

)
∈ Kp,q(GN ).

In order to study some group structures in Mat(p|q)(KGN ) we start from the Lie group
GL(p|q)(KGN ) of all invertible elements of Mat(p|q)(KGN ). The following theorem states
a well-known characterization of this group, see [7].

Theorem 4.1. Let M =

(
A B`

C` D

)
∈ Mat(p|q)(KGN ). Then the following statements

are equivalent.

(i) M ∈ GL(p|q)(KGN ).

(ii) A,D are invertible.

(iii) A0, D0 are invertible.

In addition, for every M ∈ GL(p|q)(KGN ) its inverse is given by

M−1 =

( (
A−B`D−1C

)̀−1 −A−1B`
(
D − C`A−1B

)̀−1

−D−1C`
(
A−B`D−1C

)̀−1 (
D − C`A−1B

)̀−1

)
.
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Remark 4.3. The group GL(p|q)(KGN ) is an extension of the general linear group
GL(p) of invertible matrices in Rp×p.

The usual definitions of transpose, trace and determinant of a matrix are not appropriate
in the graded case. For example, although the classical transpose

MT =

(
AT C`T

B`T DT

)
of a supermatrix M is a well defined element of Mat(p|q)(KGN ), we have in general that

(ML)T 6= LTMT

unlike the classical property. This problem is fixed by introducing the supertranspose by

MST =

(
AT C`T

−B`T DT

)
.

The transpose and supertranspose operations satisfy the following relations, see [7].

Proposition 4.2. Let M,L ∈ Mat(p|q)(KGN ), x ∈ Kp,q(GN ), B`∈
(
KG

(odd)
N

)p×q
and

C`∈
(
KG

(odd)
N

)q×p
. Then,

(i)
(
B`C

)̀T
= −C`TB`T ,

(ii) (ML)
ST

= LSTMST ,

(iii) (Mx)
T

= xTMST ,

(iv)
(
MST

)ST
=

(
A −B`

−C` D

)
= SMS, where3 S =

(
Ip 0
0 −Iq

)
,

(v)
(
M−1

)ST
=
(
MST

)−1 for every M ∈ GL(p|q)(KGN ).

The situation for the trace is similar. The usual trace tr(M) of an element M ∈
Mat(p|q)(KGN ) is well defined, but in general one has that

tr(ML) 6= tr(LM)

forM,L ∈ Mat(p|q)(KGN ). The notion of supertrace provides a solution to this problem;
it is defined as the map str : Mat(p|q)(KGN )→ KG

(ev)
N given by

str
(
A B`

C` D

)
= tr(A)− tr(D).

The following properties easily follow from the above definition, see [7].
3Ik denotes the identity matrix in Rk×k.
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Proposition 4.3. LetM,L ∈ Mat(p|q)(KGN ), B`∈
(
KG

(odd)
N

)p×q
and C`∈

(
KG

(odd)
N

)q×p
.

Then

(i) tr
(
B`C

)̀
= − tr

(
C`B

)̀
,

(ii) str(ML) = str(LM),

(iii) str
(
MST

)
= str(M).

The superdeterminant or Berezinian is a function from GL(p|q)(KGN ) to KG
(ev)
N defined

by:

sdet(M) =
det(A−B`D−1C`)

det(D)
=

det(A)

det(D − C̀A−1B̀)
.

Some of its basic properties are given in the following proposition, see [7].

Proposition 4.4. Let M,L ∈ GL(p|q)(KGN ), then

(i) sdet(ML) = sdet(M) sdet(L),

(ii) sdet
(
MST

)
= sdet(M).

In the vector space Mat(p|q)(KGN ) we introduce the norm

‖M‖ =

p+q∑
j,k=1

‖mj,k‖G,

where mj,k ∈ KGN (j, k = 1, . . . , p+ q) are the entries of M ∈ Mat(p|q)(KGN ). As was
the case in KGN , also this norm satisfies the inequality ‖ML‖ ≤ ‖M‖‖L‖ for every pair
M,L ∈ Mat(p|q)(KGN ), leading to the absolute convergence of the series

exp(M) =

∞∑
j=0

M j

j!

and hence, the continuity of the exponential map in Mat(p|q)(KGN ). It is easily seen
that also the supertranspose, the supertrace and the superdeterminant are continuous
maps. Some properties of the exponential are gathered in the following proposition.

Proposition 4.5. Let M,L ∈ Mat(p|q)(KGN ). Then

(i) e0 = Ip+q;

(ii)
(
eM
)ST

= eM
ST

;

(iii) eM+L = eM eL whenever ML = LM ;
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(iv) eM ∈ GL(p|q)(KGN ) and
(
eM
)−1

= e−M ;

(v) e(a+b)M = eaMebM for every pair a, b ∈ KG
(ev)
N ;

(vi) eCMC−1

= CeMC−1 for every C ∈ GL(p|q)(KGN );

(vii) etM (t ∈ R) is a smooth curve in Mat(p|q)(KGN ), with

d

dt
etM = MetM = etMM, and

d

dt
etM

∣∣∣∣
t=0

= M.

(viii) sdet
(
eM
)

= estr(M).

Remark 4.4. The proofs of (i)-(vii) are straightforward computations. A detailed proof
for (viii) can be found in [7, pp. 101-103]. Similar properties to (i) and (iii)-(vii) can be
obtained for the exponential map in KGN .

We also can define the notion of logarithm for a supermatrix M ∈ Mat(p|q)(KGN ) by

ln(M) =

∞∑
j=1

(−1)j+1 (M − Ip+q)j

j
, (4.4)

wherever it converges.

Proposition 4.6.

(i) The series (4.4) converges and yields a continuous function near Ip+q.

(ii) In Mat(p|q)(KGN ), let U be a neighbourhood of Ip+q on which ln is defined and let
V be a neighbourhood of 0 such that exp(V ) := {eM : M ∈ V } ⊂ U . Then

eln(M) = M, ∀M ∈ U, ln(eL) = L, ∀L ∈ V

Proof.

(i) Observe that
∞∑
j=1

∥∥(M − Ip+q)j
∥∥

j
≤
∞∑
j=1

‖M − Ip+q‖j

j
,

whence, since the radius of convergence of the last series is 1, (4.4) absolutely
converges and defines a continuous function in the ball ‖M − Ip+q‖ < 1.

(ii) The statement immediately follows from the absolute convergence of the series for
exp and ln, and from the identities eln x = ln(ex) = x in formal power series in the
indeterminate x. �
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It is worth mentioning that the same procedure can be repeated in KGN . With the above
definitions of the exponential and logarithmic maps, it is possible to obtain all classical
results known for Lie groups and Lie algebras of real and complex matrices .

The exponential of a nilpotent matrix M ∈ Mat(p|q)(KG+
N ) reduces to a finite sum,

yielding the bijective mapping

exp : Mat(p|q)(KG+
N )→ Ip+q + Mat(p|q)(KG+

N )

with inverse
ln : Ip+q + Mat(p|q)(KG+

N )→ Mat(p|q)(KG+
N ),

since also the second expansion only has a finite number of non-zero terms, whence
problems of convergence do not arise.

We recall that a supermatrix M belongs to GL(p|q)(KGN ) if and only if its body M0

has an inverse. Then

M = M0(Ip+q +M−1
0 M) = M0 exp(L),

for some unique L ∈ Mat(p|q)(KG+
N ).

4.2 The algebra Am,2n ⊗ RGN

Let us consider the radial algebra representation R(S) ⊂ Am,2n in superspace introduced
in Section 3.2. As mentioned before, one of the goals of this chapter is to study the
invariance under linear transformations of the inner product of supervector variables
x,y ∈ S given by

〈x,y〉R := −1

2
{x,y} =

m∑
j=1

xjyj −
1

2

n∑
j=1

(x̀2j−1ỳ2j − x̀2j ỳ2j−1) ∈ V0. (4.5)

In order to study linear actions on the algebra Am,2n = V ⊗ Cm,2n we must consider a
suitable set of coefficients. Observe that the field of numbers K = R or C is too limited
for that aim since it does not lead to any interaction between even and odd elements.
For instance, multiplication by real or complex numbers leaves the decomposition V =
V0⊕V1 of the algebra of super-polynomials generated by the set of variables V AR∪V AR`
invariant.

The study of linear actions on Am,2n requires of a set including both commuting and anti-
commuting elements. In this thesis we consider the most simple set of such coefficients,
i.e. the Grassmann algebra RGN generated by odd independent elements f1 . . . , fN . This
leads to the Z2-graded algebra of super-polynomials with Grassmann coefficients

V ⊗ RGN ,
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generated over R by the set of m` commuting variables V AR and the set of independent
2n`+N anti-commuting symbols V AR`∪{f1, . . . , fN}. In general we consider the algebra

Am,2n ⊗ RGN = V ⊗ RGN ⊗ Cm,2n,

of super-polynomials with coefficients in RGN ⊗ Cm,2n. Here elements of V ⊗ RGN
commute with elements in Cm,2n.

In the set of coefficients RGN ⊗ Cm,2n one has a radial algebra representation by consi-
dering supervectors w ∈ Rm,2n(GN ), i.e.

w = w + ẁ =

m∑
j=1

wjej +

2n∑
j=1

ẁj èj , wj ∈ RG(ev)
N , ẁj ∈ RG(odd)

N ,

where clearly the basis elements e1, . . . , em, è1, . . . , è2n of Rm,2n have to submit to the
multiplication rules (3.11). Indeed, the anti-commutator of two constant supervectors
w,v ∈ Rm,2n(GN ) clearly is a central element in RGN ⊗ Cm,2n, i.e.

{w,v} = 2

m∑
j=1

wjvj +

n∑
j=1

(ẁ2j−1v̀2j − ẁ2j v̀2j−1) ∈ RG(ev)
N .

The subalgebra generated by the Grassmann envelope Rm|2n(GN ) of constant supervec-
tors is called the radial algebra embedded in RGN ⊗ Cm,2n. This algebra is denoted
by Rm|2n(GN ). Observe that Rm|2n(GN ) is a finite dimensional vector space since it is
generated by the union of the sets

{fAej | A ⊂ {1, . . . , N}, |A| even , j = 1, . . . ,m} ,
{fAèj | A ⊂ {1, . . . , N}, |A| odd , j = 1, . . . , 2n} ,

and there is a finite number of possible products amongst these generators.

Every element in RGN ⊗ Cm,2n can be written as a finite sum of terms of the form
aej1 · · · ejk è

α1
1 · · · è

α2n
2n where a ∈ RGN , 1 ≤ j1 ≤ . . . ≤ jk ≤ m and (α1, . . . , α2n) ∈

(N ∪ {0})2n is a multi-index. In this algebra we consider the corresponding generalization
of the projection [·]0 which now goes from RGN ⊗ Cm,2n to Cm,2n and is defined by

[aej1 · · · ejk è
α1
1 · · · è

α2n
2n ]0 = [a]0ej1 · · · ejk è

α1
1 · · · è

α2n
2n .

We now can define linear actions on supervector variables x ∈ S by means of supermatri-
ces M ∈ Mat(m|2n)(GN ). We recall that the basis elements e1, . . . , em, è1, . . . , è2n can
be written as column vectors, see Example 3.1. Then, by writing the x = x + x̀ ∈ S in
its column representation we obtain,

Mx =

(
A B`

C` D

)(
x
x̀

)
=

(
Ax+B`x̀
C`x+Dx̀

)
. (4.6)
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This action produces a new supervector variable Mx = (y1, . . . , ym, ỳ1, . . . , ỳ2n)T where
the yj are even elements of V ⊗ RGN while the ỳj are odd ones. It is obvious that the
result in Proposition 4.2 (iii) also applies to these actions, i.e.

(Mx)T = xTMST .

4.2.1 Superbivectors

Superbivectors in RGN ⊗Cm,2n play a very important rôle when studying the invariance
of the inner product (4.5). Following the radial algebra approach (see (2.4)), the space
of bivectors is generated by the wedge product of supervectors of Rm|2n(GN ), i.e.

w ∧ v =
1

2
[w,v]

=
∑

1≤j<k≤m

(wjvk−wkvj)ejek+
∑

1≤j≤m
1≤k≤2n

(wj v̀k−ẁkvj)ej èk+
∑

1≤j≤k≤2n

(ẁj v̀k+ẁkv̀j) èj�èk,

where èj � èk = 1
2{èj , èk}. Hence, the space R(2)

m|2n(GN ) of superbivectors consists of
elements of the form

B =
∑

1≤j<k≤m

bj,k ejek +
∑

1≤j≤m
1≤k≤2n

b̀j,k ej èk +
∑

1≤j≤k≤2n

Bj,k èj � èk, (4.7)

where bj,k ∈ RG(ev)
N , b̀j,k ∈ RG(odd)

N and Bj,k ∈ RG(ev)
N ∩ RG+

N . Observe that the
coefficients Bj,k are commuting but nilpotent since they are generated by elements of the
form ẁj v̀k + ẁkv̀j that belong to RG+

N . This constitutes an important limitation for the
space of superbivectors because it means that R(2)

m|2n(GN ) does not allow for any other
structure than the orthogonal one. In fact, the real projection [B]0 of every superbivector
B is just the classical Clifford bivector:

[B]0 =
∑

1≤j<k≤m

[bj,k]0 ejek ∈ R(2)
0,m.

Hence it is necessary to introduce an extension R(2)E
m|2n(GN ) of R(2)

m|2n(GN ) containing ele-

ments B of the form (4.7) but with Bj,k ∈ RG(ev)
N . This extension enables us to consider

two different structures in the same element B: the orthogonal and the symplectic one.
In fact, in this case we have

[B]0 =
∑

1≤j<k≤m

[bj,k]0 ejek +
∑

1≤j≤k≤2n

[Bj,k]0 èj � èk.
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Remark 4.5. Observe that R(2)
m|2n(GN ) and R(2)E

m|2n(GN ) are finite dimensional real vector
subspaces of RGN ⊗ Cm,2n with

dimR(2)
m|2n(GN ) = 2N−1m(m− 1)

2
+ 2N−1 2mn+

(
2N−1 − 1

)
n(2n+ 1),

dimR(2)E
m|2n(GN ) = 2N−1m(m− 1)

2
+ 2N−1 2mn+ 2N−1 n(2n+ 1).

The extension R(2)E
m|2n(GN ) of the superbivector space clearly lies outside the radial alge-

bra Rm|2n(GN ), and its elements generate an infinite dimensional algebra. Elements in
R(2)E
m|2n(GN ) are called extended superbivectors. Both superbivectors and extended super-

bivectors preserve several properties of classical Clifford bivectors.

Proposition 4.7. The space R(2)E
m|2n(GN ) is a Lie algebra. In addition, R(2)

m|2n(GN ) is a

Lie subalgebra of R(2)E
m|2n(GN ).

Proof.

We only need to check that the Lie bracket defined by the commutator in the associative
algebra Am,2n ⊗ RGN is an internal binary operation in R(2)E

m|2n(GN ) and R(2)
m|2n(GN ).

Direct computation shows that for a, b ∈ RG(ev)
N and à, b̀ ∈ RG(odd)

N we get:

[aejek, beres] = ab (2δj,s erek − 2δs,k erej + 2δr,j ekes − 2δr,k ejes),

[aejek, b̀er ès] = ab̀ (2δr,j ekès − 2δr,k ej ès),

[aejek, bèr � ès] = 0,

[àej èk, b̀er ès] = àb̀ (2δr,j èk � ès + (1− δj,r)gs,k ejer),
[àej èk, bèr � ès] = àb (gk,s ej èr + gk,r ej ès),

[aèj � èk, bèr � ès] = ab (gj,s èr � èk + gk,s èr � èj + gj,r èk � ès + gk,r èj � ès).

�

It is well known from the radial algebra framework that the commutator of a bivector
with a vector always yields a linear combination of vectors with coefficients in the scalar
subalgebra. Indeed, for the abstract vector variables x, y, z ∈ S we obtain

[x ∧ y, z] =
1

2
[[x, y], z] =

1

2
[2xy − {x, y}, z] = [xy, z] = {y, z}x− {x, z}y.

This property can be easily generalized to R(2)E
m|2n(GN ) by straightforward computation.

In particular, the following results hold.

Proposition 4.8. Let x ∈ S be a supervector variable, let {b1, . . . , b2N−1} be a basis for
RG(ev)

N and let {b̀1, . . . , b̀2N−1} be a basis for RG(odd)
N . Then,

[br ejek, x] = 2br (xjek − xkej), [br è2j � è2k, x] = −br (x̀2j−1è2k + x̀2k−1è2j),

[b̀r ej è2k−1, x] = b̀r (2xj è2k−1 + x̀2kej), [br è2j−1 � è2k−1, x] = br (x̀2j è2k−1 + x̀2kè2j−1),

[b̀r ej è2k, x] = b̀r (2xj è2k − x̀2k−1ej), [br è2j−1 � è2k, x] = br (x̀2j è2k − x̀2k−1è2j−1).
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Clearly, the above computations remain valid when replacing x by a fixed supervector
w ∈ Rm|2n(GN ).

4.2.2 Tensor algebra and exponential map

Since RGN ⊗ Cm,2n is infinite dimensional, the definition of the exponential map by
means of a power series is not as straightforward as it was for the algebras RGN or
Mat(p|q)(RGN ). A correct definition of the exponential map in RGN ⊗ Cm,2n requires
the introduction of the tensor algebra. More details about the general theory of tensor
algebras can be found in several basic references, see e.g. [73, 56, 46].

Let T (V ) be the tensor algebra of the vector space V spanned by the basis BV =
{f1, . . . , fN , e1, . . . , em, è1, . . . , è2n}, i.e.

T (V ) =

∞⊕
j=0

T j(V )

where T j(V ) = spanR{v1 ⊗ · · · ⊗ vj : v` ∈ BV } is the j-fold tensor product of V with
itself. Then RGN ⊗Cm,2n can be seen as a subalgebra of T (V )/I where I ⊂ T (V ) is the
two-sided ideal generated by the elements:

fj ⊗ fk + fk ⊗ fj , ej ⊗ ek + ek ⊗ ej + 2δj,k,

fj ⊗ ek − ek ⊗ fj , ej ⊗ èk + èk ⊗ ej ,
fj ⊗ èk − èk ⊗ fj , èj ⊗ èk − èk ⊗ èj − gj,k.

Indeed, T (V )/I is isomorphic to the extension of RGN ⊗ Cm,2n which also contains
infinite sums of arbitrary terms of the form aej1 · · · ejk è

α1
1 · · · è

α2n
2n where a ∈ RGN ,

1 ≤ j1 ≤ . . . ≤ jk ≤ m and (α1, . . . , α2n) ∈ (N ∪ {0})2n is a multi-index.

The exponential map

exp(x) = ex =

∞∑
j=0

xj

j!

is known to be well defined in the tensor algebra T (V ), see e.g. [46], whence it also is
well defined in T (V )/I. It has the following mapping properties:

exp : RGN ⊗ Cm,2n → T (V )/I, exp : Rm|2n(GN )→ Rm|2n(GN ).

The first statement directly follows from the definition of T (V )/I, while the second one
can be obtained following the standard procedure established for RGN and Mat(p|q)(RGN ),
since the radial algebra Rm|2n(GN ) ⊂ RGN ⊗ Cm,2n is finite dimensional.
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4.3 The orthosymplectic structure in Rm|2n(GN)

4.3.1 Invariance of the inner product

The inner product (4.5) can be easily written as

〈x,y〉R = xTQy

in terms of the supermatrix Q =

(
Im 0
0 − 1

2Ω2n

)
, where

Ω2n =


0 1
−1 0

. . .

0 1
−1 0

 .

In order to find all supermatrices M ∈ Mat(m|2n)(RGN ) leaving the inner product 〈·, ·〉
invariant, we observe that

〈Mx,My〉R = 〈x,y〉R ⇐⇒ (Mx)
T

QMy = xTQy ⇐⇒ xT
(
MSTQM −Q

)
y = 0,

whence the desired set is given by

O0 = O0(m|2n)(RGN ) =
{
M ∈ Mat(m|2n)(RGN ) : MSTQM −Q = 0

}
,

Remark 4.6. It is clear that elements in the above set of supermatrices also leave the
same bilinear form in Rm,2n(GN ) invariant, i.e.

−1

2
{Mw,Mv} = −1

2
{w,v}, M ∈ O0, w,v ∈ Rm,2n(GN ).

In general, every property that holds for supermatrix actions on supervector variables
x ∈ S also holds for the same actions on fixed supervectors w ∈ Rm,2n(GN ).

We now study the algebraic structure of O0(m|2n)(RGN ).

Theorem 4.2. The following statements hold:

(i) O0(m|2n)(RGN ) ⊂ GL(m|2n)(RGN ).

(ii) O0(m|2n)(RGN ) is a group under the usual matrix multiplication.

(iii) O0(m|2n)(RGN ) is a closed subgroup of GL(m|2n)(RGN ).

Summarizing, O0(m|2n)(RGN ) is a Lie group.
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Proof.

(i) For every M ∈ O0(m|2n)(RGN ) we have[
MST

]
0
Q[M ]0 −Q = [M ]

T
0 Q[M ]0 −Q = 0,

where
[M ]0 =

(
A0 0
0 D0

)
.

This can be rewritten in terms of the real blocks A0 and D0 as{
AT0 A0 = Im,

DT
0 Ω2nD0 = Ω2n,

implying that A0 and D0 are invertible matrices. On account of Theorem 4.1, M
thus is invertible.

(ii) It suffices to prove that matrix inversion and matrix multiplication are internal
operations in O0(m|2n)(RGN ). Both properties follow by straightforward compu-
tation.

(iii) Let {Mj}j∈N ⊂ O0(m|2n)(RGN ) be a sequence that converges to a supermatrix
M ∈ Mat(m|2n)(RGN ). Since algebraic operations are continuous in the space
Mat(m|2n)(RGN ) we have that

MSTQM −Q = lim
j→∞

MST
j QMj −Q = 0.

�

Proposition 4.9. The following statements hold:

(i) A supermatrix M =

(
A B`

C` D

)
∈ Mat(m|2n)(RGN ) belongs to O0 if and only if


ATA− 1

2C
`TΩ2nC

` = Im,

ATB`− 1
2C

`TΩ2nD = 0,

B`TB`+ 1
2D

TΩ2nD = 1
2Ω2n.

(4.8)

(ii) sdet(M) = ±1 for every M ∈ O0.

(iii) [O0]0 = O(m)× SpΩ(2n).

Remark 4.7. As usual, O(m) is the classical orthogonal group in dimension m and
SpΩ(2n) is the symplectic group defined through the antisymmetric matrix Ω2n, i.e.

SpΩ(2n) = {D0 ∈ R2n×2n : DT
0 Ω2nD0 = Ω2n}.
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Proof.

(i) The relation MSTQM = Q can be written in terms of A,B`, C`, D as:(
ATA− 1

2C
`TΩ2nC

` ATB`− 1
2C

`TΩ2nD
−B`TA− 1

2D
TΩ2nC

` −B`TB`− 1
2D

TΩ2nD

)
=

(
Im 0
0 − 1

2Ω2n

)
.

(ii) On account of Proposition 4.4, MSTQM = Q implies that sdet(M)2 sdet(Q) =
sdet(Q), whence sdet(M)2 = 1. The statement then follows from Lemma 4.1.

(iii) See the proof of Theorem 4.2 (i). �

4.3.2 Group of superrotations SO0.

As in the classical way, we now can introduce the set of superrotations by

SO0 = SO0(m|2n)(RGN ) = {M ∈ O0 : sdet(M) = 1}.

This is easily seen to be a Lie subgroup of O0 with real projection equal to SO(m) ×
SpΩ(2n), where SO(m) ⊂ O(m) is the special orthogonal group in dimension m. In fact,
the conditions

MSTQM = Q, and sdet(M) = 1,

imply that
MT

0 QM0 = Q, and sdet(M0) = 1,

whence

M0 =

(
A0 0
0 D0

)
with AT0 A0 = Im, DT

0 Ω2nD0 = Ω2n and det(A0) = det(D0). But D0 ∈ SpΩ(2n) implies
det(D0) = 1, yielding det(A0) = 1 and A0 ∈ SO(m).

The following proposition states that, as in the classical case, SO0 is connected and in
consequence, it is the identity component of O0.

Proposition 4.10. SO0 is a connected Lie group.

Proof.

Since the real projection SO(m) × SpΩ(2n) of SO0 is a connected group, it suffices to
prove that for every M ∈ SO0 there exist a continuous path inside SO0 connecting M
with its real projection M0. To that end, let us write

M =

N∑
j=0

[M ]j ,
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where [M ]j is the projection of M on Mat(m|2n)(RG(j)
N ) for each j = 0, 1, . . . , N . Then,

observe that

MSTQM = Q ⇐⇒

 N∑
j=0

[
MST

]
j

Q

 N∑
j=0

[M ]j

 = Q

⇐⇒
N∑
k=0

 k∑
j=0

[
MST

]
j
Q[M ]k−j

 = Q

⇐⇒ MT
0 QM0 = Q, and

k∑
j=0

[
MST

]
j
Q[M ]k−j = 0, k = 1, . . . , N.

Let us now take the path

M(t) =

N∑
j=0

tj [M ]j .

For t ∈ [0, 1] this is a continuous path with M(0) = M0 and M(1) = M . In addition,

M(t)T0 QM(t)0 = MT
0 QM0 = Q,

and for every k = 1, . . . , N we have,

k∑
j=0

[
M(t)ST

]
j
Q[M(t)]k−j = tk

k∑
j=0

[
MST

]
j
Q[M ]k−j = 0.

Hence, M(t)STQM(t) = Q, t ∈ [0, 1]. Finally, observe that sdet(M(t)) = 1 for every
t ∈ [0, 1], since sdet(M(t)0) = sdet(M0) = 1. �

We will now investigate the corresponding Lie algebras of O0 and SO0.

Theorem 4.3.

(i) The Lie algebra so0 = so0(m|2n)(RGN ) of O0 coincides with the Lie algebra of
SO0 and is given by the space of all "super anti-symmetric" supermatrices

so0 = {X ∈ Mat(m|2n)(RGN ) : XSTQ + QX = 0}.

(ii) A supermatrix X =

(
A B`

C` D

)
∈ Mat(m|2n)(RGN ) belongs to so0 if and only if


AT +A = 0,

B`− 1
2C

`TΩ2n = 0,

DTΩ2n + Ω2nD = 0.

(4.9)

(iii) [so0]0 = so(m)⊕ spΩ(2n).
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Remark 4.8. As usual, so(m) = {A0 ∈ Rm×m : AT0 +A0 = 0} is the special orthogonal
Lie algebra in dimension m and spΩ(2n) = {D0 ∈ R2n×2n : DT

0 Ω2n + Ω2nD0 = 0} is the
symplectic Lie algebra defined through the antisymmetric matrix Ω2n.

Proof.

(i) If X ∈ Mat(m|2n)(RGN ) is in the Lie algebra of O0 then etX ∈ O0 for every t ∈ R,
i.e. etX

ST

QetX − Q = 0. Differentiating at t = 0 we obtain XSTQ + QX = 0.
On the other hand, if X ∈ Mat(m|2n)(RGN ) satisfies XSTQ + QX = 0, then
XST = −QXQ−1. Computing the exponential of tXST we obtain

etX
ST

=

∞∑
j=0

(
Q(−tX)Q−1

)j
j!

= Qe−tXQ−1,

which implies that
etX

ST

QetX −Q = 0,

i.e. etX ∈ O0. As a consequence, so0 is the Lie algebra of O0.

From Proposition 4.5 it easily follows that the Lie algebra of SO0 is given by

{X ∈ Mat(m|2n)(RGN ) : XSTQ + QX = 0, str(X) = 0}.

But XSTQ+QX = 0 implies str(X) = 0. In fact, the condition XST = −QXQ−1

implies that
str(XST ) = − str(QXQ−1) = − str(X),

yielding str(X) = str(XST ) = − str(X) and str(X) = 0. Hence, the Lie algebra of
SO0 is so0.

(ii) Observe that the relation XSTQ + QX = 0 can be written in terms of A,B`, C`, D
as follows: (

AT +A − 1
2C

`TΩ2n +B`

−B`T − 1
2Ω2nC

` − 1
2D

TΩ2n − 1
2Ω2nD

)
= 0.

(iii) Let X =

(
A B`

C` D

)
∈ so0, then

X0 = [X]0 =

(
A0 0
0 D0

)
satisfies

XST
0 Q + QX0 = 0.

Using (ii) we obtain AT0 + A0 = 0 and DT
0 Ω2n + Ω2nD0 = 0 which implies that

A0 ∈ so(m) and D0 ∈ spΩ(2n). �
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Remark 4.9. The Lie algebra so0 constitutes a Grassmann envelope of the orthosym-
plectic Lie superalgebra osp(m|2n). Here we define osp(m|2n), in accordance with [23],
as the subsuperalgebra of gl(m|2n)(R) given by,

osp(m|2n) := {X ∈ gl(m|2n)(R) : XSTG + GX = 0}, G =

(
Im 0
0 J2n

)
,

where J2n =

(
0 In
−In 0

)
.

It suffices to note that so0 is the Grassmann envelope of

so0(m|2n)(R) := {X ∈ gl(m|2n)(R) : XSTQ + QX = 0},

which is isomorphic to osp(m|2n). In order to explicitly find this isomorphism we first
need the matrix

R =



1 0 · · · 0 0 0 · · · 0
0 0 · · · 0 1 0 · · · 0
0 1 · · · 0 0 0 · · · 0
0 0 · · · 0 0 1 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 · · · 0
0 0 · · · 1 0 0 · · · 1


∈ O(2n),

which satisfies RTJ2nR = Ω2n. Then the mapping Φ : so0(m|2n)(R)→ osp(m|2n), given
by

Φ(X) = R−1XR, with R =

(
Im 0

0 i
√

2RT

)
,

is easily seen to be a Lie superalgebra isomorphism. Indeed, the matrix R is such that
RSTQR = G. As a consequence, for every X ∈ so0(m|2n)(R) one has that

Φ(X)STG + GΦ(X) = RSTXST
(
R−1

)ST
G + GR−1XR

= RST
(
XSTQ + QX

)
R

= 0.

The use of Grassmann envelopes allows to study particular aspects of the theory of Lie
superalgebras in terms of classical Lie algebras and Lie groups. The osp(m|2n)-invariance
of the Dirac operator ∂X used in [23] (see Remark 3.6) will be obtained in the next chapter
in terms of the invariance of ∂x under the action of the Grassmann envelope so0 (or
equivalently, under the action of the group SO0).

The connectedness of SO0 allows to write any of its elements as a finite product of
exponentials of supermatrices in so0, see [50, p. 71]. In the classical case, a single ex-
ponential suffices for such a description since SO(m) is compact and in consequence
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exp : so(m) → SO(m) is surjective, see Corollary 11.10 [50, p. 314]. This property,
however, does not hold in the group of superrotations SO0, since the exponential map
from spΩ(2n) to the non-compact Lie group SpΩ(2n) ∼= {Im} × SpΩ(2n) ⊂ SO0 is not
surjective, whence not every element in SO0 can be written as a single exponential of a
supermatrix in so0. Nevertheless, it is possible to find a decomposition for elements of
SO0 in terms of a fixed number of exponentials of so0 elements.

Every supermatrixM ∈ SO0 has a unique decompositionM = M0+M = M0(Im+2n+L)
where M0 is its real projection, M ∈ Mat(m|2n)(RG+

N ) its nilpotent projection and L =
M−1

0 M. We will now separately study the decompositions for M0 ∈ SO(m) × SpΩ(2n)
and Im+2n + L ∈ SO0.

First considerM0 ∈ SO(m)×SpΩ(2n). We already mentioned that exp : so(m)→ SO(m)
is surjective, while exp : spΩ(2n)→ SpΩ(2n) is not. However, it can be proven that

SpΩ(2n) = exp(spΩ(2n)) · exp(spΩ(2n)),

invoking the following polar decomposition for real algebraic Lie groups, see Proposition
4.3.3 in [52, p. 74].

Proposition 4.11. Let G ⊂ GL(p) be an algebraic Lie group such that G = GT and let g
be its Lie algebra. Then every A ∈ G can be uniquely written as A = ReX , R ∈ G∩O(p),
X ∈ g ∩ Sym(p), where Sym(p) is the subspace of all symmetric matrices in Rp×p.

Remark 4.10. A subgroup G ⊂ GL(p) is called algebraic if there exists a family {pj}j∈Υ

of real polynomials

pj(M) = pj(m11,m12, . . . ,mpp) ∈ R[m11, . . . ,mpp]

in the entries of the matrix M ∈ Rp×p such that

G = {M ∈ GL(p) : pj(M) = 0, ∀j ∈ Υ}.

See [52, p. 73] for more details. Obviously, the groups O(m), SO(m), SpΩ(2n) are
algebraic Lie groups.

Taking p = 2n and G = SpΩ(2n) in the above proposition we get that every symplectic
matrix D0 can be uniquely written as D0 = R0e

Z0 with R0 ∈ SpΩ(2n) ∩ O(2n) and
Z0 ∈ spΩ(2n) ∩ Sym(2n). But the group SpΩ(2n) ∩ O(2n) is isomorphic to the unitary
group U(n) =

{
L0 ∈ Cn×n :

(
LT0
)c
L0 = In

}
which is connected and compact. Then

the exponential map from the Lie algebra spΩ(2n) ∩ so(2n) ∼= u(n) is surjective on
SpΩ(2n)∩O(2n) where u(n) =

{
L0 ∈ Cn×n :

(
LT0
)c

+ L0 = 0
}
is the unitary Lie algebra

in dimension n. This means that D0 ∈ SpΩ(2n) can be written as

D0 = eY0eZ0 , Y0 ∈ spΩ(2n) ∩ so(2n), Z0 ∈ spΩ(2n) ∩ Sym(2n).

Hence, the supermatrix M0 ∈ SO(m)× SpΩ(2n) can be decomposed as

M0 =

(
eX0 0
0 eY0eZ0

)
=

(
eX0 0
0 eY0

)(
Im 0
0 eZ0

)
= eXeY ,
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where
X =

(
X0 0
0 Y0

)
∈ so(m)× [spΩ(2n) ∩ so(2n)]

and
Y =

(
0 0
0 Z0

)
∈ {0m} × [spΩ(2n) ∩ Sym(2n)].

Now consider the element Im+2n + L ∈ SO0. As shown at the end of Section 5.1, the
function exp : Mat(m|2n)(RG+

N ) → Im+2n + Mat(m|2n)(RG+
N ) is a bijection with the

logarithmic function defined in (4.4) as its inverse. Then the supermatrix

Z = ln(Im+2n + L)

satisfies
eZ = Im+2n + L

and is nilpotent. Those properties suffice for proving that Z ∈ so0. From now on we will
denote the set so0 ∩Mat(m|2n)(RG+

N ) of nilpotent elements of so0 by so0(m|2n)(RG+
N ).

Proposition 4.12. Let Z ∈ Mat(m|2n)(RG+
N ) such that eZ ∈ SO0. Then Z ∈ so0.

Proof.

Since eZ ∈ SO0, it is clear that etZ ∈ SO0 for every t ∈ Z. Let us prove that the same
property holds for every t ∈ R. The expression

etZ
ST

QetZ −Q

can be written as the following polynomial in the real variable t.

P (t) = etZ
ST

QetZ −Q =

 N∑
j=0

tj(ZST )j

j!

Q

[
N∑
k=0

tkZk

k!

]
−Q

=

N∑
k=1

k∑
j=0

tj(ZST )j

j!
Q
tk−jZk−j

(k − j)!

=

N∑
k=1

tk

k!

 k∑
j=0

(
k

j

)
(ZST )jQZk−j


=

N∑
k=1

tk

k!
Pk(Z),

where Pk(Z) =
∑k
j=0

(
k
j

)
(ZST )jQZk−j . If P (t) is not identically zero, i.e. not all the

Pk(Z) are 0, we can take k0 ∈ {1, 2, . . . , N} to be the largest subindex for which Pk0(Z) 6=
0. Then,

lim
t→∞

1

tk0
P (t) =

Pk0(Z)

k0!
6= 0,
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contradicting that P (Z) = {0}. So P (t) identically vanishes, yielding etZ ∈ SO0 for every
t ∈ R. �

In this way, we have proven the following result.

Theorem 4.4. Every supermatrix in SO0 can be written as

M = eXeY eZ, with


X ∈ so(m)× [spΩ(2n) ∩ so(2n)],

Y ∈ {0m} × [spΩ(2n) ∩ Sym(2n)],

Z ∈ so0(m|2n)(RG+
N ).

Moreover, the elements Y and Z are unique.

4.3.3 Relation with superbivectors.

Theorem 4.3 allows to compute the dimension of so0 as a real vector space.

Corollary 4.1. The dimension of the real Lie algebra so0 is

dim so0 = 2N−1

(
m(m− 1)

2
+ 2mn+ n(2n+ 1)

)
.

Proof.

