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Abstract
In this paper we first recall the proper algebraic framework, i.e. the radial algebra, needed

to extend Hermitian Clifford analysis to the superspace setting. The fundamental objects
for this extension then are introduced by means of an abstract complex structure on the
Hermitian radial algebra. This leads to a natural representation of this Hermitian radial
algebra on superspace.
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1 Introduction
Clifford analysis nowadays is a well established mathematical discipline constituting a natural refinement
of harmonic analysis. In its most simple setting, it focusses on the null solutions of the Dirac operator
∂x =

∑m
j=1 ej∂xj , where the elements (e1, . . . , em) form an orthonormal basis for the Euclidean space Rm

leading to the construction of the real Clifford algebra R0,m. This setting is known as the orthogonal case
since the fundamental group leaving the Dirac operator invariant is Spin(m) which is a double covering
of SO(m).

By taking the dimension even, say 2m, and introducing a so-called complex structure J ∈ SO(2m), the
fundamental elements of Hermitian Clifford analysis arise in a natural way from the orthogonal setting.
The Hermitian case focusses on h-monogenic functions, h-monogenicity being expressed by means of two
mutually adjoint Dirac operators which are invariant under the realization of the unitary group U(m)
in Spin(2m). Indeed, the action of the projection operators 1

2 (1 ± iJ) on the initial orthonormal basis
(e1, . . . , e2m) leads to the Witt basis elements (fj : j = 1, . . . ,m) and (f†j : j = 1, . . . ,m), producing a
direct sum decomposition of C2m in two components. The elements of SO(2m) leaving those subspaces
invariant generate a subgroup which is doubly covered by a subgroup of Spin(2m) denoted SpinJ(2m),
and being isomorphic with the unitary group. The Hermitian Dirac operators ∂z and ∂†z are given by
projection of the gradient on the aforementioned invariant subspaces, whence they are invariant under
the action of SpinJ(2m).

This Hermitian decomposition has been thoroughly studied in several papers, see for example [2, 3].
Results concerning spherical monogenics, invariant differential operators, a Fischer decomposition and
integral representation formulae (Bochner-Martinelli, Cauchy) have already been obtained, see [1, 2,
3, 7]. Furthermore, Hermitian Clifford analysis was addressed in [13] where several complex operators
∂z, ∂

†
z , ∂u, ∂

†
u, . . . were considered giving rise to new syzygy complexes. Those results motivated for the

first time the use of the radial algebra in the Hermitian setting which is independent of the choice of the
dimension parameter.

The radial algebra framework is defined through an algebra R(S) generated by a set S of abstract
vector variables x, y, . . ., where classical notions of Clifford analysis are reintroduced axiomatically. For
example, Dirac operators are axiomatically defined as endomorphisms on R(S), more precisely as a vector
derivative denoted by ∂x, x ∈ S. A first account on such an axiomatisation can be found in [15] and was
inspired by the work on "geometric calculus" presented by Hestenes and Sobczyk [12].

The radial algebra possesses some important properties, of which the most powerful most probably is
its independence of any particular dimension m, which is now abstractly defined as a complex parameter
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stemming from the evaluation ∂x[x] = m. In addition, R(S) is independent of the choice of an underlying
vector space V to which the vector variables belong and of any chosen quadratic form on V . Hence the
polynomial Clifford representation turns out to be only one of the possible frameworks where the radial
algebra axioms are fulfilled, see for example [8, 15], giving rise to important applications of the radial
algebra setting in the study of the Fischer decomposition and the Dirac complex ([4, 13, 14]).

In this paper, we are interested in using the radial algebra for the introduction of a theory of Hermitian
Dirac operators in superspace. This construction is inspired by the succesful extension of orthogonal
Clifford analysis to superspace, see [5, 6, 16, 17, 18, 19]. In particular the radial algebra was proven to be
an efficient tool for giving a meaning to vector spaces of negative dimension, and defining the fundamental
objects of Clifford analysis, such as vector variables and vector derivatives, in such a case.

In the paper [8] we have introduced the so-called Hermitian radial algebra in order to fix the rules
that allow a canonical extension of Hermitian Clifford analysis to superspace. The objective of the
current paper now is to explicitly introduce the fundamental objects of Hermitian Clifford analysis in
the superspace setting. In particular, we will establish the notion of a complex structure, as well as
its realization as a bivector, which then will lead to the Witt basis, the Hermitian vector variables, the
Hermitian vector derivatives and the complex Euler operators in superspace. These notions constitute
the starting point for the study of this representation of the Hermitian radial algebra. In future work we
plan to address some other classical issues such as the underlying group structure, spin representations,
invariance of the Dirac operators under spin actions and also Bochner-Martinelli formulae in the Hermitian
superspace setting.

The outline of the paper is as follows. We first present a brief overview of the radial algebra setting for
the Euclidean and the Hermitian cases, respectively. Next, we establish the corresponding representation
of the radial algebra in superspace by means of the definitions of the corresponding radial algebra endo-
morphisms in this setting. In particular, the vector multipliers give rise to a natural way of introducing
a complex structure on superspace which is thoroughly studied in Section 5. Moreover, it is proven there
that all defined objects satisfy the abstract relations provided by the Hermitian radial algebra. Finally,
in Section 6 we give explicit expressions for the complex Hermitian vector variables, Dirac operators
and directional derivatives. Some final remarks are given in Section 7 about the future direction of this
research: in the two forthcoming papers [9, 10], we will properly introduce the Spin group in superspace
in order to give a meaning to its subgroup SpinJ , consisting of elements which commute with the complex
structure.

2 Preliminaries on radial algebras
Given a set S of symbols x, y, . . . we define the radial algebra R(S) as the associative algebra over R
freely generated by S and subject to the defining axiom

(A1) [{x, y}, z] = 0 for any x, y, z ∈ S,

where {a, b} = ab+ ba and [a, b] = ab− ba. Elements in S are called abstract vector variables.
Axiom (A1) means that the anti-commutator of two abstract vector variables is a scalar, i.e. a

quantity that commutes with every other element in the algebra. It is clearly inspired by the similar
property for Clifford vector variables.

Definition 1. A radial algebra representation is an algebra homomorphism Ψ : R(S) → A from R(S)
into an algebra A. The term representation also refers to the range Ψ(R(S)) ⊂ A of that mapping.

The easiest and most important example of radial algebra representation is the algebra generated
by standard Clifford vector variables. The classical Clifford polynomial representation is defined for
S = {x1, . . . , xs} by considering the mapping

xj → xj =

m∑
`=1

xj,` e` (ejek + ekej = −2δj,k), (1)

where the elements xj,` (` = 1, . . . ,m) are real variables generating a polynomial algebra R[x1,1, . . . , xs,m]
and the elements e` (` = 1 . . . ,m) generate the Clifford algebra R0,m. The correspondences (1) naturally
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extend to an algebra homomorphism from R(S) to the algebra R[x1,1, . . . , xs,m] ⊗ R0,m of Clifford-
valued polynomials. Indeed, for any two vector variables xj , xk we have that {xj , xk} = xjxk + xkxj =
−2
∑m
`=1 xj,`xk,` is a central element in R[x1,1, . . . , xs,m]⊗R0,m. In this case, elements in S are represented

by vector variables xj defined in the underlying vector space V = Rm. The set S := {xj : j = 1 . . . , s}
of Clifford vector variables established by (1) generates the Clifford polynomial representation R(S) ⊂
R[x1,1, . . . , xs,m]⊗ R0,m. A thorough study of this representation can be found in [15].

The simplest case is obtained for S = {x} in which case R(S) is mapped into the real algebra
of polynomials of the form xs, where x2s = (−|x|2)s and x2s+1 = x(−|x|2)s. To have a non-trivial
radial algebra for Clifford analysis, the above set of radially symmetric functions xs is too limited. One
needs at least something of the form S = {x, u} where the corresponding Clifford vectors are given by
x→ x =

∑m
k=1 xkek and u→ u =

∑m
k=1 ukek. Here the vector x is considered as the variable vector and

u as a parameter vector. The elements of the algebra R(S) clearly have the form F = A+Bx+Cu+Dx∧u
where A,B,C,D are polynomials of the three variables x2, u2, x · u and x ∧ u = 1

2 [x, u]. With these two
vector variables one can abstractly produce the so-called zonal monogenic polynomials, see [11]. More in
general a typical choice for S would be S = {x1, . . . , xs} ∪ {u1, . . . , ut}, where the variables xj are the
vector variables on which functions depend and uj are extra parameter vectors. This choice for S is used
when studying monogenic functions in several vector variables x1, . . . , xs, see also [4].

The main difference between Clifford algebra and radial algebra lies in the fact that the abstract
vector variables x ∈ S have a merely symbolic nature; they are not vectors belonging to an a priory
defined vector space V with some dimension m and some quadratic form on it. The radial algebra is a
generalization of both polynomial algebras and Clifford algebras. Indeed, it suffices to identify a subset
{u1 . . . , um} of parameter vectors with the Clifford generators, i.e. u` 7→ e`, ` = 1, . . . ,m. In this case, the
inner product − 1

2{xj , u`} is mapped to − 1
2{xj , u`} = xj,` (j = 1, . . . , s; ` = 1, . . . ,m), which generates

the polynomial algebra R[x1,1, . . . , xs,m].
We can abstractly define the notion of scalar subalgebra (i.e. the algebra of all commuting elements)

by
R0(S) := AlgR{{x, y} : x, y ∈ S},

and the wedge product of vectors (for example x1, . . . , xk ∈ S) by

x1 ∧ . . . ∧ xk =
1

k!

