Fingerprinting encrypted network traffic types using machine
learning

Sam Leroux, Steven Bohez, Pieter-Jan Maenhaut, Nathan Meheus, Pieter Simoens, Bart Dhoedt
Department of Information Technology, IDLab, Ghent University - imec
sam.leroux @ugent.be

Abstract—Internet applications rely on strong encryption tech-
niques to protect the content of all communications between client
and server. These encryption algorithms ensure that third parties
are unable to obtain the plain text data but also make it hard
for the network administrator to enforce restrictions on the types
of traffic that are allowed. In this paper we show that we can
train accurate machine learning models which can predict the
type of traffic going through an IPsec or TOR tunnel based on
features extracted from the encrypted streams. We use small, fast
to execute machine learning models that work on small windows
of data. This makes it possible to use our approach in real-time,
for example as part of a Quality of Service (QoS) system.

I. INTRODUCTION

Modern internet technologies such as video streaming,
Voice over IP (VoIP) and Peer-to-Peer (P2P) file sharing
systems all require large amounts of bandwidth. To ensure a
smooth user experience a Quality of Service (QoS) system
can allocate bandwidth for every stream based on the type of
traffic. It is however not always easy to discover the type of
traffic contained in each stream. The most straight-forward
approach would be to look at the source and destination
port numbers. This is very fast but not always reliable.
Most applications allow the user to change the port numbers
and some applications (like Bittorrent clients) can even use
random port numbers. Various works have shown that a
simple port based fingerprinting technique performs poorly
on real world data [1][2][3].

A more robust approach is to look at the actual content
of the network packets. Different applications each follow
a different protocol that is easy to recognize. Deep packet
inspection techniques can examine the payload to extract this
information but only if the required data is transmitted as
plain text. Virtual Private Networks (VPNs) allow the user
to encapsulate network traffic through an encrypted tunnel
which hides the content and the actual destination of the
network stream. Because of this additional security layer it is
hard to enforce any restrictions on the types of traffic that are
allowed in the network.

Even more privacy is offered by technologies such as
The Onion Router (TOR) [4]. TOR uses a network of relay
nodes to provide anonymity to its users. It does so by
routing all traffic over three relay nodes before it is routed
to its actual destination. Each relay node only knows the
previous and the next node, resulting in anonymity for the
user. To provide data confidentiality, TOR establishes a TLS

connection between the client and every relay node. This
produces several layers of encryption, comparable with the
layers of an onion, hence the name.

In this paper we describe a machine learning pipeline
that is able to discover the type of traffic going through a
VPN (IPSec) or TOR tunnel using only features extracted
from the encrypted network stream. We distinguish between
four types of traffic: Web browsing (HTTP), VoIP (Skype),
Video streaming (YouTube) and P2P (Bittorrent). We define
features based on the timing and size of the encrypted
packets and train three different machine learning models for
classification (naive Bayes, logistic regression and random
forest) on this data. We show that these simple models are
sufficient to predict the traffic type with a high accuracy.

This paper is organized as follows: we start with an
overview of related work in Section II. In Section III we
describe our machine learning pipeline and in Section IV
we present our results both for IPSec and TOR encrypted
network traffic. We conclude in Section V and discuss some
interesting possibilities for future work.

II. RELATED WORK

Network traffic analysis has gathered a lot of interest
both from industry and academia. We focus only on passive
fingerprinting approaches which do not interfere with the
packet streams. Active network fingerprinting techniques on
the other hand rely on injecting traffic or on compromised or
malicious nodes in the network [5].

Technologies such as TOR and IPSec can protect the
content of the communications from eavesdroppers and if
used correctly they can also provide anonymity. Even though
the actual payload is unavailable for third parties, it is still
possible to extract information based on the timing and size
of individual packets.

Common features extracted from timing and size information
are packet size combined with direction (upstream or
downstream) and inter-arrival time. These features are used
in [6] to distinguish between five types of network traffic.
Features can also be observed at an aggregated level of
multiple packets. A burst is such a possible aggregation, and
is defined as a sequence of packets sent in one direction that
lie between two packets sent in the opposite direction[7].

Both the timing and the sizes of bursts can be useful.
Another interesting aggregation proposed in literature is the
“Surge Period”. A Surge Period marks the parts of a traffic
trace where the channel is continuously busy transmitting
packets upstream or downstream. These features are used in
[7] combined with the first n components of Haar Wavelet
Transformations to predict the website a user is visiting
through a VPN tunnel. It is shown that these features can
be used to distinguish between eleven popular websites with
dynamic content.

A similar experiment was performed by Liberatore and
Levine who used a naive Bayes classifier to predict the
visited web page out of a set of 2000 different pages, based
on the packet size combined with the direction (downstream
or upstream) [8]. They ignored all timing information
but found that they were still able to predict which website
from a list of 2000 was visited with an accuracy of up to 90%.

