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Abstract—The prevalent use of multi-component, multi-tenant
models for building novel Software-as-a-Service (SaaS) applica-
tions has resulted in wide-spread research on automatic scaling
of the resultant complex application workflows. In this paper,
we propose a holistic solution to Automatic Workflow Scaling
under the combined presence of Streaming and Deadline-critical
workflows, called AWS-SD. To solve the AWS-SD problem, we
propose a framework BRAHMA, that learns workflow behavior
to build a knowledge-base and leverages this info to perform
intelligent automated scaling decisions. We propose and evaluate
different resource provisioning algorithms through CloudSim.
Our results on time-varying workloads show that the proposed
algorithms are effective and produce good cost-quality trade-offs
while preventing deadline violations. Empirically, the proposed
hybrid algorithm — combining learning and monitoring, is able to
restrict deadline violations to a small fraction (3-5%), while only
suffering a marginal increase in average cost per component of
1-2% over our baseline naive algorithm, which provides the least
costly provisioning but suffers from a large number (35-45%) of
deadline violations.

Index Terms—Cloud simulation, Resource provisioning,
Streaming and Deadline-Critical Workflows, Deadlines, SLA

I. INTRODUCTION

Ubiquity and pervasiveness of the Cloud is no longer a new
phenomenon. Cloud enabled services have become an integral
part of the day-to-day life of almost every Internet user. On the
one hand, cloud users enjoy flexible and cost-effective usage of
various cloud services, however on the other hand, providing
quality of service while maintaining cost-effectiveness, service
level agreements (SLAs), scalability and deadline constraints,
is the paramount concern of various service providers.

With the ever increasing use of multi-component, multi-
tenant models [13], [32] for building SaaS applications and
the exponential rise in popularity of cloud based services,
automatically and correctly scaling these services at run-
time is of paramount importance. Key challenges are: (1)
Scaling the resulting application up or down depending on
monitored user/tenant load in order to keep the SLA, no
longer becomes an issue of scaling resources for a single
service, but instead results in a complex problem of scaling
all individual service endpoints in the workflow and (2) In a
real-world setting, application workflows can possess a host
of characteristics: ranging from execution flows being either
streaming or sequential (details in Sec. III) to their deadlines
being strict or fuzzy.
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Fig. 1: Online collaborative meeting room use-case: the project
lead is presenting to teams located across the globe, with
attendees able to trigger ASAP workflows during the session.

There is no dearth of real-world scenarios where streaming
and deadline-critical (ASAP) workflows occur concurrently.
An obvious use case is an elastic based, multi-tenant online
media cooperation / meeting room service (Fig. 1), consisting
of both streaming and ASAP workflows, where user(s) are
often required to trigger analytical workloads during the course
of a meeting. Every stream consists of an encoder, a transcoder
and a decoder, all of which have different multi-tenant SLA
requirements in an attempt to provide a flawless service
(no A/V interruptions, no stuttering, etc.). Each attendee can
additionally trigger ASAP workflows during the meeting to
e.g. run simulations, data analytical workloads etc. These
ASAP workflow instantiations usually possess strict deadlines
and can consist of one or more (service) components executing
sequentially, thereby exhibiting runtime characteristics which
differ from streaming workflows.

We propose BRAHMA, which uses machine learning to
learn workflow behavior and curates a knowledge base (KB)
to aid in making informed resource provisioning decisions.
BRAHMA is comprised of classification and clustering mod-
ules, which analyse the resource request patterns of workflows
to predict whether a new workflow will meet its deadline
or not, and clusters workflows into groups possessing simi-
lar resource requirements. Our proposed algorithms use the
information curated in the KB to take appropriate workflow
scaling decisions. More specifically, the monitoring-based pro-
active algorithm proposed in our previous work [6] is used
to scale the streaming workflows, while a hybrid method
combining monitoring with the learning framework exposed
by BRAHMA is used for the ASAP workflows.

In summary, this paper proposes a holistic solution to



the automatic workflow scaling problem under the combined
presence of streaming and ASAP workflows, called AWS-SD
(Sec. III). Key contributions are as follows:

o A framework called BRAHMA (Sec. IV), which learns
workflow behavior and stores this in a knowledge base.

o Algorithms (Sec. IV-C) that leverage BRAHMA to main-
tain SLAs and deadlines for streaming and ASAP work-
flows respectively, while keeping cost in line.

