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ABSTRACT
In hierarchical data, the effect of a lower-level predictor on a lower-level outcome may often be con-
founded by an (un)measured upper-level factor. When such confounding is left unaddressed, the
effect of the lower-level predictor is estimated with bias. Separating this effect into a within- and
between-component removes such bias in a linear random intercept model under a specific set of
assumptions for the confounder. When the effect of the lower-level predictor is additionally moder-
ated by another lower-level predictor, an interaction between both lower-level predictors is included
into the model. To address unmeasured upper-level confounding, this interaction term ought to be
decomposed into a within- and between-component as well. This can be achieved by first multiply-
ing both predictors and centering that product term next, or vice versa. We show that while both
approaches, on average, yield the same estimates of the interaction effect in linearmodels, the former
decomposition is much more precise and robust against misspecification of the effects of cross-level
and upper-level terms, compared to the latter.

Introduction

Whenmeasures are collected repeatedly over time in indi-
viduals (e.g., in daily diary studies), such data can yield
much more information compared to a cross-sectional
sample. For example, when studying the relationship
between intimacy and positive relationship feelings
in a daily diary study, a between-person effect can be
disentangled from a within-person effect (Curran &
Bauer, 2011; Wang & Maxwell, 2015). In this example,
the between-person effect reflects the extent to which
individuals with higher intimacy differ in their positive
relational feelings from individuals with a lower intimacy.
The within-person effect on the other hand reflects the
extent to which an individual exhibits higher (or lower)
positive relational feelings when (s)he had more (or less)
intimacy on a particular day, as compared to other days.

During the last two decades, the behavioral science
literature has increasingly focused on separating within-
from between-effects in multilevel models (Curran &
Bauer, 2011; Enders & Tofighi, 2007; Hofmann & Gavin,
1998; Kreft, de Leeuw, & Aiken, 1995; Raudenbush &
Bryk, 2002). Two important issues can be highlighted
when disaggregating those effects within longitudinal
data: centering and detrending (Curran & Bauer, 2011).
The former refers to subtracting a constant from every
value of a variable, while the latter refers to removing the
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time trend from time series. The centering issue is rele-
vant for disaggregation, even when neither the predictor
nor the outcome exhibits any trend over time, whereas the
detrending issue is only relevant when at least one of those
variables exhibits some trend over time (Wang&Maxwell,
2015). In this article, we assume no time effects on either
the predictor or the outcome and consequently limit our
focus to the centering issue.

The multilevel literature typically considers two levels:
the lower-level or level 1 (e.g., the daily measurements
within the individual), and the upper-level or level 2
(e.g., the individuals in a diary study). Within such
two-level data structures, three types of centering can be
distinguished: no centering (i.e., the raw scores are used),
grand-mean centering (i.e., subtraction of the overall
average across individuals and time points) and cluster-
mean centering (i.e., subtraction of a person-specific
mean, averaged across time points within the individual).
There is a general consensus that cluster-mean centering
(also referred to as “CWC,” centering within clusters) is
deemedmost appropriate when lower-level predictors are
of primary substantive interest (Enders & Tofighi, 2007).
More specifically, CWCmay solve potential confounding
issues in estimating the effect of a predictor on an out-
come. A detailed explanation on why is discussed in the
next section. When unmeasured upper-level common
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causes of the predictor–outcome relationship are present,
we refer to such causes as unmeasured upper-level con-
founders. In the econometrics literature, this type of
unmeasured confounding at the subject- or cluster-level
is referred to as upper-level endogeneity (Wooldridge,
2010). Here, we argue that confounding at the upper-level
is very common in many contexts. In our illustration,
for example, it is not unlikely that the daily measure-
ments of intimacy and positive relational feelings are
both affected by unmeasured stable (personality) traits of
the individual. We will show that under a specific set of
assumptions for the unmeasured upper-level confounder,
CWC allows unbiased estimation of the within-subject
effect of a lower-level predictor on an outcome.

Unfortunately, discussions on the role of centering
are mostly limited to the assessment of main effects in
multilevel models (MLM) and ignore the centering of
interactions. An issue of particular importance entails
the centering of interactions in the 1 × (1 → 1) design,
where the first “1” corresponds to the level at which the
moderator is measured, the second “1” represents the
level of the predictor, and the last “1” defines the level
of the outcome (Preacher, Zhang, & Zyphur, 2016; Ryu,
2015). We will refer to such interactions as “lower-level
interactions.” When cluster-mean centering such interac-
tions, the question arises whether the predictor andmod-
erator should be centered first and multiplied next (here-
after labeled as “C1P2,” center-first and product-second),
or whether it should be the other way around (labeled
hereafter as “P1C2”). In contrast to cluster-mean center-
ing an interaction between an upper- and a lower-level
variable, or between two upper-level variables, C1P2 and
P1C2 produce different predictors when cluster-mean
centering a lower-level interaction. Some scholars favored
P1C2 (Josephy, Vansteelandt, Vanderhasselt, & Loeys,
2015), while others advised against it and promoted
C1P2 instead (Preacher et al., 2016). In this article, we
investigate how these two approaches deal with unmea-
sured upper-level confounding and whether they can
unbiasedly estimate the moderated within-subject effect.

While Josephy et al. (2015) considered the traditional
multilevel modeling (MLM) framework (also referred
to as mixed modeling), Preacher et al. (2016) relied on
Structural Equation Modeling (SEM). In contrast to the
traditional MLM-framework, in which the within- and
between-cluster decomposition of a predictor relies on
the observed cluster means, latent cluster means are
generally used in SEM. The latent means in a multilevel
SEM-framework avoid bias due to sampling error, which
is typically associated with the observed cluster means in
the MLM-framework (Lüdtke et al., 2008). And although
the impossibility of the MLM-framework to deal with
measurement error is a serious limitation, this does not

pose an issue when the interest lies with the within-cluster
effects. When the lower-level variables are assumed to be
measured without error (Lüdtke et al., 2008) have shown
that the estimator of the within-effect is unbiased (we will
not repeat their proof here). Additionally, Lüdtke et al.
(2008) reported a similar performance in terms of stan-
dard errors for the estimated within-effects, when using
the observedmean versus the latent mean. Unfortunately,
the MLM-approach can result in substantially biased
estimates of between-effects, as well as severely underes-
timate the associated standard errors in the presence of
upper-level measurement error. However, since Nessel-
roade and Molenaar (2016) have recently re-emphasized
the importance of studying within-subject processes
in lower-level designs (Molenaar, 2004, 2009), we will
primarily focus on the estimation of these effects. Given
that MLM and SEM perform similarly for within-cluster
effects, we limit our exposition to the MLM-framework.

