
Specification and Implementation of Mapping Rule
Visualization and Editing: MapVOWL and the RMLEditor

Pieter Heyvaerta,1,∗, Anastasia Dimoua,1, Ben De Meestera, Tom Seymoensb, Aron-Levi Herregodtsc,
Ruben Verborgha, Dimitri Schuurmanc, Erik Mannensa

aIDLab, Department of Electronics and Information Systems, Ghent University –
imec, Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium

bimec – smit, Vrije Universiteit Brussel, Pleinlaan 9, 1050 Etterbeek, Belgium
cimec – Ghent University – MICT, Korte Meer 7, 9000 Gent, Belgium

Abstract

Visual tools are implemented to help users in defining how to generate Linked Data from raw data. This
is possible thanks to mapping languages which enable detaching mapping rules from the implementation
that executes them. However, no thorough research has been conducted so far on how to visualize such
mapping rules, especially if they become large and require considering multiple heterogeneous raw data
sources and transformed data values. In the past, we proposed the RMLEditor, a visual graph-based user
interface, which allows users to easily create mapping rules for generating Linked Data from raw data. In
this paper, we build on top of our existing work: we (i) specify a visual notation for graph visualizations
used to represent mapping rules, (ii) introduce an approach for manipulating rules when large visualizations
emerge, and (iii) propose an approach to uniformly visualize data fraction of raw data sources combined with
an interactive interface for uniform data fraction transformations. We perform two additional comparative
user studies. The first one compares the use of the visual notation to present mapping rules to the use of
a mapping language directly, which reveals that the visual notation is preferred. The second one compares
the use of the graph-based RMLEditor for creating mapping rules to the form-based RMLx Visual Editor,
which reveals that graph-based visualizations are preferred to create mapping rules through the use of our
proposed visual notation and uniform representation of heterogeneous data sources and data values.

Keywords: graph, Linked Data, mapping rule, MapVOWL, RMLEditor

1. Introduction

Nowadays Linked Data still stems from (semi-
)structured formats. A few of the most well-known
and larger Linked Data sets2 [23] are: DBpedia
dataset3 [6], with approximately 1.39 billion triples
derived from Wikipedia4 where the data is origi-
nally represented in the wikitext syntax; Linked
Geo Data5 [58] with approximately 1.38 billion
triples derived from Open Street Map planet files

∗Corresponding author
Email address: pheyvaer.heyvaert@ugent.be

(Pieter Heyvaert)
1These authors contributed equally to this work.
2http://stats.lod2.eu/rdfdocs?sort=triples
3http://dbpedia.org
4http://wikipedia.org
5http://linkedgeodata.org

loaded in multiple databases; UniProt [12] (UniPro-
tKB, Uniref and UniParc), with approximately 45
billion triples across 3 datasets derived from the
UniProt Knowledgebase6; and Bio2rdf7 [2], with
approximately 11 billion triples across 35 datasets.

Overall, Linked Data generation includes the fol-
lowing: (i) multiple heterogeneous raw data sources
whose data values might need transformation,
(ii) ontologies used to annotate the rdf terms [13]
that are generated from the data fractions of the dif-
ferent data sources, (iii) actual mapping rules which
define how data fractions are semantically anno-
tated and used to generate rdf terms and triples,
and (iv) generated Linked Data.

6http://www.uniprot.org/help/uniprotkb
7http://bio2rdf.org/

Preprint submitted to Journal of Web Semantics February 6, 2018

http://stats.lod2.eu/rdfdocs?sort=triples
http://dbpedia.org
http://wikipedia.org
http://linkedgeodata.org
http://www.uniprot.org/help/uniprotkb
http://bio2rdf.org/


Several datasets are generated by tools that in-
corporate directly in their implementation how
Linked Data is generated. This means when new or
updated semantic annotations are needed, knowl-
edge of Semantic Web technologies is required, as
well as dedicated software development cycles for
adjusting and extending the implementations.

To the contrary, mapping rules may also be de-
fined, according to a specified mapping language
syntax, such as r2rml [16] or rml [20]. Mapping
languages define declaratively how terms are gener-
ated from corresponding raw data and annotated
with ontology terms to form the desired Linked
Data. This way, mapping rules are detached from
the implementation that executes them. Neverthe-
less, knowledge of the underlying mapping language
is required to define mapping rules, while manually
editing and curating them requires a substantial
amount of human effort [31]. Therefore, the cre-
ation of mapping rules still remains complicated.

To this end, a significant number of mapping ed-
itors were implemented to facilitate mapping rules
creation and editing, such as Map-On [56], the
RMLEditor [31], and the RMLx Visual Editor8.
Only a few of them provide graph-based visualiza-
tions, although user evaluations suggest that such
visualizations are suitable for supporting users to
intuitively generate their desired Linked Data [31].

Nevertheless, how such user interfaces should be
designed is not thoroughly investigated so far: (i) a
visual notation specification for mapping rules does
not exist. Such a specification would provide a for-
mal description for mapping rules and allows mul-
tiple tools to implement it, improving the acces-
sibility for users across different tools; (ii) current
mapping editors do not uniformly present multi-
ple heterogeneous data sources. Therefore, creat-
ing mapping rules that define relationships between
heterogeneous data sources is not always straight-
forward; (iii) data value transformations cannot be
defined in current visualization-based mapping ed-
itors; (iv) scalability is not thoroughly addressed.
Even if graph-based visualizations are used, large
graphs cause difficulties to users when editing the
corresponding mapping rules.

In this work, we present and extend our ongo-
ing work towards a uniform graphical user interface
(gui) to create and edit Linked Data mapping rules.
Such a gui is implemented in the RMLEditor,

8http://pebbie.org/mashup/rml

which we presented in the past. The RMLEditor
offers a graph-based interface for specifying map-
ping rules for raw data to generate Linked Data.
Its target group of users have knowledge about both
Linked Data and the domain of the data. The map-
ping rules creation and editing is based on graph
visualizations, without requiring knowledge of the
underlying mapping language. Our novel contribu-
tions include in particular:

(i) a rich graph-based visual notation for map-
ping rule visualization;

(ii) an approach for manipulating rules when
large visualizations emerge;

(iii) an approach to uniformly visualize data frac-
tions of data sources combined with an interactive
interface for uniform data fraction transformations;

(iv) an implementation of these three contribu-
tions in the RMLEditor; and

(v) additional evaluations to compare the use of
– the visual notation to present mapping rules

to the use of a mapping language directly, which
reveals that the visual notation is preferred; and

– the graph-based RMLEditor to create mapping
rules to the form-based RMLx Visual Editor, which
reveals that the RMLEditor is preferred to create
mapping rules through its use of the visual notation
and uniform representation of heterogeneous data
sources and data values.

The remainder of the paper is structured as fol-
lows. In Section 2, we elaborate on Linked Data,
mapping rules, and rdf terms. In Section 3, we
discuss related work. In Section 4, we introduce
our research questions and hypotheses. We present
in Section 5 our proposed visual notation for map-
ping rules, and in Section 6, the RMLEditor. In
particular, we elaborate in Section 6.5 on the ma-
nipulation of large graphs in the RMLEditor, and in
Section 6.6 on how the RMLEditor deals with het-
erogeneous data sources. In Section 7, we present
the evaluations and the results both for the visual
notation and the new version of the RMLEditor. In
Section 8, we summarize this work’s conclusions.

2. Preliminary

Linked Data refers to data whose meaning is ex-
plicitly defined, that is published on the Web in
a machine-interpretable way, and that is linked to
other external data sets [5]. Nowadays, RDF [13] is
the prevalent framework to represent Linked Data.
Most of the time, Linked Data originally stems from

2

http://pebbie.org/mashup/rml


(semi-)structured formats (csv, xml, and so on).
Their rdf representation is obtained by repetitively
applying mapping rules according to an iteration
pattern which specifies the extract of data that is
considered during each iteration.

Mapping rules define correspondences between
data in different schemas [24]. In the case of Linked
Data generation, mapping rules define how rdf
terms, i.e., iris, literals or blank nodes [13], are gen-
erated from data fractions derived from one or more
data sources which are annotated with ontologies.
These rdf terms are used to form rdf triples.

With the term data fractions, we do not only
mean raw data values as they are in the original
data source, but also transformed data values that
result from a raw data value after applying a func-
tion to process the original data values. Data value
transformations are needed to support changes in
the structure, representation or content of data,
such as string transformations. For instance, when
a data fraction contains a date in the format “DD-
MM-YYYY”, it might be needed to be transformed
to the format “YYYY-MM-DD”.

References to raw or transformed data fractions
might be combined with constant values (template-
valued [16]) or only constant data values (constant-
valued [16]) might be used to form the desired rdf
terms. As such, a complete mapping rule includes
(i) a reference to zero or more raw data fractions
and (ii) one or more ontology terms. Therefore,
when visualizing a mapping rule, its interrelation
with the raw data as well as with its semantic an-
notation with an ontology term should be visualized
when presented to and edited by users.

3. State of the Art

The creation and editing of mapping rules, as well
as their visualization is closely related to Linked
Data, ontologies, and query visualizations (Section
3.1), and is performed using different types of map-
ping editors (Section 3.2).

3.1. Interfaces for Semantic Web Visualizations

In this section, we elaborate on visualizations
for different aspects of the Semantic Web: Linked
Data, ontologies, and queries which become rele-
vant. We discuss the characteristics of each aspect
and their visualizations that are implemented in ex-
isting tools or formalized as a specification.

3.1.1. Linked Data Visualizations

As mapping rules resample how Linked Data will
eventually be generated [31], visualizations that are
applicable for Linked Data would be expected to be
applicable for mapping rules visualizations too.

Efforts to improve Linked Data accessibility, re-
sulted in tools offering either (i) text-based pre-
sentations, or (ii) visualizations. Dadzie and
Rowe [15] conducted a survey on both approaches.
They concluded that text-based solutions, such as
Sig.ma [60], (i) fail to provide an overview of the
available information, and (ii) are only suitable for
users with understanding of the underlying tech-
nologies, whereas lay users need additional support.

Visual presentations lead to approaches relying
on network maps [35], diagrams [35], geographic
maps [53], timelines [53], charts [3], and graphs [27,
62, 19]. The latter was the default in the past ac-
cording to Dadzie and Pietriga [14], because (i) on-
tologies are often hierarchically structured and used
to annotate Linked Data; (ii) rdf’s data model
is a directed labeled graph [13]; and (iii) network
analysis is one of the most common visualization-
driven tasks carried out within the field, to ex-
plore, e.g., collaborations and other interrelation-
ships between researchers within research data, and
social networks at large. However, they fail to pro-
vide meaningful visualizations when graphs become
large, even when styled to better convey the re-
sources’ and properties’ semantics [49]. Further-
more, exposing the data’s graph structure is not
always needed, because the model may be of little
importance to users [14]. Therefore, current efforts
are more focused on user interface components de-
signed for different types of data, such as temporal
and geographical data. Nonetheless, graph visual-
izations can still be used, but they are no longer the
main component to be represented.

Regardless of the used visualization, research
is being done to improve the support for large
datasets. For example, Bikakis et al. [4] introduce
a generic model for organizing, and analyzing nu-
meric and temporal data in a multilevel fashion to
deal with the challenges that come with the use of
large datasets, such as information overload. The
model is not tied to a specific visualization and,
thus, it can be used with any of the aforementioned
tools to improve the support for such datasets.

3.1.2. Ontology Visualizations

Ontology visualizations are also close to mapping
rule visualizations. Mapping rules define the mod-

3



eling, namely the conceptualization, of raw data as
Linked Data, using ontologies. Thus, approaches
applicable for ontology representation which visu-
alize the schema could be adjusted for visualizing
mapping rules too. To improve the ontology pre-
sentation and editing, a number of tools were devel-
oped. Such tools offer visualizations that represent
ontology-specific elements. Only a limited number
of efforts defined a specification for such visual no-
tations that can be implemented by any other tool.

Tools. Graphs offer a natural way to depict the
structure of ontological elements and relation-
ships [40]. Therefore, graph-based visualizations
are present in a high number of visualization tools
for ontologies, such as GrOWL [36], OWLViz [33]
and KC-Viz [43]. In these cases, classes and
datatypes are represented as nodes and properties
as edges. However, when similar graphical nota-
tions are used for different ontological elements it
is difficult for users to distinguish them.