« Empirical analysis (Sec. VI) showing these algorithms to
provide good cost-quality trade-offs while keeping SLAs
in line and preventing deadline violations.

II. RELATED WORK

Cloud computing has spread to a wide-variety of domains
like health care [11], Social Science/Mobile Cloud Computing
[19] etc. A lot of research in this area revolves around virtu-
alisation and resource scheduling. The targeted SaaS cloud
platform is based on a multi-tenant model, where different
user application’s components can share the resources (VMs).

Literature has witnessed a plethora of works for automatic
workflow scaling [7], [12], [27] with focus on maintaining
quality of service parameters like SLAs [5], [6], [9], [21],
[26], [33]-[35], deadlines [15], [25], [31] and many more.
Research done by [7], [16], [30] discusses semi-automatic and
automatic scaling for multimedia services. Soltanian et. al. [30]
enlightened a subproblem related to media services scaling.
Our previous work [6], focused solely on scaling and resource
provisioning for streaming / non-ASAP workflows.

Despite wide-spread research in the area of workflow scal-
ing, to the best of our knowledge none of the existing methods
are capable of jointly scaling streaming and deadline-critical
workflows. To this end, the work presented in this paper ex-
tends on [6] by adding support for deadline critical jobs, using
an enabling framework and algorithms for provisioning cloud
resources to ASAP jobs spawned from real-time streaming
workflows (the latter having per-workflow component SLAs
in order to guarantee seamless A/V streaming).

SLA based resource provisioning [9], [26], [33], [35] in
cloud computing is another important line of research. [33]
introduced an admission control method in order to avoid SLA
violations. This work was further extended by L. Wu et al.
[34], where different algorithms based on resource reservation
and request rescheduling are proposed in order to improve
the Customer lever satisfaction (CSL) and minimize the SLA
violation. Other important research is dealing with workflow
scheduling with strict deadlines [20], [4], [25], [22], [28],
[23] [29]. One of the most popular works by Poola et al.
[22] represented a robust resource scheduling algorithm. Their
work targets robust and fault-tolerant scheduling algorithms
with three multi-objective resource allocation policy.

III. PROBLEM DESCRIPTION

This section presents a concise model of streaming and
ASAP workflows. A SaaS application is defined as a workflow
W; € W consisting of one or more components Cy; € W;
(see Fig. 2), where individual service components pass their
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Fig. 2: An application workflow W; composed of multiple
service components and inter-component data flows.

data along the workflow edges to the subsequent service
component. These workflows can possess a wide-variety of
characteristics in terms of execution flow, resource require-
ments etc.

In case of streaming workflows (W; € W;), components
receive streaming data from the components which serve as
input, while they themselves stream their output data to the
next workflow components. Each streaming workflow service
component possesses a separate SLA agreement which defines
its minimal resource requirements (in terms of processing
power, memory, storage etc.) to ensure proper execution. Note
that, using this minimum resource requirement, we define the
maximum number of components A[},. that can simultane-
ously run on a VM 4/ while ensuring SLAs are met.

In case of ASAP workflows (W; € W)., analogous
to the simulation-input-retrieval —run-simulation— simulation-
output-storage operation discussed in Sec. I), the execution
flow is sequential. Here, the data from one service component
moves to the subsequent workflow component(s), once the
former finishes processing and hence passes its full output
to the latter. Similar to streaming workflows, each ASAP
workflow possesses a deadline-constraint (DCWI_) which is
used to identify a VM ¥/ that possesses the desired resources
(in terms of processing power, memory, storage etc.) to ensure
proper working of the workflow according to its specifications.