∑
π

sgn(π) xπ(1) · · ·xπ(k).

Then abstract k-vectors are defined as linear combinations of elements of the form fx1 ∧ . . . ∧ xk
where f ∈ R0(S) and x1, . . . , xk ∈ S. Denoting by Rk(S) the space of all k-vectors, it can be proven as
a consequence of (A1) that (see [15])

R(S) = R0(S)⊕R1(S)⊕R2(S)⊕ · · ·

On this radial algebra we can define several endomorphisms. Here we will only give an overview of
those which are relevant in the current setting. For a more detailed account we refer the reader to [8, 15].

• The main involution ·̃ and the conjugation · are respectively defined as the linear maps satisfying:

ab = b a, ãb = ã b̃, a, b ∈ R(S)

x = x̃ = −x, x ∈ S.

• The vector multipliers x[·] and x|[·] are defined for every x ∈ S by

x : F → xF, x| : F → F̃ x, F ∈ R(S).

• The directional derivatives Dy,x are defined for every pair x, y ∈ S by

(DD1) Dy,x[FG] = Dy,x[F ]G+ FDy,x[G], F,G ∈ R(S),

(DD2) Dy,x[z] = δx,z y, z ∈ S.

The operator Dx,x corresponds to the classical Euler operator Ex which measures the degree of
homogeneity with respect to the vector variable x ∈ S.
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• The left and right actions of the vector derivative ∂x are defined for every x ∈ S by the axioms

(D1) ∂x[fF ] = ∂x[f ]F + f∂x[F ],

[fF ]∂x = F [f ]∂x + f [F ]∂x, f ∈ R0(S), F ∈ R(S),

(D2)

{
∂x[xG] = ∂x[x]G, [Gx]∂x = G[x]∂x,

∂x[G] = [G]∂x = 0,
G ∈ R(S \ {x}),

(D3) [∂xF ] ∂y = ∂x [F∂y] , x, y ∈ S,
(D4) ∂x[x2] = [x2]∂x = 2x, ∂x{x, y} = {x, y}∂x = 2y, y 6= x.

From these axioms it follows that ∂x[x] = [x]∂x is a real constant independent of x.

• The operator B := {∂x, x|} is independent of x ∈ S; it can be also written as B := −{∂x|, x} where:

∂x| : F → [F̃ ]∂x.

In [8] the notion of a complex structure was introduced on the radial algebra framework; we recall its
definition and main properties. Consider a bijective map J : S → J(S), producing a disjoint copy of the
set of abstract vector variables S, i.e. S ∩ J(S) = ∅. Now consider the algebra R(S ∪ J(S),B) generated
over the real numbers by S, J(S) and a fixed element B. We say that J is a complex structure over S if
the following axioms are fulfilled on R(S ∪ J(S),B).

(AH1) {x, y} = {J(x), J(y)}, {J(x), y} = −{x, J(y)} x, y ∈ S,
(AH2) {x, y} and {J(x), y} are central elements for all x, y ∈ S,
(AH3) [B, x] = −2J(x), [B, J(x)] = 2x, x ∈ S.

As before, we will use the notation R0(S ∪ J(S)) := AlgR {{x, y}, {J(x), y} : x, y ∈ S} for the scalar
subalgebra of R(S ∪ J(S),B).

The map J can be extended from S to an algebra automorphism on R(S ∪ J(S),B) by linearity and
by the rules

J(FG) = J(F )J(G), F,G ∈ R(S ∪ J(S),B), (2)
J(B) = B, J(J(x)) = −x, x ∈ S. (3)

Observe that the axioms (AH1) -(AH3) together with the rules (2)-(3) ensure that J is an isomorphism
between the radial algebras R(S) and R(J(S)).

The conjugation can be extended from R(S) to R(S ∪ J(S),B) using the axioms

B = −B, x = −x, J(x) = −J(x), x ∈ S

and
ab = b a, a, b ∈ R(S ∪ J(S),B).

In order to define the action of the complex structure J on the vector derivatives, the definitions of
the formal operators ∂x and ∂J(x) have to be extended from their respective initial radial algebras R(S)
and R(J(S)) to R(S ∪ J(S),B). This is accomplished through the following axioms:

(DH1) ∂x[fF ] = ∂x[f ]F + f∂x[F ], ∂J(x)[fF ] = ∂J(x)[f ]F + f∂J(x)[F ],

[fF ]∂x = F [f ]∂x + f [F ]∂x, [fF ]∂J(x) = F [f ]∂J(x) + f [F ]∂J(x),

f ∈ R0(S ∪ J(S)), F ∈ R(S ∪ J(S),B),

(DH2) ∂x[G] = [G]∂x = ∂J(x)[G] = [G]∂J(x) = 0,
∂x[xG] = ∂x[x]G,

∂x[J(x)G] = ∂x[J(x)]G,

∂J(x)[xG] = ∂J(x)[x]G,

∂J(x)[J(x)G] = ∂J(x)[J(x)]G,


[Gx]∂x = G[x]∂x,

[GJ(x)]∂x = G[J(x)]∂x,

[Gx]∂J(x) = G[x]∂J(x),

[GJ(x)]∂J(x) = G[J(x)]∂J(x),


∂x[xJ(x)G] = ∂x[xJ(x)]G,

∂J(x)[xJ(x)G] = ∂J(x)[xJ(x)]G,

[GxJ(x)]∂x = G[xJ(x)]∂x,

[GxJ(x)]∂J(x) = G[xJ(x)]∂J(x),

for G ∈ R
(

(S \ {x}) ∪ J (S \ {x}) ,B
)
,
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(DH3) ∂x[x] = [x]∂x = m = ∂J(x)[J(x)] = [J(x)]∂J(x), where m is the abstract dimension of R(S),

∂x[J(x)] = −[J(x)]∂x = 2B = −∂J(x)[x] = [x]∂J(x).

(DH4)


∂x[x2] = [x2]∂x = 2x, ∂J(x)[x

2] = [x2]∂J(x) = 2J(x),

∂x[xJ(x)] = (m + 2)J(x)− 2xB, [xJ(x)]∂x = −(m− 2)J(x)− 2xB,

∂J(x)[xJ(x)] = −(m + 2)x− 2J(x)B, [xJ(x)]∂J(x) = (m− 2)x− 2J(x)B.

x ∈ S,

{
∂x{x, y} = {x, y}∂x = 2y = ∂J(x) {J(x), y} = {J(x), y} ∂J(x),

∂J(x){x, y} = {x, y}∂J(x) = 2J(y) = −∂x{J(x), y} = −{J(x), y}∂x,
x 6= y.

We may now also extend the notion of the directional derivative. For every pair x ∈ S, y ∈ S ∪ J(S),
the map Dy,x ∈ End(R(S ∪ J(S),B)) is defined by imposing the corresponding extension of the axiom
(DD1) and the following version of the axiom (DD2):

(DDH2) Dy,x[z] = δx,zy, Dy,x[J(z)] = δx,zJ(y), z ∈ S,
Dy,x[B] = 0.

Note that with this definition we have increased the range of y from S to S∪J(S). This has an important
impact on the form of the previous axiom when we are considering DJ(y),x (y ∈ S):

DJ(y),x[z] = δx,zJ(y), DJ(y),x[J(z)] = −δx,zy.

The operator DJ(y),x is called the twisted directional derivative with respect to x in the direction of y.
In [8], the Hermitian radial algebra was introduced using the above abstract complex structure J ,

leading to a definition which is equivalent to the one given in [13]. Let RC(S ∪ J(S),B) be the com-
plexification of R(S ∪ J(S),B), i.e.

RC(S ∪ J(S),B) = AlgC{S ∪ J(S) ∪ {B}} = R(S ∪ J(S),B)⊕ i R(S ∪ J(S),B).

In this new structure we define the Hermitian conjugation ·† by

(a+ ib)† = a− ib, a, b ∈ R(S ∪ J(S),B).

The complex vector variables are introduced as elements of the set:

SC :=

{
Z =

1

2

(
x+ iJ(x)

)
: x ∈ S

}
,

together with its Hermitian conjugate

S†C :=

{
Z† = −1

2

(
x− iJ(x)

)
: x ∈ S

}
.

These complex vector variables generate, together with B, the Hermitian radial algebra

R(SC, S
†
C,B) = AlgC{SC ∪ S†C ∪ {B}} ⊂ RC(S ∪ J(S),B).

We can easily check that the Hermitian radial algebra submits to the following rules, which are equivalent
to (AH1)-(AH3):

(AH1*) {Z,U} = 0, {Z†, U†} = 0, Z, U ∈ SC,

(AH2*) [V, {Z,U†}] = 0, [V †, {Z,U†}] = 0, V, Z, U ∈ SC,

(AH3*) [B, Z] = 2iZ, [B, Z†] = −2iZ†, Z ∈ SC.