Furthermore, a number of graph-based visualiza-
tions are focused on a single task, e.g., providing
insights regarding the class hierarchy, and neglect
other aspects of ontologies, including the proper-
ties and datatypes. This makes them less suit-
able for other tasks [40], such as gaining insights
in the relationships between the classes via the dif-
ferent properties. When visualizing large ontolo-
gies the graphs might become too large for users
to cope with. Different approaches, applied by sev-
eral tools [43, 38, 34], were developed to tackle this
challenge: (i) showing detailed information only on
demand, i.e., selecting a specific node results in dis-
playing more detailed information about that node;
(ii) displaying the parts of the graphs that are se-
lected by a given filter; (iii) zooming in and out on
the graphs, enabling them to gain more information
about a specific region of interest of the graph.

So far, ontology visualizations were focused on
presenting the ontologies. Nevertheless, more and
more tools are built to facilitate editing of ontolo-
gies [45, 11], as ontologies are subject to change.
This leads to the development of visualization plu-
gins that show the (updated) ontology inside the
tool [39]. However, such an approach disconnects
the visualization of the ontology from its editing
and requires users to understand both the visu-
alization and the interface used to perform the
updates. This is overcome when graph-based vi-
sualizations allow users to update the nodes and
edges [36, 57]. The updates will result in the cor-

responding changes in the ontology. TurtleEdi-
tor [57], for instance, uses both methods: text ed-
itor and visualization to present and update the
ontology, leaving the choice to the users.

Specifications for Visual Notations for Ontologies.
In most cases, tools create a new stand-alone vi-
sualization to present the ontology [43, 34]. How-
ever, when users switch between tools they need
to learn a new visualization to work with the new
tool. Recent efforts result in the creation of specifi-
cations for visual notations. They provide a formal
description of the visual elements used to convey
the required information to users. These specifica-
tions are independent of the tools that implement
them, and, thus, can be applied by multiple tools.
The latter allows to improve the user’s ability to
switch between these tools as they provide the same
predefined visualization [25]. The most significant
specifications are Graffoo [25] and vowl [40].

The Graphical Framework For OWL Ontologies
(Graffoo) [25] defines a graph-based visual notation
for ontologies. Classes are represented with yel-
low rectangles and datatypes with green parallelo-
grams. The properties are represented with lines
connecting the rectangles or parallelograms, and
have different colors depending on the property’s
type, i.e., object and datatype property. Graffoo is
implemented in yEd9, a diagram editor. However,
it does not propose an intuitive ontology visualiza-
tion that is immediately understandable to casual
users due to its diagrammatic approaches [40].

The Visual Notation for owl Ontologies10

(vowl) defines a visual language for user-oriented
representation of ontologies and provides graphi-
cal depictions for elements of the Web Ontology
Language (owl) [40]. The initial specification of
vowl [44] focused on the visualization of ontology
elements (i.e., classes, properties, and datatypes),
together with the dataset’s instances, the so-called
TBox and ABox in Description Logic, respectively.
However, based on their user study, they concluded
that even when visualizing only a few instances,
providing additional information already leads to
difficulties for understanding the visualization.

Therefore, vowl 2 focuses on visualizing only
the TBox. It relies on directed graphs to visualize
ontologies, and is implemented in WebVOWL [38],
a web application. Classes are represented by blue,

9http://www.yworks.com/products/yed
10http://purl.org/vowl/spec/

4

http://www.yworks.com/products/yed
http://purl.org/vowl/spec/


circular nodes, and datatypes by yellow, rectangu-
lar nodes. Links are used to visualize how classes
are related to other classes or datatypes through
properties. Graphical elements are added to links
between classes to represent characteristics, such
as disjoint and union, while the use of colors helps
identifying the different elements.

3.1.3. Query Visualizations

Query visualizations aim to hide the query lan-
guage to end users, whereas mapping rule visualiza-
tions aim to hide the mapping language. Thus, ap-
proaches applicable for query representation could
be adjusted for visualizing mapping rules.

Query formulation is important for the re-
trieval of information available as Linked Data.
sparql [50] is the standard query language for
Linked Data described using the rdf framework.
However, besides users from the Semantic Web
community, lay users and domain experts from dif-
ferent areas, i.e., users without knowledge about
this language, need support to define valid queries
that provide the desired results [26]. Tools, such as
NITELIGHT [52], RDF-GL [32], and FedViz [22],
were developed to make it easier to work with a
query language by removing the burden of deal-
ing with the language’s syntax. They apply graph-
based visualizations to represent the data’s under-
lying rdf structure. However, knowledge about
sparql is still required, which makes them less us-
able for lay users, with exception of FedViz. This
tool allows to browse Linked Data through a graph-
based visualization (see Section 3.1.1). Once the
users have found the desired data, FedViz generate
the corresponding sparql query.

Nonetheless, visually spotting the difference be-
tween different aspects of a query or Linked Data
is difficult as the same graphical notation is used to
denote different aspects. queryvowl [26] addresses
this ambiguity. It is a specification for a visual no-
tation for queries that uses graph visualizations, as
it is based on vowl. queryvowl specifies a vi-
sual query language, with the goal to be accessible
for lay users while still preserving most of sparql’s
expressiveness. Referents are represented as circu-
lar nodes and literal values as rectangular nodes.
A referent’s class is added inside the node as text.
The same is done for the datatype of a literal value.
Links represent the relationships between nodes, us-
ing properties. Different colors are used to make
distinction between classes, instances, and literals.

Icons represent the update actions to the queries,
such as add and delete.

As queries can become large, it is required to sup-
port large graphs. Similar to ontology visualiza-
tions, different approaches were proposed to tackle
the corresponding challenges. For example, details
are presented on-demand when users click on a part
of the query [26], specific details are shown by ap-
plying filters on the query’s results [26], or users
can zoom in on specific parts of the query through
the corresponding buttons [52].

Specific tools are also developed for specific cases,
such as SPEX [53] for spatial and temporal data.
Their goal is to provide users with a gui to ex-
plore the data and, subsequently, to help with query
construction. Scheider et al. [53] introduced de-
sign principles to achieve this goal, such as the use
of the results’ feedback into the construction and
the automatically handling of space and time data.
SPEX, which follows these principles, includes also
a graph-based visualization, similar to the afore-
mentioned tools. However, these tools do not follow
the design principles making them less usable than
SPEX.

3.2. Mapping Editors

Research efforts to facilitate the mapping rule
creation and editing to generate Linked Data re-
sulted in the development of two types of graphical
user interface (gui) tools: (i) step-by-step wizards
and (ii) visualization tools.

In the past, step-by-step wizards prevailed as
an easy-to-reach solution, such as the fluidOps ed-
itor [54]. However, such applications restrict data
publishers’ editing options, hamper altering param-
eters in previous steps, and detach mapping defini-
tions from the overall knowledge modeling, since
related information is separated in different steps.
These tools circumvent dealing with the underly-
ing mapping languages’ syntax, but users are still
required to have knowledge of the language’s termi-
nology, limiting thus the support for users who do
not have this knowledge.

More recent tools incorporate graph-based vi-
sualizations to present mappings. A limited num-
ber of them also apply these visualizations to edit
the mapping rules, such as Map-On [56] and the
RMLEditor [31]. We distinguish three prevalent
approaches for mapping rule visualizations: (i) vi-
sualizing mapping rules as Linked Data; (ii) sepa-
rate graph visualizations for the raw data and on-

5



tology; (iii) single graph visualization for both raw
data and ontologies.

The first approach is applied by the RMLx Vi-
sual Editor11. It visualizes mapping rules by using
graphs as if the rules are Linked Data, aiming to
present them to the users rather than editing them.
This is possible when the mappings are defined in
rdf syntax, which is the case for r2rml and rml,
while editing is still performed relying on a step-by-
step wizard. Consequently, users (i) need to under-
stand the mapping language’s terminology to cor-
rectly interpret these graph visualizations; (ii) can
only view and not edit the graphs, so mappings can
only be edited using forms; (iii) need to ‘imagine’
how the triples will look like as the visualization
does not communicate how the mapping rules re-
sult in the corresponding rdf triples.

The second approach is applied by Map-On. Two
graphs are created: one that represents the raw
data structure and one that represents the target
ontology which is predefined and cannot be ad-
justed after being loaded. Mapping rules are cre-
ated by aligning the two graphs, i.e., aligning the
data fractions with the corresponding ontology ele-
ments. The two graphs are distinguished from each
other using different colors. However, by visualiz-
ing both the raw data and ontology in the same
visualization, the graphs quickly become cluttered
and which aggravates when both of them are large.

The third approach is applied by the RMLEditor.
The visualization aims to represent the rdf triples
that the mapping rules generate. The nodes rep-
resent how rdf terms of subjects and objects are
generated, while the edges represent the predicates’
rdf terms. More details regarding the RMLEditor
are available in Section 6.

4. Problem Statement

Based on the aforementioned, we notice that
graph-based visualizations is the dominant approach
when tools present Linked Data, ontologies, and
queries to users, while these visualizations also
have revealed benefits for visualizing mapping rules.
Linked Data and ontology visualizations mainly
aim to present to the users, whereas queries require
the users to actively interact with and shape the
visualized object, as it also occurs with mapping

11http://pebbie.org/mashup/rml

rules editing. Moreover, so far, Semantic Web re-
lated visualizations present only one of the compo-
nents involved in Linked Data generation, namely
either Linked Data or ontologies, which do not re-
quire to interrelate multiple components. However,
the mapping rule definition involves the interrela-
tion of the different involved components.

A number of open issues remain regarding map-
ping rules visualization and editing: (i) the defi-
nition of a visual notation specification for graph-
based visualizations of mapping rules, (ii) scalabil-
ity issues when large graphs emerge, (iii) uniform
representation for heterogeneous data sources, and
(iv) data values transformation integration with the
presentation of these data sources. More details are
presented in Section 4.1, followed by our research
questions and hypotheses in Section 4.2.

4.1. Open Issues

Specification. The development of a visual notation
specification increases the visualization’s adoption
by other tools. Current research efforts and map-
ping editors neither specify nor implement such a
specification. This impedes the users accessibility.

Scalability. Dealing with large graphs is an impor-
tant challenge for graph-based visualizations. The
same occurs when mapping rules are edited by us-
ing graphs. However, none of the existing tools
tackle this challenge, besides barely applying zoom-
ing. The latter is not always sufficient as for users
it is not always straightforward to know on which
part of the graph they need to zoom in.

Heterogeneity. Linked Data might originally stem
from multiple data sources with heterogeneous data
formats. Therefore, mapping rules and their cor-
responding visualizations need to support these
data sources. Most existing tools support nei-
ther multiple nor heterogeneous data sources. The
RMLEditor and the RMLx Visual Editor are the
only ones that support multiple heterogeneous data
sources. The latter does not show the raw data,
while the former does. Nevertheless, even only
showing the raw data makes it difficult to derive
the data model and especially its data fractions.

Data Transformations. Although, transformations
are required when raw data values are desired to
be altered to generate rdf terms, only the RMLx
Visual Editor provides this functionality. In other

6

http://pebbie.org/mashup/rml


cases, they are often implemented as custom solu-
tions, or addressed by dedicated applications, thus
the range of possible transformations is limited, and
cannot be visualized uniformly to the users.

4.2. Research Questions and Hypotheses

Given these open issues, we define the following
two research questions:

Q1 How can we design graph-based visualizations
that improve the cognitive effectiveness of
mapping rules visual representations when gen-
erating Linked Data?

Q2 How can we visualize the components of a
Linked Data generation process – that is based
on legacy non-rdf and (semi-)structured data
sources – to improve its cognitive effectiveness?

This question has two sub-questions:

- How to deal with large mapping rules graphs?

- How to uniformly visualize heterogeneous
data fractions and their transformations?

Note that cognitive effectiveness is defined as the
speed, ease, and accuracy with which a representa-
tion can be processed by the human mind [37].

To address Q1, we introduce a visual notation for
mapping rules called mapvowl (see Section 5). To
address Q2 and its sub-questions, we introduce an
approach to deal with heterogeneous data sources
and data values (see Section 6.6) and an approach
to improve the understanding of large graph-based
visualizations (see Section 6.5). These approaches
are implemented in the RMLEditor. Furthermore,
these questions lead to two corresponding hypothe-
ses which are validated through two comparative
user studies (see Section 7):

H1 mapvowl improves the cognitive effectiveness
of the mapping rules graph-based visual rep-
resentation to generate the Linked Data com-
pared to using a mapping language directly.

H2 The cognitive effectiveness provided by the
RMLEditor’s gui improves the user’s perfor-
mance during the Linked Data generation pro-
cess – that is based on legacy non-rdf and
(semi-)structured data sources – compared to
the state of the art.

