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Abstract. We study function spaces consisting of analytic functions with fast de-
cay on horizontal strips of the complex plane with respect to a given weight function.
Their duals, so called spaces of (ultra)hyperfunctions of fast growth, generalize the
spaces of Fourier hyperfunctions and Fourier ultrahyperfunctions. An analytic rep-
resentation theory for their duals is developed and applied to characterize the non-
triviality of these function spaces in terms of the growth order of the weight function.

In particular, we show that the Gelfand-Shilov spaces of Beurling type S(p!)(Mp)
and

Roumieu type S{p!}{Mp} are non-trivial if and only if

sup
p≥2

(log p)p

hpMp
<∞,

for all h > 0 and some h > 0, respectively. We also study boundary values of
holomorphic functions in spaces of ultradistributions of exponential type, which may
be of quasianalytic type.

1. Introduction

The purpose of this paper is to introduce and analyze two families of spaces of
analytic functions and provide an analytic representation theory for their duals. Our
function spaces consist of analytic functions with very fast decay on strips of the
complex plane with respect to a weight function. Their duals lead to new classes
of hyperfunctions and ultrahyperfunctions of ‘fast growth’, and generalize the Fourier
hyperfunctions and the Fourier ultrahyperfunctions.

Fourier hyperfunctions were systematically studied by Kawai in [20], and their local
theory includes that of Sato’s hyperfunctions [19, 30]. In one dimension, their global
sections on R = [−∞,∞] are the dual of the space of analytic functions with expo-
nential decay on some (horizontal) strip, the latter test function space coincides with

the Gelfand-Shilov space S{1}{1} = S{p!}{p!} of Roumieu type [4, 14]. Moreover, in the co-

homological approach, this dual space can be represented as the quotient of the space
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2 A. DEBROUWERE AND J. VINDAS

of analytic functions defined outside the real line and having infra-exponential growth
outside every strip containing the real line modulo its subspace of entire functions of
infra-exponential type. We mention that the use of analytic functions for the repre-
sentation of dual spaces has a long tradition, which goes back to the pioneer works of
Köthe [24, 25] and Silva [37, 38]. We refer to the monographs [4, 5] for accounts on
analytic representations of (ultra)distributions, see also [8, 11] for recent results.

Interestingly, several basic problems in the theory of PDE naturally lead to ultra-
distribution spaces whose elements are not hyperfunctions [15]. Important instances
of such spaces are the spaces of tempered ultrahyperfunctions and Fourier ultrahy-
perfunctions, introduced in one-dimension by Silva [38] and in several variables by
Hasumi [16] and Park and Morimoto [33], see also [18, 28, 29, 40, 44]. More recently,
microlocal analysis, edge of the wedge theorems, and Bochner-Schwartz theorems in
the context of ultrahyperfunctions have been investigated in [3, 13, 43]; applications of
tempered ultrahyperfunctions can be found e.g. in [10, 32]. Also in recent times, ultra-
hyperfunctions have shown to be quite useful in mathematical physics, particularly as
a framework for Wightman-type axiomatic formulations of relativistic quantum field
theory with a fundamental length [2, 12, 31, 39].

In this article we are interested in the following generalization of Kawai’s and Silva’s
works (see also [15, Chap. 1]). Let ω : [0,∞) → [0,∞) be a non-decreasing function.
For h > 0 we denote by T h the horizontal strip of the complex plane | Im z| < h. We
shall study the space U(ω)(C) of entire functions ϕ satisfying

(1.1) sup
z∈Th
|ϕ(z)|eω(λ|Re z|) <∞,

for every h, λ > 0, and the space A{ω}(R) of analytic functions ϕ defined on some strip
T hand satisfying the estimate (1.1) for some h, λ > 0. We call their duals U ′(ω)(C) and

A′{ω}(R) the spaces of ultrahyperfunctions of (ω)-type and hyperfunctions of {ω}-type,

respectively. When ω(t) = t, one recovers the spaces of Fourier ultrahyperfunctions
and Fourier hyperfunctions.

The first natural question to be addressed is whether these spaces are non-trivial.
We shall provide a necessary and sufficient condition on the growth of ω characterizing
the non-triviality of both spaces. One of our main results asserts that U(ω)(C) contains
a non-identically zero function if and only if

(1.2) lim
t→∞

e−µtω(t) = 0,

for each µ > 0, while the corresponding non-triviality assertion holds for A{ω}(R) if
only if (1.2) is satisfied for some µ > 0. We remark that this characterization is of
similar nature to the Denjoy-Carleman theorem in the theory of ultradifferentiable
functions [1, 21]. In the case of A{ω}(R), the result will follow from complex analysis
arguments. The analysis of U(ω)(C) requires a more elaborate treatment, involving
duality arguments and analytic representations.
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It is worth pointing out that when ω is the associated function [21] of a logarithmi-
cally convex weight sequence (Mp)p∈N, our test function spaces coincide with Gelfand-

Shilov spaces of mixed type [4, 14], that is, U(ω)(C) = S(p!)
(Mp) and A{ω}(R) = S{p!}{Mp}.

Specializing our result, we obtain (cf. Proposition 2.7): S(p!)
(Mp) and S{p!}{Mp} are non-trivial

if and only if the weight sequence satisfies the mild lower bound

(1.3) sup
p≥2

(log p)p

hpMp

<∞,

for all h > 0 in the Beurling case and for some h > 0 in the Roumieu case; see Example
2.6 for instances of sequences that satisfy (1.3). Notice that finding precise conditions

on two weight sequences that characterize the non-triviality of S(Np)

(Mp) and S{Np}{Mp} is a

long-standing open question, raised by Gelfand and Shilov [15, Chap. 1]. Our result
then solves this question when one fixes Np = p!.

Our second goal is to give an analytic representation theory for the dual spaces
U ′(ω)(C) and A′{ω}(R). We will show that every ultrahyperfunction of (ω)-type (hy-

perfunction of {ω}-type) can be represented as the boundary value of an analytic
function defined outside some strip (outside the real line) and satisfying bounds of
type O(eω(λ|Re z|)) on substrips of its domain. Furthermore, we prove a result concern-
ing the analytic continuation of functions whose boundary values give rise to the zero
functional, which can either be viewed as a weighted version of Painlevé’s theorem on
analytic continuation or as a one-dimensional version of the edge of the wedge theorem.
This allows us to express U ′(ω)(C) and A′{ω}(R) as quotients of certain spaces of ana-

lytic functions. We mention that in order to establish the non-triviality of U(ω)(C), we
should already pass through the analytic representation theory of some intermediate
duals of certain spaces of analytic functions.

As an application of our ideas, we shall study in the last part of the article bound-
ary values of holomorphic functions in spaces of ultradistributions of exponential type.
Such spaces are defined in terms of a weight function ω that is subadditive but not
necessarily non-quasianalytic, and they are the duals of spaces of ultradifferentiable
functions that generalize the Hasumi-Silva space K1(R) of exponentially rapidly de-
creasing smooth functions [18, 16, 45]. We use here some variants of the theory of
almost analytic extensions [4, 34] and Laplace transform characterizations of several
interesting subspaces of Fourier (ultra)hyperfunctions. In order to study the Laplace
transform, we introduce a notion of support for (ultra)hyperfunctions of fast growth
in the spirit of Silva [38] and provide a support separation theorem.

The paper is organized as follows. Section 2 is devoted to the study of some properties
of weight functions. Many crucial arguments in the article depend upon the existence
of analytic functions satisfying certain lower and upper bounds with respect to a weight
function on a strip, Section 3 deals with the construction of such analytic functions. We
also prove there a quantified Phragmén-Lindelöf type result for analytic functions on
strips. Basic properties of the test function spaces U(ω)(C) and A{ω}(R) are discussed
in Section 4, where we determine their images under the Fourier transform as well. The
non-triviality theorem for A{ω}(R) is also shown in Section 4. In Section 5 we present
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the analytic representation theory for U ′(ω)(C) and A′{ω}(R), and, as an application, we

characterize the non-triviality of the space U(ω)(C). We introduce the notion of (real)
support in Section 6 and provide a support separation theorem. In Section 7, we give
a variant of the theory from the previous sections that applies to spaces defined via
subadditive weights. For a weight function ω, the modification consists in replacing
(1.1) in the definition of the test functions spaces by estimates of the form

sup
z∈Th
|ϕ(z)|eλω(|Re z|) <∞.

We mention that, in the Roumieu case, these test function spaces were investigated
by Langenbruch [26] under a mild condition (much weaker than subadditivity) on the
weight function ω (see Remark 7.3). If ω is subadditive, the resulting dual spaces are
subspaces of the Fourier (ultra)hyperfunctions, which we employ to introduce spaces of
ultradistributions of exponential type as their images under the Fourier transform, in
analogy to the Beurling-Björck approach to ultradistribution theory [1]. We conclude
the article with the study of boundary values of analytic functions in these ultradistri-
bution spaces of exponential type in Section 8.

2. Weight functions

In this preliminary section we prove some auxiliary results on weight functions that
will be used later in this work. We also discuss the special case when the weight
function arises as the associated function of a weight sequence. Another class of weight
functions will be considered in Section 7.

A weight function is simply a non-decreasing function ω : [0,∞) → [0,∞). Unless
otherwise stated, we shall always assume throughout Sections 2-6 that ω satisfies

(2.1) lim
t→∞

ω(t)

log t
=∞.

We often consider the ensuing additional conditions on weight functions:

(δ) 2ω(t) ≤ ω(Ht) + logA, t ≥ 0, for some A,H ≥ 1,

(ε)0

∫ ∞
0

ω(t)e−µtdt <∞ for all µ > 0,

(ε)∞

∫ ∞
0

ω(t)e−µtdt <∞ for some µ > 0.

We also introduce the following quantified version of (ε)0 and (ε)∞:

(ε)µ

∫ ∞
0

ω(t)e−µtdt <∞, µ > 0.

We extend ω to the whole real line by setting ω(t) = ω(|t|), t ∈ R. Furthermore, for
λ > 0 we employ the short-hand notation ωλ(t) = ω(λt).

The relation ω ⊂ σ between two weight functions means that there are C, λ > 0
such that

σ(t) ≤ ωλ(t) + C, t ≥ 0.
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The stronger relation ω ≺ σ means that the latter inequality remains valid for every
λ > 0 and suitable C = Cλ > 0. The reader should keep in mind that these two
relations “reverse” orders of growth. We say that ω and σ are equivalent, denoted by
ω ∼ σ, if both ω ⊂ σ and σ ⊂ ω hold.

Examples 2.1. Some examples of weight functions are:

• ts, s > 0,
• exp(ts logr(1 + t)), 0 ≤ s < 1, r ≥ 0, sr > 0,

• exp

(
t

logs(e+ t)

)
, s > 0,

• et.

They all satisfy (δ). Moreover, the first three of them fulfill (ε)0, while the last one
satisfies (ε)∞ but not (ε)0.

The next lemma gives alternative forms of (ε)0 and (ε)∞.

Lemma 2.2. Let ν > µ > 0 and suppose ω is a weight function satisfying (ε)µ, then
ω(t) = o(eνt). Consequently, ω satisfies (ε)0 ((ε)∞) if and only if et ≺ ω (et ⊂ ω).

Proof. Suppose the opposite, then there would exist ε > 0 and a sequence of positive
numbers (tn)n∈N such that

ω(tn) ≥ εeνtn , tn+1 ≥
νtn
µ
, n ∈ N.

Hence, ∫ ∞
0

ω(t)e−µtdt ≥
∞∑
n=0

∫ tn+1

tn

ω(t)e−µtdt ≥
(
ν

µ
− 1

)
t0

∞∑
n=0

ω(tn)e−νtn .

Since the last series is divergent, this contradicts (ε)µ. �

We now show three useful lemmas.

Lemma 2.3. Let ω be a weight function satisfying (δ) and (ε)0 ((ε)∞). Then, there is
another weight function σ with ω ∼ σ that satisfies (δ), (ε)0 ((ε)∞), and the additional
condition

(ζ) lim
t→∞

σ(λt)− σ(t) =∞, ∀λ > 1.

Proof. Let (tn)n∈N be a sequence of non-negative numbers such that t0 = 0 < t1 < t2 <
. . . < tn →∞ and

ω(t) ≥ n log t, t ≥ tn.

