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ABSTRACT
Controversy, disagreement, conflict, polarization and opinion di-

vergence in social networks have been the subject of much recent

research. In particular, researchers have addressed the question of

how such concepts can be quantified given people’s prior opinions,

and how they can be optimized by influencing the opinion of a

small number of people or by editing the network’s connectivity.

Here, rather than optimizing such concepts given a specific set

of prior opinions, we study whether they can be optimized in the

average case and in the worst case over all sets of prior opinions.

In particular, we derive the worst-case and average-case conflict

risk of networks, and we propose algorithms for optimizing these.

For somemeasures of conflict, these are non-convex optimization

problems with many local minima. We provide a theoretical and

empirical analysis of the nature of some of these local minima, and

show how they are related to existing organizational structures.

Empirical results show how a small number of edits quickly

decreases its conflict risk, both average-case and worst-case. Fur-

thermore, it shows that minimizing average-case conflict risk often

does not reduce worst-case conflict risk. Minimizing worst-case

conflict risk on the other hand, while computationally more chal-

lenging, is generally effective at minimizing both worst-case as well

as average-case conflict risk.
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1 INTRODUCTION AND MOTIVATION
The study of how opinions form through social interactions with

others with potentially differing opinions has long been studied in

the social sciences (see e.g. [11, 14]). Today, online social networks

offer unprecedented access to both social interactions and publicly

expressed opinions on controversial matters. This now allows one

to quantitatively study differences of opinions on a large scale,

as well as to moderate them through targeted interventions. This
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newfound ability offers new opportunities for conflict prevention

and mitigation, as well as for more effective marketing campaigns.
1

Background. Much prior research has focused on opinions on

political matters [1, 9, 27]. However, recent work has often studied

the problem in a more generic manner (independent of the topic of

controversy) [21, 25, 30]. The identification of controversial issues

has been studied using tools from sentiment analysis [7, 26], as

well as by relying on the structure of the social network and the

distribution of opinions across it [1, 3, 8, 9]. Besides identifying or

quantifying controversy or conflict, the question of how it can be

influenced has received increasing amounts of attention [17, 25, 28].

Strategies that have been considered include editing the graph (or

even designing it from scratch), and attempting to alter the opinions

of a small number of individuals [6, 16, 19, 25, 28].

Most of these results are based on the opinion formation model

by Friedkin and Johnsen [14], which extended DeGroot’s model

of opinion averaging [11]. In Friedkin and Johnsen’s model, indi-

viduals are assumed to hold an (‘a priori’) internal opinion, while
they may express an opinion that may differ from it but that is more

socially acceptable (i.e. more similar to their friends’ opinions). To

model this, it is assumed that individuals are connected to each

other in a social network, and that individuals’ expressed opinion

is a weighted average of their own internal opinion and their neigh-

bors’ expressed opinions, with weights representing the strength

of the connections in the network.

Shortcomings in the state-of-the-art. An important problem

with Friedkin and Johnsen’s model is that, while external opinions

are hard to measure, access to internal opinions is near-impossible

in practice. Another shortcoming of the dominant line of research

attempting to reduce conflict by editing the social network is that

it tends to focus on a single or a given set of controversial topics.

Yet, different issues do not generally correspond to different social

networks, such that editing a social network to minimize conflict

on one issue may actually increase conflict on another.

Contributions in this paper. In this paper, we depart from the

existing literature in focusing on risk of conflict, rather than on

conflict around one particular issue. In this way, we overcome both

shortcomings of prior work discussed above. We still rely on Fried-

kin and Johnsen’s model of opinion formation to quantify the risk of

networks to conflict (which we discuss in detail in Sec. 2). However,

the proposed quantifications are independent of any particular set

of internal (or external) opinions, depending purely on the topology

of the network. In this way, we bypass the problem that quantifying

internal opinions is beyond reach in practice. Moreover, attempting

to reduce the risk of conflict, leads to more robust network editing

1
It also creates risks: it could allow oppressive governments to design more effective

propaganda, or hostile actors to incite conflict rather than prevent it. These risks are

an additional reason for these matters to be studied by the scientific community.
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strategies than reducing conflict for one particular assignment of

internal opinions.

More specifically, we propose two measures of conflict risk: the

worst-case conflict risk (WCR) and the average-case conflict risk
(ACR), respectively quantifying the amount of conflict in the worst-
case, and on average, over all possible internal opinions. Subse-

quently, we demonstrate how both WCR and ACR can be mini-

mized by locally editing the network. We do this for a number

of pre-existing measures of conflict and disagreement discussed

in Sec. 3, most notably the internal conflict (the extent to which

individuals are torn by expressing an opinion that differs from their

internal opinion), external conflict (the extent to which neighboring

individuals express different opinions), and controversy (the overall

variation in expressed opinion). A side-result in this paper is an

equality relating these different conflict measures, leading to what

we refer as a conservation law of conflict: the sum of the internal

conflict, twice the external conflict, and controversy is a constant.

In Sec. 4 we propose two types of algorithms (one coordinate

descent, and one conditional gradient descent) to locally edit the

social network to reduce the WCR and ACR for a number of these

measures of conflict. Empirical results are provided in Sec. 5, evalu-

ating the effectiveness of the proposed algorithms at reducing risk

of conflict, providing additional insight into the local minima of the

measures, and discussing conflict risk in random network models.