5. Visual Notation for Mapping Rules

In the past, we showed that graph-based visu-
alizations are applicable for presenting mapping
rules [31]. It was also confirmed to be an intu-
itive way to represent the structure of ontologies
in a comparative evaluation [40]. So, we rely on
graph-based ontology visualizations and we investi-
gated how to apply their approaches on correspond-
ing graph-based mapping rule visualizations. There-
fore, we based the specification for a mapping rule
visualization on vowl, leading to mapvowl.

5.1. Requirements

The notation needs to support rules visualization
that generate triples which, on their own turn, con-
form with the rdf specification. Each triple con-
sists of three elements: subject, predicate, and ob-
ject, which are rdf terms: iri, blank node, or lit-
eral. A literal might have a datatype or language.

These terms can be generated based on fractions
from the raw data, constant values, or a combi-
nation of the two. The data can be annotated by
classes, properties, and datatypes from different on-
tologies.

Furthermore, a notation has to be cognitively ef-
fective. In the case of mapping rules this includes
the understanding of the different components of
the mapping process and their relationships: mul-
tiple heterogeneous raw data sources, ontologies,
mapping rules, and the generated Linked Data.
Therefore, a cognitive effective notation needs to
support rules that define how to generate

R1.1 a rdf term: iri, blank node, and literal;

R1.2 a triple’s subject (iri/blank node), predicate
(iri), and object (iri/blank node/literal).

More, a notation should support references to

R1.3 data values of data sources,

R1.4 constant values,

R1.5 a combination of data and constant values

R1.6 ontological elements from various ontologies.

In Linked Data visualizations similar require-
ments were fulfilled in order to depict the rdf’s
data model, together with the used ontologies.
However, they did not include the need to visualize
the relationships with the raw data.

7



5.2. MapVOWL

We introduce mapvowl, a user-oriented visual
notation for mapping rules which defines how
Linked Data is generated from raw data. mapvowl
builds on top of vowl’s graphical elements [40].
Relying on mapvowl’s unified graphical elements,
the mapping rules can be created and edited en-
tirely using visual representations, while the map-
ping rules in the underlying mapping language’s
syntax are generated by the mapping editor with-
out user intervention. This way, mapvowl hides
the underlying mapping language, as queryvowl
hides the query language.

Overall, mapvowl aims to make mapping rules
creation and editing for generating Linked Data
more accessible to Linked Data experts, even more
for those who already know vowl or queryvowl.
A comprehensive and uniform visual representation
would be beneficial and would have great impact
particularly on users with knowledge about the un-
derlying mapping language, as it occurs in the case
of ontology visualizations [21].

The mapvowl specification can be found at
http://rml.io/mapvowl. Moreover, we applied
mapvowl to the RMLEditor. You may access a
demo instance of the RMLEditor with mapvowl
implemented at http://rml.io/jws-demo. More-
over, you may find a screencast explaining the
graph elements of mapvowl as adopted in the
RMLEditor at http://rml.io/jws-screencast.

In Section 5.2.1, we present the graphical primi-
tives. In Section 5.2.2, we discuss the color scheme.
In Section 5.2.3, we elaborate on the visual ele-
ments. In Section 5.2.4, we discuss how mapvowl
improves the cognitive effectiveness.

A user study between mapvowl and rml com-
pares the use of the visual notation to present map-
ping rules to the use of a mapping language di-
rectly (see Section 7.1), while a user study between
the RMLEditor implementing mapvowl and the
RMLx Visual Editor compares the use of a graph-
based gui to a form-based gui to create mapping
rules (see Section 7.2).

5.2.1. Graphical Primitives

mapvowl provides a small set of unambiguous
graphical primitives based on vowl, as shown in
Table 1. It is designed to be modular and, thus, it
distinguishes the primary elements that are crucial
for the Linked Data generation, such as the rdf
terms to be generated, from elements which provide
supplementary details, such as their (data)types.

Table 1: Graphical Primitives

Primitive Application

referents

blank nodes

relationship labels and
literal values

relationships

relationship direction

text
textual information
about mapping rules

Referents and literals are depicted as nodes of the
mapping rule graph visualization, whereas the re-
lationships between them form the graph’s edges.
This choice is made because the shape plays a spe-
cial role in discriminating between symbols as it
represents the primary basis on which we identify
objects in the real world; the shape is the primary
visual variable for distinguishing between different
constructs.

Shape. In the case of vowl, the shape is the
graphical primitive used to distinguish the classes
from datatypes which are the two fundamental con-
structs of ontologies. Following the same princi-
ple, in the case of mapping visualizations, the type
of the rdf term which will be generated is the
most fundamental construct. Thus, deviation in the
node’s shape determines whether a referent (iri or
blank node) or a literal will be generated.

In the case of mapping visualizations, the con-
structs which can have a class assigned to them are
depicted as circles (R1.1), whereas the rest has a
rectangular shape (R1.1). This follows vowl where
classes are depicted as circles and datatypes as rect-
angles. For the classes, there is no restriction on
which ontologies to use (R1.6). Constructs that are
not meant to represent an entity, but are an at-
tribute of an entity are depicted as rectangles, sim-
ilarly to datatypes in vowl and might be assigned
a datatype or have the default.

Edge. mapvowl considers directed edges whose la-
bel is defined in a rectangle to associate referents

8

http://rml.io/mapvowl
http://rml.io/jws-demo
http://rml.io/jws-screencast


with each other or with literals. mapvowl uses
edges as vowl does to represent the properties
which will be generated or (re)used to associate
the entities among each other or the entities with
the attributes (R1.2). However, even though in
vowl the property’s label is detached from the
edge, mapvowl incorporates the label in the edge
using a rectangle. This way, we make it explicit that
a property is another rdf term as a referent or a
datatype valued node and it could be defined under
the same conditions as the rest of them. Namely, we
do not distinguish generation of a property from the
other rdf terms. Last, a property’s direction is in-
dicated by an arrowhead, as it is for vowl too. This
states the property’s subject and object (R1.2).

Text. While nodes and edges depict mapping rules,
text is used to provide additional information about
these rules. Text is added to a circle to denote
(i) its class, and (ii) how the iris are formed, ei-
ther template-valued or constant-valued (see Sec-
tion 2; R1.3, R1.4, and R1.5), and to a rectangle
to denote (i) the datatype or language tag (R1.1),
and (ii) how the literal values are formed, either
template-valued or constant-valued (R1.3, R1.4,
and R1.5). For the datatype there is no restric-
tion on which ontologies to use (R1.6). When a
language is specified, the language tag is preceded
with “@” and the datatype is automatically set to
rdf:langString [13]

Border. As borders can convey meaning, they are
considered as a distinct graphical primitive used to
represent a certain notion. A border is only present
when an entity is a blank node and then it is dashed,
following vowl’s choice for using dashed borders
and properties’ lines for special classes and proper-
ties. In the case of vowl, dashed circles are used
when circles represent owl:Thing and, thus, they
do not carry relevant domain information. Simi-
larly, blank nodes might be generated and anno-
tated; however, they differ from typical entities, as
the ones related to blank nodes do not receive iris.

Size. Similarly to vowl, mapvowl also recom-
mends to vary the node size if possible and desired,
without determining the scaling method though.
vowl associates the node size with the number of
individuals which are members of a class. However,
this is not possible in the case of mapping rule visu-
alizations as the individuals are not generated yet.

Although, this number may be estimated by ana-
lyzing the data source for the specified data frac-
tion(s) from which the individuals are generated in
the end. If the analysis is not possible or desired,
all nodes should have the same predefined size.

5.2.2. Color Scheme

Color. A color scheme is employed to interrelate
data sources and mapping rules. In contrast to
vowl where the color indicates different types of
classes, in mapvowl the color depends on the data
source the term is (partially) derived from. If the
color of a node is grey, it is not associated to any
data source (yet). A color scheme is recommended
by mapvowl, but any other color scheme may be
considered. Alternatively, a schema that relies on
texture usage instead of different colors may be con-
sidered to support color-blinded people if needed.

Brightness. In addition to color schema, the bright-
ness level is employed to make the visualization
more comprehensive. Changes on the brightness
level occurs when a user interacts with the graph.
To be more precise, the brightness is higher when a
graph element is not selected and darker once the
element is selected by the user.

5.2.3. Visual Elements

mapvowl defines visual elements for mapping
rules. These elements are based on the aforemen-
tioned graphical primitives and color scheme. Fig-
ure 1 shows examples of these elements.

Mapping rules can be created to generate refer-
ents, i.e., they will be represented by an iri or a
blank node which can be annotated with a class to
determine its type. For instance, in the examples,
referents are generated for employees and their ad-
dresses (see Figure 1a). For each employee a iri is
generated, using a template, and for each address a
blank node, thus its node remains gray as its defi-
nition does not depend on any data source. Their
classes are foaf:Person and vivo:Address.

Mapping rules can be created to generate literals,
i.e., they are represented with the default datatype
or a user-specified datatype. For instance, in our
example, literals are generated for the names of
projects. It has the default datatype xsd:string.
The start date of a project has the user-specified
datatype xsd:date (Figure 1b). When a literal
value is a string, users can denote the value’s lan-
guage. For instance, in our example, the city of an
address is provided in English (Figure 1c).

9



Figure 1: Examples of visual elements

Mapping rules can be created to generate prop-
erties, which can be represented by an iri only. In
our example, properties are used to denote the rela-
tionship between employees and their correspond-
ing literals, such as their phone number using the
property foaf:phone (see Figure 1d).

Nodes have different size based on the available
data in the data source, unless the information is
not available (either deliberately or ignored). In our
example, all employees have a name; however, not
all employees provided their phone number. This
is reflected in the size of the nodes that represent
these literals (see Figure 1e).

The overall visualization is combined to a graph
that represents the envisaged model for the Linked
Data. The position of the graph elements is im-
posed by a force-directed graph layout algorithm.
This means that the highly connected nodes are
placed more together, which puts more focus on
their relationships.

5.2.4. Conform to Physics of Notations

The notation also needs to be designed to be cog-
nitively effective. To achieve this we rely on the de-
sign theory “Physics of Notations” by Moody [42].
The theory presents a set of principles to which a

notation should adhere to be effective. The princi-
ples are semiotic clarity, perceptual discriminabil-
ity, semantic transparency, complexity manage-
ment, visual expressiveness, dual coding, graphic
economy, coding fit, and cognitive integration. As
a result the notation does not just only fulfill the
requirements, but does this in an cognitive effective
manner to improve the usability.

Semiotic Clarity. When specifying a visual nota-
tion it is important to consider the principle of
semiotic clarity as it impacts the notation’s ef-
fectiveness of addressing the problem it tries to
solve [42]. Semiotic clarity is determined by the cor-
respondence between the semantic constructs and
the graphical notations. In the case of mapvowl,
the nodes and edges of the graphs form the graph-
ical notations, and the possible combinations of
rdf terms, which the user can create to form the
generated triples, are the semantic constructs (see
Figure 2). The semiotic clarity is determined by
the presence of four anomalies: (i) symbol redun-
dancy, (ii) symbol overload, (iii) symbol excess, and
(iv) symbol deficit.

10



Figure 2: Semantic constructs (left) and graphical notations (right)

11



Symbol Redundancy When a semantic con-
struct can be represented by multiple graphical no-
tations, called symbol redundancy, it has two neg-
ative effects on the user. On one hand, users have
difficulties deciding which notation to use. On the
other hand, users need to remember multiple nota-
tions for a single construct.

In the case of mapvowl, a subject, which might
be an iri or a blank node, is represented by a circle
from which an arrow starts. An iri is different from
a blank node, because no border is used, while a
dashed border is used for a blank node, i.e., two
distinct notations for subject. A predicate, which
is always an iri, is represented by an arrow with
a rectangle. When an object is an iri or a blank
node, it is represented by a circle where an arrow
ends, which distincts it from a subject. When an
object is a literal, a rectangle is used. The use of a
datatype or language is differently visualized: the
datatype is added at the bottom of the rectangle,
and the language is added at the bottom of the
rectangle preceded with “@”.

The class of an entity can be represented with
two different notations: (i) a circle with the class
at the bottom, as datatype is for literals, and (ii) a
circle with an arrow and rectangle to another circle
with the class. The former occurs in most cases,
when the class is constant. To support rare cases
where the class might depend on raw data values,
the longer notation can be used, without excluding
the support for a constant value. This might be a
small symbol redundancy, nevertheless, it leads to
a shorter notation in most cases.

Symbol Overload When a single graphical
notation can represent multiple semantic con-
structs, called symbol overload, it leads to ambigu-
ity and potential misinterpretation. In the case of
mapvowl, no symbol overload is observed. Each
graphical notation aligns with a single semantic
construct, as can be observed in Figure 2 where
only a single arrow arrives for each graphical nota-
tion on the right. In detail:

Subject. A (dashed) circle from which an arrow
starts aligns with a subject, corresponding with ei-
ther an iri or blank node.