Define
ρ(t) = n log t, if t ∈ [tn, tn+1),

and σ(t) = ω(t) + ρ(t) ≤ 2ω(t). The condition (δ) thus implies that ω and σ are
equivalent weight functions. Since (δ) and (ε)0 ((ε)∞) are invariant under the relation
∼, the weight σ satisfies these conditions as well. For λ > 1 and t ∈ [tn, tn+1), we have

σ(λt)− σ(t) ≥ ρ(λt)− ρ(t) ≥ n(log(λt)− log t) = n log λ,

whence (ζ) follows. �
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Lemma 2.4. Let ω be a weight function satisfying (ε)0 ((ε)∞). Then, there is a weight
function σ satisfying (ε)0 ((ε)∞), (δ), and ω(t) ≤ σ(t) for all t ≥ 0.

Proof. We take σ(t) =
∫ t+1

0
ω(x)dx. The condition (ε)0 ((ε)∞) clearly holds for σ. We

also have σ(t) ≥
∫ t+1

t
ω(x)dx ≥ ω(t). Furthermore, since ω(t) is non-decreasing, we

obtain that σ is convex; therefore, 2σ(t) ≤ σ(2t) + σ(0). �

Lemma 2.5. Let ω be a weight function satisfying (ε)0. Then, there is a weight function
σ satisfying (ε)0 such that ωλ(t) = o(σ(t)) for all λ > 0.

Proof. We inductively determine a sequence of non-negative numbers (tn)n∈Z+ with
t1 = 0 that satisfies∫ ∞

tn

ω(t)e−t/n
2

dt ≤ 1

2n
,

tn
n
≥ tn−1

n− 1
+ 1, n ≥ 2.

We now define

σ(t) = nω(nt), for t ∈
[
tn
n
,
tn+1

n+ 1

)
.

Clearly, σ is a weight function and ωλ(t) = o(σ(t)) for all λ > 0. Moreover, for each
n0 ∈ Z+,∫ ∞

0

σ(t)e−t/n0dt ≤
∫ tn0/n0

0

σ(t)e−t/n0dt+
∞∑

n=n0

∫ tn+1/n+1

tn/n

nω(nt)e−t/ndt

≤ tn0ω(tn0) +
∞∑

n=n0

∫ ∞
tn

ω(t)e−t/n
2

dt

≤ tn0ω(tn0) +
∞∑

n=n0

1

2n
<∞.

�

We now consider the case when the weight function arises as the associated function
of a weight sequence [21]. Let (Mp)p∈N be a sequence of positive real numbers and define
mp = Mp/Mp−1 for all p ≥ 1. We shall always assume that limp→∞mp = ∞ and that
the sequence Mp is log-convex, that is, M2

p ≤ Mp−1Mp+1 for p ≥ 1, or, equivalently,
that mp is non-decreasing. In the sequel, we consider the ensuing conditions for weight
sequences:

(M.2) Mp+q ≤ AHp+qMpMq, p, q ∈ N, for some A,H ≥ 1,

(M.5)0

∞∑
n=1

e−µmp <∞ for all µ > 0,

(M.5)∞

∞∑
n=1

e−µmp <∞ for some µ > 0.

The associated function M of Mp is defined as

M(t) = sup
p∈N

log

(
tpM0

Mp

)
, t > 0,
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and M(0) = 0. Clearly, M is a weight function. We denote by

m(t) =
∑
mp≤t

1, t ≥ 0,

the counting function of the sequence (mp)p∈Z+ . It is well known that [21, Eq. (3.11),
p. 50]

(2.2) M(t) =

∫ t

0

m(λ)

λ
dλ, t ≥ 0.

As customary, the relationMp ⊂ Np between two weight sequences means that there are
C, h > 0 such that Mp ≤ ChpNp for all p ∈ N. The stronger relation Mp ≺ Np means
that the latter inequality remains valid for every h > 0 and a suitable C = Ch > 0. We
say that Mp and Np are equivalent, denoted by Mp ∼ Np, if both Mp ⊂ Np and Np ⊂Mp

hold. Denote by M and N the associated functions of Mp and Np, respectively. Then,
Mp ⊂ Np (Mp ≺ Np) if and only if M ⊂ N (M ≺ N) [21, Lemmas 3.8 and 3.10] and
therefore our use of the symbols ⊂, ≺, and ∼ for weight functions is consistent with
that for weight sequences.

Examples 2.6. Some examples of weight sequences are:

• p!s, s > 0,
• log(p+ e)s(p+e)

r
, s, r ≥ 1, sr > 1,

• log(p+ e)(p+e).

They all satisfy (M.2). Moreover, the first two of them fulfill (M.5)0 while the last one
satisfies (M.5)∞ but not (M.5)0.

The next proposition characterizes (M.5)0 and (M.5)∞ in terms of the associated
function.

Proposition 2.7. Let Mp be a weight sequence. Then, M satisfies (δ) if and only if
Mp satisfies (M.2). Moreover, the following statements are equivalent:

(i) M satisfies (ε)0 ((ε)∞),
(ii) m satisfies (ε)0 ((ε)∞),

(iii) et ≺M (et ⊂M),
(iv) et ≺ m (et ⊂ m),
(v) Mp satisfies (M.5)0 ((M.5)∞).

(vi) log(p+ e)(p+e) ≺Mp (log(p+ e)(p+e) ⊂Mp).

Proof. The equivalence between (M.2) and (δ) is shown in [21, Prop. 3.6]. Integration
by parts yields∑

mp≤t

e−µmp =

∫ t

0

e−µλdm(λ) = m(t)e−µt + µ

∫ t

0

m(λ)e−µλdλ, µ > 0.

Moreover, by (2.2), we obtain∫ t

0

M(λ)e−µλdλ =
1

µ

∫ t

0

m(λ)e−µλ

λ
dλ− M(t)e−µt

µ
, µ > 0.
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Lemma 2.2 now implies that (i)–(v) are equivalent to one another. Since the associated
function of the sequence log(p+ e)(p+e) is equivalent to et, conditions (iii) and (vi) are
also equivalent to each other. �

3. Analytic functions in a strip

The goal of this section is to construct functions that are analytic and satisfy certain
lower and upper bounds with respect to a weight function in a given horizontal strip
of the complex plane. Since the functions we aim to construct are zero-free, we first
study harmonic functions in a strip. We also show a Phragmén-Lindelöf type result for
analytic functions defined on strips and having decay with respect to a weight function,
Proposition 3.5 actually delivers a useful three lines type inequality. As usual, O(V )
stands for the space of analytic functions in an open set V ⊆ C.

Given h > 0, we write T h = R + i(−h, h), T h+ = R + i(0, h), and T h− = R + i(−h, 0).
Furthermore, we shall always write z = x+ iy ∈ C for a complex variable. The Poisson
kernel of the strip T π+ is well-known. It is given by

P (x, y) =
sin y

coshx− cos y
,

and has the ensuing properties [42]:

(A) P (x, y) is harmonic on T 2π
+ ,

(B) P (x, y) > 0 on T π+,

(C) |P (x, y)| ≤ | sin y|e
−|x|+1

cosh 1− 1
, |x| ≥ 1, 0 < y < 2π,

(D)

∫ ∞
0

P (x, y)dx = π − y, 0 < y < π.

We employ the notation

Ph(x, y) = P
(πx
h
,
πy

h

)
, h > 0,

and, for a measurable function f on R,

Ph{f ;x, y} =
1

2h

∫ ∞
−∞

Ph(t− x, y)f(t)dt,

its Poisson transform with respect to the strip T h+.

Lemma 3.1. Let ω be a weight function satisfying (ε)π/h.Then, Ph{ω;x, y} is harmonic
on T h+ and satisfies the lower bound

Ph{ω;x, y} ≥ ω(x)

2

(
1− y

h

)
, x+ iy ∈ T h+.

If ω satisfies (ε)π/(2h), then the upper bound

Ph{ω;x, y} ≤
(
ω(2x) + ω

(
2h

π

))(
1− y

h

)
+ C, x+ iy ∈ T h+,
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holds as well, where

C =
e

2h(cosh 1− 1)

∫ ∞
0

e−πt/(2h)ω(t)dt <∞.

Proof. Since

Ph{ω;x, y} = Pπ

{
ωh/π;

πx

h
,
πy

h

}
,

we may assume that h = π. Set P{ω;x, y} = Pπ{ω;x, y}. The fact that ω satisfies (ε)1

implies that P{ω;x, y} is harmonic on T π+ [42, Thm. 1]. By the symmetry properties
of the weight function ω and the Poisson kernel P , it suffices to show the inequalities
for x ≥ 0. We have that

P{ω;x, y} =
1

2π

∫ ∞
−∞

P (t, y)ω(t+ x)dt ≥ 1

2π

∫ ∞
0

P (t, y)ω(t+ x)dt

≥ ω(x)

2π

∫ ∞
0

P (t, y)dt =
ω(x)

2

(
1− y

π

)
,

where, in the last equality, we have used property (D) of the Poisson kernel P . Next,
assume that ω satisfies (ε)1/2. Then,

P{ω;x, y} ≤ 1

π

∫ ∞
0

P (t, y)ω(t+ x)dt

=
1

π

∫ x

0

P (t, y)ω(t+ x)dt+
1

π

∫ ∞
x

P (t, y)ω(t+ x)dt

≤ ω(2x)

π

∫ ∞
0

P (t, y)dt+
1

π

∫ ∞
0

P (t, y)ω(2t)dt

≤ ω(2x)
(

1− y

π

)
+

1

π

∫ ∞
0

P (t, y)ω(2t)dt.

Property (C) of the Poisson kernel P and condition (ε)1/2 imply that∫ ∞
0

P (t, y)ω(2t)dt =

∫ 1

0

P (t, y)ω(2t)dt+

∫ ∞
1

P (t, y)ω(2t)dt

≤ ω(2)(π − y) +
e

2(cosh 1− 1)

∫ ∞
0

e−t/2ω(t)dt <∞.

�

Lemma 3.1 has the following important consequence.

Proposition 3.2. Let ω be a weight function satisfying (ε)π/(8hλ). Then, there is
F ∈ O(T h) such that

eω(λx) ≤ |F (z)| ≤ Ce4ω(2λx), z ∈ T h,
for some C = Ch,λ > 0. If, in addition, ω satisfies (δ), then

|F (z)| ≤ A3Ceω(2H2λx), z ∈ T h,
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where A,H are the constants occurring in (δ).

Proof. Define U(x, y) = 4P4h(ωλ;x, y+h). Lemma 3.1 implies that F (z) = eU(x,y)+iV (x,y),
with V the harmonic conjugate of U , satisfies all requirements. �

Remark 3.3. Let ω be a weight function (not necessarily satisfying (2.1)) that is sub-
additive, i.e.

ω(t1 + t2) ≤ ω(t1) + ω(t2), t1, t2 ≥ 0.

Observe that subadditivity implies that ω(t) = O(t); in particular, (ε)0 holds. One can
readily show the inequalities (cf. the proof of Lemma 3.1)

ω(x)

2

(
1− y

h

)
≤ Ph{ω;x, y} ≤

(
ω(x) + ω

(
h

π

))(
1− y

h

)
+ C, x+ iy ∈ T h+,

with

C =
e

h(cosh 1− 1)

∫ ∞
0

e−πt/hω(t)dt <∞.

Hence, for each λ > 0 and h > 0, there is F ∈ O(T h) such that

eλω(x) ≤ |F (z)| ≤ Ce4λω(x), z ∈ T h,

for some C > 0. Subadditive weight functions will play an important role in Sections
7 and 8 below.

We end this section with a Phragmén-Lindelöf type result for analytic functions
defined on strips. We need the following lemma.

Lemma 3.4. Let ϕ be analytic and bounded on the strip T h+ and continuous on T h+.
Then, if ϕ is non-identically zero,

(i) −∞ <

∫ ∞
−∞

log |ϕ(x)|e−π|x|/hdx and −∞ <

∫ ∞
−∞

log |ϕ(x+ ih)|e−π|x|/hdx,

(ii) log |ϕ(z)| ≤ Ph{log |ϕ|;x, y}+ Ph{log |ϕ(·+ ih)|;x, h− y}, z ∈ T h+.

Proof. We may assume that h = π. The results can be derived by considering the
conformal mapping

z → i− ez

i+ ez

from the strip T π+ onto the the unit disk and using the well known counterparts of the
statements for bounded analytic functions on the unit disk [22]. �

Proposition 3.5. Let ω be a weight function satisfying (ε)π/h. Let ϕ be holomorphic

on the strip T h+ and continuous on T h+, and suppose that

|ϕ(z)| ≤M, z ∈ T h+, |ϕ(x)| ≤ Ce−ω(x), x ∈ R,

for some M,C > 0. Then,

|ϕ(z)| ≤My/hC1−(y/h) exp

(
−ω(x)

2

(
1− y

h

))
, z = x+ iy ∈ T h+.
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Proof. We may assume that ϕ is non-identically zero. By Lemma 3.4(ii) and property
(D) of the Poisson kernel we have that

|ϕ(z)|ePh{ω;x,y} ≤My/h exp

(
1

2h

∫ ∞
−∞

(log |ϕ(t)|+ ω(t))Ph(t− x, y)dt

)
.