Given our use case of online collaborative A/V meetings,
focus lies on the combination of streaming and ASAP work-
flows. Note that tenant requests for streaming and ASAP
workflows follow time-varying distributions D;(¢) and Dy, (t)
respectively. While streaming workflows do not benefit from
assigning more resources to them than required, as one cannot
‘speed up’ a meeting, ASAP workflows benefit from being al-
located to more powerful resources. Owing to this difference in
characteristics, jointly scaling service end-points of streaming
and ASAP workflows is a challenging problem, defined as:

Problem. Given a VM pool V, a set of workflow requests (‘W)
consisting a combination of streaming (‘W) and ASAP (‘W)
workflow requests, following time varying distributions Dj(t)
and Dy (t) respectively, the maximum number of allowed re-
quests (N]!,.) and the processing power in MIPS (M;) for each
VM (VV; € V), perform automatic resource provisioning to
keep the SLAs (SLAyh.s = true) and the deadline-constraints
(DEADLINE:,V'H/,MS = true) for all the workflow components
Cij | Yk,Cxj € W;,Vj,W; € W, while retaining high cost-
efficiency and quality of service for SaaS applications.



IV. BRAHMA FRAMEWORK

In this section, the BRAHMA framework and its associated
resource-provisioning algorithms are described. The building
blocks required for BRAHMA are:

« VM Allocation: facilitates on demand creation of new
VM instances based on a specific VM template from the
pool of VMs %/. VM allocations under the naive algo-
rithm are performed in the beginning and remain fixed,
whereas they are adapted based on the resource request
patterns for the advanced and the hybrid algorithms.

« Classification: analyses the resource request patterns of
ASAP workflows and learns a decision boundary capable
of identifying whether the deadline of a workflow would
be met or violated. Main benefit is the ability to predict
the DEADLINE g45 of incoming ASAP workflows, fa-
cilitating better provisioning decisions.

o Clustering: facilitates fine-grained analysis of behavior
exhibited by ASAP workflows. Here, resource request
patterns are clustered, creating groups of ASAP work-
flows with similar resource requirements. With these clus-
ters formed, it is easier to devise customized and informed
resource provisioning strategies for each identified group.
Any newly incoming ASAP workflow can be assigned
to its most similar group, and hence utilize the already
devised resource provisioning strategy.

« Workflow Monitoring: Keeps track of the progress for
each component Cy; of a workflow W;. Continuously
probes the workflow components to monitor the time
remaining for the component to finish execution. The
monitoring capability plays a central role in the design
of the more involved hybrid algorithm.

A. Learning Phase

BRAHMA (Fig. 3), operates in two phases. In the first,
i.e. the learning phase, BRAHMA takes a large number of
workflows (training data) generated using the scenario genera-
tor module. To facilitate robustness and generalizability of the
learned models, the scenario generator creates a proper mix of
ASAP workflows of varying number of components, compo-
nent types etc. Each generated workflow, possesses resource
requirements (in MI) for each of its constituent component,

while also containing information about its deadline status (i.e.
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Fig. 3: Overview of the BRAHMA Framework.

Algorithm 1 Workflow Deployment Algorithm

Require: 7, DCw; |YW; e W, W ~ D(t), provisionType, work flowType,T
Ensure: SLAguus, DEADLINE 14145, M, AvgCost
1: for t =0 to t,. do

W'~ D(t)
if work flowType = Streaming then

{SLAaus, AvgCosts } < ProactiveDeploy(W!,V,t = 0.6)
else //workflowType = ASAP

numASAPDeploy < |W)_|

if numASAPDeploy > 0 then

if provisionType = Advanced then
{DEADLINE y;415,M,AvgCostyc } < KB(Wi.,CM,CC,V,Advnce)

10: else //provisionType = Hybrid
11: {DEADLINE y45,M,AvgCostyc } < KB(Wi.,CM,CC,V,Hybrid)

12: AvgCost +— AvgCost, + AvgCosty,

> Sec. 4 [6]
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was the deadline broken or met). The first task of BRAHMA'’s
learning phase is that of building a classifier. Here, we use
the classification module described in the previous section to
analyse the generated training data and learn a classifier model
CM , based on the resource request patterns, to predict whether
the deadline of an ASAP workflow is going to be met.
Moving ahead, BRAHMA clusters similar workflows (based
on the resource requirement pattern of its constituent compo-
nents) from the training data to form semantically meaningful
groups CC. This allows to analyse workflow behavior at
a finer level of granularity, facilitating appropriate resource
provisioning decisions. Eventually both the classifier model
CM and the created set of clusters along with their cluster
centers CC, are curated in the Knowledge Base (KB). Note that
the KB is curated by learning from historical/current resource
request patterns and no information is required in advance.