Predicate. A rectangle with an arrow through it
aligns with a predicate.

Object. A (dashed) circle where an arrow arrives
aligns with an object, corresponding with either an
iri or blank node; a rectangle without text at the
bottom with a literal without datatype or language;
a rectangle with text about the datatype with a lit-
eral with a datatype; a rectangle with text preceded
with “@” with a literal with a language.

Class. A circle with text at the bottom aligns with
an iri as subject, rdf:type as predicate, and a class
as object. If this circle has a dashed border, then
it aligns with a blank node as subject instead of
iri. A circle with an arrow and rectangle to a circle
with text in the center aligns with an iri as subject,
rdf:type as predicate and a class as object. If this
notation has dashed border for the first circle, then
it aligns with a blank node as subject instead of iri.

Symbol Excess When a graphical notation is
used that does not represent a semantic construct,
called symbol excess, it clutters the visualization
and increase the complexity of the visualization.
Both have a negative impact on the understanding
by users. In the case of mapvowl, no symbol ex-
cess is present as for each graphical notation there
is a corresponding semantic construct, as explained
for symbol overload (at least one arrow arrives for
each graphical notation one the right in Figure 2).

Symbol Deficit As opposed to the aforemen-
tioned anomalies, symbol deficit is desired to limit
the diagrammatic complexity. Symbol deficit oc-
curs if not all semantic constructs are represented
by a corresponding graphical notation. The deficit
is desired when representing all semantic constructs
would reduce, instead of improve, the notation’s
cognitive effectiveness. In the case of mapvowl,
no symbol deficit was introduced as the graphical
notations required to represent all constructs do not
lead to a complex notation (Figure 2).

Perceptual Discriminability. Perceptual discrim-
inability is the ease and accuracy with which
graphical notations can be differentiated from each
other [42]. For mapping rules, it is important to
perceive the difference between (i) the components
of a triple (subject, predicate, and object), and
(ii) the rdf terms (iri, blank node, and literal).
The former is done by using directed graphs, thus,
an edge has an explicit direction, where the start is
the subject and the end is the object. The latter is
done by using a circle without a border for an iri,

12



Table 2: Visual variables

Variable Power Capacity
horizontal position internal 10-15
vertical position interval 10-15
size interval 20
brightness ordinal 6-7
colour nominal 7-10
texture nominal 2-5
shape nominal unlimited
orientation nominal 4

and a circle with a dashed border for a blank node,
regardless of whether they are subject or object. A
rectangle is used on the edge between two nodes
to represent the iri, which is the only option for a
predicate. A rectangle is also used for literals, but
it is distinct since it can only be at the end position
of the edge as it can only be the object of a triple.

Semantic Transparency. Semantic transparency is
defined as the extent to which the meaning of a
notation can be inferred from its appearance [42].
When Linked Data is presented using rdf, rdf
graphs represent the model of the data. By us-
ing graph-based visualizations for mapping rules,
users already see the model that will be used for the
generated rdf triples, which form an rdf graph.
Nodes in the mapping graphs that are the start/end
of an edge will result in subjects/objects of triples in
the rdf graph. The edges of the graphs will result
in the predicates of the triples in the rdf graph.

Complexity Management. Complexity manage-
ment refers to the ability of a visual notation
to represent information without overloading the
human mind [42]. Graph-based visualizations can
be difficult to understand by users when they
become too large. Therefore, when the application
that implements the visual notation for mapping
rules fails to address it, it might overload its users.

Visual Expressiveness. Visual expressiveness is de-
fined as the number of visual variables used in a
notation [42]. The number is proportional to the
understanding of a notation, as it exploits multi-
ple visual communication channels and maximizes
computational offloading. In total, there are eight
visual variables: horizontal position, vertical posi-
tion, size, brightness, color, texture, shape and ori-
entation (see Table 2). Each variable has a power
and capacity. The power denotes which type of

information can be used: interval, ordinal, or nom-
inal. The capacity denotes how many perceptible
steps are needed to understand the variable.

mapvowl uses five out of the eight visual vari-
ables, as it uses size, brightness, color, texture, and
shape (see Section 5.2.1). They are used in accor-
dance to their power and capacity. Size denotes how
often a data fraction is used in a data sources, rang-
ing from 0% to 100% (interval), with steps of 10%
resulting in 10 perceptible steps (< 20 (capacity in
Table 2)). Brightness denotes which graph elements
is selected, which is either true or false (ordinal, <
6). Color denotes the different data sources (nomi-
nal), and in most cases the number of data sources
is limited to less than 5 (< 7). The texture is an
alternative to denote a data sources (nominal, <
5). Shape denotes the limited graph elements, and
corresponding mapping rules (nominal, unlimited).
Even though users are able to adjust the horizontal
and vertical position, and orientation, which might
improve their understanding, it does not carry a
specific meaning in mapvowl, because mapvowl
does not have a symbol deficit that would benefit
from using these variables.

Dual Coding. According to dual coding theory [48],
using text and graphics together to convey infor-
mation is more effective than using either on their
own. mapvowl does not specify the use of dual
coding. However, in the RMLEditor it is used. In-
formation about the used data source for an rdf
term is available through the color of the nodes and
edges (graphics), and when clicking on the details
icon (text). Other details about the mapping rules
are only available as either text or graphics, be-
cause they do not have a corresponding graphical
notation or because that would introduce the use of
(mapping language) terminology while mapvowl’s
goal is to avoid that (see Section 5.2).

Graphic Economy. Graphic complexity is defined
by the number of graphical notations: the size of
its visual vocabulary [42]. The principle of graphic
economy states that this number should be cogni-
tively manageable. In the case of mapvowl, the
number is low. There are six different graphical
primitives (see Section 5.2.1).

Cognitive Fit. Cognitive fit means a visual notation
should include different representations to support
users with skills ranging from novice to expert, and
the representational medium, such as whiteboards,

13



paper and computer screens [42], which is influ-
enced by the perceptual discriminability, semantic
transparency, and visual expressiveness.

The creation of mapvowl has as main goal to
support users who have knowledge about Linked
Data and the data domain. Therefore, a different
representation for others is not defined. mapvowl
is designed to be displayed on a screen. However,
the perceptual discriminability is high enough as
mapvowl relies on differently shaped graphic nota-
tion, i.e., circles, rectangles, and lines. The seman-
tic transparency is high enough as mapvowl uses
basic geometric shapes. The visual expressiveness
might not be high enough though. For example,
mapvowl only uses colors to denote the different
data sources. However, on paper easy-to-draw sym-
bols can be used to compensate this.

6. RMLEditor

The RMLEditor is a graph-based visualization
tool for mapping rules that define how Linked
Data is generated from multiple heterogeneous data
sources [31]. It allows users to load raw data
sources, create and edit mapping rules, and pre-
view the resulting rdf triples. Its main goal is
to allow users who have domain and Linked Data
knowledge, but no knowledge about the mapping
language, to create mapping rules (see Figure 3).

In this section, we discuss the gui requirements
for the creation of Linked Data mappings (see
Section 6.1), the extended RMLEditor’s architec-
ture (see Section 6.2), the gui’s design and fea-
tures (see Section 6.3), and how the mapping rules
are executed (see Section 6.4).

6.1. Requirements

In previous work [29], we introduced a list of de-
sired gui features for the creation of mappings.

R2.1: independent of the underlying mapping lan-
guage. The visualization of mapping rules should
be independent of the underlying language to exe-
cute the rules. This is to remove dependencies on
the language and to support the editor to switch the
underlying mapping language for one that might
better suit the use case at hand.

R2.2: support multiple data sources. The gui
should support multiple data sources, as a single
Linked Data set might be derived from several.

Figure 3: Overview of the RMLEditor

R2.3: support heterogeneous data formats. The
original data from which Linked Data is derived
might stem from different data formats, such as
csv, json, and xml. Thus, the gui should support
the creation of rules on top of different formats.
Even more, it should be independent of the format.

R2.4: support multiple ontologies. Different ontolo-
gies, which model complementary or overlapping
aspects of domain-level knowledge, are available.
The gui should support the creation of a set of rules
that uses different ontologies at the same time.

R2.5: support multiple alternative modeling ap-
proaches. When users create rules they can follow
different modeling approaches [30]. The used ap-
proach will be dependent on the user’s preference
and use case at hand. The gui should enable using
different approaches to support users and use cases.

R2.6: support non-linear workflows. During the
creation of mapping rules different factors are in-
volved, including data, ontologies, vocabularies,
mapping rules, and resulting Linked Data. When
these factors are presented to the user in isolation,
as done with non-linear workflows, the relationships
betweens these factors are obscured. Thus, the gui
should support non-linear workflows to enable users
to keep an overview of the different factors.

14



R2.7: independent of mapping execution. The
mapping rules definition and execution are different
aspects. An editor and its gui should not restrict
the execution to a specific library or tool. This im-
proves the rules’ interoperability and reusability.

6.2. Architecture

The RMLEditor’s high-level architecture is based
on the multilayered architecture pattern [51]. This
allows to separate the presentation of the mapping
components, the logic of the mapping process and
the access to data and external apis, using the pre-
sentation, application, and data access layer, re-
spectively. The latter only communicates with the
application layer. Communication between the pre-
sentation and data access layer is not possible, as
the architecture prohibits communication between
layers not directly under or above each other.

The presentation layer consists of several panels
with which users interact. The application layer
consists of the modules to process the interactions
triggered through the panels. The data access layer
handles the requests that require data or mapping
rules from outside the RMLEditor. rml [20] is the
underlying mapping language of the RMLEditor,
because rml supports mapping rules with data
from multiple heterogeneous data sources.

The communication with the application layer is
facilitated by the command pattern [47] and the
flux pattern [7]. The flux pattern replaced the
Model-View-Controller (mvc) pattern [47] that was
used in the initial version of the RMLEditor. The
mvc pattern causes problems in both performance
and development, because of the bidirectional com-
munication, where one change can loop back and
have cascading effects across the codebase [7]. The
flux pattern dictates an unidirectional flow. This
flow is stricter than the flow in mvc, because it does
not allow to start new flows when another flow is
still being executed. For the presentation layer, the
Webix JavaScript library12 is used to build the gui
and the d3.js library [8] to build the graphs.

The graph-based visualizations are encoded us-
ing an XML document, based on Graph Markup
Language (graphml) [9] with custom extensions,
to represent them independently of the underly-
ing mapping language. This allows users to ex-
port the graphs, besides the mapping rules, in an
application-independent format. Additionally, the

12http://webix.com/

graphs’ graphml representation is used to generate
the corresponding rml statements (see Figure 3a).
When users want to load mapping rules into the
RMLEditor, they can load (i) a graphml docu-
ment, or (ii) an rml mapping document which is
converted to graphml and loaded (Figure 3c). The
corresponding graphs are shown in the gui.

Data transformation descriptions are also en-
coded in the graphml representation and thus they
are also present in the resulting rml document
which is enriched in this case with descriptions
based on the Function Ontology for the data trans-
formations [18, 17]. When an rml document is
being processed by the extended RMLProcessor
server-side, the raw data values are extracted by
the RMLProcessor, and data transformations are
handled by passing the raw data values and the
function which is desired to be applied to the raw
data values to the Function Processor.

6.3. Graphical User Interface

In this section, we discuss the RMLEditor’s gui
and its interaction elements to manipulate the
graph-based visualizations.

6.3.1. Panels

The gui consists of three views: Input Panel,
Modeling Panel and Results Panel (Figures 3, and
4) [31]. They are aligned next to each other, but
when users want to focus on a specific panel, they
can hide the Input or Results Panel.

The Input Panel shows the data sources (the
left panel in Figure 4). Multiple data sources can
be loaded and they can be in different data formats,
such as csv, json, and xml. Each data source
is assigned with a unique color to be used in the
graphs. In the previous version of the RMLEditor,
this panel only shows the raw data, thus, providing
a different representation for each data format.

The different representations for each format
were circumvented. Now, the Input Panel is divided
into two subpanels. The top panel displays the data
sources structure. This makes it independent of the
data format. The structure can be manipulated if
data values need to be transformed. The bottom
panel shows the raw data of the source. This allows
users to view both the structure and data values.

The Modeling Panel shows the mapping rules
using mapvowl (the middle panel in Figure 4).
The color of each node and edge depends on the
data source that is used in a specific mapping rule,

15

http://webix.com/


Figure 4: Overview of the RMLEditor

if any. It offers the means to manipulate the nodes
and edges of the graphs to update the mapping
rules. Semantic annotations can be added using
multiple ontologies, which can be either defined
locally or online. Linked Open Vocabularies [61]
can be consulted via the gui to get suggestions on
which classes, properties and datatypes to use. It
is possible to use prefixes instead of using a full iri.
These prefixes can be customized and defined for
both local and online ontologies. Users can consult
http://prefix.cc to search for well-known pre-
fixes and their namespaces.