By applying Jensen’s inequality to the probability measure Ph(t − x, y)/(2(h − y))dt
for x ∈ R and 0 < y < h fixed, we obtain

|ϕ(z)|ePh{ω;x,y} ≤ My/h

2(h− y)

∫ ∞
−∞

exp
((

1− y

h

)
(log |ϕ(t)|+ ω(t))

)
Ph(t− x, y)dt

≤My/hC1−(y/h).

The result now follows from the first part of Lemma 3.1. �

4. Spaces of analytic functions of rapid decay on strips

We now introduce and discuss some basic properties of the spaces of analytic func-
tions that we are mainly concerned with. They generalize the test function spaces
for the Fourier hyperfunctions and ultrahyperfunctions [18, 19, 33, 38]. We will also
determine their images under the Fourier transform, extending various results from [6].
Throughout the rest of the article the parameters h, k, λ, b, and R always stand for
positive real numbers.

Let ω be a weight function. We write Ahω for the (B)-space (Banach space) consisting
of all analytic functions ϕ ∈ O(T h) that satisfy

‖ϕ‖hω := sup
z∈Th
|ϕ(z)|eω(x) <∞.

We set Ahωλ = Ah,λω and

‖ϕ‖hωλ = ‖ϕ‖h,λω = ‖ϕ‖h,λ, ϕ ∈ Ah,λω .

Montel’s theorem and the uniqueness property of holomorphic functions yield the
following simple lemma.

Lemma 4.1. Let ω and σ be two weight functions such that

(4.1) lim
t→∞

σ(t)− ω(t) =∞.

Then, for 0 < h < k, the restriction mapping Akσ → Ahω is injective and compact.

As topological vector spaces, we define

(4.2) U(ω)(C) = lim←−
h→∞

lim←−
λ→∞
Ah,λω , A{ω}(R) = lim−→

h→0+

lim−→
λ→0+

Ah,λω ,

and

(4.3) Ah(ω) = lim←−
k→h−

lim←−
λ→∞
Ak,λω , Ah{ω} = lim−→

k→h+
lim−→
λ→0+

Ak,λω .

If ω satisfies (δ), Lemma 4.1 implies that U(ω)(C) and Ah(ω) are (FS)-spaces, while

A{ω}(R) and Ah{ω} are (DFS)-spaces. Let σ be another weight function such that

ω ∼ σ, then U(ω)(C) = U(σ)(C) and A{ω}(R) = A{σ}(R), topologically. The same is
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true for the spaces (4.3). We shall call the elements of the dual spaces U ′(ω)(C) and

A′{ω}(R) ultrahyperfunctions of (ω)-type and hyperfunctions of {ω}-type, respectively.

When no reference to ω is made, we will simply call them (ultra)hyperfunctions of
fast growth. We endow these (and other) duals with the strong topology. Observe
that U(t)(C) and A{t}(R) are the test function spaces for the Fourier ultrahyperfunc-
tions [18, 33] and Fourier hyperfunctions [20], respectively. If ω = M is the associ-

ated function of a weight sequence Mp, then U(Mp)(C) := U(M)(C) = S(p!)
(Mp)(R) and

A{Mp}(R) := A{M}(R) = S{p!}{Mp}(R), the mixed type Gelfand-Shilov spaces [36]. In

particular, A{p!α}(R), α > 0, is equal to the Gelfand-Shilov space S{1}{α} [14].

As already pointed out in the introduction, it is a priori not obvious that the spaces
(4.2) and (4.3) should contain non-identically zero functions. We address in this section
the non-triviality of the spaces (4.3), and in particular that of A{ω}(R) =

⋃
h>0Ah{ω}.

The analysis of the corresponding problem for U(ω)(C) is more demanding and is post-
poned to Section 5. We begin with the following necessary condition for the non-
triviality of Ah,λω .

Proposition 4.2. Let ω be a weight function and suppose that Ah,λω contains a function
which is non-identically zero. Then, ω satisfies (ε)π/(hλ).

Proof. Let ϕ be a non-zero element of Ah,λω . By applying Lemma 3.4(i) to ϕ(· − ik),
0 < k < h, we obtain

−∞ <

∫ ∞
−∞

log |ϕ(x− ik)|e−π|x|/hdx

≤ log ‖ϕ‖h,λ
∫ ∞
−∞

e−π|x|/hdx− 2

λ

∫ ∞
0

ω(x)e−πx/(hλ)dx,

and so
∫∞

0
ω(x)e−πx/(hλ)dx <∞. �

Proposition 4.3. Let ω be a weight function. The space Ah(ω) (Ah{ω}) is non-trivial if

and only if ω satisfies (ε)0 ((ε)∞). Consequently, A{ω}(R) is non-trivial if and only if
ω satisfies (ε)∞.

Proof. The direct implication follows from Proposition 4.2. Moreover, if ω satisfies
(ε)∞, Proposition 3.2 gives the non-trivality of Ah{ω}. Assume now that ω satisfies (ε)0.

By Lemma 2.5, there is a weight function σ satisfying (ε)0 such that ωλ(t) = o(σ(t))
for all λ > 0. By Proposition 3.2 there is an analytic function F on T h such that
|F (z)| ≥ eσ(x) for all z ∈ T h. Then, 1/F is an element of Ah(ω) which is non-identically
zero. �

In the next section (Subsection 5.2) we shall show that U(ω)(C) is non-trivial if and
only if ω satisfies (ε)0, this will be a consequence of a representation theorem for its
dual (see Theorem 5.9).

The rest of this section is devoted to computing the images of U(ω)(C) and A{ω}(R)
under the Fourier transform. These spaces are the ultradifferentiable counterparts
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of the classical Hasumi-Silva space K1(R) of exponentially rapidly decreasing smooth
functions [18, 16, 45]. We fix constants in the Fourier transform as

F(ϕ)(ξ) = ϕ̂(ξ) =

∫ ∞
−∞

ϕ(x)e−ixξdx.

Let ω be a weight function. We write Kh1,ω(R) for the function space consisting of all

ψ ∈ L1(R) such that

ρω(ψ) := sup
x∈R
|F−1(ψ)(x)|eω(x) <∞, ρh(ψ) := sup

ξ∈R
|ψ(ξ)|eh|ξ| <∞;

it becomes a (B)-space when endowed with the norm

ρhω(ψ) := max(ρω(ψ), ρh(ψ)), ψ ∈ Kh1,ω(R).

We set further Kh1,ωλ(R) = Kh,λ1,ω(R),

ρhωλ(ψ) = ρh,λω (ψ), ψ ∈ Kh,λ1,ω(R),

and
K1,(ω)(R) = lim←−

λ→∞
lim←−
h→∞
Kh,λ1,ω(R), K1,{ω}(R) = lim−→

λ→0+

lim−→
h→0+

Kh,λ1,ω(R).

Proposition 4.4. Let ω be a weight function satisfying (δ) and (ε0) ((ε)∞). The
Fourier transform is a topological isomorphism of U(ω)(C) onto K1,(ω)(R) (of A{ω}(R)
onto K1,{ω}(R)).

Proof. For ϕ ∈ Ah,λω we have the following formulas for its Fourier transform (see e.g.
[18, p. 167])

ϕ̂(ξ) =



∫ ∞
−∞

ϕ(x+ ik)e−i(x+ik)ξdx, ξ ≤ 0,

∫ ∞
−∞

ϕ(x− ik)e−i(x−ik)ξdx, ξ ≥ 0,

where 0 < k < h. This shows that the Fourier transform is a well defined continuous
mapping in both the Beurling and Roumieu case. Conversely, let ψ ∈ Kh,λ1,ω(R). Then,

there is ϕ ∈ O(T h) with ϕ̂ = ψ such that

|ϕ(z)| ≤ ρh(ψ)

π(h− k)
, z ∈ T k,

where 0 < k < h. Invoking Proposition 3.5 and condition (δ), we conclude that the
inverse Fourier transform is also a well defined continuous mapping in both the Beurling
and Roumieu case. �

We call the elements of K′1,(ω)(R) and K′1,{ω}(R) ultradistributions of class (ω) (of

Beurling type) of exponential type and ultradistributions of class {ω} (of Roumieu
type) of infra-exponential type, respectively. Observe that Proposition 4.4 allows one
to define the Fourier transform from K′1,(ω)(R) onto U ′(ω)(C) and from K′1,{ω}(R) onto

A′{ω}(R) via duality.
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Let us remark that when ω = M is the associated function of a weight sequence

Mp satisfying (M.2), then K1,(Mp)(R) := K1,(M)(R) = S(Mp)

(p!) (R) and K1,{Mp}(R) :=

K1,{M}(R) = S{Mp}
{p!} (R), topologically. When Mp is non-quasianalytic [21], we have the

continuous and dense inclusions D(Mp)(R) ↪→ K1,(Mp)(R) and D{Mp}(R) ↪→ K1,{Mp}(R)

and therefore the inclusions K′1,(Mp)(R) ⊂ D(Mp)′(R) and K′1,{Mp}(R) ⊂ D{Mp}′(R).

5. Boundary values of analytic functions in spaces of
(ultra)hyperfunctions of fast growth

In this section we build an analytic representation theory for the spaces U ′(ω)(C) and

A′{ω}(R). We show that every ultrahyperfunction of (ω)-type (hyperfunction of {ω}-
type) can be represented as the boundary value of an analytic function defined outside
some strip (outside the real line) and satisfying certain growth bounds with respect to
the weight function ω. Silva obtained analytic representations of ultrahyperfunctions
via a careful analysis of the Cauchy-Stieltjes transform [18, 38]. We shall follow a
similar approach, the functions constructed in Section 3 are essential for our method.
Furthermore, we present an (ultra)hyperfunctional version of Painlevé’s theorem on
analytic continuation. These results allow us to express the dual spaces U ′(ω)(C) and

A′{ω}(R) as quotients of spaces of analytic functions in a very precise fashion. As an

application of these ideas, we characterize the non-triviality of the space U(ω)(C).

5.1. Analytic representations. Given 0 < b < R, we use the notation T b,R =
TR\T b = R + i((−R,−b) ∪ (b, R)). Let ω be a weight function. We define Ob,Rω as the
(B)-space consisting of all analytic functions F ∈ O(T b,R) that satisfy

|F |b,Rω := sup
z∈T b,R

|F (z)|e−ω(x) <∞,

and PRω as the (B)-space consisting of all P ∈ O(TR) such that

|P |R := sup
z∈TR

|P (z)|e−ω(x) <∞.

We set Ob,Rωλ = Ob,R,λω , PRωλ = PR,λω ,

|F |b,Rωλ = |F |b,R,λω = |F |b,R,λ, F ∈ Ob,R,λω ,

and

|P |Rωλ = |P |R,λω = |P |R,λ, P ∈ PR,λω .

As in Lemma 4.1, one easily obtains:

Lemma 5.1. Let ω and σ be weight functions such that (4.1) holds. Then, for 0 <
b < c < L < R, the restriction mappings Ob,Rω → Oc,Lσ and PRω → OLσ are injective and
compact.

Suppose that σ is another weight function such that both (4.1) and∫ ∞
0

eω(t)−σ(t)dt <∞



HYPERFUNCTIONS AND ULTRAHYPERFUNCTIONS OF FAST GROWTH 15

hold. If ω satisfies (δ), the above conditions are fulfilled for ω = ωλ and σ = ωHλ for
each λ > 0. Let 0 < b < h < R. Given an analytic function F ∈ Ob,Rω , we associate to
F an element of (Ahσ)′ via the boundary value mapping

〈bv(F ), ϕ〉 = −
∫

Γk

F (z)ϕ(z)dz, ϕ ∈ Ahσ,

where b < k < h and Γk is the (counterclockwise oriented) boundary of T k. By
Cauchy’s integral theorem, the definition of bv(F ) is independent of the chosen k and
f = bv(F ) is indeed a continuous linear functional on Ahσ. We say that F is an analytic
representation of f . We have the following general result on the existence of analytic
representations.

Proposition 5.2. Let 0 < k < b < h < R and let ω, σ, and κ be three weight functions
satisfying

(5.1) lim
t→∞

σ(t)− ω(t) =∞, lim
t→∞

κ(t)− σ(t) =∞,

and

(5.2)

∫ ∞
0

eω(t)−σ(t)dt <∞,
∫ ∞

0

eσ(t)−κ(t)dt <∞.