We end with related work in Sec. 6 and conclusions in Sec. 7.

Notation. Let G = (V ,E,w) be an undirected positive-weighted

network with V = {1, . . . ,n} the set of nodes, E ∈ V × V the set

of m = |E | edges (with (i, j) ∈ E iff (j, i) ∈ E), and w a weight

function mapping an edge e ∈ E onto its weight w(e) > 0. We

denote with A the (symmetric) adjacency matrix (with zero di-

agonal), defined by ai j = w (i, j) iff (i, j) ∈ E and ai j = 0 other-

wise. With N (i) we denote the set of neighboring nodes of node i:
N (i) ≜ {j ∈ V | (i, j) ∈ E}. Let 1 denote the vector of ones of appro-

priate size. Furthermore, let d ≜ A1 denote the vector containing
the weighted degrees of all nodes, and D ≜ diag(d) the diagonal
degree matrix. Then the Laplacian matrix is defined as L ≜ D − A.

2 OPINION FORMATION MODELS
Here we briefly discuss the models of opinion formation on social

networks, as formalized above, related to the present paper.

The dynamicmodel.According to DeGroot’s model [11], people’s

opinions are updated gradually through repeated communication.

In the model, every person i ∈ V has an opinion si (t) at time t , and
it is influenced by its direct neighbors so as to evolve into a different

opinion si (t + 1) in the next time step. More precisely, their opinion

is updated as the weighted sum of their own opinion (with weight

wii ) and those of the neighbors (with weight wi j for neighbor j).
Given a weighted graphG = (V ,E,w), and the opinions si (t) of the
nodes at time t , the updating rule is defined as:

si (t + 1) =
wiisi (t) +

∑
j ∈N (i)wi jsj (t)

wii +
∑
j ∈N (i)wi j

(1)

This model formalizes opinion formation as a repeated averaging

process of one’s opinion with one’s neighbors.

The static model. In 1990, Friedkin and Johnsen extended the

model by DeGroot to have two different kinds of opinions [14]:

Table 1: Measures for conflict in undirected networks

Name z s
internal conflict: ic zT L2z sT (L + I)−1 L2 (L + I)−1 s
external conflict: ec zT Lz sT (L + I)−1 L (L + I)−1 s

controversy: c zT z sT (L + I)−2 s
resistance: r zT s sT (L + I)−1 s

an internal opinion si and an expressed opinion zi . The internal
opinions of every person are assumed fixed, while the expressed

opinions are influenced by the node’s own internal opinion as well

the expressed opinions of the neighbors, as follows:

zi =
wiisi +

∑
j ∈N (i)wi jzj

wii +
∑
j ∈N (i)wi j

. (2)

Expressed in matrix-vector notation, and withwii = 1 (a common

assumption in the literature that we also make in this paper), this

equation is solved by (3) below at equilibrium [6]:

z = (L + I)−1 s. (3)

In this model, the internal opinion si of node i is considered
a constant, and private to each individual, while the expressed

opinion zi is public, and a compromise between the internal opinion

of node i and the expressed opinion of node i’s neighbors.

Remark 1. In this paper, we will generally assume that the internal
opinions are mean-centered. Note that in that case, also zwill be mean-
centered. As opinions are arguably relative, this assumption should
not incur any loss of generality. Rather on the contrary: some measures
of opinions are affected by the mean of s (as we will point out later),
which is arguably undesirable, such that assuming s has zero mean
enhances the usability of the proposed measures.

3 CONFLICT AND CONFLICT RISK
In this paper, we rely on Friedkin and Johnsen’s model of opinion

formation and discuss a number of (previously known) measures of

conflict in terms of the internal opinions s and expressed opinions

z = (L + I)−1s. Note that we will often use the term conflict in a

more generic manner in this paper, to signify conflict, controversy,

or disagreement more generally.

In Sec. 3.1 we survey the measures of conflict and discuss how

they can be computed using matrix-vector operations. Section 3.2

introduces an intriguing though intuitive connection between some

of these measures. Finally, in Sec. 3.3 we discuss how the risk of

conflict, as quantified by the proposed measures, can be formulated,

both in the worst case (WCR) and in the average-case (ACR).

3.1 Conflict Measures
Table 1 provides an overview of the proposed measures, which we

will discuss in greater detail below.

Internal Conflict ic. The internal conflict measure is designed to

quantify the extent to which individuals’ internal and expressed

opinions differ.



Definition 3.1. The internal conflict ic is the sum of squares of

the differences between individual internal and expressed opinions:

ic =
∑
i
(zi − si )

2 .

The following proposition provides a convenient matrix-vector

expression for it. The proof is elementary and omitted for brevity.

Proposition 3.2. ic = zT L2z = sT (L + I)−1L2(L + I)−1s.

External Conflict ec.Arguably the most relevant measure in prac-

tice, the external conflict measure quantifies the extent to which

the expressed opinions of neighbors are in disagreement with each

other. Formally:

Definition 3.3. The external conflict ec is the weighted sum of

squares of the pairwise differences between the expressed opinions

of neighbors in the network:

ec =
∑

(i, j)∈E

wi j
(
zi − zj

)
2

.