In the previous version of the RMLEditor, scal-
ability was only addressed using geometric zoom-
ing [28], but interactive filtering [55] was intro-
duced to address usability issues with large graphs
(more details are available at Section 6.5). Geomet-
ric zooming and interactive filtering are two estab-
lished methods to address large graphs.

The Results Panel shows the resulting rdf
triples when mapping rules created in the Modeling
Panel are executed on the data in the Input Panel
(right panel in Figure 4). For each rdf triple, it
shows the subject, predicate, and object.

Furthermore, the use of the three panels al-
lows to follow different mapping generation ap-
proaches [30, 31]. The data-driven approach uses
the input data sources as the basis to construct the
mapping rules. Classes, properties, and datatypes

Figure 5: Interaction elements on a node

of the schemas are then assigned to the mapping
rules. When users start with the ontologies to
generate the mapping rules, the schema-driven ap-
proach is followed. Next, data fractions from the
data sources can be associated to the mapping
rules.

The RMLEditor implements the aforementioned
requirements for a gui for Linked Data mappings.
The visualization of the mapping rules is indepen-
dent of the underlying mapping language through
the use of mapvowl in the Modeling Panel (R2.1).
Multiple, heterogeneous data sources are supported
via the Input Panel (R2.2 and R2.3). Multiple
ontologies are supported via the Modeling Panel
(R2.4). The collaboration between the three panels
supports multiple alternative modeling approaches
(R2.5) and non-linear workflows (R2.6). The in-
dependence of mapping execution is implemented
because the mapping rules can be exported as both
graphml and mapping documents (R2.7).

16

http://prefix.cc


Table 3: Interaction Elements

Element Application

show/edit details

create relationship

delete node/edge

collapse graph

expand graph

6.3.2. Interaction

Besides visually understanding the mapping
rules, users should also be able to interact with the
graphs, which results in updating the correspond-
ing rules. queryvowl provides this functionality
for queries, but its approach can also be applied to
mapping rules. Therefore, similar to queryvowl,
the RMLEditor uses a set of interaction elements
(see Table 3): icons placed on the border of a node
or edge (see Figure 5). They correspond with five
actions: edit details of a mapping rule, create re-
lationship, delete node/edge, and collapse/expand
graph. The different icons were chosen to be sim-
ple, but concrete and distinctive to increase the user
performance [41]. Every action has a distinctive
icon, with exception for collapse and expand graph,
but they are never shown at the same time.

These icons are only shown when users hover over
the node or edge to reduce the visual overload.

6.4. Mapping Execution

Once the mapping rules are created, they can be
executed by the RMLProcessor to generate Linked
Data. This might happen also via the RMLEditor.
We developed a Web api, using Node.js13, to sep-
arate this functionality from the RMLEditor (see
Figure 3). This makes it also easy to switch between
different tools that execute mapping rules that sup-
port multiple, heterogeneous data sources.

The api offers three functions: (i) executing a
mapping document on a set of data sources (see
Figures 3b and 3b’); (ii) converting a graphml-
based document to rml to execute the mapping
rules using the RMLProcessor (see Figure 3a), and
(iii) converting rml statements to a graphml-based
document to visualize the loaded mapping rules (see

13https://nodejs.org

Figure 3c). Another mapping language and cor-
responding processor can be used, only leading to
adjustments to the RMLEditor’s code that converts
the visualization to mapping language statements,
while no adjustments to the gui are required.

6.5. Manipulation of Large Graphs

When applying graph-based visualizations, large
graphs are inevitable. Users have difficulties editing
and keeping an overview of the mapping rules when
large-scale graphs are not addressed. Geometric
zooming [28] and interactive filtering [55] are two
established methods to address large graphs. The
former provides enlargement of the graphs. The
zoom level can be set through, e.g., scrolling, but-
tons, or keyboard shortcuts. The latter allows users
to filter out the relevant elements of the graphs.

vowl does not specify any methods on how
to deal with large graphs. However, WebVOWL,
which implements vowl, applies both aforemen-
tioned methods. Geometric zooming is done
through scrolling. Interactive filtering is applied
through a filter feature which gives users access to
four options that hide specific information or graph-
ical notations and reduce the size of the graph: hide
datatype properties, solitary subclasses, informa-
tion about disjointness, and set operators.

Similar to vowl, geometric zooming and inter-
active filtering is not specified by mapvowl. Geo-
metric zooming is implemented in the RMLEditor
via scrolling, as in WebVOWL. Interactive filtering
is implemented via the use of detail levels. Interac-
tive filtering requires to define which filters can be
applied on the graphs. Instead of letting the users
select the filters, as WebVOWL does, we opted to
group a set of appropriate filter together in a so-
called detail level. The detail levels are arranged
from highest to lowest, where each level applies one
or more additional filters to the higher level.

Highest Level. The highest level shows all visual el-
ements of mapvowl. This level is used when users
want to inspect and edit all details of the mapping
rules, and when the general overview of the map-
ping rules is less important (see Figure 6).

High Level. The high level hides the literals’
datatypes and languages (see Figure 7). This level
focuses more on how different graph elements are
related to each other, hiding the specifics, which
might be the most redundant for the users.

17

https://nodejs.org


Figure 6: Highest detail level in the RMLEditor

Figure 7: High detail level in the RMLEditor

Figure 8: Moderate detail level in the RMLEditor

Figure 9: Low detail level in the RMLEditor

Figure 10: Lowest detail level in the RMLEditor

Moderate Level. The moderate level hides the prop-
erties of the edges (see Figure 8). This puts more
focus on which subjects and objects are related to
each other, instead of how, i.e., only the relation-
ship, without a specific predicate. Furthermore,
the graphs become less dense, leading to a better
overview of the mappings rules.

Low Level. The low level hides the literals (see Fig-
ure 9). This puts more focus on how the different
entities are related, and more specific how the dif-
ferent data sources are connected. Furthermore,
the graphs become less dense, leading to a better
overview of the mappings rules.

Lowest Level. The lowest level hides the blank
nodes (see Figure 10). This only shows entities that
have an iri assigned, which allows the users to deal
only with entities of the different data sources and
how they are directly related, to improve their un-
derstanding of the links between the data.

More, when users are at a certain detail level,
they might want to show or hide details of a specific
subgraph, without the desire to change the overall
level. In the RMLEditor, this is accomplished using
the collapse and expand actions (see Section 6.3.2).

When a mapping document is loaded in the
RMLEditor an appropriate detail level is selected

18



based on the graphs size, i.e., the amount of nodes
is higher than a specific threshold, to provide users
with the mapping rules overview. If the level is
too high for the size of the graph, users lose the
overview of the mapping rules, which makes it dif-
ficult to navigate to the part of the graph which is
desired to be edited.

6.6. Heterogeneous Data Values Manipulation

Data sources might have heterogeneous data for-
mats. Thus, user interfaces for mapping rules need
to support multiple data formats. Moreover, pre-
senting both the data structure and the data values
allows users to gain insights in both the data model,
and corresponding data. Transforming one or more
data fractions when generating Linked Data might
also be required. For example, if a data source has
a data fraction that contains a date in the format
“DD/MM/YYYY”. A transformation is needed to
convert it to “YYYY-MM-DD” when the datatype
xsd:date is used for the corresponding literal.

In the RMLEditor, the support for manipulat-
ing heterogeneous data values and data sources is
facilitated by the Input Panel (see Figure 4). It fea-
tures both the structure of the data, and the raw
data. The structure includes data fractions that
users may use to generate the desired Linked Data
and can be updated to reflect also the required data
transformations. This shows that the transformed
data values can be used as any other data value.

7. Evaluation

We conducted two comparative studies to vali-
date our two hypotheses (see Section 4): one study
compares the representation of mapping rules via
mapvowl and via rml directly, and another study
compares the creation of mapping rules via the
RMLEditor and the RMLx Visual Editor.

7.1. MapVOWL vs. RML

With this study, we aim to validate H1. We
compared what knowledge users are able to ex-
tract from both a set of mapping rules that are
represented via mapvowl or rml directly. This
knowledge aligns directly with the six requirements
for a visual notation (see Section 5.1). Further-
more, we evaluated which representation they pre-
fer. In Section 7.1.1, we discuss the method, namely
the procedure and participants. In Section 7.1.2,
we discuss the results, which can also be found

Table 4: Blocks of the mapvowl vs. rml questionnaire

block description

introduction
Questions about participants’
socio-demographics
& Linked Data expertise

mapvowl
mapvowl-specific questions

vs. rml followed by four test cases
to compare mapvowl & rml

post-assessment

Questions on preference
of mapvowl vs rml
and the use of mapvowl
for editing mapping rules

at https://w3id.org/mapvowl/eval17/results,
and, in Section 7.1.3, the corresponding derived in-
sights.

7.1.1. Method

Procedure. Participants with rml knowledge were
directly contacted by the author. Those who agreed
to partake in the test had to read an introduction to
mapvowl14 and complete an online questionnaire.
The introduction explains the different elements of
mapvowl through the use of an example which
was provided to assure that participants have a ba-
sic understanding of mapvowl, too. The partici-
pants completed an online questionnaire, which can
be found at https://w3id.org/mapvowl/eval17/

survey. The questionnaire consists of three main
building blocks (see Table 4):

(i) The first block questioned the participants’
main sociodemographic traits, such as year of
birth, gender, level of education, and employment
status. Then, it measured the participants’ Linked
Data expertise through a self-assessment and a
study of their familiarity with the topic and tools.

(ii) The second and essential block provides a
test with eleven questions about mapping rules
that were presented as a mapvowl visualization to
access the understanding of the mapvowl elements
and ten questions about four test cases to compare
a mapvowl representation with an rml represen-
tation. Three of the use cases are real-world ex-
amples and one is artificially created for the study.

Half of the participants answered the questions of
the first two use cases via the mapvowl represen-
tation and the last two via rml. The other half of
the participants answered the questions of the first

14https://w3id.org/mapvowl/eval17/intro

19

https://w3id.org/mapvowl/eval17/results
https://w3id.org/mapvowl/eval17/survey
https://w3id.org/mapvowl/eval17/survey
https://w3id.org/mapvowl/eval17/intro


0 1 2 3 4

novice

emerging

developing

proficient

expert

� participants

le
ve

l

Figure 11: Level of Linked Data expertise of participants of
MapVOWL user study

two use cases via the rml representation and the
last two via mapvowl. Participants were randomly
assigned to one of the two aforementioned groups.

(iii) The post-assessment consists of three
questions and gathers information about the par-
ticipants’ preference regarding the use of mapvowl
versus rml to answer the questions, and whether
they want to use mapvowl to also edit mapping
rules, besides only to visualize them.

Participants. The online questionnaire was sent
out to potential participants in August 2017. Nine
participants have eventually taken part in the ex-
periment, their age range was 20 to 38. All were
highly educated: three of the contributors had a
PhD, four a master’s degree and two a bachelor’s
degree. They were highly familiar with Linked Data
as well: 6 of the participants claimed they already
generated Linked Data and only one declared to
have merely a basic understanding of Linked Data
(see Figure 11).

7.1.2. Results

Mapping Rules. When answering the eleven ques-
tions about the elements of mapvowl, four ques-
tions are answered correctly by all participants: de-
termining the number of literals per entity and re-
lationships, the used ontology and language. Two
questions are answered correctly by 8 participants:
detecting entities without a class and determining
how iris are generated. Two questions are an-
swered correctly by 7 participants: detecting the
number of literals and their datatypes. Two ques-
tions are answered correctly by 6 participants: de-
termining the number of distinct data sources and
the number of entities that are not associated with

Table 5: � correct answers regarding mapvowl

questions
correct
answers
(max. 9)

� literals per entity/relationships
9

used ontology/language
entities without a class

8
how iris are generated
� literals and their datatypes

7
datatypes of literals
� distinct data sources

6
� entities w/ data source
� relationships ind. of data source 5

Table 6: � correct answers when using mapvowl and rml

questions
correct answers

RML MapVOWL
types of entities

51 61� literals
relationships b/t entities
� (unlinked) data sources

65 50
the language of literals
use of templates

24 24
use of datatypes

a data source. One question is answered correctly
by 5 participants: determining the number of re-
lationships that do not depend on a data source.
This is summarized in Table 5.