Furthermore, suppose there is P ∈ O(TR) such that

C1e
ω(x) ≤ |P (z)| ≤ C2e

σ(x), z ∈ TR,

for some C1, C2 > 0. Then, every f ∈ (Akω)′ is the boundary value of some element of
Ob,Rσ on Ahκ, that is, there is F ∈ Ob,Rσ such that bv(F ) = f on Ahκ.

Proof. Cauchy’s integral formula yields

ϕ(ζ) =
1

2πiP (ζ)

∫
Γb

ϕ(z)P (z)

z − ζ
dz, ζ ∈ T k,

for each ϕ ∈ Ahκ. Let Rn(ζ) be a sequence of Riemann sums converging to the integral
in the right-hand side of the above expression. Then, Rn(ζ)/(2πiP (ζ)) → ϕ(ζ), as
n→∞ in Akω, as one readily verifies. Hence,

〈f(ζ), ϕ(ζ)〉 =

∫
Γb

P (z)

2πi

〈
f(ζ),

1

(z − ζ)P (ζ)

〉
ϕ(z)dz.

Thus,

F (z) =
P (z)

2πi

〈
f(ζ),

1

(ζ − z)P (ζ)

〉
is an element of Ob,Rσ such that bv(F ) = f on Ahκ. �

Our next result shows that functions whose boundary value give rise to the zero
functional can be analytically continued.
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Proposition 5.3. Let 0 < b < h < R and let ω, σ, and κ be three weight functions
satisfying (5.1) and (5.2). Furthermore, suppose there is P ∈ O(TR) such that

C1e
σ(x) ≤ |P (z)| ≤ C2e

κ(x), z ∈ TR,
for some C1, C2 > 0. If F ∈ Ob,Rω is such that bv(F ) = 0 on Ahσ, then F ∈ PRκ .

Proof. Let 0 < b < k < h < L < R. It suffices to show that

(5.3) F (z) =
P (z)

2πi

∫
ΓL

F (ζ)

(ζ − z)P (ζ)
dζ, z ∈ T h,L.

Fix z ∈ C with h < Im z < L; the case −L < Im z < −h is analogous. We denote
by Γ+ (Γ−) the part of a contour Γ in the upper (lower) half-plane. Cauchy’s integral
formula yields

F (z) =
P (z)

2πi

(∫
Γ+
L

F (ζ)

(ζ − z)P (ζ)
dζ −

∫
Γ+
k

F (ζ)

(ζ − z)P (ζ)
dζ

)
.

Since ζ → 1/((ζ − z)P (ζ)) ∈ Ahσ, the assumption bv(F ) = 0 on Ahσ implies that∫
Γ+
k

F (ζ)

(ζ − z)P (ζ)
dζ = −

∫
Γ−k

F (ζ)

(ζ − z)P (ζ)
dζ.

Furthermore, because ζ → 1/((ζ − z)P (ζ)) is analytic on the horizontal strip −R <
Im ζ < −b, we have by Cauchy’s integral theorem that∫

Γ−k

F (ζ)

(ζ − z)P (ζ)
dζ =

∫
Γ−L

F (ζ)

(ζ − z)P (ζ)
dζ.

This shows (5.3). �

Combining these two results with Proposition 3.2, we obtain the following corollaries.

Corollary 5.4. Let 0 < k < b < h < R and let ω be a weight function satisfying (δ)

and (ε)0. For every f ∈ (Ak,λω )′ there is F ∈ Ob,R,2H2λ
ω such that bv(F ) = f on Ah,2H3λ

ω .

Corollary 5.5. Let 0 < b < h < R and let ω be a weight function satisfying (ε)0 and

(δ). If F ∈ Ob,R,λω is such that bv(F ) = 0 on Ah,Hλω , then F ∈ PR,2H3λ
ω .

5.2. Analytic representations of ultrahyperfunctions of (ω)-type and the non-
triviality of U(ω)(C). We start by studying the analytic representations of the dual
of Ah(ω). Let us introduce some further notation. For 0 < h < R we write

Oh,R(ω) = lim−→
b→h−

lim−→
L→R+

lim−→
λ→∞
Ob,L,λω , PR(ω) = lim−→

L→R+

lim−→
λ→∞
PL,λω .

Lemma 5.1 implies that, if ω satisfies (δ), the spaces Oh,R(ω) and PR(ω) are (DFS)-spaces.

Furthermore, the boundary value mapping

bv : Oh,R(ω) → (Ah(ω))
′

is well defined and continuous. We need the following lemma.
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Lemma 5.6. Let ω be a weight function satisfying (ε)0 and (δ). For each λ > 0 the
space

Ah,∞(ω) = lim←−
µ→∞

Ah,µω

is dense in the space Ah,Hλω with respect to the norm ‖ · ‖h,λ.

Proof. Let ϕ ∈ Ah,Hλω . By Proposition 4.3, Ah+1
(ω) is non-trival, so select ψ ∈ Ah+1

(ω) with

ψ(0) = 1. Define ϕn(z) = ϕ(z)ψ(z/n) ∈ Ah,∞(ω) for n ≥ 1. Then,

‖ϕ− ϕn‖h,λ = sup
z∈Th
|ϕ(z)(1− ψ(z/n))|eω(λx) ≤ A‖ϕ‖h,Hλ sup

z∈Th
|1− ψ(z/n)|e−ω(λx),

which proves the result since ψ(z/n) → 1, as n → ∞, uniformly on compact subsets
of T h+1. �

We can now show that (Ah(ω))
′ is isomorphic to the quotient space Oh,R(ω) /PR(ω).

Proposition 5.7. Let 0 < h < R and let ω be a weight function satisfying (ε)0 and
(δ). The following sequence

0 −→ PR(ω) −→ O
h,R
(ω)

bv−−→ (Ah(ω))
′ −→ 0

is topologically exact. Moreover, for every f ∈ (Ah(ω))
′ one can find 0 < b < h and λ > 0

such that for every R > h there is F ∈ Ob,R,λω such that bv(F ) = f . In addition, for

every bounded set B ⊂ (Ah(ω))
′ there is a bounded set A ⊂ Oh,R(ω) such that bv(A) = B.

Proof. In view of the Pták open mapping theorem [17, Chap. 3, Prop. 17.2], it suffices to
show that the sequence is algebraically exact. It is clear that PR(ω) ⊆ ker bv. Conversely,

let F ∈ Oh,R(ω) and suppose bv(F ) = 0 on Ah(ω). Let 0 < b < h, L > R, and λ > 0 be

such that F ∈ Ob,L,λω . Since Ah,∞(ω) ⊂ Ah(ω), Lebesgue’s dominated convergence theorem

and Lemma 5.6 imply that actually bv(F ) = 0 on Ah,H2λ
ω . Hence, by Corollary 5.5,

we have that F ∈ PL,2H4λ
ω ⊂ PR(ω). The second statement (and therefore also the

surjectivity of the boundary value mapping) is a consequence of the Hahn-Banach
theorem and Corollary 5.4. The last part follows from the general fact that for a
surjective continuous linear mapping T : E → F between reflexive (DF )-spaces it
holds that for every bounded set B ⊂ F there is a bounded set A ⊂ E such that
T (A) = B; this follows from the fact that T t is an injective strict morphism and the
bipolar theorem. �

We now proceed to show that U(ω)(C) is non-trivial if and only if ω satisfies (ε)0. For
it, we need some basic facts about projective spectra. Let (Xn)n∈N be a sequence of
topological spaces and let un+1

n : Xn+1 → Xn be a continuous mapping for each n ∈ N.
Consider the projective limit X of the spectrum (Xn)n∈N, that is,

X = {(xn) ∈
∏
n∈N

Xn : xn = un+1
n (xn+1), n ∈ N},
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with the natural projection mappings uj : X → Xj : (xn)→ xj. The spectrum is called
reduced if uj has dense range for each j ∈ N. We shall employ the following well known
result, due to De Wilde (see also [9] for the case of Banach spaces).

Lemma 5.8 ([7]). Let (Xn)n∈N be a spectrum of complete metrizable topological spaces.
If un+1

n has dense range for each n ∈ N, then the spectrum (Xn)n∈N is reduced.

Theorem 5.9. The space U(ω)(C) is non-trivial if and only if ω satisfies (ε)0. If, in
addition, ω satisfies (δ), then U(ω)(C) is dense in Ah(ω) for all h > 0.

Proof. The direct implication follows from Proposition 4.2. By Lemma 2.4, we may
assume that ω satisfies (δ) for the first assertion. So, for the converse, first notice that
Proposition 4.3 ensures that the spaces Ah(ω) are non-trivial for each h > 0. Lemma 5.8

implies that it suffices to show that for all 0 < k < h the space Ah(ω) is dense in Ak(ω),
but this precisely follows from Proposition 5.7 and the Hahn-Banach theorem. �

Combining Lemma 5.6 and Theorem 5.9, we obtain,

Corollary 5.10. The continuous inclusion U(ω)(C) ↪→ A{ω}(R) is dense if ω satis-
fies (ε)0 and (δ). In particular, one also obtains the continuous and dense inclusion
A′{ω}(R) ↪→ U ′(ω)(C).

Our next goal is to construct analytic representations of elements of U ′(ω)(R) which
are globally defined, namely, everywhere outside some closed horizontal strip. The
basic idea is to paste together the analytic representations obtained in Proposition 5.7
with the aid of a Mittag-Leffler procedure. We define

Oh(ω) =
⋃
λ>0

⋃
b<h

⋂
R>b

Ob,R,λω , O(ω) =
⋃
h>0

Oh(ω), P(ω) =
⋃
λ>0

⋂
R>0

PR,λω .

We use the union and intersection notation to emphasize that we do not topologize the
latter spaces. We need the following lemma.

Lemma 5.11. Let 0 < L < R and let ω be a weight function satisfying (ε)0 and (δ).
Then, U(ω)(C) is dense in PR,λω with respect to the norm | · |L,Hλ.

Proof. By Theorem 5.9, it suffices to show that AR,∞(ω) is dense in PR,λω with respect

to the norm | · |L,Hλ. Let P ∈ PR,λω and choose ϕ ∈ AR,∞(ω) with ϕ(0) = 1. Set

Pn(z) = P (z)ϕ(z/n) ∈ AR,∞(ω) for n ≥ 1. We have

|P − Pn|L,Hλ = sup
z∈TL
|P (z)(1− ϕ(z/n))|e−ω(Hλx) ≤ A|P |L,λ sup

z∈TL
|1− ϕ(z/n)|e−ω(λx).

Since ϕ(z/n) → 1, as n → ∞, uniformly on compact subsets of TR, this proves the
result. �

Proposition 5.12. Let ω be a weight function satisfying (ε)0 and (δ). The sequence

0 −→ P(ω) −→ Oh(ω)

bv−−→ (Ah(ω))
′ −→ 0

is exact.
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Proof. The fact that P(ω) = ker bv is clear from Proposition 5.7. We show that the
boundary value mapping is surjective. Let f ∈ (Ah(ω))

′. By Proposition 5.7 there are

0 < b < h and λ > 0 such that for every n ∈ N there is Gn ∈ Ob,b+n+1,λ
ω such that

bv(Gn) = f . Corollary 5.5 and Lemma 5.6 yield Gn+1 − Gn = Pn ∈ Pb+n+1,2H4λ
ω and

thus, by Lemma 5.11, there is ϕn ∈ U(ω)(C) such that |Pn − ϕn|b+n,2H
5λ ≤ 2−n. Define

Fn(z) = Gn(z)−
n−1∑
k=0

ϕk +
∞∑
k=n

(Pk − ϕk), z ∈ T b,b+n.

Then, Fn ∈ Ob,b+n,2H
5λ

ω , bv(Fn) = f , and Fn+1(z) = Fn(z) for z ∈ T b,b+n. Hence,
F (z) := Fn(z) for z ∈ T b,b+n, is a well defined element of Oh(ω) such that bv(F ) = f . �

Summarizing, the following representation theorem should now be clear.

Theorem 5.13. Let ω be a weight function satisfying (ε)0 and (δ). The sequence

0 −→ P(ω) −→ O(ω)
bv−−→ U ′(ω)(C) −→ 0

is exact.