We can also introduce the Hermitian vector derivatives ∂Z and ∂Z† ∈ End
(
R(SC, S

†
C,B)

)
through the

relations
∂Z :=

1

4

(
∂x − i∂J(x)

)
, ∂Z† := −1

4

(
∂x + i∂J(x)

)
,
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where ∂x and ∂J(x) are supposed to be linear in the complexification of R(S ∪ J(S),B). The operators
∂Z and ∂Z† satisfy the following relations which are equivalent to (DH1)-(DH4):

(DH1*) ∂Z [fF ] = ∂Z [f ]F + f∂Z [F ], ∂Z† [fF ] = ∂Z† [f ]F + f∂Z† [F ],

[fF ]∂Z = F [f ]∂Z + f [F ]∂Z , [fF ]∂Z† = F [f ]∂Z† + f [F ]∂Z† ,

f ∈ R0(SC, S
†
C,B) := AlgC

{
{Z,U} : Z,U ∈ SC ∪ S†C

}
, F ∈ R(SC, S

†
C,B),

(DH2*)


∂Z [G] = [G]∂Z = 0,

∂Z [ZG] = ∂Z [Z]G,

[GZ]∂Z = G[Z]∂Z

G ∈ AlgC
(

(SC \ {Z}) ∪ S†C ∪ {B}
)
,


∂Z† [G] = [G]∂Z† = 0,

∂Z† [Z
†G] = ∂Z† [Z

†]G,

[GZ†]∂Z† = G[Z†]∂Z†

G ∈ AlgC
(
SC ∪

(
S†C \ {Z

†}
)
∪ {B}

)
,

(DH3*) ∂Z [Z] =
1

2
(n+ iB), ∂Z† [Z

†] =
1

2
(n− iB),

[Z]∂Z =
1

2
(n− iB), [Z†]∂Z† =

1

2
(n+ iB), n =

1

2
m,

(DH4*) ∂Z(U,Z) = U† = (U,Z)∂Z , ∂Z†(Z,U) = ∂Z†(U
†, Z†) = U = (U†, Z†)∂Z† , Z, U ∈ SC,

where (U,Z) := {U†, Z}.

The complex directional derivative and its Hermitian conjugate can then be defined by

DU,Z :=
1

2

(
Dy,x + iDJ(y),x

)
, D†U,Z :=

1

2

(
Dy,x − iDJ(y),x

)
.

When Z = U the above operators represent the Hermitian Euler operators EZ := DZ,Z and EZ† := D†Z,Z .
Some the above endomorphisms abstractly defined on R(S) can be mapped into the algebra of endo-

morphisms of the Clifford polynomial representation R(x1, . . . , xs). This way, classical Clifford analysis
can be seen as a representation of the radial algebra through the following correspondences for each
x ∈ S := {x1, . . . , xs}

x→ x =

m∑
j=1

xjej , x| → x| =
m∑
j=1

xjej |, ∂x → −∂x = −
m∑
j=1

ej∂xj , B → −
m∑
j=1

ejej |, (4)

where the elements ej | : a → ãej generate the Clifford algebra Rm,0 and play an important rôle in the
isomorphism End(R0,m) ∼= Rm,m.

The abstract complex structure J can be mapped into the space of linear operators acting on the
Clifford-polynomial representation. Observe that the axiom (AH1) implies that in this representation
J ∈ O(m) and J2 = −Im; which clearly forces the dimension m to be even. This way, J can be mapped
to the classical complex structure in the Clifford-polynomial representation with 2m dimensions. Whence
Hermitian Clifford analysis can be seen as a representation of the Hermitian radial algebra through the
following identifications

x→ x =

2m∑
j=1

xjej , J(x)→ J(x)

m∑
j=1

(xm+jej − xjem+j), B→ B =

m∑
j=1

ejem+j = −iB,

∂x → −∂x = −
m∑
j=1

(ej∂xj + em+j∂xm+j ), ∂J(x) → −∂J(x) = −
m∑
j=1

(ej∂xm+j − em+j∂xj ),

Dy,x → Dy,x =

m∑
j=1

(yj∂xj + ym+j∂xm+j ), DJ(y),x → DJ(y),x =

m∑
j=1

(ym+j∂xj − yj∂xm+j ).
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For more details about the study of these endomorphisms in these representations we refer the reader to
[8]. In the following sections we will introduce the basic objects for defining Hermitian Clifford analysis
in superspace through a representation of the Hermitian radial algebra. In order to show that such a
definition is consistent we must check that it satisfies the corresponding axioms stated in this section; or
equivalently, show that the corresponding map constitutes an algebra homomorphism. This method has
been successfully used for the extension of the orthogonal Clifford analysis setting to superspace, see [6].

3 The superspace framework
Superanalysis or analysis on superspace considers not only commuting (bosonic) but also anti-commuting
(fermionic) variables. In particular these variables can be represented by co-ordinates with values in a
graded commutative Banach superalgebra A = A0 ⊕A1 over R, where A0 and A1 are the spaces of even
and odd homogeneous elements respectively and satisfy AjAk ⊂ Aj+k for j, k ∈ Z2. We recall that the
graded-commutative property means that

vw = wv, v̀ẁ = −ẁv̀, vẁ = ẁv, v, w ∈ A0, v̀, ẁ ∈ A1.

An example of such a superalgebra is provided by any Grassmann algebra ΛN = AlgR{f1, . . . , fN} where
fjfk + fkfj = 0. For this algebra one has the splitting ΛN = Λ+

N ⊕ Λ−N being Λ+
N the even subspace and

Λ−N the odd subspace. We will not go into detail on the choice of the superalgebra A. In order to develop
our ideas it just suffices to consider finite sets of commuting and anti-commuting variables.

To establish Clifford analysis in superspace we need to introduce m orthogonal Clifford algebra
generators e1, . . . , em and 2n symplectic Clifford algebra generators è1, . . . è2n, subject to the relations

ejek + ekej = −2δj,k

è2j è2k − è2kè2j = 0

è2j−1è2k−1 − è2k−1è2j−1 = 0 (5)
è2j−1è2k − è2kè2j−1 = δj,k

ej èk + èkej = 0.

The real algebra generated by both the ej ’s and the èj ’s will be denoted by Cm,2n.
The classical representation of the radial algebra R(S) in superspace, where S is a finite set composed

by k abstract vector variables (k > 1), is given by correspondence,

x→ x = x+ x̀ =

m∑
j=1

xjej +

2n∑
j=1

x̀j èj , x ∈ S, (6)

between S and the set of independent supervector variables S = {x : x ∈ S}. For each x ∈ S we
consider in (6) m bosonic (commuting) variables x1, . . . , xm and 2n fermionic (anti-commuting) variables
x̀1, . . . , x̀2n. The projections x =

∑m
j=1 xjej and x̀ =

∑2n
j=1 x̀j èj are called the bosonic and fermionic

vector variables, respectively. The set of independent supervector variables S, obtained through the
correspondence (6), generates a radial algebra representation R(S) as we will show next.

Let us define the sets V AR and V AR`of bosonic and fermionic variables

V AR =
⋃
x∈S

{x1, . . . , xm}, V AR`=
⋃
x∈S

{x̀1, . . . , x̀2n}

respectively, where the sets {x1, . . . , xm} and {x̀1, . . . , x̀2n} correspond to the bosonic and fermionic
vector variables associated to each x ∈ S through the correspondences (6). This way, V AR contains
mk bosonic variables that generate a polynomial algebra R[V AR] = AlgR{V AR} while V AR`contains
2nk fermionic variables that generate a Grassmann algebra Λ2nk = AlgR{V AR }̀. They give rise to the
algebra of super-polynomials V = R[V AR]⊗ Λ2nk. The algebra V is extended to the algebra of Clifford
valued super-polynomials

Am,2n = V ⊗ Cm,2n
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(i.e. the elements of V commute with the elements of Cm,2n). The correspondence (6) defines a radial
algebra representation Ψm,2n : R(S)→ Am,2n, since for every pair x,y ∈ S

{x,y} = −2

m∑
j=1

xjyj +

n∑
j=1

(x̀2j−1ỳ2j − x̀2j ỳ2j−1) (7)

is a central element in Am,2n.
It is important to note that the range R(S) of this representation is a subalgebra strictly contained in

Am,2n. This can be easily seen by noticing that elements of the form vèj , v̀ej with v ∈ V AR, v̀ ∈ V AR`do
not belong to R(S). From now on, we will refer to the representation R(S) as the radial algebra embedded
in Am,2n. Such a representation allows to develop a nice extension of Clifford analysis to superspace as
it was shown in [5, 6].

Remark 3.1. Let A = A0 ⊕ A1 be a graded commutative Banach superalgebra. If one considers the
variables in V AR and V AR`represented as co-ordinates with values in Λ0 and Λ1 respectively; then the
corresponding underlying vector space on which the vector variables x are defined is given by

V = Rm|2n(A) :=


m∑
j=1

vjej +

2n∑
j=1

v̀j èj : vj ∈ A0, v̀j ∈ A1

 .

It is easily seen that the algebra generated by all vectors in Rm|2n(A) is strictly contained in A⊗Cm,2n. In
particular, Rm|2n(A) does not contain the symplectic Clifford generators èj (j = 1, . . . , 2n). This makes
the notion of vector variable in this supersymmetry setting more restrictive than in the Clifford-polynomial
representation. We recall that in that case, the corresponding underlying vector space is V = Rm which
contains all the orthogonal Clifford generators ej (j = 1, . . . ,m).

The difference is seen by noticing that the orthogonal Clifford generators satisfy the axiom (A1)
since {ej , ek} is always a scalar. But that is not the case for the anti-commutator {èj , èk} of symplectic
Clifford generators. To obtain a representation of the radial algebra in superspace it is necessary to
combine the symplectic generators èj with anti-commuting variables. In that way we get the commuting
element {v̀èj , ẁèk} = v̀ẁ[èj , èk].

4 Representation of the radial algebra in superspace
The endomorphisms defined in section 2 on the radial algebra R(S) can be naturally mapped into the
algebra of endomorphisms over R(S). Through this section we will describe the extension of some of
these endomorphisms from R(S) to Am,2n.