Again, it can be expressed conveniently in matrix-vector form:

Proposition 3.4. ec = zT Lz = sT (L + I)−1 L (L + I)−1 s.

The proposed measure of external conflict is closely related to

the so-called Network Disagreement Index (NDI) in [10], except

that there are two different opinions in our work: it is equal to the

NDI evaluated on the external opinions.

Controversy c. Given the expressed opinions, the controversy

does not depend on the network structure, and simply quantifies

how much the opinion varies across the individuals in the network:

Definition 3.5. The controversy c is the sum of the squares of the

expressed opinions:

c =
∑
i
z2i .

Again, this can be trivially expressed in matrix-vector form:

Proposition 3.6. c = zT z = sT (L + I)−2 s.

The controversy c is equivalent with the polarization index pro-

posed by Matakos et al. [25], although they normalized the measure

by n, the number of nodes in the network. For zero mean s (and
hence zero mean z), as we assume in this paper, the controversy is

also equivalent to the Global Disagreement Index [10], defined as:

γ (x) :=
∑
i<j

(
xi − x j

)
2

(4)

More specifically, the GDI is a constant factor n times larger than

the controversy.

Resistance r . The final measure we wish to discuss is the resis-
tance.2

2
Its suggested name stems from its mathematical form, which is closely related

to the effective resistance in graphs [12]: Ri j =
(
ei − ej

)T L+
(
ei − ej

)
, thus it is

called resistance. In a graph, the effective resistance between two nodes i and j is:(
ei − ej

)T L+
(
ei − ej

)
. ei has one at position i and zeros elsewhere. If s = ei − ej

where only the opinions of the two nodes count,

r = sT (L + I)−1 s =
(
ei − ej

)T
(L + I)−1

(
ei − ej

)
.

Definition 3.7. The resistance r is the inner product between

expressed and internal opinion vectors:

r =
∑
i
sizi .

It can again be expressed in matrix-vector notation:

Proposition 3.8. r = sT z = sT (L + I)−1s.

The resistance was in fact introduced earlier by Musco et al. [28]

(where it was given no name). It was introduced there as the sum

of the controversy and external conflict:

Proposition 3.9. Resistance is the sum of external conflict and
controversy: r = ec + c .

Their work included an algorithm for optimizing the network to

reduce conflict given a specified internal opinion vector s, and took
advantage of the fact that resistance is matrix-convex in L.

Summary. Thus, each of the measures can be written in the form

∗ = sTM∗s,

where ∗ is one of ic , ec , c , or r , and Mic = (L + I)−1L2(L + I)−1,
Mec = (L + I)−1L(L + I)−1,Mc = (L + I)−2, and Mr = (L + I)−1.

We note in passing that the matrices L and (L+ I) obviously have
the same eigenspaces, such that they commute – i.e. the factors in

the expressions for M∗ can be freely rearranged.

3.2 A conservation law of conflict
In this section, we state an identity that implies that the different

measures of conflict act like communicating vessels: reducing one

implies that another one must be increased.

Theorem 3.10 (Conservation law of conflict). Given a net-
work and an internal opinion vector s, then the sum of ic , 2ec , and c
is a constant equal to sT s:

ic + 2ec + c = sT s.

Proof. ic + 2ec + c = sT (L + I)−1
(
L2 + 2L + I

)
(L + I)−1 s =

sT (L + I)−1(L + I)2(L + I)−1s = sT s. □

Note that the constant sT s could be regarded as the internal
controversy: the inherent controversy on a particular topic. The

conservation law essentially states that in a social network, this in-

herent controversy is divided over external conflict, internal conflict,

and a remaining amount of controversy. The relative proportions

of each of these measures of conflict depend on the structure of the

network in relation to the internal opinion vector s.
To understand this better, let L = UΛUT be the eigenvalue de-

composition of L. It is known from graph signal processing [31] that

eigenvectors corresponding to small eigenvalues are slowly varying

over the graph (i.e. the i’th and j’th entries of such an eigenvalue

tend to be similar if i and j are nearby in the graph), while the large

eigenvalues correspond to eigenvectors that fluctuate rapidly over

the graph. The eigenvalue decompositions of the diagonal matrices

with eigenvaluesM∗ are then given by:

Mic = UΛ2(Λ+I)−2UT , Mec = UΛ(Λ+I)−2UT , Mc = U(Λ+I)−2UT .



Figure 1: Eigenvalues in the Conservation Law.

In other words, any eigenvalue λ of the Laplacian L yields a corre-

sponding eigenvalue of theM∗ matrices as follows:

λic =
λ2

(λ + 1)2
, λec =

λ

(λ + 1)2
, λc =

1

(λ + 1)2
.

These eigenvalues are plotted as a function of the eigenvalue λ of

the Laplacian in Fig. 1.
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Note that λc increases with λ, λic decreases with λ, and λec first
increases to reach a maximum value of 0.25 at λ = 1 after which it

decreases again.

