
Insights from SONATA: Implementing and
Integrating a Microservice-based NFV Service

Platform with a DevOps Methodology
Thomas Soenen∗, Steven Van Rossem∗, Wouter Tavernier∗, Felipe Vicens†, Dario Valocchi‡, Panos Trakadas§,

Panos Karkazis§, George Xilouris¶, Philip Eardley††, Stavros Kolometsos¶, Michail-Alexandros Kourtis¶,
Daniel Guija‖, Shuaib Siddiqui‖, Peer Hasselmeyer‡‡, José Bonnet∗∗ and Diego Lopez

x

∗Ghent University - imec, †ATOS, ‡University College London, §Synelixis Solutions, ¶NSCR Demokritos,
††BT, ‖i2CAT Foundation Barcelona, ‡‡NEC Europe Ltd. Heidelberg, ∗∗Altice Labs,

x
Telefonica I+D

Abstract—In pursuit of a flexible, resource efficient and high-
performant 5G infrastructure, many operators, vendors and
research consortia are currently developing, testing and inte-
grating their NFV platform with associated management and
orchestration (MANO) functionality. The SONATA NFV platform
follows a micro-service design, which involves a tight coupling
between an SDK, monitoring and MANO functionality, targeting
a secure and stable software foundation. This experience paper
gives a thorough overview on the encountered challenges, insights
and resulting learnings when implementing and integrating the
SONATA Service Platform using a continuous integration and
delivery DevOps methodology. This is the result of a strong
cooperation between prominent equipment vendors, network
operators, software companies and universities, providing a
set of constructive recommendations in hope of catalysing the
development and deployment of NFV platforms.

I. INTRODUCTION

In the next years, 5G infrastructure will become a ubiq-
uitous, flexible, broadband and programmable network that
will be in the core of every social, business and cultural
process, enabling both economic growth and social prosperity.
However, the 5G vision poses significant technical challenges
that must be fulfilled, including the concept of agile pro-
grammability and the introduction of management mecha-
nisms for the efficient instantiation of network services across
heterogeneous network components, virtualised infrastructures
and geographically dispersed cloud environments.

In an effort to address these challenges, multiple consortia
are trying to build Network Function Virtualization (NFV)
service platforms (SP) and Management and Orchestration
(MANO) frameworks. These technologies aid in the 5G adop-
tion by increasing network programmability. One such service
platform has been designed and developed in the scope of the
EU 5G-PPP SONATA project. SONATA’s service platform [1]
was designed to satisfy the need for flexible and extensible
management operations, so it allows telecom operators and
communication service providers to cope in a world with
rapidly changing technological trends and newly introduced
business models. To this end, SONATA made the following de-
sign choices for its service platform: i) An extendable plugin-
based MANO architecture implemented through microservices
allowing the owner to alter its behavior by adding and re-

placing plugins on the fly and ii) an infrastructure abstraction
allowing the service platform to orchestrate multiple Virtual
Infrastructure Managers (VIM).

Inspired by common best practices for software develop-
ment within large, distributed teams, the SONATA service
platform was developed following a continuous integration
and delivery (CI/CD) methodology [2]. Such methodologies
focus on improving the software quality, while decreasing
development time and the gap between developers and the
operational deployment of the product. By leveraging tools
such as GitHub [3], Jenkins [4] and Docker [5], and by
implementing multiple verificiation layers, SONATA created
a CI/CD pipeline that allowed developers to frequently update
and publish their code to a whole ecosystem of developers
and admins, while preventing code updates that break the in-
tegration from blocking others. Due to a DevOps [6] approach,
developers quickly receive feedback on their changes, allowing
for a more agile development and increasing the frequency of
software iterations.

In this paper, we describe insights and gained experiences
from developing and integrating SONATA, a flexible and ex-
tendable NFV service platform. This comparison of theory and
practice serves as aid for those considering the implementation
of a plugin-based MANO framework or the adoption of an ag-
ile CI/CD methodology for a development project in the telco
environment. Section II focuses on the experiences gained
from developing the service platform, while in Section III,
we detail our CI/CD methodology and the insights we gained
from setting it up and using it. Finally, Section IV concludes
the paper and provides some general recommendations for
developing and integrating NFV service platforms.