Conjugation: The conjugation admits an extension from the radial algebra representation R(S) to
Am,2n. In fact, we can define · ∈ End(Am,2n) governed by the following rules:

i) · is the identity map on V.

ii) ej1 · · · ejk èl1 · · · èls = (−1)k+
s(s+1)

2 èls · · · èl1ejk · · · ej1
This extension still is an involution on Am,2n but the anti-automorphism property, i.e. FG = GF , which
is fulfilled on the radial algebra is not longer satisfied in Am,2n. For example, observe that

èj èk = −èkèj 6= èkèj = èk èj or v̀ej ẁek = v̀ẁekej 6= −v̀ẁekej = ẁek v̀ej .

Main involution: The main involution can also be extended from the radial algebra to Am,2n. The
algebra homomorphism ·̃ can be defined in a natural way by

i) ·̃ is the identity map on V.

ii) ẽj = −ej , ẽ̀j = −èj .

iii) F̃G = F̃ G̃.
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Its restricted actions to the bosonic and the fermionic part respectively are called the bosonic and
fermionic main involutions and are defined by the following relations:

Bosonic main involution ·̃ b

i) ·̃ b is the identity map on V,

ii) ẽjb = −ej , ẽ̀j
b

= èj ,

iii) F̃G
b

= F̃ b G̃b.

Fermionic main involution ·̃ f

i) ·̃ f is the identity map on V,

ii) ẽjf = ej , ẽ̀j
f

= −èj ,

iii) F̃G
f

= F̃ f G̃f .

It is easily seen that the main involution ·̃ is the composition of its bosonic and fermionic restrictions.
There is another important involution in Am,2n, related to the fermionic main involution. This algebra
homomorphism is called the hash map; it is denoted by ·∗ and defined by the relations:

i) v∗ = v and v̀ ∗ = −v̀ for every v ∈ V AR, v̀ ∈ V AR .̀

ii) ·∗ is the identity map in Cm,2n.

iii) (FG)∗ = F ∗G∗.

This hash map will be useful for future computations since for every F ∈ Am,2n, v̀ ∈ V AR`we have that
v̀F = F ∗ v̀ and its restriction to the radial algebra coincides with the fermionic main involution. In fact,
for every vector variable x we have:

x̃f =

m∑
j=1

xjej −
2n∑
j=1

x̀j èj = x∗.

Vector derivative: We start by introducing the partial derivatives for every coordinate variable in
V AR ∪ V AR .̀ The left and right derivatives with respect to the commuting variable v ∈ V AR and the
anti-commuting variable v̀ ∈ V AR`are defined as endomorphisms on Am,2n by the following recursive
approach:

∂v[1] = 0,

∂vw − w∂v = δv,w,

∂vẁ = ẁ∂v, ∂vej = ej∂v, ∂v èj = èj∂v,


∂v̀[1] = 0,

∂v̀ẁ + ẁ∂v̀ = δv̀,ẁ,

∂v̀w = w∂v̀, ∂v̀ej = ej∂v̀, ∂v̀ èj = èj∂v̀,

(8)

where the above relations also remain valid for the right actions of w, ẁ, ∂v, ∂v̀. From this we immediately
obtain for v, w ∈ V AR and v̀, ẁ ∈ V AR`that

∂v∂w = ∂w∂v, ∂v̀∂ẁ = −∂ẁ∂v̀, ∂v∂ẁ = ∂ẁ∂v,

which means that the algebra generated by the partial derivatives is isomorphic to V.
It is easily seen that ∂v, v ∈ V AR, behaves like a classical partial derivative. In fact, for F,G ∈ Am,2n
we can prove that

∂v[FG] = ∂v[F ]G+ F ∂v[G], [FG]∂v = F [G]∂v + [F ]∂v G.

By an induction argument, these relations show that the left action of ∂v is equal to its right action if
v ∈ V AR, as it is expected. But the situation is no longer the same for the partial derivative ∂v̀ with
respect to the anti-commuting variable v̀ ∈ V AR .̀ Consider, for instance, the operator ∂v̀ acting from
both sides on the product v̀ẁ with v̀ 6= ẁ, i.e.

∂v̀[v̀ẁ] = ẁ while [v̀ẁ]∂v̀ = −[ẁv̀]∂v̀ = −ẁ.

The bosonic Dirac operator ∂x and the fermionic Dirac operator ∂x̀ associated to the vector variable
x are introduced using the above defined partial derivatives,

∂x =

m∑
j=1

ej∂xj , ∂x̀ = 2

n∑
j=1

(
è2j∂x̀2j−1 − è2j−1∂x̀2j

)
.
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The left and right super Dirac operators then are defined by

∂x· = ∂x̀ · −∂x· ; F → ∂x̀[F ]− ∂x[F ] = ∂x[F ]
·∂x = − · ∂x̀ − ·∂x ; F → −[F ]∂x̀ − [F ]∂x = [F ]∂x.

In [6] it was proven that the above operators satisfy all axioms (D1)- (D4) used in the definition of
vector derivative on the level of radial algebra. In this case the rôle of the abstract dimension is played
by ∂x[x] = [x]∂x = m− 2n =: M . This parameter M is called the superdimension.

On the radial algebra level, the left and right actions of the vector derivative are connected by means
of the conjugation since ∂x[F ] = −[F ]∂x holds for every radial algebra element F , see [8]. But this is
a property fully dependent on the structure of the radial algebra. That is why the above relation is no
longer fulfilled in general on Am,2n. For example, we obtain for the element F = x̀2j−1 that

∂x[F ] = ∂x̀[F ] = 2è2j = −2è2j , while − [F ]∂x = [F ]∂x̀ = 2è2j .

Vector multipliers: In the Clifford-polynomial representation the vector multipliers x and x| can be
easily redefined using the basis multipliers ej and ej |, see (4). In particular, this means that the ·| action
is linear with respect the coordinate variables xj . Based on the same idea, we define the following basis
multipliers in the superspace representation:

ej : F → ejF, ej | : F → F̃ ej ,

èj : F → èjF, èj | : F → F̃ bèj .

They allow us to write the x| operator defined on the radial algebra level as

x| = x|+ x̀| =
m∑
j=1

xjej |+
2n∑
j=1

x̀j èj |.

In fact, for every F ∈ Am,2n we have that

x|[F ] =

m∑
j=1

xjF̃ ej +

2n∑
j=1

x̀jF̃
bèj =

m∑
j=1

F̃ xjej +

2n∑
j=1

(
F̃ b
)∗
x̀j èj .

Hence, if F is an element of the radial algebra we obtain F̃ =
(
F̃ b
)∗

and in consequence x|[F ] = F̃x.
Using the identifications:

em+j = iej | j = 1, . . . ,m,
è2n+j = ièj | j = 1, . . . , 2n.

(9)

it can be easily proven that the operators e1, . . . , em, em+1, . . . , e2m and è1, . . . , è2n, è2n+1, . . . , è4n satisfy
the commuting relations given in (5), i.e. they generate the algebra C2m,4n.

For future computations we will need the following relations that can be easily proven using mathe-
matical induction and the recursion formulas (8).

Lemma 1. Let v ∈ V AR, v̀ ∈ V AR`and x = x+ x̀ be a supervector variable. Then one has

[∂v, ·] = 0, [∂v̀, ·] = 0, [∂v, ej |] = 0,
{
∂x, ·̃ b

}
= 0,

[
∂x̀, ·̃ b

]
= 0,[

∂v, ·̃ b
]

= 0,
[
∂v̀, ·̃ b

]
= 0, [∂v̀, ej |] = 0,

[
∂x, ·̃ f

]
= 0,

{
∂x̀, ·̃ f

}
= 0,[

∂v, ·̃ f
]

= 0,
[
∂v̀, ·̃ f

]
= 0, [∂v, èj |] = 0,

{
∂x, ·̃

}
= 0,

{
∂x̀, ·̃

}
= 0,

[∂v, ·̃ ] = 0, [∂v̀, ·̃ ] = 0, [∂v̀, èj |] = 0,
[
∂x, · ∗

]
= 0,

{
∂x̀, · ∗

}
= 0,

[∂v, ·∗] = 0, {∂v̀, ·∗} = 0,

on the whole algebra Am,2n. In addition, for every F ∈ Am,2n one has that ∂v̀[F ] = −[F ∗]∂v̀.

Using some of the above properties we can also prove the following differentiation rules
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Lemma 2. Let v ∈ V AR, v̀ ∈ V AR`and F,G ∈ Am,2n. Then one has
∂v[FG] = ∂v[F ]G,

[GF ]∂v = G[F ]∂v, if G ∈ AlgR
((
V AR \ {v}

)
∪ V AR

)̀
⊗ Cm,2n

∂v[G] = 0 = [G]∂v,
∂v̀[FG] = ∂v̀[F ]G,

[GF ]∂v̀ = G[F ]∂v̀, if G ∈ AlgR
(
V AR ∪

(
V AR`\ {v̀}

))
⊗ Cm,2n

∂v̀[G] = 0 = [G]∂v̀,

Operator B: Following the radial algebra approach and using Lemmas 1 and 2, we can compute the
operator B acting on F ∈ Am,2n as follows:

B[F ] = {∂x,x|}[F ] = ∂x
[
x|[F ]

]
+ x|

[
∂x[F ]

]
= (∂x̀ − ∂x) (x|[F ] + x̀|[F ]) + (x|+ x̀|)

(
∂x̀[F ]− ∂x[F ]

)
=
(
−∂x

[
F̃ x
]

+ ∂x

[
F̃
]
x
)

+
(
−∂x

[(
F̃ b
)∗
x̀
]

+ ∂x

[(
F̃ b
)∗]

x̀
)

+

+
(
∂x̀

[
F̃ x
]
− ∂x̀

[
F̃
]
x
)

+
(
∂x̀

[(
F̃ b
)∗
x̀
]
− ∂x̀

[(
F̃ b
)∗]

x̀
)

=
(
−∂x

[
F̃ x
]

+ ∂x

[
F̃
]
x
)

+
(
∂x̀

[(
F̃ b
)∗
x̀
]
− ∂x̀

[(
F̃ b
)∗]

x̀
)
.