For a fixed 2-norm of the internal opinion vector s, themeasure of

conflict withM∗ is larger themore it is alignedwith the eigenvectors

corresponding to the largest eigenvalues ofM∗. Figure 1 shows that

this differs for the different measures.

For s aligning with the smoothest eigenvectors of the Laplacian

(i.e. those corresponding to small eigenvalues λ of the Laplacian),

the internal and external conflicts are small, but the controversy is

large as internal opinions remain unmoderated by dissenting neigh-

bors. This situation would arise when the graph contains different

(nearly) disconnected communities, and within each community

the internal opinion is constant, while between the communities

the internal opinions differ. As s becomes more aligned with less

smooth eigenvectors (i.e. with larger eigenvalues), the external

conflict starts to increase because conflicts between neighbors are

starting to arise. For the same reason, the internal conflict starts

to increase, and the controversy starts to decrease. The external

conflict reaches its maximum when s is aligned with eigenvectors

of L with eigenvalue λ ≈ 1. As λ keeps increasing, meaning s aligns
with more high-frequency eigenvectors, the moderating effect of

neighbors starts to become more important, resulting in a decrease

of external conflict as well as the controversy. Essentially, the con-

flict is increasingly internalized in a network where neighbors often

have different internal opinions.

3
Note that the conservation law is reflected in this figure in the following equality, as

can be visually verified from Fig. 1: λic + 2λec + λc = 1.

3.3 Conflict Risk of a Network
The measures from Sec. 3.1 quantify the various types of conflict

given an internal opinion vector s. Prior work (see Sec. 6) has

focused on tweaking the network or the opinions of a selection of

individuals to reduce such measures. Often, however, the internal

opinions are not accessible. More fundamentally, one might wish

to minimize conflict on more than one, including yet unknown

controversial issues. We therefore argue that it is more sensible to

engineer a network so as to reduce the risk of conflict, rather than

the conflict for one specific internal opinion vector s. We propose

two ways of quantifying risk of conflict, discussed in turn below.

Average-case Conflict Risk (ACR). The ACR is defined as the

expected conflict, where the expectation is taken w.r.t. the internal

opinions. To evaluate this, a probabilistic model for the internal

opinions is needed, and we propose to use the uniform distribution

over all vectors from {−1, 1}n , such that E
[
ssT

]
= I. Thus:

ACR∗ = E
[
sTM∗s

]
= E

[
Tr

(
ssTM∗

)]
= Tr

(
E
[
ssT

]
M∗

)
,

= Tr(M∗).

Worst-case Conflict Risk (WCR). This is an alternative (and

more robust) measure, defined as the maximum conflict over all

possible internal opinion vectors s ∈ {−1, 1}n :

WCR∗ = max

s∈{−1,1}n
sTM∗s.

Note that M∗ ⪰ 0 for all measures, such that this is an instance of

Boolean Quadratic Maximization (BQM) problem [24, 29]. While

this problem is NP-hard, it can be approximated by solving the fol-

lowing semidefinite programming (SDP) relaxation of the problem

(here, Σ is a symmetric real-valued matrix):

u∗ = max

Σ
Tr(ΣM∗),

s.t. Σ ⪰ 0,

diag(Σ) = 1.

Nesterov [29] proved that this strategy achieves a
2

π approximation:

2

π
u∗ ≤ WCR∗ ≤ u∗.

To derive an estimate for the worst-case s ∈ {−1, 1}n from Σ,
Goemans and Williamson’s randomized rounding strategy [20] can

be used: Let Σ = CCT be a Cholesky decomposition of Σ, and
let x ∈ Rn be a randomly sampled vector from some rotation-

invariant distribution. Then, for s = sign(Cx), it holds that (where
the expectation is over the random vector x):

2

π
WCR∗ ≤ E[sTM∗s] ≤ WCR∗.

I.e., the estimated worst-case opinion vector achieves a conflict that

is not smaller than
2

π the actual worst-case conflict.

SDPs can be solved in polynomial time:O(n4.5). While this is still

a high complexity, in practice such SDPs can be solved without fur-

ther optimizations for thousands of nodes on commodity machines,

and results for the Maximum Cut problem suggest that scaling

is possible much beyond that (to millions of nodes) by exploiting

tight approximations, further relaxations, or dedicated optimization

approaches [5, 32].



4 MINIMIZING THE CONFLICT RISK
4.1 Algorithms
Here we discuss how the ACR andWCR can be optimized by adding

or deleting edges in the network. Note that only the resistance is

known to be convex, such that we should not hope for convergence

to a global optimum. Yet, we argue that the question of convexity is

purely academic here: in practice, graph edits can typically be made

only in small amounts, either because of budget constraints, or

because of practical considerations. For example, a company may

wish to increase its productivity by organizing a team-building

event or reorganizing office space so as to create new conflict-risk

reducing connections, but such operations are costly and cannot

in practice redesign the complete network structure. Thus, what

we should be interested in is a fast decrease of the ACR or WCR

given the number of edges added or deleted, rather than eventual

convergence to a possible local minimum – let alone a global one.