II. INSIGHTS FROM IMPLEMENTING THE SONATA
SERVICE PLATFORM

The SONATA NFV service platform provides the virtuali-
sation infrastructure, as well as the management and orches-
tration functionality to deploy NFV services. The SONATA
SP is closely modeled after the ETSI NFV model. Next to the
platform itself, SONATA provides a set of development tools
(SDK) to assist the developer in developing and packaging
NFV services. This section is dedicated to insights gained over



the course of implementing the SONATA service platform,
which are applicable to the design and implementation of
general flexible NFV orchestration platforms.

Learning 1: The NFV Orchestrator strongly benefits
from a task-oriented implementation. To be in accordance
with the ETSI functional design for MANO frameworks [7],
a subset of the SONATA service platform implementation
included the development of an NFV Orchestrator (NFVO).
The NFVO is the part of the MANO framework that man-
ages and orchestrates everything on the level of the network
service, by implementing a range of workflows such as in-
stantiating, scaling or terminating a service. Figure 1 shows
which SONATA components are involved in the NFVO. The
workflows are implemented by the Service Lifecycle Manager
(SLM). Looking at the service instantiation workflow, the SLM
uses the placement plugin to calculate the placement, the Func-
tion Lifecycle Manager and Infrastructure Adapter to deploy
VNFs and a storage component to save their records. Due
to the variety in management and orchestration requirements
from services, a straight-forward implementation of these
workflows quickly became complex. Different services require
different placement algorithms, different scaling solutions and
in SONATA, services might come with Service Specific Man-
agers (SSM), processes provided by the service developer that
customise the SLM workflow. Implementing each workflow
as a single process/thread overloaded the code with if-else
clauses and boilerplate, and made extending them a complex
task. This made the SLM an inflexible object, contradicting
the SONATA requirement for a flexibility and extensibility. To
this end, we re-factored the SLM into a task-based engine. The
overall functionality of the SLM was chopped into basic tasks,
with each task implemented as a seperate thread of control.
Workflows are then established by chaining a subset of these
tasks together into an ordered schedule, in accordance with the
MANO requirements for the service. SSMs can now customise
a workflow by overwriting the functionality of one or more
generic tasks, or by adding/removing tasks in the schedule.
Extending the functionality of a workflow (e.g. interacting
with a newly added SP plugins) in the SLM now comes
down to implementing new tasks, and inserting them in the
workflow schedule. The complexity of the code base reduced,
making the SLM more easily maintainable and extendable.
This transition made the SLM, and thus the NFVO, the flexible
component SONATA requires it to be.

Learning 2: Interfacing a Service Development Kit to a
Service Platform requires a strong integration. An SDK
is a design environment that provides a range of tools to
aid developers of NFV-based services. Such an SDK was
developed as part of SONATA, and in order to increase
its DevOps capabilities, we learned that it must take into
account the specific APIs and input formats expected by the
SONATA service platform. Therefore, the SDK requires an
explicit linkage to the targeted service platform. The main
SDK features regarding validation, profiling and packaging
of a network service that are being developed require the
implementation of two custom-built interfaces to the service

Fig. 1: Mapping of SONATA service platform modules on ETSI MANO
framework architecture.

platform: (i) An interface to on-board the service package
and deploy it in either a test or production resources of the
SP. Instead of using an isolated test environment inside the
SDK, a better and more DevOps approach is to use the
SP’s orchestration framework directly. This way, it is not
needed to fully replicate the service deployment functionality
inside the SDK and services get tested directly in the service
platform they are supposed to run on. (ii) An interface through
which monitoring data that is collected by the SP’s monitoring
framework can be fed back to the SDK and the developer
for further analysis that may improve the performance of the
service. Both test or production environment can have their
own, developer customised, set of metrics collected to export.
In the SONATA service platform, the Gatekeeper is the module
that mediates interactions between the service platform and
the outside world, including these interfaces with an SDK.
The Gatekeeper authenticates and authorises all requests from
developers to instantiate services and to obtain monitoring
data.