In the following sections, we first introduce our
illustrating example and describe cluster-mean centering
within theMLM-framework formain effectmodels. Next,
we consider MLMs with lower-level interaction effects
and enumerate the various existing modeling strategies
proposed for estimating such effects. We demonstrate
how different estimates (and standard errors) are found
for the moderating effect, when applying these strategies
to the diary data on intimacy and relationship feelings.
In a next step, we explore why and when those centering
approaches perform differently by means of a simulation
study. Finally, we discuss the interpretation of the param-
eters for the different modeling strategies and end with a
short discussion.

Illustrating example

We consider longitudinal diary data on sexual behav-
ior from a Flemish study in 66 heterosexual couples
(Dewitte, Van Lankveld, Vandenberghe, & Loeys, 2015).
Every morning during three weeks, participants were
asked about their sexual and intimate behavior since the
last time they had filled out their morning diary (i.e.,
sexual behavior over the past 24 hours). Every evening,
the participants were asked to report on their individual,
relational, and partner-related feelings and behavior,
experienced during that day. In this article, we limit our
focus to the reports of the 66 male partners. Because the
diary reports were not always completed meticulously
over the course of the 21 days, the number of observa-
tions per participant ranges from 5 to 21, with a median
cluster size of 18. In total, we have 1127 observations
clustered within 66 men, implying a missing rate of
about 19%. The variables of interest are the extent (on a
7-point scale from “not at all” to “very much”) to which
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they report that intimate acts had occurred with their
partner (described as the amount of kissing, cuddling,
and caressing), the men’s daily reports of masturbation
(defined as any sexual act that involved self-stimulation
in the absence of their partner), as well as their daily
evening reports on positive relationship feelings. The
latter were obtained by averaging the scores (on a seven-
point scale) on nine items (the extent to which they felt
happy, satisfied, understood, supported, accepted, loved,
in love, connected, and close). The research question
we will focus on, considers the contribution of intimacy
to next-day positive relationship feelings within a man,
and to what extent that the occurrence of masturbation
during the previous day (yes or no) changes this effect.

Centering of main effects in multilevel models

In this section, we first explain why a difference in within-
and between-subject effects may result from omitted vari-
able bias at the subject-level. Let Xi j denote the predictor
and Yi j the outcome of individual j ( j = 1, . . . ,N) at
time i (i = 1, . . . , nj). In our example, Xi j and Yi j repre-
sent the daily measurements of intimacy and next day’s
positive relational feelings, respectively. As mentioned
in the introduction, it is not unlikely that the daily mea-
surements of intimacy and positive relational feelings are
both affected by unmeasured stable (personality) traits
of the individual. We referred to such unmeasured com-
mon causes of Xi j and Yi j as an unmeasured upper-level
confounder, which we will from now on denote by b j.

Consider a simple causal model for the effect of Xi j on
Yi j that takes an unmeasured subject-level confounder b j
into account:

E(Yi j | Xi j, b j) = β0 + βXi j + b j, (1)

where we assume that the unmeasured confounder has an
additive effect on the outcome. The left panel of Figure 1
represents the corresponding data-generating process.
For a given subject, the β-parameter reflects the average
increase in the outcome for a one-unit increase in the
predictor. As such, this parameter can be interpreted as

the within-person effect of Xi j on Yi j. Several remarks
deserve some additional attention. First, in order for β

to have a causal interpretation, the predictor Xi j should
temporally precedeYi j. For example, in our illustrationwe
aim to estimate the causal effect of intimacy on next day’s
positive relationship feelings, implying a clear temporal
ordering. Second, we assume a time-constant effect of Xi j
on Yi j; there is no reason to assume that the effect on day
one is any different from the effect on day two. Third,
we assume the absence of any unmeasured lower-level
confounders of the Xi j–Yi j relationship. That is, given
the unmeasured personality traits for example, we do not
allow for further occasion-specific unmeasured common
causes of X and Y . The question that we want to address
now is: how can β be unbiasedly estimated, despite the
presence of the unmeasured upper-level confounder b j?

Naively, we could consider the following multilevel
model:

E(Yi j | Xi j, b j) = γ0 + γXi j + uj, (2)

Note that to clearly contrast estimation model (2) to
data-generating process (1), we rely on different nota-
tions here, as well as in the remainder of the article. Fixed
effect parameters will be denoted by γ ’s and random
effects by uj in estimation models, while β ’s and b j will
represent these effects in the true causal models. To fit
model (2), we could simply rely on standard multilevel
modeling approaches. Unfortunately, an important but
often ignored assumption in hierarchical linear modeling
requires the random effect uj in (2) to be uncorrelated
with the predictor Xi j (McNeish, Stapleton, & Silverman,
2016). This assumption is violated in case of upper-level
endogeneity. Consequently, the naive MLM-estimator
(based on maximum likelihood, restricted maximum
likelihood, or feasible generalized least squares, abbre-
viated FGLS) that aims to estimate β in model (1), and
which we will refer to as γ̂ RE , will suffer from omitted
variable bias (Raudenbush & Bryk, 2002; Castellano,
Rabe-Hesketh, & Skrondal, 2014).