Regarding the questions about the use cases, the
number of correctly answered questions is slightly
higher for rml than mapvowl (140 correct answers
vs. 135), as summarized in Table 6. Questions re-
garding the types of entities, number of literals, and
relationships between entities are answered more of-
ten correctly via mapvowl than rml (61 correct
answers vs. 51). Questions regarding the number
of (unlinked) data sources and the language of liter-
als are answered more often correctly via rml than
mapvowl (65 correct answers vs. 50). Questions
regarding the use of templates and datatypes are
answered correctly as often via mapvowl as via
rml (24 correct answers).

Post-Assessment. 7 participants preferred the ap-
plication of the mapvowl notation for viewing the
presented cases. 1 participant preferred using rml
directly over mapvowl and 1 was neutral (see Fig-
ure 12). Similarly, when they were asked which they
prefer to use for editing mapping rules, 7 partici-

20



0 2 4 6

MapVOWL

RML

neutral

� participants

p
re

fe
rr

ed
la

n
gu

ag
e

Figure 12: Preferred language for viewing the rules

0 2 4 6

agree

disagree

neutral

� participants

p
re

fe
re

n
ce

Figure 13: Participants’ agreement to use mapvowl to edit
the rules

pants agreed that they prefer mapvowl, 1 slightly
disagreed and 1 remained neutral (see Figure 13).

7.1.3. Insights

The answers to mapvowl-specific questions pro-
vide evidence that the visual notation is cog-
nitive effective. When comparing the answers of
questions that are both answered using mapvowl
and rml, it provides evidence that both options
are possible candidates to represent mapping rules.
However, the post-assessment shows that users
prefer MapVOWL over rml to visualize map-
ping rules, even though rml results in a slightly
higher number of correct answers.

7.2. RMLEditor vs. RMLx Visual Editor

With this study, we aim to validate H2 by com-
paring the use of the RMLEditor and RMLx Vi-
sual Editor to edit mapping rules. Specifically, the
visualization of the mapping process components
with special attention to the rules is studied. The
RMLx Visual Editor was chosen, as it allows to
annotate multiple, heterogeneous data sources and
values. More, it also uses graph visualizations to
represent the mapping rules; however a form-based
approach is used to edit the rules.

Table 7: Steps of the RMLEditor vs. RMLx Visual Editor
user study

step description

introduction
Questions on participants’
socio-demographics
& Linked Data expertise

use cases
2 use cases per participant
on mapping rules creation

additional
Questions on heterogeneous
data sources & data values,

RMLEditor test & RMLEditor’s large graphs

post-assessment
Questions on participants’
experience with the used tool

In Section 7.2.1, we discuss the participants and
procedure. In Section 7.2.2, we discuss the results,
and in Section 7.2.3, the derived insights.

7.2.1. Method

Procedure. This second study is modeled according
to the following procedure1516. Potential partic-
ipants from imec and Ghent University were ap-
proached. Those agreeing to contribute to the
user evaluations then had to read an introduc-
tion17 to the rml and the RMLx Visual Editor
and work through the different steps of the study
together with one of the authors. More details
about the experimental setting of the latter can be
found at https://w3id.org/rml/editor/eval17/
setting. The introduction explains the different
elements of both tools. For the RMLEditor, it also
includes the introduction to mapvowl, because it
implements mapvowl. The user study is divided
into four steps (see Table 7):

(i) The participants are presented with questions
about their socio-demographics and Linked Data
expertise, identical to ones asked to participants
of the mapvowl vs. rml study (Section 7.1).

(ii) Two use cases are presented to the users for
which mapping rules need to be created. The first
use case deals with data about employees and the
projects they are working on. Both data sources
are provided as a csv file. This use case is data-
driven: every data fraction should be represented
in the resulting Linked Data. The second use case
deals with data about movies and their directors.

15https://w3id.org/rml/editor/eval17/survey1
16https://w3id.org/rml/editor/eval17/survey2
17https://w3id.org/rml/editor/eval17/intro

21

https://w3id.org/rml/editor/eval17/setting
https://w3id.org/rml/editor/eval17/setting
https://w3id.org/rml/editor/eval17/survey1
https://w3id.org/rml/editor/eval17/survey2
https://w3id.org/rml/editor/eval17/intro


The movie data source is provided as a csv file
and the director data as a json file. This use case
is schema-driven: based on a given set of classes,
properties, and datatypes Linked Data needs to be
generated using the provided raw data.

Half of the participants completed the first use
case with the RMLEditor and the second use case
with the RMLx Visual Editor. The other half com-
pleted the first use case with the RMLx Visual Ed-
itor and the second use case with the RMLEditor.
Participants were randomly assigned to one of the
two groups. The outcomes were assessed based on
the generated Linked Data correctness and the ex-
perience with each tool was recorded.

(iii) An additional test was completed for the
RMLEditor. Here, the participant got presented
with an online survey, containing specific questions
regarding the heterogeneous data sources and val-
ues, and large graphs. During the second and third
step of the user study, each participant was super-
vised by one of the authors making use of the think-
aloud protocol. Widely used by usability profes-
sionals, think-aloud originated out of the incapa-
bility to know what users think when completing
tasks [46]. In the concurrent think-aloud process as
implemented in the current usability study, users
are probed to specify their thoughts and actions as
they occur. This allows the attending author to dis-
cern when and why a participant faces difficulties.

(iv) After each use case, a post-assessment
gathers information about the participants’ expe-
rience with the used tool. Included are questions
about the perceived difficulty of the tasks and con-
fidence in a successful completion. A central part of
the post-assessment is assigned to the System Us-
ability Scale (sus) [10], a procedure to quickly col-
lect users’ usability ratings of a technology. Benefits
of applying sus are its conciseness, its transferabil-
ity over several technologies, and applicability with
small sample sizes [1, 59]. As proposed by Bangor
et al. [1], an adjective rating using a 7-point Lik-
ert scale, which assesses the tools user-friendliness
from worst imaginable to best imaginable, was also
added to the questionnaire. It should be sharply
noted though that the outcome of the adjective rat-
ing and the system usability scale should be sup-
ported by observations by the attending supervisor.

Participants. The participants of our study were
people from imec and Ghent University, that were
contacted directly by the authors. This ensured
that they had a sufficient level of Linked Data ex-

0 2 4 6 8

novice

emerging

developing

proficient

expert

� participants

le
ve

l

Figure 14: Level of Linked Data expertise of participants of
RMLEditor vs. RMLx Visual Editor user study

Table 8: Completeness of rules and SUS-score of RMLEditor
and RMLx Visual Editor

RMLEditor
RMLx

Visual Editor
completeness of rules (%)

use case 1 91 83
use case 2 98 82

SUS-score
82.75 (good) 42 (poor)

pertise, required for a meaningful participation in
the user study. A total of 10 participants, age range
27 to 39, were recruited. Their level of education
was high: they all hold a master’s degree, have con-
ducted advanced graduate work, or hold a PhD. 8
participants assessed themselves as having at least
a proficient level of Linked Data expertise, 1 con-
sidered himself to be a novice and 1 observed his
Linked Data expertise as emerging (see Figure 14).
They all had heard of the RMLEditor before, 2 par-
ticipants had used it; whereas 6 participants had
taken notice of the RMLx Visual Editor before.

7.2.2. Results

Mapping Rules. An analysis of the created map-
ping rules by the participants, which can be
found at https://w3id.org/rml/editor/eval17/
results/mappings, revealed several aspects that
can be circumvented by updating the gui of the
tools. For the first use case 91% of the ex-
pected mapping rules were present when using the
RMLEditor. In the case of the RMLx Visual Edi-
tor, it was only 83%. The same is observed for the
second use case with 98% for the RMLEditor and
82% for the RMLx Visual Editor (see Table 8).

22

https://w3id.org/rml/editor/eval17/results/mappings
https://w3id.org/rml/editor/eval17/results/mappings


In more details, the iterator was forgotten by
3 participants using the RMLx Visual Editor, but
this was not an issue with the RMLEditor. The use
of constants, reference, and templates was incorrect
for 2 participants using the RMLx Visual Editor,
but this was not an issue with the RMLEditor.

All participants added the data transformation
with both tools, but 4 participants forgot to use
the output of the transformation as an object us-
ing the RMLx Visual Editor, while only 2 using
the RMLEditor. This lead to triples that did not
contained the transformed data value, but the orig-
inal value. When interlinking datasets, all but one
participant created the required mapping rule using
the RMLx Visual Editor. Using the RMLEditor, all
participants created the mapping rule, but 3 partic-
ipants did not provide the required join condition
which interlinks entities that are not related. This
was not an issue using the RMLx Visual Editor.

Furthermore, we pay special attention to new fea-
tures of the RMLEditor introduced in this work.
Users are able to distinguish the different data
sources, but when they have to count the total
number of data sources that are loaded 4 partic-
ipants forget to count the currently selected data
source. 9 participants were able to correctly deter-
mine how many data transformations are applied
when presented with a new set of mapping rules.
They were also able and perceived it as easy to de-
termine which data transformation and data frac-
tions are used. When users create and edit mapping
rules that link entities in large graph visualizations,
7 of them use the lower detail levels. When users
create and edit mapping rules that generate literals
the preferred detail levels varies from the highest
(2 participants) to the lowest level (1 participant),
and 2 participants even stated no preference.

Post-Assessment. The first part of the post-
assessment questioned the participants with regard
to the difficulty of performing the use case with the
tools and their confidence in a successful completion
of the tasks. The results of the post-assessment
can be found at https://w3id.org/rml/editor/

eval17/results/post. The difficulty of perform-
ing the use cases was rated on a 7-point likert scale
from extremely difficult to extremely easy.

Regarding difficulty, 1 participant rated complet-
ing the tasks with the RMLEditor as “slightly dif-
ficult”, all others assessed it as “neither easy nor
difficult” or higher, with 3 participants valuating it
at “extremely easy” (see Figure 15). For the RMLx

0 2 4 6

extremely easy

moderately easy

slightly easy

neither easy nor difficult

slightly difficult

moderately difficult

extremely difficult

� participants

d
iffi

cu
lt

y

RMLEditor

RMLx Visual Editor

Figure 15: Difficulty of the RMLEditor vs. RMLx Visual
Editor

0 2 4 6

RMLEditor

RMLx Visual Editor

neutral

� participants

co
n

fi
d

en
ce

Figure 16: Confidence of using the RMLEditor vs. RMLx
Visual Editor

Visual Editor, all participants except 1 consistently
rated executing the tasks more difficult than with
the RMLEditor. 5 participants scored it as “slightly
difficult” and the other 3 as “moderately difficult”.

The confidence for having correctly executed the
tasks was positively rated for both tools. 6 partici-
pants were more confident in performing the tasks
with the RMLEditor, 1 rated both tools equal and 3
were more confident with the RMLx Visual Editor
(see Figure 16).

The second part of the post-assessment applied
the sus and the accompanying user-friendliness
rating proposed by Bangor et al. [1]. The user-
friendliness of the RMLEditor was rated on a 7-
point likert scale. 9 participants scored it as ex-
cellent, the other 1 rated it as good. In contrast,
the user-friendliness of the RMLx Visual Editor was
valuated as “good” by 1 respondent, “ok” by 1 re-
spondent, “poor” by 6 respondents and “awful” by
the remaining 2 (see Figure 17).

More, all except 1, who rated both as good,
assessed the user-friendliness of the RMLEditor
higher than that of the RMLx Visual Editor. The
average obtained mean sus-score of the RMLEditor

23

https://w3id.org/rml/editor/eval17/results/post
https://w3id.org/rml/editor/eval17/results/post


0 2 4 6 8

worst imaginable

aweful

poor

ok

good

excellent

best imaginable

� participants

li
ke

rt
sc

a
le

RMLEditor

RMLx Visual Editor

Figure 17: User-friendliness of the RMLEditor vs. RMLx
Visual Editor

is 82.75, whereas for the RMLx Visual Editor, it is
42 (see Table 8). When translating these scores on
the spectrum created by Bangor et al. [1], the us-
ability of the RMLEditor is identified as good, but
that of the RMLx Visual Editor as poor.

Two remarks: (i) a single metric should not be
used to make absolute statements about a systems’
usability [1]. The observations done by one of the
authors and elaborated in the next paragraph give
an enhanced understanding of the process of utiliz-
ing both tools; (ii) one of the authors was present
during the user study, which could result in a mod-
erator acceptance bias. This happens when partic-
ipants want to gratify the present author.

Observations. During the study, participants were
supervised by one of the authors. The results can be
found at https://w3id.org/rml/editor/eval17/
results/obs. Participants could ask questions and
receive feedback while using both tools. Although,
users were provided with an introduction to both
tools, which they could consult during the study,
they still asked questions about how certain actions
should be performed.