Learning 3: The monitoring framework needs to be
flexible and scalable. A service platform will collect infor-
mation about many aspects of its performance - the individual
elements of the physical and virtual infrastructure, the VNFs,
the network services, and so on. Thus, monitoring information
is of interest to several parties in the ecosystem, including:
the operator of the service platform (to gain a deeper under-
standing about their service); the end customer (to check that
their service level agreement is being met); vendors (who are
responsible for various VNFs); network service developers;
machine learning specialists (to optimise algorithms that use
monitoring data to automatically identify and isolate faults).
These factors suggest that the monitoring framework should
have two complementary features, it should be flexible and
scalable.

Flexibility is needed as different parties will be interested in
different information. E.g, an operator needs real time infor-



mation about all the different components; a customer is only
interested in summary information. So the framework needs
to allow the interested party to describe what they want, and
for the owner of that information to approve, adjust or reject
the request. In our implementation, the monitoring framework
collects and processes data from several sources (VMs, Docker
containers, OpenDayLight controllers, OpenStack API, etc.),
providing the interested parties the ability to activate metrics
and thresholds to capture infrastructure or service-specific
performance data. The user can define rules based on metrics
gathered from multiple VNFs deployed in one or more NFVIs.
In general, the user can subscribe to a message queue to get
the real time alert notifications and monitoring data, request
them through a RESTful API or directly access them through
a web socket URL.

Scalability is needed because there is potentially a vast
amount of monitoring information, so it cannot all be com-
municated or stored in full. Approaches that help scalability
include: thresholds (only report a metric when its value
exceeds some value); averaging, filtering and other aggregation
techniques (e.g. averaging information over some time period);
creating tailored alerts (for instance, so a help desk can be
pre-warned that there is a problem affecting a service); and an
emergency button so the service/network manager can quickly
reduce to ’skeleton monitoring’ (e.g. if some failure means
that monitoring data suddenly consumes a significant fraction
of resources). To address scalability, several monitoring com-
ponents in our implementation had to be distributed across
NFVIs. First, each NFVI needs its own web socket server to
accommodate users requests for streaming monitoring data.
Second, monitoring servers follow a federated architecture.
The local servers collect and store metric data from the VNFs
deployed in the NFVI, while only the alerts are sent to the
federated level for further processing/forwarding to the user.
Third, alerting rules and notifications can be based on monitor-
ing data from multiple NFVIs and thus should be evaluated on
a federated level. To enable ’skeleton monitoring’, the design
of the monitoring probe allows dynamic modification so that
in cases where the difference of a monitored metric is below
a threshold, it will not be sent to the monitoring server.

Learning 4: Security for a microservice-based archi-
tecture is best obtained with a token scheme. In the
SONATA service platform, the different modules/plugins are
implemented as microservices. Microservices are implemented
by standalone processes which communicate through remote
network calls, such as RESTful APIs or message brokers. To
secure this communication, we came to the conclusion that a
session based authentication did not fit with requests between
different microservices. To this end, the User Management
tool in the Gatekeeper was enhanced to provide a token-based
authentication mechanism (JWT [8]) for the service platform
microservices, just like it does for the end-users. This way,
we benefit from a simple and self-contained data way for
authentication and authorisation, maintaining statelessness in
the platform. Tokens are compact, should be strong enough,
fit well in APIs and should be safely transported, to allow

for a secured exchange of information between endpoints.
They include digitally signed information that can be verified
and trusted. The User Management applies the same token
mechanism to create User Accounts for end-users and Service
Accounts for internal microservices. This approach keeps
workflows simple: they both register to the platform, log-
in successfully to get a token which grants access for a
certain amount of time. Then, end-users and microservices
can transmit information including the token, which is used by
the User Management to extract and evaluate the rights. The
interaction with the User Management server is minimised,
avoiding overheads that session data or state would involve.