Figure . Left panel: unmeasured subject-level confounding of the Xi j–Yi j relationship. Right panel: lower-level interaction model with
unmeasured subject-level confounding.
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In a similar vein, it is important to stress that lagged
variables should not be added to model (2), i.e.:

E(Yi j | Xi j,Yi−1, j, uj) = γ0 + γ1Xi j + γ2Yi−1, j + uj, (3)

Since model (3) applies to all time points, uj has a direct
effect on Yi−1, j. However, if uj affects Yi−1, j, it cannot
be statistically independent of Yi−1, j at the same time.
The violation of this independence assumption in tra-
ditional hierarchical linear modeling can bias both the
coefficient for the lagged dependent variable, as well as
the coefficients for the other variables (Allison, 2015).

One possible way to deal with omitted variable bias in
model (2) is to rely on the fixed effects approach (Mund-
lak, 1978), where uj is treated as fixed rather than random.
This approach is very popular within the econometrics
literature (Wooldridge, 2010) and has recently resurfaced
in behavioral science literature (Castellano et al., 2014).
In practice, N dummy variables dnj (i.e., one for each
subject) are created in a way that dnj = 1 if n = j, and
dnj = 0 when n �= j (n = 1, . . . ,N). Consequently, Yi j
is regressed on d1− j, . . . , dNj and xi j:

E(Yi j | Xi j, d1 j, . . . , dNj)

= γ ∗
1 d1 j + γ ∗

2 d2 j + · · · + γ ∗
NdNj + γFEXi j (4)

Under causal data-generating model (1), the OLS-
estimator for γFE, denoted by γ̂FE (obtained from estima-
tion model (4)), represents an unbiased estimator for β

(Wooldridge, 2010). Intuitively, this can be understood
by the fact that the predictors in (4) are allowed to be cor-
related (in contrast to the predictor and random intercept
in model (2)). One side effect of the fixed effects approach
is that it cannot be used to investigate between-subject
effects, as between-subject characteristics are perfectly
collinear with the dummies.

A possible alternative that can deal with omitted vari-
able bias and additionally allows the estimation of both
within- and between-effects, is to rely on group-mean
centering (i.e., the CWC-approach). That is, the predictor
Xi j is separated into a between- (i.e., X j = 1

nj

∑nj
i=1 Xi j)

and a within-subject (i.e.,Xi j − X j = Xc
i j) component

within the MLM-framework. As such, we consider the
following model, originally proposed by Neuhaus and
Kalbfleisch (1998):

E(Yi j | Xi j, uj) = γ0 + γWXc
i j + γBX j + uj (5)

with uj assumed i.i.d. ∼ N(0, τ 2) and independent
of the predictors. Goetgeluk and Vansteelandt (2008)
proved that the estimator γ̂W frommodel (5) is consistent
(i.e., asymptotically unbiased) for β in model (1), even
in the presence of unmeasured upper-level confound-
ing of Xi j and Yi j. The rationale behind this is that by

subject-mean centering the predictor, any subject-specific
effects are effectively eliminated. Relying on simple OLS-
estimators for γW and γB, we see that γ̂W = cov(Yi j,Xi j−X j )

var(Xi j−X j )

and γ̂B = cov(Y j,X j )

var(X j )
, which will converge to β and

β + cov(b j,X j )

var(X j )
, respectively, under model (1). These two

expressions clearly illustrate two important points. First,
cluster-mean centering the predictor permits unbiased
estimation of the within-person effect under upper-level
endogeneity in causal model (1). Second, when b j is a
confounder of the Xi j–Yi j relationship, this implies that
cov(b j,X j) �= 0, and that γ̂B will no longer converge to
β . In other words, upper-level endogeneity elicits differ-
ences in the between- and within-subject effects. Only in
the absence of upper-level endogeneity in model (1) (i.e.,
cov(b j,X j) = 0), will γ̂B be equal to γ̂W .

Note that the naive MLM-estimator γ̂ RE actually
represents a weighted combination of γ̂W and γ̂B
(Raudenbush & Bryk, 2002, p. 137); in balanced designs
(i.e., with nj = n for all j), we see that:

γ̂ RE = W1γ̂B +W2γ̂W

W1 +W2
,withW1 = v̂ar(γ̂B)−1 and

W2 = v̂ar(γ̂W )−1,

making γ̂ RE an uninterpretable blend of both effects. Also
note that, since cov(Xi j − X j,X j) = 0, the within- and
between-subject predictors are independent. As such, the
cluster means can be dropped from estimation model (5)
when the within-effect is the only quantity of interest:

E(Yi j | Xi j, uj) = γ0 + γWXc
i j + uj (6)

Furthermore, it is interesting to note that the fixed effect
estimator γ̂ FE and the within-subject estimator γ̂W are
identical in balanced designs (Wooldridge, 2010).

Similar to Greenland (2002), Goetgeluk and Vanstee-
landt (2008), Brumback, Dailey, Brumback, Livingston,
and He (2010), we argue that models (5) and (6) cannot
be considered valid causal models. For example, in the
longitudinal setting considered here, model (5) would
imply that the future causes the past (i.e., futureXi j would
cause pastYi0 j for i > i0, sinceXi j is contained withinX j).
Also, when model (5) is interpreted as a causal model
for the manipulated effect of Xi j for a single i, it would
conflict with causal model (1) unless γW = γB = β .
As mentioned before, the individual causal effect of a
one-unit increase in Xi j is represented by β in model (1),
while this is γW (1 − 1/nj) + 1/njγB in model (5); the
latter expression only equals β when γW = γB = β . This
remark does not degrade the usefulness of model (5),
but it emphasizes that model (5) should be viewed as an
estimation model rather than a causal one.
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What are the principal implications for substantive
researchers? Most importantly, that model (5) can be
used as the vehicle to estimate the parameter of interest.
In our example, we want to determine the effect of a
one-unit increase in intimacy on next day’s positive rela-
tionship feelings within a person. Unlike γ in model (2),
the parameter γW in model (5) will target that quantity
of interest, even in the presence of unmeasured time-
constant subject-specific confounders. As such, we look
at settings in which model (1) (graphically represented
in Figure 1) rather than model (5) represents the true
causal model. However, in these settings, model (5) still
correctly describes the conditional association of Yi j
given Xi j and the independent subject effect ui. In other
words, while both models might be valid at the same
time, model (1) constitutes the causal model, whereas
model (5) represents an estimation model invoked to
circumvent the issue that bi is associated with Xi j (so that
we can unbiasedly estimate β).