Since so0 is the direct sum of the corresponding subspaces of block components A,B`, C`

and D respectively, it suffices to compute the dimension of each one of them. According
to Theorem 4.3 (iii) we have:

V1 =

{(
A 0
0 0

)
: AT = −A, A ∈

(
RG(ev)

N

)m×m} ∼= RG(ev)
N ⊗ so(m),

V2 =

{(
0 1

2C
`TΩ2n

C` 0

)
: C`∈

(
RG(odd)

N

)2n×m
}
∼= RG(odd)

N ⊗ R2n×m,

V3 =

{(
0 0
0 D

)
: DTΩ2n + Ω2nD = 0, D ∈

(
RG(ev)

N

)2n×2n
}
∼= RG(ev)

N ⊗ spΩ(2n).

This leads to,

dimV1 = 2N−1m(m− 1)

2
, dimV2 = 2N−1m2n, dimV3 = 2N−1n(2n+ 1).

�

Comparing this result with the one in Remark 4.5 we obtain that dimR(2)E
m|2n(GN ) =

dim so0. This means that both vector spaces are isomorphic. This isomorphism also
holds on the Lie algebra level. Following the classical Clifford approach, the commutator

[B,x] B ∈ R(2)E
m|2n(GN ), x ∈ S, (4.10)
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should be the key for the Lie algebra isomorphism. Proposition 4.8 shows that for every
B ∈ R(2)E

m|2n(GN ) the commutator (4.10) defines a linear action on the supervector variable
x ∈ S that can be represented by a supermatrix in Mat(m|2n)(RGN ), see (4.6).

Lemma 4.2. The map φ : R(2)E
m|2n(GN )→ Mat(m|2n)(RGN ) defined by

φ(B)x = [B,x] B ∈ R(2)E
m|2n(GN ), x ∈ S, (4.11)

takes values in so0. In particular, if we consider {b1, . . . , b2N−1} and {b̀1, . . . , b̀2N−1} to
be the canonical basis of RG(ev)

N and RG(odd)
N respectively, we obtain the following basis

for so0.

φ(brejek) = 2br

(
Ek,j − Ej,k 0

0 0

)
, 1 ≤ j < k ≤ m,

φ(b̀r ej è2k−1) = b̀r

(
0 Ej,2k

2E2k−1,j 0

)
, 1 ≤ j ≤ m, 1 ≤ k ≤ n,

φ(b̀r ej è2k) = b̀r

(
0 −Ej,2k−1

2E2k,j 0

)
, 1 ≤ j ≤ m, 1 ≤ k ≤ n,

φ(br è2j � è2k) = −br
(

0 0
0 E2j,2k−1 + E2k,2j−1

)
, 1 ≤ j ≤ k ≤ n,

φ(br è2j−1 � è2k−1) = br

(
0 0
0 E2j−1,2k + E2k−1,2j

)
, 1 ≤ j ≤ k ≤ n,

φ(br è2j−1 � è2k) = br

(
0 0
0 E2k,2j − E2j−1,2k−1

)
, 1 ≤ j ≤ k ≤ n,

φ(br è2j � è2k−1) = br

(
0 0
0 E2j,2k − E2k−1,2j−1

)
, 1 ≤ j < k ≤ n,

where 1 ≤ r ≤ 2N−1, Ej,k denotes the matrix in which only the element on the crossing
of the j-th row and the k-th column equals 1 and all the other entries are zero. The order
of Ej,k should be deduced from the context.

Proof.

The above equalities can be directly obtained from Proposition 4.8, whence we should
only check that all supermatrices obtained above form a basis for so0. The matrices Ej,k
satisfy the relations

ETj,k = Ek,j ,

Ej,2k−1Ω2n = Ej,2k,

Ej,2kΩ2n = −Ej,2k−1,

Ω2nE2j,k = E2j−1,k,

Ω2nE2j−1,k = −E2j,k.
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Then

• for φ(brejek) we have A = 2br (Ek,j − Ej,k), B` = 0, C` = 0 and D = 0, whence

AT = 2br (Ej,k − Ek,j) = −A;

• for φ(b̀r ej è2k−1) we have A = 0, B` = b̀rEj,2k, C` = 2b̀rE2k−1,j and D = 0, whence

1

2
C`TΩ2n = b̀rEj,2k−1Ω2n = b̀rEj,2k = B`;

• for φ(b̀r ej è2k) we have A = 0, B` = −b̀rEj,2k−1, C` = 2b̀rE2k,j and D = 0, whence

1

2
C`TΩ2n = b̀rEj,2kΩ2n = −b̀rEj,2k−1 = B`;

• for φ(br è2j�è2k) we have A = 0, B` = 0, C` = 0 andD = −br (E2j,2k−1 + E2k,2j−1),
whence

DTΩ2n + Ω2nD = −br (E2k−1,2jΩ2n + E2j−1,2kΩ2n + Ω2nE2j,2k−1 + Ω2nE2k,2j−1)

= −br (−E2k−1,2j−1 − E2j−1,2k−1 + E2j−1,2k−1 + E2k−1,2j−1) = 0;

• for φ(br è2j−1�è2k−1) we haveA = 0, B` = 0, C` = 0 andD = br (E2j−1,2k + E2k−1,2j),
whence

DTΩ2n + Ω2nD = br (E2k,2j−1Ω2n + E2j,2k−1Ω2n + Ω2nE2j−1,2k + Ω2nE2k−1,2j)

= br (E2k,2j + E2j,2k − E2j,2k − E2k,2j) = 0;

• for φ(br è2j−1�è2k) we haveA = 0, B` = 0, C` = 0 andD = br (E2k,2j − E2j−1,2k−1),
whence

DTΩ2n + Ω2nD = br (E2j,2kΩ2n − E2k−1,2j−1Ω2n + Ω2nE2k,2j − Ω2nE2j−1,2k−1)

= br (−E2j,2k−1 − E2k−1,2j + E2k−1,2j + E2j,2k−1) = 0.

The above computations show that all supermatrices obtained belong to so0. Direct
verification shows that they form a set of 2N−1m(m−1)

2 + 2N−1 2mn + 2N−1 n(2n + 1)
linearly independent elements, i.e. a basis of so0. �

Theorem 4.5. The map φ : R(2)E
m|2n(GN ) → so0 defined in (4.11) is a Lie algebra iso-

morphism.

Proof.
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From Lemma 4.2 it follows that φ is a vector space isomorphism. In addition, due to
the Jacobi identity in the associative algebra Am,2n ⊗ RGN we have for all B1, B2 ∈
R(2)E
m|2n(GN ) and x ∈ S that

[φ(B1), φ(B2)] x = φ(B1)φ(B2)x− φ(B2)φ(B1)x

= [B1, [B2,x]] + [B2, [x, B1]]

= [[B1, B2] ,x] = φ ([B1, B2]) x.

implying, that [φ(B1), φ(B2)] = φ ([B1, B2]), i.e., φ is a Lie algebra isomorphism. �

Remark 4.11. By virtue of Remark 4.9, the algebra of extended superbivectors R(2)E
m|2n(GN )

is a Grassmann envelope of osp(m|2n).

4.4 The Spin group in superspace

So far we have seen that the Lie algebra so0 of the Lie group of superrotations SO0 has a
realization in RGN ⊗Cm,2n as the Lie algebra of extended superbivectors. In this section,
we discuss the proper way of defining the corresponding realization of SO0 in T (V )/I,
i.e., the analogue of the Spin group in the Clifford superspace framework.

4.4.1 Supervector reflections

The group of linear transformations generated by the supervector reflections was briefly
introduced in [69] using the notion of the unit sphere in Rm,2n(GN ) defined as

S(m|2n)(RGN ) = {w ∈ Rm,2n(GN ) : w2 = −1}.

The reflection associated to the supervector w ∈ S(m|2n)(RGN ) is defined by the linear
action on supervector variables

ψ(w)[x] = wxw, x ∈ S. (4.12)

It is known from the radial algebra setting that ψ(w)[x] yields a new supervector variable.
Indeed, for x, y ∈ S one has

yxy = {x, y}y − y2x = {x, y}y + x = x− 2〈x, y〉y.

Every supervector reflection can be represented by a supermatrix in Mat(m|2n)(RGN ).

Lemma 4.3. Let w = w + ẁ =
∑m
j=1 wjej +

∑2n
j=1 ẁj èj ∈ S(m|2n)(RGN ). Then, the

linear transformation (4.12) can be represented by a supermatrix

ψ(w) =

(
A(w) B`(w)
C`(w) D(w)

)
∈ Mat(m|2n)(RGN )
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with

A(w) = −2DwEm×mDw + Im,

B`(w) = DwEm×2nDẁ Ω2n,

C`(w) = −2DẁE2n×mDw,

D(w) = DẁE2n×2nDẁ Ω2n + I2n,

where

Dw =

w1

. . .

wm

 , Dẁ =

ẁ1

. . .

ẁ2n

 , Ep×q =

1 1 . . . 1
...

...
. . .

...
1 1 . . . 1

 ∈ Rp×q.

Proof.

Observe that ψ(w)[x] = wxw = {x,w}w + x =
∑m
k=1 ykek +

∑2n
k=1 ỳkèk, where

yk = −2

 m∑
j=1

wjwkxj

+ xk +

n∑
j=1

ẁ2j−1wkx̀2j − ẁ2jwkx̀2j−1,

ỳk = −2

 m∑
j=1

wjẁkxj

+ x̀k +

n∑
j=1

−ẁ2j−1ẁkx̀2j + ẁ2jẁkx̀2j−1.

Then,

ψ(w)x =

(
A(w) B`(w)
C`(w) D(w)

)(
x
x̀

)
where,

A(w) = −2


w2

1 w2w1 . . . wmw1

w1w2 w2
2 . . . wmw2

...
...

. . .
...

w1wm w2wm . . . w2
m

+ Im = −2DwEm×mDw + Im,

B`(w) =


−ẁ2w1 ẁ1w1 . . . −ẁ2nw1 ẁ2n−1w1

−ẁ2w2 ẁ1w2 . . . −ẁ2nw2 ẁ2n−1w2

...
...

. . .
...

...
−ẁ2wm ẁ1wm . . . −ẁ2nwm ẁ2n−1wm

 = DwEm×2nDẁ Ω2n,

C`(w) = −2


w1ẁ1 w2ẁ1 . . . wmẁ1

w1ẁ2 w2ẁ2 . . . wmẁ2

...
...

. . .
...

w1ẁ2n w2ẁ2n . . . wmẁ2n

 = −2DẁE2n×mDw,
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D(w) =


ẁ2ẁ1 −ẁ1ẁ1 . . . ẁ2nẁ1 −ẁ2n−1ẁ1

ẁ2ẁ2 −ẁ1ẁ2 . . . ẁ2nẁ2 −ẁ2n−1ẁ2

...
...

. . .
...

...
ẁ2ẁ2n −ẁ1ẁ2n . . . ẁ2nẁ2n −ẁ2n−1ẁ2n

+ I2n

= DẁE2n×2nDẁ Ω2n + I2n.

�

Remark 4.12. Algebraic operations with the matrices A(w), B`(w), C`(w), D(w) are easy
since

Ep×mD
2
wEm×q =

 m∑
j=1

w2
j

Ep×q, (4.13)

Ep×2nDẁΩ2nDẁE2n×q = 2

 n∑
j=1

ẁ2j−1ẁ2j

Ep×q. (4.14)

Proposition 4.13. Let w ∈ S(m|2n)(RGN ). Then ψ(w) ∈ O0 and sdet (ψ(w)) = −1.

Proof.

In order to prove that ψ(w) ∈ O0 it suffices to prove that A(w), B`(w), C`(w), D(w)
satisfy (4.8). This can be easily done using (4.13)-(4.14) and the identity

−1 = w2 = −
m∑
j=1

w2
j +

n∑
j=1

ẁ2j−1ẁ2j .

In fact, we have

A(w)TA(w) = 4DwEm×mD
2
wEm×mDw − 4DwEm×mDw + Im

= 4

 m∑
j=1

w2
j

DwEm×mDw − 4DwEm×mDw + Im,

and

C`(w)TΩ2nC
`(w) = 4DwEm×2nDẁΩ2nDẁE2n×mDw = 8

 n∑
j=1

ẁ2j−1ẁ2j

DwEm×mDw.

Then,

A(w)TA(w)−1

2
C`(w)TΩ2nC

`(w) = 4

 m∑
j=1

w2
j − 1−

n∑
j=1

ẁ2j−1ẁ2j

DwEm×mDw+Im = Im.
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Also,

A(w)TB`(w) = −2DwEm×mD
2
wEm×2nDẁΩ2n +DwEm×2nDẁ Ω2n

= −2

 m∑
j=1

w2
j

DwEm×2nDẁΩ2n +DwEm×2nDẁ Ω2n,

and

C`(w)TΩ2nD(w) = −2DwEm×2nDẁΩ2nDẁE2n×2nDẁΩ2n − 2DwEm×2nDẁΩ2n

= −4

 n∑
j=1

ẁ2j−1ẁ2j

DwEm×2nDẁΩ2n − 2DwEm×2nDẁΩ2n.

Hence,

A(w)TB`(w)−1

2
C`(w)TΩ2nD(w) = 2

− m∑
j=1

w2
j + 1 +

n∑
j=1

ẁ2j−1ẁ2j

DwEm×2nDẁΩ2n = 0.

In the same way we have

B`(w)TB`(w) = −Ω2nDẁE2n×mD
2
wEm×2nDẁΩ2n = −

 m∑
j=1

w2
j

Ω2nDẁE2n×2nDẁΩ2n,

and

D(w)TΩ2nD(w) = Ω2nDẁE2n×2nDẁΩ2nDẁE2n×2nDẁΩ2n + 2Ω2nDẁE2n×2nDẁΩ2n + Ω2n

= 2

 n∑
j=1

ẁ2j−1ẁ2j + 1

Ω2nDẁE2n×2nDẁΩ2n + Ω2n,

whence

B`(w)TB`(w)+
1

2
DT (w)Ω2nD(w)=

− m∑
j=1

w2
j +1+

n∑
j=1

ẁ2j−1ẁ2j

Ω2nDẁE2n×2nDẁΩ2n +
1

2
Ω2n

=
1

2
Ω2n.

Then, A(w), B`(w), C`(w), D(w) satisfy (4.8) and in consequence, ψ(w) ∈ O0. To prove
that sdet(ψ(w)) = −1, first observe that ψ(w) = ψ(w)−1 since

ψ(w) ◦ ψ(w)[x] = wwxww = x.

Hence, due to Theorem 4.1 we obtain

A(w) =
(
A(w)−B`(w)D(w)−1C`(w)

)−1
,
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yielding

sdet(ψ(w)) =
det
[
A(w)−B`(w)D(w)−1C`(w)

]
det[D(w)]

=
1

det[A(w)] det[D(w)]
.

We will compute det[D(w)] using the formula det[D(w)] = exp(tr lnD(w)) and the fact
that D(w)− I2n is a nilpotent matrix. Observe that

lnD(w) =

∞∑
j=1

(−1)j+1 (D(w)− I2n)
j

j
=

∞∑
j=1

(−1)j+1

(
DẁE2n×2nDẁ Ω2n

)j
j

.

It follows from (4.14) that

(
DẁE2n×2nDẁ Ω2n

)j
= 2j−1

 n∑
j=1

ẁ2j−1ẁ2j

j−1

DẁE2n×2nDẁ Ω2n.

Then,

lnD(w) =

 ∞∑
j=1

(−1)j+1
2j−1

(∑n
j=1 ẁ2j−1ẁ2j

)j−1

j

DẁE2n×2nDẁ Ω2n

and in consequence,

tr lnD(w) = −
∞∑
j=1

(−1)j+1
2j
(∑n

j=1 ẁ2j−1ẁ2j

)j
j

= − ln

1 + 2

n∑
j=1

ẁ2j−1ẁ2j

 .

Hence
det(D(w)) =

1

1 + 2
n∑
j=1

ẁ2j−1ẁ2j

.

Similar computations yield

det(A(w)) = 1− 2

m∑
j=1

w2
j

which shows that

sdet(ψ(w)) =
1 + 2

∑n
j=1 ẁ2j−1ẁ2j

1− 2
∑m
j=1 w

2
j

= −1.

�

We can now define the bosonic Pin group in superspace as

Pinb(m|2n)(GN ) = {w1 · · ·wk : wj ∈ S(m|2n)(RGN ), k ∈ N},
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and extend the map ψ to a Lie group homomorphism ψ : Pinb(m|2n)(GN )→ O0 by

ψ(w1 · · ·wk)[x] = w1 · · ·wk x wk · · ·w1 = ψ(w1) ◦ · · · ◦ ψ(wk)[x].

It is clearly seen that the restriction of ψ to the bosonic spin group, defined as

Spinb(m|2n)(GN ) = {w1 · · ·w2k : wj ∈ S(m|2n)(RGN ), k ∈ N},

takes values in the subgroup SO0 ⊂ O0.

In the classical case, the Pin group and the Spin group are double coverings of the
groups O(m) and SO(m) respectively. A natural question in this setting is whether
Pinb(m|2n)(GN ) and Spinb(m|2n)(GN ) cover the groups O0 and SO0. The answer to
this question is negative and the main reason for this is that the real projection of every
vector w ∈ S(m|2n)(RGN ) is in the unitary sphere Sm−1 of Rm, i.e.,

[w]0 =

m∑
j=1

[wj ]0ej and [w]20 = −1.

Then, the real projection of ψ (Pinb(m|2n)(GN )) is just O(m), while [O0]0 = O(m) ×
SpΩ(2n). This means that these bosonic versions of Pin and Spin do not describe the
symplectic parts of O0 and SO0. This phenomenon is due to the natural structure of
supervectors: their real projections belong to a space with an orthogonal structure while
the symplectic structure plays no rôle. Up to a nilpotent vector, they are classical Clifford
vectors, whence it is impossible to generate by this approach the real symplectic geometry
that is also present in the structure of O0 and SO0. That is why we have chosen the name
of "bosonic" Pin and "bosonic" Spin groups. This also explains why we had to extend
the space of superbivectors in section 4.2.1. The ordinary superbivectors in RGN ⊗Cm,2n
are generated over RG(ev)

N by the wedge product of supervectors. Then, they can only
describe so(m) and not spΩ(2n) and in consequence, they do not cover so0.

As in the classical setting (see [47]), it is possible to obtain the following result that
shows, from another point of view, that Pinb(m|2n)(GN ) cannot completely describe O0.

Proposition 4.14. The Lie algebra of Pinb(m|2n)(GN ) is included in R(2)
m|2n(GN ).

Proof.

Let γ(t) = w1(t) · · ·wk(t) be a path in Pinb(m|2n)(GN ) with wj(t) ∈ S(m|2n)(RGN )
for every t ∈ R and γ(0) = 1. The tangent to γ at t = 0 is

dγ

dt

∣∣∣∣
t=0

=

k∑
j=1

w1(0) · · ·w′j(0) · · ·wk(0).

We will show that each summand of dγdt
∣∣
t=0

belongs to R(2)
m|2n(GN ).
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For j = 1 we have w′1(0)w2(0) · · ·wk(0) = −w′1(0)w1(0). But w1(t)w1(t) ≡ −1 implies

{w′1(0),w1(0)} = w′1(0)w1(0) + w1(0)w′1(0) = 0.

Then w′1(0)w1(0) = 1
2{w

′
1(0),w1(0)} + w′1(0) ∧ w1(0) = w′1(0) ∧ w1(0) ∈ R(2)

m|2n(GN ).
For j = 2,

w1(0)w′2(0) · · ·wk(0) = w1(0)w′2(0)w2(0)w1(0)

= − [w1(0)w′2(0)w1(0)] [w1(0)w2(0)w1(0)]

= −ψ(w1(0))[w′2(0)] ψ(w1(0))[w2(0)].

But ψ(w1(0)) ∈ O0 preserves the inner product (see remark 4.6), so

w1(0)w′2(0) · · ·wk(0) = ψ(w1(0))[w′2(0)] ∧ ψ(w1(0))[w2(0)] ∈ R(2)
m|2n(GN ).

We can proceed similarly for every j = 3, . . . , k. �

4.4.2 A proper definition for the group Spin(m|2n)(GN)

The above approach shows that the radial algebra setting does not contain a suitable
realization of SO0 in the Clifford superspace framework. Observe that the Clifford repre-
sentation of so0 given by R(2)E

m|2n(GN ) lies outside of the radial algebra Rm|2n(GN ), which
suggests that something similar should happen with the corresponding Lie group SO0. In
this case, a proper definition for the Spin group would be generated by the exponentials
(in general contained in T (V )/I) of all elements in R(2)E

m|2n(GN ), i.e.

Spin(m|2n)(GN ) :=
{
eB1 · · · eBk : B1, . . . , Bk ∈ R(2)E

m|2n(GN ), k ∈ N
}
,

and the action of this group on supervector variables x ∈ S is given by the group
homomorphism h : Spin(m|2n)(GN )→ SO0 defined by

h(eB)[x] = eBxe−B , B ∈ R(2)E
m|2n(GN ), x ∈ S. (4.15)

In fact, for every extended superbivector B, h(eB) maps supervector variables into new
supervector variables and admits a supermatrix representation in Mat(m|2n)(RGN ) be-
longing to SO0. This is summarized below.

Proposition 4.15. Let B ∈ R(2)E
m|2n(GN ). Then,

h(eB)[x] = eφ(B)x, ∀x ∈ S.

Proof.
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In the associative algebra Am,2n ⊗ RGN , the identity

[B, [B . . . [B,x] . . .]]︸ ︷︷ ︸
k

=

k∑
j=0

(
k

j

)
Bjx(−B)k−j

holds. Then,

h(eB)[x] = eBxe−B =

( ∞∑
k=0

Bk

k!

)
x

( ∞∑
k=0

(−B)k

k!

)

=

∞∑
k=0

 k∑
j=0

Bj

j!
x

(−B)k−j

(k − j)!


=

∞∑
k=0

1

k!

 k∑
j=0

(
k

j

)
Bjx(−B)k−j


=

∞∑
k=0

1

k!
[B, [B . . . [B,x] . . .]]︸ ︷︷ ︸

k

=

∞∑
k=0

φ(B)kx

k!
= eφ(B)x.

�

Remark 4.13. Proposition 4.15 means that the Lie algebra isomorphism φ : R(2)E
m|2n(GN )→

so0 is the derivative at the origin (or infinitesimal representation) of the Lie group ho-
momorphism h : Spin(m|2n)(GN )→ SO0, i.e.,

etφ(B) = h(etB) ∀t ∈ R, B ∈ R(2)E
m|2n(GN ). (4.16)

On account of the connectedness of SO0 it can be shown that the group Spin(m|2n)(GN )
is a realization of SO0 in T (V )/I through the representation h.

Theorem 4.6. For every M ∈ SO0 there exists an element s ∈ Spin(m|2n)(GN ) such
that h(s) = M .

Proof.

Since SO0 is a connected Lie group (Proposition 4.10), for every supermatrix M ∈ SO0

there existX1, . . . , Xk ∈ so0 such that eX1 · · · eXk = M , see Corollary 3.47 in [50]. Taking
B1, . . . , Bk ∈ R(2)E

m|2n(GN ) such that φ(Bj) = Xj , j = 1, . . . , k, we obtain

Mx = eX1 · · · eXk x = eφ(B1) · · · eφ(Bk) x = h(eB1) ◦ · · · ◦ h(eBk)[x] = h(eB1 · · · eBk)[x].

Then, s = eB1 · · · eBk ∈ Spin(m|2n)(GN ) satisfies h(s) = M . �
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Table 4.1 below provides a comparative overview concerning the Spin group in both
settings: Euclidean Clifford analysis and its extension to superspace.

Euclidean Clifford Clifford analysis in superspace
analysis

Bilinear form 〈x, y〉R =
m∑

j=1

xjyj 〈x,y〉R =
m∑

j=1

xjyj − 1
2

n∑
j=1

(x̀2j−1ỳ2j − x̀2j ỳ2j−1)

Invariance SO(m) SO0(m|2n)(RGN )

Body SO(m) SO(m)× Sp(2n)

Lie algebra so(m) so0(m|2n)(RGN )

Real dimension m(m−1)
2

2N−1
(

m(m−1)
2

+ 2mn+ n(2n+ 1)
)

Bivectors
∑

1≤j<k≤m

bj,k ejek
∑

1≤j<k≤m

bj,k ejek+
∑

1≤j≤m
1≤k≤2n

b̀j,k ej èk+
∑

1≤j≤k≤2n

Bj,k èj � èk

Iwasawa M0 = eX , M = eXeY eZ, X ∈ so(m)× [spΩ(2n) ∩ so(2n)],
decomposition X ∈ so(m) Y ∈ {0m} × [spΩ(2n) ∩ Sym(2n)],

Z ∈ so0(m|2n)(RG+
N )

Spin group/ Spin(m) Spin(m|2n)(GN )
elements v1 · · · v2k, vj ∈ Sm−1 eB1 · · · eBk , Bj ∈ R(2)E

m|2n(GN )

Table 4.1: Comparative overview of the Spin realization of the rotation group.

The decomposition of SO0 given in Theorem 4.4 provides the exact number of exponen-
tials of extended superbivectors to be considered in Spin(m|2n)(GN ) in order to cover
the whole group SO0. If we consider the subspaces Ξ1,Ξ2,Ξ3 of R(2)E

m|2n(GN ) given by

Ξ1 = φ−1
(
so(m)× [spΩ(2n) ∩ so(2n)]

)
, dim Ξ1 =

m(m− 1)

2
+ n2,

Ξ2 = φ−1
(
{0m} × [spΩ(2n) ∩ Sym(2n)]

)
, dim Ξ2 = n2 + n, (4.17)

Ξ3 = φ−1
(
so0(m|2n)(RG+

N )
)

dim Ξ3 = dim so0 −
m(m− 1)

2
− n(2n+ 1),

we get the decomposition R(2)E
m|2n(GN ) = Ξ1 ⊕ Ξ2 ⊕ Ξ3, leading to the subset

Ξ = exp(Ξ1) exp(Ξ2) exp(Ξ3) ⊂ Spin(m|2n)(GN ),

which suffices for describing SO0. Indeed, from Theorem 4.4 it follows that the restriction
h : Ξ→ SO0 is surjective. We now investigate the explicit form of the superbivectors in
each of the subspaces Ξ1, Ξ2 and Ξ3.
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Proposition 4.16. The following statements hold.

(i) A basis for Ξ1 is


ejek, 1 ≤ j < k ≤ m,
è2j−1 � è2k−1 + è2j � è2k, 1 ≤ j ≤ k ≤ n,
è2j−1 � è2k − è2j � è2k−1, 1 ≤ j < k ≤ n.

(ii) A basis for Ξ2 is:


è2j−1 � è2j , 1 ≤ j ≤ n,
è2j−1 � è2k−1 − è2j � è2k, 1 ≤ j ≤ k ≤ n,
è2j−1 � è2k + è2j � è2k−1, 1 ≤ j < k ≤ n.

(iii) Ξ3 consists of all elements of the form (4.7) with bj,k, Bj,k ∈ RG(ev)
N ∩ RG+

N and
b̀j,k ∈ RG(odd)

N .

Proof.

We first recall that a basis for the Lie algebra spΩ(2n) is given by the elements

Aj,k := E2j,2k−1 + E2k,2j−1, 1 ≤ j ≤ k ≤ n,
Bj,k := E2j−1,2k + E2k−1,2j , 1 ≤ j ≤ k ≤ n,
Cj,k := E2k,2j − E2j−1,2k−1, 1 ≤ j ≤ k ≤ n,
Dj,k := E2j,2k − E2k−1,2j−1, 1 ≤ j < k ≤ n,

where the matrices Ej,k ∈ Rn×n are defined as in Lemma 4.2. It holds that

ATj,k = Bj,k, 1 ≤ j ≤ k ≤ n,
CTj,k = Dj,k, 1 ≤ j < k ≤ n,
CTj,j = Cj,j , 1 ≤ j ≤ n.

Hence, for every matrix D0 ∈ spΩ(2n) we have

D0 =
∑

1≤j≤k≤n

(aj,kAj,k + bj,kBj,k + cj,kCj,k) +
∑

1≤j<k≤n

dj,kDj,k,

DT
0 =

∑
1≤j≤k≤n

(aj,kBj,k + bj,kAj,k) +
∑

1≤j<k≤n

(cj,kDj,k + dj,kCj,k) +

n∑
j=1

cj,jCj,j ,

where aj,k, bj,k, cj,k, dj,k ∈ R.

(i) From the previous equalities we get that DT
0 = −D0 if and only if

D0 =
∑

1≤j≤k≤n

aj,k (Aj,k −Bj,k) +
∑

1≤j<k≤n

cj,k (Cj,k −Dj,k) .

Then, a basis for spΩ(2n) ∩ so(2n) is

{Aj,k −Bj,k : 1 ≤ j ≤ k ≤ n} ∪ {Cj,k −Dj,k : 1 ≤ j < k ≤ n}.

The remainder of the proof directly follows from Lemma 4.2.
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(ii) In this case we have that DT
0 = D0 if and only if

D0 =
∑

1≤j≤k≤n

aj,k (Aj,k +Bj,k) +
∑

1≤j<k≤n

cj,k (Cj,k +Dj,k) +

n∑
j=1

cj,jCj,j ,

whence a basis for spΩ(2n) ∩ Sym(2n) is

{Aj,k +Bj,k : 1 ≤ j ≤ k ≤ n} ∪ {Cj,j : 1 ≤ j ≤ n} ∪ {Cj,k +Dj,k : 1 ≤ j < k ≤ n}.

The remainder of the proof directly follows from Lemma 4.2.

iii) This trivially follows from Lemma 4.2. �

4.4.3 Spin covering of the group SO0

It is a natural question in this setting whether the spin group still is a double covering
of the group of rotations, as it is in classical Clifford analysis. In other words, we will
investigate how many times Ξ ⊂ Spin(m|2n)(GN ) covers SO0, or more precisely, we will
determine the cardinality of the set {s ∈ Ξ : h(s) = M} given a certain fixed element
M ∈ SO0.

From Proposition 4.15 we have that the representation h of an element

s = eB1eB2eB3 ∈ Ξ, Bj ∈ Ξj ,

has the form
h(s) = eφ(B1)eφ(B2)eφ(B3).

Following the decomposition
M = eXeY eZ

given in Theorem 4.4 for M ∈ SO0, we get that h(s) = M if and only if

eφ(B1) = eX , B2 = φ−1(Y ), B3 = φ−1(Z).

Then, the cardinality of {s ∈ Ξ : h(s) = M} only depends on the number of extended
superbivectors B1 ∈ Ξ1 that satisfy eφ(B1) = eX . It reduces our analysis to finding the
kernel of the restriction

h|exp(Ξ1) : exp(Ξ1)→ SO(m)× [SpΩ(2n) ∩ SO(2n)]

of the Lie group homomorphism h to exp(Ξ1). This kernel is given by

kerh|exp(Ξ1) = {eB : eφ(B) = Im+2n, B ∈ Ξ1}.

We recall, from Proposition 4.16, that B ∈ Ξ1 may be written as B = Bo + Bs where
Bo ∈ R(2)

0,m is a classical real bivector and

Bs ∈ φ−1 ({0m} × [spΩ(2n) ∩ so(2n)]) .
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The components Bo, Bs commute and in consequence, eB = eBoeBs . Consider the pro-
jections φo and φs of φ over the algebra of classical bivectors R(2)

0,m and over the algebra
φ−1 ({0m} × [spΩ(2n) ∩ so(2n)]) respectively, i.e.

φo : R(2)
0,m → so(m), φs : φ−1 ({0m} × [spΩ(2n) ∩ so(2n)])→ spΩ(2n) ∩ so(2n),

where

φ(B) =

(
φo(Bo) 0

0 φs(Bs)

)
, B ∈ Ξ1.

Or equivalently:{
φo(Bo)[x] = [Bo, x],

φs(Bs)[x̀] = [Bs, x̀] ,
x = x+ x̀ ∈ S.

Hence eφ(B) = Im+2n if and only if eφo(Bo) = Im and eφs(Bs) = I2n. For the first
condition, we know from classical Clifford analysis that Spin(m) = {eB : B ∈ R(2)

0,m} is a
double covering of SO(m) and in consequence,

eφo(Bo) = Im,

implies
eB0 = ±1.

Let us now compute all possible values for eBs for which eφs(Bs) = I2n. To that end, we
need the following linear algebra result.

Proposition 4.17. Every matrix D0 ∈ so(2n) ∩ spΩ(2n) can be written in the form
D0 = RΣRT where R ∈ SO(2n) ∩ SpΩ(2n) and

Σ =


0 θ1

−θ1 0
. . .

0 θn
−θn 0

 , θj ∈ R, j = 1, . . . , n. (4.18)

Proof.

The map Ψ(D0) = 1
2QD0

(
QT
)c, where

Q =


1 i 0 0 . . . 0 0
0 0 1 i . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 i

 ∈ Cn×2n,
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is a Lie group isomorphism between SO(2n)∩SpΩ(2n) and U(n). It is easily proven that
Ψ is its own infinitesimal representation on the Lie algebra level, and in consequence, a
Lie algebra isomorphism between so(2n) ∩ spΩ(2n) and u(n). The inverse of Ψ is given
by

Ψ−1(L) =
1

2

[(
QT
)c
LQ+QT LcQc

]
.

For every D0 ∈ so(2n)∩spΩ(2n), let us consider the skew-Hermitian matrix L = Ψ(D0) ∈
u(n). It is known that every skew-Hermitian matrix is unitarily diagonalizable and all
its eigenvalues are purely imaginary, see [54]. Hence, L = Ψ(D0) can be written as

L = UD
(
UT
)c

where U ∈ U(n) and

D = diag(−iθ1, . . . ,−iθn), θj ∈ R.

Then,
D0 = Ψ−1(L) = RΣRT

where R = Ψ−1(U) ∈ SO(2n) ∩ SpΩ(2n) and Σ = Ψ−1(D) has the form (4.18). �

Since φs(Bs) ∈ so(2n)∩spΩ(2n), we have φs(Bs) = RΣRT as in the previous proposition.
Hence, eφs(Bs) = ReΣRT where eΣ is the block-diagonal matrix

eΣ = diag(eθ1Ω2 , . . . , eθnΩ2) with eθjΩ2 = cos θjI2 + sin θjΩ2.

Hence eφs(Bs) = I2n if and only if eΣ = I2n, which is seen to be equivalent to θj = 2kjπ,
kj ∈ Z (j = 1, . . . , n), or to

Σ =

n∑
j=1

2kjπ (E2j−1,2j − E2j,2j−1) , kj ∈ Z (j = 1, . . . , n).

Now, SO(2n) ∩ SpΩ(2n) being connected and compact, there exists BR ∈ φ−1(so(2n) ∩
spΩ(2n)) such that R = eφ(BR). We recall that the h-action leaves any multivector
structure invariant, in particular,

h[eB ]
(
R(2)E
m|2n(GN )

)
⊂ R(2)E

m|2n(GN )

for every B ∈ R(2)E
m|2n(GN ). Then, using the fact that φ is the derivative at the origin of

h, we get that the extended superbivector

h(eBR)[φ−1(Σ)] = eBRφ−1(Σ)e−BR

is such that

φ
(
eBRφ−1(Σ)e−BR

)
= eφ(BR)Σe−φ(BR) = RΣRT = φ(Bs),
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implying thatBs = eBRφ−1(Σ)e−BR . Then, in order to compute eBs = eBR eφ
−1(Σ) e−BR ,

we first have to compute eφ
−1(Σ). Following the correspondences given in Lemma 4.2 we

get

φ−1(Σ) =

n∑
j=1

2kjπ φ
−1 (E2j−1,2j − E2j,2j−1) =

n∑
j=1

kjπ
(
è 2

2j−1 + è 2
2j

)
.

and, in consequence

eφ
−1(Σ) = exp

 n∑
j=1

kjπ
(
è 2

2j−1 + è 2
2j

) =

n∏
j=1

exp
[
kjπ

(
è 2

2j−1 + è 2
2j

)]
. (4.19)

Let us compute exp
[
π
(
è 2

2j−1 + è 2
2j

)]
, j ∈ {1, . . . , n}. Consider

a = 2fj = è2j−1 − iè2j , b = −2fj̀ = è2j−1 + iè2j ;

where i is the usual imaginary unit in C. It is clear that

ab = è 2
2j−1 + è 2

2j + i(è2j−1è2j − è2j è2j−1) = è 2
2j−1 + è 2

2j + i,

and [a,b] = 2i which is a commuting element. Then,

exp
[
π
(
è 2

2j−1 + è 2
2j

)]
= exp (π ab− iπ) = − exp (π ab) .

In order to compute exp (π ab) we first prove the following results.

Lemma 4.4. For every k ∈ N the following relations hold.

(i)
[
bk,a

]
= −2ik bk−1, (ii) akbkab = ak+1bk+1 − 2ik akbk.

Proof.

(i) We proceed by induction. For k = 1 we get [b,a] = −2i which obviously is true.
Now assume that (i) is true for k ≥ 1, then for k + 1 we get

bk+1a = b
(
bka

)
= babk − 2ik bk = (ab− 2i)bk − 2ik bk = abk+1 − 2i(k + 1)bk.