The participants referred to the introduction to
find the required information. This happened for 8
participants when using the RMLEditor and for 9
participants when using the RMLx Visual Editor.

The RMLx Visual Editor does not allow to visu-
alize the data sources. Therefore, every participant
used text editors and spreadsheet tools to view the
data sources. In the case of the RMLEditor only 1
participant first viewed the data sources externally
before loading them in the RMLEditor.

Participants required additional information
about the use of parameters to create a data trans-

formation. This happened for 3 participants using
the RMLx Visual Editor and 6 participants using
the RMLEditor. The difference occurs because the
default parameter was already set in the RMLx Vi-
sual Editor, whereas no default parameter is set
for the RMLEditor. Nevertheless, still 3 partici-
pants have trouble understanding these parameters
as shown via the RMLx Visual Editor.

5 participants required additional information
about the use of a baseURI and how it is defined
in the RMLEditor. Although it is perceived as use-
ful, the participants indicated that a clearer pre-
sentation in the gui is required. The RMLx Visual
Editor does not offer this functionality.

A common issue with both tools is the use of
constants, references, and templates to generate
subjects, predicates, and objects. 9 participants
for both tools required additional information to
understand how they work and when they should
be used. Although the RMLEditor selects a default
depending on the element in the graph, additional
information was still required for the users to fully
understand these three options.

8 participants required additional information to
understand how to interlink entities originating
from different data sources using the RMLx Visual
Editor. “Parent mapping”, “parent value”, and
“child value” were terms difficult to be understood,
and participants had trouble understanding how
they would affect the resulting Linked Data. This
was not an issue during the use of the RMLEditor,
because of the use of mapvowl.

2 participants required information to under-
stand that an iterator for a csv file is not required
when using the RMLx Visual Editor. This was not
an issue using the RMLEditor, because an iterator
cannot be set when using a csv file as data source,
considering the iteration always happens per row.

3 participants required information about the use
of the “output var”-field in the RMLx Visual Edi-
tor. This field represents the output of a data trans-
formation and the string can be used in other map-
ping rules to use the output of a data transforma-
tion. This was not an issue using the RMLEditor,
because data transformations are integrated in the
original data fractions in the input panel.

7.2.3. Insights

The resulting mapping rules provide evidence
that the use of the RMLEditor leads to a higher
completeness of rules, and thus of Linked Data,
compared to the RMLx Visual Editor. For both

24

https://w3id.org/rml/editor/eval17/results/obs
https://w3id.org/rml/editor/eval17/results/obs


tools updates to the gui could improve this com-
pleteness, such as the inclusion of checks for the
use of transformed values and iterators. The
RMLEditor was rated as good and the RMLx Vi-
sual Editor as poor by the participants. This is in
line with the completeness of the rules.

The observations during the user study made
clear that specific terminology, such as baseURI,
reference, and template, needs further clarifica-
tion. This could be done, for example, through
tool tips in the gui or by avoiding the use of the
terminology. The observations provided evidence
for the use of the RMLEditor over the RMLx Vi-
sual Editor when interlinking entities due to the
use of the visual notation in the former and the use
of forms and specific terminology in the latter, as
explicitly mentioned by the participants.

8. Conclusion

Visual tools are implemented to help users in
defining how to generate Linked Data from raw
data. This is possible thanks to mapping lan-
guages which enable detaching mapping rules from
the implementation that executes them. However,
no thorough research has been conducted so far on
how to visualize such mapping rules, especially if
they become large and require considering multiple
heterogeneous data sources and transformed data
values. In this article we introduced mapvowl, a
graph-based visual notation for mapping rules; and
an approach for manipulating rules when large vi-
sualizations emerge; an approach to uniformly vi-
sualize data fractions of raw data sources combined
with an interactive interface for uniform data frac-
tion transformations. mapvowl and the two ap-
proaches were implemented in the RMLEditor to
provide users with a uniform gui to create and edit
mapping rules that is cognitive effective.

The results of the first study (Section 7.1) show
that the use of mapvowl is preferred over rml for
representing mapping rules. Answering questions
about these rules leads to the same correctness (ac-
curacy in cognitive effectiveness) by either using
mapvowl or rml for users who understand rml.
Nevertheless, most participants indicated that they
preferred to use mapvowl as representation for
mapping rules, and they would also use mapvowl
to create and edit rules. This shows that mapvowl
is easier to use than rml directly. Therefore, this
study provides evidence towards the acceptance of
H1 “mapvowl improves the cognitive effectiveness

of the mapping rules graph-based visual representa-
tion to generate the Linked Data compared to using
a mapping language directly.”

The results of the second study (Section 7.2)
show that the RMLEditor is preferred over the
RMLx Visual Editor for creating and editing map-
ping rules. Participants were able to create a high
percentage of the required mapping rules using both
tools (high accuracy). The RMLEditor has a bet-
ter usability compared to the RMLx Visual Edi-
tor, as shown through the sus-score (82.75 vs 42),
making it easier for users to create and edit rules.
This is due to the use of mapvowl, which is in-
dependent of the underlying mapping language, as
pointed out by the participants. However, through
the use of think-aloud, we conclude that updates
to both guis would improve the mapping process,
with specific focus on the creation of the mapping
rules. The RMLx Visual Editor’s form-based gui is
strongly influenced by its underlying mapping lan-
guage rml, which leads to issues for users that are
unfamiliar with rml. These issues can only be re-
solved either by acquiring knowledge about rml or
avoiding to rely on knowledge of rml, as done by
the RMLEditor. Therefore, this study provides ev-
idence towards the acceptance of H2 “The cogni-
tive effectiveness provided by the RMLEditor’s gui
improves the user’s performance during the Linked
Data generation process – that is based on legacy
non-rdf and (semi-)structured data sources – com-
pared to the state of the art.”

mapvowl fills the important gap between uni-
form mapping rule visualizations and the different
mapping editors. It allows multiple tools to incor-
porate the same visualization, which increases the
accessibility for users across these tools. The differ-
ent semantic constructs of the mapping rules align
with the graphical notations of the graph-based vi-
sualization. This leads to an effective representa-
tion for users. Furthermore, it combines the differ-
ent components of the mapping process, providing
users with insights on the interrelation of these com-
ponents. Users are able to define and deduct which
data fractions of which data sources are used in
which mapping rules, and deduct how the mapping
rules correspond with the generated Linked Data.

Moreover, mapvowl and the RMLEditor over-
come two issues of current mapping editors, namely,
the uniform presentation of heterogeneous data
sources and data transformations within Linked
Data generation. Multiple data sources are sup-
ported and color is an appropriate method to de-

25



note them. Distinguishing the data fractions that
users rely on to generate Linked Data from the orig-
inal raw data allows to create an abstraction layer.
Such an abstraction layer not only enables to easily
manipulate the data fractions but also incorporates
data transformations uniformly for heterogeneous
data sources. This allows users to handle trans-
formed data values just as raw values.

Large graphs might result in a reduction of the
graph-based visualizations’ efficiency. However, the
second study shows that detail levels are appropri-
ate to compensate this for mapping rules. It is effi-
cient for the users to change the detail levels based
on the task at hand, and personal preference.

Overall, if users need to create and edit mapping
rules, the RMLEditor is a valid choice through the
use of the proposed mapvowl and the approaches
to deal with large visualizations and heterogeneous
data sources and values. Although, improvements
to the gui are required, which will be addressed
in future work, the gui’s core elements have been
proven to be effective via the two user studies.

Acknowledgements

The described research activities were funded by
Ghent University, imec, Flanders Innovation & En-
trepreneurship (AIO), the Research Foundation –
Flanders (FWO), and the European Union.

References

[1] Aaron Bangor, Philip Kortum, and James Miller. De-
termining what individual sus scores mean: Adding an
adjective rating scale. Journal of usability studies, 4(3):
114–123, 2009.

[2] François Belleau, Marc-Alexandre Nolin, Nicole
Tourigny, Philippe Rigault, and Jean Morissette.
Bio2RDF: Towards a mashup to build bioinformatics
knowledge systems. Biomedical Informatics, 41(5):706–
716, 2008.

[3] Nikos Bikakis, Melina Skourla, and George Papaste-
fanatos. rdf:SynopsViz – A Framework for Hierarchical
Linked Data Visual Exploration and Analysis. In The
Semantic Web: ESWC 2014 Satellite Events, pages
292–297. Springer International Publishing, 2014. ISBN
978-3-319-11955-7. doi: 10.1007/978-3-319-11955-7 37.

[4] Nikos Bikakis, George Papastefanatos, Melina Skourla,
and Timos Sellis. A Hierarchical Aggregation Frame-
work for Efficient Multilevel Visual Exploration and
Analysis. Semantic Web, 8(1):139–179, 2017.

[5] Christian Bizer, Tom Heath, and Tim Berners-Lee.
Linked data: The story so far. Semantic Ser-
vices, Interoperability and Web Applications: Emerg-
ing Concepts, pages 205–227, 2009. doi: 10.4018/
978-1-60960-593-3.ch008.

[6] Christian Bizer, Jens Lehmann, Georgi Kobilarov,
Sören Auer, Christian Becker, Richard Cyganiak,
and Sebastian Hellmann. DBpedia - A crystal-
lization point for the Web of Data. Web Se-
mantics: Science, Services and Agents on the
World Wide Web, 7(3):154–165, 2009. ISSN
1570-8268. doi: http://dx.doi.org/10.1016/j.websem.
2009.07.002. URL http://www.sciencedirect.com/

science/article/pii/S1570826809000225.
[7] Adam Boduch. Flux Architecture. Packt Publishing,

2016.
[8] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer.

D3 Data-Driven Documents. IEEE Transactions on Vi-
sualization and Computer Graphics, 17(12):2301–2309,
2011.

[9] Ulrik Brandes, Markus Eiglsperger, Ivan Herman,
Michael Himsolt, and M Scott Marshall. GraphML
Progress Report Structural Layer Proposal. In Interna-
tional Symposium on Graph Drawing, pages 501–512.
Springer Berlin Heidelberg, 2001.

[10] John Brooke. SUS – A quick and dirty usability scale.
Usability Evaluation in Industry, pages 189–194, 1996.

[11] Karlis Cerans, Julija Ovcinnikova, Renars Liepins, and
Arturs Sprogis. Advanced OWL 2.0 Ontology Visu-
alization in OWLGrEd. In Databases and Informa-
tion Systems VII, pages 41–54. IOS Press, 2013. doi:
10.3233/978-1-61499-161-8-41.

[12] The UniProt Consortium. Uniprot: a hub for protein in-
formation. Nucleic Acids Research, 43(D1):D204, 2015.
doi: 10.1093/nar/gku989.

[13] World Wide Web Consortium. RDF 1.1 Concepts and
Abstract Syntax. Technical report, 2014. URL https:

//www.w3.org/TR/rdf11-concepts/.
[14] Aba-Sah Dadzie and Emmanuel Pietriga. Visualisation

of Linked Data – Reprise. Semantic Web, 8(1):1–21,
2017. doi: 10.3233/SW-160249.

[15] Aba-Sah Dadzie and Matthew Rowe. Approaches to
visualising linked data: A survey. Semantic Web, 2(2):
89–124, 2011.

[16] Souripriya Das, Seema Sundara, and Richard Cyganiak.
R2RML: RDB to RDF Mapping Language. Working
group recommendation, W3C, September 2012. URL
http://www.w3.org/TR/r2rml/.

[17] Ben De Meester and Anastasia Dimou. The Func-
tion Ontology. Unofficial Draft, October 2016. http:

//users.ugent.be/~bjdmeest/function/.
[18] Ben De Meester, Anastasia Dimou, Ruben Verborgh,

Erik Mannens, and Rik Van de Walle. An ontology to
semantically declare and describe functions. In Har-
ald Sack, Giuseppe Rizzo, Nadine Steinmetx, Dunja
Mladenić, Sören Auer, and Christoph Lange, editors,
The Semantic Web; ESWC 2016 Satellite Events, vol-
ume 9989 of Lecture Notes in Computer Science, pages
46–49. Springer International Publishing, October 2016.
doi: 10.1007/978-3-319-47602-5 10.

[19] Laurens De Vocht, Selver Softic, Ruben Verborgh, Erik
Mannens, and Martin Ebner. ResXplorer: Revealing
relations between resources for researchers in the Web
of Data. Computer Science and Information Systems,
14(1):25–50, 2017.

[20] Anastasia Dimou, Miel Vander Sande, Pieter Colpaert,
Ruben Verborgh, Erik Mannens, and Rik Van de Walle.
RML: A Generic Language for Integrated RDF Map-
pings of Heterogeneous Data. In Workshop on Linked
Data on the Web, 2014.