Centering of lower-level interactions in
multilevel models

Researchers’ interest is often not limited to assessing
main effects only. In our illustrating example, researchers
may want to know if the effect of intimacy on the follow-
ing day’s positive relational feelings differs according to
whether or not the participant has masturbated during
the previous day. Instead of model (1), we now assume a
causal model in which an interaction effect is included:

E(Yi j | Xi j,Zi j, b j) = β0 + β1Xi j + β2Zi j

+β3Xi jZi j + b j, (7)

with Zi j being the moderator at time i in individual j.
Since both Xi j and Zi j are measured at the lower-level,
we have a setting with a lower-level interaction. The right
panel of Figure 1 graphically represents the assumed
data-generating process. Note that an arrow-on-arrow
notation was used to indicate the moderating effect of Z.

The parameter β3 in model (7) reflects the moderating
effect for a given subject, i.e., the extent to which the
effect of Xi j onYi j varies for different values of Zi j. In our
example, such an effect might translate into: how does
the effect of intimacy on next day’s positive relationship
feelings change within a participant when the man has
masturbated versus when he has not? The interpretation
of the main effects β1 and β2 in (7) on the other hand,
depends on whether Xi j and/or Zi j are grand mean cen-
tered. When Xi j is grand mean centered, β2 reflects the
effect of masturbation on next day’s positive relationship
feelings within a subject at the sample average level of

intimacy. If Xi j were not grand mean centered, β2 would
capture the effect of masturbation at the zero-level of
intimacy. This, however, would not provide a very useful
interpretation, since intimacy is measured on a 1–7 scale.
Similarly, when Zi j is grand mean centered (i.e., in our
example, the sample proportion of days with masturba-
tion is subtracted from the raw scores), β1 reflects the
effect of a one-unit increase in intimacy on the next day’s
positive relationship feelings within a participant, aver-
aged over days with and without masturbation. When
both Xi j and Zi j are grand mean centered, the intercept
β0 can be interpreted as the average positive relationship
feelings over all participants and days. As such, grand-
mean centering of both continuous and binary predictors
in interaction models provides useful interpretations of
the main effects; we will therefore assume that X and Z
are grand mean centered during the remainder of this
article. However, in order to avoid notational burden, we
will not introduce any new notation to indicate this.

The researcher’s primary interest now lies in estimat-
ing β3. But how should β3 be estimated? Naively, we may
again consider a traditional MLM-approach:

E(Yi j | Xi j,Zi j, uj) = γ0 + γ1Xi j + γ2Zi j

+γ3Xi jZi j + uj. (8)

Note that here too, we define the parameters γ and u
within the estimation model, whereas β and b are used
in the causal model. Given the standard assumption of
independence of the random effect and predictors in
model (8), the naive MLM-estimator of the interaction
effect (which we denote γ̂ RE

3 ) will once again suffer from
omitted variable bias. To address such unmeasured upper-
level confounding, we may—similar to the main effects
model—rely on separating within- from between-effects.

As was already mentioned in the introduction, two
different strategies for centering lower-level interactions
have been suggested. The first approach, advocated by
Josephy et al. (2015), first multiplies Xi j with Zi j, after
which the cluster mean average of this product term
is subtracted. As such, the ”P1C2” estimation model
amounts to:

E(Yi j | Xi j,Zi j, uj) = γ0 + γ1Xc
i j + γ2Zc

i j

+γ3(XZ)ci j + uj (9)

with Xc
i j = Xi j − X j, Zc

i j = Zi j − Z j and (XZ)ci j =
Xi jZi j − XZ j (where XZ j = 1

nj

∑nj
i=1 Xi jZi j). Under

data-generating model (7), γ̂0, γ̂1, γ̂2, and γ̂3 of the P1C2-
approach consistently (i.e., asymptotically unbiased)
estimate β0, β1, β2, and β3 (Goetgeluk & Vansteelandt,
2008; Josephy et al., 2015). As such, the estimators γ̂0, γ̂1,



6 T. LOEYS ET AL.

γ̂2, and γ̂3 share the same interpretation as β0, β1, β2, and
β3 (see below model (7)).

It is also possible to add all corresponding between-
effects to estimation model (9), i.e.:

E(Yi j | Xi j,Zi j, uj) = γ0 + γ1Xc
i j + γ2Zc

i j + γ3(XZ)ci j

+γ4X j + γ5Z j + γ6XZ j + uj (10)

We will refer to estimation model (10) as the “P1C2+”
approach. Interestingly, since the within-predictors are
independent of the between-predictors in this model, the
estimated within-effects γ̂1, γ̂2, and γ̂3 from models (9)
and (10) are identical in balanced designs.

