
Few-shot Learning Using a Small-Sized Dataset of
High-Resolution FUNDUS Images for Glaucoma Diagnosis

Mijung Kim Jasper Zuallaert Wesley De Neve
Ghent University - imec, IDLab, Department of Electronics and Information Systems, Belgium
Ghent University Global Campus, Center for Biotech Data Science, Songdo, Republic of Korea

{mijung.kim, jasper.zuallaert, wesley.deneve}@ugent.be

ABSTRACT
Deep learning has recently attracted a lot of attention, mainly
thanks to substantial gains in terms of effectiveness. However, there
is still room for significant improvement, especially when dealing
with use cases that come with a limited availability of data, as is
often the case in the area of medical image analysis. In this paper,
we introduce a novel approach for early diagnosis of glaucoma in
high-resolution FUNDUS images, only requiring a small number
of training samples. In particular, we developed a predictive model
based on a matching neural network architecture, integrating a
high-resolution deep convolutional network that allows preserving
the high-fidelity nature of the medical images. Our experimental
results show that our predictive model is able to obtain higher levels
of effectiveness than vanilla deep convolutional neural networks.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; • Ap-
plied computing→ Life and medical sciences;
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1 INTRODUCTION
Deep learning has recently achieved remarkable levels of effective-
ness in the area of visual content understanding. In particular, as
illustrated by the ImageNet benchmark, state-of-the-art deep learn-
ing models are currently more effective than humans in detecting
objects and classifying images [8]. Furthermore, Google recently
introduced a deep learning model for highly effective diagnosis of
diabetic retinopathy [17], a disease caused by diabetes, leading to
serious eye impairment. This predictive model attracted substantial
attention from the medical community, given that it demonstrates
the usefulness of deep learning for medical image analysis.

In practice, however, the application of deep learning techniques,
which are data hungry in nature, is sometimes not possible due to
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overfitting, and where the latter is typically caused by a lack of data.
Therefore, an increasing number of research efforts are dedicated to
modifying deep learning techniques so that they can be successfully
applied to sets having a limited number of data points.

The occurrence of small-sized image datasets is common in the
area of medical image analysis, and where the images in question
typically have a high resolution in order to facilitate ease of diag-
nosis by human experts. As a result, in our research, we focus on
applying deep learning techniques to small-sized datasets of high-
resolution medical images. In addition, to overcome the limited
availability of medical images, we leverage few-shot learning, given
that the combined application of deep learning and few-shot learn-
ing has recently demonstrated to come with a high potential [12].
Among several problems in the field of medical image analysis, we
decided to steer our research towards early diagnosis of an eye dis-
ease called glaucoma, receiving expert help from Samsung Medical
Center.

Glaucoma is one of the leading causes of human vision loss in
the world [11]. The disease finds its origin in an increasing eye
pressure, damaging the optical nerve, with patients gradually los-
ing peripheral vision, leading to tunnel vision, and in the end, to
a complete loss of vision. Fortunately, glaucoma can be controlled
through early diagnosis and proper medicine and treatment. As
shown in Figure 1, ophthalmologists, which are specialists in med-
ical and surgical eye problems, diagnose glaucoma by examining
the eyes of patients using various types of eye images, including
fundus imaging (hereafter referred to as FUNDUS), Retinal Nerve
Fiber Layer (RNFL) imaging, Optical Coherence Tomography (OCT)
imaging of the optical disc and for macular measurement, and/or
perimetry images. Together, these different types of images can
help in reaching the correct diagnosis.

For radiologists, however, it is time consuming to capture differ-
ent types of images and to subsequently examine them in a manual
way. Moreover, with the exception of general hospitals, most oph-
thalmologists do not have access to all of the aforementioned image
types. Therefore, the development of an effective computational
model for early diagnosis of glaucoma, only making use of one
type of image, has the potential to save a significant number of
patients from vision loss. Given this observation, we obtained a
FUNDUS image dataset from Samsung Medical Center in Korea,
and we subsequently developed a predictive model for the early
diagnosis of glaucoma, leveraging state-of-the-art techniques for
both deep learning and few-shot learning.