Learning 5: The concept of Network slicing is still not
clear. Within the 5G concept a large amount of effort is fo-
cusing on architectures that support network slicing, implying
evolution from the network sharing models towards network
isolation, multi-tenancy and end-to-end resource provisioning
and guarantees. In SONATA, slicing is considered at the
lower service platform layer via the MANO framework, which
leverages the IA and Slice Management components, and
a distributed monitoring framework. Finally, issues related
to service provider peering and recursive operations of the
service platform (where slicing is also employed) is tackled by
the Gatekeeper. In this context, SONATA considers an SDN
capable WAN, managed by a WAN Infrastructure Manager
(WIM) that supports slicing (by means of provisioning of
isolated multi-tenant networks) plus an OpenStack based VIM
integrated with an SDN controller (i.e. OpenDayLight) for the
physical and network elements within the NFV infrastructure.
In this view the SONATA service platform is able to create
per domain slices that are interconnected constituting an end-
to-end isolated network and computing resource slices.

The experienced limitations learned by the activities related
to slicing are summarised below:

• Infrastructure (domain) operators are using different QoS
mechanisms and mappings;

• Different traffic isolation mechanisms are being used, e.g.
IP/MPLS and MetroEthernet;

• The heterogeneity of infrastructures, e.g. NFVIs where
PoPs are established versus WAN and edge networks;

• The lack of ways to express and enforce SLAs when they
imply virtualised resources;

• end-to-end slices are difficult to include at the very edge
of the network as the technologies (e.g. Radio resources)
are still maturing;

• Operators expose only partial and limited views of their
infrastructure topology and technology enablers, creating
the need for a consistent and standard way of describing
logical topologies related to the provided service [9].

Learning 6: Service platforms cooperate with a hierar-
chical, recursive architecture. Often delivery of a service to
a customer will need the involvement of more than one service
platform. For example, the customer may want the service in
multiple geographical locations, and no operator is present in
them all. Another example is where some operators specialise



in end-customer-facing operations, whilst others specialise in
the ”wholesale” provision of infrastructure, or in providing
specific types of VNF.

We believe that cooperating service platforms should be
organised in a hierarchical architecture, meaning that an
”upper-SP” provides the end-to-end service to the customer,
and it chooses to involve a ”lower-SP” to deliver part of the
required capability (in other words, they have a ”north-south”
rather than ”east-west” relationship). From the customer’s
perspective, they only interact with, and know about, the
upper-SP; from the upper-SP’s perspective, the lower-SP is
providing a component in their overall network service in a
similar manner to the NFVI; and as far as the lower-SP is
concerned, the upper-SP is just another customer requesting
a service. Further, we believe that the architecture should be
recursive, meaning that the lower-SP can in turn arrange for
some of the service it provides to be delivered by a yet-
lower-SP (and so on). The advantages of such an approach are
commercial and technical: it has clear lines of responsibility,
allows autonomy and flexibility in service provision (e.g.
different SPs could use different orchestrators), and only a
single, standardised ”north-south” API is needed.

A couple of issues concern capabilities for discovery and
addressing. The upper-SP needs to learn what capabilities can
be provided by potential lower-SPs. Our current thinking is
that this is best done by the lower-SP publishing the capa-
bilities it can offer (similar to today’s Suppliers’ Information
Notes about network services [10]), instead of a query protocol
for instance. On addressing, we need to ensure that packets
can flow along a service function chain that spans the SPs.
At the moment, we think the most likely approach is that the
upper-SP tells the lower-SP constraints, so that the lower-SP
makes a good choice about the virtual link address and port
identifier that it uses for the VNF(s) it supplies.

Learning 7: Docker based VIMs are not yet mature
enough for Service Function Chaining. SONATA set out
to orchestrate network services on multiple different VIMs.
Due to the growing adoption of Docker, we opted for a
Docker based VIM in addition to the more commonly used
Virtual Machine based VIMs. Docker [5] is a container based
virtualisation mechanism for guest operation systems that is
much more lightweight than Virtual Machines (VMs), and
can be faster built, tested and deployed. As VNFs are being
implemented in both VMs and containers, SONATA targeted
to combine container based and VM based VNFs in the
same network service. To abstract the different APIs from
the heterogeneous VIM landscape, an Infrastructure Adapter
was introduced in the SONATA service platform to provide a
streamlined API towards the MANO framework, as is depicted
on Figure 1. Where VM based VIMs, with OpenStack [11]
the most used, have matured when it comes to NFV use, we
came to conclude that Docker based VIMs are still missing
some critical features. Both Kubernetes [12] and Docker
Swarm [13], two of the major Docker based VIMs, fail to
provide complete isolation between the deployed containers,
introducing security concerns. Docker based VIMs have been