The edits we consider are edge additions or deletions, or more

precisely the increase or decrease of edge weights as long as they

remain in the range [0, 1]. We keep them within this range because

it makes no sense to talk about a negative edge strength in social

networks, and there is a bound on the strength of connections. Our

algorithms can easily be adapted to handle different bounds.

Below, we discuss two algorithmic approaches to this end: one

is a conditional gradient method, and suggests a number of edge

additions or deletions simultaneously. The other is a coordinate

descent method, and suggests adding or deleting just a single edge.

The optimization problems. Let A0 be the initial adjacency ma-

trix, and A the optimized adjacency matrix with corresponding

matrixM∗. With ∥·∥1 the entry-wise one-norm, the optimization

problems for ACR and WCR are thus:

ACR: min

A
Tr(M∗),

s.t. 0 ≤ A ≤ 1, and ∥A − A0∥1 ≤ 2k .

WCR: min

A
max

s∈{−1,1}n
sTM∗s,

s.t. 0 ≤ A ≤ 1, and ∥A − A0∥1 ≤ 2k,

where k is a bound on the sum of absolute values of weight changes

(the factor 2 stems from the fact that A is symmetric). The entry-

wise one-norm on A−A0 ensures this difference tends to be sparse,

such that only few edge weights tend to be updated at the minimum.

For the WCR, this problem is complicated by the inner maxi-

mization. We handle this optimization problem by alternating opti-

mization: before each conditional gradient or coordinate descent

step, we solve the inner maximization as detailed in the previous

section, and then assume s to be fixed. We found however, that

robustness of this strategy can be increased by using not a single s,
but a small set of ℓ vectors s all obtained by randomized rounding.

More specifically, written in terms of S ∈ {−1, 1}n×ℓ containing

these different s vectors as its columns, we solve:

Robust WCR: min

A
Tr(STM∗S),

s.t. 0 ≤ A ≤ 1, and ∥A − A0∥1 ≤ 2k .

Thus, rather than minimizing the risk of conflict for one given

worst-case opinion vector, the average over a set of approximately

worst-case opinion vectors is minimized. The added robustness

of this strategy stems from the fact that different approximately

worst-case opinion vectors can be similarly bad, such that editing

the graph to reduce risk for one can increase risk for another. In

this case, the alternating minimization would fail. Minimizing the

risk averaged over a set approximately worst-case opinion vectors

thus increases robustness. Note that for S = I, the WCR reduces to

the ACR. Thus, it suffices to discuss the optimization of the WCR

in what follows. Both conditional gradient and coordinate descent

first compute the gradient of the ACR and WCR. The gradients for

the different measures are summarized in Table 2.

Conditional gradient descent [13, 23]. The conditional gradient
method seeks a step∆most aligned with the gradient, while respect-

ing the constraints after taking a finite step along that direction.

More specifically, this step direction is found by solving:

min

∆
Tr

©«
∂Tr

(
STM∗S

)
∂L

· (diag(∆1) − ∆)
ª®®¬ ,

s.t. 0 ≤ A + ∆ ≤ 1, and ∥∆∥
1
≤ 2k ′,

where k ′ << k limits the step size. Here, the objective computes the

inner product between the gradient with respect to L and diag(∆1)−
∆, as changing A by adding ∆ amounts to a step of diag(∆1)−∆ on

the Laplacian. Note again that these constraints induce sparsity in

the solution vector. The experiments indeed confirmed that often

∆ contains exactly 2k ′ 1’s or -1’s.

Coordinate descent. The coordinate descent method first com-

putes the gradient with respect to the (symmetric) adjacency matrix

from the gradient with respect to the Laplacian (as listed in Table 2):

∂Tr
(
STM∗S

)
∂ai j

=
∂Tr

(
STM∗S

)
∂lii

+
∂Tr

(
STM∗S

)
∂lj j

− 2

∂Tr
(
STM∗S

)
∂li j

.

Positive

∂Tr(STM∗S)
∂ai j

means that reducing ai j > 0 will reduce the

objective. Conversely, negative

∂Tr(STM∗S)
∂ai j

means that increasing

ai j < 1 will reduce the objective. Thus, the algorithm takes the

∂Tr(STM∗S)
∂ai j

with largest absolute value for which either ai j > 0

and

∂Tr(STM∗S)
∂ai j

> 0, or for which ai j < 1 and

∂Tr(STM∗S)
∂ai j

< 0. In

the former case, the algorithm sets ai j = aji = 0, and in the latter

it sets ai j = aji = 1.

Conditional gradient versus coordinate descent. The coordi-
nate descent method is computationally obviously easier, but con-

vergence may be slower than with the conditional gradient method.

They are compared with each other in the empirical results section.

4.2 Local optima of the ACR for different risk
measures

As pointed out, only the resistance is known to be convex, such

that the ACR and WCR are prone to local minima. Relying on the

gradients in Table 2, we can prove the following proposition.

Proposition 4.1. The complete graph forms local minimum for
the ACR of conflict measures ec , c , and r .