Most works that apply machine learning to this problem
use relatively simple machine learning techniques based on
manually defined features. Deep learning on the other hand
allows us to learn the features from data instead of having
to engineer them. The Deep packet paper [9] introduces an
end-to-end approach to train neural networks both for traffic
categorization and application identification.

Some of these techniques can pose severe privacy risks
for the end users. There has been some work on practical
countermeasures that make it harder to extract privacy
sensitive information from the network streams. TOR for
example packs all data into 512-byte cells and even includes
an experimental feature where random HTTP pipelining is
used to make it harder to discover which website was visited
[10]. Other techniques pad packets to 2 bytes or to the MTU
[11]. It is even possible to transform the traffic to make it
look like traffic from a different application by mimicking the
distribution of packet sizes [12]. Unfortunately most of these
countermeasures fail at hiding the information completely
[13].

III. FEATURE EXTRACTION

We propose to represent the extracted features as two-
dimensional histograms. This allows us to easily visualize
the relationship between different features. We defined two
feature spaces that each visualize the relationship between
two features: packet size-interarrival time and burst time-burst
size. We extracted windows containing 1024 packets from
each trace and generated the histograms for each window
independently. This windowed approach allows us to use
the classifier after every 1024 packets that are captured, for
example as part of an online QoS system. We use a logarithmic
data representation to focus more on the relative magnitude
rather than on the actual value of a feature.

Skype_window Torrent_window 040

log(IAT)

10g(IAT)
i
g
8
a

|
|

°

5

-20 -20

-8 -6 -4 -2 o 2 4 6 8
log(packetsizes)

(a) Skype

-8 -6 -4 -2 0 2 4 6 8
log(packetsizes)

(b) Bittorrent

Figure 1: The packet size - interarrival time feature space for
a Skype and a Bittorrent window.

e
I

Skype_window Torrent_window
L] L] L

° °
[S

log(burst time)
|
fraction of packets in bin

log(burst time)

°
=

°
°

-10 -5 0 5 10 -10 5 0 5 10

log(burst size (bytes)) log(burst size (bytes))

(a) Skype (b) Bittorrent

Figure 2: The burst size - Surge period feature space for a
Skype and a Bittorrent window.

A. Packet size - interarrival time

Packet size and interarrival time (IAT) are the two most
straight-forward features that we can extract from encrypted
network traffic streams. The size of a packet is directly linked
to the contained payload, which follows an application specific
profile and can thus be used for classifying the application.
We indicate the direction of the packet (downstream or
upstream) by the sign, a negative value indicates downstream
traffic, a positive value indicates upstream traffic.

The main drawback of using packet sizes as a feature
is the ease by which privacy providing protocols can
influence this feature by padding the encrypted payload with
a pseudorandom number of bytes or by padding all packets to
the same size. The timing of packets is less adaptable, since
it would have a direct impact on the performance of the web
service [14]. We combine both packet size and IAT to create a
two-dimensional histogram. An example of this visualization
is shown in Figure 1 for a window of Skype and Bittorrent
traffic. Each bin in these histograms is colored according to
the amount of packets in it. For example, Skype traffic consist
primarily of small packets with short interarrival times while
Bittorrent traffic typically has larger interarrival times and
larger packet sizes.

B. Burst size - Surge period

A burst is defined as a sequence of (non-acknowledgement)
packets sent in one direction that lie between two packets
sent in the opposite direction. The bandwidth of a burst is
the total size of all packets contained in the burst, in bytes,
and the burst count is the number of packets within the burst
[71[13]. This two-folded, aggregated feature describes the
properties of the network traffic at a higher level, because it
does not only take packet features into account, but also the
correlation between packets. A burst can typically be used to
identify a web page fetch.

Together with the burst size we also use the surge period.
The surge period marks the parts of a traffic trace where the
channel is continuously busy transmitting packets upstream
or downstream. Any packet within the surge period should
be separated from its predecessor and subsequent packets
by a time period no larger than a predefined time window size.

An example of this feature space is visualized in Figure 2.
The same reasoning as with the packet size-interarrival time
histograms applies here. Figure 2 shows that Skype windows
contain mostly longer bursts, and Bittorrent bursts tend to be
more of medium length.

IV. RESULTS

In this section we present the results obtained by training
three machine learning models for classification (naive Bayes,
logistic regression and random forest) on the feature repre-
sentations described in the previous section. We generated our
own dataset of traffic traces. A VoIP trace starts just before
starting or receiving a voice call and goes on for a brief
moment of the actual call. The Bittorrent traces start when we
added a torrent file to the torrent client, and some time of the
download. The HTTP browsing covers a Google search and
following one of the suggested links, and the YouTube traffic
consists of visiting the YouTube homepage, clicking a video
link and watching the video play for some time. For each
experiment we captured 40 traces (ten for each application)
and extracted windows containing 1024 packet each. This
results in around 500 windows. We used 20% of these samples
as a test set and used the remaining 80% for training and
validation.