However

−∂x
[
F̃ x
]

+ ∂x

[
F̃
]
x = −

m∑
j=1

ejF̃ ej

and

∂x̀

[(
F̃ b
)∗
x̀
]

= 2

n∑
j=1

(
è2j∂x̀2j−1

− è2j−1∂x̀2j

) 2n∑
k=1

x̀kF̃
bèk

= 2
∑

1≤j≤n
1≤k≤2n

è2j

(
δ2j−1,k F̃

bèk − x̀k∂x̀2j−1
[F̃ b]èk

)
− è2j−1

(
δ2j,k F̃

bèk − x̀k∂x̀2j
[F̃ b]èk

)
= 2

∑
1≤j≤n
1≤k≤2n

(
δ2j−1,k è2jF̃

bèk − δ2j,k è2j−1F̃
bèk

)
+

+ 2
∑

1≤j≤n
1≤k≤2n

(
è2j∂x̀2j−1 [(F̃ b)∗]x̀kèk − è2j−1∂x̀2j [(F̃ b)∗]x̀kèk

)

= 2

n∑
j=1

(
è2jF̃

bè2j−1 − è2j−1F̃
bè2j

)
+ ∂x̀

[(
F̃ b
)∗]

x̀.

We thus get

B[F ] = −
m∑
j=1

ejF̃ ej + 2

n∑
j=1

(
è2jF̃

bè2j−1 − è2j−1F̃
bè2j

)
,

allowing us to write the operator B as a special "bivector" in C2m,4n:

B = −
m∑
j=1

ejej |+ 2

n∑
j=1

(è2j è2j−1| − è2j−1è2j |) = i

 m∑
j=1

ejem+j + 2

n∑
j=1

(è2j−1è2n+2j − è2j è2n+2j−1)

 .

In Am,2n we can also define the bosonic and fermionic differential operators

∂x| =
m∑
j=1

ej | ∂xj , ∂x̀| = 2

n∑
j=1

(
è2j | ∂x̀2j−1 − è2j−1| ∂x̀2j

)
,
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leading to the super differential operator ∂x| = ∂x̀| − ∂x| acting from the left. Using Lemma 1 we can
compute the action of this operator as follows.

∂x|[F ] = ∂x̀|[F ]− ∂x|[F ] = 2

n∑
j=1

(
è2j | ∂x̀2j−1

[F ]− è2j−1| ∂x̀2j
[F ]
)
−

m∑
j=1

ej | ∂xj
[F ]

= 2

n∑
j=1

(
∂x̀2j−1

[F̃ b]è2j − ∂x̀2j
[F̃ b]è2j−1

)
−

m∑
j=1

∂xj
[F̃ ]ej

= −2

n∑
j=1

(
[(F̃ b)∗]∂x̀2j−1

è2j − [(F̃ b)∗]∂x̀2j
è2j−1

)
−

m∑
j=1

[F̃ ]∂xj
ej

= −[(F̃ b)∗]∂x̀ − [F̃ ]∂x.

Then, on the radial algebra level we have ∂x|[F ] = [F̃ ]∂x and, as it was proven in [8], the equality
−{∂x|,x} = B is valid on the radial algebra R(S). By straightforward computation we can check that it
remains valid in Am,2n.

5 Complex structures
Following the approach given in [8], we can define on the radial algebra of doubled vector variables
x = a+ ib|, a, b ∈ S, a complex structure J1 by means of

J1(a+ ib|) = b− ia|.

Using the identifications (9), the corresponding version of the doubled vector variables in superspace has
the form

x =

m∑
j=1

xjej +

2n∑
j=1

x̀j èj + i

 m∑
j=1

xm+jej |+
2n∑
j=1

x̀2n+j èj |

 =

2m∑
j=1

xjej +

4n∑
j=1

x̀j èj = x+ x̀,

which is the natural form of a vector variable in the algebra A2m,4n. Then the corresponding complex
structure defined in the radial algebra embedded in A2m,4n is given by

J1(x) = J1(x) + J1(x̀) =

m∑
j=1

(xm+jej − xjem+j) +

2n∑
j=1

(x̀2n+j èj − x̀j è2n+j).

This radial algebra homomorphism can be extended in a natural way to A2m,4n by the following relations:

1. J1 is the identity map in V.

2. J1(ej) = −em+j , J1(em+j) = ej , j = 1, . . . ,m,
J1(èj) = −è2n+j , J1(è2n+j) = èj , j = 1, . . . , 2n.

3. J1(FG) = J1(F )J1(G), F,G ∈ A2m,4n.

The restriction of J1 to the bosonic part AlgR(V AR ∪ {e1, . . . , e2m}) yields exactly the same complex
structure as used in classical Hermitian Clifford analysis (see [2, 3]). On the other hand, the restriction
to the fermionic part AlgR(V AR ∪̀ {è1, . . . , è4n}) brings new insights to this study since it acts on objects
of a different nature.

In the first place observe that the elements èj and the algebra generated by them may be represented
by polynomial differential operators in 2n dimensions where we introduce commuting variables aj , bj and
the corresponding derivatives ∂aj , ∂bj , j = 1, . . . , n, and make the assignments (see [19]):

è2j−1 → ∂aj , è2j → aj , è2n+2j−1 → ∂bj , è2n+2j → bj . (10)

Indeed, with these identifications we inmediatly obtain the "Weyl algebra defining relations"

∂aj ak − ak ∂aj = δj,k = ∂bj bk − bk ∂bj .
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The above approach is completely consistent with the defining relations of the algebra generated only by
the èj ’s. We have to keep in mind that for working with the whole set of Clifford generators ej and èj
which satisfy the anticommuting relation ej èk = −èkej , we need to introduce an extra Clifford algebra
generator e2m+1 in the previous assignments (see [19])

è2j−1 → e2m+1∂aj , è2j → −e2m+1aj , è2n+2j−1 → e2m+1∂bj , è2n+2j → −e2m+1bj .

However, this additional element e2m+1 is not important if we are only working with the èj ’s. The
representation (10) is sufficient to study the action of J1 over AlgR(V AR`∪ {è1, . . . , è4n}).

In the closure of the the set of polynomial differential operators generated by aj , bj we may consider
the element

ei〈a,b〉 = exp

i n∑
j=1

ajbj

 =

n∏
j=1

eiajbj , where eiajbj =

∞∑
k=0

(iajbj)
k

k!
.

The action of this operator on 1 gives the function ei〈a,b〉 that works as a "projection wall" under the
action of the above Weyl generators, i.e.

∂aje
i〈a,b〉[1] = i bj e

i〈a,b〉[1], ∂bje
i〈a,b〉[1] = i aj e

i〈a,b〉[1].

By means of these relations we obtain a "projection" J of the complex structure J1 using the following:

J1(è2j−1) ei〈a,b〉[1] = −∂bjei〈a,b〉[1] = −aj iei〈a,b〉[1] = −è2j ie
i〈a,b〉[1], J(è2j−1) = −è2j ,

J1(è2j) e
i〈a,b〉[1] = −bjei〈a,b〉[1] = ∂aj ie

i〈a,b〉[1] = è2j−1 ie
i〈a,b〉[1], J(è2j) = è2j−1.

In fact, J projects the whole action of J1 onto the vector space generated only by the elements è1, . . . , è2n.
It avoids the "redundancy" caused by doubling the already doubled fermionic part. This shows that in
this setting the fermionic dimension does not have to be doubled in order to define a complex structure.

Indeed, the projection J can be extended as an algebra homomorphism of A2m,2n, where only the
bosonic dimension has been doubled, using the restriction of J1 to the bosonic part. This is:

1. J is the identity in V.

2. J(ej) = −em+j , J(em+j) = ej , j = 1, . . . ,m,
J(è2j−1) = −è2j , J(è2j) = è2j−1, j = 1, . . . , n.

3. J(FG) = J(F )J(G), F,G ∈ A2m,2n.

It is easily seen that J2(x) = −x for each supervector variable x. This is a natural property for J since
this fermionic projection of the complex structure J1 also is a complex structure, i.e. it satisfies the
complex structure axioms (AH1)-(AH3); as we will show in the next section.

5.1 Verification of the complex structure axioms
Here we will check that the action of J on the radial algebra R(S) embedded in A2m,2n satisfies the
complex structure axioms.
In this setting the supervector variables take the form

x = x+ x̀ =

m∑
j=1

(xjej + xm+jem+j) +

n∑
j=1

(x̀2j−1è2j−1 + x̀2j è2j) ,

and the action of J is given by,

J(x) = J(x) + J(x̀) =

m∑
j=1

(xm+jej − xjem+j) +

n∑
j=1

(x̀2j è2j−1 − x̀2j−1è2j) .