designed to host end-point services, causing them to lack
features when it comes to hosting containers that are along the
data path. One of these is that it is unclear how to integrate
Service Function Chaining with the Kubernetes networking
capabilities, which is a critical shortcoming when thinking
about orchestrating NFV services. Efforts to bridge this gap
are being made, e.g. by Multus [14]. Due to these missing
features, SONATA was unable to combine VM and container
based VIMs in the same service.

III. CONTINUOUS INTEGRATION AND DELIVERY

This section is dedicated to the continuous integration and
delivery methodology that was applied during the development
of the SONATA service platform. This way of working aims
to improve the quality of the software, reduce the time-
to-market of the product and streamline integration actions
between different modules of the software. It allows each
developer to publish software updates multiple times a day,
while assuring that the code integrity is never compromised.
To achieve this, our methodology combines a set of software
tools with multiple layers of testing to guarantee that each
contribution is validated before it enters the master branch of
the software. These layers of testing emulate an operational
deployment of the service platform, creating a DevOps cycle
that provides developers with fast feedback on how the service
platform performs in an operational environment.

As the different modules in the service platform are imple-
mented as microservices, we opted to use Docker containers
to package each module. The developer defines a Docker
descriptor that contains the base image of the programming
language used for the module, a path to the code that is going
to be included inside the container, and all the dependencies
needed for the code. Based on this descriptor, the Docker
Engine generates the docker container, which can be deployed
on any device that is hosting the Docker Engine. By having
the entire SONATA service platform code base implemented
in such docker containers, deploying the platform becomes
real easy, quick, flexible and platform independent.

A. The CI/CD Pipeline

The CI/CD pipeline can be categorised, as shown on Figure
2, in three phases: development, integration and qualification.
In the development phase, the developer updates the code,
creates the docker containers that package this code and
expose them to the first line of tests, the unit tests, which
runs in the developer’s local environment and provide the first
feedback. These tests are designed to verify the code in an
isolated environment. In SONATA, we opted to use GitHub as
source code management tool that uses the git version control
protocol. Once the code passes the unit tests, the developer
can commit the code to the GitHub repository and make a
pull request which is a petition to the repository owner to add
the new code to the master branch. At this point, the selected
continuous integration environment, Jenkins, kicks in. Jenkins
provides a range of functionalities that make it easier to set up
an integration environment for the software, and to keep track



Fig. 2: Continuous Integration and Delivery pipeline.

of its quality. Once a developer makes a pull request, Jenkins
will fetch this updated code, generate the new containers with
the update and verify they pass the unit tests. Once Jenkins
approves the update, the owner of the repository can accept
the pull request and the code becomes part of the master
branch. Jenkins will also upload the updated containers to
the SONATA docker registry, making it available for the next
phase. The development phase prevents code that fails the unit
tests from becoming part of the integrated software, breaking
it and blocking other developers.

In the integration phase, the containers of all the modules are
deployed and exposed to the whole ecosystem of developers
and admins as an entire service platform. This allows each
developer to test and validate how their module integrates with
the SP. The different containers are exposed to a range of inte-
gration tests that validate whether they are integrated correctly.
These tests expose mismatches in APIs between modules
and validate whether the integrated behaviour matches the
expected one. Integration tests are automatically triggered
when Docker containers are updated, others are executed every
day at midnight. This tight schedule is in accordance with our
DevOps approach. By checking the influence a code update
has on the overall integration almost immediately, developers
quickly receive feedback on their change. This allows for
quicker iterations of the code and a faster progress of the
overall functionality.

A new qualification phase is triggered every time all the
integration tests succeed. At this point, all the Docker con-
tainers are promoted to our qualification environment, which
is guaranteed to have a correctly integrated version of the
platform. Therefore, it can be used to evaluate the quality
of the service platform, e.g. by exposing it to performance,
security or stability tests. These tests show us how many
requests the platform can manage at the same time, how
long it takes to satisfy requests, how the platform behaves
when used over a longer period of time, etc. The qualification
tests emulate the exposure of the service platform in an
operational environment, creating another DevOps feedback
loop to the developer. Like the integration phase, Jenkins
organises the qualification phase by automatically deploying
the qualification version of the platform and scheduling the

tests. Due to its stability, the qualification environment can
also be used for demo purposes or to let possible end-users
test the service platform.