(ii) From (i) we get akbkab = ak
(
abk − 2ik bk−1

)
b = ak+1bk+1 − 2ik akbk. �

Lemma 4.5. For every k ∈ N it holds that

(ab)
k

=

k∑
j=1

(2i)k−j S(k, j) ajbj ,

where S(n, j) is the Stirling number of the second kind corresponding to k and j.
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Remark 4.14. The Stirling number of the second kind S(k, j) is the number of ways
of partitioning a set of k elements into j non empty subsets. Amongst the properties of
Stirling numbers we recall the following ones:

• S(k, 1) = S(k, k) = 1.

• S(k + 1, j + 1) = S(k, j) + (j + 1)S(k, j + 1).

•
∞∑
k=j

S(k, j)
xk

k!
=

(ex − 1)
j

j!

Proof of Lemma 4.5.
We proceed by induction. For k = 1 the statement clearly is true. Now assume it to be
true for k ≥ 1. Using Lemma 4.4, we have for k + 1 that

(ab)k+1 =

k∑
j=1

(−2i)k−j S(k, j) ajbjab

=

k∑
j=1

(−2i)k−j S(k, j)aj+1bj+1 + (−2i)k+1−jj S(k, j) ajbj

= (−2i)kab +

k−1∑
j=1

(−2i)k−j [S(k, j) + (j + 1)S(k, j + 1)] aj+1bj+1

+ ak+1bk+1

=

k+1∑
j=1

(−2i)k+1−j S(k + 1, j) ajbj .

�

Then we obtain

eπab =

∞∑
k=0

πk

k!
(ab)k = 1 +

∞∑
k=1

k∑
j=1

πk

k!
(−2i)k−j S(k, j) ajbj

= 1 +

∞∑
j=1

∞∑
k=j

πk

k!
(−2i)k−j S(k, j) ajbj

= 1 +

∞∑
j=1

(−2i)−j

 ∞∑
k=j

(−2πi)k

k!
S(k, j)

ajbj

= 1 +

∞∑
j=1

(−2i)−j
(
e−2πi − 1

)j
j!

ajbj = 1,

from which we conclude that exp
[
π
(
è 2

2j−1 + è 2
2j

)]
= − exp (π ab) = −1.
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Remark 4.15. Within the algebra C0,2n = AlgR{è1, . . . , è2n} the elements è2j−1, è2j may
be identified with the operators e

π
4 i∂aj , e

−π4 iaj respectively, the aj’s being real variables.
Indeed, these identifications immediately lead to the Weyl algebra defining relations

e
π
4 i∂aj e

−π4 iak − e−
π
4 iak e

π
4 i∂aj = ∂ajak − ak∂aj = δj,k. (4.20)

Hence è 2
2j−1 + è 2

2j may be identified with the harmonic oscillator i
(
∂2
aj − a

2
j

)
and in

consequence, the element exp
[
π
(
è 2

2j−1 + è 2
2j

)]
corresponds to exp

[
πi
(
∂2
aj − a

2
j

)]
. We

recall that the classical Fourier transform in one variable can be written as an operator
exponential

F [f ] = exp
(π

4
i
)

exp
(π

4
i
(
∂2
aj − a

2
j

))
[f ].

Hence, exp
[
πi
(
∂2
aj − a

2
j

)]
= −F4 = −id, where id denotes the identity operator.

Observe that the representation (4.20) for the èj’s is equivalent to the one introduced in
(3.12). The only difference between them is given by the use of the constants e±

π
4 i.

Going back to (4.19) we have

eφ
−1(Σ) =

n∏
j=1

exp
[
π
(
è 2

2j−1 + è 2
2j

)]kj
= (−1)

∑
kj ,

whence eBs = ±1. Then, for B = Bo +Bs ∈ Ξ1 such that eφ(B) = Im+2n, we have

eB = eBoeBs = ±1,

i.e. kerh|exp(Ξ1) = {−1, 1}. This way, we have proven the following result.

Theorem 4.7. The set Ξ = exp(Ξ1) exp(Ξ2) exp(Ξ3) is a double covering of SO0.

Remark 4.16. As shown before, every extended superbivector of the form

B =

n∑
j=1

θj
2
π
(
è 2

2j−1 + è 2
2j

)
, θj ∈ R,

belongs to Ξ1. Then, though the identifications (4.20) we can see all operators

exp

 n∑
j=1

θj
2
πi(∂2

aj − a
2
j )

 =

n∏
j=1

exp
[
θj
π

2
i(∂2

aj − a
2
j )
]

=

n∏
j=1

exp
(
−θj

π

2
i
)
F2θj
aj ,

as elements of the Spin group in superspace. Here, F2θj
aj denotes the one-dimensional

fractional Fourier transform of order 2θj in the variable aj.
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4.5 Concluding remarks

In this chapter we have shown that vector reflections in superspace do not suffice to
describe the set of linear transformations leaving the inner product invariant. This
constitutes a very important difference with the classical case in which the algebra of
bivectors x ∧ y is isomorphic to the special orthogonal algebra so(m). Such a property
is no longer fulfilled in this setting. The real projection of the algebra of superbivectors
R(2)
m|2n(GN ) does not include the symplectic algebra structure which is present in the Lie

algebra of supermatrices so0, corresponding to the group of super rotations.

That fact has an major impact on the definition of the Spin group in this setting. The
set of elements defined through the multiplication of an even number of unit vectors in
Rm,2n(GN ) does not suffice for describing Spin(m|2n)(GN ). A suitable alternative, in
this case, is to define the (super) spin elements as products of exponentials of extended
superbivectors. Such an extension of the Lie algebra of superbivectors contains, through
the corresponding identifications, harmonic oscillators. In this way, we obtain the Spin
group as a cover of the set of superrotations SO0 through the usual representation h. In
addition, every fractional Fourier transform can be identified with a spin element.



5
Spin actions in Euclidean and Hermitian

Clifford analysis in superspace

In this chapter, we study the operator actions on superfunctions, associated to the h-
representation of the spin group in superspace, see (4.15). These operators are given
by

H(s)[F (x)] = sF (sxs)s, L(s)[F (x)] = sF (sxs), s ∈ Spin(m|2n)(GN ). (5.1)

As in the classical case, the super Dirac operator ∂x is invariant under those actions. Ex-
plicitly this invariance is expressed through the commutation of ∂x with the infinitesimal
representation

dL(B) =
d

dt
L(etB)

∣∣
t=0

, B ∈ R(2)E
m|2n(GN ).

The action of the representation dL on the basis elements of R(2)E
m|2n(GN ) gives rise to a

class of super angular momentum operators.

In addition, we also study these spin actions within the Hermitian Clifford system in
superspace. The basics of Hermitian Clifford analysis in superspace were introduced
in Chapter 3 following the notion of an abstract complex structure in the Hermitian
radial algebra. We first study the group of complex supermatrices U0(m|n)(CGN )
leaving the Hermitian inner product {Z,U†} of complex supervector variables inva-
riant, see (3.34). The real representation SOJ

0 (2m|2n)(RGN ) of this group is com-
posed of all SO0(2m|2n)(RGN ) supermatrices which commute with the complex structure
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J ∈ SO0(2m|2n)(RGN ). The group U0(m|n)(CGN ) contains U(m)×U(n) as its complex
projection and preserves the connectedness from its classical antecedent U(m). But, as
is the case for SO0, also U0(m|n)(CGN ) does not preserve the compactness and cannot
be described by a single action of the exponential map on its Lie algebra. Nevertheless,
its isomorphic copy SOJ

0 (2m|2n)(RGN ) may be decomposed as the product of only two
exponentials, respectively acting on the elements of so(2m) × [spΩ(2n) ∩ so(2n)] and
so0(2m|2n)(RG+

N ) which commute with J.

The subgroup SOJ
0 (2m|2n)(RGN ) is covered by a subgroup of Spin(2m|2n)(GN ), which

is denoted by SpinJ(2m|2n)(GN ) and generated by the exponentials of extended su-
perbivectors that are invariant under the action of the complex structure. Using the
above-mentioned decomposition for SOJ

0 (2m|2n)(RGN ), we construct a subset ΞJ of
Ξ∩SpinJ(m|2n)(GN ) which constitutes a double covering of SOJ

0 (2m|2n)(RGN ). Those
properties allow to prove the invariance of the twisted super Dirac operator ∂J(x) under
the SpinJ(2m|2n)(GN )-actions.

5.1 Spin invariance of the super Dirac operator

In this section we study the invariance of ∂x under the spin actions defined in (5.1).
To that end it suffices to consider the H and L actions on super-polynomials depend-
ing on a supervector variable x ∈ S, i.e. elements of the space RP = R[x1, . . . , xm] ⊗
RG(x̀1, . . . , x̀2n), but with coefficients in RGN ⊗ Cm,2n. This is, the subalgebra PNm,2n ⊂
Am,2n ⊗ RGN defined as

PNm,2n = RGN ⊗ Cm,2n ⊗ RP = RGN ⊗ Cm,2n ⊗ R[x1, . . . , xm]⊗G(x̀1, . . . , x̀2n).

We recall that the partial derivatives ∂xj , ∂x̀j are defined in V⊗RGN as in (3.7) where we
are considering p = m` commuting variables in V AR and q = 2n`+N anti-commuting
variables in V AR`∪ {f1 . . . , fN}. The extension to Am,2n ⊗ RGN is trivially defined by
means of the commuting relations (3.17) between the the derivatives ∂xj , ∂x̀j and the
Clifford generators ej ’s and èj ’s.

Following the radial algebra approach it is possible to extend some important involutions
from Am,2n to Am,2n ⊗RGN . In particular, the conjugation can be defined on Am,2n ⊗
RGN as the linear map satisfying

a ej1 . . . ejk è`1 . . . è`s = a ej1 . . . ejk è`1 . . . è`s , a ∈ V ⊗ RGN ;

where (see Section 3.2.1)

ej1 . . . ejk è`1 . . . è`s = (−1)k+
s(s+1)

2 è`s . . . è`1ejk . . . ej1 .

This conjugation map can be continuously extended from the algebra of coefficients
RGN ⊗ Cm,2n to T (V )/I. This leads, amongst others, to relations of the type eF = eF .
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The extension of the set of Clifford-Grassmann coefficients to T (V )/I allows to consider
polynomials in the space

T PNm,2n = T (V )/I ⊗ R[x1, . . . , xm]⊗G(x̀1, . . . , x̀2n),

i.e. super-polynomials with coefficients in T (V )/I. Every linear action on PNm|2n can be
extended by continuity to T PNm|2n.

It is easily seen that the H and L spin actions defined in (5.1) are are Lie group homo-
morphisms from the spin group to the group of automorphisms on T PNm|2n, i.e. H and
L are Lie group representations of Spin(m|2n)(GN ). It is our aim to show that both
representations commute with the super Dirac operator ∂x, whence ∂x can be called an
invariant operator under the action of the spin group. The proof can easily be reduced
to showing the invariance under the L action, i.e. to showing that

[∂x, L(s)] = 0, s ∈ Spin(m|2n)(GN ).

Let End(T PNm|2n) be the space of endomorphisms on T PNm|2n and

dL : R(2)E
m|2n(GN )→ End(T PNm|2n)

the infinitesimal representation of L, defined, as above, by

L(eB) = edL(B), B ∈ R(2)E
m|2n(GN ).

It then suffices to prove that ∂x commutes with dL(B) for every basis element of R(2)E
m|2n(GN ).

To this end, we need the following result.

Proposition 5.1. Let B ∈ R(2)E
m|2n(GN ). Then

dL(B) = B −
m∑
j=1

([B,x])j∂xj −
2n∑
j=1

([B,x])m+j∂x̀j ,

where ([B,x])j denotes the j-th co-ordinate of the supervector variable [B,x], see (4.11).

Proof.

For every superbivector B we have by definition that

dL(B) =
d

dt
L(etB)

∣∣∣∣
t=0

.

Then

dL(B)[F (x)] =
d

dt

[
etBF (e−tBxetB)

] ∣∣∣∣
t=0

= BF (x) +
d

dt

[
F (e−tBxetB)

] ∣∣∣∣
t=0

.
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Writing y = e−tBxetB = e−tφ(B)x, we have that

dy

dt

∣∣∣∣
t=0

= −φ(B)x = −[B,x].

Hence, the chain rule in superanalysis (see Theorem 3.2) yields

dL(B)[F (x)] = BF (x) +

 m∑
j=1

dyj
dt

∂F

∂yj
(e−tBxetB) +

2n∑
j=1

dỳj
dt

∂F

∂ỳj
(e−tBxetB)

∣∣∣∣∣
t=0

= BF (x)−
m∑
j=1

(
[B,x]

)
j
∂xj [F ](x)−

2n∑
j=1

(
[B,x]

)
m+j

∂x̀j [F ](x).

�

Using Proposition 4.8, the following results are now easily obtained for the basis elements
of R(2)E

m|2n(GN ),

dL(b ejek) = −2b (xj∂xk − xk∂xj −
1

2
ejek), 1 ≤ j < k ≤ m,

dL(b̀ ej è2k−1) = −b̀ (2xj∂x̀2k−1
+ x̀2k∂xj − ej è2k−1), 1 ≤ j ≤ m, 1 ≤ k ≤ n,

dL(b̀ ej è2k) = −b̀ (2xj∂x̀2k
− x̀2k−1∂xj − ej è2k), 1 ≤ j ≤ m, 1 ≤ k ≤ n,

dL(b è2j−1 � è2k−1) = −b(x̀2j∂x̀2k−1
+ x̀2k∂x̀2j−1 − è2j−1 � è2k−1), 1 ≤ j ≤ k ≤ n,

dL(b è2j � è2k) = b(x̀2j−1∂x̀2k
+ x̀2k−1∂x̀2j + è2j � è2k), 1 ≤ j ≤ k ≤ n,

dL(b è2j−1 � è2k) = −b(x̀2j∂x̀2k
− x̀2k−1∂x̀2j−1 − è2j−1 � è2k), 1 ≤ j ≤ k ≤ n,

dL(b è2j � è2k−1) = −b(−x̀2j−1∂x̀2k−1
+ x̀2k∂x̀2j − è2j � è2k−1), 1 ≤ j < k ≤ n,

where b, b̀ are arbitrary basis elements of RG(ev)
N and RG(odd)

N respectively. These ope-
rators explicitly define the so0-action on PNm|2n. We now are in the condition of proving
the desired property.

Proposition 5.2. For every B ∈ R(2)E
m|2n(GN ) it holds that

[∂x, dL(B)] = 0.

Proof.

It suffices to prove the commutation relation of ∂x with dL(B) for every basis element
B of R(2)E

m|2n(GN ). As an example, take B = b̀ ej è2k−1; it then is easily obtained that:

[è2` ∂x̀2`−1
, b̀ xj∂x̀2k−1

] = [è2` ∂x̀2`−1
, b̀ x̀2k∂xj ] = 0,

[è2` ∂x̀2`−1
, b̀ ej è2k−1] = −δk,` b̀ ej∂x̀2`−1

,

[è2`−1 ∂x̀2`
, b̀ xj∂x̀2k−1

] = [è2`−1 ∂x̀2`
, b̀ ej è2k−1] = 0,

[è2`−1 ∂x̀2`
, b̀ x̀2k∂xj ] = −δk,` b̀ è2`−1∂xj ,
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whence

[è2` ∂x̀2`−1
, dL(b̀ ej è2k−1)] = −δk,` b̀ ej∂x̀2`−1

,

[è2`−1 ∂x̀2`
, dL(b̀ ej è2k−1)] = δk,` b̀ è2`−1∂xj ,

and yet

[∂x̀, dL(b̀ ej è2k−1)] = −2

n∑
`=1

δk,` b̀
(
ej∂x̀2`−1

+ è2`−1∂xj
)

= −2b̀
(
ej∂x̀2k−1

+ è2k−1∂xj
)
.

On the other hand,

[e` ∂x` , b̀ xj∂x̀2k−1
] = δ`,j b̀ e`∂x̀2k−1

,

[e` ∂x` , b̀ x̀2k∂xj ] = 0,

[e` ∂x` , b̀ ej è2k−1] = −2δj,` b̀ è2k−1∂x` ,

whence

[∂x, dL(b̀ ej è2k−1)] = −2

m∑
`=1

δj,` b̀
(
e`∂x̀2k−1

+ è2k−1∂x`
)

= −2b̀
(
ej∂x̀2k−1

+ è2k−1∂xj
)
.

Finally, we obtain that

[∂x, dL(b̀ ej è2k−1)] = [∂x̀, dL(b̀ ej è2k−1)]− [∂x, dL(b̀ ej è2k−1)] = 0.

The proof proceeds in a similar way for all other basis elements of R(2)E
m|2n(GN ). �

The above result implies the so0-invariance of the super Dirac operator, and as a conse-
quence, its invariance under the spin actions H and L.

Corollary 5.1. For every s ∈ Spin(m|2n)(GN ) it holds that

[∂x, L(s)] = 0 = [∂x, H(s)].

Remark 5.1. As it was announced in Remarks 3.6 and 4.9, here we approached the
osp(m|2n)-invariance of the super Dirac operator from a classical group theoretical point
of view, with the help of the Grassmann algebra structure.

The above-given operators dL(B), with B ∈ R(2)E
m|2n(GN ) being a basis element, exactly

coincide with the ones provided in [23] when one gets rid of the Grassmann coefficients
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and applies the transformations given in Remark 3.6. These operators are,

Kj,k = Xj∂Xk −Xk∂Xj −
1

2
EjEk, 1 ≤ j, k ≤ m,

Kj,m+k = −Xj∂Xm+n+k −Xm+k∂Xj +
1

2
EjEm+n+k, 1 ≤ j ≤ m, 1 ≤ k ≤ n,

Kj,m+n+k = Xj∂Xm+k −Xm+n+k∂Xj −
1

2
EjEm+k, 1 ≤ j ≤ m, 1 ≤ k ≤ n,

Km+j,m+k = −Xm+j∂Xm+n+k −Xm+k∂Xm+n+j −
1

2
Em+n+jEm+n+k, 1 ≤ j, k ≤ n,

Km+j,m+n+k = Xm+j∂Xm+k −Xm+n+k∂Xm+n+j +
1

4
{Em+n+j , Em+k} , 1 ≤ j, k ≤ n,

Km+n+j,m+n+k = Xm+n+j∂Xm+k +Xm+n+k∂Xm+j −
1

2
Em+jEm+k, 1 ≤ j, k ≤ n.

5.2 Linear transformations on Hermitian supervectors

In this section we study some fundamental aspects of Hermitian Clifford analysis in
superspace. In particular, we are interested in the group of supermatrices leaving the
Hermitian inner product (3.34) invariant. This leads to a restriction of the spin group,
depending on the so-called complex structure J defined in Section 3.3.

5.2.1 Commutation with the complex structure J

The fundaments of Hermitian Clifford analysis in superspace were introduced in Chap-
ter 3 through the representation of the radial algebra with complex structure R(S ∪
J(S),B) ⊂ A2m,2n. The complex structure J was introduced in Section 3.3 as an al-
gebra automorphism over A2m,2n. It is easily seen that J can be trivially extended to
A2m,2n ⊗ RGN by

(i) J is the identity on V ⊗ RGN ;

(ii) J(ej) = −em+j , J(em+j) = ej , j = 1, . . . ,m;
J(è2j−1) = −è2j , J(è2j) = è2j−1, j = 1, . . . , n;

(iii) J(FG) = J(F )J(G) for all F,G ∈ A2m,2n ⊗ RGN .

The action (3.23) of J on supervector variables can be written in a supermatrix form as

J =

(
J2m 0

0 Ω2n

)
,

where
J2m = J =

(
0 Im
−Im 0

)
.
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It is easily seen that J is an element of both the Lie group SO0(2m|2n)(RGN ) and the
Lie algebra so0(2m|2n)(RGN ). In addition, J2 = −I2m+2n.

Remark 5.2. We recall that for m = n, the antisymmetric matrices J2n and Ω2n are
used to define two different copies of the symplectic group, i.e.

SpJ(2n) = {A0 ∈ R2n×2n : AT0 J2nA0 = J2n},
SpΩ(2n) = {D0 ∈ R2n×2n : DT

0 Ω2nD0 = Ω2n}.

The matrices J2n and Ω2n only differ by a permutation of the basis vectors. The relation
between them is seen by means of the orthogonal matrix R satisfying RTJ2nR = Ω2n, see
Remark 4.9. Hence,

DT
0 Ω2nD0 = Ω2n ⇐⇒ DT

0 R
TJ2nRD0 = RTJ2nR ⇐⇒ (RD0R

T )T J2nRD0R
T = J2n,

meaning that
D0 ∈ SpΩ(2n)⇐⇒ RD0R

T ∈ SpJ(2n)

or equivalently,
R SpΩ(2n)RT = SpJ(2n).

The map γ(D0) = RD0R
T thus constitutes a Lie group isomorphism between SpΩ(2n)

and SpJ(2n), whence also the corresponding Lie algebras

soΩ(2n) = {D0 ∈ R2n×2n : DT
0 Ω2n + Ω2nD0 = 0},

soJ(2n) = {A0 ∈ R2n×2n : AT0 J2n + J2nA0 = 0},

are isomorphic. These observations allow us to speak of "the" symplectic structure inde-
pendently of Ω2n or J2n.

In accordance with the radial algebra property (DH3), the actions of the Dirac operators
∂x, ∂J(x) on the supervector variables x and J(x) give two important defining elements:
the superdimension M and the fundamental bivector B ∈ R(2)E

2m|2n(GN ). Indeed, in Sec-
tion 3.3.2 we proved that

∂x[x] = ∂J(x)[J(x)] = M = 2m− 2n, ∂x[J(x)] = −∂J(x)[x] = 2B,

where

B =

m∑
j=1

ejem+j −
2n∑
j=1

èj
2.

Since J ∈ so0(2m|2n)(RGN ), another important characterization of B is that

[B,x] = −2J(x) or equivalently φ(B) = −2J. (5.2)

In Section 3.4 we introduced the representation R(SC,S
†
C,B) of the Hermitian radial al-

gebra in superspace. This algebra is easily seen to be a subalgebra of the complexification
CA2m,2n ⊗ CGN of A2m,2n ⊗ RGN , i.e.

CA2m,2n ⊗ CGN = (A2m,2n ⊗ RGN )⊕ i (A2m,2n ⊗ RGN ) = V ⊗ C2m,2n ⊗ CGN ,
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where the imaginary unit i commutes with every element of A2m,2n⊗RGN . Similarly the
complexification of T (V )/I is T (VC)/I. The Hermitian and the complex conjugations
are trivially extended from CA2m,2n to CA2m,2n ⊗ CGN by the rules

(a+ ib)† = a− ib, (a+ ib)c = a− ib,

where a, b ∈ A2m,2n ⊗ RGN .

We recall that the projection operators 1
2 (I2m+2n ± iJ) acting on the supervector varia-

bles x ∈ S produce the Hermitian supervector variables

Z =
1

2

(
x + iJ(x)

)
Z† = −1

2

(
x− iJ(x)

)
.

The actions of every supermatrix M ∈ Mat(2m|2n)(RGN ) on Z, Z† are given by

Z =
1

2
[x + iJ(x)] 7−→ 1

2
[Mx + iMJ(x)] , (5.3)

Z† = −1

2
[x− iJ(x)] 7−→ −1

2
[Mx− iMJ(x)] . (5.4)

In particular, we are interested in supermatrices preserving the Hermitian structure, i.e.
commuting with the projection operators 1

2 (I2m+2n ± iJ). The subspace

MatJ(2m|2n)(RGN ) ⊂ Mat(2m|2n)(RGN )

of such supermatrices clearly is given by

MatJ(2m|2n)(RGN ) = {M ∈ Mat(2m|2n)(RGN ) : MJ = JM}.

In this way, for every M ∈ MatJ(2m|2n)(RGN ) the linear transformations (5.3)-(5.4)
yield two new Hermitian supervector variables U, U† depending on y = Mx, i.e.

U =
1

2
[y + iJ(y)] , U† = −1

2
[y − iJ(y)] .

Proposition 5.3. Let M =

(
A B`

C` D

)
∈ Mat(2m|2n)(RGN ). Then the following

statements are equivalent:

(i) MJ = JM ;

(ii) the matrices, A,B`, C`, D satisfy

AJ2m = J2mA, B`Ω2n = J2mB
`, C`J2m = Ω2nC

`, DΩ2n = Ω2nD.

(iii) the matrices, A,B`, C`, D have the form

A =

(
A1 A2

−A2 A1

)
, B` =

(
B`

1

B`
1Ω2m

)
, C` =

(
C`

1

∣∣− Ω2nC
`
1

)
,
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and
D =

{
Djk

}
j,k=1,...,n

with Djk =

(
ajk bjk
−bjk ajk

)
,

where A1, A2 ∈
(
RG(ev)

N

)m×m
, B`

1 ∈
(
RG(odd)

N

)m×2n

, C`
1 ∈

(
RG(odd)

N

)2n×m
and

ajk, bjk ∈ RG(ev)
N .

Proof.

The equivalence between (i) and (ii) easily follows from the block structure of the su-
permatrices M and J. To prove the equivalence between (ii) and (iii) we first write

A =

(
A1 A2

A3 A4

)
, Aj ∈

(
RG(ev)

N

)m×m
,

B` =

(
B`

1

B`
2

)
, B`

j ∈
(
RG(odd)

N

)m×2n

,

C` =
(
C`

1

∣∣C`
2

)
, C`

j ∈
(
RG(odd)

N

)2n×m
,

D =
{
Djk

}
j,k=1,...,n

, Djk ∈
(
RG(ev)

N

)2×2

.

Then, direct computations show that

AJ2m = J2mA ⇐⇒
(
−A2 A1

−A4 A3

)
=

(
A3 A4

−A1 −A2

)
⇐⇒ A =

(
A1 A2

−A2 A1

)
,

B`Ω2n = J2mB
` ⇐⇒

(
B`

1Ω2n

B`
2Ω2n

)
=

(
B`

2

−B`
1

)
⇐⇒ B` =

(
B`

1

B`
1Ω2m

)
,

C`J2m = Ω2nC
` ⇐⇒

(
−C`

2

∣∣C`
1

)
=
(
Ω2nC

`
1

∣∣Ω2nC
`
2

)
⇐⇒

(
C`

1

∣∣− Ω2nC
`
1

)
,

DΩ2n = Ω2nD ⇐⇒ DjkΩ2 = Ω2Djk ⇐⇒ Djk =

(
ajk bjk
−bjk ajk

)
.

�

We recall that every complex supervector variable Z and its Hermitian conjugate Z† have
the following form, see (3.30)-(3.33),

Z =

m∑
j=1

zjfj +

n∑
j=1

z̀jfj̀ , Z† =

m∑
j=1

zcj f
†
j +

n∑
j=1

z̀cj fj̀
†,

whence they can be written as the column vectors

Z =

(
Z

Z`

)
= (z1, . . . , zm, z̀1, . . . , z̀n)

T
,

Zc =

(
Zc

Z
c̀

)
= (zc1, . . . , z

c
m, z̀

c
1, . . . , z̀

c
n)
T
.
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In this way, the equalities Z = 1
2 [x + iJ(x)] and Z† = − 1

2 [x− iJ(x)] can be rewritten
in the matrix1 form as:

Z = Px, Zc = Pcx, where P =

(
P 0
0 Q

)
,

and with

P =


1 0 . . . 0 i 0 . . . 0
0 1 . . . 0 0 i . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 1 0 0 . . . i

 =
(
Im
∣∣ iIm) ∈ Cm×2m,

Q =


1 i 0 0 . . . 0 0
0 0 1 i . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 i

 ∈ Cn×2n.

These complex matrices play a rôle in every computation involving the supervectors Z
and x. In particular, they satisfy the following relations.

P
(
PT
)c

= 2Im+n,
(
PT
)c

P = I2m+2n + iJ, PJ = −iP. (5.5)

Every linear transformation of supervector variables in S defined by a supermatrix M ∈
MatJ(2m|2n)(RGN ) is associated to a transformation of Hermitian supervectors in SC
determined by

U =
1

2
[Mx + iJ(Mx)] , x ∈ S.

This transformation can be written in terms of a supermatrix ψ(M) ∈ Mat(m|n)(CGN )
as

U = ψ(M)Z with Z =
1

2
(x + iJ(x)).

Indeed, the above relation can be rewritten as PMx = ψ(M)Px, meaning that ψ(M)P =
PM , or equivalently,

ψ(M) =
1

2
PM

(
PT
)c
. (5.6)

Using Proposition 5.3 we easily get

ψ

 A1 A2 B`
1

−A2 A1 B`
1Ω2n

C`
1 −Ω2nC

`
1 D

 =

(
A1 − iA2 B`

1

(
QT
)c

QC`
1

1
2QD

(
QT
)c ) . (5.7)

Remark 5.3. It is known from Proposition 5.3 that the matrix D is composed of 2 × 2
blocks Djk. It then easily follows that 1

2QD
(
QT
)c

= {ajk − ibjk}j,k=1,...,n.
1The complex conjugate Mc of a supermatrix M ∈ Mat(p|q)(CGN ) is defined componentwise.
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Proposition 5.4. The map ψ : MatJ(2m|2n)(RGN ) → Mat(m|n)(CGN ) is a real alge-
bra isomorphism.

Proof.

Using the properties of P given in (5.5) it easily follows that ψ is invertible and its inverse
is given by

ψ−1(L) =
1

2

[(
PT
)c
LP + PT Lc Pc

]
, L ∈ Mat(m|n)(CGN ).

That ψ is an algebra isomorphism follows from its real-linearity and from

ψ(M1)ψ(M2) =
1

4
PM1

(
PT
)c

PM2

(
PT
)c

=
1

4
PM1 (I2m+2n + iJ)M2

(
PT
)c

=
1

4

[
PM1M2

(
PT
)c

+ iPJM1M2

(
PT
)c]

=
1

2
PM1M2

(
PT
)c

= ψ(M1M2).

�

5.2.2 Invariance of the Hermitian inner product. The group SOJ
0 .

We are now interested in the invariance, under linear actions, of the inner product (3.34)
between Hermitian supervectors, i.e.

〈Z,U〉C = {Z,U†} =

m∑
j=1

zju
c
j −

i

2

n∑
j=1

z̀j ù
c
j , Z,U ∈ SC.

In particular, we want to describe the set of supermatrices M ∈ Mat(m|n)(CGN ) satis-
fying

〈MZ,MU〉C = 〈Z,U〉C, Z,U ∈ SC. (5.8)

Observe that 〈·, ·〉C can be written in a matrix form as

〈Z,U〉C = ZTHUc, where H =

(
Im 0
0 − i

2In

)
.

Then a super matrix M ∈ Mat(m|n)(CGN ) satisfies the condition (5.8) if and only if

ZT
(
MSTHM c −H

)
Uc = 0, or equivalently MSTHM c −H = 0.

Hence the set of supermatrices leaving the inner product (3.34) invariant is given by

U0 = U0(m|n)(CGN ) =
{
M ∈ Mat(m|n)(CGN ) :

(
MST

)c
HcM −Hc = 0

}
,

which is a closed subgroup of GL(m|n)(CGN ) and in consequence a Lie group.



5. Spin actions in Clifford analysis in superspace 146

Proposition 5.5. The following statements hold:

(i) a supermatrix M =

(
A B`

C` D

)
∈ Mat(m|n)(CGN ) belongs to U0 if and only if


(
AT
)c
A+ i

2

(
C`T
)c
C` = Im,(

AT
)c
B`+ i

2

(
C`T
)c
D = 0,

−
(
B`T
)c
B`+ i

2

(
DT
)c
D = i

2In;

(ii) (sdetM)
c sdetM = 1 for every M ∈ U0;

(iii) [U0]0 = U(m)×U(n), where U(k) denotes the unitary group of order k.

Proof.

(i) The relation
(
MST

)c
HcM = Hc can be written in terms of A,B`, C`, D as( (

AT
)c
A+ i

2

(
C`T
)c
C`

(
AT
)c
B`+ i

2

(
C`T
)c
D

−
(
B`T
)c
A+ i

2

(
DT
)c
C` −

(
B`T
)c
B`+ i

2

(
DT
)c
D

)
=

(
Im 0
0 i

2In

)
.

(ii) This is easily obtained from
(
MST

)c
HcM = Hc.

(iii) Applying the homomorphism [·]0 to each of the relations in (i) we get for

[M ]0 =

(
A0 0
0 D0

)
that

(
AT0
)c
A0 = Im,

(
DT

0

)c
D0 = In or equivalently A0 ∈ U(m), D0 ∈ U(n). �

As it was done in the previous chapter for SO0, it can be proven that this generalization
of the unitary groups U(m) and U(n) is connected.

Proposition 5.6. U0 is a connected Lie group.

Proof.

This proof is similar to the one of Proposition 4.10 showing the connectedness of SO0.
The strategy is to find for every M ∈ U0 a continuous path M(t) (0 ≤ t ≤ 1) connecting,
inside U0, M with its complex projection M0, which belongs to the connected group
U(m)×U(n). This continuous path is given by

M(t) =

N∑
j=0

tj [M ]j ,

where [M ]j is the projection of M on Mat(m|n)(CG(j)
N ). �
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As in the classical case, the Lie group U0(m|n)(CGN ) is related to SO0(2m|2n)(RGN )
through the complex structure J. Indeed, it is clear that supermatrices in the group

SOJ
0 = SOJ

0 (2m|2n)(RGN ) = SO0(2m|2n)(RGN ) ∩MatJ(2m|2n)(RGN ),

have the double property of keeping the bilinear forms {x,y} and {x,J(y)} for x,y ∈ S
invariant. But for the Hermitian inner product we have

〈Z,U〉C = {Z,U†} =

{
1

2
(x + iJ(x)),−1

2
(y − iJ(y))

}
= −1

2

[
{x,y} − i{x,J(y)}

]
,

whence the action of every supermatrix in SOJ
0 leaves the Hermitian inner product inva-

riant as well. This property is summarized below.

Proposition 5.7. The map ψ defined in (5.6) is a Lie group isomorphism between
SOJ

0 (2m|2n)(RGN ) and U0(m|n)(CGN ).

Proof.

It is clear that ψ defines a smooth map and in addition, it was proven in Proposition 5.4
that ψ is a group homomorphism. It thus only remains to show that ψ(SOJ

0 ) = U0. To
that end, first observe that ψ(Q) = Hc and(

ψ(M)ST
)c

=
1

2
PMST

(
PT
)c

= ψ(MST ).

Using Proposition 5.4 we get for every M ∈ SOJ
0 that(

ψ(M)ST
)c

Hcψ(M)−Hc = ψ(MST )ψ(Q)ψ(M)− ψ(Q) = ψ
(
MSTQM −Q

)
= 0,

meaning that ψ(M) ∈ U0, and consequently ψ(SOJ
0 ) ⊂ U0. On the other hand, for

L ∈ U0 we get

ψ−1(L)ST =
1

2

[
PT LST Pc +

(
PT
)c (

LST
)c

P
]

= ψ−1
((
LST

)c)
.

Hence,

ψ−1(L)STQψ−1(L)−Q = ψ−1(L)STψ−1(Hc)ψ−1(L)− ψ−1(Hc)

= ψ−1
((
LST

)c
HcL−Hc

)
= 0.

This shows that the supermatrix M = ψ−1(L) belongs to O0, but we still have to
prove that sdet(M) = 1. To that end it suffices to compute sdet(M0), since sdet(M) =
sdet(M0). From Proposition 4.9 we know that

M0 =

(
A0 0
0 D0

)
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with A0 ∈ O(2m) and D0 ∈ SpΩ(2n). In addition, M0J = JM0 which implies in particu-
lar that A0J2m = J2mA0. Combining this with AT0 A0 = I2m, straightforward computa-
tions yield AT0 J2mA0 = J2m, or still A0 ∈ SpJ(2m). Hence, det(A0) = det(D0) = 1 since
the determinant of a symplectic matrix always equals 1, implying that sdet(M0) = 1.
Whence M = ψ−1(L) ∈ SOJ

0 and in consequence ψ−1(U0) ⊂ SOJ
0 . �

The above proposition leads to the following result on the Lie algebra level.

Proposition 5.8. The Lie algebras of SOJ
0 and U0 are given by

soJ0 = soJ0 (2m|2n)(RGN ) = {X ∈ so0(2m|2n)(RGN ) : XJ = JX},
u0 = u0(m|n)(CGN ) = {X ∈ Mat(m|n)(CGN ) :

(
XST

)c
Hc + HcX = 0}, (5.9)

respectively. In addition, ψ : soJ0 → u0 is a Lie algebra isomorphism.

Proof.

If X ∈ Mat(m|n)(CGN ) belongs to the Lie algebra of U0, it satisfies etX ∈ U0 for every
t ∈ R. Differentiating both sides of the equality

et(X
ST )cHcetX = Hc

and evaluating at t = 0, we get (
XST

)c
Hc + HcX = 0.

On the other hand, it is easily seen that every supermatrix satisfying the above condition
is such that etX ∈ U0 for every t ∈ R. Then, the Lie algebra of U0 is the one given in
(5.9).

The Lie algebra of SOJ
0 is similarly obtained: differentiating both sides of etMJ = JetM ,

we get MJ = JM . Vice versa, if MJ = JM then clearly etMJ = JetM .