Checking (AH1)-(AH2):

{x,y} = {J(x), J(y)}, {J(x),y} = −{x, J(y)} x,y ∈ S
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We clearly have

{x, y} = −2

m∑
j=1

(xjyj + xm+jym+j) = {J(x), J(y)},

{x, ỳ} =
∑
j,k

xj ỳk{ej , èk} = 0 = {J(x), J(ỳ)},

{x̀, ỳ} =
∑
j,k

x̀j ỳk[èj , èk] =

n∑
j=1

x̀2j−1ỳ2j − x̀2j ỳ2j−1.

and also

{J(x̀), J(ỳ)} =

n∑
j,k=1

{x̀2j è2j−1 − x̀2j−1è2j , ỳ2kè2k−1 − ỳ2k−1è2k}

=

n∑
j,k=1

−x̀2j ỳ2k−1[è2j−1, è2k]− x̀2j−1ỳ2k[è2j , è2k−1]

=

n∑
j=1

x̀2j−1ỳ2j − x̀2j ỳ2j−1.

Hence we conclude,

{x,y} = −2

m∑
j=1

(xjyj + xm+jym+j) +

n∑
j=1

x̀2j−1ỳ2j − x̀2j ỳ2j−1 = {J(x), J(y)},

which clearly is a central element in A2m,2n.
On the other hand, we have

{J(x), y} = −2

m∑
j=1

(xm+jyj − xjym+j) = −{x, J(y)},

{J(x), ỳ} =
∑
j,k

{xm+jej − xjem+j , ỳkèk} = 0 = {x, J(ỳ)},

{J(x̀), ỳ} =

n∑
j,k=1

{x̀2j è2j−1 − x̀2j−1è2j , ỳ2k−1è2k−1 + ỳ2kè2k}

=

n∑
j,k=1

x̀2j ỳ2k[è2j−1, è2k]− x̀2j−1ỳ2k−1[è2j , è2k−1]

=

n∑
j=1

x̀2j−1ỳ2j−1 + x̀2j ỳ2j

and

{x̀, J(ỳ)} =

n∑
j,k=1

{x̀2j−1è2j−1 + x̀2j è2j , ỳ2kè2k−1 − ỳ2k−1è2k}

=

n∑
j,k=1

−x̀2j−1ỳ2k−1[è2j−1, è2k] + x̀2j ỳ2k[è2j , è2k−1]

= −
n∑
j=1

x̀2j−1ỳ2j−1 + x̀2j ỳ2j .
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Then we obtain

{J(x),y} = −2

m∑
j=1

(xm+jyj − xjym+j) +

n∑
j=1

(x̀2j−1ỳ2j−1 + x̀2j ỳ2j) = −{x, J(y)},

which also is a central element in A2m,2n.
Checking the axiom (AH3) requires of the introduction of a suitable element B ∈ A2m,2n. In

accordance with axiom (DH3) we have that such an element B is obtained by the action of the vector
derivative ∂x on J(x). Then we define,

B :=
1

2
∂x[J(x)] =

1

2
(∂x̀ − ∂x) (J(x) + J(x̀)) =

1

2

(
∂x̀[J(x̀)]− ∂x[J(x)]

)
=

=

m∑
j=1

ejem+j −
2n∑
j=1

èj
2. (11)

This definition is consistent with (3) since J(B) = B.

Checking (AH3):
[B,x] = −2J(x), [B, J(x)] = 2x, x ∈ S.

Let us write B := Bb −Bf with Bb =
∑m
j=1 ejem+j and Bf =

∑n
j=1

(
è2j−1

2 + è2j
2
)
. We immediately

obtain,

[Bb, x] =
∑
j,k

xk[ejem+j , ek] = −2

m∑
j=1

xm+jej − xjem+j = −2J(x)

[Bb, x̀] =
∑
j,k

x̀k[ejem+j , èk] = 0 =
∑
j,k

xk[èj
2, ek] = [Bf , x]

[Bf , x̀] =

2n∑
j,k=1

[
èj

2, x̀kèk
]

=

n∑
j=1

x̀2k

[
è2j−1

2, è2k

]
+ x̀2k−1

[
è2j

2, è2k−1

]
= 2

n∑
j=1

x̀2j è2j−1 − x̀2j−1è2j = 2J(x̀).

Then we conclude that

[B,x] = [Bb, x]− [Bf , x̀] = −2J(x)− 2J(x̀) = −2J(x).

The other equality is obtained by applying J to the above relation.

5.2 Vector derivatives ∂x and ∂J(x)

The partial derivatives ∂v, ∂v̀ always commute with the complex structure J . Then, the corresponding
action of J on the vector derivative ∂x can be easily seen by means of the following bosonic and fermionic
Dirac operators on A2m,2n:{

∂x =
∑m
j=1

(
ej∂xj

+ em+j∂xm+j

)
,

∂x̀ = 2
∑n
j=1

(
è2j∂x̀2j−1

− è2j−1∂x̀2j

)
,

{
∂J(x) := J(∂x) =

∑m
j=1

(
ej∂xm+j

− em+j∂xj

)
,

∂J(x̀) := J(∂x̀) = 2
∑n
j=1

(
è2j−1∂x̀2j−1

+ è2j∂x̀2j

)
.

The vector derivatives ∂x and ∂J(x) then are defined by{
∂x· = ∂x̀ · −∂x· ,
·∂x = − · ∂x̀ − ·∂x,

{
∂J(x)· = ∂J(x̀) · −∂J(x)· ,
·∂J(x) = − · ∂J(x̀) − ·∂J(x).

This means that the above actions are subject to the relations:{
J(∂x[F ]) = ∂J(x)[J(F )],

J([F ]∂x) = [J(F )]∂J(x),

{
J(∂J(x)[F ]) = −∂x[J(F )],

J([F ]∂J(x)) = −[J(F )]∂x,
F ∈ A2m,2n, (12)
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which generalize to A2m,2n the properties studied at the radial algebra level, see [8].
We now have to verify whether these definitions are in agreement with the axioms (DH1)-(DH4)

established in the radial algebra setting. We first check the basic evaluations.

Checking (DH3)

∂x[x] = [x]∂x = m = ∂J(x)[J(x)] = [J(x)]∂J(x),

∂x[J(x)] = −[J(x)]∂x = 2B = −∂J(x)[x] = [x]∂J(x).

It is known from [6] that ∂x[x] = [x]∂x = 2m − 2n =: m, since ∂x is the original vector derivative in
A2m,2n. Then applying J and using (12) we obtain ∂J(x)[J(x)] = [J(x)]∂J(x) = 2m− 2n.
The relation ∂x[J(x)] = 2B was the one used in (11). Furthermore,

−[J(x)]∂x = (J(x) + J(x̀))
(
∂x̀ + ∂x

)
= [J(x)]∂x + [J(x̀)]∂x̀

= 2

n∑
j=1

(−è2j−1
2 − è2j

2) +

m∑
j=1

(−em+jej + ejem+j)

= 2B.

Applying J on the above equalities and using again (12) we conclude that −∂J(x)[x] = 2B = [x]∂J(x).

Checking (DH4)
∂x[x2] = [x2]∂x = 2x, ∂J(x)[x

2] = [x2]∂J(x) = 2J(x),

∂x[xJ(x)] = (m + 2)J(x)− 2xB, [xJ(x)]∂x = −(m− 2)J(x)− 2xB,

∂J(x)[xJ(x)] = −(m + 2)x− 2J(x)B, [xJ(x)]∂J(x) = (m− 2)x− 2J(x)B.

x ∈ S,

{
∂x{x,y} = {x,y}∂x = 2y = ∂J(x) {J(x),y} = {J(x),y} ∂J(x),

∂J(x){x,y} = {x,y}∂J(x) = 2J(y) = −∂x{J(x),y} = −{J(x),y}∂x,
x 6= y.

The equalities ∂x[x2] = [x2]∂x = 2x and ∂x{x,y} = {x,y}∂x = 2y (x 6= y) were obtained in [6]. Then,
letting act J on each of the previous relations we get,

∂J(x)[x
2] = [x2]∂J(x) = 2J(x), and ∂J(x){x,y} = {x,y}∂J(x) = 2J(y).

We also find

∂x[xJ(x)] =
(
∂x̀ − ∂x

)
(x̀+ x) (J(x) + J(x̀))

=
(
∂x̀ − ∂x

) [
xJ(x) + xJ(x̀) + x̀J(x) + x̀J(x̀)

]
= −∂x̀ [J(x̀)x] + ∂x̀ [x̀J(x)] + ∂x̀ [x̀J(x̀)]− ∂x [xJ(x)]− ∂x [xJ(x̀)] + ∂x [J(x)x̀] .

However

∂x̀ [J(x̀)x] = ∂x̀ [J(x̀)]x = −2Bf x, ∂x̀ [x̀J(x)] = ∂x̀ [x̀] J(x) = −2nJ(x),

∂x [xJ(x̀)] = ∂x [x] J(x̀) = −2mJ(x̀), ∂x [J(x)x̀] = ∂x [J(x)] x̀ = −2Bb x̀,

∂x̀ [x̀J(x̀)] = 2

n∑
j=1

è2j∂x̀2j−1
[x̀J(x̀)]− è2j−1∂x̀2j

[x̀J(x̀)]

= 2

n∑
j=1

è2j

(
è2j−1J(x̀) + x̀è2j

)
− è2j−1

(
è2jJ(x̀)− x̀è2j−1

)

= 2

 n∑
j=1

è2j è2j−1 − è2j−1è2j

 J(x̀) + 2

n∑
j=1

(
è2j−1x̀è2j−1 + è2j x̀è2j

)

= −2nJ(x̀) + 2

n∑
j=1

(
è2j−1

2 x̀− è2j−1x̀2j + è2j
2 x̀+ è2j x̀2j−1

)
= −(2n+ 2)J(x̀) + 2Bf x̀
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and

∂x [xJ(x)] =

m∑
j=1

ej

(
ejJ(x)− xem+j

)
+ em+j

(
em+jJ(x) + xej

)
= −2mJ(x) +

m∑
j=1

(
em+j x ej − ej x em+j

)
= −2mJ(x) +

m∑
j=1

(
2ejem+j x+ 2xm+jej − 2xjem+j

)
= (−2m+ 2)J(x) + 2Bb x.