Our paper is organized as follows. In Section 2, we review related
work. Next, in Section 3, we provide details about our network
architecture. We subsequently discuss our experimental setup and
results in Section 4. Finally, we conclude our paper in Section 5.
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(a) Normal vision (b) Intermediate glaucoma (c) Advanced glaucoma (d) FUNDUS eye image

Figure 1: When people suffer from glaucoma, they see differently: (a) people with normal vision (peripheral vision); (b) as
glaucoma develops, patients gradually lose their vision; and (c) people with advanced glaucoma, only seeing a small portion
of an object (i.e., tunnel vision). Finally, a FUNDUS eye image (that is, an image of the back of the eye) can be seen in (d), with
the arrows indicating where the optic disc and the macula reside in the image (the macula is an oval-shaped pigmented area
near the center of the retina of the human eye). The region-of-interest is mainly between the optic disc and the macula.

2 RELATEDWORK
In this section, we review several machine learning techniques, pay-
ing particular attention to few-shot learning, matching networks
(MNs), and high-resolution convolutional neural networks (CNNs).

2.1 Few-shot Learning
Despite the current success of deep neural networks in various
application domains, it is still a challenge to apply these networks to
small-sized datasets. To overcome this challenge, Google DeepMind
introduced a few-shot learning approach in 2016 [12]. Based on
meta-learning [14, 15] and Memory-Augmented Neural Networks
(MANNs) like Neural Turing Machines (NTMs; [4]), the newly
introduced approach only needs a few samples per class for training
purposes (that is, one, five, or ten), outperforming Long Short-
Term Memory (LSTM) [5] and humans for the task of Omniglot [1]
classification.

2.2 Matching Networks
MNs were developed by the same team that developed the few-shot
learning approach described in Section 2.1. In particular, MNs were
introduced in [16], emphasizing two design aspects: (1) the use of an
attention mechanism that leverages cosine similarity and softmax,
and (2) the adoption of the machine learning principle that test and
train conditions must match. Furthermore, the embedding function
of the MNs consists of a CNN stack and succeeding LSTM layers.
However, unlike for the ImageNet task [2] and the Penn Treebank
(PTB) task [10], the additional LSTM layers did not bring significant
improvement for the Omniglot task. The MNs did outperform a
MANN and a convolutional Siamese network [7].

2.3 High-Resolution CNNs
Most deep learning approaches that target visual classification tasks
make use of various techniques to reduce the dimensionality of
the input images, including downscaling the original image res-
olution [3]. Since downscaling may cause a loss of key features
in medical images, an observation that explains why radiologists
prefer the use of high-resolution imagery, the effectiveness of deep
learning approaches may be hampered. For that reason, the au-
thors of [3] decided not to downscale the original images, but to

aggressively reduce their dimensionality by relying on CNN layers.
Specifically, by leveraging high-resolution CNNs, they were able to
improve the accuracy of their model for breast cancer screening.

3 ARCHITECTURE
Our approach mainly focuses on tackling two challenges: (1) ap-
plying deep learning techniques to small-sized datasets and (2)
preserving the quality of the original images as much as possible
when feeding them into the embedding function, so to be able to
minimize the loss of helpful features. For dealing with small-sized
datasets, we started from the MNs introduced in [16], and for fa-
cilitating the usage of high-resolution medical images, we started
from the high-resolution CNNs introduced in [3]. We discuss the
architecture of our neural network, which can be seen in Figure 2,
in more detail in the next sections.

3.1 Attention Mechanism
The attention mechanism used by our approach is based on the
attention mechanism used in [16]. Specifically, we first calculate the
cosine distance cT between each example image xi of the support
set T = {x1, . . . ,xn } and a target image xt :

cT =
θT (xt ) · θT (xi )

∥θT (xt )∥2∥θT (xi )∥2
, (1)

where θT is the embedding function. This embedding func-
tion takes the form of a deep CNN that is able to deal with high-
resolution imagery and that is followed by a bidirectional LSTM.
Note that we make use of the same embedding function for both
xi and xt . Next, we obtain a predicted label yt _pred by using the
softmax over the cosine distance:

yt _pred =
n∑
i=1

so f tmax(cT )yi , (2)

where yi is the corresponding label of xi .
Note that, different from the MNs introduced in [16], our model

is parametric in nature, given that there is no need for classifying
unseen classes during validation and testing.