Since ψ : SOJ
0 → U0 is a Lie group isomorphism, its infinitesimal representation dψ :

soJ0 → u0 turns out to be a Lie algebra isomorphism, see [50]. The map dψ is obtained
from ψ through the relation et dψ(X) = ψ(etX), t ∈ R, X ∈ soJ0 . Differentiating at t = 0
we get

dψ(X) =
d

dt
ψ(etX)

∣∣∣∣
t=0

=
d

dt

[
1

2
PetX

(
PT
)c] ∣∣∣∣

t=0

=
1

2
PX

(
PT
)c

= ψ(X).

Hence, ψ is its own infinitesimal representation. �

Remark 5.4. Straightforward computations show that the body projections of SOJ
0 , U0,

soJ0 and u0 are given by the sets[
SOJ

0

]
0

= [SO(2m) ∩ SpJ(2m)]× [SO(2n) ∩ SpΩ(2n)] , [U0]0 = U(m)×U(n),[
soJ0
]
0

= [so(2m) ∩ spJ(2m)]× [so(2n) ∩ spΩ(2n)] , [u0]0 = u(m)× u(n),
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where
u(k) = {A0 ∈ Ck×k :

(
AT0
)c

+A0 = 0}
is the classical unitary Lie algebra in dimension k. Here, ψ is a Lie group isomorphism be-
tween [SOJ

0 ]0 and [U0]0 (respectively a Lie algebra isomorphism between [soJ0 ]0 and [u0]0).
The projections ψJ2m and ψΩ2n of ψ over [SO(2m) ∩ SpJ(2m)] and [SO(2n) ∩ SpΩ(2n)]
([so(2m) ∩ spJ(2m)] and [so(2n) ∩ spΩ(2n)]), respectively, are given by

ψJ2m(A0) =
1

2
PA0

(
PT
)c

ψΩ2n(D0) =
1

2
QD0

(
QT
)c
.

They define the Lie group (Lie algebra) isomorphisms

ψJ2m
: [SO(2m) ∩ SpJ(2m)]→ U(m), ψJ2m

: [so(2m) ∩ spJ(2m)]→ u(m),

ψΩ2n
: [SO(2n) ∩ SpΩ(2n)]→ U(n), ψΩ2n

: [so(2n) ∩ spΩ(2n)]→ u(n).

In the Euclidean Clifford setting in superspace, it has been shown that the fundamental
symmetry group SO0 is connected but non-compact, the non-compactness being due
to the realization of SpΩ(2n) in the real projection of SO0. The introduction of the
complex structure, and the consequent refinement of the symmetry group, causes the
corresponding body projection [U0]0 = U(m) × U(n) to be compact, while U0 remains
non-compact. Indeed, an example of an unbounded sequence {M(k)}k∈N in U0 is

M(k) =

(
Im − i

2k b̀ Em×n
k b̀ En×m In

)
,

where b̀ ∈ CG(odd)
N and Ep×q is defined as in Lemma 4.3. As a consequence the map

exp : soJ0 → SOJ
0 may not be surjective. However, SOJ

0 can be fully described by products
of exponentials acting in some special subalgebras of soJ0 . Indeed, write M ∈ SOJ

0 as

M = M0 + M = M0(I2m+2n + L),

where M0 ∈ [SOJ
0 ]0 is the real projection of M , M ∈ Mat(2m|2n)(RG+

N ) is its nilpotent
projection and L = M−1

0 M. Since [SOJ
0 ]0 ∼= U(m)×U(n) is connected and compact, the

exponential map is surjective on this group, see Corollary 11.10 in [50], whence we can
write

M0 = eX , X ∈ [so(2m) ∩ spJ(2m)]× [so(2n) ∩ spΩ(2n)] .

As explained in Section 4.1.2, there is only one matrix in Mat(2m|2n)(RG+
N ) whose

exponential equals I2m+2n + L, viz Z = ln(I2m+2n + L). Following the decomposition
of SO0 in Theorem 4.4, we get that Z ∈ so0(2m|2n)(RG+

N ). In addition, we recall that
I2m+2n + L commutes with J, meaning JL = LJ. Thence

Z = ln(I2m+2n + L) =

N∑
j=1

(−1)j+1 Lj

j

commutes with J as well. In this way, we have obtained the following refinement of
Theorem 4.4.
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Theorem 5.1. Every supermatrix M ∈ SOJ
0 can be written as

M = eXeZ where

{
X ∈ [so(2m) ∩ spJ(2m)]× [so(2n) ∩ spΩ(2n)],

Z ∈ soJ0 (2m|2n)(RG+
N ),

with soJ0 (2m|2n)(RG+
N ) := soJ0 ∩ Mat(2m|2n)(RG+

N ). In addition, the element Z is
unique.

5.3 Spin realization of SOJ
0

In this section we aim at finding the spin realization of the group SOJ
0 , i.e. the subgroup

SpinJ(2m|2n)(GN ) of Spin(2m|2n)(GN ) containing all spin elements which correspond to
elements of SOJ

0 through the h-representation (4.15). To that end we must first find the
representation of the Lie subalgebra soJ0 ⊂ so0 in the algebra of extended superbivectors,
i.e. φ−1(soJ0 ) ⊂ R(2)E

2m|2n(GN ). The exponentials of these bivectors yield all elements of
SpinJ(2m|2n)(GN ), leaving the super Dirac operators ∂x and ∂J(x) invariant.

5.3.1 The Lie algebras soJ0 and φ−1(soJ0).

Propositions 5.3 and 5.8 show that soJ0 can be described as the set of supermatrices of
the form

M =

 A1 A2 B`
1

−A2 A1 B`
1Ω2n

C`
1 −Ω2nC

`
1 D

 with


AT1 +A1 = 0,

AT2 −A2 = 0,

B`
1 − C`

1
T

Ω2n = 0,

DT +D = 0,

(5.10)

since the conditions for being an element of so0 given in (4.9) can rewritten in this case
as

AT +A =

(
AT1 +A1 −AT2 +A2

AT2 −A2 AT1 +A1

)
= 0,

B`− C`TΩ2n =

(
B`

1

B`
1Ω2n

)
−

(
C`

1
T

C`
1
T

Ω2n

)
Ω2n = 0,

DTΩ2n + Ω2nD = (DT +D)Ω2n = 0.

The relations in (5.10) provide an easy way of computing the dimension of soJ0 . Indeed,
we can write soJ0 as the direct sum of the real subspaces W1,W2,W3,W4 where

W1 =


 A1 0 0

0 A1 0
0 0 0

 : AT1 +A1 = 0, A1 ∈
(
RG(ev)

N

)m×m ,
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W2 =


 0 A2 0
−A2 0 0

0 0 0

 : AT2 −A2 = 0, A2 ∈
(
RG(ev)

N

)m×m ,

W3 =


 0 0 C`

1
T

Ω2n

0 0 −C`
1
T

C`
1 −Ω2nC

`
1 0

 : C`
1 ∈

(
RG(odd)

N

)2n×m

 ,

W4 =


 0 0 0

0 0 0
0 0 D

 : DΩ2n = Ω2nD, D
T +D = 0, D ∈

(
RG(ev)

N

)2n×2n

 ,

This leads to

dimW1 = 2N−1m(m− 1)

2
, dimW2 = 2N−1m(m+ 1)

2
,

dimW3 = 2N−12mn, dimW4 = 2N−1n2,

whence

dim soJ0 = 2N−1

[
m(m− 1)

2
+
m(m+ 1)

2
+ 2mn+ n2

]
= 2N−1(m+ n)2.

We now look for the representation of soJ0 in the Lie algebra of extended bivectors. To
that end, consider M ∈ so0, B = φ−1(M) ∈ R(2)E

2m|2n(GN ) and x ∈ S. Then

MJ = JM ⇐⇒ MJx = JMx,

⇐⇒ φ(B)(J(x)) = J(φ(B)(x)),

⇐⇒ [B,J(x)] = J ([B,x]) = [J(B),J(x)],

⇐⇒ B = J(B).

We recall that J is an automorphism on A2m,2n ⊗ RGN .

In this way, we have obtained that

φ−1(soJ0 ) = {B ∈ R(2)E
2m|2n(GN ) : B = J(B)}.

In order to find the explicit form of the elements in φ−1(soJ0 ) we need the following
computations: 

J(ejek) = em+jem+k 1 ≤ j < k ≤ m,
J(ejem+k) = ekem+j 1 ≤ j, k ≤ m,
J(em+jem+k) = ejek 1 ≤ j < k ≤ m,
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J(ej è2k−1) = em+j è2k 1 ≤ j ≤ m, 1 ≤ k ≤ n,
J(ej è2k) = −em+j è2k−1 1 ≤ j ≤ m, 1 ≤ k ≤ n,
J(em+j è2k−1) = −ej è2k 1 ≤ j ≤ m, 1 ≤ k ≤ n,
J(em+j è2k) = ej è2k−1 1 ≤ j ≤ m, 1 ≤ k ≤ n,
J(è2j−1 � è2k−1) = è2j � è2k 1 ≤ j ≤ k ≤ n,
J(è2j−1 � è2k) = −è2j � è2k−1 1 ≤ j ≤ k ≤ n,
J(è2j � è2k−1) = −è2j−1 � è2k 1 ≤ j < k ≤ n,
J(è2j � è2k) = è2j−1 � è2k−1 1 ≤ j ≤ k ≤ n.

Applying J to both sides of the equality

B =
∑

1≤j<k≤2m

bj,k ejek +
∑

1≤j≤2m
1≤k≤2n

b̀j,k ej èk +
∑

1≤j≤k≤2n

Bj,k èj � èk,

we obtain that B = J(B) is equivalent to{
bj,k = bm+j,m+k 1 ≤ j < k ≤ m,
bj,m+k = bk,m+j 1 ≤ j, k ≤ m,

{
b̀j,2k−1 = b̀m+j,2k 1 ≤ j ≤ m, 1 ≤ k ≤ n,
b̀j,2k = −b̀m+j,2k−1 1 ≤ j ≤ m, 1 ≤ k ≤ n,


B2j−1,2k−1 = B2j,2k 1 ≤ j ≤ k ≤ n,
B2j−1,2k = −B2j,2k−1 1 ≤ j < k ≤ n,
B2j−1,2j = 0 1 ≤ j ≤ n.

Hence, B ∈ φ−1(soJ0 ) if and only if B = B1 +B2 +B3 where B1, B2, B3 are of the form

B1 =
∑

1≤j<k≤m

bj,k(ejek + em+jem+k) +

m∑
j=1

bj,m+j ejem+j

+
∑

1≤j<k≤m

bj,m+k(ejem+k + ekem+j),

B2 =
∑

1≤j≤m
1≤k≤n

b̀j,2k−1(ej è2k−1 + em+j è2k) + b̀j,2k(ej è2k − em+j è2k−1),

B3 =
∑

1≤j≤k≤n

B2j−1,2k−1(è2j−1 � è2k−1 + è2j � è2k)

+
∑

1≤j<k≤n

B2j−1,2k(è2j−1 � è2k − è2j � è2k−1).

Summarizing, we have obtained the following result.
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Proposition 5.9. Let {b1, . . . , b2N−1} and {b̀1, . . . , b̀2N−1} be the canonical basis of RG(ev)
N

and RG(odd)
N respectively. Then, a basis for φ−1(soJ0 ) is given by the elements

br(ejek + em+jem+k), 1 ≤ r ≤ 2N−1, 1 ≤ j < k ≤ m,
br(ejem+k + ekem+j), 1 ≤ r ≤ 2N−1, 1 ≤ j ≤ k ≤ m,
b̀r(ej è2k−1 + em+j è2k), 1 ≤ r ≤ 2N−1, 1 ≤ j ≤ m, 1 ≤ k ≤ n,
b̀r(ej è2k − em+j è2k−1), 1 ≤ r ≤ 2N−1, 1 ≤ j ≤ m, 1 ≤ k ≤ n,

br(è2j−1 � è2k−1 + è2j � è2k), 1 ≤ r ≤ 2N−1, 1 ≤ j ≤ k ≤ n,
br(è2j−1 � è2k − è2j � è2k−1), 1 ≤ r ≤ 2N−1, 1 ≤ j < k ≤ n.

Remark 5.5. Obviously the algebras φ−1(soJ0 ) and soJ0 are isomorphic. This fact can
be double checked through the previous result from which it follows that dimφ−1(soJ0 ) =
2N−1(m+ n)2.

5.3.2 The group SpinJ(2m|2n)(GN)

We may now introduce the group

SpinJ ≡ SpinJ(2m|2n)(GN ) := {eB1 · · · eBk : B1, . . . , Bk ∈ φ−1(soJ0 ), k ∈ N}.

This is a Lie subgroup of Spin(2m|2n)(GN ) which completely describes SOJ
0 through the

h-representation, as shown in the next result.

Proposition 5.10. The group SpinJ covers SOJ
0 .

Proof.

The Lie group isomorphism SOJ
0
∼= U0 shows, in view of Proposition 5.6, that SOJ

0

is connected. Hence, for every M ∈ SOJ
0 there exist X1, . . . , Xk ∈ soJ0 such that

eX1 · · · eXk = M , see Corollary 3.47 in [50]. Taking Bj = φ−1(Xj), j = 1, . . . , k, and
using the relations (4.15) and (4.16), we get for x ∈ S that

Mx = eX1 · · · eXkx = eφ(B1) · · · eφ(Bk)x

= h(eB1) ◦ · · · ◦ h(eBk)[x]

= eB1 · · · eBk x e−Bk · · · e−B1 = h(eB1 · · · eBk)[x].

whence M = h(s) with s = eB1 · · · eBk ∈ SpinJ. �

The decomposition for SOJ
0 given in Theorem 5.1 allows to describe the SpinJ-covering

of SOJ
0 more precisely. Indeed, following the decomposition given in (4.17) we obtain the

Lie subalgebras of φ−1(soJ0 )

ΞJ
1 = Ξ1 ∩ φ−1(soJ0 ) = φ−1

(
[so(2m) ∩ spJ(2m)]× [so(2n) ∩ spΩ(2n)]

)
,

ΞJ
3 = Ξ3 ∩ φ−1(soJ0 ) = φ−1(soJ0 (2m|2n)(G+

N )),
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yielding the decomposition φ−1(soJ0 ) = ΞJ
1⊕ΞJ

3 (observe that Ξ2∩φ−1(soJ0 ) = {0}). This
leads to the subset ΞJ = exp(ΞJ

1 ) exp(ΞJ
3 ) ⊂ Ξ ∩ SpinJ, which can be seen to constitute

a double covering of SOJ
0 .

It is easily seen that ΞJ
1 is composed of all elements in φ−1(soJ0 ) with real coefficients,

i.e. ΞJ
1 =

[
φ−1(soJ0 )

]
0
, while ΞJ

3 contains all nilpotent elements of φ−1(soJ0 ). In this way,
we obtain from Proposition 5.9 that a basis for ΞJ

1 is given by

ejek + em+jem+k, 1 ≤ j < k ≤ m, è2j−1 � è2k−1 + è2j � è2k, 1 ≤ j ≤ k ≤ n,
ejem+k + ekem+j , 1 ≤ j ≤ k ≤ m, è2j−1 � è2k − è2j � è2k−1, 1 ≤ j < k ≤ n.

We recall that an important element of SOJ
0 is J itself. In order to find the spin element

that represents J, or equivalently, an element BJ ∈ ΞJ
1 such that eφ(BJ) = J, we first

compute

ln(J) =

(
ln J2m 0

0 ln Ω2n

)
.

Observe that both J2m and Ω2n have eigenvalues i,−i, with multiplicity m and n, res-
pectively. It easily follows that

ln J2m =
π

2
J2m, ln Ω2m =

π

2
Ω2m.

Using the relations (5.2) we get ln J = π
2 J = −π4φ(B), or equivalently BJ = −π4 B. The

spin element sJ associated to J thus is given by

sJ = exp(−π
4

B) =

m∏
j=1

exp
(
−π

4
ejem+j

) n∏
j=1

exp
(π

4
(è2j−1

2 + è2j
2)
)

=
1

2m/2

m∏
j=1

(1− ejem+j)

n∏
j=1

exp
(π

4
(è2j−1

2 + è2j
2)
)
.

Remark 5.6. In the purely fermionic case, i.e. m = 0, the element sJ may be identified
with the operator

exp

π
4
i

n∑
j=1

(
∂2
aj − a

2
j

) = exp
(
−nπ

4
i
)
F ,

see remarks 4.15 and 4.16. Here, F denotes the n-dimensional Fourier transform.

The fundamental extended bivector B provides other characterizations for φ−1(soJ0 ) and
SpinJ.

Proposition 5.11. Let B ∈ R(2)E
2m|2n(GN ). Then φ(B) ∈ soJ0 if and only if BB = BB.

Proof.
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It suffices to observe that

φ(B)J = Jφ(B) ⇐⇒ [φ(B), φ(B)] = 0 ⇐⇒ φ ([B,B]) = 0 ⇐⇒ [B,B] = 0.

�

Corollary 5.2. Let s ∈ SpinJ. Then ssJ = sJs.

The following table summarizes the main aspects concerning the spin realization of the
unitary group in both Hermitian Clifford analysis and its extension to superspace.

Hermitian Clifford Hermitian Clifford analysis
analysis in superspace

Bilinear form 〈Z,U〉C =
m∑

j=1

zju
c
j 〈Z,U〉C =

m∑
j=1

zju
c
j − i

2

n∑
j=1

z̀j ù
c
j

Invariance U(m) ∼= SO(2m) ∩ SpJ(2m) U0(m|n)(CGN ) ∼= SOJ
0 (2m|2n)(RGN )

Body U(m) U(m)×U(n)

Lie algebra u(m) ∼= so(2m) ∩ spJ(2m) u0(m|n)(CGN ) ∼= soJ0 (2m|2n)(RGN )

Real dimension m2 2N−1(m+ n)2

Bivectors B ∈ R(2)
0,2m : B = J(B) B ∈ R(2)E

2m|2n(GN ) : B = J(B)

Iwasawa M0 = eX , M = eXeZ, M ∈ SOJ
0

decomposition X ∈ u(m) X∈[so(2m) ∩ spJ(2m)]×[so(2n) ∩ spΩ(2n)],
Z ∈ so0(2m|2n)(RG+

N )

Spin group/ SpinJ(2m) SpinJ(2m|2n)(GN )
elements s ∈ Spin(2m) : [h(s), J ] = 0 eB1 · · · eBk : Bj ∈ R(2)E

m|2n(GN ),J(Bj) = Bj

Table 5.1: Comparative overview of the Spin realization of the unitary group.

5.3.3 SpinJ-invariance of ∂J(x)

Our final goal is to show the invariance of the twisted Dirac operator ∂J(x) under the H
and L actions of the group SpinJ, i.e.

[∂J(x), L(s)] = 0 = [∂J(x), H(s)], ∀s ∈ SpinJ . (5.11)

Following the same reasoning as in Section 5.1, it suffices to prove that ∂J(x) commutes
with the infinitesimal representation dL(B) of L(eB) for every B ∈ φ−1(soJ0 ). Using
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Proposition 5.1, we obtain for B = J(B) that

J (dL(B)[F ]) = J

BF − m∑
j=1

(
[B, x]

)
j
∂xj [F ]−

2n∑
j=1

(
[B, x]

)
m+j

∂x̀j [F ]


= BJ(F )−

m∑
j=1

(
[B, x]

)
j
∂xj [J(F )]−

2n∑
j=1

(
[B, x]

)
m+j

∂x̀j [J(F )]

= dL(B)[J(F )].

Corollary 5.1 then yields that

∂x [dL(B)[G]] = dL(B)[∂x[G]],

whence, applying J to both sides and writing F = J(G), we get for every B ∈ φ−1(soJ0 )
that

∂J(x) [dL(B)[F ]] = dL(B)[∂J(x)[F ]].

In this way, we have proved that [∂J(x), dL(B)] = 0 for every B ∈ φ−1(soJ0 ) and in
consequence (5.11) holds.



6
Distributions and integration in superspace

Integration on superspace is based on the notion of the Berezin integral given by∫
B

= π−n ∂x̀2n
· · · ∂x̀1

,

see [7]. This functional plays the same rôle in the Grassmann algebra G2n as the general
real integral ∫

Rm
dVx

in classical analysis. Traditionally, the Berezin integral is combined with the classical
real integration in order to integrate superfunctions over real domains, i.e. the integral
of a superfunction F over Ω ⊂ Rm is given by∫

Ω

∫
B

F (x, x̀) dVx. (6.1)

Some important classical results, such as a Stokes and a Cauchy-Pompeiu formula have
been established for the super Dirac operator, see [38]. Yet, these extensions have im-
portant limitations since they only consist of real integration combined with the Berezin
integral, instead of considering general integration over domains and surfaces defined in
terms of both commuting and anti-commuting co-ordinates in superspace.

The study of spherical harmonics (and monogenics) has lead to an important development
of integration theory in superspace. For example, in [35, 31] the Berezin integral was
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related to more familiar types of integration like Pizzetti’s formula, see [61]. In this way,
the integral of a polynomial P over the supersphere was introduced as follows:∫

SS

P =

∞∑
j=0

(−1)j
2πM/2

22j j! Γ(j +M/2)
(∆j

m|2nP )(0), (6.2)

where ∆m|2n := −∂2
x is the super Laplace operator and M = m− 2n the corresponding

superdimension. In the later work [24], formula (6.2) was extended to more general
superfunctions on the supersphere by considering the integral∫

SS

F = 2

∫
Rm

∫
B

δ(x2 + 1)F dVx, (6.3)

where δ(x2 + 1) denotes the Dirac distribution on the unit supersphere. Following this
last distributional approach, some important problems were solved. In particular, closed
formulas for the Pizzetti integral and a Cauchy-Pompeiu formula for the supersphere
were obtained, see [24].

Nevertheless, the approaches given in (6.1) and (6.3) are still limited. They only refer
to the particular cases of integration of superfunctions over real domains or over the
supersphere. The main goal of this chapter is to extend and unify both approaches
by defining integration over general domains and surfaces in superspace. The principal
idea of this extension comes from a distributional approach to classical real integration.
Indeed, suppose that Ω ⊂ Rm is a domain (m dimensional manifold) determined by some
inequality g0(x1, . . . , xm) < 0 and let ∂Ω be its boundary (m − 1 dimensional manifold
in Rm) determined by the equation g0(x1, . . . , xm) = 0. Then the integrals over Ω and
∂Ω can be rewritten as1∫

Ω

(·) dVx =

∫
Rm

H(−g0(x))(·) dVx, and
∫
∂Ω

(·) dSw =

∫
Rm

δ(g0(x)) |∂x[g0](x)| (·) dVx,

respectively; where H is the Heaviside distribution and δ the Dirac distribution. In this
way, one may see the integrals

∫
Ω
and

∫
∂Ω

not as functionals depending on geometrical
sets of points Ω and ∂Ω; but as functionals depending on the action of the Heaviside or
Dirac distributions on a fixed phase function g0.

As will be shown in this chapter, this last approach is the more suitable one to extend
domain and surface integrals to superspace. In particular, we will illustrate it by inte-
grating over a super-paraboloid and super-hyperboloid. Moreover, this approach will be
used to obtain a Cauchy-Pompeiu formula, valid not only for real domains and for the
superball, but for every domain with smooth boundary in superspace. This allows to fo-
llow a completely analytical method which uses the Cauchy kernel as a true distribution
rather than as a smooth function with a singularity at the origin. This distributional
Cauchy formula will play an essential rôle in obtaining a Bochner-Martinelli formula for
holomorphic functions in superspace, see Chapter 7.

1These formulas will be discussed in detail in section 6.3.
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6.1 Superfunctions

From now on, we work with superfunctions F (x) of the supervector variable x, see (3.8).
In particular, we will consider these functions as elements of the spaces F ⊗G2n where
F = Ck(Ω), C∞(Ω) and Ω ⊂ Rm. Following the classical approach, the (real) support
supp F of a superfunction F is defined as the closure of the set of all points in Rm for
which the function F (·, x̀) : Rm → G2n is not zero, see (3.8). From this definition, it
immediately follows that

supp F =
⋃

A⊂{1,...,2n}

supp FA.

Definition 3.2 shows a nice way of producing interesting even superfunctions out of known
functions from real analysis. Let us consider in particular a smooth function F ∈ C∞(R)

and an even real superfunction2 a = a0 + a ∈ C∞(Rm) ⊗ G
(ev)
2n where a0 and a are the

body and nilpotent part of a, respectively. The superfunction F (a(x)) ∈ C∞(Rm)⊗G(ev)
2n

then is defined by

F (a) = F (a0 + a) =

n∑
j=0

aj

j!
F (j)(a0). (6.4)

Straightforward calculations show that the above expression is independent of the split-
ting of the even superfunction a if the function F is analytic in R.

Proposition 6.1. Let a, b ∈ C∞(Rm)⊗G(ev)
2n be real superfunctions such that a = a0 +a,

b = b0 + b, where a0, b0 are the bodies of a, b respectively and a, b are the corresponding
nilpotent parts. Then, for every analytic function F ∈ C∞(R) the following statements
hold.

(i) F (a+ b) =
∑n
j=0

bj

j! F
(j)(a+ b0),

(ii) F (a+ b) =
∑∞
j=0

bj0
j! F

(j)(a+ b),

(iii) F (a+ b) =
∑∞
j=0

bj

j! F
(j)(a).

The easiest application of the composition (6.4) is obtained when defining arbitrary real
powers of even superfunctions. Let a = a0 +a ∈ C∞(Rm)⊗G

(ev)
2n be a real superfunction

and p ∈ R, then for a0 > 0 we define

ap =

n∑
j=0

aj

j!
(−1)j (−p)j ap−j0 , where (q)j =

{
1, j = 0,

q(q + 1) · · · (q + j − 1), j > 0,
(6.5)

2We recall that a being a real superfunction means that a =
∑

A aAx̀A where all the elements aA
are real-valued functions.
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is the rising Pochhammer symbol. Observe that if the numbers q and q + j are in the

set R \ {0,−1,−2, . . .} we can write (q)j =
Γ(q + j)

Γ(q)
. Making use of this definition of

power function in superspace, we can easily prove that its basic properties still hold in
this setting.

Lemma 6.1. Let a = a0 + a and b = b0 + b be real superfunctions in C∞(Rm)⊗G
(ev)
2n

such that a0, b0 > 0. Then, for every pair p, q ∈ R we have

(i) apaq = ap+q, (ii) (ab)p = apbp, (iii) (ap)q = apq.

Proof.

For a0, b0 > 0, the equalities

(a0 +X)p(a0 +X)q = (a0 +X)p+q,

[(a0 +X)(b0 + Y )]
p

= (a0 +X)p(b0 + Y )p,

((a0 +X)p)
q

= (a0 +X)pq,

are identities in formal power series in the indeterminates X and Y . Then, making the
substitutions X = a and Y = b we obtain i), ii) and iii). Observe that the nilpotency
of a and b avoids every possible convergence issue. �

The absolute value function can be defined for real superfunctions in C∞(Rm)⊗G
(ev)
2n by

|a| = (a2)1/2 =

{
a if a0 ≥ 0,

−a if a0 < 0.

As in the classical case, the absolute value function can be extended to the supervector
variable x, since its square is an even super-polynomial, i.e.

x2 = −
m∑
j=1

x2
j +

n∑
j=1

x̀2j−1x̀2j ∈ C∞(Rm)⊗G
(ev)
2n .

It is clear that −x2 has non-negative body. Hence, the element (−x2)1/2 is well defined.
In this way, we define the absolute value of a supervector by

|x| = (−x2)1/2 =
(
|x|2 − x̀2

)1/2
=

n∑
j=0

(−1)j x̀ 2j

j!

Γ( 3
2 )

Γ( 3
2 − j)

|x|1−2j ,

where |x| =
(∑m

j=1 x
2
j

) 1
2

as usual.

Proposition 6.2. Let x,y be supervector variables and a ∈ C∞(Rm) ⊗ G
(ev)
2n be a real

superfunction. Then,
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(i) |ax| = |a||x|,

(ii) |x + ay| = |x| + aF (x,y, a) where F (x,y, a) is a superfunction depending on x,y
and a.

Proof.

(i) By Lemma 6.1 we get

|ax| =
(
−(ax)2

) 1
2 =

(
a2(−x2)

) 1
2 =

(
a2
) 1

2
(
−x2

) 1
2 = |a||x|.

(ii) We first write
(x + ay)2 = x2 + a{x,y}+ a2y2 = x2 − av,

where v = −{x,y} − ay2 is an even element. Then, using Proposition 6.1 iii), we
get

|x + ay| =
(
−(x + ay)2

) 1
2 =

(
−x2 + av

) 1
2

=

∞∑
j=0

(av)j

j!

Γ( 3
2 )

Γ( 3
2 − j)

(−x2)
1
2−j

= |x|+ aF (x,y, a),

where

F (x,y, a) =

∞∑
j=1

aj−1vj

j!

Γ( 3
2 )

Γ( 3
2 − j)

(−x2)
1
2−j .

�

As usual, we say that a function F ∈ C1(Ω) ⊗ G2n ⊗ Cm,2n (Ω being an open subset of
Rm) is (left) super-monogenic if ∂x[F ] = 0. As the super Dirac operator factorizes the
super Laplace operator:

∆m|2n = −∂2
x =

m∑
j=1

∂2
xj − 4

n∑
j=1

∂x̀2j−1
∂x̀2j

,

monogenicity also constitutes a refinement of harmonicity in superanalysis. More details
on the theory of super-monogenic and super-harmonic functions can be found for instance
in [35, 31, 37, 36, 23].

6.2 Distributions in superanalysis

In this section we study some properties of distributions in superanalysis. We pay parti-
cular attention to the extensions of the Heaviside and Dirac distributions to this setting.
They play an important rôle in the definition of domain and surface integrals in super-
space, as it will be shown in the next section.
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6.2.1 Superdistributions

Let D′ be the space of Schwartz distributions, i.e. the space of generalized functions on
the space C∞0 (Rm) of complex-valued C∞-functions with compact support. As usual,
the notation ∫

Rm
αf dVx = 〈α, f〉, (6.6)

where dVx = dx1 · · · dxm is the classical m-volume element, is used for the evaluation of
the distribution α ∈ D′ on the test function f ∈ C∞0 (Rm).

Let E ′ be the space of generalized functions on the space C∞(Rm) of C∞-functions in
Rm (with arbitrary support). We recall that E ′ is exactly the subspace of all compactly
supported distributions in D′. Indeed, every distribution in E ′ ⊂ D′ has compact support
and vice-versa, every distribution in D′ with compact support can be uniquely extended
to a distribution in E ′, see [19] for more details. This means that, for every α ∈ E ′,
evaluations of the form (6.6) extend to C∞(Rm) (instead of C∞0 (Rm)).

The space of superdistributions D′ ⊗G2n then is defined by all elements of the form

α =
∑

A⊂{1,...,2n}

αAx̀A, αA ∈ D′. (6.7)

Similarly, the subspace E ′ ⊗G2n is composed by all elements of the form (6.7) but with
αA ∈ E ′.

The analogue of the integral
∫
Rm dVx in superspace is given by∫

Rm|2n
=

∫
Rm

dVx

∫
B

=

∫
B

∫
Rm

dVx,

where the bosonic integration is the usual real integration and the integral over fermionic
variables is given by the so-called Berezin integral (see [7]), defined by∫

B

= π−n ∂x̀2n · · · ∂x̀1 =
(−1)nπ−n

4nn!
∂2n
x̀ .

This enables us to define the action of a superdistribution α ∈ D′ ⊗ G2n (resp. α ∈
E ′ ⊗G2n) on a test superfunction F ∈ C∞0 (Rm)⊗G2n (resp. F ∈ C∞(Rm)⊗G2n) by∫

Rm|2n
αF :=

∑
A,B⊂{1,...,2n}

〈αA, fB〉
∫
B

x̀A x̀B .

As in the classical case, we say that the superdistribution α ∈ D′ ⊗G2n vanishes in the
open set Ω ⊂ Rm if ∫

Rm|2n
αF = 0
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for every F ∈ C∞0 (Rm)⊗G2n whose real support is contained in Ω. In the same way, the
support supp α of α ∈ D′ ⊗G2n is defined as the complement of the largest open subset
of Rm on which α vanishes. Hence, it can be easily seen that

supp α =
⋃

A⊂{1,...,2n}

supp αA.

This means that E ′ ⊗G2n is the subspace of all compactly supported superdistributions
in D′ ⊗G2n.

6.2.2 Multiplication of distributions

We now define the multiplication of distributions with disjoint singular supports. We
first recall that the singular support sing suppα of the distribution α ∈ D′ is defined
by the statement that x /∈ sing suppα if and only if there exists a neighbourhood Ux of
x ∈ Rm such that the restriction of α to Ux is a smooth function. It is readily seen that

sing suppα ⊂ suppα.

Definition 6.1 (multiplication of distributions, [20, 53]). Consider two distribu-
tions α, β ∈ D′ such that sing suppα∩ sing supp β = ∅. The product of distributions αβ
is well defined by the formula

〈αβ, φ〉 = 〈α, βχφ〉+ 〈β, α(1− χ)φ〉, φ ∈ C∞(Rm), (6.8)

where χ ∈ C∞(Rm) is equal to zero in a neighbourhood of sing supp β and equal to one
in a neighbourhood of sing suppα.

Remark 6.1. For our purposes Definition 6.1 is sufficient, however the product of two
distributions in D′ can also be defined under more general conditions, see [53, p. 267]
and [20] for more details.

It is easily seen that if α, β ∈ D′ vanish in Ω ⊂ Rm then the product αβ vanishes in Ω
as well. Hence

suppαβ ⊂ suppα ∪ supp β.

As a consequence, if α and β have compact supports (i.e. α, β ∈ E ′) then αβ also has
compact support (i.e. αβ ∈ E ′). The product (6.8) is associative, commutative and
satisfies the Leibniz rule, see [20, 53].

The notion of singular support can be extended to distributions α ∈ D′ ⊗ G2n by the
statement that x /∈ sing suppα if and only if there exists a neighbourhood Ux of x ∈ Rm
such that the restriction of α to Ux belongs to C∞(Ux)⊗G2n. In this way we obtain for
every α ∈ D′ ⊗G2n of the form (6.7) that

sing suppα =
⋃

A⊂{1,...,n}

sing suppαA.
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In the same way, we define the product of superdistributions α, β ∈ D′ ⊗ G2n with
sing suppα ∩ sing supp β = ∅ by

αβ =
∑

A,B⊂{1,...,n}

αAβB x̀A x̀B , (6.9)

where the distribution αAβB is to be understood in the sense of (6.8).

6.2.3 Properties of the δ-distribution in real calculus.

We now list some important properties of the δ-distribution in real calculus. This is
necessary to introduce and study the main properties of the Heaviside distribution and
all its derivatives in superspace.

Proposition 6.3. Let j, k ∈ N ∪ {0}. Then

δ(j)(x) xk =

{
0, j < k,

(−1)k k!
(
j
k

)
δ(j−k)(x), k ≤ j.

Proof.

For every complex-valued test function f ∈ C∞(R) we have∫
R
δ(j)(x)xkf(x) dx = (−1)j

[
xkf(x)

](j) ∣∣∣
x=0

= (−1)j

(
j∑
`=0

(
j

`

)(
xk
)(`)

f (j−`)(x)

)∣∣∣∣∣
x=0

= (−1)j

min(j,k)∑
`=0

(
j

`

)
k!

(k − l)!
xk−`f (j−`)(x)

∣∣∣∣∣
x=0

.

Clearly, if j < k the above expression equals 0. For 0 ≤ k ≤ j we obtain,∫
R
δ(j)(x)xkf(x) dx = (−1)j

(
j

k

)
k!f (j−k)(0)

= (−1)j
(
j

k

)
k!

∫
R
(−1)j−kδ(j−k)(x)f(x) dx

=

∫
R
(−1)kk!

(
j

k

)
δ(j−k)(x)f(x) dx.

�

In order to study the composition of the real δ-distribution with real-valued functions in
Rm, we first need the following result.
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Proposition 6.4. Let g0 ∈ C∞(Rm) be a real-valued function such that ∂x[g0] 6= 0 on
the surface g−1

0 (0) := {w ∈ Rm : g0(w) = 0}. Then for every j ∈ N ∪ {0}, it holds that

∂x

[
δ(j)(g0(x))

]
= ∂x[g0](x) δ(j+1)(g0(x)).

Proof.

From the chain rule for partial derivatives acting on the composition δ(j)(g0(x)) it im-
mediately follows that

∂xj [δ(g
(j)
0 (x))] = δ(j+1)(g0(x)) ∂xj [g0](x), (6.10)

see (6.1.2) in [53, p. 135]. �

Proposition 6.5. Let g0, h0 ∈ C∞(Rm) be real-valued functions such that h0 > 0 and
∂x[g0] 6= 0 on the surface g−1

0 (0). Then, for j ∈ N ∪ {0} it holds that

δ(j) (h0(x)g0(x)) =
δ(j)(g0(x))

h0(x)j+1
. (6.11)

Proof.