The second approach is suggested by Preacher et al.
(2016), who are very explicit on their centering convic-
tions in multilevel SEM (MSEM)models. If we ignore the
distinction between centering at the observed versus the
latent cluster means (Lüdtke et al., 2008), Preacher et al.
(2016) distinctly argued that Xi jZi j should not be sepa-
rated into a within-part Xi jZi j − XZ j and a between-part
XZ j. These authors reason that “using these as predictors
does not lead to interpretable effects, because researchers
are not interested in the effects of product terms” (p. 191).
When solely focusing on within-effects, the multilevel
model proposed by (Preacher et al., 2016) (with observed
rather than latent cluster means), can be written as:

E(Yi j | Xi j,Zi j, uj) = γ0 + γ1Xc
i j + γ2Zc

i j + γ3Xc
i jZ

c
i j + uj
(11)

We refer to estimation model (11) as the “C1P2”-
approach. In their paper, Preacher et al. (2016) also
described a more complete model that additionally
includes cross- and between-level effects:

E(Yi j | Xi j,Zi j, uj)

= γ0 + γ1Xc
i j + γ2Zc

i j + γ3Xc
i jZ

c
i j + γ4X j + γ5Z j

+γ6X jZ j + γ7X jZc
i j + γ8Z jXc

i j + uj (12)

which we will refer to as the “C1P2++” approach.
Model (12) contained four different interaction effects:
a within- subject interaction (captured by the parameter
γ3), a between-subject interaction (captured by γ6) and
two cross-level interactions (captured by γ7 and γ8).
Note that since Cov(Xc

i jZc
i j,X jZ j) is not necessarily zero,

the estimated parameters of the within-effects in the
C1P2 and C1P2++ approaches are no longer identical in
balanced designs (unlike in P1C2 and P1C2+).

Ryu (2015) also considered MSEM for estimating
lower-level interactions in multilevel data, but in con-
trast to Preacher et al. (2016), Ryu relied on an earlier
MSEM approach (Muthén, 1990). The latter decomposes

the observed data into between- and pooled within-
covariances, while fitting separate within- and between-
models using the multi-group techniques of SEM. This
multi-group approach does not allow for missing data
or unbalanced cluster sizes, but more importantly, it
cannot account for cross-level interactions. Ryu (2015)
considered three types of centering: no centering (UN),
grand-mean centering (CGM), and centering within
clusters (CWC). First of all, MSEM with uncentered
lower-level variables (UN) employs latent cluster means
to define the various upper and lower-level variables.
This UN approach therefore corresponds to model (10),
where the observed means are replaced by their latent
counterparts (denoted with a tilde):

E(Yi j | Xi j,Zi j, uj)

= γ0 + γ1(Xi j − X̃ j) + γ2(Zi j − Z̃ j) + γ3(Xi jZi j − X̃Z j)

+γ4X̃ j + γ5Z̃ j + γ6X̃Z j + uj (13)

Here, Xi j and Zi j are not grand mean centered. Second,
Ryu (2015)’s CGM approach only differs from the UN
approach in thatXi j and Zi j are first grandmean centered.
Third, the CWC-approach described by Ryu (2015) uses
the observed cluster means as level 2 covariates. As such,
the corresponding estimation model can be written as:

E(Yi j | Xi j,Zi j, uj) = γ0 + γ1Xc
i j + γ2Zc

i j + γ3Xc
i jZ

c
i j

+γ4X j + γ5Z j + γ6X jZ j + uj

(14)

and will be referred to as “C1P2+.” We employ this
labeling, since the predictors are centered first and only
then multiplied as in Preacher et al. (2016), but unlike
model (12) it does not include any cross-level interactions.

Let us now illustrate how the P1C2- and C1P2-
approaches may lead to different estimates of the
moderation effect, by means of our example data. To
estimate the moderating effect of masturbation on the
effect of intimacy on next day’s positive relationship
feelings, we consider the five different estimation mod-
els (9), (10),(11), (12), and (14). In these models, Xi j,
Zi j, and Yi j denote the grand mean centered intimacy,
the grand mean centered masturbation, and next day’s
positive relationship feelings, respectively. Estimated
parameters with associated standard errors, test statistics,
and p-values of all within-cluster effects are summarized
in Table 1, together with estimated random intercepts
and residual variances.

From these results, we can deduce several things.
First, as already stated in the previous section, P1C2
and P1C2+ yield identical results for all within-effects
in balanced designs. In our example, the data are not
perfectly balanced due to a small amount of missingness,
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Table . The parameter estimates, standard errors (s.e.) with associated t-statistics, degrees of freedom, and p-values, for the intercept, the
within-subject main effects of intimacy andmasturbation, as well as their within-subject interaction effect on next day’s positive relation-
ship feelings. Additionally, the estimated random intercept variances and residual error variances are provided. Five different estimation
approaches are considered: PC, PC+,CP, CP+ and CP++.

Intercept Intimacy Masturbation Interaction Variances

Estimate (s.e.) Estimate (s.e.) Estimate (s.e.)
Parameter t-value (df) p-value t-value (df) p-value t-value (df) p-value Estimate (s.e.) p-value Random intercept Residual

PC . (.) <.001 . (.) <.001 − . (.) . − . (.) . . .
. () . () − . () − . ()

PC+ . (.) <.001 . (.) <.001 − . (.) . − . (.) . . .
. () . () − . () − . ()

CP . (.) <.001 . (.) <.001 − . (.) . − . (.) . . .
. () . () − . () − . ()

CP+ . (.) <.001 . (.) <.001 − . (.) . − . (.) . . .
. () . () − . () − . ()

CP++ . (.) <.001 . (.) <.001 − . (.) . − . (.) . . .
. () . () − . () − . ()

and as a consequence the estimates, standard errors and
p-values of P1C2 and P1C2+ differ slightly. The esti-
mated within-effects in the different C1P2-approaches,
on the other hand, are much more discrepant. Second,
the estimated moderating effect of masturbation is more
pronounced in the C1P2-approaches compared to the
estimates from P1C2. Even though all approaches point
in the same direction (the positive effect of intimacy on
next day’s positive relationship is diluted if the man mas-
turbated), the moderating effect is inflated by about 25%
in the C1P2-approaches compared to P1C2. Third, the
standard errors of the estimated interaction effect in the
C1P2-approaches are about 25% larger than in P1C2. To
gain further insights into the performance of the different
estimation models, as well as into the precise quantities
the different within-effect estimators are targeting, a
simulation study is presented in the next section.