5.3. Analytic representations of hyperfunctions of {ω}-type. We now turn our
attention to the representation of A′{ω}(R). In analogy to the previous subsection, we

begin our study with the dual of Ah{ω}. For 0 < h < R we set

Oh,R,λ{ω} = lim←−
b→h+

lim←−
L→R−

lim←−
µ→λ+

Ob,L,µω , Oh,R{ω} = lim←−
λ→0+

Oh,R,λ{ω} ,

and
PR,λ{ω} = lim←−

L→R−
lim←−
µ→λ+

PL,µω , PR{ω} = lim←−
λ→0+

PR,λ{ω} .

Lemma 5.1 implies that, if ω satisfies (δ), the spaces Oh,R{ω} and PR{ω} are (FS)-spaces.

If ω satisfies (ζ) from Lemma 2.3, this is also true for Oh,R,λ{ω} and PR,λ{ω} . Furthermore,

the boundary value mapping

bv : Oh,R{ω} → (Ah{ω})′

is well defined and continuous. We need to the following density lemma.

Lemma 5.14. Let 0 < h < R and 0 < λ < µ. Let ω be a weight function satisfying
(ε)0, (δ), and (ζ). Then, U(ω)(C) is dense in Oh,R,λ{ω} ∩P

R,µ
{ω} with respect to the topology

of Oh,R,λ{ω} .

Proof. By Theorem 5.9 it is enough to check that AR(ω) is dense in Oh,R,λ{ω} ∩ P
R,µ
{ω} with

respect to the topology of Oh,R,λ{ω} . Let P ∈ Oh,R,λ{ω} ∩ P
R,µ
{ω} and choose ϕ ∈ AR(ω) with

ϕ(0) = 1. Set Pn(z) = P (z)ϕ(z/n) ∈ AR(ω) for all n ≥ 1. Let h < b < L < R and ν > λ
be arbitrary. For λ < ν0 < ν we have

|P−Pn|b,L,ν = sup
z∈T b,L

|P (z)(1−ϕ(z/n))|e−ω(νx) ≤ |P |b,L,ν0 sup
z∈T b,L

|1−ϕ(z/n)|e−(ω(νx)−ω(ν0x)).
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This shows the lemma because ω(νt) − ω(ν0t) → ∞, as t → ∞, and ϕ(z/n) → 1, as
n→∞, uniformly on compact subsets of TR. �

Proposition 5.15. Let 0 < h < R and let ω satisfy (ε)0 and (δ). The sequence

0 −→ PR{ω} −→ O
h,R
{ω}

bv−−→ (Ah{ω})′ −→ 0

is topologically exact. Moreover, for every bounded set B ⊂ (Ah{ω})′ there is a bounded

set A ⊂ Oh,R{ω} such that bv(A) = B.

Proof. In view of the open mapping theorem it suffices to show that the sequence
is algebraically exact. Corollary 5.5 implies PR{ω} = ker bv. We now show that the
boundary value mapping is surjective. By Lemma 2.3 we may assume that ω satisfies
(ζ). Let f ∈ (Ah{ω})′ and define

Xn = {F ∈ Oh+(1/n),R,1/n
{ω} : bv(F ) = f on U(ω)(C)}, n ≥ 1.

By Corollary 5.4 Xn is a non-empty closed subspace of Oh+(1/n),R,1/n
{ω} and therefore a

complete metrizable topological space (with respect to the relative topology). Consider
the projective spectrum (Xn)n∈Z+ (where the linking mappings are just the inclusion
mappings) and let X be its projective limit. It suffices to show that X is non-empty,
which would be implied by Lemma 5.8 if we verify that Xn+1 is dense in Xn. Since,
by Corollary 5.5, every F ∈ Xn can be written as F = G + P where G ∈ Xn+1 and

P ∈ Oh+(1/n),R,1/n
{ω} ∩PR,4H

4/n
{ω} , the density of Xn+1 in Xn follows from Lemma 5.14. The

second part follows from the general fact that for an exact sequence of Fréchet spaces

0 −→ E −→ F
T−→ G −→ 0,

with E an (FS)-space, it holds that every bounded set B ⊂ G can be written as
T (A) = B for some bounded set A ⊂ F [27, Lemma 26.13]. �

We now construct global analytic representations. Set

Oh{ω} = lim←−
R→∞

Oh,R{ω}, O{ω} = lim←−
h→0+

Oh{ω}, P{ω} = lim←−
R→∞

PR{ω}.

Note that all of the above spaces are (FS)-spaces if ω satisfies (δ), as follows from
Lemma 5.1.

Proposition 5.16. Let ω be a weight function satisfying (ε)0 and (δ). The sequence

0 −→ P{ω} −→ Oh{ω}
bv−−→ (Ah{ω})′ −→ 0

is topologically exact. Moreover, for every bounded set B ⊂ (Ah{ω})′ there is a bounded

set A ⊂ Oh{ω} such that bv(A) = B.

Proof. Set Xn = Ph+n
{ω} and Yn = Oh,h+n

{ω} for n ≥ 1. Consider the following projective

sequence of short sequences
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0 X1 Y1 (Ahω)′ 0

0 X2 Y2 (Ahω)′ 0

...
...

...

bv

bv

By Proposition 5.15 every horizontal line is a topologically exact sequence. Moreover,
by Lemma 5.11, Xn+1 is dense in Xn for all n ≥ 1. Hence, the Mittag-Leffler lemma
[21, Lemma 1.3] yields the topological exactness of the sequence

0 −→ lim←−
n

Xn = P{ω} −→ lim←−
n

Yn = Oh{ω}
bv−−→ (Ah{ω})′ −→ 0.

The second statement follows from [27, Lemma 26.13] (cf. the end of the proof of
Proposition 5.15). �

We then have,

Theorem 5.17. Let ω be a weight function satisfying (ε)0 and (δ). The sequence

0 −→ P{ω} −→ O{ω}
bv−−→ A′{ω}(R) −→ 0

is topologically exact. Moreover, for every bounded set B ⊂ A′{ω}(R) there is a bounded

set A ⊂ O{ω} such that bv(A) = B.

Proof. We now set Yn = O1/n
{ω} and Zn = (A1/n

{ω})
′ for n ≥ 1. Consider the projective

sequence of short sequences

0 P{ω} Y1 Z1 0

0 P{ω} Y2 Z2 0

...
...

...

bv

bv

By Proposition 5.16 every horizontal line is a topologically exact sequence. Hence, the
Mittag-Leffler lemma [21, Lemma 1.3] yields the topologically exact sequence

0 −→ P{ω} −→ lim←−
n

Yn = O{ω}
bv−−→ lim←−

n

Zn = A′{ω}(R) −→ 0.
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For the second statement, we apply again [27, Lemma 26.13]. �

6. Support

Silva introduced in [38] a useful notion of real support for ultrahyperfunctions. We
extend such considerations to ultrahyperfunctions and hyperfunctions of fast growth
via the analytic continuation properties of their analytic representations. We will
use these ideas to establish a support separation theorem, which in particular gives
that every (ultra)hyperfunction of fast growth can be written as the sum of two (ul-
tra)hyperfunctions of fast growth having support in the positive and negative half-axis,
respectively. Based upon this result, we shall study in Section 8 analytic representa-
tions of ultradistributions of class ω of exponential type via Laplace transforms.

6.1. Real support of ultrahyperfunctions of (ω)-type. Let R = R ∪ {−∞,∞}
be the extended real line endowed with its usual topology (two-point compactification
of R). For 0 < b < R and A ⊆ R we set TR(A) = (A ∩ R) + i(−R,R) and T b,R(A) =
T b,R ∪TR(A). Let ω be a weight function. Given K b R a proper closed set with non-
empty interior we denote by Ob,Rω (K) the (B)-space of functions F ∈ O(T b,R(intK))
that satisfy

|F |b,Rω,K := sup{|F (z)|e−ω(x) : z ∈ T b,R(intK)} <∞.

For an open subset Ω of R, we then define

Oh,Rω (Ω) = lim←−
KbΩ

lim←−
b→h+

lim←−
L→R−

Ob,Lω (K).

We also write Ob,Rωλ (K) = Ob,R,λω (K), Oh,Rωλ (Ω) = Oh,R,λω (Ω), and

|F |b,Rωλ,K = |F |b,R,λω,K = |F |b,R,λK , F ∈ Ob,R,λω (K).

Furthermore, we set

Oh,R(ω) (Ω) =
⋃
λ>0

Oh,R,λω (Ω), O(ω)(Ω + iR) =
⋃
λ,h>0

⋂
R>h

Oh,R,λω (Ω).

Suppose that ω satisfies (δ) and (ε)0. Let f ∈ U ′(ω)(C) and Ω ⊆ R be open. We say

that f vanishes on Ω if there is F ∈ O(ω)(Ω + iR) such that bv(F ) = f . Theorem
5.13 implies that in such a case this property holds for all analytic representations of
f (in O(ω)). Moreover, the proof of Proposition 5.12 shows that for f to vanish on Ω

it suffices that there is F ∈ Oh,R(ω) (Ω), for some 0 < h < R, such that bv(F ) = f .

We define the real support of f ∈ U ′(ω)(C), denoted by suppR f , as the complement

of the largest open subset of R on which f vanishes. Given a closed subset K ⊆ R, we
write

U ′(ω)[K + iR] = {f ∈ U ′(ω)(C) : suppR f ⊆ K},
the subspace of ultrahyperfunctions of (ω)-type with real support in K. When I is a

closed interval of R, f ∈ U ′(ω)[I + iR], and F ∈ Oh,R(ω) (R\I) is such that bv(F ) = f ,
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Cauchy’s integral theorem yields

〈f, ϕ〉 = −
∫

Γb(J)

F (z)ϕ(z)dz, ϕ ∈ U(ω)(C),

where h < b < R, J an interval in R such that I b J , and Γb(J) the boundary of
T b(J). More generally, if K is a proper closed subset of R and J1, J2, . . . , Jn is a finite
covering of K by open intervals of the extended real line such that their finite end
points do not belong to K, and f = bv(F ) ∈ U ′(ω)[K + iR] with F ∈ Oh,R(ω) (R\K), we

have the representation

(6.1) 〈f, ϕ〉 = −
(∫

Γb(J1)

+

∫
Γb(J2)

+ · · ·+
∫

Γb(Jn)

)
F (z)ϕ(z)dz,

for each ϕ ∈ U(ω)(C).
The space U ′(ω)[K + iR] consists of analytic functionals if K is a compact subset of

R. Indeed, if S ⊆ C is a closed set, we write

O[S] = lim−→
SbV

O(V ).

The Silva-Köthe-Grothendieck theorem [30] now yields

U ′(ω)[K + iR] =
⋃
R>0

O′[K + i[−R,R]] = O′[K + iR],

which is in fact a result due to Silva [38].
Our next goal is to show a support separation theorem for U ′(ω)(C). For a, b ∈ R, we

employ the special notations

U ′(ω),a+ = U ′(ω)[[a,∞] + iR], U ′(ω),b− = U ′(ω)[[−∞, b] + iR].

Theorem 6.1. Let −∞ < a ≤ b < ∞ and let ω be a weight function satisfying (δ)
and (ε)0. The sequence

0 −→ U ′(ω)[[a, b] + iR] −→ U ′(ω),a+ ⊕ U ′(ω),b−
λ−−→ U ′(ω)(C) −→ 0

is exact, where λ((f1, f2)) = f1 − f2.

We need some extra notions to prove Theorem 6.1. Let Ω ⊆ R be open and define
Ahω(Ω) as the (B)-space of analytic functions ϕ ∈ O(T h(Ω)) such that

‖ϕ‖hω,Ω := sup
z∈Th(Ω)

|ϕ(z)|eω(x) <∞.

Set Ahωλ(Ω) = Ah,λω (Ω) and

‖ϕ‖hωλ,Ω = ‖ϕ‖h,λω,Ω = ‖ϕ‖h,λΩ , ϕ ∈ Ah,λω (Ω).

We have the following refinement of Proposition 5.2.
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Proposition 6.2. Let 0 < k < b < h < R, let U b V b Ω be open subsets of R,
and let ω, σ, and κ be three weight functions satisfying (5.1) and (5.2). Furthermore,
suppose there is P ∈ O(TR) satisfying

C1e
ω(x) ≤ |P (z)| ≤ C2e

σ(x), z ∈ TR,
for some C1, C2 > 0. Then, for every f ∈ (Akω(U))′ there is F ∈ Ob,Rσ (R\V ) such that
bv(F ) = f on Ahκ(Ω).

In view of Proposition 3.2, we have the following corollary.

Corollary 6.3. Let 0 < k < b < h < R, let U b V b Ω be open subsets of R, and
let ω be a weight function satisfying (δ) and (ε)0. For every f ∈ (Ak,λω (U))′ there is

F ∈ Ob,R,2H2λ
ω (R\V ) such that bv(F ) = f on Ah,2H3λ

ω (Ω).