We proceed by induction on j ∈ N ∪ {0}. In order to prove the statement for j = 0 we
first observe that the following simple layer integral identity holds (see Theorem 6.1.5 in
[53, p. 136]): ∫

Rm
δ(g0(x))f(x) dVx =

∫
g−1
0 (0)

f(w)

|∂x[g0](w)|
dSw, (6.12)

where dVx = dx1 · · · dxm is the classical m-dimensional volume element and dSw is the
Lebesgue surface measure on the surface g−1

0 (0). We also have

∂x[h0g0] = ∂x[h0]g0 + h0∂x[g0],

which implies
∂x[h0g0](w) = h0(w)∂x[g0](w)

if g0(w) = 0. Thus applying (6.12) to g0h0, instead of g0, we get∫
Rm

δ(h0(x)g0(x))f(x) dVx =

∫
g−1
0 (0)

f(w)

h0(w) |∂x[g0](w)|
dSw =

∫
Rm

δ(g0(x))

h0(x)
f(x) dVx,

for every complex-valued test function f . Hence,

δ(h0(x)g0(x)) =
δ(g0(x))

h0(x)
.
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Now assume (6.11) to be true for j ≥ 1. We then prove it for j + 1. Letting ∂x act on
both sides of (6.11) we get

∂x[h0]g0 δ
(j+1)(h0g0) + h0∂x[g0] δ(j+1)(h0g0)

=
∂x[g0] δ(j+1)(g0)

hj+1
0

− j + 1

hj+2
0

∂x[h0] δ(j)(g0). (6.13)

By Proposition 6.3 and the induction hypothesis we get

h0g0 δ
(j+1)(h0g0) = −(j + 1)δ(j)(h0g0) = −(j + 1)

δ(j)(g0)

hj+1
0

,

which implies,

g0δ
(j+1)(h0g0) = −(j + 1)

δ(j)(g0)

hj+2
0

.

Substituting this in (6.13) we easily obtain

h0∂x[g0] δ(j+1)(h0g0) =
∂x[g0] δ(j+1)(g0)

hj+1
0

,

which is equivalent to

δ(j+1)(h0g0) =
δ(j+1)(g0)

hj+2
0

.

Observe that the factor ∂x[g0] can be cancelled since ∂x[g0] 6= 0 in g−1
0 (0). �

6.2.4 δ-Distribution in superspace

In this section we introduce the δ-distribution in superspace together with all its deriva-
tives. As usual, the Heaviside distribution will be introduced as the corresponding anti-
derivative of the Dirac distribution. In [24], these distributions were introduced for some
particular cases corresponding to the supersphere.

Consider an even real superfunction g = g0 + g ∈ C∞(Rm)⊗G
(ev)
2n such that ∂x[g0] 6= 0

on the surface g−1
0 (0). The distribution δ(k)(g) is defined as the Taylor series

δ(k)(g) =

n∑
j=0

gj

j!
δ(k+j)(g0), k ∈ N− 2 := {−1, 0, 1, 2 . . .}.3

The particular case k = −1 provides the expression for the antiderivative of δ, i.e. the
Heaviside distribution H = δ(−1) given by

H(g) = H(g0) +

n∑
j=1

gj

j!
δ(j−1)(g0), where H(g0) =

{
1, g0 ≥ 0,

0, g0 < 0.
(6.14)

3For p, q ∈ Z we denote pN+q := {pk+q : k ∈ N} where N := {1, 2, . . .} is the set of natural numbers.
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These are suitable extensions of the considered distributions to superspace, as we will
show throughout this chapter. It is easy to check that a property similar to Proposition
6.1 i) holds for the above definitions. i.e.

δ(k)(a+ b) =

n∑
j=0

bj

j!
δ(k+j)(a+ b0), k ∈ N− 2, (6.15)

where a = a0 + a, b = b0 + b are real superfunctions in C∞(Rm)⊗G
(ev)
2n .

Let us prove now some important properties of the δ-distribution in superspace.

Proposition 6.6. Let g = g0 + g ∈ C∞(Rm) ⊗ G
(ev)
2n be a real superfunction such that

∂x[g0] 6= 0 on g−1
0 (0). Then, for j ∈ N ∪ {0} it holds that

i) gjδ(j)(g) = (−1)jj! δ(g),

ii) gj+1δ(j)(g) = 0.

Proof.

Using Proposition 6.3 we get,

gjδ(j)(g) = (g0 + g)j δ(j)(g0 + g) =

[
j∑

k=0

(
j

k

)
gj−k0 gk

][
n∑
`=0

g`

`!
δ(j+`)(g0)

]

=

n∑
p=0

min(j,p)∑
k=0

(
j

k

)
gp

(p− k)!
gj−k0 δ(j+p−k)(g0)

=

n∑
p=0

gp
min(j,p)∑
k=0

(−1)j−k
(
j

k

)
(j − k)!

(p− k)!

(
j + p− k
j − k

)
δ(p)(g0)

= (−1)j
n∑
p=0

gp

p!
δ(p)(g0)

min(j,p)∑
k=0

(−1)k
(
j

k

)
(j + p− k)!

(p− k)!

 .
Writing

(j + p− k)! =
(j + p)!

(j + p)(j + p− 1) · · · (j + p− k + 1)
= (−1)k

(j + p)!

(−j − p)k
,

and
(p− k)! =

p!

(p)(p− 1) · · · (p− k + 1)
= (−1)k

(p)!

(−p)k
,

we get
min(j,p)∑
k=0

(−1)k
(
j

k

)
(j + p− k)!

(p− k)!
=

(j + p)!

p!

min(j,p)∑
k=0

(−1)k
(
j

k

)
(−p)k

(−j − p)k

=
(j + p)!

p!
2F1(−j,−p,−p− j, 1),
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where 2F1(a, b, c, z) denotes the hypergeometric function with parameters a, b, c in the
variable z, see [2, p. 64]. Using the Chu-Vandermonde identity (which is an special case
of the Gauss Theorem, see [2, p. 67]) we obtain

2F1(−j,−p,−p− j, 1) =
(−j)j

(−j − p)j
=

(−j)(−j + 1) · · · (−1)

(−j − p)(−j − p+ 1) · · · (−p− 1)
=

j!p!

(j + p)!
.

Whence,
min(j,p)∑
k=0

(−1)k
(
j

k

)
(j + p− k)!

(p− k)!
= j!,

and as a consequence,

gjδ(j)(g) = (−1)jj!

n∑
p=0

gp

p!
δ(p)(g0) = (−1)jj! δ(g).

For the proof of (ii) it follows from Proposition 6.3 that

gδ(g) = (g0 + g)

n∑
j=0

gj

j!
δ(j)(g0)

=

n∑
j=0

gj

j!
g0δ

(j)(g0) +

n−1∑
j=0

gj+1

j!
δ(j)(g0)

= −
n∑
j=1

gj

(j − 1)!
δ(j−1)(g0) +

n−1∑
j=0

gj+1

j!
δ(j)(g0)

= 0.

Hence, using (i) we have that gj+1δ(j)(g) = (−1)jj! gδ(g) = 0. �

Proposition 6.7. Let g = g0+g and h = h0+h be real superfunctions in C∞(Rm)⊗G(ev)
2n

where g0 and h0 are their bodies and g resp. h their nilpotent parts. Let us assume that
∂x[g0] 6= 0 on g−1

0 (0) and h0 > 0 in Rm. Then,

δ(hg) =
δ(g)

h
.

Proof.

We first prove the result for h = h0 > 0. From Proposition 6.5 we obtain

δ(h0g) = δ(h0g0 + h0g) =

n∑
j=0

hj0g
j

j!
δ(j)(h0g0) =

n∑
j=0

gj

j!

δ(j)(g0)

h0
=
δ(g)

h0
.

Writing h
h0

= K, we get for h = h0 + h that

δ(hg) = δ(h0g + hg) = δ (h0(g + Kg)) =
δ ((g + Kg))

h0
.
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It thus suffices to prove that for K nilpotent the equality

δ ((g + Kg)) =
δ(g)

1 + K

holds. Finally, using (6.15) and Proposition 6.6 (i) we get

δ(g + Kg) =

n∑
j=0

Kjgj

j!
δ(j)(g) =

 n∑
j=0

(−1)jj!
Kj

j!

 δ(g) = δ(g)

n∑
j=0

(−1)jKj =
δ(g)

1 + K
.

�

Proposition 6.8. Let g = g0 + g ∈ C∞(Rm) ⊗ G
(ev)
2n be a real superfunction such that

∂x[g0] 6= 0 on g−1
0 (0). Hence δ(j)(−g) = (−1)jδ(j)(g) for every j ∈ N ∪ {0}.

Proof.

This directly follows from the corresponding property in real analysis; δ(j)(−x) = (−1)jδ(j)(x).
Indeed,

δ(j)(−g) =

n∑
k=0

(−g)k

k!
δ(j+k)(−g0) = (−1)j

n∑
k=0

(g)k

k!
δ(j+k)(g0) = (−1)jδ(j)(g).

�

6.3 Integration in superspace

In this section we define general domain and surface integration in superspace using the
above definitions for the Heaviside and Dirac distributions. This form of integration
turns out to be an easy and powerful formalism which has as natural antecedent in the
real case.

Indeed, let Ω ⊂ Rm be a domain defined by means of a real-valued function g0 ∈ C(Rm)
as Ω = {x ∈ Rm : g0(x) < 0}. The characteristic function of Ω is given by H(−g0); this
easily leads to the following expression for the integration over Ω∫

Ω

f(x) dVx =

∫
Rm

H(−g0(x))f(x) dVx. (6.16)

The function g0 is called the defining phase function of the domain Ω.

Let us now consider g0 ∈ C∞(Rm) such that ∂x[g0] 6= 0 on the (m− 1)-surface

Γ := g−1
0 (0) = {w ∈ Rm : g0(w) = 0}.
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Then the non-oriented integral of a function f over Γ can be written as the simple layer
integral∫

Rm
δ(g0(x)) |∂x[g0](x)| f(x) dVx =

∫
R
δ(t)

(∫
g−1
0 (t)

f(w) dSw

)
dt =

∫
Γ

f(w) dSw,

(6.17)
where dSw is the corresponding Lebesgue measure; see Theorem 6.1.5 [53, p. 136]. Ob-
serve also that the exterior normal vector to Γ in a point w ∈ Γ is given by

n(w) =
∂x[g0](w)

|∂x[g0](w)|
.

This leads to the following formula for the oriented surface integral∫
Γ

n(w)f(w) dSw =

∫
Rm

δ(g0(x)) ∂x[g0](x) f(x) dVx. (6.18)

Formulas (6.16), (6.17) and (6.18) share a very important characteristic: they describe
integrals over specific domains and surfaces as integrals over the whole space Rm de-
pending only on the defining function g0. In other words, they show the transition of
the concept of integral as a functional depending on a set of points of Rm to a functional
depending on a fixed phase function g0.

This last approach will be used to define domain and surface integration in superspace
using formulas which are similar to (6.16),(6.17),(6.18). Given an even real superfunction
g ∈ C∞(Rm) ⊗ G

(ev)
2n , one may consider the superdistributions H(−g) and δ(g) as the

formal "characteristic functions" for the domain and surface associated to g respectively.
As in the classical case, the superfunction g defining a domain in superspace is called a
phase function.

Remark 6.2. Following the above approach we arrive at a calculus in superspace that
is independent of the representation of the variables xj, x̀j as co-ordinates with values
in some commutative Banach superalgebra Λ, see Section 3.1.1. Observe that defining
domains and surfaces as sets of points in Rm,2n(Λ), see (3.4), may not be convenient
since it strongly depends on the topological properties of Λ.

Example 6.1. The supersphere RS2m−1|2n and the corresponding superball RB2m|2n of
radius R > 0 are associated to the superfunction

−g(x) = x2 +R2 = R2 − |x|2 + x̀2 = R2 −
m∑
j=1

x2
j +

2n∑
j=1

x̀2j−1x̀2j .

The Dirac distribution corresponding to the supersphere RS2m−1|2n is

δ(x2 +R2) =

n∑
j=0

x̀ 2j

j!
δ(j)(R2 − |x|2).
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The Heaviside distribution corresponding to the superball RB2m|2n is

H(x2 +R2) = H(R2 − |x|2) +

n∑
j=1

x̀ 2j

j!
δ(j−1)(R2 − |x|2).

6.3.1 Domain integrals in superspace

As mentioned before, our approach considers domains in superspace Ωm|2n given by
characteristic functions of the form H(−g) where g(x) = g0(x) + g(x, x̀) ∈ C∞(Rm) ⊗
G

(ev)
2n is a phase function. In this sense, Ωm|2n plays the same rôle in superanalysis as its

associated real domain Ωm|0 := {x ∈ Rm : g0(x) < 0} in classical analysis.

Definition 6.2. Let Ωm|2n be a domain in superspace (defined as before) satisfying the
following two conditions:

• the associated real domain Ωm|0 has compact closure;

• the body g0 of the defining phase function g is such that ∂x[g0] 6= 0 on g−1
0 (0).

The integral over Ωm|2n then is defined as the functional
∫

Ωm|2n
: Cn−1

(
Ωm|0

)
⊗G2n → C

given by∫
Ωm|2n

F =

∫
Rm|2n

H(−g)F, F ∈ Cn−1
(
Ωm|0

)
⊗G2n. (6.19)

The evaluation of the expression (6.19) requires the integration of smooth functions on
the real domain Ωm|0 to be possible. This is guaranteed by the first condition imposed
on the super domain Ωm|2n. On the other hand, if g is not identically zero, the above
definition also involves the action of the Dirac distribution on g0, see (6.14). For that
reason, we restrict our analysis to the case where ∂x[g0] 6= 0 on g−1

0 (0), in order to ensure
that this action is well defined.

The most simple examples for illustrating the use of Definition 6.2 correspond to the
cases g = g0 or g = −x2 − R2; i.e. integration over real domains or over the superball
respectively. The integral (6.19) then is given by∫

Ω

∫
B

FdVx,

and ∫
Rm|2n

H(x2 +R2)F,

respectively. These are the two particular cases that have been treated in the literature,
see [24, 38]. The superball (and the supersphere) will also be used in this thesis as an
illustrative example. In Section 6.4 we work with integrals over other super domains such
as a super-paraboloid and a super-hyperboloid.
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Proposition 6.9. The volume of the superball RBm|2n of radius R > 0 is given by

vol(RBm|2n) =


πM/2

Γ(M2 + 1)
RM , M /∈ −2N,

0, M ∈ −2N,

where M = m− 2n (m 6= 0) is the corresponding superdimension.

Proof.

The volume of the RBm|2n is obtained by integrating the function F ≡ 1 over RBm|2n
following Definition 6.2; i.e.

vol(RBm|2n) =

∫
R Bm|2n

1 =

∫
Rm

∫
B

H(R2 − |x|2 + x̀2) dVx,

where

H(R2 − |x|2 + x̀2) = H(R2 − |x|2) +

n∑
j=1

x̀ 2j

j!
δ(j−1)(R2 − |x|2).

Since x̀ 2n = n!x̀1 · · · x̀2n, we obtain∫
B

H(R2 − |x|2 + x̀2) = π−n δ(n−1)(R2 − |x|2),

and consequently,

vol(RBm|2n) = π−n
∫
Rm

δ(n−1)(R2 − |x|2) dVx. (6.20)

Effectuating the change of variables x = rw, where 0 < r < ∞ and w ∈ Sm−1 := {x ∈
Rm : x2 = −1}, we get dVx = rm−1dr dSw. Hence,

vol(RBm|2n) = π−n
∫
Sm−1

(∫ ∞
0

δ(n−1)(R2 − r2) rm−1 dr

)
dSw

= π−nAm

∫ ∞
0

δ(n−1)(R2 − r2) rm−1 dr,

where

Am =

∫
Sm−1

dSw =
2πm/2

Γ(m2 )

is the area of the unit sphere Sm−1 in Rm. Changing variables again, now through
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t = R2−r2, we obtain r =
(
R2 − t

)1/2 and dr = − 1
2

(
R2 − t

)−1/2
dt. Then, it holds that

vol(RBm|2n) =
π−nAm

2

∫ R2

−∞
δ(n−1)(t)

(
R2 − t

)m
2 −1

dt

= (−1)n−1π
−nAm

2

dn−1

dtn−1

[(
R2 − t

)m
2 −1

] ∣∣∣∣∣
t=0

=
π−nAm

2

n−1∏
j=1

(m
2
− j
)
Rm−2n, (6.21)

where for the special cases n = 0, 1 we are considering the expressions
∏−1
j=1

(
m
2 − j

)
:= 2

m

and
∏0
j=1

(
m
2 − j

)
:= 1. Since we consider m 6= 0, it is easily seen that

n−1∏
j=1

(m
2
− j
)

=

{
Γ(m2 )

Γ(m2 −n+1)
M
2 /∈ −N,

0 M
2 ∈ −N,

whence substitution in (6.21) completes the proof. �

Remark 6.3. Proposition 6.9 provides a suitable extension to superspace for the volume
of the ball RBm := {x ∈ Rm : |x| < R} (R > 0). We recall that in the case n = 0 the
volume of RBm equals πm/2

Γ(m2 +1)R
m.

In real analysis the choice of the phase function g0 defining a certain domain Ωm|0 ⊂ Rm
is not unique. Indeed, for every real-valued function h0 ∈ C(Rm) with h0 > 0, the
function h0g0 defines the same domain as g0, i.e.

Ωm|0 = {x ∈ Rm : g0(x) < 0} = {x ∈ Rm : h0(x)g0(x) < 0}.

A simple example is the unitary ball B ⊂ Rm which can be described by

|x| − 1 < 0, or − x2 − 1 < 0,

since
−x2 − 1 = (|x|+ 1)(|x| − 1).

However, integration over Ωm|0 remains independent of the choice of the function g0

that defines Ωm|0. Indeed, in real analysis it is easily seen that H(−g0) = H(−h0g0) for
h0 > 0. This property remains valid in superspace.

Proposition 6.10. Let g = g0 + g and h = h0 + h be real superfunctions in C∞(Rm)⊗
G

(ev)
2n where g0 and h0 are their respective bodies. Let us assume that ∂x[g0] 6= 0 on

g−1
0 (0) and h0 > 0 in Rm. Then

H(hg) = H(g).
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Proof.

We first prove that H(h0g) = H(g). By Proposition 6.5 we obtain (h0g)jδ(j−1)(h0g0) =
gjδ(j−1)(g0) for j ∈ N. Hence,

H(h0g) = H(h0g0) +

n∑
j=1

(h0g)j

j!
δ(j−1)(h0g0) = H(g0) +

n∑
j=1

gj

j!
δ(j−1)(g0) = H(g).

If we write K = h
h0
, we get for h = h0 + h that

H(hg) = H(h0g + hg) = H(g + Kg),

whence it suffices to prove that H(g + Kg) = H(g). Using (6.15) and Proposition 6.6
(ii) we obtain

H(g + Kg) = H(g) +
n∑
j=1

Kj

j!
gjδ(j−1)(g) = H(g).

�

This allows us to define the notion of a pair of phase functions that define the same
domain (or surface) in superspace.

Definition 6.3. Let g, ϕ ∈ C∞(Rm)⊗G
(ev)
2n be two phase functions such that ∂x[g0] 6= 0

on g−1
0 (0) and ∂x[ϕ0] 6= 0 on ϕ−1

0 (0). They are said to define the same domain (or
surface) in superspace if there exists a real superfunction h ∈ C∞(Rm) ⊗ G

(ev)
2n with

h0 > 0 in Rm such that ϕ = hg.

Remark 6.4. Proposition 6.10 shows that the integral over Ωm|2n defined in (6.19) does
not depend on the choice of the superfunction g defining Ωm|2n. The example of the
superball RBm|2n of radius R > 0 illustrates very well this property. Indeed, the domain
RBm|2n can be defined by means of any of the two superfunctions

|x| −R or − x2 −R2.

Both definitions for RBm|2n can be used in (6.19) without changing the result of the
integration since −x2 −R2 = (|x|+R)(|x| −R) where

h(x) = |x|+R = R+

n∑
j=0

(−1)j x̀ 2j

j!

Γ( 3
2 )

Γ( 3
2 − j)

|x|1−2j , and h0(x) = R+ |x| > 0.

6.3.2 Surface integrals in superspace

Similarly to the case of super domains, we define a surface Γm−1|2n in superspace by
means of δ(g) where g(x) = g0(x) + g(x, x̀) ∈ C∞(Rm)⊗G

(ev)
2n is a given phase function.

If Ωm|2n is the super domain associated to g as in Definition 6.2, then we say that Γm−1|2n



175 6.3 Integration in superspace

is the boundary of Ωm|2n and denote it by Γm−1|2n := ∂Ωm|2n. This way, Γm−1|2n plays
the same rôle in superspace as its real surface

Γm−1|0 := ∂Ωm|0 = {x ∈ Rm : g0(x) = 0}

in classical analysis.

Based on the formulae (6.17) and (6.18) concerning the real case we now define the
non-oriented and oriented surface integrals in superspace.

Definition 6.4. Let Γm−1|2n be a surface in superspace (defined as before) satisfying the
following two conditions:

• the associated real surface Γm−1|0 ⊂ Rm is a compact set;

• the body g0 of the defining phase function g is such that ∂x[g0] 6= 0 on g−1
0 (0).

The non-oriented and oriented surface integrals over Γm−1|2n are then defined as the
following functionals on Cn

(
Γm−1|0

)
⊗G2n∫

Γm−1|2n

F =

∫
Rm|2n

δ(g)
∣∣∂x[g]

∣∣F, ∫
Γm−1|2n

σx F = −
∫
Rm|2n

δ(g) ∂x[g]F, (6.22)

respectively.

Remark 6.5. Proposition 6.8 assures that the sign of the superfunction g does not play
a rôle in the non-oriented case.

When g = g0, the integrals (6.22) reduce to the product of the classical real surface
integration and the Berezin integral, i.e.,∫

Γm−1|0

∫
B

F (w, x̀) dSw,

∫
Γm−1|0

∫
B

n(w)F (w, x̀) dSw, (6.23)

see formulae (6.17)-(6.18).We will now verify that, when restricted to the supersphere
RS2m−1|2n, the definition of the non-oriented surface integral still coincides with the one
given in [24].

Proposition 6.11. The non-oriented integral over the supersphere RS2m−1|2n (R > 0)
can be written as∫

RSm−1,2n

F = 2

∫
Rm

∫
B

δ(R2 + x2) |x|F (x) dVx = 2R

∫
Rm

∫
B

δ(x2 +R2)F (x) dVx.

(6.24)

Proof.
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We first observe that ∂x[R2+x2] = 2x. Following (6.22), the non-oriented surface integral
of F over the supersphere RSm−1,2n is given by∫

RSm−1,2n

F = 2

∫
Rm

∫
B

δ(R2 + x2) |x|F (x) dVx.

Let us prove now that, as in the classical case, one can substitute |x| = R in the above
expression. Consider the real distribution G(t) = δ(R2− t)t 1

2 , t ≥ 0. Then, we can write
in superspace

δ(R2 + x2) |x| = δ(R2 + x2) (−x2)
1
2 = G(−x2) = G(|x|2 − x̀ 2) =

n∑
j=0

(
−x̀ 2

)j
j!

G(j)(|x|2).

However, in the distributional sense, it is easily seen that

G(t) = δ(R2 − t)t 1
2 = Rδ(t−R2),

whence also

G(j)(t) = Rδ(j)(t−R2), j = 0, . . . , n.

Substituting this in the above formula we obtain,

δ(R2 + x2) |x| = R

n∑
j=0

(
−x̀ 2

)j
j!

δ(j)(|x|2 −R2) = Rδ(R2 + x2),

which completes the proof. �

The non-oriented integration over the supersphere (6.24), and the integration of super-
functions over real surfaces (6.23), have been studied in the literature, see e.g. [24, 38].
In particular, (6.24) was proven to be an extension of Pizzetti’s formula for polynomials.
The simplest example for application of Pizzetti’s formula is obtained when integrating
the function F ≡ 1; which leads to the surface area of the supersphere RSm−1,2n.

Proposition 6.12. The surface area of the supersphere RSm−1,2n of radius R > 0 is
given by

area(R Sm−1|2n) =


2πM/2

Γ(M2 )
RM−1, M /∈ −2N + 2,

0 M ∈ −2N + 2,

where M = m− 2n (m 6= 0) is the corresponding superdimension.

Proof.

Using (6.24), the area of the surface RSm−1,2n is given by

area(RSm−1,2n) =

∫
RSm−1,2n

1 = 2R

∫
Rm

∫
B

δ(x2 +R2) dVx,
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where

δ(x2 +R2) =

n∑
j=0

x̀ 2j

j!
δ(j)(R2 − |x|2)

implies ∫
B

δ(x2 +R2) = π−n δ(n)(R2 − |x|2).

By the co-ordinate changes x = rw, w ∈ Sm−1 and r = t
1
2 we get

area(RSm−1,2n) = 2Rπ−n
∫
Rm

δ(n)(R2 − |x|2) dVx

= 2Rπ−n
∫
Sm−1

(∫ ∞
0

δ(n)(R2 − r2) rm−1 dr

)
dSw

= π−nAmR

∫ ∞
0

δ(n)(R2 − t)tm2 −1 dt

= π−nAmR
dn

dtn
[
t
m
2 −1

] ∣∣∣∣
t=R2

= π−nAm

n∏
j=1

(m
2
− j
)
Rm−2n−1, (6.25)

where for the special case n = 0 we put by convention
∏0
j=1

(
m
2 − j

)
:= 1. Since we

consider m 6= 0, it is easily seen that

n∏
j=1

(m
2
− j
)

=

{
Γ(m2 )

Γ(m2 −n)
M
2 /∈ −N + 1,

0 M
2 ∈ −N + 1,

whence substitution in (6.21) completes the proof. �

As for domain integrals, we can prove that Definition 6.4 does not depend on the choice
of the defining superfunction g for the surface Γm−1|2n.

Proposition 6.13. Let g = g0 + g and h = h0 + h be real superfunctions in C∞(Rm)⊗
G

(ev)
2n having g0 and h0 as their respective bodies. Let us assume that ∂x[g0] 6= 0 on g−1

0 (0)
and h0 > 0 in Rm. Then,

(i) δ(hg)∂x[hg] = δ(g)∂x[g], (ii) δ(hg)|∂x[hg]| = δ(g)|∂x[g]|.

Proof.

Using Propositions 6.6 and 6.7 we get

δ(hg)∂x[hg] =
δ(g)

h
(∂x[h]g + h∂x[g]) = δ(g)∂x[g],
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which proves (i). In addition, by Propositions 6.2 and 6.7 we get

δ(hg)|∂x[hg]| = δ(hg)
∣∣∂x[h]g + h∂x[g]

∣∣
=
δ(g)

h

[
h|∂x[g]|+ gF

(
h∂x[g], ∂x[h], g

)]
= δ(g)|∂x[g]|,

which proves (ii). �

6.4 Other examples and applications

In this section we study some more examples of integration in superspace over domains
and surfaces. To that end, let us observe first that, as in the classical case, it is possible
to define intersections amongst domains as well as between a surface and several domains
in superspace.

Indeed, let Ωj (j = 1, . . . , k) be domains in superspace defined by means of the phase
functions gj(x) = gj,0(x)+gj(x, x̀) ∈ C∞(Rm)⊗G(ev)

2n . The intersection Ωm|2n = ∩kj=1Ωk
is naturally defined as the domain with characteristic function

H(−g1) . . . H(−gk).

If we also consider a surface Γm−1|2n defined by δ(g) with g(x) = g0(x) + g(x, x̀) ∈
C∞(Rm)⊗G

(ev)
2n being a phase function, the intersection Γm−1|2n ∩ Ωm|2n is defined by

the characteristic function
δ(g)H(−g1) . . . H(−gk).

The domain Ωm|2n = ∩kj=1Ωk plays the same rôle in superspace as its associated region

Ωm|0 :=

k⋂
j=1

{x ∈ Rm : gj,0(x) < 0}

in Rm. In the same way, Γm−1|2n ∩Ωm|2n is the super-analogue of the intersection of the
(m− 1)-surface Γm−1|0 = g−1

0 (0) with the region Ωm|0.

Now assume that Ωm|0 has a compact closure and the body functions g0, g1,0, . . . , gk,0
have non vanishing gradients on the respective surfaces g−1

0 (0), g−1
1,0(0), . . . , g−1

k,0(0). Hence,
Definitions 6.2 and 6.4 extend to Ωm|2n = ∩kj=1Ωk and Γm−1|2n ∩ Ωm|2n respectively by
putting ∫

Ωm|2n

F =

∫
Rm|2n

H(−g1) . . . H(−gk)F,∫
Γm−1|2n∩Ωm|2n

F =

∫
Rm|2n

δ(g)
∣∣∂x[g]

∣∣H(−g1) . . . H(−gk)F,∫
Γm−1|2n∩Ωm|2n

σx F = −
∫
Rm|2n

δ(g) ∂x[g]H(−g1) . . . H(−gk)F.
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6.4.1 Super-paraboloid of revolution

Let us consider the paraboloid of revolution in 3 real dimensions defined by

x3 = x2
1 + x2

2 = −x̂2 where x̂ = x1e1 + x2e2.

We define its extension to superspace by means of the superfunction

g(x) = −x̂2 − xm =

m−1∑
j=1

x2
j −

n∑
j=1

x̀2j−1x̀2j − xm = |x̂|2 − xm − x̀ 2 (m ≥ 2),

where, in this case, x̂ = x− xmem and x̂ = x̂+ x̀ = x− xmem.

The set
{x ∈ Rm : |x̂|2 − xm ≤ 0}

clearly is non compact. However, its intersection with the region

{x ∈ Rm : xm ∈ [0, h]} (h > 0)

gives a compact subset composed by the interior and boundary of the paraboloid xm =
|x̂|2 with height h > 0. This means that we can integrate over the domain (and sur-
face) defined by the superfunction g in superspace with the restriction xm < h. This
object will be called the super-paraboloid of revolution of height h > 0 and is denoted by
SP

m|2n
h . More precisely, the domain and surface associated to SPm|2nh are given by the

characteristic functions
H(−g)H(h− xm)

and
δ(g)H(h− xm),

respectively.

Proposition 6.14. The volume of SPm|2nh is given by

vol(SP
m|2n
h ) =


π
M−1

2

Γ(M+3
2 )

h
M+1

2 , M /∈ −2N + 1,

0 M ∈ −2N + 1.

(6.26)

Proof.

Observe that

vol(SP
m|2n
h ) =

∫
Rm|2n

H(−g)H(h− xm) =

∫ h

0

(∫
Rm−1

∫
B

H(−g) dVx̂

)
dxm.

Because

H(−g) = H(xm − |x̂|2 + x̀ 2) =

n∑
j=0

x̀ 2j

j!
δ(j−1)(xm − |x̂|2)
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we have ∫
B

H(−g) = π−n δ(n−1)(xm − |x̂|2).

Hence, by formula (6.20) we get∫
Rm−1

∫
B

H(−g) dVx̂ = π−n
∫
Rm−1

δ(n−1)(xm − |x̂|2) dVx̂ = vol
(
x

1
2
m Bm−1|2n

)
,

which leads to

∫
Rm−1

∫
B

H(−g) dVx̂ =


π
M−1

2

Γ(M+1
2 )

x
M−1

2
m , M /∈ −2N + 1,

0 M ∈ −2N + 1,

whence for M /∈ −2N + 1 we obtain

vol(SP
m|2n
h ) =

π
M−1

2

Γ(M+1
2 )

∫ h

0

x
M−1

2
m dxm =

π
M−1

2

Γ(M+1
2 )

h
M+1

2

M+1
2

=
π
M−1

2

Γ(M+3
2 )

h
M+1

2 ;

and vol(SPm|2nh ) = 0 for M ∈ −2N + 1. �

Remark 6.6. The above result is an extension of the volume formulae for the corres-
ponding paraboloids in the known classical cases m = 2, n = 0 and m = 3, n = 0.

• In the case m = 2, n = 0, the parabola SP 2|0
h = {(x1, x2) ∈ R2 : x2

1 ≤ x2 ≤ h} is
known to have the volume (i.e. area in R2)

2h3/2 −
∫ h

1
2

−h
1
2

x2
1 dx1 =

4

3
h

3
2 .

This is exactly the result obtained when substituting M = 2 in (6.26).

• In the case m = 3, n = 0, SP 3|0
h = {(x1, x2, x3) ∈ R3 : x2

1 + x2
2 ≤ x3 ≤ h} is the

body generated by the rotation of the curve x3 = x2
1 around the x3-axis from x1 = 0

to x1 = h
1
2 . The volume of SP 3|0

h is known to be

2π

∫ h
1
2

0

x1(h− x2
1) dx1 =

π

2
h2,

coinciding with the result obtained when evaluating formula (6.26) for M = 3.

Proposition 6.15. The surface area of SPm|2nh for M > 1 is given by

area(SP
m|2n
h ) =

π
M−1

2

Γ
(
M+1

2

)hM−1
2 2F1

(
−1

2
,
M − 1

2
;
M + 1

2
;−4h

)
, (6.27)

where 2F1(a, b; c; z) denotes the hypergeometric function, see [2, p. 64].
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Proof.

In this case,

area(SP
m|2n
h ) =

∫
Rm|2n

δ(g)
∣∣∂x[g]

∣∣H(h− xm) =

∫ h

0

(∫
Rm−1

∫
B

δ(g)
∣∣∂x[g]

∣∣ dVx̂) dxm.

We recall that ∂x = ∂x̂ − ∂xmem. Then

∂x[g] = (∂x̂ − ∂xmem)(−x̂2 − xm) = −∂x̂[x̂2] + ∂xm [xm]em = −2x̂ + em,

which leads to
∣∣∂x[g]

∣∣ =
(
−4x̂2 + 1

) 1
2 .

Let us now consider the distribution D(t) = δ(t− xm)(4t+ 1)
1
2 , (t > 0). The evaluation

of D in −x̂2 = |x̂|2 − x̀ 2 equals δ(g)
∣∣∂x[g]

∣∣ and is given by

D(−x̂2) =

n∑
j=0

(−1)j x̀ 2j

j!
D(j)

(
|x̂|2
)
,

implying ∫
B

D(−x̂2) = (−1)nπ−nD(n)
(
|x̂|2
)
.

Then,

area(SP
m|2n
h ) = (−1)nπ−n

∫ h

0

(∫
Rm−1

D(n)
(
|x̂|2
)
dVx̂

)
dxm.

By the change of variables x̂ = rw, r > 0, w ∈ Sm−2 we get dVx̂ = rm−2dr dSw and

(−1)nπ−n
∫
Rm−1

D(n)
(
|x̂|2
)
dVx̂ = (−1)nπ−n

∫
Sm−2

(∫ +∞

0

D(n)
(
r2
)
rm−2 dr

)
dSw

=
(−1)nπ−nAm−1

2

∫ +∞

0

D(n) (t) t
m−3

2 dt

=
π−nAm−1

2

∫ +∞

0

D (t)
dn

dtn

[
t
m−3

2

]
dt

=
π−nAm−1Γ

(
m−1

2

)
2 Γ
(
m−1

2 − n
) ∫ +∞

0

δ (t− xm) (4t+ 1)
1
2 t

m−3
2 −n dt

=
π
M−1

2

Γ
(
M−1

2

) (4xm + 1)
1
2 x

M−3
2

m ,

whence,

area(SP
m|2n
h ) =

π
M−1

2

Γ
(
M−1

2

) ∫ h

0

(4xm + 1)
1
2 x

M−3
2

m dxm

=
π
M−1

2

Γ
(
M−1

2

)hM−1
2

∫ 1

0

(4th+ 1)
1
2 (t)

M−3
2 dt,
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where the last equality has been obtained from the change of variable xm = ht.

Let us now compute the last integral which only converges when M > 1. To that end,
we first recall Euler’s integral representation formula for hypergeometric functions, see
Theorem 2.2.1 [2, p. 65]. For a, b, c ∈ R such that c > b > 0 , the hypergeometric function
2F1(a, b; c; z) can be written as

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

(1− zt)−a tb−1 (1− t)c−b−1 dt. (6.28)

Writing a = − 1
2 , b = M−1

2 , c = b+ 1 = M+1
2 and z = −4h we obtain for M > 1 that∫ 1

0

(4th+ 1)
1
2 (t)

M−3
2 dt =

2

M − 1
2F1

(
−1

2
,
M − 1

2
;
M + 1

2
;−4h

)
,

from which the result follows �

Remark 6.7. Similar to the volume (see Remark 6.6), by (6.27) we obtain an extension
of the surface area of the corresponding paraboloids for the known cases m = 2, n = 0
and m = 3, n = 0.

• In the case m = 2, n = 0, SP 2|0
h is known to have the surface area (i.e. length in

this case) ∫ h
1
2

−h
1
2

(
1 + 4x2

1

) 1
2 dx1 = h

1
2 (1 + 4h)

1
2 +

sinh−1(2h
1
2 )

2
.

Substituting M = 2 in (6.27) we get the same result:

area(SP
2|0
h ) = 2h

1
2 2F1

(
−1

2
,

1

2
;

3

2
;−4h

)
= h

1
2 (1 + 4h)

1
2 +

sinh−1(2h
1
2 )

2
.

• In the case m = 3, n = 0, the paraboloid SP 3|0
h is known to have the surface area

2π

∫ h

0

x
1
2
3

(
1 +

1

4x3

) 1
2

dx3 =
π

6

[
(4h+ 1)

3
2 − 1

]
.