Table 2: Middle Matrices and Gradients

∗ M∗ ACR:
∂Tr(M∗)

∂L WCR:

∂Tr(STM∗S)
∂L

ic (L + I)−2 L2 2 (L + I)−2 − 2 (L + I)−3 L(L + I)−2SST (L + I)−1

+(L + I)−1SST (L + I)−2L
ec (L + I)−2 L − (L + I)−2 + 2 (L + I)−3 (L + I)−2SST (L + I)−2

−L(L + I)−2SST (L + I)−2L
c (L + I)−2 −2 (L + I)−3 −(L + I)−1SST (L + I)−2

−(L + I)−2SST (L + I)−1

r (L + I)−1 − (L + I)−2 −(L + I)−1SST (L + I)−1

Table 3: Gradient matrix elements for size n complete graph

Matrix Diagonal Off-diagonal

− (L + I)−2 − n+3
(n+1)2

− n+2
(n+1)2

−2 (L + I)−3 −2n
2+3n+4
(n+1)3

−2n
2+3n+3
(n+1)3

− (L + I)−2 + 2 (L + I)−3 n2+2n+5
(n+1)3

n2+3n+4
(n+1)3

Table 4: Risks for complete graph of size n

∗ ic ec c r

Tr (M∗)
n2(n−1)
(n+1)2

n(n−1)
(n+1)2

n(n+3)
(n+1)2

2n
n+1

Proof. The adjacency matrix of a size n complete graph consists

of 0 on the diagonal and 1 elsewhere, thus the corresponding Lapla-

cian matrix has n − 1 on the diagonal and −1 elsewhere. In Table 3,

the elements in the corresponding ACR gradients with respect to

the Laplacian are shown. We will show from these that no feasible

step can be found that improves the objectives for a complete graph.

Indeed, for a complete graph (with all weights equal to 1), edge

weights can only be decreased. However, decreasing the weight of

the edges increases the objective: for a step of −δ on wi j , the ex-

ternal conflict is increased by 2
n−1

(n+1)3
δ , the controversy by

4

(n+1)3
δ

and the resistance by
2

(n+1)2
δ . For n > 1 these changes are strictly

positive, such that the ACR would be increased after decreasing

anywi j by 1 ≥ δ > 0. □

Derivative results. A number of results immediately follow from

this proposition. Recall that resistance is convex on L [28], so this

local minimum is a global one. Furthermore, note that from the

conservation law, it follows directly that the gradient of ic+2ec+c is
equal to 0. Thus, it is trivial to show that for ic , a complete graph is

a local maximum of the ACR. Finally, for a complete graph of size n
(i.e., the number of node is n, n > 1), the values of ACR for different

conflict measures are given in Table 4. Using this table, it can be

shown that larger complete graph has smaller conflict risks than two

smaller complete graphs with the same total number of nodes. For

complete graphs of size n1, n2, and n1 + n2 (n1,n2 ≥ 3,n1,n2 ∈ Z),

Tr [Mec (n1)] + Tr [Mec (n2)] > Tr [Mec (n1 + n2)] .

(As long as n1n2−n1−n2−3 ≥ 0, the above inequality holds, which

can be proved using Tr (Mec ) in Table 4.)

Table 5: Dataset summary statistics.

Network Karate Facebook ER BA WS

Nodes 34 4039 n n n

Edges 78 88234 m m1

nK
2

Avg degree 4.5882 43.6910
2m
n

2m1

n K

Table 6: ACR for random networks of size n = 1000,m ≈ 5000.

ACR ic ec c r

ER 796.6 94.1 15.3 109.3

BA 759.3 109.7 21.2 131.0

WS 804.2 91.2 13.3 104.5

We also showed empirically that for the ec a set of disconnected
components are optimal where each component is either a clique, a

sufficiently long chain, or a tree where each leaf node is separated

by at least two edges from a bifurcation node (see Sec. 5 for details).

5 EMPIRICAL EVALUATION
5.1 Datasets
We use real social networks as well as synthetic data shown in Ta-

ble 5. The real-world datasets we use are the Karate network with 34

nodes and a Facebook network consisting of 4039 users. The Karate

network is a social network of friendships between 34 members of

a Karate club [33]. The Facebook network contains friend circles

and was collected through the Facebook app surveys [22].

The synthetic data includes three randomnetworkmodels: Erdős-

Rényi (ER) random networks with binomial degree distribution;

Barabási-Albert (BA) random networks with power-law degree dis-

tribution; and Watts-Strogatz (WS) small world random networks.

5.2 Experimental Findings
We investigate the following questions: (1) What types of networks

have the highest risks for what types of conflict measures; (2) What

are the local minima of the ACR for the various measures; (3) For the

external conflict: how do the actual conflict, ACR, and WCR evolve

as the ACR or WCR is being minimized; (4) How do the coordinate

and conditional gradient descent methods compare for the external

conflict. Due to space constraints, some results are summarized,

and details are deferred to a fortcoming extended report.
4

5.2.1 Conflict risk for different measures in random networks. We

investigated how the ACR for different conflict measures compare

to each other across ER, BA, and WS models. We generated random

networks of very similar sizes and densities according to these

models, and we compared their ACR for different conflict measures.

Across a wide range of graph densities, theWS network is consis-

tently themost high-risk for ic , while the BA network is consistently

the most high-risk for ec . For c and r the most high-risk network

depends on the density, although usually the BA or ER networks

carry the highest risk. Table 6 gives an example.