Then we conclude that

∂x[xJ(x)] = 2Bf x− 2nJ(x)− (2n+ 2)J(x̀) + 2Bf x̀− (−2m+ 2)J(x)− 2Bb x+ 2mJ(x̀)− 2Bb x̀

= (2Bf − 2Bb)x+ (2Bf − 2Bb)x̀+ (2m− 2n− 2)J(x) + (2m− 2n− 2)J(x̀)

= (2m− 2n− 2)J(x)− 2Bx

= (2m− 2n+ 2)J(x)− 2xB. (13)

Letting act J on (13) we obtain:

∂J(x)[xJ(x)] = −(m + 2)x− 2J(x)B, (14)

and conjugating both (13) and (14), we get

[xJ(x)]∂x = −(m− 2)J(x)− 2xB, and [xJ(x)]∂J(x) = (m− 2)x− 2J(x)B.

Furthermore we have

∂x{J(x),y} =
(
∂x̀ − ∂x

)−2

m∑
j=1

(xm+jyj − xjym+j) +

n∑
j=1

(x̀2j−1ỳ2j−1 + x̀2j ỳ2j)


= 2

m∑
j=1

(em+jyj − ejym+j) + 2

n∑
j=1

(è2j ỳ2j−1 − è2j−1ỳ2j)

= −2J(y)− 2J(ỳ) = −2J(y)

=

−2

m∑
j=1

(xm+jyj − xjym+j) +

n∑
j=1

(x̀2j−1ỳ2j−1 + x̀2j ỳ2j)

(−∂x̀ − ∂x)
= {J(x),y}∂x.

Finally, from the action of J on the above relations we obtain

∂J(x) {J(x),y} = 2y = {J(x),y} ∂J(x).

Checking (DH1)

∂x[fF ] = ∂x[f ]F + f∂x[F ], ∂J(x)[fF ] = ∂J(x)[f ]F + f∂J(x)[F ],

[fF ]∂x = F [f ]∂x + f [F ]∂x, [fF ]∂J(x) = F [f ]∂J(x) + f [F ]∂J(x),

f ∈ R0(S ∪ J(S)), F ∈ R(S ∪ J(S),B).

It suffices to prove (DH1) just for those f generating R0(S ∪ J(S)), which are given by the anti-
commutators

{x,y}, x2, {J(x),y}, x,y ∈ S.
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By straightforward computation we obtain for every F ∈ A2m,2n that
∂x[{x,y}F ] = 2yF + {x,y}∂x[F ],

∂x[x2F ] = 2xF + x2∂x[F ],

∂x[{J(x),y}F ] = −2J(y)F + {J(x),y}∂x[F ],


[{x,y}F ]∂x = 2Fy + {x,y}[F ]∂x,

[x2F ]∂x = 2Fx + x2[F ]∂x,

[{J(x),y}F ]∂x = −2FJ(y) + {J(x),y}[F ]∂x.

Finally, the other relations can be obtained by means of the action of J on the above equality.
The statement in (DH2) being a trivial consequence of Lemma 2, we omit its proof.

5.3 Directional derivatives
We are now able to obtain explicit expressions for the directional derivatives Dy,x and DJ(y),x in this
setting. From the radial algebra framework (see [8]) it is known that

{∂x,y} = 2Dy,x + δx,ym, {∂x, J(y)} = 2DJ(y),x + 2δx,yB.

For the operator {∂x,y} we first obtain

{∂x,y} =

{
−

2m∑
j=1

ej∂xj + 2

n∑
j=1

(
è2j∂x̀2j−1 − è2j−1∂x̀2j

)
,

2m∑
k=1

ykek +

2n∑
k=1

ỳkèk

}

= −
2m∑

j,k=1

{
ej∂xj , ykek

}
−

∑
1≤j≤2m
1≤k≤2n

{
ej∂xj , ỳkèk

}
+ 2

∑
1≤j≤n

1≤k≤2m

({
è2j∂x̀2j−1 , ykek

}
−
{
è2j−1∂x̀2j , ykek

})

+ 2
∑

1≤j≤n
1≤k≤2n

({
è2j∂x̀2j−1 , ỳkèk

}
−
{
è2j−1∂x̀2j , ỳkèk

})
.

However, from (5) and (8), we obtain the following relations for every pair v, w ∈ V AR and every pair
v̀, ẁ ∈ V AR :̀

{ej∂v, ekw} = −δv,wekej − 2δj,kδv,w − 2δj,kw∂v,

{ej∂v, èkv̀} = 0 = {èj∂v̀, ekv},
{è2j∂v̀, èkẁ} = δv̀,ẁ èkè2j − δ2j−1,k δv̀,ẁ + δ2j−1,k ẁ ∂v̀,

{è2j−1∂v̀, èkẁ} = δv̀,ẁ èkè2j−1 + δ2j,k δv̀,ẁ − δ2j,k ẁ ∂v̀,

whence,

{∂x,y} = −
2m∑

j,k=1

(
−δx,yδj,kekej − 2δj,kδx,y − 2δj,kyk∂xj

)
+ 2

∑
1≤j≤n
1≤k≤2n

(
δx,yδ2j−1,k èkè2j − δ2j−1,k δx,y + δ2j−1,k ỳk ∂x̀2j−1

)
− 2

∑
1≤j≤n
1≤k≤2n

(
δx,yδ2j,k èkè2j−1 + δ2j,k δx,y − δ2j,k ỳk ∂x̀2j

)

=

2m∑
j=1

(
δx,y + 2yj∂xj

)
+ 2

n∑
j=1

(
δx,y(è2j−1è2j − è2j è2j−1 − 2) + ỳ2j−1∂x̀2j−1 + ỳ2j∂x̀2j

)

= δx,y(2m− 2n) + 2

(
2m∑
j=1

yj∂xj +

2n∑
j=1

ỳj∂x̀j

)
.
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Similarly, for the operator {∂x, J(y)} we obtain

{∂x, J(y)} =

{
∂x̀ − ∂x,

2m∑
k=1

(ym+kek − ykem+k) +

2n∑
k=1

(ỳ2k è2k−1 − ỳ2k−1è2k)

}

= −
m∑

j,k=1

{
ej∂xj , ekym+k

}
−
{
ej∂xj , em+kyk

}
+
{
em+j∂xm+j , ekym+k

}
−
{
em+j∂xm+j , em+kyk

}
+ 2

n∑
j,k=1

{
è2j∂x̀2j−1

, è2k−1ỳ2k

}
−
{
è2j∂x̀2j−1

, è2kỳ2k−1

}
−
{
è2j−1∂x̀2j

, è2k−1ỳ2k

}
+
{
è2j−1∂x̀2j

, è2kỳ2k−1

}

= −
m∑

j,k=1

(
−2δj,k ym+k∂xj + δx,y δj,k em+kej − δx,y δj,k ekem+j + 2δj,k yk∂xm+j

)
+ 2

n∑
j,k=1

(
δj,k ỳ2k∂x̀2j−1

− δx,y δj,k è2k è2j − δx,y δj,k è2k−1è2j−1 − δj,k ỳ2k−1∂x̀2k

)

= 2

m∑
j=1

(
δx,yejem+j + ym+j∂xj − yj∂m+j

)
+ 2

n∑
j=1

(
− δx,y(è2j−1

2 + è2j
2) + ỳ2j∂x̀2j−1

− ỳ2j−1∂x̀2j

)

= 2δx,yB + 2

 m∑
j=1

(ym+j∂xj − yj∂xm+j ) +

n∑
j=1

(ỳ2j∂x̀2j−1
− ỳ2j−1∂x̀2j

)

 .

Then, we have found the following expresions for the directional derivatives

Dy,x = Dy,x +Dỳ,x̀ =

2m∑
j=1

yj∂xj
+

2n∑
j=1

ỳj∂x̀j
,

DJ(y),x = DJ(y),x +DJ(ỳ),x̀ =

m∑
j=1

(ym+j∂xj
− yj∂xm+j

) +

n∑
j=1

(ỳ2j∂x̀2j−1
− ỳ2j−1∂x̀2j

),

which lead to the Euler operator Ex = Dx,x =
∑2m
j=1 xj∂xj

+
∑2n
j=1 x̀j∂x̀j

. As it is known, Ex measures
the degree of homogeneity in the supervector variable x of every element of the radial algebra embedded
in A2m,2n. This situation can be generalized to the polynomials setting.

Let P := C[x1, . . . , x2m, x̀1, . . . , x̀2n] be the space of complex valued polynomials in the variables
x1, . . . , x2m, x̀1, . . . , x̀2n. As in the classical framework, a polynomialRk(x) = Rk(x1, . . . , x2m, x̀1, . . . , x̀2n)
is said to be homogenoeus of degree k ∈ N if for every λ ∈ C \ {0} it holds that

Rk(λx) = λkRk(x).

The complex vector space of homogeneous polynomials of degree k in P is denoted by Pk. A basis
for Pk consist of elements of the form xα1

1 · · ·x
α2m
2m x̀β1

1 · · · x̀
β2n

2n where αj ∈ N, βj ∈ {0, 1} and with∑2m
j=1 αj +

∑2n
j=1 βj = k. It is moreover easily seen that Pk is a finite dimensional vector space with

dimension

dimPk =

min(k,2n)∑
j=0

(
2n

j

)(
k − j + 2m− 1

2m− 1

)
.