Substituting M = 3 in (6.27) again we get the same result:

area(SP
3|0
h ) = πh 2F1

(
−1

2
, 1; 2;−4h

)
=
π

6

[
(4h+ 1)

3
2 − 1

]
.

6.4.2 Super-hyperboloid of revolution

In 3 real dimensions, we consider the one-sheeted hyperboloid of revolution obtained by
rotating the hyperbola x2

1 − x2
3 = 1 around the x3-axis. The Cartesian equation of this

hyperboloid is
x2

1 + x2
2 − x2

3 = 1.
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We define its extension to superspace by means of the superfunction

g(x) =

m−1∑
j=1

x2
j − x2

m −
n∑
j=1

x̀2j−1x̀2j − 1 = −x̂2 − 1− x2
m. (m ≥ 2).

Observe that the set
{x ∈ Rm : |x̂|2 − x2

m − 1 ≤ 0}
is non compact. However its intersection with the region

{x ∈ Rm : xm ∈ [−h, h]} (h > 0)

gives a compact set (symmetric with respect to the plane xm = 0) that is composed of the
interior and the boundary of the hyperboloid |x̂|2−x2

m = 1 in Rm with half height h. This
means that we can integrate over the domain (and surface) defined by the superfunction
g with the restrictions −h ≤ xm ≤ h. This object will be called the super-hyperboloid
of revolution of half height h > 0 and is denoted by SHm|2n

h . The domain and surface
associated to SHm|2n

h are given by the characteristic functions

H(−g)H(h− xm)H(h+ xm)

and
δ(g)H(h− xm)H(h+ xm),

respectively.

Proposition 6.16. The volume of SHm|2n
h is given by

vol(SH
m|2n
h ) =

 2hπ
M−1

2

Γ(M+1
2 ) 2F1

(
1−M

2 , 1
2 ; 3

2 ;−h2
)
, M /∈ −2N + 1,

0, M ∈ −2N + 1.
(6.29)

Proof.

Observe that

vol(SH
m|2n
h ) =

∫
Rm|2n

H(−g)H(h− xm)H(h+ xm)

=

∫ h

−h

(∫
Rm−1

∫
B

H(x̂2 + x2
m + 1) dVx̂

)
dxm,

where ∫
B

H(x̂2 + x2
m + 1) =

∫
B

H(x2
m + 1− |x̂|2 + x̀2)

=

n∑
j=0

∫
B

x̀ 2j

j!
δ(j−1)(x2

m + 1− |x̂|2)

= π−n δ(n−1)(x2
m + 1− |x̂|2).
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Using (6.20) we obtain,∫
Rm−1

∫
B

H(x̂2+x2
m+1) dVx̂ = π−n

∫
Rm−1

δ(n−1)(x2
m+1−|x̂|2) dVx̂ = vol

(
(x2
m + 1)

1
2Bm−1|2n

)
.

Hence,

∫
Rm−1

∫
B

H(x̂2 + x2
m + 1) dVx̂ =

 π
M−1

2

Γ(M+1
2 )

(x2
m + 1)

M−1
2 , M /∈ −2N + 1,

0, M ∈ −2N + 1.

This implies, for M ∈ −2N + 1, that vol(SHm|2n
h ) = 0. But for M /∈ −2N + 1 we have

vol(SH
m|2n
h ) =

2π
M−1

2

Γ
(
M+1

2

) ∫ h

0

(x2
m + 1)

M−1
2 dxm =

hπ
M−1

2

Γ
(
M+1

2

) ∫ 1

0

(1 + h2t)
M−1

2 t−
1
2 dt,

where the last integral has been obtained from the change of variable t =
x2
m

h2 . Using
Euler’s integral representation formula (6.28) for hypergeometric functions we get for
a = 1−M

2 , b = 1
2 , c = b+ 1 = 3

2 and z = −h2 that

1

2

∫ 1

0

(1 + h2t)
M−1

2 t−
1
2 dt = 2F1

(
1−M

2
,

1

2
;

3

2
;−h2

)
,

which completes the proof. �

Remark 6.8. Formula (6.29) constitutes an extension of the volume formulas for the
corresponding hyperboloids in the classical cases m = 2, n = 0 and m = 3, n = 0.

• In the case m = 2, n = 0, the hyperbola

SH
2|0
h = {(x1, x2) ∈ R2 : x2

1 − x2
2 ≤ 1, −h ≤ x2 ≤ h}

is known to have the volume (i.e. area in R2)

2

∫ h

−h
(1 + x2

2)
1
2 dx2 = 2

[
h(h2 + 1)

1
2 + sinh−1(h)

]
,

while evaluating (6.29) for M = 2 gives

vol(SH
2|0
h ) = 4h 2F1

(
−1

2
,

1

2
;

3

2
;−h2

)
= 2

[
h(h2 + 1)

1
2 + sinh−1(h)

]
.

• In the case m = 3, n = 0,

SH
3|0
h = {(x1, x2, x3) ∈ R3 : x2

1 + x2
2 − x3 ≤ 1, −h ≤ x3 ≤ h}
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is known to have the volume

π

∫ h

−h
(x2

3 + 1) dx3 = 2πh

(
1 +

h2

3

)
,

while substituting M = 3 in (6.29) yields

vol(SH
3|0
h ) = 2hπ 2F1

(
−1,

1

2
;

3

2
;−h2

)
= 2πh

(
1 +

h2

3

)
.

Proposition 6.17. The surface area of SHm|2n
h is given by

area(SH
m|2n
h ) =


4hπ

M−1
2

Γ
(
M−1

2

) F1

(
1

2
;−1

2
,

3−M
2

;
3

2
;−2h2,−h2

)
, M /∈ −2N + 3,

0, M ∈ −2N + 3,

(6.30)
where F1(a; b1, b2; c; z1, z2) denotes Appell’s hypergeometric function, see [4, p. 73].

Proof.

Observe that

area(SH
m|2n
h ) =

∫
Rm|2n

δ(g) |∂x[g]|H(h− xm)H(h+ xm)

=

∫ h

−h

(∫
Rm−1

∫
B

δ(g) |∂x[g]| dVx̂
)
dxm,

where

∂x[g] = −(∂x̂ − ∂xmem)(x̂2 + x2
m + 1) = −∂x̂[x̂2] + ∂xm [x2

m]em = −2x̂ + 2xmem.

Then,
|∂x[g]| = 2|x̂− xmem| = 2

(
−x̂2 + x2

m

) 1
2 .

Using Proposition 6.8, we write

δ(g) |∂x[g]| = 2δ
(
x̂2 + x2

m + 1
) (
−x̂2 + x2

m

) 1
2 = K(−x̂2),

where K denotes the distribution

K(t) = 2δ
(
x2
m + 1− t

) (
t+ x2

m

) 1
2 .

Moreover

K(−x̂2) = K(|x̂|2 − x̀ 2) =

n∑
j=0

(−1)nx̀ 2j

j!
K(j)(|x̂|2),
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whence ∫
B

δ(g) |∂x[g]| =
∫
B

K(−x̂2) = (−1)nπ−nK(n)(|x̂|2),

and finally

area(SH
m|2n
h ) =

∫ h

−h

(∫
Rm−1

(−1)nπ−nK(n)(|x̂|2) dVx̂

)
dxm.

Direct computations yield

(−1)nπ−n
∫
Rm−1

K(n)(|x̂|2) dVx̂ = (−1)nπ−n
∫
Sm−2

(∫ ∞
0

K(n)(r2)rm−2 dr

)
dSw

=
(−1)nπ−nAm−1

2

∫ ∞
0

K(n)(t)t
m−3

2 dt

=
π−nAm−1

2

∫ ∞
0

K(t)
dn

dtn

[
t
m−3

2

]
dt

=
π−nAm−1

2

n∏
j=1

(
m− 1

2
− j
)∫ ∞

0

K(t)t
M−3

2 dt,

where for the special case n = 0 we put by convention
∏0
j=1

(
m−1

2 − j
)

:= 1. For
M−3

2 ∈ −N, it immediately follows that
∏n
j=1

(
m−1

2 − j
)

= 0 and in consequence

area(SH
m|2n
h ) = 0. But for M−3

2 /∈ −N we have,

(−1)nπ−n
∫
Rm−1

K(n)(|x̂|2) dVx̂ =
π−nAm−1Γ

(
m−1

2

)
2 Γ
(
m−1

2 − n
) ∫ ∞

0

2δ
(
x2
m + 1− t

) (
t+ x2

m

) 1
2 t

M−3
2 dt

=
2π

M−1
2

Γ
(
M−1

2

) (2x2
m + 1

) 1
2 (x2

m + 1)
M−3

2 .

Thus,

area(SH
m|2n
h ) =

4π
M−1

2

Γ
(
M−1

2

) ∫ h

0

(
2x2

m + 1
) 1

2 (x2
m + 1)

M−3
2 dxm

=
2hπ

M−1
2

Γ
(
M−1

2

) ∫ 1

0

(2h2t+ 1)
1
2 (h2t+ 1)

M−3
2 t−

1
2 dt, (6.31)

where the last equality has been obtained by the change of variable t =
x2
m

h2 .

The last integral can be written in terms of the so-called Appell’s hypergeometric function
of the first kind. Such a function constitutes an extension of the hypergeometric function
of two variables and it is defined by

F1(a; b1, b2; c; z1, z2) =

∞∑
j,k=0

(a)j+k (b1)j (b2)k
(c)j+k j! k!

zj1z
k
2 ,
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see [4, Chapter IX] for more details. We now recall the integral representation of
F1(a, b1, b2; c; z1, z2) for c > a > 0, see [4, p. 77]:

F1(a; b1, b2; c; z1, z2) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

ta−1(1− t)c−a−1(1− z1t)
−b1(1− z2t)

−b2 dt.

Taking a = 1
2 , b1 = − 1

2 , b2 = 3−M
2 , c = a+ 1 = 3

2 , z1 = −2h2 and z2 = −h2 we obtain,∫ 1

0

(2h2t+ 1)
1
2 (h2t+ 1)

M−3
2 t−

1
2 dt = 2F1

(
1

2
;−1

2
,

3−M
2

;
3

2
;−2h2,−h2

)
. (6.32)

Finally, substitution of (6.32) into (6.31) yields (6.30). �

Remark 6.9. Similarly to the previous results, (6.30) extends the known formulae for
the surface area of the corresponding hyperboloids in the classical cases m = 2, n = 0
and m = 3, n = 0.

• The hyperbola SH2|0
h (see Remark 6.8) is known to have the surface area (i.e. length

in this case)

S = 4

∫ (1+h2)
1
2

1

(2x2
1 − 1)

1
2 (x2

1 − 1)−
1
2 dx1 = 2h

∫ 1

0

(2h2t+ 1)
1
2 t−

1
2 (h2t+ 1)−

1
2 dt,

where we have used the change of variable x1 = (th2 + 1)
1
2 , 0 ≤ t ≤ 1. Then (6.32)

immediately shows that

S = 4hF1

(
1

2
;−1

2
,

1

2
;

3

2
;−2h2,−h2

)
which is the same result obtained when substituting M = 2 in (6.30).

• The hyperboloid SH3|0
h is known to have the surface area

2π

∫ h

−h
(2x2

3 + 1)
1
2 dx3 = π

[
2h(2h2 + 1)

1
2 + 2

1
2 sinh−1(2

1
2h)
]
.

On the other hand, substituting M = 3 in (6.30) we obtain

area(SH
3|0
h ) = 4hπ F1

(
1

2
;−1

2
, 0;

3

2
;−2h2,−h2

)
= π

[
2h(2h2 + 1)

1
2 + 2

1
2 sinh−1(2

1
2h)
]
.

A summary of all previously computed volumes and surface areas is provided in Table
6.1.
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6.5 Distributional Cauchy-Pompeiu formula in super-
space

The integration over general domains and surfaces in superspace introduced in Section
6.3 allows to extend and unify the respective known versions of the Cauchy-Pompeiu
formulae in superspace. In [24, 38], the following Cauchy-Pompeiu formula was proven
for bounded domains Ω ⊂ Rm:∫

∂Ω

∫
B

ν
m|2n
1 (x− y)n(x)G(x) dSx +

∫
Ω

∫
B

ν
m|2n
1 (x− y) (∂xG(x)) dVx

=

{
−G(y), y ∈ Ω,

0, y /∈ Ω,
(6.33)

where νm|2n1 is the fundamental solution of the super Dirac operator ∂x, see [37]. The
proof of this formula runs along similar lines as the traditional approach (see e.g. [44,
p. 147]). It does not require the use of distributions since it only considers integration
over real sets composed with the Berezin integral. In [24], another version of the Cauchy-
Pompeiu formula was obtained for the unit supersphere Sm−1,2n. Its proof is based on
(6.33) and uses the distributional approach on the supersphere described in Example 6.1:∫

Rm|2n
ν
m|2n
1 (x− y)2xδ(x2 + 1)G(x) +

∫
Rm|2n

ν
m|2n
1 (x− y)H(x2 + 1) (∂xG(x))

=

{
−G(y), y ∈ Bm,
0, y /∈ Bm.

(6.34)

Both formulae generalize, in a certain way, the classical Cauchy-Pompeiu theorem in
Rm; see e.g. [44, p. 147]. Yet this extension is not complete. Indeed, formulas (6.33)
and (6.34) only allow for integration over real domains (and surfaces) and the superball
(and supersphere) respectively. In this section we show how our general integration
approach allows to obtain a distributional Cauchy-Pompeiu formula in superspace for
which (6.33)-(6.34) are obtained as particular cases.

We start with the following Stokes theorem in superspace.

Theorem 6.1 (Distributional Stokes Theorem, [24]). Let F,G ∈ C∞(Ω)⊗G2n ⊗
Cm,2n and α ∈ E ′⊗G(ev)

2n a distribution with compact support such that suppα ⊂ Ω ⊂ Rm.
Then, ∫

Rm|2n
(F∂x)αG+ Fα (∂xG) = −

∫
Rm|2n

F (∂xα)G. (6.35)

Proof.

The proof is based in two fundamental observations: the support of α is compact and
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the operator
∫
B
∂x̀j is identically zero. Hence, for F,G ∈ C∞(Ω)⊗G2n we have

∫
Rm

∂xj [FαG] = 0,

∫
B

∂x̀j [FαG] = 0.

But

∂x[FαG] = (∂xF )αG+ Fα(∂xG) + F (∂xα)G,

and by (3.10) we get

∂x̀[F ∗αG] = (∂x̀F
∗)αG+ F (∂x̀ αG) = −(F∂x̀)αG+ Fα(∂x̀G) + F (∂x̀ α)G,

whence,

∫
Rm|2n

(∂xF )αG+ Fα(∂xG) = −
∫
Rm|2n

F (∂xα)G, (6.36)∫
Rm|2n

−(F∂x̀)αG+ Fα(∂x̀G) = −
∫
Rm|2n

F (∂x̀ α)G. (6.37)

Subtracting (6.36) from (6.37) we get (6.35) for F,G ∈ C∞(Ω)⊗G2n. The extension to
Clifford valued functions in C∞(Ω)⊗G2n⊗Cm,2n is easily done by multiplying from the
left and from the right with the corresponding Clifford generators ej , ej̀ . �

In particular, if we take α = H(−g) with g ∈ C∞(Rm) ⊗ G
(ev)
2n being a phase function

such that {g0 ≤ 0} is compact, we obtain a Stokes formula in superspace compatible
with the notions of domain and surface integrals that we have introduced in Section 6.3.

Corollary 6.1. Let g = g0 +g ∈ C∞(Rm)⊗G
(ev)
2n be a phase function such that {g0 ≤ 0}

is compact and ∂x[g0] 6= 0 on g−1
0 (0). Then, for F,G ∈ C∞(Ω)⊗G2n ⊗ Cm,2n such that

{g0 ≤ 0} ⊂ Ω one has

∫
Rm|2n

H(−g) [(F∂x)G+ F (∂xG)] =

∫
Rm|2n

Fδ(g)∂x[g]G. (6.38)

Proof.

The support of H(−g) clearly is {g0 ≤ 0}, which is compact. Then (6.38) is the result
of substituting α = H(−g) in (6.35) and proving that ∂x[H(−g)] = −∂x[g]δ(g). Indeed,
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by (6.10) we get

∂xk [H(−g)] = ∂xk [H(−g0)] +

n∑
j=1

∂xk

[
(−g)j

j!
δ(j−1)(−g0)

]

= −δ(g0)∂xk [g0]−
n∑
j=1

[
(−g)j−1

(j − 1)!
∂xk [g]δ(j−1)(−g0) +

(−g)j

j!
δ(j)(−g0)∂xk [g0]

]

= −∂xk [g0]

n∑
j=0

(−g)j

j!
δ(j)(−g0)− ∂xk [g]

n−1∑
j=0

(−g)j

j!
δ(j)(−g0)

= −∂xk [g0]δ(g)− ∂xk [g]

(
δ(g)− gn

n!
δ(n)(g0)

)
= −∂xk [g]δ(g),

the last equality being obtained on account of the nilpotency of the element ∂xk [g] which
implies ∂xk [g]gn = 0.

Using formulae (3.10) we easily get by induction that ∂x̀k [gj ] = jgj−1∂x̀k [g]. Then,

∂x̀k [H(−g)] =

n∑
j=1

∂x̀k

[
(−g)j

j!
δ(j−1)(−g0)

]
= −

n∑
j=1

(−g)j−1

(j − 1)!
∂x̀k [g]δ(j−1)(−g0)

= −∂x̀k [g]

(
δ(g)− gn

n!
δ(n)(g0)

)
= −∂x̀k [g]δ(g).

Now, one easily concludes that ∂x[H(−g)] = −∂x[g]δ(g). �

As an immediate consequence one obtains the following Cauchy theorem for super mono-
genic functions.

Corollary 6.2 (Clifford-Cauchy theorem in superspace). Let g = g0+g ∈ C∞(Rm)⊗
G

(ev)
2n be a phase function such that {g0 ≤ 0} is compact and ∂x[g0] 6= 0 on g−1

0 (0). Then,
for every super-monogenic function G ∈ C∞(Ω) ⊗ G2n ⊗ Cm,2n such that {g0 ≤ 0} ⊂ Ω
one has ∫

Rm|2n
δ(g)∂x[g]G = 0.

In order to prove the distributional Cauchy-Pompeiu formula we need a distributional
version of the Stokes formula (6.35). We recall that two distributions in E ′ ⊗ G2n can
be multiplied if they have disjoint singular supports, see Definition 6.1 and (6.9). Going
back to the proof of the Stokes formula (6.35), we have that∫

Rm
∂xj [βαG] dVx = 0,
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and ∫
B

∂x̀j [βαG] = 0.

where α ∈ E ′⊗G(ev)
2n and β ∈ E ′⊗G2n are such that sing suppα∩sing supp β = ∅. Hence,

we can repeat the proof of Theorem 6.1 to obtain (6.35) but with F ∈ E ′ ⊗G2n ⊗ Cm,2n
satisfying sing suppα ∩ sing suppF = ∅. Applying this reasoning to (6.38), for which
we are considering α = H(−g), we immediately obtain the following consequence.

Corollary 6.3. Let g = g0 +g ∈ C∞(Rm)⊗G
(ev)
2n be a phase function such that {g0 ≤ 0}

is compact and ∂x[g0] 6= 0 on g−1
0 (0). Moreover let β ∈ E ′ ⊗G2n ⊗ Cm,2n such that

sing supp β ∩ g−1(0) = ∅.

Then, for G ∈ C∞(Ω)⊗G2n ⊗ Cm,2n such that {g0 ≤ 0} ⊂ Ω one has∫
Rm|2n

H(−g) [(β∂x)G+ β (∂xG)] =

∫
Rm|2n

βδ(g)∂x[g]G, (6.39)

where the distributional products H(−g)(β∂x), H(−g)β, βδ(g) are understood in the
sense of (6.9)-(6.8).

Proof.

It suffices to note that sing suppH(−g) = g−1
0 (0). �

In [37], the fundamental solution of the super Dirac operator ∂x was calculated to be,

ν
m|2n
1 = πn

n−1∑
k=0

22k+1k!

(n− k − 1)!
ϕ
m|0
2k+2x̀

2n−2k−1 − πn
n∑
k=0

22kk!

(n− k)!
ϕ
m|0
2k+1x̀

2n−2k, (6.40)

where ϕm|0j is the fundamental solution of ∂jx. Observe that

ν
m|0
1 (x) = −ϕm|01 (x) =

1

|Sm−1|
x

|x|m
.

The superdistribution νm|2n1 satisfies

∂xν
m|2n
1 (x) = δ(x)

πn

n!
x̀ 2n = δ(x) = ν

m|2n
1 (x)∂x,

where
δ(x) = δ(x)

πn

n!
x̀ 2n

defines the Dirac distribution on the supervector variable x and δ(x) = δ(x1) · · · δ(xm)
is the m-dimensional real Dirac distribution. It is easily seen that

〈δ(x− y), G(x)〉 =

∫
Rm|2n

δ(x− y)G(x) = G(y), (6.41)
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or equivalently, 

∫
Rm

δ(x− y)GA(x) dVx = GA(y),

πn

n!

∫
B

(x̀− ỳ)2n x̀A = ỳA,

where y = y + ỳ and G ∈ C∞(Uy)⊗G2n with Uy ⊂ Rm being a neighbourhood of y.

In (6.39) we can effectuate the substitution β = ν
m|2n
1 (x− y) with y = y + ỳ such that

g0(y) 6= 0. Indeed, it is easily seen that sing supp νm|2n1 (x − y) = {y}. In this way we
get∫

Rm|2n
δ(x− y)H(−g(x))G(x)

=

∫
Rm|2n

ν
m|2n
1 (x−y) δ(g(x)) (∂xg(x))G(x)−

∫
Rm|2n

ν
m|2n
1 (x−y)H(−g(x)) (∂xG(x)) .

(6.42)

Let us now examine the distributional product

δ(x− y)H(−g(x)) =
πn

n!
(x̀− ỳ)2n

n∑
j=0

(−g(x))j

j!
δ(x− y)δ(j−1)(−g0(x)).

It is clearly seen that sing supp δ(x − y) = {y} and sing supp δ(j−1)(−g0(x)) = g−1
0 (0),

whence, (6.8) immediately shows for g0(y) 6= 0 that

δ(x− y)δ(j−1)(−g0(x)) = 0, j = 1, . . . , n.

Thus δ(x− y)H(−g(x)) = δ(x− y)H(−g0(x)) and then, (6.41) yields∫
Rm|2n

δ(x− y)H(−g(x))G(x) =

∫
Rm|2n

δ(x− y)H(−g0(x))G(x) = H(−g0(y))G(y).

(6.43)
Substituting (6.43) into (6.42) we obtain the following distributional Cauchy-Pompeiu
formula in superspace.

Theorem 6.2 (Cauchy-Pompeiu theorem in superspace). Let g = g0 + g ∈
C∞(Rm) ⊗ G

(ev)
2n be a phase function such that {g0 ≤ 0} is compact and ∂x[g0] 6= 0

on g−1
0 (0). Then, for G ∈ C∞(Ω)⊗G2n ⊗ Cm,2n such that {g0 ≤ 0} ⊂ Ω one has∫
Rm|2n

ν
m|2n
1 (x− y) δ(g(x)) (∂xg(x))G(x)−

∫
Rm|2n

ν
m|2n
1 (x− y)H(−g(x)) (∂xG(x))

=

{
G(y), g0(y) < 0,

0, g0(y) > 0.
(6.44)
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As mentioned before, Theorem 6.2 extends and unifies the known Cauchy-Pompeiu for-
mulae (6.33) and (6.34) (see Theorems 7 and 11 in [24]). Indeed, in the particular
case g = g0, formula (6.33) immediately follows from (6.44). On the other hand, for
g(x) = −x2 − 1, formula (6.44) yields the supersphere case (6.34).

The Cauchy integral formula for super-monogenic functions then reads as follows.

Theorem 6.3 (Cauchy integral formula in superspace). Let g = g0+g ∈ C∞(Rm)⊗
G

(ev)
2n be a phase function such that {g0 ≤ 0} is compact and ∂x[g0] 6= 0 on g−1

0 (0). Then,
for every super-monogenic function G ∈ C∞(Ω) ⊗ G2n ⊗ Cm,2n such that {g0 ≤ 0} ⊂ Ω
one has ∫

Rm|2n
ν
m|2n
1 (x− y) δ(g(x)) (∂xg(x))G(x) =

{
G(y), g0(y) < 0,

0, g0(y) > 0.
(6.45)



7
Bochner-Martinelli formula in superspace

The Bochner-Martinelli integral representation constitutes a classical generalization, to
the case of several complex variables, of the Cauchy integral formula for holomorphic
functions in the complex plane. This representation reads for every holomorphic complex
function f on some bounded domain Ω ⊂ Cm, with smooth boundary ∂Ω, as

f(U) =

∫
∂Ω

f(Z) K(Z,U), U ∈ Ω, (7.1)

where K(Z,U) is the exterior differential form of type (m,m− 1) given by

K(Z,U) =
(m− 1)!

(2πi)m

m∑
j=1

(−1)j−1
zcj − ucj
|Z − U |2m

˜̂
dzcj ,

with ˜̂
dzcj = dzc1 ∧ · · · ∧ dzcj−1 ∧ dzcj+1 ∧ · · · ∧ dzcm ∧ dz1 ∧ · · · ∧ dzm and ·c denoting

the complex conjugation. The form K(Z,U) is the so-called Bochner-Martinelli kernel.
When m = 1, this kernel reduces to the Cauchy kernel (2πi)−1(z − u)−1 dz, whence
formula (7.1) reduces to the traditional Cauchy integral formula in one complex variable.
For m > 1, K(Z,U) fails to be holomorphic but it still remains harmonic, see e.g. [59].
Formula (7.1) was obtained independently and through different methods by Martinelli
and Bochner, see e.g. [58] for a detailed description. The interest for proving different
generalizations of the classical Bochner-Martinelli formula has emerged as a successful
research topic.

A second important generalization of the Cauchy integral formula is offered by Euclidean
Clifford analysis. In this framework the Clifford-Cauchy integral formula for monogenic
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functions reads

f(y) =

∫
∂Ω

ϕ
2m|0
1 (x− y)n(x) f(x) dSx, y ∈ Ω.

Observe that this representation corresponds to the pure bosonic version, i.e. n = 0, of
formula (6.45). This integral formula has been a cornerstone in the development of the
Euclidean monogenic function theory.

Both integral representations above were proven to be related when one considers Hermi-
tian Clifford analysis. Indeed, in [11] a Cauchy integral formula for Hermitian monogenic
functions was obtained in the purely bosonic case by passing to the framework of circulant
(2 × 2) matrix functions. This Hermitian Cauchy integral representation was proven to
reduce to the traditional Bochner-Martinelli formula (7.1) when considering the special
case of functions taking values in the zero-homogeneous part of complex spinor space.
This means that the theory of Hermitian monogenic functions not only refines Euclidean
Clifford analysis (and thus harmonic analysis as well), but also has strong connections
with the theory of functions of several complex variables, even encompassing some of its
results.

The main goal of this chapter is to extend the Bochner-Martinelli formula (7.1) to super-
space by exploiting the above described relation with Clifford analysis. We first address
the problem of establishing a Cauchy integral formula in the framework of Hermitian
Clifford analysis in superspace (the building blocks of which were introduced in Chapter
3). To this end, we use the general distributional approach to integration in superspace
provided in the previous chapter. Finally, we establish the connection between Hermitian
monogenicity and holomorphicity in superspace by considering an specific class of spinor
valued superfunctions (Section 7.4). As one may have expected, the obtained (super)
Hermitian Cauchy integral formula (7.29) reduces, when considering the correct projec-
tions, to a new extension of the Bochner-Martinelli formula for holomorphic functions in
superspace.

7.1 Hermitian-Stokes and Hermitian-Cauchy theorems

The aim of this section is to translate the distributional Stokes theorem 6.1 and the
Clifford-Cauchy theorem 6.2 into the Hermitian Clifford analysis framework in super-
space.

In the remainder of this chapter, we will denote by Ω some open region in R2m. As
was the case with ∂x, the notion of super-monogenicity may be naturally associated to
∂J(x) as well. Then a function F ∈ C1(Ω) ⊗ G2n ⊗ C2m,2n is called a (left) Hermitian
super-monogenic (or hs-monogenic) function if it satisfies the system

∂x[F ] = 0 = ∂J(x)[F ]

or equivalently, the system
∂Z[F ] = 0 = ∂Z† [F ].
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For further use we recall that

(Z)
2

=
(
Z†
)2

= 0, (∂Z)
2

= (∂Z†)
2

= 0,

and moreover,

∆2m|2n = −∂2
x = −∂2

J(x) = 4 {∂Z, ∂Z†} , {∂x, ∂J(x)} = 0,

where

∆2m|2n =

2m∑
j=1

∂2
xj − 4

n∑
j=1

∂x̀2j−1∂x̀2j

is the corresponding super Laplace operator. Moreover, if one defines

|Z|2 = |Z†|2 :=
{
Z,Z†

}
,

one immediately has

|Z|2 = |Z†|2 =

m∑
j=1

zjz
c
j −

i

2

n∑
j=1

z̀j z̀
c
j =

m∑
j=1

x2
j −

n∑
j=1

x̀2j−1x̀2j = |x|2 = |J(x)|2.

In Section 6.5, the theorems of Stokes and Cauchy were already formulated in terms of
the super Dirac operator ∂x. Clearly, the action of the complex structure J allows to
restate both theorems for ∂J(x), leading to their “twisted” formulations below.

Theorem 7.1 (Distributional Stokes Theorems). Let F,G ∈ C∞(Ω)⊗G2n⊗Cm,2n
and α ∈ E ′ ⊗G

(ev)
2n a distribution with compact support such that suppα ⊂ Ω. Then,∫

R2m|2n
(F∂x)αG+ Fα (∂xG) = −

∫
R2m|2n

F (∂xα)G,∫
R2m|2n

(
F∂J(x)

)
αG+ Fα

(
∂J(x)G

)
= −

∫
R2m|2n

F
(
∂J(x)α

)
G.

Corollary 7.1. Let g = g0+g ∈ C∞(R2m)⊗G(ev)
2n be a phase function such that {g0 ≤ 0}

is compact and ∂x[g0] 6= 0 on g−1
0 (0). Then, for F,G ∈ C∞(Ω)⊗G2n ⊗ Cm,2n such that

{g0 ≤ 0} ⊂ Ω one has∫
R2m|2n

H(−g) [(F∂x)G+ F (∂xG)] =

∫
R2m|2n

Fδ(g)∂x[g]G,∫
R2m|2n

H(−g)
[(
F∂J(x)

)
G+ F

(
∂J(x)G

)]
=

∫
R2m|2n

Fδ(g)∂J(x)[g]G.

Corollary 7.2 (Clifford-Cauchy theorems). Let g = g0 + g ∈ C∞(Rm) ⊗ G
(ev)
2n be

a phase function such that {g0 ≤ 0} is compact and ∂x[g0] 6= 0 on g−1
0 (0); and consider

G ∈ C∞(Ω)⊗G2n ⊗ Cm,2n with Ω such that {g0 ≤ 0} ⊂ Ω. Then,
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(i) if G is ∂x-super-monogenic, one has∫
Rm|2n

δ(g)∂x[g]G = 0.

(ii) if G is ∂J(x)-super-monogenic, one has∫
Rm|2n

δ(g)∂J(x)[g]G = 0.

Using (3.35) we easily obtain the following equivalent results in terms of the Hermitian
Dirac operators ∂Z and ∂Z† .

Corollary 7.3 (Hermitian Clifford-Stokes theorems). The following formulae hold
under the same conditions as in Theorem 7.1∫

R2m|2n
(F∂Z)αG+ Fα (∂ZG) = −

∫
R2m|2n

F (∂Zα)G, (7.2)∫
R2m|2n

(F∂Z†)αG+ Fα (∂Z†G) = −
∫
R2m|2n

F (∂Z†α)G. (7.3)

Corollary 7.4. The following formulae hold under the same conditions as in Corollary
7.1 ∫

R2m|2n
H(−g) [(F∂Z)G+ F (∂ZG)] =

∫
R2m|2n

Fδ(g)∂Z[g]G,∫
R2m|2n

H(−g) [(F∂Z†)G+ F (∂Z†G)] =

∫
R2m|2n

Fδ(g)∂Z† [g]G.

Corollary 7.5 (Hermitian Clifford-Cauchy theorems). Let g = g0+g ∈ C∞(Rm)⊗
G

(ev)
2n be a phase function such that {g0 ≤ 0} is compact and ∂x[g0] 6= 0 on g−1

0 (0). Then
for every sh-monogenic function G ∈ C∞(Ω)⊗G2n ⊗ Cm,2n such that {g0 ≤ 0} ⊂ Ω one
has ∫

R2m|2n
δ(g)∂Z[g]G = 0,

∫
R2m|2n

δ(g)∂Z† [g]G = 0.

7.2 Fundamental solutions for ∂x and ∂J(x)

In this section we provide explicit expressions for the fundamental solutions of the super
Dirac operators ∂x and ∂J(x), and perform some important computations with them.
First we need the following result, for which we consider a general bosonic dimension
m ∈ N (not necessarily even).

Theorem 7.2. If M = m − 2n /∈ −2N + 2, the fundamental solution ν
m|2n
1 given in

(6.40) has the form

ν
m|2n
1 (x) =

1

|Sm−1|2n|
x

|x|M
,
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where |Sm−1|2n| = 2πM/2

Γ(M2 )
is the surface area of the unit supersphere, see Proposition 6.12.

Proof.

We first recall that the fundamental solution of ∆k
m, where ∆m =

∑m
j=1 ∂

2
xj is the Laplace

operator in m bosonic dimensions, is given by

ν
m|0
2k (x) =

|x|2k−n

|Sm−1| 2k−1 (k − 1)!
∏k
`=1(2`−m)

=
(−1)kΓ

(
m
2 − k

)
22k πm/2 Γ(k)

|x|2k

|x|m
, (7.4)

if m− 2k /∈ −2N+ 2, see [3]. Then the above formula can be used for every k ≤ n, since
the condition m − 2n /∈ −2N + 2 directly implies m − 2k /∈ −2N + 2. Indeed, it suffices
to observe that m− 2k = m− 2n+ 2(n− k) with n− k ≥ 0.

Since ∆k+1
m = (−1)k+1∂2k+2

x we can write

ϕ
m|0
2k+2 = (−1)k+1ν

m|0
2k+2 =

Γ
(
m
2 − k − 1

)
22k+2 πm/2 Γ(k + 1)

|x|2k+2

|x|m
, k = 0, 1, . . . , n− 1, (7.5)

ϕ
m|0
2k+1 = ∂x

[
ϕ
m|0
2k+2

]
= −

Γ
(
m
2 − k

)
22k+1 πm/2 Γ(k + 1)

x |x|2k

|x|m
, k = 0, 1, . . . , n− 1. (7.6)

It is easily seen that (7.6) also holds for k = n. Indeed, writing

ϕ
m|0
2n+1 = −

Γ
(
m
2 − n

)
22n+1 πm/2 Γ(n+ 1)

x |x|2n

|x|m
,

we immediately obtain

∂x

[
ϕ
m|0
2n+1

]
=

Γ
(
m
2 − n

)
22n πm/2 Γ(n)

|x|2n

|x|m
= ϕ

m|0
2n .

This means that the above expression for ϕm|02n+1 constitutes a fundamental solution for
∂2n+1
x .

Now, substituting (7.5)-(7.6) into (6.40) we get

ν
m|2n
1 =

πn

2π
m
2

[
n−1∑
k=0

Γ
(
m
2 − k − 1

)
Γ (n− k)

|x|2(k+1)

|x|m
x̀ 2n−2k−1 +

n∑
k=0

Γ
(
m
2 − k

)
Γ (n− k + 1)

x |x|2k

|x|m
x̀ 2n−2k

]

=
1

2π
M
2

[
n∑
k=1

Γ
(
m
2 − k

)
Γ (n− k + 1)

|x|2k

|x|m
x̀ 2n−2k+1 +

n∑
k=0

Γ
(
m
2 − k

)
Γ (n− k + 1)

x |x|2k

|x|m
x̀ 2n−2k

]

=
1

2π
M
2

x

n∑
k=1

Γ
(
m
2 − k

)
Γ (n− k + 1)

|x|2k−m x̀ 2n−2k +
Γ
(
m
2

)
2π

M
2 Γ (n+ 1)

x

|x|m
x̀ 2n. (7.7)
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Recall (see (6.5)) that

1

|x|M
=
(
|x|2 − x̀ 2

)−M
2 =

n∑
j=0

x̀ 2j

j!

Γ
(
m
2 −m+ j

)
Γ
(
m
2 − n

) |x|−m+2n−2j

=
1

Γ
(
m
2 − n

) n∑
k=0

Γ
(
m
2 − k

)
Γ(n− k + 1)

|x|2k−m x̀ 2n−2k.