B. Evaluation Phase

In the evaluation phase, new streaming requests along
with triggered ASAP requests are submitted to BRAHMA
for inferring their execution behavior, resource requirements
and deadline status. As a first step, BRAHMA probes the
CM saved in the KB to predict the DEADLINE 45, i.€.,
whether the workflow under consideration would meet its
deadline or not. If the deadline is going to be met, then there
is no need to perform any specialized resource scaling, as
the already assigned resources will be sufficient to meet the
deadline-constraint of the workflow. However, if a violation is
predicted, we query the KB’s C( to assign this workflow to the
cluster closest/most-similar to it in terms of exhibited resource
requirements, guiding the resource provisioning algorithms.

C. Knowledge Base driven Resource Provisioning Algorithms

Algorithm 1 presents the pseudo-code of a generic algorithm
for the deployment of streaming and ASAP workflows. As
workflow requests follow a time-varying distribution D(z), we
sample requests at different discrete time-instants, 7 € [0, fy4y],
denoted as W' ~ D(t) (line 2). If the workflow under con-
sideration is a streaming workflow, we invoke the proactive
algorithm proposed by us in [6] with T = 0.6 to scale its
services up/down, while completely avoiding SLA violations
and maintaining high cost-efficiency. On the other hand, the
VM assignment of ASAP workflows is performed using the
KB driven algorithms, namely — advanced and hybrid (lines
8-11), which are described next, in detail.



Alg. 2 presents the pseudo-code for the advanced and the
hybrid algorithms. Both of them incorporate the use of the cu-
rated information from the knowledge base (KB) constructed
by BRAHMA, and are thus highly similar in design with
the only difference being the VM reservation and workflow
migration procedure. As a first step, these algorithms invoke
the classification model CM stored in the KB, to predict
the DEADLINE g4,s of each ASAP workflow (line 5). The
workflows with the predicted DEADLINE g 4,s = true do not
need any specialized scaling and thus, they are assigned to
a “medium” VM (lines 6-8). For workflows whose deadlines
are predicted to be violated, these algorithms query the CC
stored in the KB and try to identify the cluster, which possesses
workflows with the most similar requirement patterns (line 10).
Next, with this derived information, the workflow components
are assigned appropriate resources accordingly (lines 11-23).

A notable limitation of the KB driven algorithms are that,
the resources are not pre-reserved, and hence, they are prone
to suffer from various penalties incurred owing to new VM
reservations and migration of workflow components from one
VM to another. The advanced algorithm suffers from both of
the previously stated penalties (line 15). On the other hand, the
hybrid algorithm incorporates the use of monitoring (similar
to the proactive algorithm in [6]) to continuously track the
progress of an executing component. More specifically, for
every clock tick Ar, a monitor event tracks the execution status
of a currently running component Cy;, and as soon as the time
left for its execution to complete, crosses the VM reservation
and migration time T e - Tml{gmte, a new VM reservation
is triggered. This enables timely reservation of new VMs
and migration of components, thereby mitigating the incurred
penalties completely (lines 17-19). Thus, the cost-efficiency
of hybrid is significantly better than the advanced algortithm.

Algorithm 2 KB driven Algorithm

Require: 7/, DCy, | YW, € W, Wie ~ Dye(t), CM, CC, provisionType
Ensure: DEADLINE g 45, M, AvgCosty,
1: procedure KB(W) ,V,CM,CC, provisionType)