The proof of Theorem 6.1 is based on the following functional analytic method for
checking the surjectivity of linear continuous mappings.

Lemma 6.4. Let E1, E2, and E be semi-reflexive (DF )-spaces and let ρj : E → Ej,
j = 1, 2, be continuous linear mappings. Then,

ι : E ′1 × E ′2 → E ′ : (x′1, x
′
2)→ ρt1(x′1) + ρt2(x′2)

is surjective if and only if ρ : E → E1 × E2 : x → (ρ1(x), ρ2(x)) is injective and has
closed range.

Proof. Since E1, E2, and E are semi-reflexive we may identify the transpose of ι with
ρ. A continuous linear mapping between two Fréchet spaces is surjective if and only if
its transpose is injective and has weakly closed range [41, Thm. 37.3]. The result now
follows from the fact that the closed convex sets of a Hausdorff locally convex space
are the same for all topologies compatible with the dual pairing. �

Proof of Theorem 6.1. Theorem 5.13 implies that

U ′(ω)[[a, b] + iR] = U ′(ω),a+ ∩ U ′(ω),b−.

It remains to show that λ is surjective. By Lemma 2.3 we may assume that ω satisfies
(ζ). Let f ∈ U ′(ω)(C), we show that there are f1 ∈ U ′(ω),a+ and f2 ∈ U ′(ω),b− such that

f = f1 + f2. Choose h, λ > 0 such that f can be extended to an element of (Ah,λω )′ (we
also write f for this extension). Define

Xh,λ = lim−→
µ→λ+

lim−→
k→h+

Ak,µω ,

and

Xh,λ
a+ = lim−→

µ→λ+
lim−→
k→h+

lim−→
ε→0+

Ak,µω ((a− ε,∞]), Xh,λ
b− = lim−→

µ→λ+
lim−→
k→h+

lim−→
ε→0+

Ak,µω ([−∞, b+ ε)).

Condition (ζ) implies that the three above spaces are (DFS)-spaces. Observe that

f ∈ (Xh,λ)′. Let g ∈ (Xh,λ
a+ )′ and choose R > h. By Corollary 6.3, we have that for

every ε > 0 and k > h there is Gε,k = G ∈ Ok,R,4H2λ
ω ([−∞, a−ε]) such that bv(G) = g.

By a similar Mittag-Leffler procedure as in the proof of Proposition 5.12, one can now
show that there is G ∈ Oh,R,8H7λ

ω ([−∞, a)) such that bv(G) = g. Likewise, it holds that
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for every g ∈ (Xh,λ
b− )′ there is G ∈ Oh,R,8H7λ

ω ((b,∞]) such that bv(G) = g. Therefore, it
suffices to show that the mapping

(Xh,λ
a+ )′ × (Xh,λ

b− )′ → (Xh,λ)′ : (f1, f2)→ f1 + f2

is surjective; but the latter is a consequence of Lemma 6.4. �

6.2. Support of hyperfunctions of {ω}-type. We now define the support of hy-
perfunctions of {ω}-type. Given a compact subset K ⊂ R, we write A[K] = O[K] for
the space of germs of analytic functions on K, so that A′[K] is the space of analytic
functionals on K.

Let ω be a weight function satisfying (δ) and (ε)0. Given a proper open subset Ω of
R, we define

O{ω}(Ω) = lim←−
λ→0+

lim←−
h→0+

lim←−
R→∞

Oh,R,λω (Ω),

an (FS)-space. We say that f ∈ A′{ω}(R) vanishes on Ω if there is F ∈ O{ω}(Ω) such

that bv(F ) = f . In view of Theorem 5.17, this definition is independent of the chosen
analytic representation. We can therefore define the support of f , denoted by supp f ,
as the complement of the largest open set where f vanishes.

Given a closed subset K in R, we set

A′{ω}[K] = {f ∈ A′{ω}(R) : supp f ⊆ K},

and for a, b ∈ R, we write

A′{ω},a+ = A′{ω}[[a,∞]], A′{ω},b− = A′{ω}[[−∞, b]].

If f = bv(F ) ∈ A′{ω}[K] with F ∈ O{ω}(R\K) and J1, J2, . . . , Jn is a finite covering of

K by open intervals of the extended real line (such that their finite end points do not
belong to K), Cauchy’s integral theorem also gives the contour integral representation
(6.1), where b > 0 depends on ϕ (concretely, for ϕ ∈ Ab{ω}). In particular, for a compact
set in K in R,

A′{ω}[K] = A′[K],

as follows from the Silva-Köthe-Grothendieck theorem. In case K is unbounded, we
can also represent A′{ω}[K] as a dual space. We define the (DFS)-space

A{ω}[K] = lim−→
λ→0+

lim−→
h→0+

lim−→
KbΩ

Ah,λω (Ω).

Corollary 6.3 and the same method as in Section 5.3 yield:

Theorem 6.5. Let K be a closed subset of R and let ω be a weight function satisfying
(δ) and (ε)0. Then, (A{ω}[K])′ = A′{ω}[K]. Furthermore, the sequence

0 −→ P{ω} −→ O{ω}(R \K)
bv−−−→ (A{ω}[K])′ −→ 0

is topologically exact.

We also have the ensuing support separation theorem.
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Theorem 6.6. Let −∞ < a ≤ b < ∞ and let ω be a weight function satisfying (δ)
and (ε)0. The sequence

0 −→ A′{ω}[[a, b]] −→ A′{ω},a+ ⊕A′{ω},b−
λ−−→ A′{ω}(R) −→ 0

is topologically exact, where λ((f1, f2)) = f1 − f2.

Proof. Theorem 5.17 implies that

A′{ω}[[a, b]] = A′{ω},a+ ∩ A′{ω},b−.
The surjectivity of λ follows from Lemma 6.4 and Theorem 6.5. �

7. Spaces of (ultra)hyperfunctions defined via subadditive weight
functions

In this section we briefly indicate how the results from Sections 4–6 can be extended
to include spaces defined in terms of subadditive weight functions. Since the theory
and methods are completely analogous to those already developed, we shall omit all
proofs. These ideas will be applied in Section 8 to the study of analytic representations
of ultradistributions of exponential type and Laplace transforms.

7.1. Subadditive weight functions. We collect here a number of properties of the
weight functions that we shall employ in the rest of the paper. Let ω be a weight
function (not necessarily satisfying (2.1)) such that ω(0) = 0 (this will be assumed
from now on). We are interested in the following conditions [1]:

(α) ω(t1 + t2) ≤ ω(t1) + ω(t2), t1, t2 ≥ 0,
(γ) ω(t) ≥ c log(1 + t) + a, for some a ∈ R and c > 0.

In the sequel we shall refer to condition (2.1) as (γ)0. We set λω(t) = λω(t). Let σ
be another weight function, ω and σ are said to be ∗-equivalent, denoted by ω � σ, if
ω(t) = O(σ(t)) and σ(t) = O(ω(t)) (as t→∞), or equivalently,

λ1ω(t)− C1 ≤ σ(t) ≤ λ2ω(t) + C2, t ≥ 0,

for some λ1, λ2, C1, C2 > 0. If ω and σ both satisfy (α) and (δ), then ω � σ if and only
if ω ∼ σ. We point out that subadditivity, that is, condition (α), always yields [23,
p. 240] the existence of the limit

lim
t→∞

ω(t)

t
.

Consequently, we either have ω(t) � t or ω(t) = o(t).
We shall need the following result of Petzsche and Vogt which allows one to replace

a weight function by one enjoying better regularity properties.

Lemma 7.1. [34, Prop. 1.2] Let ω be a weight function satisfying (α) and (γ). Then,
there is another weight function σ with ω � σ such that either σ(t) = t or σ satisfies
the following conditions:

(i) σ ∈ C∞(0,∞) and limt→0+ σ
′(t) =∞,

(ii) σ is strictly concave,
(iii) lim

t→∞
σ′(t) = 0,
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(iv) lim inf
t→∞

|σ′′(t)|t2 > 0.

If ω satisfies (γ)0, then condition (iv) may be replaced by the stronger property

(iv)′ lim
t→∞
|σ′′(t)|t2 =∞.

The Young conjugate of ω is defined as

ω∗(s) = sup
t≥0

(ω(t)− ts), s > 0,

and is a convex non-increasing function. We set ω∗(s) = ω∗(|s|) for s ∈ R, s 6= 0. If
ω(t) = o(t), then ω∗(s) <∞ for all s > 0. Clearly, we have

(λω)∗(s) = λω∗
( s
λ

)
, s > 0.

7.2. Test function spaces. Given a weight function ω, we set Ah
λω

= Ah,λω and

‖ϕ‖h
λω

= ‖ϕ‖h,λω , ϕ ∈ Ah,λω .

Our basic spaces of entire and analytic functions are now defined as

U(ω)(C) = lim←−
λ→∞

lim←−
h→∞
Ah,λω , A{ω}(R) = lim−→

λ→0+

lim−→
h→0+

Ah,λω .

If ω(t) → ∞, as t → ∞, then Lemma 4.1 yields that U(ω)(C) is an (FS)-space while
A{ω}(R) is a (DFS)-space. Let σ be another weight such that ω � σ, then U(ω)(C) =
U(σ)(C) and A{ω}(R) = A{σ}(R), topologically. If ω satisfies both conditions (α) and
(δ), then U(ω)(C) = U(ω)(C) and A{ω}(R) = A{ω}(R), topologically. The elements of
the dual spaces U ′(ω)(C) and A′{ω}(R) are called ultrahyperfunctions of (ω)-type and

hyperfunctions of {ω}-type, respectively. Observe that U(log(1+t))(C) = U(C) is the
test function space for the Silva space of tempered ultrahyperfunctions [18, 16, 38]
(called tempered ultradistributions there). If ω satisfies (α) and (γ) ((γ)0), we have

the continuous and dense inclusions S(p!)
(p!) = U(t)(C) = U(t)(C) → U(ω)(C) and S{p!}{p!} =

A{t}(R) = A{t}(R)→ A{ω}(R) (density follows from Theorem 7.7 below).
We mention that if a (log-convex) weight sequence Mp satisfies (M.2) and

(M.4)
Mp

p!
⊆
(
Mp

p!

)c
,

Petzsche and Vogt have shown [34, Sect. 5] that there is a weight function ω satisfying
(α), (γ)0, and ω � M ; under these circumstances, we thus have U(Mp)(C) = U(ω)(C)
and A{Mp}(R) = A{ω}(R), topologically. Furthermore, they proved, under (M.2), that
(M.4) is equivalent to the so-called Rudin condition:

(M.4)′′ max
q≤p

(
Mq

q!

) 1
q

≤ A

(
Mp

p!

) 1
p

, p ∈ N, for some A > 0.

Observe that strong non-quasianalyticity (i.e., Komatsu’s condition (M.3) [21]) auto-
matically yields (M.4), as shown by Petzsche [35, Prop. 1.1].

Theorem 7.2. Let ω be a weight function satisfying (γ)0. Then, U(ω)(C) (A{ω}(R))
is non-trivial if and only if ω satisfies (ε)0 ((ε)∞).
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Proof. The conditions are necessary by Proposition 4.2. In the Roumieu case sufficiency
is a consequence of Proposition 3.2. For the Beurling case we notice that, by Lemma
2.4, we may assume that ω satisfies (δ). Hence, U(ω)(C) ⊆ U(ω)(C) and the result
follows from Theorem 5.9. �

Remark 7.3. In [26] Langenbruch studied the space A{ω}(R) for weight functions ω
satisfying (γ)0 and

(7.1) lim sup
t→∞

ω(t+ 1)

ω(t)
<∞.

He showed that the space A{ω}(R) is (tamely) isomorphic to the strong dual of a
finite type power series space [26, Thm. 4.4] and thus, in particular, is non-trivial.
Under the extra assumption (7.1), Theorem 7.2 in the Roumieu case is therefore due
to Langenbruch. We mention that one can readily show that condition (7.1) implies
(ε)∞ (without passing through Theorem 7.2), whereas there exist weight functions
satisfying (ε)∞ and (γ)0 but not (7.1).

Finally, let us discuss the Fourier transform on our test function spaces. We set
Kh1,λω(R) = Kh,λ1,ω(R) and

ρh
λω

(ψ) = ρh,λω (ψ), ψ ∈ Kh,λ1,ω(R);

define then

K1,(ω)(R) = lim←−
λ→∞

lim←−
h→∞
Kh,λ1,ω(R), K1,{ω}(R) = lim−→

λ→0+

lim−→
h→0+

Kh,λ1,ω(R).