Substituting the later into (7.7) we obtain

ν
m|2n
1 =

1

2πM/2
x

(
Γ
(
M
2

)
|x|M

−
Γ
(
m
2

)
Γ (n+ 1)

x̀ 2n

|x|m

)
+

Γ
(
m
2

)
2πM/2 Γ (n+ 1)

x

|x|m
x̀ 2n

=
1

|Sm−1|2n|
x

|x|M
,

which completes the proof. �

If we now consider an even bosonic dimension, i.e. M = 2m − 2n, we easily obtain the
fundamental solution of ∂J(x) as shown in the next result.

Corollary 7.6. For M = 2m− 2n /∈ −2N + 2, i.e. m > n, the fundamental solutions of
∂x and ∂J(x) are given by,

ν
2m|2n
1 =

1

|S2m−1|2n|
x

|x|M
,

and
J(ν

2m|2n
1 ) =

1

|S2m−1|2n|
J(x)

|x|M
,

respectively.

7.2.1 Finite part distribution and spherical means

One of the fundamental tools used in the distributional calculus with ν2m|2n
1 and J(ν

2m|2n
1 )

is the distribution "finite part" Fp tµ+ on the real line. For a better understanding, we
give its definition and list some of its main properties.

Let µ be a real parameter, t a real variable and consider the function

tµ+ =

{
tµ, t ≥ 0,

0, t < 0.

For µ > −1 the function tµ+ is locally integrable and hence constitutes a regular distri-
bution, i.e.

〈tµ+, φ〉 =

∫ +∞

0

tµφ(t) dt, φ ∈ C∞0 (R). (7.8)
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The finite part distribution Fp tµ+ is an extension of the regular distribution tµ+ to every
value µ ∈ R. The idea of this extension is to consider only the finite part of the integral
(7.8). In this way, for −1 < µ, one easily defines

〈Fp tµ+, φ〉 := 〈tµ+, φ〉,

while for values of the parameter µ in the strip −(k + 1) < µ < −k, k ∈ N, one puts

〈Fp tµ+, φ〉 := lim
ε→0+

∫ +∞

ε

tµφ(t) dt+

k∑
j=1

φ(j−1)(0)

(j − 1)!

εµ+j

(µ+ j)

 ,

and finally, for negative entire exponents µ = −k, k ∈ N,

〈Fp tµ+, φ〉 := lim
ε→0+

∫ +∞

ε

t−kφ(t) dt+

k−1∑
j=1

φ(j−1)(0)

(j − 1)!

ε−k+j

(−k + j)

+
φ(k−1)(0)

(k − 1)!
ln(ε)

 .

The notation

Fp
∫ +∞

0

tµφ(t) dt

is often used for 〈Fp tµ+, φ〉.

Proposition 7.1. The following properties hold for Fp tµ+.

(i) tFp tµ+ = Fp tµ+1
+ , µ ∈ R,

(ii)
d

dt
Fp tµ+ =


µFp tµ−1

+ , µ /∈ −N + 1,

(−k)Fp t−k−1
+ + (−1)k

1

k!
δ(k)(t), µ = −k, k ∈ N− 1.

In order to compute finite part distributions in Rm we need the so-called generalized
spherical means, see e.g. [18, 17]. Let φ ∈ C∞0 (Rm); putting x = rw, r = |x|, we define
the generalized spherical means

Σ(0)[φ](r) =
1

|Sm−1|

∫
Sm−1

φ(rw) dSw,

Σ(1)[φ](r) = Σ(0)[wφ](r) =
1

|Sm−1|

∫
Sm−1

wφ(rw) dSw.

It is clear that

Σ(0)[φ] : R+ → C, Σ(1)[φ] : R+ → Cm,

are C∞ functions with singular support. We now list some important properties of these
spherical means. The proofs of these results can be found in [18].
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Proposition 7.2. For a test function φ ∈ C∞0 (Rm) one has

(i) Σ(0)[xφ] = rΣ(1)[φ],

(ii) Σ(1)[xφ] = −rΣ(0)[φ],

(iii) Σ(0)[∂x φ] =
(
∂r + m−1

r

)
Σ(1)[φ],

(iv) Σ(1)[∂x φ] = −∂r Σ(0)[φ],

(v)
〈
δ(r),Σ(0)[φ]

〉
= 〈δ(x), φ〉,

(vi)
〈
δ(r),Σ(1)[φ]

〉
= 0,

(vii)
〈
δ′(r),Σ(1)[φ]

〉
= 1

m

〈
∂xδ(x), φ

〉
.

We now have introduced all elements needed for computing the action of the distribution
Fp |x|λ+ on a test function φ ∈ C∞0 (Rm), i.e.〈

Fp |x|λ+, φ
〉

:= Fp
∫
Rm
|x|λ φ(x) dVx = Fp

∫ ∞
0

∫
Sm−1

rλ φ(rw)rm−1 dr dSw

= Fp
∫ ∞

0

rλ+m−1

(∫
Sm−1

φ(rw) dSw

)
dr

= |Sm−1| Fp
∫ ∞

0

rλ+m−1Σ(0)[φ](r) dr

= |Sm−1|
〈
Fp rλ+m−1

+ ,Σ(0)[φ]
〉
. (7.9)

This motivates the introduction of the following distributions (see [18, 17]):

〈Tλ, φ〉 = |Sm−1|
〈
Fp rµ+ , Σ(0)[φ]

〉
,

〈Uλ, φ〉 = |Sm−1|
〈
Fp rµ+ , Σ(1)[φ]

〉
,

where µ = λ+m− 1. In this way, one has in Rm that

Fp
|x|µ+1

|x|m
= Tλ, Fp

x |x|µ

|x|m
= Uλ. (7.10)

Indeed, the first equality directly follows from (7.9) while for the second one it suffices
to note that 〈

Fp
x |x|µ

|x|m
, φ

〉
= Fp

∫
Rm

x |x|µ

|x|m
φ(x) dVx

= Fp
∫ ∞

0

∫
Sm−1

rµ+1−m wφ(rw)rm−1 dr dSw

= Fp
∫ ∞

0

rµ
(∫

Sm−1

wφ(rw) dSw

)
dr

= |Sm−1|
〈
Fp rµ+,Σ

(1)[φ]
〉

= 〈Uλ, φ〉 .
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7.2.2 Distributional calculus for ν2m|2n
1 and J(ν

2m|2n
1 )

We are now able to compute ∂x[J(ν
2m|2n
1 )] and ∂J(x)[ν

2m|2n
1 ] with the help of the above

defined distributions.

Proposition 7.3. For m > n (i.e. M = 2(m− n) /∈ −2N + 2) it holds that

∂x[J(ν
2m|2n
1 )] =

2B

|S2m−1|2n|
Fp

1

|x|M
+

M

|S2m−1|2n|
Fp

xJ(x)

|x|M+2
+

Bb

m
δ(x), (7.11)

∂J(x)[ν
2m|2n
1 ] =

−2B

|S2m−1|2n|
Fp

1

|x|M
+

M

|S2m−1|2n|
Fp

J(x)x

|x|M+2
− Bb

m
δ(x), (7.12)

where the distribution Fp
1

|x|M+α
, α ≥ 0, is defined in superspace as

Fp
1

|x|M+α
=

1

Γ(m− n+ α
2 )

n∑
k=0

Γ(m− k + α
2 )

Γ(n− k + 1)
Fp

|x|2k

|x|2m+α
x̀ 2n−2k. (7.13)

Remark 7.1. For n=0, formulae (7.11)-(7.12) coincide with the corresponding expres-
sions in the purely bosonic case computed in [11].

Proof.

From Corollary 7.6 we have in distributional sense that

J(ν
2m|2n
1 ) =

1

|S2m−1|2n|
J(x)Fp

1

|x|M
.

Hence,

∂x[J(ν
2m|2n
1 )] =

1

|S2m−1|2n|

(
∂x

[
Fp

1

|x|M

]
J(x) + Fp

1

|x|M
∂x [J(x)]

)
=

2B

|S2m−1|2n|
Fp

1

|x|M
+

1

|S2m−1|2n|
∂x

[
Fp

1

|x|M

]
J(x). (7.14)

Using (7.10) and (7.13) we obtain,

∂x

[
Fp

1

|x|M

]
=

1

Γ(m− n)

n∑
k=0

Γ(m− k)

Γ(n− k + 1)
∂x

[
T2k−2m x̀

2n−2k
]
, (7.15)

where

∂x

[
T2k−2m x̀

2n−2k
]

= −∂x [T2k−2m] x̀ 2n−2k + T2k−2m ∂x̀

[
x̀ 2n−2k

]
.
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By Propositions 7.1 and 7.2 we now get,

〈∂x [T2k−2m] , φ〉 = −〈T2k−2m, ∂x [φ]〉 = −|S2m−1|
〈
Fp r2k−1

+ , Σ(0)
[
∂xφ

]〉
= −|S2m−1|

〈
Fp r2k−1

+ ,

(
∂r +

2m− 1

r

)
Σ(1)[φ]

〉
= |S2m−1|

〈
d

dr
Fp r2k−1

+ ,Σ(1)[φ]

〉
− |S2m−1|

〈
(2m− 1)Fp r2k−2

+ ,Σ(1)[φ]
〉

= |S2m−1|
〈

(2k − 1)Fp r2k−2
+ − δk,0δ′(r)− (2m− 1)Fp r2k−2

+ ,Σ(1)[φ]
〉

= (2k − 2m)|S2m−1|
〈
Fp r2k−2

+ , Σ(1)[φ]
〉
− δk,0|S2m−1|

〈
δ′(r) , Σ(1)[φ]

〉
= (2k − 2m) 〈U2k−2m−1 , φ〉 −

δk,0|S2m−1|
2m

〈
∂xδ(x) , φ

〉
=

〈
(2k − 2m)U2k−2m−1 −

δk,0|S2m−1|
2m

∂xδ(x) , φ

〉
,

or equivalently,

∂x [T2k−2m] = (2k − 2m)U2k−2m−1 −
δk,0|S2m−1|

2m
∂xδ(x).

Moreover,

∂x̀

[
x̀ 2n−2k

]
= 2(n− k)x̀ 2n−2k−1, k = 0, 1, . . . , n,

where we are formally1 defining 0x̀−1 := 0 in the case k = n. Hence we conclude that

∂x

[
T2k−2m x̀

2n−2k
]

= 2(m− k)U2k−2m−1 x̀
2n−2k + 2(n− k)T2k−2m x̀

2n−2k−1 +
δk,0|S2m−1|

2m
∂xδ(x) x̀ 2n.

(7.16)

Substituting this into (7.15) we obtain,

∂x

[
Fp

1

|x|M

]
=

1

Γ(m− n)

n∑
k=0

2Γ(m− k)

Γ(n− k + 1)

[
(m− k)U2k−2m−1 x̀

2n−2k + (n− k)T2k−2m x̀
2n−2k−1

]
+

Γ(m)

Γ(m− n)Γ(n+ 1)

|S2m−1|
2m

∂xδ(x) x̀ 2n

1We recall that the element x̀−1 does not exist due to the nilpotency of x̀.
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which yields

∂x

[
Fp

1

|x|M

]
=

2

Γ(m− n)

[
n∑
k=0

Γ(m− k + 1)

Γ(n− k + 1)
U2k−2m−1 x̀

2n−2k +

n−1∑
k=0

Γ(m− k)

Γ(n− k)
T2k−2m x̀

2n−2k−1

]

+
πm

mΓ(m− n)Γ(n+ 1)
∂xδ(x) x̀ 2n

=
2

Γ(m− n)

[
n∑
k=0

Γ(m− k + 1)

Γ(n− k + 1)
U2k−2m−1 x̀

2n−2k+

n∑
k=1

Γ(m− k + 1)

Γ(n− k + 1)
T2k−2−2m x̀

2n−2k+1

]

+
πm

mΓ(m− n)Γ(n+ 1)
∂xδ(x) x̀ 2n

=
2

Γ(m− n)

n∑
k=1

Γ(m− k + 1)

Γ(n− k + 1)

(
Fp

x|x|2k−2

|x|2m
+ Fp

x̀|x|2k−2

|x|2m

)
x̀ 2n−2k

+
2Γ(m+ 1)

Γ(m− n)Γ(n+ 1)
U−2m−1 x̀

2n +
πm

mΓ(m− n)Γ(n+ 1)
∂xδ(x) x̀ 2n

=
2x

Γ(m− n)

n∑
k=1

(
Γ(m− k + 1)

Γ(n− k + 1)
Fp

|x|2k

|x|2m+2
x̀ 2n−2k

)
+

2Γ(m+ 1)

Γ(m− n)Γ(n+ 1)
U−2m−1 x̀

2n

+
πm

mΓ(m− n)Γ(n+ 1)
∂xδ(x) x̀ 2n.

Then from (7.13) we get,

∂x

[
Fp

1

|x|M

]
=

2x

Γ(m− n)

[
Γ(m− n+ 1)Fp

1

|x|M+2
− Γ(m+ 1)

Γ(n+ 1)
Fp

1

|x|2m+2
x̀ 2n

]
+

2Γ(m+ 1)

Γ(m− n)Γ(n+ 1)
U−2m−1 x̀

2n +
πm

mΓ(m− n)Γ(n+ 1)
∂xδ(x) x̀ 2n

= 2(m− n)Fp
x

|x|M+2
+

πm

mΓ(m− n)Γ(n+ 1)
∂xδ(x) x̀ 2n (7.17)

Substitution of (7.17) into (7.14) yields

∂x[J(ν
2m|2n
1 )]

=
1

|S2m−1|2n|

(
2BFp

1

|x|M
+ M Fp

xJ(x)

|x|M+2
+

πm

mΓ(m− n)Γ(n+ 1)
∂xδ(x) J(x) x̀ 2n

)
.

(7.18)

Observe now that, for any complex valued test function φ, one has〈
∂xδ(x) J(x), φ

〉
= −

〈
δ(x) , ∂x [J(x)φ]

〉
= −

〈
δ(x) ,−2Bbφ+ ∂x [φ] J(x)

〉
= 〈2Bbδ(x) , φ〉 ,
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which implies that
∂xδ(x) J(x) = 2Bbδ(x).

Hence, since

δ(x) = δ(x)
πn

n!
x̀ 2n,

we obtain,

πm

mΓ(m− n)Γ(n+ 1)
∂xδ(x) J(x) x̀ 2n =

2πm

mΓ(M2 )n!
Bbδ(x)x̀ 2n =

|S2m−1|2n|
m

Bbδ(x).

Finally, substituting the later into (7.18) we obtain (7.11). Formula (7.12) easily follows
from applying J to both sides of (7.11) and using the properties J2[ν

2m|2n
1 ] = −ν2m|2n

1

and J(B) = B. �

7.2.3 Hermitian counterparts of ν2m|2n
1 and J(ν

2m|2n
1 )

Similarly as above, we introduce the following Hermitian counterparts to the pair of
fundamental solutions (ν

2m|2n
1 ,J(ν

2m|2n
1 )), for m > n:

Ψ
m|n
1 = ν

2m|2n
1 + iJ(ν

2m|2n
1 ), Ψ

m|n
1

†
= −

(
ν

2m|2n
1 − iJ(ν

2m|2n
1 )

)
,

or equivalently,

Ψ
m|n
1 (Z) =

2

|S2m−1|2n|
Z

|Z|M
, Ψ

m|n
1

†
(Z) =

2

|S2m−1|2n|
Z†

|Z|M
,

where we recall that |Z| = |x|. As in the purely bosonic case, see e.g. [11], Ψ
m|n
1 and

Ψ
m|n
1

†
are not the fundamental solutions of the Hermitian super Dirac operators ∂Z and

∂Z† . Indeed, from (7.11)-(7.12) one obtains the following results.

Proposition 7.4.

∂ZΨ
m|n
1 =

m+ iBb

2m
δ(x) +

M
2 + iB

|S2m−1|2n|
Fp

1

|x|M
− M

|S2m−1|2n|
Fp

Z†Z

|x|M+2
= Ψ

m|n
1

†
∂Z† ,

(7.19)

∂Z†Ψ
m|n
1 = 0 = Ψ

m|n
1

†
∂Z, (7.20)

∂ZΨ
m|n
1

†
= 0 = Ψ

m|n
1 ∂Z† ,

∂Z†Ψ
m|n
1

†
=
m− iBb

2m
δ(x)−

M
2 + iB

|S2m−1|2n|
Fp

1

|x|M
+

M

|S2m−1|2n|
Fp

Z†Z

|x|M+2
= Ψ

m|n
1 ∂Z.
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Proof.

We will only prove the left equalities in (7.19) and (7.20) since the remaining ones can
be proven along similar lines. We first observe that

∂ZΨ
m|n
1 =

1

4

(
∂x − i∂J(x)

) (
ν

2m|2n
1 + iJ(ν

2m|2n
1 )

)
=

1

4

[(
∂xν

2m|2n
1 + ∂J(x)J(ν

2m|2n
1 )

)
+ i
(
∂xJ(ν

2m|2n
1 )− ∂J(x)ν

2m|2n
1

)]
=

1

4

[
2δ(x) + i

(
4B

|S2m−1|2n|
Fp

1

|x|M
+

2M

|S2m−1|2n|
Fp

xJ(x)

|x|M+2
+

2Bb

m
δ(x)

)]
=
m+ iBb

2m
δ(x) +

iB

|S2m−1|2n|
Fp

1

|x|M
+

iM

2|S2m−1|2n|
Fp

xJ(x)

|x|M+2
.

On the other hand it can be easily proven that

xJ(x) = −i|x|2 + 2iZ†Z.

Substituting this result into the above formula, we get (7.19). For (7.20) it suffices to
note that

∂Z†Ψ
m|n
1 = −1

4

(
∂x + i∂J(x)

) (
ν

2m|2n
1 + iJ(ν

2m|2n
1 )

)
= −1

4

[(
∂xν

2m|2n
1 − ∂J(x)J(ν

2m|2n
1 )

)
+ i
(
∂xJ(ν

2m|2n
1 ) + ∂J(x)ν

2m|2n
1

)]
= 0,

which completes the proof. �

Proposition 7.4 shows that the functions Ψ
m|n
1 and Ψ

m|n
1

†
are not hs-monogenic. Nev-

ertheless, they can be combined in a (2 × 2) circulant matrix in order to obtain the
Hermitian Cauchy formulae in superspace. This approach is inspired by the one used in
the purely bosonic case, see e.g. [11, 62].

Theorem 7.3. Introducing the particular circulant (2× 2) matrices 2

D(Z,Z†) =

(
∂Z ∂Z†
∂Z† ∂Z

)
, Ψ

m|n
2×2 =

(
Ψ
m|n
1 Ψ

m|n
1

†

Ψ
m|n
1

†
Ψ
m|n
1

)
, δ := δI2 =

(
δ 0
0 δ

)
,

one obtains that
D(Z,Z†) Ψ

m|n
2×2(Z) = δ(x) = Ψ

m|n
2×2(Z) D(Z,Z†).

7.3 Hermitian Cauchy-Pompeiu formula in superspace

Theorem 7.3 means that Ψ
m|n
2×2 may be considered as a fundamental solution of D(Z,Z†) in

the above-introduced matrix context. This observation is crucial for the matrix approach
2I2 denotes the identity matrix of order (2× 2).
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used in Hermitian Clifford analysis to arrive at a Cauchy integral formula. Moreover, it
is remarkable that the Dirac matrix D(Z,Z†) factorizes in some sense the Laplacian, i.e.

D(Z,Z†)

(
D(Z,Z†)

)†
=

1

4

(
∆2m|2n 0

0 ∆2m|2n

)
,

with (
D(Z,Z†)

)†
=

(
∂Z† ∂Z
∂Z ∂Z†

)
.

Thus, in the same setting, we associate, with every pair of Clifford-valued superfunctions
G1, G2 ∈ C∞(Ω)⊗G2n ⊗ C2m,2n, the matrix function

G1
2 =

(
G1 G2

G2 G1

)
. (7.21)

Definition 7.1. The matrix function G1
2 is said to be (left) SH-monogenic if

D(Z,Z†)G
1
2 = 0,

where 0 denotes the matrix with zero entries.

The above definition for SH-monogenicity explicitly reads{
∂Z[G1] + ∂Z† [G2] = 0,

∂Z[G2] + ∂Z† [G1] = 0.

When considering in particular G1 = G and G2 = G†, the SH-monogenicity of the
corresponding matrix function

G =

(
G G†

G† G

)
does not imply, in general, the sh-monogenicity of G and vice versa. As a clear example
to illustrate this consider the matrix G = Ψ

m|n
2×2, i.e. G = Ψ

m|n
1 . An important exception

to this general remark occurs in the case of Grassmann-valued functions. Indeed, if
G ∈ C∞(Ω)⊗G2n one has

∂Z[G] + ∂Z† [G
†] =

m∑
j=1

(
f†j ∂zj [G] + fj ∂zcj [G

c]
)

+ 2i

n∑
j=1

(
fj̀
† ∂z̀j [G]− fj̀ ∂z̀cj [G

c]
)
,

∂Z[G†] + ∂Z† [G] =

m∑
j=1

(
f†j ∂zj [G

c] + fj ∂zcj [G]
)

+ 2i

n∑
j=1

(
fj̀
† ∂z̀j [G

c]− fj̀ ∂z̀cj [G]
)
.

Hence, in this case the SH-monogenicity of G is equivalent to{
∂zj [G] = ∂zcj [G] = 0, j = 1, . . . ,m,

∂z̀j [G] = ∂z̀cj [G] = 0, j = 1, . . . , n,
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which can be re-written as
∂Z[G] = 0 = ∂Z† [G].

Another important case occurs when considering the matrix function

G0 = GI2 =

(
G 0
0 G

)
with G ∈ C∞(Ω) ⊗ G2n ⊗ C2m,2n. Also in this case the SH-monogenicity of G0 is
equivalent to the sh-monogenicity of G. It suffices to note that

D(Z,Z†)G0 =

(
∂Z[G] ∂Z† [G]
∂Z† [G] ∂Z[G]

)
.

We are now in condition to reformulate the Hermitian-Stokes theorem given in Corollary
7.3, in a matrix form. The proof easily follows by taking deliberate combinations of the
formulae (7.2)-(7.3).

Theorem 7.4. Let F 1
2 and G1

2 be a pair of matrix functions of the form (7.21) with
entries in C∞(Ω) ⊗ G2n ⊗ C2m,2n. Let moreover α and β be distributions in E ′ ⊗ G

(ev)
2n

and consider the circulant matrix distribution

Σ =

(
α β
β α

)
such that suppΣ := suppα ∪ supp β is a subset of Ω. It then holds that∫

R2m|2n

(
F 1

2 D(Z,Z†)

)
ΣG1

2 + F 1
2 Σ

(
D(Z,Z†)G

1
2

)
= −

∫
R2m|2n

F 1
2

(
D(Z,Z†)Σ

)
G1

2. (7.22)

Considering now a phase function g = g0 + g ∈ C∞(R2m)⊗G
(ev)
2n such that the real set

{g0 ≤ 0} ⊂ Ω is compact and ∂x[g0] 6= 0 on g−1
0 (0), the corresponding matrix distribution

Σ = H(−g)I2 =

(
H(−g) 0

0 H(−g)

)
(7.23)

is a commuting matrix satisfying

D(Z,Z†)Σ = −δ(g)

(
∂Z[g] ∂Z† [g]
∂Z† [g] ∂Z[g]

)
= −δ(g)D(Z,Z†)[g].

Hence formula (7.22) takes the following form, when substituting (7.23):∫
R2m|2n

H(−g)
[(
F 1

2 D(Z,Z†)

)
G1

2 + F 1
2

(
D(Z,Z†)G

1
2

)]
=

∫
R2m|2n

F 1
2 δ(g)D(Z,Z†)[g]G1

2. (7.24)

In order to prove the Hermitian Cauchy-Pompeiu formula in superspace we proceed as
in the previous chapter. We first observe that in (7.22) the matrix function F 1

2 can be
replaced by any matrix distribution

Υ =

(
γ σ
σ γ

)
, γ, σ ∈ E ′ ⊗G2n ⊗ C2m,2n, (7.25)
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such that the sets
sing suppΥ := sing supp γ ∪ sing supp σ,

and
sing suppΣ := sing suppα ∪ sing supp β,

are disjoint. Under these conditions, (7.22) can be proven for F 1
2 = Υ by taking deliber-

ate combinations of (7.2)-(7.3) with F = γ and F = σ. We recall that these substitutions
are possible since distributions with disjoint singular supports can be multiplied and the
Leibniz rule remains valid for such a product, see (6.8) and (6.9). Applying this reasoning
to (7.24), for which we are taking Σ = H(−g)I2, we immediately obtain the following
Hermitian analogue of Corollary 6.3.

Corollary 7.7. Let G1
2 be a matrix function of the form (7.21) with entries in C∞(Ω)⊗

G2n ⊗ C2m,2n. Let g = g0 + g ∈ C∞(R2m) ⊗ G
(ev)
2n be a phase function such that {g0 ≤

0} ⊂ Ω is compact and ∂x[g0] 6= 0 on g−1
0 (0), and let Υ be a matrix distribution of the

form (7.25) such that
sing suppΥ ∩ g−1(0) = ∅.

It then holds that∫
R2m|2n

H(−g)
[(

ΥD(Z,Z†)

)
G1

2 + Υ
(
D(Z,Z†)G

1
2

)]
=

∫
R2m|2n

Υ δ(g)D(Z,Z†)[g]G1
2, (7.26)

where the distributional products H(−g)
(
ΥD(Z,Z†)

)
, H(−g)Υ and Υδ(g) are to be un-

derstood in the sense of (6.8) and (6.9).

Proof.

It suffices to note that sing suppH(−g) = g−1(0). �

Let us now consider the supervector y = y + ỳ, its Hermitian counterparts

U =
1

2
(y + iJ(y)), U† = −1

2
(y − iJ(y)),

and the matrix distribution

Ψ
m|n
2×2(Z−U) =

(
Ψ
m|n
1 (Z−U) Ψ

m|n
1

†
(Z−U)

Ψ
m|n
1

†
(Z−U) Ψ

m|n
1 (Z−U)

)
,

where we recall that

Ψ
m|n
1 (Z−U) =

2

|S2m−1|2n|
Z−U

|Z−U|M
, Ψ

m|n
1

†
(Z−U) =

2

|S2m−1|2n|
Z† −U†

|Z−U|M
.

The following Hermitian Cauchy-Pompeiu formula in superspace then is established.
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Theorem 7.5 (Hermitian Cauchy-Pompeiu formula in superspace). Let G1
2 be

a matrix function of the form (7.21) with entries in C∞(Ω) ⊗ G2n ⊗ C2m,2n, and let
g = g0 + g ∈ C∞(R2m) ⊗ G

(ev)
2n be a phase function such that {g0 ≤ 0} ⊂ Ω is compact

and ∂x[g0] 6= 0 on g−1
0 (0). It then holds that∫

R2m|2n
Ψ
m|n
2×2(Z−U) δ(g(x))D(Z,Z†)[g(x)]G1

2(x)

−
∫
R2m|2n

H(−g(x)) Ψ
m|n
2×2(Z−U)

(
D(Z,Z†)G

1
2(x)

)
=

{
G1

2(y), g0(y) < 0,

0, g0(y) > 0.
(7.27)

Proof.

The outline of this proof is very similar to the one of Theorem 6.2. It is easily seen that
Ψ
m|n
2×2(Z−U) is a matrix distribution in the variable Z with singular support {y}. Hence,

for g0(y) 6= 0 we have that

sing suppH(−g(x)) ∩ sing supp Ψ
m|n
2×2(Z−U) = ∅.

This means that one can take Υ = Ψ
m|n
2×2(Z−U) in (7.26). From Theorem 7.3 it follows

that
δ(x− y) = Ψ

m|n
2×2(Z−U) D(Z,Z†),

leading to∫
R2m|2n

H(−g(x)) δ(x− y)G1
2(x)

=

∫
R2m|2n

Ψ
m|n
2×2(Z−U) δ(g(x))D(Z,Z†)[g(x)]G1

2(x)

−
∫
R2m|2n

H(−g(x)) Ψ
m|n
2×2(Z−U)

(
D(Z,Z†)G

1
2(x)

)
. (7.28)

In Section 6.5, it was proven that

δ(x− y)H(−g(x)) = δ(x− y)H(−g0(x)).

Then formula (6.41) yields∫
R2m|2n

δ(x−y)H(−g(x))G1
2(x) =

∫
R2m|2n

δ(x−y)H(−g0(x))G1
2(x) = H(−g0(y))G1

2(y).

Substitution of the later in (7.28) gives the desired result (7.27). �

This theorem now leads to the following Hermitian Cauchy integral formulae in super-
space.
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Corollary 7.8. If the matrix function G1
2 is SH-monogenic then,∫

Rm|2n
Ψ
m|n
2×2(Z−U) δ(g(x))D(Z,Z†)[g(x)]G1

2(x) =

{
G1

2(y), g0(y) < 0,

0, g0(y) > 0.

Corollary 7.9. If the function G is sh-monogenic then,∫
Rm|2n

Ψ
m|n
2×2(Z−U) δ(g(x))D(Z,Z†)[g(x)]G0(x) =

{
G0(y), g0(y) < 0,

0, g0(y) > 0.
(7.29)

The above result may be considered as a Hermitian Cauchy integral theorem for the sh-
monogenic function G. For n = 0 the above result becomes the purely bosonic Hermitian
Cauchy integral representation. The study of its boundary limits leads to Hermitian
Clifford-Hardy spaces and to a Hermitian Hilbert transform, see e.g. [10].

Remark 7.2. The second summand at the left hand side of formula (7.27) is the well-
known Téodorescu transform, which is denoted by

TgG
1
2(y) = −

∫
R2m|2n

H(−g(x)) Ψ
m|n
2×2(Z−U)G1

2(x).

This operator constitutes a right inverse to the Dirac operator. Indeed, using Theorem
7.3 and (6.41) one easily obtains

D(U,U†)TgG
1
2(y) =

∫
R2m|2n

H(−g(x))δ(x− y)G1
2(x) =

{
G1

2(y), g0(y) < 0,

0, g0(y) > 0.

The combination of the above inversion formula with the Hermitian Cauchy-Pompeiu
Theorem 7.5, yields a Hermitian Koppelman formula in superspace, see e.g. [13]. This
formula reads as follows for g0(y) < 0:∫

Rm|2n
Ψ
m|n
2×2(Z−U) δ(g(x))D(Z,Z†)[g(x)]G1

2(x) + TgD(Z,Z†)G
1
2(y) + D(U,U†)TgG

1
2(y)

= 2G1
2(y).

7.4 Integral formulae for holomorphic functions in su-
perspace

7.4.1 Holomorphicity in superspace and sh-monogenicity

Every superfunction F (x) ∈ C∞(Ω) ⊗ G2n, Ω ⊂ R2m, can be written in terms of the
Hermitian supervector variables Z and Z† as

F (Z,Z†) =
∑

A,B⊂{1,...,n}

FA,B(Z,Z†)Z`
A Z

c̀

B , FA,B ∈ C∞(Ω), (7.30)
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where

Z`
A = z̀j1 · · · z̀jk , A = {j1, . . . , jk}, 1 ≤ j1 < . . . < jk ≤ n,

Z
c̀

B = z̀c`1 · · · z̀
c
`s , B = {`1, . . . , `s}, 1 ≤ `1 < . . . < `s ≤ n.

The notion of a holomorphic function in the purely bosonic case then naturally extends
to superfunctions.

Definition 7.2. A superfunction F (Z,Z†) of the form (7.30) is said to be holomorphic
in the bosonic and fermionic complex variables z1, . . . , zm, z̀1, . . . , z̀n if

∂zcj [F ] = ∂z̀ck [F ] = 0, j = 1, . . . ,m, k = 1 . . . , n.

This holomorphicity condition is equivalent to saying that the function F does not depend
on the conjugate variables zc1, . . . , zcm, z̀

c
1, . . . , z̀

c
n, i.e.

F (Z,Z†) = F (Z) =
∑

A⊂{1,...,n}

FA(Z)Z`
A.

Let us now connect this holomorphicity notion in superspace with sh-monogenicity. To
that end we start by introducing the classical primitive idempotent

Ib = f†1f1 · · · f†mfm,

where

f†jfj =
1

2
(1 + iejem+j), j = 1, . . . ,m.

This idempotent clearly satisfies ejIb = −iem+jIb or equivalently f†jIb = 0.

A similar element to Ib can be constructed in terms of the symplectic generators èj ’s.
We first recall that the elements è2j−1, è2j can be identified with the following operators
when acting on the corresponding spinor space:

è2j−1 → e2m+1 ∂aj , è2j → −e2m+1 aj ,

where a1, . . . , an are commuting variables and e2m+1 is an additional orthogonal Clifford
generator, see e.g. [68, 23] and Remark 3.4. In the remainder of this chapter, we will
consider the above-given identification. We then need to find an element If similar to Ib
in the spinor space that consists of all smooth functions in the variables a1, . . . , an. This
element If has to satisfy the key property

è2j−1If = −iè2jIf , or equivalently, ∂ajIf = iaj If .

Such a function is given by

If = exp

 i

2

n∑
j=1

a2
j

 ,
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which clearly is a null solution of the operator fj̀†, i.e.

fj̀
†If = −1

2
(è2j−1 + iè2j) If = −e2m+1

2

(
∂aj − iaj

)
[If ] = 0.

Proposition 7.5. A superfunction F ∈ C∞(Ω) ⊗ G2n is holomorphic in the variables
z1, . . . , zm, z̀1, . . . , z̀n if and only if the spinor-valued function FIbIf is sh-monogenic.

Proof.

We first observe that

∂Z[FIbIf ] =

m∑
j=1

∂zj [F ] f†j IbIf + 2i

n∑
j=1

∂z̀j [F ] fj̀
† IbIf = 0,

while on the other hand,

∂Z† [FIbIf ] =

m∑
j=1

∂zcj [F ] fj IbIf − 2i

n∑
j=1

∂z̀cj [F ] fj̀ IbIf , (7.31)

whence it is clear that holomorphicity for F implies sh-monogenicity for FIbIf .

Assume now that FIbIf is sh-monogenic. In order to prove that F is holomorphic,
it suffices to show that all the elements fj IbIf , fk̀ IbIf are linearly independent when
considering coefficients in C∞(Ω)⊗G2n, see (7.31).

We have,

fj Ib = f†1f1 · · ·
(
fjf
†
j

)
fj · · · f†mfm

= f†1f1 · · ·
(

1− f†jfj

)
fj · · · f†mfm

= f†1f1 · · · f
†
j−1fj−1 fj f

†
j+1fj+1 · · · f†mfm,

yielding,
f†kfjIb = δk,jIb. (7.32)

Moreover,

fj̀IbIf = Ibfj̀If = Ib
e2m+1

2
(∂aj + iaj) exp

 i

2

n∑
j=1

a2
j

 = Ibe2m+1iaj exp

 i

2

n∑
j=1

a2
j

 .

Hence, taking into account (7.31), the sh-monogenicity of FIbIf reduces to m∑
j=1

∂zcj [F ] fj Ib − 2i

n∑
j=1

∂z̀cj [F ] Ibe2m+1iaj

 exp

 i

2

n∑
j=1

a2
j

 = 0,
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implying
m∑
j=1

∂zcj [F ] fj Ib − 2i

n∑
j=1

∂z̀cj [F ] Ibe2m+1iaj = 0.

Multiplying the above expression from the left by f†k we get, on account of (7.32), that
∂zck [F ] Ib = 0. This directly implies that ∂zck [F ] = 0 for every k = 1, . . . ,m, whence the
previous equality reduces to

n∑
j=1

∂z̀cj [F ] Ibe2m+1iaj = 0.

Finally, by taking ak = 1 and aj = 0 (j 6= k) we obtain ∂z̀ck [F ] = 0 for every k = 1, . . . , n.
�

7.4.2 Bochner-Martinelli theorem for holomorphic superfunctions

The above result shows that considering functions of the form FIbIf establishes a con-
nection between Hermitian monogenicity and holomorphic functions in superspace. In
this section, we investigate the nature of the Hermitian Cauchy integral formula obtained
in Corollary 7.9 for this type of functions.

To this end, we will explicitly compute the left-hand side of (7.29), taking G = FIbIf
where F (Z) =

∑
A FA(Z)Z`

A is a holomorphic function. We first obtain,

D(Z,Z†)[g(x)]G0(x) =

(
∂Z[g(x)] ∗
∂Z† [g(x)] ∗

)(
F (Z)IbIf ∗

0 ∗

)
=

(
∂Z[g(x)]F (Z)IbIf ∗
∂Z† [g(x)]F (Z)IbIf ∗

)
,

where the second columns have not been written, since they only duplicate the first ones
(in reversed order) on account of the circulant structure of the involved matrices. Further
calculation yields,

∂Z[g(x)]F (Z)IbIf =

m∑
j=1

∂zj [g(x)]F (Z) (f†j Ib)If + 2i

n∑
j=1

∂z̀j [g(x)]F (Z) Ib (fj̀
† If ) = 0,

and as a consequence,

D(Z,Z†)[g]G0(x) =

(
0 ∗

∂Z† [g]FIbIf ∗

)
.
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Hence

Ψ
m|n
2×2(Z−U) δ(g(x))D(Z,Z†)[g(x)]G0(x)

=

(
Ψ
m|n
1 (Z−U) ∗

Ψ
m|n
1

†
(Z−U) ∗

)(
0 ∗

δ(g(x)) ∂Z† [g(x)] F (Z)IbIf ∗

)

=

(
Ψ
m|n
1

†
(Z−U)δ(g(x)) ∂Z† [g(x)] F (Z)IbIf ∗

Ψ
m|n
1 (Z−U) δ(g(x)) ∂Z† [g(x)] F (Z)IbIf ∗

)
.