A. Unencrypted data

As a baseline we trained our models on unencrypted net-
work streams. The results are summarized in Table I. This
table shows that all three machine learning models achieve
a high accuracy which indicates that these features capture
enough information to distinguish the different traffic types,
at least on unencrypted data. The logistic regression classifier
consistently performs the best and we also find that a combi-
nation of both feature spaces results in the highest accuracy
for all machine learning models.

Accuracy 1I;Iaive Logist@c Random

ayes Regression Forest

Size - IAT 94.55% 99.09% 97.27%
Burst features 96.36% 99.09% 97.27%
Combined 97.27% 100.00% 99.09%

Table I: Classification accuracy for the different feature spaces
for three different machine learning models using data from
unencrypted streams.

Accuracy Naive Logisqc Random

Bayes Regression Forest

Size - IAT 93.55% 95.70% 96.77%
Burst features 87.10% 94.62% 93.55%
Combined 94.62% 95.70% 96.77%

Table II: Classification accuracy for the different feature spaces
for three different machine learning models using data from
IPsec encrypted streams.

B. IPsec VPN encrypted data

IPsec is a network protocol operating in the Internet Layer
of the Internet Protocol Suite that can be used to authenticate
and encrypt network traffic. We configured IPsec to use tunnel
mode with Encapsulated Security Payload (ESP) to provide
both encryption and authentication. In this configuration the
original packet is encrypted and encapsulated in a new packet.

Since both packet size and timing determine the feature
spaces, it is useful to understand the effect of IPsec on
these characteristics. The timing is only influenced by the
time needed for the encryption/decryption and authentication
check of the packets. In our configuration, IPsec uses the
Advanced Encryption Standard (AES), with a 128-bit key for
encryption. This encryption is combined with SHA-256 as
hash function to provide data integrity and authentication. The
delays caused by AES-128 and SHA-256 are negligible. The
size of the packets is altered by the protocol specifications
for ESP packets and the use of tunnel mode. Tunnel mode
introduces and additional IP header (typically 20 bytes)
because of the encapsulation. The format of an ESP packet
adds another 8 bytes of protocol parameters and 32 bytes for
the integrity check value.

The results obtained on IPsec encrypted data are summarized
in Table II. We again find that our features contain sufficient
information to allow a high classification accuracy.

C. TOR encrypted data

TOR is more complex than IPsec since it uses a network
of Tor relay nodes to provide anonymity to its users. Table
III shows our results on TOR encrypted data. As expected the
accuracy is much lower compared to IPsec but we still achieve
an accuracy of up to 86%.

These results are again explained by looking at the impact of
TOR on the packet sizes and timing characteristics. The effect
on the timing is twofold. First of all, there is the longer path
that is taken by Tor because of the three relay nodes through
which all packets are routed. This circuit changes regularly
[4], resulting in different delays. The effect of TOR on the
packet sizes is caused by the TLS encryption added by each
of the relay nodes which make up the circuit.

Accuracy Naive Logistic Random

Bayes Regression Forest

Size - IAT 80.56% 77.78% 84.72%
Burst features 86.11% 80.56% 86.11%
Combined 83.33% 80.56% 80.56%

Table III: Classification accuracy for the different feature
spaces for three different machine learning models using data
from TOR encrypted streams.

D. The role of background traffic

So far we have only considered the ideal situation in which
all captured packets originate from a single application. In a
more realistic scenario however, several background processes
may be running and sending/receiving packets as well. We
mimicked a more realistic scenario by replaying background
packets. We examined the effect of different background
packet rates on the classification accuracy for IPsec encrypted
traffic. We only report the results for the Random Forest
classifier since this classifier consistently performed best on
encrypted data. Figure 3 shows that the accuracy drops as we
increase the background traffic rate but even for a rate of 300
background packets/s we are still able to achieve an accuracy
of 87.5%.

The effect of background traffic on the classification accuracy

— IPSEC traffic with background traffic

Accuracy on the testset

3 100 200 3%0 0 %0 00
packets/s of added background traffic

Figure 3: The effect of background traffic on the classification
accuracy.

E. Multi label classification:

In a real world application it is possible that a single window
contains packets belonging to different applications. A person
can watch YouTube videos while downloading content via a
Bittorrent client for example. We now extend our approach to
multi-label classification where every window can have one
up to four labels.

Due to the nature of the chosen feature spaces, the
histograms for multi-labeled samples are not simply the
addition of their single-labeled components. Although packet
sizes might show this behaviour, inter-arrival times do not.
They tend to shorten as packets from different applications
interleave each other. Also burst from one application may
be interrupted by packets from the other application.