Simulation study

We consider five different simulation settings under
causal model (7), where we assess the (relative) bias of the
estimators and standard errors of the within-effects for
the five different estimation models ((9), (10), (11), (12),
and (14)), as well as their coverage and power. The bias is
evaluated by contrasting the samplemean of the estimates
from the 1000 simulated datasets to the true parameter
value, through the use of a Wald-test. We report the rel-
ative bias of the parameter estimates, which is defined as
the averaged difference of the estimated (e.g., β̂) and true
parameter value (e.g., β), divided by the latter. Equiva-
lently, the relative bias of the standard errors is defined
as the difference between the mean of the estimated stan-
dard errors and the empirical standard error, divided by
the latter. A negative relative bias thus implies an under-
estimation of the true variability. The coverage is defined

by the proportion of the 95%-confidence intervals that
encompass their true parameter value, while the power
is determined by the proportion of the 95%-confidence
intervals that do not encompass zero.

Mimicking the two-level structure of our illustrat-
ing data, we simulated 1000 data sets which contain 66
clusters and 21 observations within each cluster, for five
different settings. The true data-generating models for
Zi j andYi j are:

Zi j = α0 + α1Xi j + vZ
j + εZi j (15)

Yi j = β0 + β1Xi j + β2Zi j + β3Xi jZi j + vYj + εYi j (16)

In these models, we generate independent lower-level
residuals, εZi j and εYi j , from standard normal distributions.
The upper-level confounders, vZ

j and vYj , follow a mul-
tivariate standard normal distribution with a correlation
equal to 0.5. As such, we induce unmeasured confound-
ing of the Zi j–Yi j relationship with an additive effect
on the outcome. Additionally, we fix α0 = 0, β0 = 0,
β1 = 0.1, β2 = 0.15, and β3 = −0.1 in all settings, since
these values approximately correspond to those seen
in our illustrating example (Table 1). As will become
apparent later this section, some of the estimationmodels
will show bias in the interaction effect estimator. Since
this bias depends on the distribution of X and Z, we will
therefore vary the distribution of X (see Table 2). Also,
as Preacher et al. (2016) showed that the within- and
between-components of the product of two lower-level
predictors depends on the covariance of the predictors
that form the product, we will additionally vary the value
of α1 (see Table 2). Consequently, in the scenarios where
α1 �= 0, we see that Cov(Xi j,Zi j) �= 0. Note that when
α1 �= 0, Z linearly depends on X and may be viewed as a
mediator in the relation between X andY .

For the first simulation setting, we generate a standard
normally distributed X , whereas X is sampled from a
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Table . A summary of the five different simulation settings. Each
setting considers a different combination of an α1-value and a dis-
tribution for X (e.g., B(1,�(vX

j )) − 0.5 reflects a mean centered
Bernoulli variable with success probability�(vX

j ), with Phi repre-
senting the cumulative normal distribution an vX

j a standard nor-
mally distributed randomeffect).Whenα1 �= 0, or when a random
intercept for X is introduced that is correlated with the random
intercepts for Z and Y (as in in Sim ), the covariance between Xi j
and Zi j , Cov(Xi j, Zi j ), will consequently differ from zero.

Simulation α1 Distribution of X Cov(Xi j, Zi j )

Sim  . N(0.00, 1.00) .
Sim  . B(1, 0.500) − 0.500 .
Sim  − . B(1, 0.500) − 0.500 − .
Sim  − . B(1, 0.500) − 0.500 − .
Sim  − . B(1, �(vXj )) − 0.500 − .

zero-centered Bernoulli distribution with success proba-
bility .5 in settings 2–4. In simulation setting five, the true
data-generating model for Xi j is:

Probit(Xi j = 1) = vX
j

with vX
j following a standard normal distribution.

Furthermore, vX
j is correlated with vZ

j and vYj , with a
correlation equal to 0.5. The latter implies the existence
of an unmeasured upper-level confounder of X ,Y, and Z,
inducing an additional covariation between Xi j and Zi j.

In the first two settings α1 = 0, while α1 = −0.2 in
the third, and α1 = −1.5 in the fourth and fifth setting.
Although setting α0 = 0 and β0 = 0 implies that both
X and Z already exhibit mean zero at the population
level in all settings, we additionally grand mean center all
variables in the samples prior to analysis. Additionally,
all estimation models were fitted using the lmer-function
from the lme4 R-package. The R-code used to generate
the simulated data is available in the supplementary
material.

The means of the 1000 parameter estimates (with the
relative bias), the mean of the standard errors (with the
relative bias), the coverage and power of the estimators
are summarized in Table 3. Estimators that show signif-
icant bias are displayed in boldface. Note that we only
displayed the results for three of the five approaches, since
P1C2+ and C1P2+ yield results identical to P1C2 and
C1P2, respectively (for our balanced simulation data).
Before we summarize the results, we re-iterate that the
fixed effects approach results in the exact same estimates
as obtained by the P1C2-approach.

Let us first focus on the bias. For the first and second
simulation setting, where X and Z are independent, we
do not observe bias (or more precisely, the relative bias is
smaller than 5%, and not significant) for all within-effects
under all approaches. In the third–fifth setting,Z depends
on X in a linear fashion; when the absolute value of the Ta
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effect of X on Z is increased (i.e., comparing simulation
4 to simulation 3), we observe bias (i.e., the relative bias
is larger than 10% in absolute value, and found to be
significant) in the estimator for the interaction effect in
C1P2 and C1P2+.When X and Z are zero-mean centered
symmetric distributions and Z is linear in X (as is the
case in the third, fourth, and fifth setting), we see for the
OLS-estimator of γ3 under C1P2:

E(γ̂3) = β3
cov[Xi jZi j,Xc

i jZc
i j]

var[Xc
i jZc

i j]

As pointed out by Croissant and Millo (2008) the OLS-
estimators are equivalent to the maximum likelihood
estimators (as obtained through the lmer function)
in our simulations, since we are assuming normality,
homoscedasticity, and no serial correlation of the errors.
The derivation of the above expression can be found
in the Appendix. Notably, the bias depends on the dis-
tribution of X , as well as on the absolute value of α1.
We can see that cov[Xi jZi j,Xc

i jZc
i j] can be written as the

sum of var[Xc
i jZc

i j] and some other terms that depend
on α2

1cov[X j, (Xi j − X j)
2] and α2

1cov[X
2
j, (Xi j − X j)

2].
While the latter two covariances are zero when the dis-
tribution of Xi j is Gaussian, these covariances no longer
equal zero when the distribution ofXi j becomes Bernoulli
(Dodge & Rousson, 2012). Interestingly, when all cross-
level interactions are included in C1P2++, this bias for
the interaction effect in C1P2 and C1P2+ disappears. In
sum, we find that the estimators of the P1C2, P1C2+,
and C1P2++ approaches target the exact same popu-
lation parameters under the assumed data-generating
model.