B. Insights from setting up and using the CI/CD methodology

Both processes of setting up the CI/CD pipeline and using
it yielded some insights.

Learning 8: Selecting the right software tools at the
beginning of the project is crucial: i) to protect the
DevOps approach, and ii) backtracking from selected tools
is expensive in terms of time and effort. It is important
to automate large parts of the CI/CD pipeline, allowing the
developers to focus on code development and provide them
with quick feedback. To this end, a set of software tools such
as GitHub and Jenkins were selected. We learned that this
selection process is of the highest importance, as the selection
of the wrong tool might conflict with the DevOps goals of
the methodology. At one point shortly after the beginning of
the project, we adopted OWASP [15], a tool that analyses
code for security risks by scanning it for vulnerabilities,
performing penetration testing, etc. Extending the Jenkins job
that evaluates pull requests with an additional OWASP code
check exponentially increased the time it took to analyse the
updated code. The addition of OWASP significantly increased
the duration of the integration cycle, contradicting our DevOps
objective to quickly provide the developer with feedback,
which led us to optimise the pipeline and use OWASP in
a parallel job to not interrupt the first code check iteration.
A learning period should be provisioned to allow developers
to discover the selected software tools. This puts additional
stress on the software tools selection process, as adopting a
new software tool in a later stage of the project leads to a
new learning period, which is both costly in terms of effort
and time, especially in a distributed consortium like SONATA.

Learning 9: A good CI/CD and DevOps methodology
allows for quick detection of design issues. As our CI/CD
pipeline performs integration tests from the beginning of
development, we were able to detect design issues very fast.
For example, early in the project we identified a mismatch
between the designed schemas, i.e templates, for service and
VNF descriptors and the descriptor data required by the
service platform to correctly orchestrate the VNFs. Detecting
descriptor issues late in the project would have implied a huge
effort to correct, as already developed services for e.g. pilots
and SDK tools that aid in the development of such services
would need to be changed.

As it is though to detect such design issues before an
integration cycle and the cost in terms of time and effort of
fixing such issues late in the development process is high, we
feel that our CI/CD methodology allowed us i) to keep a clear
and complete view of the status of the project at all times
and ii) to meet software delivery deadlines in an environment
of limited resources. While it gives no guarantees about the
quality of the software, our methodology makes us confident
about its stability and reliability, since it endured numerous



cycles in the integration and qualification environment before
it was released.

Newly introduced features, even late in the project, quickly
became stable. For example, the authentication and authori-
sation feature for service platform microservices was lately
introduced through the User Management concept. It was
supposed to have a big impact on our integrated platform,
as it added a new security wall between its components,
demanding extra adaptation. Following the CI/CD loop, it
was successfully integrated through a continuous adaptation
from the components interfaces with no major impact. Once
this feature was deployed, it started to gain stability while it
was enhanced with additional features such groups, roles and
permissions.

Learning 10: There is no clear benchmark that indicates
when NFV service platforms are ready for operational
deployment. Due to our CI/CD pipeline, we feel confident
about the stability and reliability of SONATA’s latest 3.0
release1. The service platform has been vetted by a range
of integration and qualification tests over a significant period
of time before the software was released. It is however a
non-trivial task to determine when the platform is ready for
an operational roll-out, i.e. which performance, stability and
reliability tests constitute a good enough test base. Such
requirements should entail a range of open-access network
services and VNFs that can be used for testing and bench
marking, which go beyond minimal test setups with a single
PoP, a service with two VNFs, few chaining and no scaling.
Such requirements can create an environment where MANO
framework performance can be compared against other frame-
works and against operational readiness.