2: AvgCostye + 0; Penalty,, < 0; 0
3: for each W; € W) do
4: MIW,. +~0; assignedMlPSWj +—0; DEADLINEZ‘,;,M < true
W
RE DEADLINE g5 < CM predici ({C1j,Caj, - -, Cij} € W))
6: it DEADLINE.J, . — true then
7 Deploy W; on a pre-reserved “medium” VM V;
8: AvgCostye < AvgCostye + (M; +C;i + S;) x |W;|
9: else
10: Assign W; to the closest cluster center cc € CC
11: for each C;; € W; do
12: Mly, < Mhy, +Mic,,
13: Deploy Cyj on VM V; with MIPS; > Mlck,-
14: if provisionType = Advnce then '
15: Penalty . < Penaltya, +Prvels<’rve +Pmigraze
16: else  //provisionType=Hybrid
17: Monitor the progress of Cy; for every Af; teyy <— feur + At
18: if 1, — tur = Tkerve + T,z then
19: Initiate reservation for VM V;
20: assignedMlPSW,_ “— assignedMlPSW,_ +MIPS,
21: AvgCostye < AvgCosty. + (M +Cy +S))
22: if (Mly; /assignedMIPSWj) > DCy; then
23: DEADLINE S, .. « false; n 1+ 1
24: AvgCostye + (AvgCostyc + Penaltygc) /| Wi |; m < n/| Wi |
25: return DEADLINE g ,5,M,AvgCostg

V. EXPERIMENTATION SETUP
A. Media Workflows

The media workflow illustrated in Fig. 4, represents an in-
stance of a streaming workflow with three components namely
encoder, transcoder and decoder. These streaming workflows
can trigger multiple ASAP workflows that correspond to
deadline-critical jobs like e.g. running a simulation, decision
support, data analysis. Each service component is executed on
a VM V; chosen from the pool of available VMs V. Service
components corresponding to streaming workflows, possess an
SLA which can be either met or broken. Moreover, each ASAP
workflow possesses a deadline-constraint, which, similar to
streaming workflows, can be either met or broken, and if
broken causes delays in e.g. simulation/data analysis tasks.
Note that even though much more elaborate workflows exist,
these particular workflows have been chosen to showcase the
strength of BRAHMA and the presented algorithms.

B. Evaluation Scenario

As shown in Fig. 5, 200 user requests for streaming
workflows are generated following a normal distribution, with
the time 12 noon set as mean and 3.5 hours as standard
deviation. At every time instant, each generated streaming
worfklow further possesses a 5% chance of triggering an
ASAP workflow. This graph portrays that the number of
requests for both streaming and ASAP workflows will vary
in between the start of the day up to the end of the day.

ASAP workflows possess varying characteristics, namely —
number of components, type of resource requirements etc.
To this end, our scenario generator module, generates a
variety of three, four and five component workflows, where
the resource requirements (in terms of million-instructions
(MI)) for each component follow the templates as shown
in Table I. For example, a map-reduce job could fol-
low the <low—high/very-high—low—high/very-high—low>
template, etc. The deadline-constraint, in terms of MI require-
ments, for an ASAP workflow W; possessing k components
is calculated as k times the expected component resource
requirement. For each user/tenant request a new instance
of the workflow W; is created and the constituent service
components Cy;,Vk | Cx; € W; are provisioned on different
VMs V;, available from the VM pool ¥ (the choice of which
VM and how this VM pool grows / shrinks is driven differently
depending on the choice of algorithm). To deploy VMs in the
resource pools, eight types of VM images were defined, as
detailed in Table II. The costs for the VM templates used, were
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Fig. 4: Streaming workflows spawning ASAP workflows.
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TABLE I: Resource Requirement Templates

Te late Name Very-Low Low Medium High Very-High
Resource requirement [| |, 300 | 550 _ 550 | 500800 | 750 — 1050 | 1000 — 1200
range (MI)

parameterized based on the Amazon EC2 image ¢3.8xlarge [2],
with a monthly price of 1.680 to provide 32 vCPUs (17476
MIPS [1]), 60 GB of RAM and 2*320 GB of storage. This
cost was divided equally between secondary-storage, main-
memory and CPU, and the converted unit prices (per MB/hour
and MlI/hour [3]) were used to calculate the costs for the VM
templates used in this paper. For the simulations, the values
of the time required to reserve new VMs (]}‘e/f;-erve) and the
time required to migrate one component from an existing
VM instance to another (Tnigrare) Were defined as uniform
distributions between [40s,55s] and [0.5s,2s] respectively.