Next, we take a look at the precision and power. The
mean standard error for the estimator of the interaction
effect is substantially lower in the P1C2 approaches, com-
pared to C1P2++ in all simulation settings. The mean
standard errors of the main effect estimators, on the other
hand, are similar across all approaches. Furthermore,
from the relative bias of the estimated standard errors
we can see that the empirical standard deviation and the
mean of the estimated standard error closely correspond
under all approaches, for the main and interaction effects
(except for the main effect of X under the first simulation
setting). As a consequence, we also observe appropriate
coverages for these estimators. We also ran simulations
with zero values for all lower-level effects (i.e., all β ’s
equal to zero), and found appropriate type-I errors for all
methods (results not shown), in line with the coverages
reported. Importantly, given the higher precision of the
estimated interaction effect under P1C2, we also observe
the highest power for detecting the interaction under this

approach. However, it should be noted that the simulation
results describe average performances and, in practice,
data may be encountered where the P1C2 approach yields
a larger p-value for the interaction effect, compared to
C1P2++.

So far, our simulation study only considered balanced
data. Since our diary study was not always complete over
the course of the 21 days, we repeated the above five sim-
ulation settings with a missingness pattern similar to the
example data. More specifically, we introduced varying
cluster sizes by sampling them as rounded values from
a shifted beta-distribution, such that cluster sizes varied
between 1–21 (with its mode around 18). The substantive
findings from this unbalanced setting are essentially the
same as in the balanced case (see Table 4). Note, however,
that due to the unbalanced nature of the simulations,
the estimators of the P1C2 and P1C2+ approaches,
and of the C1P2 and C1P2+ approaches, are no longer
identical.

We limit the results of our simulation studies to the
settings presented here for two reasons. First, the spe-
cific settings we considered allow us to derive analytical
expressions for the observed biases. Second, further simu-
lation studies with different choices (e.g., non-symmetric
distributions for X and Z, nonlinear associations between
X and Z, ...) lead to similar conclusions: (1) both P1C2
and C1P2++ yield unbiased estimators for the interaction
effect, (2) both exhibit an appropriate coverage of their
95% confidence intervals, but (2) P1C2 is always more
precise. This conclusion can also be drawn from our
illustrating example: we observe more precise estimators
for the interaction effect in P1C2, compared to the C1P2
approaches.

What are the practical implications of these findings
in terms of interpretation? First of all, we found that
the parameters γ1, γ2, and γ3 in estimation models (9)
and (12) (i.e., the P1C2 and C1P2++ approaches) target
the exact same population parameters and can hence
be given the same interpretation. Considering the esti-
mates of the P1C2 approach (and C1P2++, respectively)
in our illustrating example, we see that masturbation
dilutes the positive effect of intimacy on next day’s pos-
itive relationship feelings with on average 0.075 units
(0.096, respectively), for every unit increase in intimacy
(Table 1). Averaging over days with and without mas-
turbation, a one-unit increase in intimacy within a male
individual will result in an 0.079 (0.080, respectively)
increase in his next day’s positive relationship feelings
(Table 1). Equivalently, at average levels of intimacy,
masturbation reduces next day’s positive relationship
feelings with on average 0.151 points (0.167 respectively)
(Table 1).
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Discussion

This article compared two alternative approaches for the
centering of lower-level interactions. In our simulation
study, the P1C2-approaches outperformed the C1P2-
approaches in estimating such interactions: (1) P1C2
results in more precise estimates of the interaction effect,
compared to the three C1P2-approaches; (2) P1C2 is
not affected by misspecification or omission of upper-
level effects, in contrast to C1P2 (unless all cross-level
interactions are included).

It can be argued that the data-generating models
considered here are somewhat restrictive. However, it
is important to note that the performance of the two
prevailing approaches for centering interactions was
explored in settings, where CWC is usually considered a
good remedy. That is, we studied settings with additive
effects for unmeasured upper-level confounders, because
such effects can be effectively eliminated by CWC.

A first important assumption underlying data-
generating model (7) constitutes homogeneous effects
amongst subjects. In the presence of heterogeneous
subject-effects, random slopes forX , Z, as well as for their
interaction can be added to the estimation models. For-
tunately, relying on estimation through a simple random
intercept model such as (9) (which ignores any hetero-
geneity) will not introduce bias in the effect estimates,
provided that the random slopes are independent of the
predictors (Baird & Maxwell, 2016). In contrast, if the
random slopes were to be correlated with the predictors,
CWC would no longer effectively eliminate unmeasured
upper-level heterogeneity; alternative approaches such as
fixed-effect estimation or per-cluster analysis would then
be required (Bates et al., 2014).

A second important assumption underlying data-
generating model (7) entails the absence of unmeasured
lower-level confounding. If, for example, daily inti-
macy, masturbation, and positive relational feelings were
associated with an (unmeasured) daily positive mood
(given unmeasured subject-specific confounders), this
assumption would be violated. Since CWC only elim-
inates time-invariant confounding, we would expect
biased effect estimators under unmeasured lower-
level confounding. However, as recently pointed out
by Loeys et al. (2016), the assessment of interaction
effects in linear models often requires weaker “no-
unmeasured-confounding” assumptions, compared to
main effects. Hence, unbiased effect estimators for the
interaction may still be found under relatively lenient
assumptions.