26

http://www.sciencedirect.com/science/article/pii/S1570826809000225
http://www.sciencedirect.com/science/article/pii/S1570826809000225
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/r2rml/
http://users.ugent.be/~bjdmeest/function/
http://users.ugent.be/~bjdmeest/function/


[21] Martin Dzbor, Enrico Motta, Carlos Buil, Jose Gomez,
Olaf Goerlitz, and Holger Lewen. Developing ontologies
in owl: An observational study. In OWL: Experiences
and Directions 2006, November 2006.

[22] Syeda Sana e Zainab, Muhammad Saleem, Qaiser
Mehmood, Durre Zehra, Stefan Decker, and Ali Has-
nain. FedViz: A Visual Interface for SPARQL Queries
Formulation and Execution. In Proceedings of the In-
ternational Workshop on Visualizations and User In-
terfaces for Ontologies and Linked Data, pages 49–60,
2015.

[23] Ivan Ermilov, Jens Lehmann, Michael Martin, and
Sören Auer. LODStats: The Data Web Census Dataset.
In Proceedings of 15th International Semantic Web
Conference - Resources Track (ISWC’2016), 2016.

[24] Jérôme Euzenat and Pavel Shvaiko. Ontology Match-
ing. Springer Berlin Heidelberg, 2013. doi: 10.1007/
978-3-642-38721-0.

[25] Riccardo Falco, Aldo Gangemi, Silvio Peroni, David
Shotton, and Fabio Vitali. Modelling OWL Ontolo-
gies with Graffoo. In The Semantic Web: ESWC 2014
Satellite Events, pages 320–325. Springer International
Publishing, 2014. doi: 10.1007/978-3-319-11955-7 42.

[26] Florian Haag, Steffen Lohmann, Stephan Siek, and
Thomas Ertl. QueryVOWL: Visual Composition of
SPARQL Queries. In The Semantic Web: ESWC 2015
Satellite Events, pages 62–66. Springer International
Publishing, 2015. doi: 10.1007/978-3-319-25639-9 12.

[27] Philipp Heim, Sebastian Hellmann, Jens Lehmann,
Steffen Lohmann, and Timo Stegemann. RelFinder:
Revealing relationships in RDF knowledge bases. In
Semantic Multimedia, pages 182–187. Springer Berlin
Heidelberg, 2009. doi: 10.1007/978-3-642-10543-2 21.

[28] Ivan Herman, Guy Melançon, and M Scott Marshall.
Graph Visualization and Navigation in Information Vi-
sualization: A Survey. IEEE Transactions on Visual-
ization and Computer Graphics, 6(1):24–43, 2000. doi:
10.1109/2945.841119.

[29] Pieter Heyvaert, Anastasia Dimou, Ruben Verborgh,
Erik Mannens, and Rik Van de Walle. Towards a Uni-
form User Interface for Editing Mapping Definitions. In
Proceedings of the 4th International Workshop on In-
telligent Exploration of Semantic Data (IESD 2015).
CEUR-WS.org, 2015.

[30] Pieter Heyvaert, Anastasia Dimou, Ruben Verborgh,
Erik Mannens, and Rik Van de Walle. Towards Ap-
proaches for Generating rdf Mapping Definitions. In
Proceedings of the ISWC 2015 Posters & Demonstra-
tions Track. CEUR Workshop Proceedings, 2015.

[31] Pieter Heyvaert, Anastasia Dimou, Aron-Levi Herre-
godts, Verborgh Ruben, Schuurman Dimitri, Mannens
Erik, and Van de Walle Rik. RMLEditor: A Graph-
Based Mapping Editor for Linked Data Mappings. In
The Semantic Web. Latest Advances and New Do-
mains, pages 709–723. Springer International Publish-
ing, 2016. doi: 10.1007/978-3-319-34129-3 43.

[32] Frederik Hogenboom, Viorel Milea, Flavius Frasin-
car, and Uzay Kaymak. RDF-GL: A SPARQL-Based
Graphical Query Language for RDF. In Emergent
Web Intelligence: Advanced Information Retrieval,
pages 87–116. Springer London, 2010. doi: 10.1007/
978-1-84996-074-8 4.

[33] Matthew Horridge. OWLViz, 2010. URL http://

protegewiki.stanford.edu/wiki/OWLViz.
[34] Ajaz Hussain, Khalid Latif, A Rextin, Amir Hayat, and

Masoon Alam. Scalable Visualization of Semantic Nets
using Power-Law Graphs. Applied Mathematics & In-
formation Sciences, 8(1):355–367, 2014.

[35] Muhammad Javed, Sandy Payette, Jim Blake, and Tim
Worrall. VIZ–VIVO: Towards Visualizations-driven
Linked Data Navigation. In Proceedings of the Second
International Workshop on Visualization and Interac-
tion for Ontologies and Linked Data, page 80, 2016.

[36] Sergey Krivov, Richard Williams, and Ferdinando Villa.
GrOWL: A tool for visualization and editing of OWL
ontologies. Web Semantics: Science, Services and
Agents on the World Wide Web, 5(2):54–57, 2007. ISSN
1570-8268. doi: http://dx.doi.org/10.1016/j.websem.
2007.03.005.

[37] Jill H Larkin and Herbert A Simon. Why a diagram
is (sometimes) worth ten thousand words. Cognitive
science, 11(1):65–100, 1987.

[38] Steffen Lohmann, Vincent Link, Eduard Marbach, and
Stefan Negru. WebVOWL: Web-based Visualization of
Ontologies. In Knowledge Engineering and Knowledge
Management, pages 154–158. Springer, 2014.

[39] Steffen Lohmann, Stefan Negru, and David Bold. The
ProtégéVOWL Plugin: Ontology Visualization for Ev-
eryone. In The Semantic Web: ESWC 2014 Satellite
Events, pages 395–400. Springer International Publish-
ing, 2014. doi: 10.1007/978-3-319-11955-7 55.

[40] Steffen Lohmann, Stefan Negru, Florian Haag, and
Thomas Ertl. Visualizing ontologies with VOWL. Se-
mantic Web, 7(4):399–419, 2016.

[41] Siné JP McDougall, Oscar de Bruijn, and Martin B
Curry. Exploring the effects of icon characteristics on
user performance: the role of icon concreteness, com-
plexity, and distinctiveness. Journal of Experimental
Psychology: Applied, 6(4):291, 2000.

[42] Daniel Moody. The “physics” of Notations: Toward
a Scientific Basis for Constructing Visual Notations in
Software Engineering. IEEE Transactions on Software
Engineering, 35(6):756–779, 2009. doi: 10.1109/TSE.
2009.67.

[43] Enrico Motta, Silvio Peroni, José Manuel Gómez-Pérez,
Mathieu d’Aquin, and Ning Li. Visualizing and navi-
gating ontologies with KC-Viz. In Ontology Engineering
in a Networked World, pages 343–362. Springer Berlin
Heidelberg, 2012. doi: 10.1007/978-3-642-24794-1 16.

[44] Stefan Negru and Steffen Lohmann. A Visual Nota-
tion for the Integrated Representation of OWL Ontolo-
gies. In Proceedings of the 9th International Conference
on Web Information Systems and Technologies (WE-
BIST ’13), pages 308–315. SciTePress, 2013.

[45] Natalya F Noy, Michael Sintek, Stefan Decker, Mon-
ica Crubézy, Ray W Fergerson, and Mark A Musen.
Creating Semantic Web Contents with Protégé-2000.
IEEE Intelligent Systems, 16(2):60–71, 2001. doi:
10.1109/5254.920601.

[46] Erica L Olmsted-Hawala, Elizabeth D Murphy, Sam
Hawala, and Kathleen T Ashenfelter. Think-aloud pro-
tocols: a comparison of three think-aloud protocols for
use in testing data-dissemination web sites for usabil-
ity. In Proceedings of the SIGCHI conference on human
factors in computing systems, pages 2381–2390. ACM,
2010.

[47] Addy Osmani. Learning JavaScript Design Patterns.
O’Reilly Media, 2012.

[48] Allan Paivio. Mental Representations: A Dual Coding
Approach. Oxford University Press, 1990.

27

http://protegewiki.stanford.edu/wiki/OWLViz
http://protegewiki.stanford.edu/wiki/OWLViz


[49] Emmanuel Pietriga. Semantic web data visualization
with graph style sheets. In Proceedings of the 2006
ACM Symposium on Software Visualization, SoftVis
’06, pages 177–178, New York, NY, USA, 2006. ACM.
ISBN 1-59593-464-2. doi: 10.1145/1148493.1148532.

[50] Eric Prud’hommeaux and Andy Seaborne. SPARQL
query language for RDF. Technical report. URL http:

//www.w3.org/TR/rdf-sparql-query/.
[51] Mark Richards. Software Architecture Patterns.

O’Reilly Media, 2015.
[52] Alistair Russell, Paul R. Smart, Dave Braines, and

Nigel R. Shadbolt. NITELIGHT: A Graphical Tool for
Semantic Query Construction. In Proceedings of the
Fifth International Workshop on Semantic Web User
Interaction (SWUI 2008), 2008.

[53] Simon Scheider, Auriol Degbelo, Rob Lemmens, Corné
van Elzakker, Peter Zimmerhof, Nemanja Kostic, Jim
Jones, and Gautam Banhatti. Exploratory querying of
SPARQL endpoints in space and time. Semantic Web,
8(1):65–86, 2017.

[54] Kunal Sengupta, Peter Haase, Michael Schmidt, and
Pascal Hitzler. Editing R2RML Mappings Made Easy.
In Proceedings of the 2013th International Conference
on Posters & Demonstrations Track, pages 101–104.
CEUR-WS.org, 2013.

[55] Ben Shneiderman. The Eyes Have It: A Task by Data
Type Taxonomy for Information Visualizations. In Pro-
ceedings 1996 IEEE Symposium on Visual Languages,
pages 336–343. IEEE, 1996. doi: 10.1109/VL.1996.
545307.

[56] Álvaro Sicilia, German Nemirovski, and Andreas Nolle.
Map-On: A web-based editor for visual ontology map-
ping. Semantic Web, (Preprint):1–12, 2016.

[57] Alexandra Similea, Niklas Petersen, Christoph Lange,
and Steffen Lohmann. TurtleEditor 2.0: A Synchro-
nized Visual and Text Editor for RDF Graphs. In IEEE
11th International Conference on Semantic Comput-
ing, 2017.

[58] Claus Stadler, Jens Lehmann, Konrad Höffner, and
Sören Auer. LinkedGeoData: A Core for a Web of Spa-
tial Open Data. Semantic Web Journal, 3(4):333–354,
2012.

[59] Thomas S Tullis and Jacqueline N Stetson. A compari-
son of questionnaires for assessing website usability. In
Usability professional association conference, pages 1–
12, 2004.

[60] Giovanni Tummarello, Richard Cyganiak, Michele
Catasta, Szymon Danielczyk, Renaud Delbru, and Ste-
fan Decker. Sig.ma: Live views on the Web of Data.
Web Semantics: Science, Services and Agents on the
World Wide Web, 8(4):355–364, 2010. ISSN 1570-8268.
doi: http://dx.doi.org/10.1016/j.websem.2010.08.003.

[61] Pierre-Yves Vandenbussche, Ghislain A Atemezing,
Maŕıa Poveda-Villalón, and Bernard Vatant. Linked
Open Vocabularies (LOV): a gateway to reusable se-
mantic vocabularies on the Web. Semantic Web, 8(3):
437–452, 2017.

[62] Marc Weise, Steffen Lohmann, and Florian Haag. LD-
VOWL: Extracting and Visualizing Schema Informa-
tion for Linked Data. Proceedings of the Second In-
ternational Workshop on Visualization and Interaction
for Ontologies and Linked Data, pages 120–127, 2016.

28

http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/

	Introduction
	Preliminary
	State of the Art
	Interfaces for Semantic Web Visualizations
	Linked Data Visualizations
	Ontology Visualizations
	Query Visualizations

	Mapping Editors

	Problem Statement
	Open Issues
	Research Questions and Hypotheses

	Visual Notation for Mapping Rules
	Requirements
	MapVOWL
	Graphical Primitives
	Color Scheme
	Visual Elements
	Conform to Physics of Notations


	RMLEditor
	Requirements
	Architecture
	Graphical User Interface
	Panels
	Interaction

	Mapping Execution
	Manipulation of Large Graphs
	Heterogeneous Data Values Manipulation

	Evaluation
	MapVOWL vs. RML
	Method
	Results
	Insights

	RMLEditor vs. RMLx Visual Editor
	Method
	Results
	Insights


	Conclusion