C. Evaluation Metrics

We consider the following metrics:

« Deadline status: of a workflow W}, running on a VM V;,
is defined as a binary variable which assumes the value of
false if the deadline is violated, or true otherwise. The
fraction of the workflows whose deadlines are violated is
denoted by n. Mathematically,

1 w
=—(Y1I 1)
n W(j; )

[ is the indicator function: I = 1 if DEADLINE./, .. =
false; and O otherwise.

e VM Cost: is defined as the sum of all costs related to
resource usage. Thus, for a simulation with w workflow
requests, each one with ¢ service components, and My,
Sk, Cy, representing, memory, storage and CPU costs re-
spectively for a component C;, we mathematically define

the average VM cost as follows:
1 w c

(X (X 0mtsitc)) 2)

WS k=1
« Penalty: is defined as the extra cost incurred (over-and-
above the normal resource utilization costs) on compo-
nents while waiting for (1) a new VM reservation Peserve
and (2) migration of components from one VM to another
Puigrare- We mathematically state the average Penalty as:

/& 1 ¢
; ( Zi (E kZ,] (Preservek + Pmigralek))) (3)
j= =

TABLE II: Parameterized VM Templates

[ Template | CPU [ RAM | Storage | Hourly Cost ($) |
Templateg; 150 MIPS 4 GB 128 GB $0.154
Templateg, | 300 MIPS 8 GB 256 GB $0.308
Templategs 450 MIPS 12 GB 384 GB $0.462
Templategs | 600 MIPS | 16 GB | 512 GB $0.616
Templates 750 MIPS 20 GB 640 GB $0.77
Templategg 900 MIPS | 24 GB | 768 GB $0.924
Templatey; | 1050 MIPS | 28 GB 896 GB $1.078
Templategg | 1200 MIPS | 32 GB | 1024 GB $1.232

TABLE III: Classifier Parameters
Classifier I

Decision Tree
Random Forest
Functional Tree

Parameters |

Pruning Confidence Factor=0.25, Min. #leaf-instances=2
#Trees=50, #Random-features=3
Min. #instances for node-splitting =15, #boosting-iterations=15

VI. SIMULATION RESULTS

All simulations were executed using the extended CloudSim
simulator [10], on an Intel(R) Core i5 4-core machine with
a 1.7 GHz CPU and 8 GB RAM running Linux Ubuntu
15.04. We use the publicly available implementations of the
classification and clustering models from the WEKA [17] data
mining software. Results are averaged over 10 simulation runs.

We first analyse the performance of various classification
modules used under the BRAHMA framework. As mentioned
in Section V, we use the scenario generator module to generate
6000 ASAP workflow requests (for training the learning phase
of BRAHMA) possessing varying (3, 4 and 5) lengths/number
of service components. Using the deadline-constraint estima-
tion discussed in the previous section, each ASAP workflow
is then assigned a class label, i.e., whether the deadline of this
workflow was violated or met. If the total MI requirements
of an ASAP workflow is greater than the estimated deadline-
constraint (in terms of MI), then the deadline is marked to
be violated, while met otherwise. We use the decision tree
(J48 algorithm) [24], random forest [8] and functional tree
[14] methods for classification. A grid-search was performed
to choose the optimal set of internal classifier parameters,
summarized in Table III. The reader is referred to [17], for
an in-depth understanding of these parameters.

Fig. 6a portrays the classification accuracy using 10-fold
cross validation. It is clear that, functional tree classification
possesses the highest accuracy (= 99%), while the decision
tree possesses the least (= 94%). Nevertheless, using any of
the three classifiers stated previouslyy, BRAHMA is able to
predict with a reasonably high accuracy, whether an ASAP
workflow will violate its deadline or not.

With the capability to perform high-confidence deadline
status predictions, next, we cluster the generated ASAP work-
flows for fine-grained near-optimal resource provisioning. We
use the k-means algorithm [18] to cluster the ASAP workflows
into groups with similar resource requirement patterns. The
silhouette coefficient metric is used to correctly identify the
optimal number of clusters (p) from the data. The higher
the silhouette value, the better the produced clustering. To
this end, we choose p as 9, 11 and 18 for the length 3, 4
and 5 workflows respectively. The clustering module is not
only statistically sound but also qualitatively effective, as it
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Fig. 6: (a) Performance of various classifiers under BRAHMA. (b) A comparison of the variation in the ASAP workflow
deadline violation percentage and (c) the average total cost (combining costs for streaming and ASAP workflows) versus the

time of day for the naive, advanced and hybrid algorithm.

generates a wide-variety of semantically meaningful clusters,
a representative set of which is described in Table IV.