Third, we limited our discussion to linear settings. As
shown by Goetgeluk and Vansteelandt (2008), separating
a within- from a between-effect in a random intercept

model only yields a consistent estimator of the within-
effect in the presence of upper-level confounding when
the model is linear. For nonlinear models, it is possible to
encounter an inconsistent estimator, though in practice
this bias will often be small.

To summarize, when dealing with multilevel data,
we recommend that careful consideration be given
to the assumptions under which separating within-
from between-effects yield valid results. When those
assumptions are deemed plausible, CWC can be applied
to unbiasedly estimate within-cluster effects. For the
estimation of interaction effects, we advocate the P1C2-
approach rather than the C1P2-approach, as the former
is much more efficient. If researchers want to use the
C1P2-approach (e.g., because of implementations in
software packages for SEM), we recommend not to drop
any cross-level or upper-level terms, even when they are
not of interest.
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Appendix: Bias of the interaction effect
estimator under the P1C2 approach

Assume that the true models for Z andY are:

Zi j = α0 + α1Xi j + vZ
j + εZi j (A.1)

Yi j = β0 + β1Xi j + β2Zi j + β3Xi jZi j + vYj + εYi j (A.2)

with εZi j and εYi j i.i.d. with mean zero and variance σ 2
Z and

σ 2
Y , respectively.
Consider the estimation model:

E[Yi j | Xi j,Zi j, uj] = γ0 + γ1Xc
i j + γ2Zc

i j

+γ3Xc
i jZ

c
i j + uj, (A.3)

where Xc
i j = (Xi j − X j) and Zc

i j = (Zi j − Z j).
The OLS-estimators for the parameters of model

(A.3), under models (A.1) and (A.2) are given by
	−1	VY with Vi j = (1 Xc

i j Zc
i j Xc

i jZc
i j)

′, 	 = E[Vi jV ′
i j]

and 	VY = (
E[Yi j] E[Xc

i jYi j] E[Zc
i jYi j] E[Xc

i jZc
i jYi j]

)′.
Now, we have that:

Vi jV ′
i j =

⎛
⎜⎜⎜⎝

1 Xc
i j Zc

i j Xc
i jZc

i j
Xc
i j Xc

i j
2 Xc

i jZc
i j Xc

i j
2Zc

i j
Zc
i j Xc

i jZc
i j Zc

i j
2 Xc

i jZc
i j
2

Xc
i jZc

i j Xc
i j
2Zc

i j Xc
i jZc

i j
2 Xc

i j
2Zc

i j
2

⎞
⎟⎟⎟⎠

Assuming that Z is linear in X , E(Xi j) = E(Zi j) = 0,
while also assuming a symmetric distribution for X , the
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expectation ofVi jV ′
i j simplifies to

	 =

⎛
⎜⎜⎜⎝

1 0 0 α1var[Xc
i j]

0 var[Xc
i j] α1var[Xc

i j] 0
0 α1var[Xc

i j] α2
1E[Xc

i j
2] + var[εZci j ] 0

α1var[Xc
i j] 0 0 α2

1E[Xc
i j
4] + var[εZci j ]var[Xc

i j]

⎞
⎟⎟⎟⎠,

with εZci j = (εZi j − εZ j). In order to obtain the ele-
ments ckl of 	−1, we need its determinant. After some
tedious calculations, we find that |	| = var[εZci j ]var[Xc

i j]
(α2

1var[Xc
i j
2] + var[εZci j ]var[Xc

i j]), and c21 = c24 = c31 =
c34 = c42 = c43 = 0, c22 = α2

1
var[εZci j ]

+ 1
var[Xc

i j]
, c23 = c32 =

− α1
var[εZci j ]

, c33 = 1
var[εZci j ]

, c41 = − α1var[Xc
i j]

α2
1var[Xc

i j
2]+var[εZci j ]var[X

c
i j]
, and

c44 = 1
α2
1var[Xc

i j
2]+var[εZci j ]var[X

c
i j]
.

As such, we can show that there is no bias in the
OLS-estimator γ̂1 for β1:

E[γ̂1] = c22E[Xc
i jYi j] + c23E[Zc

i jYi j]

= (c22 + α1c23)(β1 + β2α1)var[Xc
i j] + c23β2var[εZci j ]

= β1

Similarly, we find no bias in the OLS-estimator γ̂2 for β2:

E(γ̂2) = c32E[Xc
i jYi j] + c33E[Zc

i jYi j]

= c32(β1 + β2α1)var[Xc
i j]

+c33α1(β1 + β2α1)var[Xc
i j] + c33β2var[εZci j ]

= β2

And finally, we find for the OLS-estimator γ̂3 for β3 that:

E(γ̂3) = c41E[Yi j] + c44E[Xc
i jZ

c
i jYi j]

= β3
α2
1cov[X2

i j,Xc
i j
2]

α2
1var[Xc

i j
2] + var[εZci j ]var[Xc

i j]

with E[Xc
i j
2Xi j] = E[Xc

i j
2(Xc

i j + X j)] = E[Xc
i j
3] + cov

[Xc
i j
2,X j] = 0 for a symmetric X .
As var[Xc

i jZc
i j] can be re-expressed as:

var[Xc
i jZ

c
i j] = var[Xc

i j(α1Xc
i j + εZci j ]

= α2
1var[X

c
i j
2] + var[Xc

i jε
Zc
i j ]

and cov[Xi jZi j,Xc
i jZc

i j] as

cov[Xi jZi j,Xc
i jZ

c
i j] = cov

[
Xi j(α1Xi j + εZi j),X

c
i j(α1Xc

i j + εZci j )
]

= α2
1cov[X

2
i j,X

c
i j
2]

we find that the bias factor for γ̂3 can be rewritten as:

cov[Xi jZi j,Xc
i jZc

i j]
var[Xc

i jZc
i j]

,

which will equal one when the distribution of X is nor-
mal, but will be smaller than one when X is Bernoulli dis-
tributed.
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