Denoting the even element |Z−U| = ρ we compute

Ψ
m|n
1

†
(Z−U)δ(g(x)) ∂Z† [g(x)]

=
2δ(g(x))

|S2m−1|2n|ρM
[
(Z − U)

†
∂Z† [g(x)]+(Z − U)

†
∂Z̀† [g(x)]

]
+

2δ(g(x))

|S2m−1|2n|ρM

[(
Z`− U

)̀†
∂Z̀† [g(x)]+

(
Z`− U

)̀†
∂Z† [g(x)]

]
.

We now consider each term in the previous sum separately, obtaining

(Z − U)† ∂Z† [g(x)] =

(
m∑

j=1

(zj − uj)
c f†j

)(
m∑

k=1

fk ∂zc
k
[g(x)]

)

= −
∑
j 6=k

(zj − uj)
c ∂zc

k
[g(x)] fkf

†
j +

m∑
j=1

(zj − uj)
c ∂zcj [g(x)] (1− fjf

†
j),

(Z − U)† ∂
Z †̀ [g(x)] = −2i

(
m∑

j=1

(zj − uj)
c f†j

)(
n∑

k=1

fk̀ ∂z̀c
k
[g(x)]

)
= 2i

∑
1≤j≤m
1≤k≤n

(zj − uj)
c ∂z̀c

k
[g(x)] fk̀ f

†
j ,

(
Z`− U

)̀†
∂
Z †̀ [g(x)] = −2i

(
n∑

j=1

(z̀j − ùj)
c fj̀
†

)(
n∑

k=1

fk̀ ∂z̀c
k
[g(x)]

)

= −2i
∑
j 6=k

(z̀j − ùj)
c ∂z̀c

k
[g(x)] fk̀ fj̀

† − 2i

n∑
j=1

(z̀j − ùj)
c ∂z̀cj [g(x)]

(
i

2
+ fj̀ fj̀

†
)
,

(
Z`− U

)̀†
∂Z† [g(x)] =

(
n∑

j=1

(z̀j − ùj)
c fj̀
†

)(
m∑

k=1

fk ∂zc
k
[g(x)]

)
= −

∑
1≤j≤n
1≤k≤m

(z̀j − ùj)
c ∂zc

k
[g(x)] fkfj̀

†.
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This yields,

(Z − U)
†
∂Z† [g(x)]F (Z)IbIf =

m∑
j=1

(zj − uj)c ∂zcj [g(x)]F (Z)IbIf ,

(Z − U)
†
∂Z̀† [g(x)]F (Z)IbIf = 0,(

Z`− U
)̀†
∂Z̀† [g(x)]F (Z)IbIf =

n∑
j=1

(z̀j − ùj)c ∂z̀cj [g(x)]F (Z)IbIf ,

(
Z`− U

)̀†
∂Z† [g(x)]F (Z)IbIf = 0.

Hence we obtain

Ψ
m|n
1

†
(Z−U)δ(g(x)) ∂Z† [g(x)]F (Z)IbIf

=
2δ(g(x))

|S2m−1|2n|ρM

 m∑
j=1

(zj − uj)c ∂zcj [g(x)] +

n∑
j=1

(z̀j − ùj)c ∂z̀cj [g(x)]

 F (Z)IbIf

=
2δ(g(x))

|S2m−1|2n|ρM
D†Z−U,Z[g(x)]F (Z)IbIf ,

where the differential operator

D†Z−U,Z =

m∑
j=1

(zj − uj)c ∂zcj +

n∑
j=1

(z̀j − ùj)c ∂z̀cj =
{
∂†Z, (Z−U)†

}
− 1

2

(
M

2
− iB

)

is the Hermitian directional derivative with respect to Z† in the direction (Z − U)†

introduced in Chapter 3.

Thus, the Hermitian Cauchy integral formula (7.29) for g0(y) < 0 yields the following
two statements:

2

|S2m−1|2n|

∫
R2m|2n

δ(g(x))

|Z−U|M
D†Z−U,Z[g(x)]F (Z)IbIf = F (U)IbIf ,

2

|S2m−1|2n|

∫
R2m|2n

δ(g(x))

|Z−U|M
(Z−U) ∂Z† [g(x)]F (Z)IbIf = 0. (7.33)

The first one leads to the following integral representation of holomorphic superfunctions.

Theorem 7.6 (Bochner-Martinelli formula in superspace). Let F (Z) ∈ C∞(Ω)⊗
G2n be a holomorphic function in the variables z1 . . . , zm, z̀1, . . . , z̀n, (m > n), and let
g = g0 + g ∈ C∞(R2m) ⊗ G

(ev)
2n be a phase function such that {g0 ≤ 0} ⊂ Ω is compact

and ∂x[g0] 6= 0 on g−1
0 (0). It then follows for g0(y) < 0 that

2

|S2m−1|2n|

∫
R2m|2n

δ(g(x))

|Z−U|M
D†Z−U,Z[g(x)]F (Z) = F (U). (7.34)
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Remark 7.3. The above theorem indeed constitutes an extension of the classical Bochner-
Martinelli formula to superspace. In the next section it will be shown that (7.34) reduces
to (7.1) when n = 0.

On the other hand, the second statement yields the following result.

Theorem 7.7. Under the same conditions as in Theorem 7.6 one has

∫
R2m|2n

δ(g(x))
zj − uj
|Z−U|M

∂zck [g(x)]F (Z) =

∫
R2m|2n

δ(g(x))
zk − uk
|Z−U|M

∂zcj [g(x)]F (Z),

−2i

∫
R2m|2n

δ(g(x))
zj − uj
|Z−U|M

∂z̀ck [g(x)]F (Z) =

∫
R2m|2n

δ(g(x))
z̀k − ùk
|Z−U|M

∂zcj [g(x)]F (Z),∫
R2m|2n

δ(g(x))
z̀j − ùj
|Z−U|M

∂z̀ck [g(x)]F (Z) = −
∫
R2m|2n

δ(g(x))
z̀k − ùk
|Z−U|M

∂z̀cj [g(x)]F (Z).

Proof.

The proof directly follows from expanding expression (7.33). We have,

(Z−U) ∂Z† [g(x)] = (Z − U) ∂Z† [g(x)] + (Z − U) ∂Z̀† [g(x)]

+
(
Z`− U

)̀
∂Z† [g(x)] +

(
Z`− U

)̀
∂Z̀† [g(x)],

where

(Z − U) ∂Z† [g(x)] =

(
m∑

j=1

(zj − uj) fj

)(
m∑

k=1

fk ∂zc
k
[g(x)]

)
=

∑
j 6=k

(zj − uj) ∂zc
k
[g(x)] fjfk,

(Z − U) ∂
Z̀† [g(x)] = −2i

(
m∑

j=1

(zj − uj) fj

)(
n∑

k=1

fk̀ ∂z̀c
k
[g(x)]

)
= −2i

∑
1≤j≤m
1≤k≤n

(zj − uj) ∂z̀c
k
[g(x)] fjfk̀,

(
Z`− U

)̀
∂Z† [g(x)] =

(
n∑

k=1

(z̀k − ùk) fk̀

)(
m∑

j=1

fj ∂zcj [g(x)]

)
=

∑
1≤j≤m
1≤k≤n

(z̀k − ùk) ∂zcj [g(x)] fk̀ fj ,

(
Z`− U

)̀
∂
Z̀† [g(x)] = −2i

(
n∑

j=1

(z̀j − ùj) fj̀

)(
n∑

k=1

fk̀ ∂z̀c
k
[g(x)]

)
= −2i

∑
1≤j,k≤n

(z̀j − ùj) ∂z̀c
k
[g(x)] fj̀ fk̀.
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Hence (7.33) reads

2

|S2m−1|2n|

∫
R2m|2n

δ(g(x))

|Z−U|M
∑

1≤j<k≤m

[
(zj − uj) ∂zc

k
[g(x)]− (zk − uk) ∂zcj [g(x)]

]
F (Z) fjfk IbIf

+
2

|S2m−1|2n|

∫
R2m|2n

δ(g(x))

|Z−U|M
∑

1≤j≤m
1≤k≤n

[
−2i(zj − uj) ∂z̀c

k
[g(x)]− (z̀k − ùk) ∂zcj [g(x)]

]
F (Z) fjfk̀ IbIf

− 4i

|S2m−1|2n|

∫
R2m|2n

δ(g(x))

|Z−U|M
∑

1≤j<k≤n

[
(z̀j − ùj) ∂z̀c

k
[g(x)] + (z̀k − ùk) ∂z̀cj [g(x)]

]
F (Z) fj̀ fk̀ IbIf

− 4i

|S2m−1|2n|

∫
R2m|2n

δ(g(x))

|Z−U|M
∑

1≤j≤n

(z̀j − ùj) ∂z̀cj [g(x)]F (Z) fj̀
2 IbIf = 0.

Thus, it suffices to prove that all the elements

fjfk IbIf , 1 ≤ j < k ≤ m,
fjfk̀ IbIf , 1 ≤ j ≤ m, 1 ≤ k ≤ n, (7.35)
fj̀ fk̀ IbIf 1 ≤ j ≤ k ≤ n,

are linearly independent when considering coefficients in C∞(Ω) ⊗ G2n. So take Aj,k,
Bj,k, Cj,k ∈ C∞(Ω)⊗G2n such that∑

1≤j<k≤m

Aj,k fjfk IbIf +
∑

1≤j≤m
1≤k≤n

Bj,k fjfk̀ IbIf +
∑

1≤j≤k≤n

Cj,k fj̀ fk̀ IbIf = 0. (7.36)

We now observe that

f†` f
†
s (fjfk IbIf ) = (δs,jδ`,k − δ`,jδs,k)IbIf ,

f†` f
†
s (fjfk̀ IbIf ) = 0,

f†` f
†
s (fj̀ fk̀ IbIf ) = 0.

Multiplying (7.36) from the left by f†` f
†
s (1 ≤ s < ` ≤ m) we obtain As,` IbIf = 0 which

implies As,` = 0, whence we are left with∑
1≤j≤m
1≤k≤n

Bj,k fjfk̀ IbIf +
∑

1≤j≤k≤n

Cj,k fj̀ fk̀ IbIf = 0.

In the same order of ideas we get,

f`̀
† f†s (fjfk̀ IbIf ) =

i

2
δ`,kδs,jIbIf , f`̀

† f†s (fj̀ fk̀ IbIf ) = 0,

whence multiplying now the remainder of (7.36) from the left by f`̀
† f†s (1 ≤ s ≤ m,

1 ≤ ` ≤ n) yields Bs,` = 0, thus further reducing the equality to∑
1≤j≤k≤n

Cj,k fj̀ fk̀ IbIf = 0.
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Finally, we compute

f`̀
† fs̀
† (fj̀ fk̀ IbIf ) = −1

4
(δ`,jδs,k + δs,jδ`,k)IbIf ,

which allows to conclude that C`,s = 0 after multiplying (7.36) by f`̀
† fs̀
† (1 ≤ ` ≤ s ≤ n).

In this way, we have proven that all coefficients in (7.36) are zero, meaning that all
elements (7.35) indeed are linearly independent. �

7.4.3 Some examples

In this section we study some particular but important applications of the Bochner-
Martinelli formula in superspace.

Case 1.
We first consider the case of a purely bosonic phase function g(x) = g0(x) ∈ C∞(R2m),
i.e. g = 0, which satisfies the same conditions as in Theorem 7.6. In this case, formula
(7.34) reads

2

|S2m−1|2n|

∫
R2m|2n

δ(g0(x))

|Z−U|M

 m∑
j=1

(zj − uj)c∂zcj [g0(x)]

 F (Z) = F (U), g0(y) < 0.

(7.37)

This formula reduces to the classical Bochner-Martinelli formula (7.1) as we will show
next. We begin by recalling the following classical result for surface integration over
Γ := g−1

0 (0), see [53, p. 136],∫
R2m

δ(g0(x))|∂x[g0(x)]|f(x) dVx =

∫
Γ

f(x) dSx.

The j-th coordinate nj(x) of the exterior normal vector n(x) to the surface Γ at the point
x ∈ Γ is given by

nj(x) =
∂xj [g](x)

|∂x[g0(x)]|
.

Hence, from the above formula one easily obtains∫
R2m

δ(g0(x))∂xj [g0(x)]f(x) dVx =

∫
Γ

nj(x)f(x) dSx.

Moreover, since Γ is a smooth surface in R2m, we can write

d̂xj = (−1)j−1nj(x) dSx

where d̂xj is the differential (2m− 1)-form

d̂xj = dx1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ . . . ∧ dx2m.
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This allows to change the above distributional approach to classical surface integration
by differential forms. In particular, we have that∫

R2m

δ(g0(x)) ∂zcj [g0(x)]f(x) dVx =
1

2

∫
R2m

δ(g0(x))
(
∂xj + i∂xm+j

)
[g0(x)] f(x) dVx

=
1

2

∫
Γ

(
nj(x) + inm+j(x)

)
f(x) dSx

=
1

2

∫
Γ

(
(−1)j−1d̂xj + i(−1)m+j−1d̂xm+j

)
f(x).

We now write,

(−1)j−1d̂xj = (−1)
m(m−1)

2
˜̂
dxj , −(−1)m+j−1d̂xm+j = (−1)

m(m−1)
2

˜̂
dxm+j ,

with

˜̂
dxj = (dx1 ∧ dxm+1) ∧ . . . ∧ ([dxj ] ∧ dxm+j) ∧ . . . ∧ (dxm ∧ dx2m) , j = 1, . . . ,m,

˜̂
dxm+j = (dx1 ∧ dxm+1) ∧ . . . ∧ (dxj ∧ [dxm+j ]) ∧ . . . ∧ (dxm ∧ dx2m) , j = 1, . . . ,m,

where [·] denotes omitting that particular differential. We then obtain,

∫
R2m

δ(g0(x)) ∂zcj [g0(x)]f(x) dVx =
(−1)

m(m−1)
2

2

∫
Γ

(˜̂
dxj − i

˜̂
dxm+j

)
f(x)

On the other hand,

˜̂
dxj − i

˜̂
dxm+j = −2

(
i

2

)m
d̂zcj = (−1)

m(m+1)
2 −j(−2)

(
i

2

)m ˜̂
dzcj

where we have introduced the complex differential forms

d̂zcj = (dz1 ∧ dzc1) ∧ . . . ∧
(
dzj ∧ [dzcj ]

)
∧ . . . ∧ (dzm ∧ dzcm) ,˜̂

dzcj = dzc1 ∧ . . . ∧ [dzcj ] ∧ . . . ∧ dzcm ∧ dz1 ∧ . . . ∧ dzm,

which are clearly connected by d̂zcj = (−1)
m(m+1)

2 −j ˜̂dzcj .
Hence, ∫

R2m

δ(g0(x)) ∂zcj [g0(x)]f(x) dVx = (−1)m−j+1

(
i

2

)m ∫
Γ

f(x)
˜̂
dzcj .
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Applying this last result to the left side of formula (7.37) yields

2

|S2m−1|2n|

∫
B

m∑
j=1

(∫
R2m

δ(g0(x)) ∂zcj [g0(x)]
(zj − uj)c

|Z−U|M
F (Z) dVx

)

=
2

|S2m−1|2n|

∫
B

m∑
j=1

(−1)m−j+1

(
i

2

)m ∫
Γ

˜̂
dzcj

(zj − uj)c

|Z−U|M
F (Z)

=
2

|S2m−1|2n|(2i)m

∫
Γ

∫
B

m∑
j=1

(−1)j−1 ˜̂dzcj (zj − uj)c

|Z−U|M
F (Z).

Then (7.37) can be rewritten as

(m− n− 1)!πn

(2iπ)m

∫
Γ

∫
B

 m∑
j=1

(−1)j−1 ˜̂dzcj (zj − uj)c

|Z−U|M

 F (Z) = F (U), g0(y) < 0,

which exactly coincides with formula (7.1) for n = 0.

Case 2.
We now examine the form which (7.34) takes on the supersphere of radius R > 0 defined
by means of the phase function g(x) = −x2 −R2. Observe that

g(x) = |x|2 −R2 = |Z|2 −R2 = {Z,Z†} −R2 =

m∑
j=1

zjz
c
j −

i

2

n∑
j=1

z̀j z̀
c
j −R2.

Then, ∂zcj [g(x)] = zj and ∂z̀cj [g(x)] = i
2 z̀j , leading to

D†Z−U,Z[g(x)] =

m∑
j=1

(zj − uj)c zj +
i

2

n∑
j=1

(z̀j − ùj)c z̀j = {Z, (Z−U)†}.

Hence, the Bochner-Martinelli formula on the supersphere of radius R > 0 takes the form

2

|S2m−1|2n|

∫
R2m|2n

δ({Z,Z†} −R2)

|Z−U|M
{Z, (Z−U)†}F (Z) = F (U), |y| < R.



Summary

Clifford analysis nowadays is a well-established discipline within mathematical analysis
that may be seen as both a generalization of the theory of holomorphic functions in
the complex plane and a refinement of classical harmonic analysis. In its most simple
setting, the Clifford function theory focusses on the notion of monogenic function, i.e.
a null solution of the Dirac operator ∂x =

∑m
j=1 ej∂xj . This setting is known as the

Euclidean case (also the term orthogonal Clifford analysis can be found in the literature).
The fundamental group leaving the Dirac operator invariant is Spin(m) which is a double
covering of SO(m).

More recently further refinements and generalizations of Euclidean Clifford analysis have
been studied. Amongst the most important and well-studied refinements of Euclidean
Clifford analysis we find so-called Hermitian Clifford analysis, which focusses on h-
monogenic functions, h-monogenicity being expressed by means of two mutually adjoint
Dirac operators which are invariant under the realization of the unitary group U(m) in
Spin(2m).

Harmonic analysis and Euclidean Clifford analysis have been extended to superspace by
means of a representation of the so-called radial algebra. This theory introduces some
important differential operators (such as Dirac and Laplace operators) on the flat super-
manifold Rm|2n, and uses them in the study of special functions, orthogonal polynomials,
integration, etc.

The main goal of this thesis is to further develop the extension of Clifford analysis to
superspace initiated in the works of Hendrik De Bie and Kevin Coulembier, [29, 22]. In
particular our purpose is threefold. In first place, we aim at extending Hermitian Clifford
analysis to superspace (Chapters 2, 3). The second goal is to provide a suitable definition
for the (super) spin group and to study the underlying group actions in both Euclidean
and Hermitian settings in superspace (Chapters 4, 5). Finally, the third objective is to
further develop integration theory by introducing and studying integration over general
domains and surfaces in superspace depending on bosonic and fermionic variables on
equal footing (Chapters 6, 7).

We now give a detailed overview of the contents of the chapters in this thesis.
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Chapter 1: Introduction

In this introductory chapter we describe the mathematical framework for this thesis.
First we give a brief overview of both Euclidean and Hermitian Clifford analysis, to-
gether with a description of the underlying abstract radial algebra.Then an explanation
of the meaning of superanalysis (or analysis in superspace) is given. Here, we provide an
account of some important historical approaches that have been used for superanalysis
and comment on the extension of Clifford analysis towards super-symmetry. Finally, a
detailed account of the goals and the content of this thesis is provided.

Chapter 2: Radial algebra

This chapter is devoted to the study of the abstract framework for Clifford analysis offered
by the radial algebra. The radial algebra has been proven to be an important tool for
deriving a theory of Dirac operators in superspace from the standard Euclidean one and
for giving a meaning to spaces with negative integer dimension. In this chapter, we study
the Hermitian radial algebra in order to extend the theory of Hermitian Dirac operators
to superspace. We first provide a detailed account of the algebra of endomorphisms of the
radial algebra and on the notion of radial algebra representation. Then, the Hermitian
radial algebra is introduced by means of the notion of abstract complex structure. At
the end, an important representation of the radial algebra with a complex structure is
presented at the level of endomorphisms.

Chapter 3: Hermitian Clifford analysis on superspace

The main goal of this chapter is to introduce the building blocks of a Hermitian mono-
genic function theory in superspace by means of a representation of the Hermitian radial
algebra. To that end, we first provide an overview of the superanalysis framework. We
mainly discuss two approaches to superanalysis: the one based on differential geometry
where variables are represented as co-ordinates taking values in some commutative Ba-
nach superalgebra, and the one based on modern algebraic geometry where variables are
defined in a purely symbolic way giving rise to a supermanifold with a structural sheaf of
superfunctions. Using this last approach, we then recall the main aspects of the extension
of Euclidean Clifford analysis to superspace. In particular, the vector multipliers give rise
to a natural way of introducing a complex structure on superspace which immediately
leads to the corresponding extensions of all basic objects such as Hermitian Dirac ope-
rators, complex Euler operators, etc. The definition of all these objects is validated by
checking that they satisfy the abstract relations provided in Chapter 2 for the Hermitian
radial algebra.
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Chapter 4: The Spin group in superspace

There are two well-known ways of describing elements of the rotation group SO(m).
First, according to the Cartan-Dieudonné theorem, every rotation matrix can be written
as an even number of reflections. And second, they can also be expressed as the expo-
nential of some anti-symmetric matrix. In this chapter, we study similar descriptions of
the corresponding extension of SO(m) to superspace. To that end, we consider linear
actions on supervector variables using both commuting and anti-commuting coefficients
in a Grassmann algebra. This allows to study the invariance of the inner product in
superspace from a classical group theoretic approach which contains all information on
the underlying symmetry superalgebras obtained in [22, 23].

We first provide some basics on Grassmann algebras, Grassmann envelopes and super-
matrices. Next, we further develop the Clifford setting in superspace by introducing the
Lie algebra of superbivectors. An extension of this algebra is crucial in the description of
the super spin group. While studying the invariance of the bilinear form that extends the
Euclidean inner product to superspace, we obtain the group of so-called superrotations
SO0 whose Lie algebra so0 turns out to be a Grassmann envelope of osp(m|2n). The
group SO0 is also an extension of the symplectic group. While still being connected, it is
thus no longer compact. As a consequence, it cannot be fully described by just one action
of the exponential map on its Lie algebra. Instead, we obtain an Iwasawa-type decompo-
sition for this group in terms of three exponentials acting on three direct summands of
the corresponding Lie algebra of supermatrices. At the same time, SO0 strictly contains
the group generated by supervector reflections. Therefore, its Lie algebra is isomorphic
to a certain extension of the algebra of superbivectors. This means that the Spin group
in superspace has to be seen as the group generated by the exponentials of the so-called
extended superbivectors in order to cover SO0. We also study the actions of this Spin
group on supervectors and provide a proper subset of it that is a double cover of SO0.
Finally, we show that every fractional Fourier transform in n bosonic dimensions can be
seen as an element of the spin group in superspace.

Chapter 5: Spin action in Euclidean and Hermitian Clifford anal-
ysis in superspace

In this chapter we study the action of the spin group on superfunctions. In the first
place, we prove the invariance of the super Dirac operator ∂x under the classical H and
L actions. This follows from the so0-invariance of ∂x, i.e. the commutation of ∂x with the
infinitesimal representation dL of L acting on the Lie algebra of superbivectors. These
actions are also studied in the Hermitian setting, where we study the group invariance
of the Hermitian inner product of supervectors introduced in [42]. The resulting group
of complex supermatrices leaving this inner product invariant constitutes an extension
of U(m) × U(n) and is isomorphic to the subset SOJ

0 ⊂ SO0 of elements that commute
with the complex structure J. The realization of SOJ

0 within the spin group is studied
simultaneously with the invariance under its actions of the super Hermitian Dirac system.
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Chapter 6: Distributions and integration in superspace

Distributions have been proven to be an important tool in the development of an inte-
gration theory in superspace. In particular, distributions were used in [24] to obtain a
suitable extension of the Cauchy formula to superspace and to define integration over
the superball and the supersphere through the Heaviside and Dirac distributions respec-
tively. The goal of this chapter is to extend the distributional approach to integration
over more general domains and surfaces in superspace.

We first introduce domains and surfaces in superspace by means of smooth commut-
ing phase functions g. In this way, one can define domain integrals and oriented (and
non-oriented) surface integrals in terms of the Heaviside and Dirac distributions of the
superfunction g. Then it is shown that the presented definition for the integrals does
not depend on the choice of the phase function g defining the corresponding domain or
surface. Moreover, some applications of these approaches are shown by computing the
volume and surface area of a super-paraboloid and a super-hyperboloid of revolution.
At the end of the chapter, a new distributional Cauchy-Pompeiu formula is obtained
generalizing and unifying the previously known approaches.

Chapter 7: Bochner-Martinelli formula in superspace

In this final chapter the Bochner-Martinelli integral representation for holomorphic func-
tions of several complex variables is extended to the superspace setting. This is done by
exploiting the intrinsic connection existing between the Hermitian monogenic function
theory and the theory of holomorphic functions.

We start by addressing the problem of establishing a Cauchy integral formula in the
framework of Hermitian Clifford analysis in superspace. We then establish the connec-
tion between Hermitian monogenicity and super holomorphicity by considering a specific
class of spinor-valued superfunctions. It turns out that after a certain projection of the
obtained (super) Hermitian Cauchy integral formula one obtains a new extension of the
Bochner-Martinelli formula for holomorphic superfunctions. It is indeed proven, at the
end of the chapter, that such a projection coincides with the classical Bochner-Martinelli
representation when considering only m complex bosonic dimensions.
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Cliffordanalyse is heden ten dage een gevestigde discipline binnen de klassieke wiskundige
analyse, die terzelfder tijd kan worden beschouwd als een veralgemening van de the-
orie van holomorfe functies in het complexe vlak en als een verfijning van klassieke
harmonische analyse. In haar meest eenvoudige vorm kunnen we de cliffordanalyse
zien als de studie van monogene functies, dit zijn nuloplossingen van de diracopera-
tor ∂x =

∑m
j=1 ej∂xj ; in deze context spreken we van euclidische cliffordanalyse (al wordt

in sommige bronnen ook de term orthogonale cliffordanalyse gebruikt). De fundamentele
groep die de diracoperator invariant laat, is de zogenaamde spingroep Spin(m), die een
dubbele bedekking vormt van de speciaal orthogonale groep SO(m).

Meer recent werden verdere verfijningen en veralgemeningen van euclidische cliffordana-
lyse bestudeerd, zoals bijvoorbeeld hermitische cliffordanalyse. Deze theorie draait rond
de studie van h-monogene functies, oplossingen van twee hermitisch toegevoegde dirac-
operatoren, welke invariant zijn onder de actie van een realisatie van de unitaire groep
U(m) in de spingroep Spin(2m).

Zowel harmonische analyse als euclidische cliffordanalyse werden ook ingevoerd in de
superruimte, door gebruik te maken van een representatie van de zogenaamde radiale
algebra. Binnen deze theorie worden een aantal belangrijke differentiaaloperatoren (zoals
de diracoperator en de laplace-operator) geïntroduceerd op de vlakke supervariëteit Rm|n,
teneinde ook daar speciale functies, orthogonale polynomen, een integratietheorie, en dies
meer, in te voeren en te bestuderen.

Het doel van deze thesis is de verdere ontwikkeling van cliffordanalyse in de superruimte,
als vervolg op het werk van Hendrik De Bie en Kevin Coulembier, [29, 22]. In het
bijzonder kunnen drie specifieke doelstellingen worden onderscheiden. Eerst en vooral
zullen we hermitische cliffordanalyse invoeren in de superruimte (Hoofdstukken 2 en
3). Vervolgens gaan we op zoek naar een geschikte definitie voor de super-spingroep en
bestuderen we de corresponderende groep-acties in zowel de euclidische als de hermitische
context (Hoofdstukken 4 en 5). Tot slot ontwikkelen we een theorie van integratie over
algemene domeinen en oppervlakken in de superruimte, die de fermionische en bosonische
variabelen op een gelijkwaardige manier incorporeert (Hoofdstukken 6 en 7).

We geven nu een gedetailleerd overzicht van de inhoud van de respectieve hoofdstukken.
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Hoofdstuk 1: Inleiding

In dit inleidend hoofdstuk beschrijven we het wiskundig kader voor deze thesis. Eerst
wordt een kort overzicht gegeven van euclidische en hermitische cliffordanalyse, alsook
een beschrijving van de corresponderende radiale algebra. Vervolgens wordt de beteke-
nis uitgelegd van superanalyse (of: analyse op de superruimte). Hierbij geven we een
overzicht van de verschillende historische benaderingen van superanalyse en wordt er ook
ingegaan op de uitbreiding van cliffordanalyse naar dit kader. Tot slot geven we een
gedetailleerd overzicht van doelstellingen en inhoud van deze thesis.

Hoofdstuk 2: De radiale algebra

Dit hoofdstuk is gewijd aan de studie van de radiale algebra, die het abstracte kader
vormt voor cliffordanalyse. De radiale algebra is een belangrijk instrument gebleken
om van de theorie van diracoperatoren in de euclidische ruimte over te gaan naar de
superruimte en hierbij een betekenis te geven aan ruimten met een negatieve (gehele)
dimensie. Daarnaast bestuderen we in dit hoofdstuk ook de hermitische radiale algebra,
teneinde ook de theorie van hermitische diracoperatoren uit te breiden tot de superruimte.
Eerst bespreken we in detail de algebra der endomorfismen in de radiale algebra en het
concept van een representatie van de radiale algebra. Vervolgens wordt de hermitische
radiale algebra ingevoerd middels het concept van een abstracte complexe structuur. Tot
slot stellen we een belangrijke representatie voor van de radiale algebra met complexe
structuur op het niveau van de endomorfismen.

Hoofdstuk 3: Hermitische cliffordanalyse in de superruimte

Het belangrijkste doel van dit hoofdstuk is de bouwstenen in te voeren voor een hermi-
tisch monogene functietheorie in de superruimte, door gebruik te maken van een repre-
sentatie van de hermitische radiale algebra. Daartoe geven we eerst een overzicht van
het kader waarbinnen we in de superanalyse werken, en we beschouwen hierbij twee
verschillende mogelijke benaderingen. De eerste is gebaseerd op differentiaalmeetkunde,
waarbij de variabelen voorgesteld worden als coördinaten die waarden aannemen in een
commutatieve Banach superalgebra. De tweede is gebaseerd op moderne algebraïsche
meetkunde, waarbij de variabelen op een puur symbolische manier gedefinieerd wor-
den, wat aanleiding geeft tot een supervariëteit uitgerust met een structurele schoof van
superfuncties. We werken verder binnen het tweede kader, waarbij we vectormultiplica-
toren gebruiken om op een natuurlijke manier een complexe structuur te definiëren op
de superruimte, wat ons in staat stelt onmiddellijk alle fundamentele objecten van her-
mitische cliffordanalyse in te voeren, zoals hermitische diracoperatoren, complexe Euler-
operatoren, etc. De respectieve definities worden hierbij gevalideerd door te checken
dat ze aan alle abstracte voorwaarden van de hermitische radiale algebra voldoen (zie
Hoofdstuk 2).
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Hoofdstuk 4: The super-spingroep

Er zijn essentieel twee verschillende manieren om de elementen van de rotatiegroep SO(m)
te beschrijven. Vooreerst zegt de stelling van Cartan-Dieudonné dat elke rotatiematrix
kan worden ontbonden in een even aantal spiegelingen. Daarnaast kan een rotatiema-
trix ook worden geschreven als de exponentiële van een anti-symmetrische matrix. In
dit hoofdstuk bestuderen we gelijkaardige beschrijvingen van de tegenhanger van SO(m)
in de superruimte, en we beschouwen daartoe lineaire acties op de supervector variabe-
len, gebruik makend van zowel commuterende als anti-commuterende coëfficiënten in
een Grassmann algebra. Dit stelt ons in staat de invariantie van het inproduct in de
superruimte te bestuderen via een groeptheoretische aanpak, zoals in [22, 23].

We beschrijven eerst de belangrijkste aspecten van Grassmann algebra’s and superma-
trices, en we voeren in de Clifford setting de Lie algebra van de superbivectoren in. Een
uitbreiding van deze algebra zal cruciaal blijken voor de karakterisatie van de super spin-
groep. Als we de invariantie bestuderen van de bilineaire vorm die de tegenhanger is in de
superruimte van het euclidisch inproduct, bekomen we de groep van zogenaamde super-
rotaties SO0, een uitbreiding van de symplectische groep waarvan de Lie algebra so0 een
Grassmann omhullende van osp(m|2n) blijkt te zijn. Deze groep is wel samenhangend
maar niet langer compact, en kan bijgevolg niet meer volledig worden gekarakteriseerd
door de actie van één enkele exponentiële afbeelding op zijn Lie algebra. In de plaats
daarvan verkrijgen we een Iwasawa-decompositie in drie exponentiële afbeeldingen die
inwerken op de drie termen in de directe somontbinding van de corresponderende Lie
algebra van supermatrices. We merken ook op dat SO0 de groep omvat die gegenereerd
wordt door spiegelingen t.o.v. supervectoren, waardoor de corresponderende Lie algebra
isomorf moet zijn met een welbepaalde extensie van de Lie algebra der superbivectoren.
Dit betekent dat, om een bedekking te verkrijgen van SO0, we de super-spingroep dus
moeten zien als de groep gegenereerd door de exponentiëlen van de zogenaamde uitge-
breide superbivectoren. We bestuderen vervolgens de actie van deze spingroep op de
supervectoren en identificeren de deelgroep die een dubbele bedekking is van SO0. Tot
slot tonen we aan dat elke fractionele fouriertransformatie in n bosonische dimensies kan
worden gezien als een element van deze super-spingroep.

Hoofdstuk 5: De actie van de super-spingroep in euclidische en
hermitische cliffordanalyse

In dit hoofdstuk bestuderen we de actie van de super-spingroep op superfuncties. Vooreerst
tonen we de invariantie aan van de super-diracoperator ∂x onder de traditionele H en
L acties, steunend op de so0-invariantie van ∂x, i.e. het commuteren ervan met de in-
finitesimale representatie dL van L inwerkend op de Lie algebra der superbivectoren.
Deze acties worden ook bestudeerd in het hermitisch kader, waar we de groepinvariantie
onderzoeken van het hermitisch inproduct van supervectoren ingevoerd in [42]. De groep
van complexe supermatrices die dit inproduct invariant laten, vormt een uitbreiding van
U(m)×U(n) en is isomorf met de deelgroep SOJ

0 ⊂ SO0 van elementen die commuteren
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met de complexe structuur J. De realisatie van SOJ
0 in de spingroep wordt terzelfder tijd

bestudeerd als de invariantie van het hermitisch systeem onder de acties ervan.

Hoofdstuk 6: Distributies en integratie in de superruimte

Distributies zijn een belangrijk instrument gebleken bij de ontwikkeling van een integratie-
theorie in de superruimte. In het bijzonder werden distributies gebruikt in [24] om een
geschikte uitbreiding te bekomen van de Cauchy formule en om integratie te definiëren
over de superbal en de supersfeer, door gebruik te maken van de Heaviside en de Dirac
distributie. Het doel van dit hoofdstuk is om de distributionele benadering van integratie
uit te breiden naar meer algemene domeinen en oppervlakken in de superruimte.

We voeren domeinen en oppervlakken in de superruimte in door middel van een com-
muterende, gladde fasefunctie g. Op die manier kunnen domein- zowel als georiënteerde
(en niet georiënteerde) oppervlakintegralen worden gedefinieerd in functie van de Heavi-
side en de Dirac distributie geassocieerd met de superfunctie g. We tonen dan aan dat
onze correponderende definitie van integraal niet afhangt van de keuze van g als fase-
functie voor het beschouwde domein of oppervlak. We passen onze aanpak toe op de
berekening van het volume en de oppervlakte van een super-omwentelingsparaboloïde en
een super-omwentelingshyperboloïde. Op het einde van het hoofdstuk stellen we nog een
nieuwe en unificerende distributionele Cauchy-Pompeiu formule op.

Hoofdstuk 7: De formule van Bochner-Martinelli in de super-
ruimte

In dit laatste hoofdstuk bekomen we een tegenhanger in de superruimte van de inte-
graalrepresentatie van Bochner-Martinelli voor holomorfe functies van meerdere com-
plexe variabelen. Dit gebruikt door voluit gebruik te maken van het intrinsieke verband
dat bestaat tussen de theorie van hermitisch monogene functies en deze van holomorfe
functies.

We starten hierbij met het opstellen van een Cauchy integraalformule in de context van
hermitische cliffordanalyse in de superruimte. Daarna leggen we het verband tussen her-
mitisch monogeniteit en superholomorfie door een klasse van superfuncties te beschouwen
met waarden in de spinorruimte. De bekomen (super) hermitische Cauchy formule leidt
dan, door projectie, tot een nieuwe uitbreiding van de Bochner-Martinelli formule voor
holomorfe superfuncties. Op het einde van het hoofdstuk wordt dan bewezen dat de
gebruikte projectie samenvalt met de klassieke Bochner-Martinelli representatie als we
enkel de m complexe bosonische dimensies beschouwen.
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