Learning 11: Maintenance and updating of the CI/CD
pipeline takes priority over code development. The success
of the used CI/CD pipeline is directly correlated with its
care and enforcement. In the SONATA project, a significant
subset of the software developers was also responsible for the
maintenance of the integration and qualification environment,
causing the description and updating of new tests to slack
at times. When the outcome of integration tests is ignored
or they are not updated when new features appear in the
software, the DevOps feedback loop is lost causing integration
issues to appear in a later stage of the development. It is
therefore of the utmost importance that the CI/CD pipeline is
strictly followed and enforced, and gets prioritised over code
development during every stage of the project.

IV. CONCLUSIONS AND RECOMMENDATIONS

Implementing, integrating and deploying the SONATA NFV
platform proves to be a moving target. This is the result of
the proliferation of NFV concepts, architectures, technologies,
platforms, and standards in flux. The SONATA approach
is tackling this challenge through the development of an
SDK and a MANO platform using a microservice design
and a DevOps approach involving continuous development

1https://sonata-nfv.github.io/

and integration. However, to truly advance the area of NFV
platforms, experiences of this undertaking provide a couple
of recommendations. A range of NFV-related concepts and
models need harmonisation. We argue that the service pro-
gramming model and descriptor formats need to be unified
in the community, reducing the dependency on existing cloud
models. The development and adoption of NFV technology
would drastically benefit from such a common model, to-
gether with openly available network functions and services,
as well as commonly agreed functional and non-functional
benchmarks. This would allow to overcome the situation where
most NFV platforms provide only support for simplistic NFV
services, or rehashing existing cloud functionality without
any telecom-specific performance guarantees. Next, as perfor-
mance and overhead are of extreme importance when focusing
on telecom-specific packet processing tasks on the NFV ex-
ecution platforms, the community needs increased focus on
enhancing VIM technology to provide native network control
for the interconnection of container instances. In addition,
the SONATA project confirms that NFV MANO architectures
can be made significantly more reliable, and scalable, when
following a microservice architecture, as well as including a
task-based NFVO. Scalability and autonomy in orchestration
is drastically improved when supporting hierarchic NFVO
setups. Also, when focusing on the software development
and integration methodology, a continuous development and
integration strategy has the potential to significantly increase
the stability, reliability and thus operational readiness of an
NFV platform, provided that adequate (re-)education and
reinforcement on this approach is enforced on a regular basis.

ACKNOWLEDGEMENT

This research has been partly funded by the European
Commission H2020 5G-PPP project SONATA (671517). The
views expressed here are those of the authors only.

REFERENCES

[1] S. Dräxler et al., “Sonata: Service programming and orchestration for
virtualized software networks,” in IEEE ICC conference, 2017.

[2] M. Shahin, M. A. Babar, and L. Zhu, “Continuous integration, delivery
and deployment: A systematic review on approaches, tools, challenges
and practices,” IEEE Access, vol. 5, 2017.

[3] sep 2017. [Online]. Available: https://github.com/
[4] sep 2017. [Online]. Available: https://jenkins.io/
[5] D. Merkel, “Docker: lightweight linux containers for consistent devel-

opment and deployment,” Linux Journal, vol. 2014, no. 239, 2014.
[6] A. Balalaie et al., “Microservices architecture enables devops: migration

to a cloud-native architecture,” IEEE Software, vol. 33, no. 3, 2016.
[7] ETSI, “GS NFV-MAN 001 V1.” 2014.
[8] M. Jones et al., “Json web token (jwt),” Tech. Rep., 2015.
[9] T. Soenen et al., “A model to select the right infrastructure abstraction

for service function chaining,” in IEEE NFV-SDN conference, 2016.
[10] sep 2017. [Online]. Available: btplc.com/sinet/Newlyaddeddocuments
[11] sep 2017. [Online]. Available: https://www.openstack.org/
[12] E. A. Brewer, “Kubernetes and the path to cloud native,” in Proceedings

of the Sixth ACM Symposium on Cloud Computing. ACM, 2015.
[13] sep 2017. [Online]. Available: https://docs.docker.com/engine/swarm/
[14] M. Siddiqui et al., “Enabling new features with kubernetes for nfv,”

Intel, Tech. Rep., 2017.
[15] sep 2017. [Online]. Available: https://www.owasp.org/