We summarized the results in Table IV. We only report
the results for the Random Forest classifier since this
classifier consistently performed best on encrypted data. In
addition to the accuracy we also report the Hamming loss.
With multi-label classification it is possible to have partially
correct results. The Hamming loss is defined as the fraction
of the wrong labels to the total number of labels. A Hamming
loss of 4% for example means that on average, 4% of the
predicted labels are incorrect.

Accuracy Accuracy | Hamming loss
Size - IAT 83.87% 4.62%
Burst features 76.83% 6.89%
Combined 83.58% 4.62%

Table IV: Classification accuracy and Hamming loss for the
different feature spaces for the random forest classifier using
data from TOR encrypted streams.

V. CONCLUSION AND FUTURE WORK

We have shown that size and timing features, at both
individual packet level and at aggregated burst level, can
be successfully used to fingerprint encrypted network traffic
types. We first validated our approach on an unencrypted
baseline. IPsec did not alter the features significantly and
similar accuracy measures were obtained. TOR on the other
hand does have an effect on the timing characteristics of a
network stream because of the circuit of relay nodes that
it uses in order to provide anonymity. This resulted in a
noticeable accuracy drop. We do however believe that more
data, captured from different TOR circuits can make our
models more robust against the delay introduced by the
protocol.

In future work we will look at more real-world settings
with a wider variety of network protocols. We will increase
our dataset to include traffic from different devices with
different operating systems and network stacks.

ACKNOWLEDGEMENTS

The work presented in this paper was performed by Nathan
Meheus during his Master of Science in Computer Science
Engineering thesis dissertation. Steven Bohez is funded by
a Ph.D. grant of the Agency for Innovation by Science and
Technology in Flanders (IWT).

[1]

[2]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

REFERENCES

H. Kim, K. C. Claffy, M. Fomenkov, D. Barman, M. Faloutsos, and
K. Lee, “Internet traffic classification demystified: myths, caveats, and
the best practices,” in Proceedings of the 2008 ACM CoNEXT confer-
ence. ACM, 2008, p. 11.

H. Dreger, A. Feldmann, M. Mai, V. Paxson, and R. Sommer, “Dynamic
application-layer protocol analysis for network intrusion detection.” in
USENIX Security Symposium, 2006, pp. 257-272.

A. W. Moore and K. Papagiannaki, “Toward the accurate identification
of network applications.” in PAM, vol. 5. Springer, 2005, pp. 41-54.
R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” Naval Research Lab Washington DC, Tech.
Rep., 2004.

P. Winter, R. Kowinter2014spoiledwer, M. Mulazzani, M. Huber,
S. Schrittwieser, S. Lindskog, and E. Weippl, “Spoiled onions: Exposing
malicious tor exit relays,” in International Symposium on Privacy
Enhancing Technologies Symposium. Springer, 2014, pp. 304-331.
G. Lu, H. Zhang, M. Qassrawi, and X. Yu, “Comparison and analysis of
flow features at the packet level for traffic classification,” in Connected
Vehicles and Expo (ICCVE), 2012 International Conference on. 1EEE,
2012, pp. 262-267.

Y. Shi and S. Biswas, “Website fingerprinting using traffic analysis of
dynamic webpages,” in Global Communications Conference (GLOBE-
COM), 2014 IEEE. IEEE, 2014, pp. 557-563.

M. Liberatore and B. N. Levine, “Inferring the source of encrypted http
connections,” in Proceedings of the 13th ACM conference on Computer
and communications security. ACM, 2006, pp. 255-263.

M. Lotfollahi, R. Shirali, M. J. Siavoshani, and M. Saberian, “Deep
packet: A novel approach for encrypted traffic classification using deep
learning,” arXiv preprint arXiv:1709.02656, 2017.

“Experimental defense for website traffic fingerprinting,” https:/
blog.torproject.org/experimental-defense- website-traffic-fingerprinting,
accessed: 2017-09-29.

X. Cai, X. C. Zhang, B. Joshi, and R. Johnson, “Touching from a
distance: Website fingerprinting attacks and defenses,” in Proceedings of
the 2012 ACM conference on Computer and communications security.
ACM, 2012, pp. 605-616.

C. V. Wright, S. E. Coull, and F. Monrose, “Traffic morphing: An
efficient defense against statistical traffic analysis.” in NDSS, vol. 9,
2009.

K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Peek-a-boo,
i still see you: Why efficient traffic analysis countermeasures fail,” in
Security and Privacy (SP), 2012 IEEE Symposium on. 1EEE, 2012, pp.
332-346.

S. Feghhi and D. J. Leith, “A web traffic analysis attack using only
timing information,” IEEE Transactions on Information Forensics and
Security, vol. 11, no. 8, pp. 1747-1759, 2016.