Figure 2: Overall architecture used by our model, showing
five-shot learning. Five positive and five negative example
images are fed into the embedding function, leading to a
positive and a negative embedding, respectively. Contrary to
the number of example images, only one target image (test
example) is consistently used for any-shot learning.

3.2 Embedding Function
Our embedding function consists of two components: CNN layers
and a bidirectional LSTM layer. Each component can be optionally
implemented.

3.2.1 CNN Component. As shown in Table 1, the CNN com-
ponent is a stack of deep convolutional neural layers that is able
to deal with high-resolution images. First, we begin with coarse
strides, two or three, at the lower convolutional layers and the
max-pooling layers, so to be able to aggressively reduce input im-
age dimensionality. After going through all the layers, the CNN
component returns a flattened 6,400-D feature vector.

3.2.2 LSTMComponent. Depending on the input, different LSTM
functions are applied to the embedding generated by the CNN

Table 1: The CNN embedding function used by our predic-
tive model.

Layer Kernel size Stride Depth Repetition

input 512×512×3
convolution 3×3 2 32 -
max pooling 3×3 3 32 -
convolution 3×3 2 64 -
convolution 3×3 1 64 2
max pooling 2×2 2 64 -
convolution 3×3 1 128 3
max pooling 2×2 2 128 -
convolution 3×3 1 128 3
max pooling 2×2 2 128 -
convolution 3×3 1 256 3

global average pooling 256 -

component. For the example input images, the bidirectional LSTM
component д is trained over the flattened output of the CNN com-
ponent. For a target image, the forward LSTM component f is used.
Both outputs are then used for calculating the cosine distance and
the subsequent softmax. The overall approach is as follows, with θ
denoting the embedding function:

д(xi ) = biLSTM(θ (xi )) + θ (xi ) (3)

f (xt ) = LSTM(θ (xt )) + θ (xt ) (4)

a(f (xt ),д(xi )) = so f tmax(f (xt )T · д(xi )) (5)

4 EXPERIMENTS
In this section, we discuss the outcome of several experiments,
comparing our approach with other state-of-the-art neural network
architectures. Our main focus is on studying the effectiveness of
binary classification for our small-sized dataset of high-resolution
medical images. To evaluate our model, we make use of accuracy:
(#True Positives + #True Negatives) / #Predictions. All approaches
have 680 images in the training set, 200 images in the validation
set, and 200 images in the test set.

4.1 Experimental Setup
4.1.1 Dataset. Our dataset consists of 1,080 high-resolution

FUNDUS RGB images, made available by Samsung Medical Center
in Korea. This dataset comes with two perfectly balanced classes:
negative, which denotes absence of glaucoma, and positive, which
denotes presence of glaucoma. Specifically, each class comes with
540 high-resolution FUNDUS images, with the resolution rang-
ing from 1172 × 1500 to 2500 × 3200. Since the size of the images
varies, we center-cropped each image to a region-of-interest with
a size of 1024×1024, keeping the three RGB channels. In other
words, we did not make use of downscaling, nor did we make use
of grayscale conversion, so to be able to preserve the high-fidelity
nature of the original images. Note that we decided to make use of
center-cropping because all of the important features for diagnos-
ing glaucoma are located between the optic disc and the macula, as
shown in Figure 1.

4.1.2 Training. For comparison purposes, we made use of sev-
eral state-of-the-art deep neural networks, as also included in Ta-
ble 2. In general, we have used the default settings for the different
neural networks [3, 13], using various input sizes.