To effectively evaluate the relevance of the proposed KB
driven resource provisioning algorithms, we devised a baseline
naive algorithm.The naive algorithm reserves all the resources
with different properties (storage, CPU, memory etc.) at
the beginning of the application session. Every incoming
ASAP workflow is assigned to a pre-reserved “medium” (say
Templategs in Table II) sized VM. An intuitive approach is
to identify a VM possessing MIPS equal to the expected MI
requirement of a workflow component as the medium-sized
VM. The reason being that in expectation, this VM would be
able to meet the deadline of half of the ASAP workflows.

The naive algorithm possesses the least cost, owing to pre-
assignment of resources and the lack of need for new VM
reservations and workflow migrations, if any. Moreover, no
new VM reservations happen even if VV; € pre-reserved v/,
the MIPS; is not sufficient to fulfill the requirements M1y, of
a workflow W;, in which case the deadlines get violated.

Fig. 6b presents a comparison of the naive, advanced and
hybrid algorithms in terms of the percentage of ASAP work-
flows whose deadline gets violated. Since the naive algorithm
does not perform intelligent resource provisioning, it suffers
from a large number of deadline violations, ranging from as
low as 15% to 45% in the worst-case. On the other hand,
the advanced and the hybrid algorithms, which leverage the
classification and clustering modules of BRAHMA, are able
to better model the workflow request patterns and behavior,
thereby performing informed resource provisioning and scal-
ing. Thus, the percentage of workflows that suffer deadline
violations is kept as low as 3—5%.

Lastly, we perform a comparison of the variation in average
hourly VM costs for the proposed algorithms with the time
of day. Note that, this analysis includes the costs for both
streaming and ASAP workflows as well as the penalties

TABLE IV: Sample mapping of identified resource require-
ment patterns / clusters to workflow types

I Resource Requirement Patterns I Job Type

Low—High/Very-High—Low File open, Run-Simulation, File close

Low—High/Very-High—Low—High/Very-High—Low A basic Map-Reduce job

High/Very-High—Low—Low—High/Very-High Indexing & Querying job

High—Medium—Low A Post-processing job

incurred, if any. We use the pro-active algorithm, proposed by
us in [6], for scaling streaming workflows. We set T = 0.6, thus,
SLAs are always met [6], and hence no penalties are incurred
due to SLA violations. The proposed naive, advanced, and
hybrid algorithms act in unison with the pro-active algorithm
to jointly scale the combination of streaming and ASAP
workflows. Fig. 6¢ shows that the naive algorithm possesses
the least cost. On the other hand, the advanced algorithm
possesses the highest cost, owing to penalties incurred due to
workflows waiting for new VM reservations and component
migrations. To this end, the hybrid algorithm incorporates
the monitoring capability as used in the pro-active algorithm,
to mitigate the above discussed penalties. It is evident that,
the hybrid algorithm closely mirrors the cost of the naive
algorithm, and thus, is as cost-effective as naive.

To summarize, the proactive algorithm with T = 0.6 and the
hybrid algorithm, which intelligently congregates the moni-
toring capability of the former with the fine-grained decision
making capability exposed by BRAHMA, serve as the best
possible trade-off for minimizing the costs while also keeping
the SLAs and the deadline-constraints of the workflows in line.

VII. CONCLUSION

In this paper, we addressed the problem of Automatic Work-
flow Scaling under the combined presence of Streaming and
Deadline-critical workflows, called AWS-SD. We identified the
need for methods that are capable of jointly scaling these
workflows. Consequently, we devised a holistic solution to the
AWS-SD problem; by coming up with a framework BRAHMA
that curates a knowledge base (KB) of learned workflow
behavior(s), and knowledge base driven resource provisioning
algorithms — advanced and hybrid, that leverage BRAHMA
for effective scaling of such workflows. Our empirical studies
show that our algorithms are effective and provide good cost-
quality tradeoffs while preventing deadline violations. In the
future, we will implement a BRAHMA prototype running on
OpenStack and evaluate its runtime behavior while scaling an
elastic A/V collaborative cloud-based service.
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