These findings can be interpreted in terms of the properties of

the random network models. In the WS network, the ic is probably

4
All code is available at https://bitbucket.org/ghentdatascience/conflictrisk-public



high due to the short path lengths and high clustering coefficient,

which causes opinions to be strongly moderated. In the BA network,

the existence of high-degree hubs along with a fat tail of small-

degree nodes may cause considerable ec between these hubs (which

are strongly moderated) and their surrounding nodes (which are

moderated only by very few nodes).

5.2.2 Empirical study of the local optima of ACR with different
conflict measures. We used the coordinate and conditional gradi-

ent descent methods to optimize the ACR (i.e., Tr (M∗)) until con-

vergence, to investigate the structure of the network at the local

minima. The following findings complement and corroborate the

theoretical analysis of the local minima from the previous section.

Internal Conflict In our experiments, after convergence the net-

work always contains no edges. As in that case internal and

expressed opinions coincide, the ic is then equal to zero, this

is obviously the global minimum.

External Conflict In our experiments, the local minima always

contained sets of disconnected subgraphs that are cliques,

trees, and chains, and sometimes cliques with a chain at-

tached to one of its nodes. Yet, the particular local minimum

found differs for different initial graphs, and also slightly for

the different algorithms and choices of k ′.
Controversy The local minimum found is always the completely

connected graph. While this problem is not known to be

convex, we conjecture that it has only one local minimum.

Resistance We know from theory that this ACR minimization for

resistance is a convex problem. Thus, the minimum found is

always the global minimum, namely the complete graph.

Clearly the ec , which is arguably the most relevant among the con-

flict measures in practice, also exhibits the most complex behavior.

One example of how the network changes when minimizing the ec
is shown in Fig. 2, where the bottom network is the local minimum

for the network on the top. Typical adjustments during both the

coordinate descent and the conditional gradient algorithm are: a

chain of three nodes always forms a triangle (see node 25, 48, 50);

two nodes at the same end of a chain/tree will always be connected

(see node 14, 27); connections that are not strong enough will break

(see node 36 between node 12 and 15).

Remark 2. Interestingly, the structures at the local optima of the
ACR for ec seem to correspond with common management structures
in companies: a flat organization corresponds to a clique, while a
hierarchical organization corresponds to a tree. Management practice
may well have evolved this way in part because it minimizes conflict.

In the sequel, for conciseness we focus on the ec alone, as this is
arguably the most useful and most interesting measure.

5.2.3 Effectiveness of minimizing ACR versus WCR for ec . Here
we investigate the effectiveness of both ACR andWCR. In particular,

we investigated on one ER network and the Karate network how

the ACR, WCR, and the conflict for three different internal opinion

vectors, evolved over consecutive iterations. The three fixed opinion

vectors include a random vector s1, and two vectors found as sign(v)
where v is an eigenvector of the Laplacian: the 10th smallest (i.e.

low-frequency on the graph, s2) as well as the n − 10th (i.e. high-

frequency on the graph, s3).

Figure 2: Optimization of the ACR of ec on an ER network
(n = 50,p = 0.03) with gradient descent (k ′ = 2).

Figure 3 shows that the optimization for ACRwill not necessarily

improve the WCR, and also does not improve the ec for the low-
frequency vector s2, while the optimization over the WCR always

decreases also the ACR and the risks for all three given opinion

vectors. The fact that the WCR is an upper bound for the ACR

as well as for the conflict for any given internal opinion vector

probably explains this. Yet, it is remarkable that minimizing the

more robust measure WCR does not seem to reduce much the rate

at which also the ACR reduces.

5.2.4 How does the performance of conditional gradient descent
compare to that of coordinate descent? The following experiment il-

lustrates our observation that conditional gradient descent typically

converges to a better local minimum than coordinate descent. This

may be because conditional gradient descent can make larger steps

at each iteration, thus allowing it to escape bad local minima more

easily. Figure 4 shows an example of their different performances,

which is consistent with our theoretical conclusion in Sec. 4 about

local optima structures, i.e., larger complete graphs contains less

external conflict ACR than smaller ones adding to the same size.

5.2.5 Real-world networks. For space reasons, a detailed analysis
of real-world networks is postponed to an extended report, but we

summarize the main findings here. The ACR for the Karate network

is minimized by forming a complete network for ec , c and r , and
the network without edge for ic . Connections within the ‘friend

circles’ in the Facebook network are found to be strengthened when

minimizing the ec ACR, while those between circles are gradually

deleted: the originally connected network is ultimately divided into

several connected components as the optimization continues. It

takes 3 to 5 seconds for one coordinate step on Facebook dataset at



Figure 3: TheACR,WCR, and conflict for the three described
internal opinion vectors over consecutive iterations. (a), (b)
are based on an ER model (n = 50,m = 60) with gradient
descent k ′ = 1; (c), (d) on Karate with coordinate descent.

Figure 4: Optimal results using the two algorithms. (a) is the
original graph; (b) is the result of coordinate descent; (c) is
the result of gradient descent with k ′ = 5 at each iteration;
(d) is the result of gradient descent with k ′ = 25.

the beginning and the time increases as edges are added, which is

acceptable in practice.