First, we have run LeNet [9] with an image size of 256×256. We
have then run VGG16 and Inception ResNet V2 with their default
settings, as described in the respective papers. Furthermore, to
alleviate the problem of overfitting, we applied data augmentation.

We implemented our predictive model by means of the Tensor-
Flow framework developed by Google, training this model using
NVIDIA Titan X GPUs. We center-cropped and eventually resized
the input images to three different resolutions (that is, 256×256,
512×512, and 1024×1024), maintaining the three original color chan-
nels, thus making it possible study the impact of image quality on
the effectiveness of classification. We set up our model once with
and once without data augmentation.



Table 2: Results obtained by the different predictive models

Model Input size Data Aug. Acc.

VGG-16 224 × 224 × 3 Yes 65.2%
Inception ResNet V2 239 × 239 × 3 Yes 89.5%
Our model (low)a 256 × 256 × 3 No 79.0%
Our model (low) 256 × 256 × 3 Yes 77.2%
Our model (mid)b 512 × 512 × 3 No 81.2%
Our model (mid) 512 × 512 × 3 Yes 83.4%
Our model (high)c 1024 × 1024 × 3 No 88.1%
Our model (high) 1024 × 1024 × 3 Yes 87.9%

a low denotes a center-cropped image down-sized to 256 × 256.
b mid denotes a center-cropped image down-sized to 512 × 512.
c high denotes the use of the original center-cropped image.

Similar to the ImageNet setup discussed in [16], we make use
of a 1-shot, 5-shot, 10-shot, and 20-shot approach per class, thus
feeding 1, 5, 10, or 20 positive example images per class and 1, 5, 10,
or 20 negative example images per class to the embedding function,
and with this function subsequently returning a flattened feature
vector for both the positive and the negative images. Similar to [16],
these feature vectors are then used to predict a label for an unseen
target image using the attention mechanism (i.e., using softmax
over cosine distance). The loss was calculated as described in [16]
as well, using the ADAM optimizer [6] with a learning rate of 0.01.

In summary, all inputs go through the CNN layers and optionally
the LSTM layers, and then through the attention mechanism. Next,
the loss, which is calculated based on the last output, is optimized
using ADAM.

4.2 Experimental Results
As can be seen in Table 2, VGG-16 did not performwell for the given
dataset. Not shown in Table 2, LeNet returned an accuracy of 48.4%
for the same task. Considering the balanced nature of the dataset,
VGG-16 and LeNet were close to random guessing. Inception ResNet
V2 obtained the highest accuracy among all experiments, but this
architecture typically requires massive data augmentation, as also
pointed out in [13].

Our approach made use of 1-shot, 5-shot, 10-shot, and 20-shot
learning. Similar to [16], we could observe the following: the more
samples we had per class, the more accurate the results obtained.
The same observation could also be made regarding the input image
size: the higher the spatial resolution, the better.

Given the above, Table 2 only shows the accuracy results ob-
tained for 20-shot learning, given that 20-shot learning was consis-
tenly outperforming 1-, 5-, and 10-shot learning with a significant
margin. As an example, 1-shot learning making use of the highest
image resolution was only able to achieve an accuracy of 54.51%.

Finally, we could observe that the models using LSTM layers
after the CNN component did not perform well, an observation
that is in line with the conclusions of [16] for Omniglot. Therefore,
Table 2 also omits the results obtained for an embedding function
that consists of both a CNN and LSTM component.

Given that human experts have a diagnosis accuracy of about
80%, the proposed approach demonstrates a higher effectiveness.

5 CONCLUSIONS AND FUTURE RESEARCH
In this paper, we introduced a novel approach towards early diag-
nosis of glaucoma in medical images, using a few-shot learning
technique that leverages a high-resolution CNN. Our experimental
results indicate that the effectiveness of our approach is promising,
even when training is done by making use of a small-sized dataset.

In future research, we plan to evaluate our approach for different
types of diseases and different types of images. In addition, we
plan to apply our approach to text-based medical datasets. Finally,
we will investigate whether further improvements can be realized
through the use of additional data augmentation techniques.
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