In analogy to the terminology from Section 4, we call K′1,(ω)(R) and K′1,{ω}(R) the

spaces of ultradistributions of class (ω) of exponential type and ultradistributions of
class {ω} of infra-exponential type, respectively. If ω satisfies (α), (γ), and is non-
quasianalytic, then we have the continuous and dense inclusionsD(ω)(R) ↪→ K1,(ω)(R) ↪→
K′1,(ω)(R) ↪→ D′(ω)(R) (see [1] for the definition of the Beurling-Björck space D(ω)(R)).

In particular, K1,(log(1+t))(R) = K1(R) is the space of exponentially rapidly decreasing
smooth functions [18] and we have that D(R) ↪→ K1(R) ↪→ K′1(R) ↪→ D′(R).

Proposition 7.4. Let ω be a weight function satisfying (α) and (γ) ((γ)0). The
Fourier transform is a topological isomorphism from U(ω)(C) (A{ω}(R)) onto K1,(ω)(R)
(K1,{ω}(R)).

Proof. This can be shown in the same way as Proposition 4.4. �

The Fourier transform from K′1,(ω)(R) (K′1,{ω}(R)) onto U ′(ω)(C) (A′{ω}(R)) is there-
fore well defined via duality.

7.3. Boundary values. Given 0 < b < R, we set Ob,R
λω

= Ob,R,λω and PR
λω

= PR,λω .
Furthermore, we define

O(ω) =
⋃
λ,h>0

⋂
R>h

Oh,R,λω , P(ω) =
⋃
λ>0

⋂
R>0

PR,λω ,
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and

O{ω} = lim←−
λ→0+

lim←−
h→0+

lim←−
R→∞

Oh,R,λω , P{ω} = lim←−
λ→0+

lim←−
R→∞

PR,λω .

If ω(t)→∞, as t→∞, Lemma 5.1 implies that O{ω} and P{ω} are (FS)-spaces. The
boundary value mappings

bv : O(ω) → U ′(ω)(C), bv : O{ω} → A′{ω}(R)

are well defined. In the Roumieu case, this mapping is continuous. Taking Remark 3.3
into account, Propositions 5.2 and 5.3 yield the following corollaries.

Corollary 7.5. Let 0 < k < b < h < R and let ω be a weight function satisfying (α).

(i) If ω satisfies (γ), then for every f ∈ (Ak,λω )′ there is F ∈ Ob,R,4λ+2c−1

ω such that

bv(F ) = f on Ah,4λ+4c−1

ω .
(ii) If ω satisfies (γ)0, then for every f ∈ (Ak,λω )′ there is F ∈ Ob,R,4λω such that

bv(F ) = f on Ah,8λω .

Corollary 7.6. Let 0 < b < h < R and let ω be a weight function satisfying (α).

(i) If ω satisfies (γ) and F ∈ Ob,R,λω is such that bv(F ) = 0 on Ah,λ+2c−1

ω , then

F ∈ PR,4λ+8c−1

ω .
(ii) If ω satisfies (γ)0 and F ∈ Ob,R,λω is such that bv(F ) = 0 on Ah,2λω , then F ∈
PR,8λω .

Using exactly the same technique as in Sections 5.2 and 5.3 and applying Corollaries
7.5 and 7.6 (instead of Corollaries 5.4 and 5.5), one can show the ensuing theorem. We
leave the details to the reader.

Theorem 7.7. Let ω be a weight function satisfying (α).

(i) If ω satisfies (γ), then the sequence

0 −→ P(ω) −→ O(ω)
bv−−→ U ′(ω)(C) −→ 0

is exact.
(ii) If ω satisfies (γ)0, then the sequence

0 −→ P{ω} −→ O{ω}
bv−−→ A′{ω}(R) −→ 0

is topologically exact. Moreover, for every bounded set B ⊂ A′{ω}(R) there is a

bounded set A ⊂ O{ω} such that bv(A) = B.

Let us briefly discuss the notion of support in this new setting. Define Oh,R
λω

(Ω) =

Oh,R,λω (Ω), and

O(ω)(Ω + iR) =
⋃
λ,h>0

⋂
R>h

Oh,R,λω (Ω), O{ω}(Ω) = lim←−
λ→0+

lim←−
h→0+

lim←−
R→∞

Oh,R,λω (Ω).

We suppose that ω satisfies (α) and (γ) ((γ)0). Vanishing of f ∈ U ′(ω)(C) (f ∈ A′{ω}(R))

on an open set Ω ⊆ R means that there is F ∈ O(ω)(Ω + iR) (F ∈ O{ω}(Ω)) such that
bv(F ) = f . The definition of suppR f (supp f) should now be clear.
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We shall adopt the same kind of notations as in Section 6 for the rest of the spaces
defined there by simply replacing ω by ω. Furthermore, all results from that section
remain valid in our new context; in fact, due to Remark 3.3 and the general formu-
lation of Proposition 6.2, same proofs apply here. In particular, we state the support
separation theorem for future reference.

Theorem 7.8. Let −∞ < a ≤ b <∞ and let ω be a weight function satisfying (α).

(i) If ω satisfies (γ), then the sequence

0 −→ U ′(ω)[[a, b] + iR] −→ U ′(ω),a+ ⊕ U ′(ω),b−
λ−−→ U ′(ω)(C) −→ 0

is exact, where λ((f1, f2)) = f1 − f2.
(ii) If ω satisfies (γ)0, then the sequence

0 −→ A′{ω}[[a, b]] −→ A′{ω},a+ ⊕A′{ω},b−
λ−−→ A′{ω}(R) −→ 0

is topologically exact.

8. Boundary values of holomorphic functions in spaces of
ultradistributions of exponential type

This last section is devoted to boundary values of holomorphic functions in the
spaces K′1,(ω)(R) and K′1,{ω}(R). Our main result is a representation theorem for these

two spaces as quotients of certain spaces of analytic functions (Theorem 8.4). Our
arguments rely on the study of the Laplace transform of (ultra)hyperfunctions of fast
growth supported in a proper interval of R and ideas from the theory of almost analytic
extensions [4, 34].

Let us fix some notation. We shall write for complex variables ζ = ξ+ iη, z = x+ iy,
and

∂ =
∂

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

The following condition for weight functions plays a role below:

(NA) ω(t) = o(t).

8.1. Laplace transforms. We discuss here how to define the (Fourier-)Laplace trans-
form of ultrahyperfunctions of (ω)-type and hyperfunctions of {ω}-type with support
in a proper closed interval I of R. We assume that ω satisfies (α) and (γ).

Given f ∈ U ′(ω)[I + iR], we define its Laplace transform as

(8.1) L{f ; ζ} = − 1

2π

∫
Γb(J)

F (z)eizζdz,

for ζ ∈ C in a suitable domain to be specified below and where F ∈ Oh,R(ω)(R\I) is an

analytic representation of f , that is, bv(F ) = f , h < b < R, and J an interval in R
such that I b J . The definition is clearly independent of the chosen representative of
F . In the rest of our discussion, we distinguish three cases.
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Case 1: a bounded interval I = [−a, a], 0 ≤ a < ∞. In this case (8.1) is defined
for all ζ ∈ C. In fact, L{f ; ζ} is an entire function that satisfies the estimate: there is
h > 0 such that for every ε > 0

(8.2) sup
ζ∈C
|L{f ; ζ}|e−(a+ε)|η|−(h+ε)|ξ| <∞.

Conversely, it is well known [30, Thm. 2.5.2] that if an entire function G satisfies the
bound (8.2), then it is the Laplace transform of an analytic functional; more precisely,
there is f ∈ O′[I + i[−h, h]] ⊂ U ′(ω)[I + iR] such that G(ζ) = L{f ; ζ}. If ω satisfies

(γ)0 and f ∈ A′{ω}[I] = A′[I], then L{f ; ζ} satisfies (8.2) for every h, ε > 0, and the

converse holds true: if an entire function G satisfies (8.2) for every h, ε > 0, then there
is f ∈ A′[I] such that G(ζ) = L{f ; ζ}.

Case 2: a left-bounded interval I = [−a,∞], 0 ≤ a < ∞. As was pointed out in
Subsection 7.1, either ω satisfies (NA) or ω(t) � t.

First assume that ω satisfies (NA). Then, L{f ; ζ} is analytic on the upper half-plane
Im ζ = η > 0 and satisfies the bound: there are λ, h > 0 such that for every ε > 0

(8.3) sup
η>0
|L{f ; ζ}|e−(a+ε)η−(h+ε)|ξ|−λω∗(η/λ) <∞.

Moreover, the Laplace transform has as boundary value on R the inverse Fourier trans-
form of f , namely,

lim
η→0+

L{f ; ·+ iη} = g, in K′1,(ω)(R),

where f = ĝ. If ω satisfies (γ)0 and f ∈ A′{ω}[I], then L{f ; ζ} satisfies (8.3) for every
λ, h, ε > 0 and

lim
η→0+

L{f ; ·+ iη} = g, in K′1,{ω}(R).

Next, assume ω(t) � t, so that K1,(ω)(R) = U(t)(C) and K1,{ω}(R) = A{t}(R) are
invariant under the Fourier transform. In the Beurling case there are λ, h > 0 such
that L{f ; ζ} is a holomorphic function on the half-plane {ζ = ξ + iη : η > λ} and
satisfies

(8.4) sup
η>λ
|L{f ; ζ}|e−(a+ε)η−(h+ε)|ξ| <∞.

If we set

G(ζ) =

 L{f ; ζ}, η > λ,

0, η < −λ,
then bv(G) = g in U ′(t)(C) (in the sense of Section 7.3), where again f = ĝ. In the

Roumieu case L{f ; ζ} is analytic on the upper half-plane and satisfies (8.4) for every
λ, h, ε > 0. Furthermore, bv(G) = g in A′{t}(R) where now

G(ζ) =

 L{f ; ζ}, η > 0,

0, η < 0.

Case 3: a right-bounded interval I = [−∞, a], 0 ≤ a < ∞. Here the treatment is
completely analogous to case 2 but with the upper half-planes replaced by lower ones.
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8.2. Analytic representations of ultradistributions of exponential type. Our
next aim is to study boundary values of holomorphic function in the spaces K′1,(ω)(R)

and K′1,{ω}(R). For it, we need the following modified version of a construction of

almost analytic extensions by Petzsche and Vogt [34, Prop. 2.2].

Lemma 8.1. Let 0 < k < h and let ω be a weight function satisfying the conditions
(i)-(iv) of Lemma 7.1, and let σ be another weight function such that

(8.5)

∫ ∞
0

teω(t)−σ(t)dt <∞.

Then, for every ϕ ∈ Ahσ there is Ψ ∈ C∞(C) with Ψ|R = ϕ̂ such that

(8.6) |∂Ψ(ζ)| ≤ ‖ϕ‖hωe−k|ξ||(ω∗)′′(η)|e−ω∗(η), ζ ∈ C\R,
and

(8.7) |Ψ(ζ)| ≤ C‖ϕ‖hσe−k|ξ|, ζ ∈ C,

where

C = 2

∫ ∞
0

eω(t)−σ(t)dt.

Proof. The assumptions on ω imply that ω′ is a smooth bijection on (0,∞). Set
H = (ω′)−1 ∈ C∞(0,∞) and observe that

ω∗(s) = ω(H(s))− sH(s), s > 0.

Differentiation shows that

(ω∗)′(s) = −H(s), s > 0.

We set H(s) = H(|s|) for s ∈ R, s 6= 0. Furthermore, since ω is concave and increasing,
we have that

(8.8) tω′(t) ≤ ω(t), t ≥ 0.

The rest of the proof is based on the following representation of the Fourier transform
of ϕ [18, p. 167]

ϕ̂(ξ) =



∫ ∞
−∞

ϕ(x+ ik)e−i(x+ik)ξdx, ξ ≤ 0,

∫ ∞
−∞

ϕ(x− ik)e−i(x−ik)ξdx, ξ ≥ 0.

For ζ ∈ C\R we define

Ψ(ζ) =



∫ H(η)

−H(η)

ϕ(x+ ik)e−i(x+ik)ζdx, ξ ≤ 0,

∫ H(η)

−H(η)

ϕ(x− ik)e−i(x−ik)ζdx, ξ ≥ 0,
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and Ψ(ξ) = ϕ̂(ξ) for ξ ∈ R. Clearly, Ψ ∈ C∞(C\R). Employing (8.5) and (8.8) one can
readily prove that Ψ ∈ C1(C) with ∂Ψ(ξ) = 0, ξ ∈ R, and thus Ψ ∈ C∞(C). We now
show (8.6). Let ζ ∈ C\R and assume ξ ≤ 0, the case ξ ≥ 0 can be treated similarly.
Using the remarks given at the beginning of the proof, we have

|∂Ψ(ζ)| ≤ 1

2
|H ′(η)(ϕ(H(η) + ik)e−i(H(η)+ik)ζ + ϕ(−H(η) + ik)e−i(−H(η)+ik)ζ)|

≤ ‖ϕ‖hωe−k|ξ||H ′(η)|e−ω(H(η))+H(η)|η|

= ‖ϕ‖hωe−k|ξ||(ω∗)′′(η)|e−ω∗(η).