6 RELATEDWORK
Social network analysis research almost invariably relies on data

from online social media and microblogging sites. In particular

Twitter [9, 15, 21, 27] is often the scene of controversial debates.

Notable studies are Conover et al., who performed research on the

retweet and mention networks from Twitter, and differentiated

between the two mechanisms [9], and Garimella et al., who used

conversation graphs obtained from twitter to quantify controversy

for any topic [15]. While online social media expose the users to

various kinds of opinions, the effects of ‘filter bubbles’ and ‘echo

chamber’ have attracted increasing amounts of attention in recent

years [4, 18]: when people only get information that corroborates

their own opinions and communicate only with like-minded people,

there is a risk that society will be increasingly fragmented and

polarized, although there is an ongoing debate about this issue [18].

Research about polarization and controversy has so far mostly

focused on political issues. Morales et al. studied the emergence

of political polarization and quantified its effects by a polarization

index [27]. Akoglu quantified the political polarity of individuals

and political issues by doing classification and ranking tasks [1].

It defines a node classification task on edge-signed (+/-) bipartite

opinion network, then predicts latent political classes of people and

opinion subjects and ranks people and issues.

Opinion formation models are not always used; some prior work

focuses on the underlying structure of the social network, or as-

sumes there are only two groups for ‘pro’ and ‘contra’. Coletto et

al. used only local patterns of user interactions (motifs) [8]. Guerra

et al. focused on the nodes in the community boundaries [21]. Ran-

dom Walk Controversy (RWC) scores are used to quantify contro-

versy in [15] as the difference between the properties of a random

walk ending in different opinion partitions. Amin et al. studied the

problem of identifying and separating polarization using a matrix

factorization based gradient descent algorithm [3].

Different measures have been proposed for quantifying polariza-

tion or controversy. Modularity is regarded as a traditional measure

for polarization [30], but Guerra et al. argue that it is not a good

measure since non-polarized networks may also be divided into

modular communities in [21]. Then they proposed their novel polar-

ization metric P based on boundary nodes and found that polarized

networks tend to have low concentration on high-degree nodes in

the boundary between two communities. The Social Network Dis-

tance (SND) is a distance measure that quantifies the likelihood of

evolution of one snapshot of a social network into another snapshot

under a chosen opinion dynamic model in [2]. To quantify contro-

versy in social networks in any topic domain, a three-step pipeline

is proposed in [15]. It was found that the RWC outperformed many

other controversy measures, including the betweenness, embed-

ding, boundary connectivity, and dipole moment.

A major and increasingly important focus of research is whether

polarization and controversy can be engineered, e.g. by editing the

graph or affecting opinions of a selected set of individuals. In [17],

the edge-recommendation problem is studied based on the endorse-

ment graph, with the goal to reduce the controversy score (namely

the RWC), and the acceptable probability of the recommended edge

is taken into account. The addition of edges is discussed in [6] in

order to reduce the social cost, namely the lack of agreement in



the network, and it is argued as intuitive because the exposure to

opposite opinions can reduce disagreement. The expressed opinion

vector z above is obtained at the Nash Equilibrium in the social

game of opinion formation [6]. Moreover, they firstly studied the

problem of moderating people’s opinions to reduce the polarization.

Based on the same opinion formation dynamics, the promotion

problem called the CAMPAIGN was studied in [19]. It aimed to

promote a product by setting the expressed opinions of k nodes

to 1 such that the overall opinions д (z) over the network can be

maximized. The expressed opinion zi represents the affection of

node i for the product, and it lies in the range from 0 to 1. This work

provides a good example of shifting from the problem of measuring

opinion differences to the area of influence maximization.

7 CONCLUSIONS AND FURTHERWORK
Research into the formation of conflict, disagreement, and related

concepts was until recently the subject of the social sciences only.

Today however, the fact that opinion formation takes place increas-

ingly on online social platforms creates new possibilities to address

related issues from a computer science perspective, building on

models of opinion formation from the social sciences. Specifically,

it creates the potential to quantify, mitigate, and reduce conflict and

disagreement. Prior research on this topic has focused on a single

issue of controversy, and the reduction of conflict on this issue, in

particular by manipulating the structure of the network.

In this paper we included a small survey of existing measures,

and identified an insightful identity between them that amounts to a

conservation law of conflict. However, we also argued that reducing

one of these measures of conflict for a single issue is problematic,

reducing conflict on a single issue may increase it for another.

Indeed, in practice a network is not tied to a single issue, and

even when it is, the individual opinions may be hard to gauge. To

resolve this, we take a novel perspective on this problem, focusing

on identifying a limited number of edges to add or remove in the

network so as to reduce the risk of conflict, both on average and in

the worst-case over all possible opinions.We have demonstrated the

usefulness of these characterizations of conflict risk, studied their

behavior in a range of networks, developed effective algorithms for

optimizing them, and confirmed that their minimization minimizes

actual risk on some random opinion assignments.

In further work, we plan to investigate further the theoretical

properties of these measures, in particular of the worst-case risk.

Additionally, we plan to improve our implementations and investi-

gate other algorithmic improvements for enhanced scalability.
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