It remains to establish (8.7). By continuity, it suffices to show this for ζ ∈ C\R. We
assume that ξ ≤ 0, the case ξ ≥ 0 is similar. Then,

|Ψ(ζ)| ≤ 2‖ϕ‖hσe−k|ξ|
∫ H(η)

0

e−σ(x)+x|η|dx.

Notice that for 0 < x < H(η) we have ω′(x) > |η|. Therefore, applying (8.8), we obtain
that ∫ H(η)

0

e−σ(x)+x|η|dx ≤
∫ H(η)

0

e−σ(x)+xω′(x)dx ≤
∫ ∞

0

eω(x)−σ(x)dx,

which completes the proof. �

Corollary 8.2. Let ω be a weight function satisfying (α) and (NA).

(i) If ω satisfies (γ), then for every ψ ∈ K1,(ω)(R) and every λ, h > 0 there is
Ψ ∈ C∞(C) with Ψ|R = ψ satisfying the bounds

(8.9) sup
ζ∈C\R

|∂Ψ(ζ)|eh|ξ|+λω∗(η/λ) <∞, sup
ζ∈C
|Ψ(ζ)|eh|ξ| <∞.

(ii) If ω satisfies (γ)0, then for every ψ ∈ K1,{ω}(R) there are λ, h > 0 and Ψ ∈
C∞(C) with Ψ|R = ψ satisfying the inequalities (8.9).

Proof. We may assume that ω satisfies the conditions (i)-(iv) from Lemma 7.1 (condi-
tions (i)-(iv)′ in the Roumieu case). Petzsche and Vogt have shown [34, Lemma 2.3]
that there is ε > 0 such that

sup
s>0
|(ω∗)′′(s)|e−εω∗(s) <∞;

if ω additionally satisfies (iv)′, the latter inequality holds for every ε > 0. Therefore
the result follows by applying Lemma 8.1 to the weight µω, for a suitable µ > 0, and
ϕ = F−1(ψ). �

The next result gives a sufficient condition for the existence of boundary values of
analytic functions in the ultradistribution spaces of exponential type K′1,(ω)(R) and

K′1,{ω}(R).

Proposition 8.3. Let ω be a weight function satisfying (α) and (NA).
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(i) If ω satisfies (γ), then every G ∈ O(TR+ ) satisfying

(8.10) sup
ζ∈TR+

|G(ζ)|e−h|ξ|−λω∗(η/λ) <∞,

for some λ, h > 0, has boundary values in K′1,(ω)(R), that is, there is g ∈
K′1,(ω)(R), such that

g = lim
η→0+

G(·+ iη), in K′1,(ω)(R).

(ii) If ω satisfies (γ)0, then every G ∈ O(TR+ ) satisfying the inequality (8.10) for
every λ, h > 0, has boundary values in K′1,{ω}(R).

Proof. We only treat the Roumieu case, the Beurling case is completely analogous.
Due to the Banach-Steinhaus theorem and the fact that the space K1,{ω}(R) is Montel,
it suffices to show that

lim
η→0+

∫ ∞
−∞

G(ξ + iη)ψ(ξ)dξ

exists and is finite for every ψ ∈ K1,{ω}(R). By Corollary 8.2 there is Ψ ∈ C∞(C) with
Ψ|R = ψ satisfying the inequalities (8.9) for some λ, h > 0. Choose 0 < L < R and
fix 0 < η < R − L. Applying the Stokes theorem to the rectangle (−N,N) + i(0, L),

N > 0, and the function G̃(ξ + iv) = G(ξ + i(η + v))Ψ(ξ + iv) we obtain that∫ N

−N
G(ξ + iη)ψ(ξ)dξ =

∫ N

−N
G(ξ + i(η + L))Ψ(ξ + iL)dξ

−
∫ L

0

G(N + i(η + v))Ψ(N + iv)dv +

∫ L

0

G(−N + i(η + v))Ψ(−N + iv)dv

+ 2i

∫ N

−N

∫ L

0

G(ξ + i(η + v))∂Ψ(ξ + iv)dvdξ.

The second and third integral on the right hand side tend to zero, as N →∞. Hence,∫ ∞
−∞

G(ξ + iη)ψ(ξ)dξ =

∫ ∞
−∞

G(ξ + i(η + L))Ψ(ξ + iL)dξ

+ 2i

∫ ∞
−∞

∫ L

0

G(ξ + i(η + v))∂Ψ(ξ + iv)dvdξ.

By Lebesgue’s dominated convergence theorem, we obtain that

lim
η→0+

∫ ∞
−∞

G(ξ + iη)ψ(ξ)dξ =

∫ ∞
−∞

G(ξ + iL)Ψ(ξ + iL)dξ

+ 2i

∫ ∞
−∞

∫ L

0

G(ξ + iv)∂Ψ(ξ + iv)dvdξ.

�

We now have all necessary tools to express the spaces K′1,(ω)(R) and K′1,{ω}(R) as
quotients of spaces of analytic functions. Let a ≥ 0 and let ω be a weight function
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satisfying (α), (γ), and (NA). We introduce the space Oexp,h,a
ω,λ (C\R) consisting of all

G ∈ O(C\R) that satisfy

sup
ζ∈C\R

|G(ζ)|e−(a+ε)|η|−(h+ε)|ξ|−λω∗(η/λ) <∞,

for every ε > 0. We set

O(exp),a
(ω) (C\R) =

⋃
λ,h>0

Oexp,h,a
ω,λ (C\R), O{exp},a

{ω} (C\R) =
⋂
λ,h>0

Oexp,h,a
ω,λ (C\R).

We define the boundary value mapping as follows

bv : O(exp),a
(ω) (C\R)→ K′1,(ω)(R), G 7→ lim

η→0+
G(·+ iη)−G(· − iη)

Proposition 8.3 guarantees that bv is well defined. Moreover, if ω satisfies (γ)0, then

bv(O{exp},a
{ω} (C\R)) ⊆ K′1,{ω}(R). We also write Oexp,h,a(C) for the space of all entire

functions G ∈ O(C) that satisfy

sup
ζ∈C
|G(ζ)|e−(a+ε)|η|−(h+ε)|ξ| <∞,

for every ε > 0 and set

O(exp),a(C) =
⋃
h>0

Oexp,h,a(C), O{exp},a(C) =
⋂
h>0

Oexp,h,a(C).

Theorem 8.4. Let a ≥ 0 and let ω be a weight function satisfying (α) and (NA).

(i) If ω satisfies (γ), then the sequence

0 −→ O(exp),a(C) −→ O(exp),a
(ω) (C\R)

bv−−→ K′1,(ω)(R) −→ 0

is exact.
(ii) If ω satisfies (γ)0, then the sequence

0 −→ O{exp},a(C) −→ O{exp},a
{ω} (C\R)

bv−−→ K′1,{ω}(R) −→ 0

is exact.

Proof. We only give the proof in the Roumieu case, the Beurling case is similar. The
fact that ker bv = O{exp},a(C) follows from Theorem 5.17 (with ω(t) = t). So, we only
need to show that the boundary value mapping is surjective. Let g ∈ K′1,{ω}(R) and

set f = ĝ ∈ A′{ω}(R). By Theorem 7.8 there are f+ ∈ A′{ω},(−a)+ and f− ∈ A′{ω},a−
such that f = f+ − f−. Define

G(ζ) =

 L{f+; ζ}, η > 0,

L{f−; ζ}, η < 0.

From the discussion in Subsection 8.1 on the Laplace transform, it is clear that G ∈
O{exp},a

{ω} (C\R) and bv(G) = g. �
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As an application of Theorem 8.4, we characterize in a precise fashion those an-
alytic functions on the upper half-plane that are the Laplace transform of an (ul-
tra)hyperfunction of ω-type supported on a fixed half-axis. The following result is a
theorem of Paley-Wiener type.

Theorem 8.5. Let a ≥ 0, let ω be a weight function satisfying (α) and (NA), and
suppose that G is an analytic function on the upper half-plane.

(i) If ω satisfies (γ), then G satisfies the estimate

(8.11) sup
η>0
|G(ζ)|e−(a+ε)η−(h+ε)|ξ|−λω∗(η/λ) <∞,

for some h, λ > 0 and for every ε > 0 if and only if there is f ∈ U ′(ω),(−a)+ such

that G(ζ) = L{f ; ζ}.
(ii) If ω satisfies (γ)0, then G satisfies (8.11) for every h, λ, ε > 0 if and only if

there is f ∈ A′{ω},(−a)+ such that G(ζ) = L{f ; ζ}.

Proof. We only treat the Roumieu case, the Beurling case is analogous. It has al-
ready been pointed out in Subsection 8.1 that the Laplace transform of an element of
A{ω},(−a)+ satisfies the required bounds. Conversely, let G be an analytic function on
the upper half-plane satisfying (8.11) for every h, λ, ε > 0. By Proposition 8.3 there is
g ∈ K′1,{ω}(R) such that

g = lim
η→0+

G(·+ iη), in K′1,{ω}(R).

Let f = ĝ ∈ A′{ω}(R). By Theorem 7.8, there are f+ ∈ A′{ω},(−a)+ and f− ∈ A′{ω},a−
such that f = f+ − f−. Define

G̃(ζ) =

 L{f+; ζ}, η > 0,

L{f−; ζ}, η < 0.

Notice that G̃ ∈ O{exp},a
{ω} (C\R) and bv(G̃) = g. Hence, by Theorem 8.4, there is

H ∈ O{exp},a(C) such that G = G̃ + H on the upper half-plane. Since there is
h ∈ A′[[−a, a]] = A′{ω}[[−a, a]] such that H(ζ) = L{h; ζ} (Case 1 in Subsection 8.1),

we conclude that G(ζ) = L{f+ + h; ζ}. �

If ω satisfies (α) but not (NA), we must have ω(t) � t and thus K1,(ω)(R) = U(t)(C)
and K1,{ω}(R) = A{t}(R). In this case, the counterparts of Theorems 8.4 and 8.5 go
back to the work of Silva and Morimoto [29, 38]. For the sake of completeness, we end

this article by stating these theorems. Let a ≥ 0. We define Oexp,h,a(C\T λ) as the

space of all G ∈ O(C\T λ) such that

sup
ζ∈C\Tλ

|G(ζ)|e−(a+ε)|η|−(h+ε)|ξ| <∞,

for every ε > 0, and

O(exp),a =
⋃
λ,h>0

Oexp,h,a(C\T λ), O{exp},a(C\R) =
⋂
λ,h>0

Oexp,h,a(C\T λ).



HYPERFUNCTIONS AND ULTRAHYPERFUNCTIONS OF FAST GROWTH 37

The proofs of the ensuing two results go along the same lines as those of Theorems 8.4
and 8.5, we therefore choose to omit them.

Theorem 8.6. Let a ≥ 0. The sequences

0 −→ O(exp),a(C) −→ O(exp),a bv−−→ U ′(t)(C) −→ 0

and

0 −→ O{exp},a(C) −→ O{exp},a(C\R)
bv−−→ A′{t}(R) −→ 0

are exact (the boundary value operator being interpreted in the sense of Section 7.3).

Theorem 8.7. Let a ≥ 0.

(i) Suppose G is analytic on the half-plane {ζ = ξ + iη ∈ C : η > λ} for some
λ > 0, and satisfies

(8.12) sup
η>λ
|G(ζ)|e−(a+ε)|η|−(h+ε)|ξ| <∞,

for some h > 0 and every ε > 0, then there is f ∈ U ′(t),(−a)+ with G(ζ) =

L{f ; ζ}. Conversely, the Laplace transform L{f ; ζ} of any f ∈ U ′(t),(−a)+ is

analytic on some half-plane {ζ = ξ + iη ∈ C : η > λ}, λ > 0, and satisfies
(8.12) for some h > 0 and every ε > 0.

(ii) A function G analytic on the upper half-plane satisfies (8.12) for every h, λ, ε >
0 if and only if there is f ∈ A′{t},(−a)+ such that G(ζ) = L{f ; ζ}.
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