It can be directly verified that Pk is an eigenspace of Ex with eigenvalue k. The same conclusion holds
for Pk ⊗ C2m,2n.

6 Hermitian setting in superspace
In the complexification CA2m,2n of A2m,2n we define the Hermitian conjugation ·† as

(a+ ib)† = a− ib, a, b ∈ A2m,2n,

which generalizes the Hermitian conjugation over the complexification of the radial algebra with the
complex structure introduced in Section 2, see also [8].
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The Hermitian vector variables in superspace are then introduced by

z =
1

2

(
x + iJ(x)

)
=

1

2

(
x+ iJ(x)

)
+

1

2

(
x̀+ iJ(x̀)

)
=: z + z̀,

z† = −1

2

(
x− iJ(x)

)
= −1

2

(
x− iJ(x)

)
− 1

2

(
x̀− iJ(x̀)

)
=: z† + z̀†,

defining the bosonic Hermitian vector variables z, z† and the fermionic Hermitian vector variables z̀, z̀†

as follows

z =
1

2

(
x+ iJ(x)

)
=

1

2

m∑
j=1

(xj + ixm+j)(ej − iem+j) =

m∑
j=1

zjfj ,

z† = −1

2

(
x− iJ(x)

)
= −1

2

m∑
j=1

(xj − ixm+j)(ej + iem+j) =

m∑
j=1

zcj f
†
j ,

z̀ =
1

2

(
x̀+ iJ(x̀)

)
=

1

2

n∑
j=1

(x̀2j−1 + ix̀2j)(è2j−1 − iè2j) =

n∑
j=1

z̀jfj̀ ,

z̀† = −1

2

(
x̀− iJ(x̀)

)
= −1

2

n∑
j=1

(x̀2j−1 − ix̀2j)(è2j−1 + iè2j) =

n∑
j=1

z̀cj fj̀
†.

Here we have introduced the commuting complex variables zj = xj+ixm+j , the anti-commuting variables
z̀j = x̀2j−1+ix̀2j , their complex conjugates zcj = xj−ixm+j , z̀cj = x̀2j−1−ix̀2j and the Witt basis elements{

fj = 1
2 (ej − iem+j),

f†j = − 1
2 (ej + iem+j),

{
fj̀ = 1

2 (è2j−1 − iè2j),

fj̀
† = − 1

2 (è2j−1 + iè2j).

It is easily seen that these Witt basis elements generate the complexification of C2m,2n and are subject
to the following commutation rules

fjfk + fkfj = 0,

f†jf
†
k + f†kf

†
j = 0,

fjf
†
k + f†kfj = δj,k,


fj̀ fk̀ − fk̀ fj̀ = 0,

fj̀
† fk̀
† − fk̀

† fj̀
† = 0,

fj̀ fk̀
† − fk̀

† fj̀ = − i
2δj,k,

{
fjfk̀ + fk̀ fj = 0,

fjfk̀
† + fk̀

† fj = 0,

{
f†jfk̀ + fk̀ f

†
j = 0,

f†jfk̀
† + fk̀

† f†j = 0.

As a consequence of the radial algebra results, the new Hermitian vector variables and the bivector B
satisfy the properties (AH1*)-(AH3*). In particular, {z, u†} is a commuting object in the whole algebra
CA2m,2n and has the form

{z, u†} =

m∑
j=1

zju
c
j −

i

2

n∑
j=1

z̀j ù
c
j . (15)

The complex conjugation ·c acts on the complexification of V as the corresponding restriction of ·†, whence
it is clear that

{z, u†}c =

m∑
j=1

zcjuj +
i

2

n∑
j=1

z̀cj ùj =

m∑
j=1

ujz
c
j −

i

2

n∑
j=1

ùj z̀
c
j = {u, z†},

meaning that formula (15) can be used as a generalized inner product.
We also introduce the left and right actions of the Hermitian vector derivatives in this setting using

radial algebra notions. These are

∂z· =
1

4

(
∂x · −i∂J(x) ·

)
=

1

4

(
∂x̀ · −i∂J(x̀) ·

)
− 1

4

(
∂x · −i∂J(x) ·

)
= ∂z̀ ·+∂z·,

∂z† · = −
1

4

(
∂x ·+i∂J(x) ·

)
= −1

4

(
∂x̀ ·+i∂J(x̀) ·

)
+

1

4

(
∂x ·+i∂J(x) ·

)
= ∂z̀† ·+∂z† ·,

·∂z =
1

4

(
· ∂x − i · ∂J(x)

)
=

1

4

(
− ·∂x̀ + i · ∂J(x̀)

)
− 1

4

(
· ∂x − i · ∂J(x)

)
= − · ∂z̀ + ·∂z,

·∂z† = −1

4

(
· ∂x + i · ∂J(x)

)
=

1

4

(
· ∂x̀ + i · ∂J(x̀)

)
+

1

4

(
· ∂x + i · ∂J(x)

)
= − · ∂z̀† + ·∂z† .
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Meanwhile, we have introduced the bosonic and fermionic Hermitian Dirac operators

∂z = −1

4

(
∂x − i∂J(x)

)
=

m∑
j=1

f†j ∂zj , ∂z̀ =
1

4

(
∂x̀ − i∂J(x̀)

)
= 2i

n∑
j=1

fj̀
† ∂z̀j ,

and their Hermitian conjugates

∂z† =
1

4

(
∂x + i∂J(x)

)
=

m∑
j=1

fj ∂zcj , ∂z̀† = −1

4

(
∂x̀ + i∂J(x̀)

)
= −2i

n∑
j=1

fj̀ ∂z̀cj ,

where

∂zj =
1

2
(∂xj

− i∂xm+j
), ∂zcj =

1

2
(∂xj

+ i∂xm+j
), ∂z̀j =

1

2
(∂x̀2j−1

− i∂x̀2j
), ∂z̀cj =

1

2
(∂x̀2j−1

+ i∂x̀2j
),

are the classical Cauchy-Riemann operators and their conjugates with respect to the variables zj and z̀j .
As it was shown in [8], the operators ∂z and ∂z† satisfy the relations (DH1*)-(DH4*) given in

Section 2. These relations can be also checked using the above explicit expressions, e.g.:

∂z[z] = ∂z̀[z̀] + ∂z[z] = 2i

n∑
j=1

fj̀
† fj̀ +

m∑
j=1

f†j fj =
1

2
[(m− n) + iB] .

We also obtain explicit formulas for the complex directional derivatives in superspace following the radial
algebra approach. In fact, for every pair of Hermitian vector variables z = 1

2 (x + iJ(x)) and u =
1
2 (y + iJ(y)) we have

Du,z =
1

2

(
Dy,x + iDJ(y),x

)
=

1

2

[(
Dy,x + iDJ(y),x

)
+
(
Dỳ,x̀ + iDJ(ỳ),x̀

)]
= Du,z +Dù,z̀,

D†u,z =
1

2

(
Dy,x − iDJ(y),x

)
=

1

2

[(
Dy,x − iDJ(y),x

)
+
(
Dỳ,x̀ − iDJ(ỳ),x̀

)]
= D†u,z +D†ù,z̀.

where the bosonic and fermionic directional derivatives and their Hermitian conjugates are given byDu,z = 1
2

(
Dy,x + iDJ(y),x

)
=
∑m
j=1 uj∂zj ,

Dù,z̀ = 1
2

(
Dỳ,x̀ + iDJ(ỳ),x̀

)
=
∑n
j=1 ùj∂z̀j ,

D
†
u,z = 1

2

(
Dy,x − iDJ(y),x

)
=
∑m
j=1 u

c
j ∂zcj ,

D†ù,z̀ = 1
2

(
Dỳ,x̀ − iDJ(ỳ),x̀

)
=
∑n
j=1 ù

c
j ∂z̀cj .

As a consequence of the results obtained at the radial algebra level we have

{∂z, u} = Du,z +
1

2
δz,u

(
(m− n) + iB

)
, {∂z† , u†} = D†u,z +

1

2
δz,u

(
(m− n)− iB

)
,

and it can be easily checked that the above relations remain valid in CA2m,2n.
In the case, z = u we obtain the Hermitian Euler operators

Ez = Dz,z =

m∑
j=1

zj∂zj +

n∑
j=1

z̀j∂z̀j and Ez† = D†z,z =

m∑
j=1

zcj ∂
c
zj +

n∑
j=1

z̀cj ∂z̀cj ,

which split the Euler operator Ex as Ex = Ez + Ez† .
It was shown in [8] that Ez and E†z measure the degree of homogeneity of the vector variables z and z†
respectively on every element of the Hermitian radial algebra. As expected, also this property generalizes
to CA2m,2n.

To this end, we refine the notion of a k-homogeneous polynomial to a (bi-)homogeneous polynomial of
degree (p, q) with p+q = k. A polynomial Rp,q(z, z†) = Rp,q(z1, . . . , zm, z

c
1, . . . , z

c
m, z̀1, . . . , z̀n, z̀

c
1, . . . , z̀

c
n)

is said to be homogeneous of degree (p, q) ∈ N2 if, for all λ ∈ C \ {0} it holds that

Rp,q(λz, λ
cz†) = λp (λc)

q
Rp,q(z, z

†).

The space of all homogeneus polynomials of degree (p, q) in P is denoted by Pp,q. A basis for Pp,q consists
of the elements zα1

1 · · · zαm
m z̀β1

1 · · · z̀
βn
n (zc1)γ1 · · · (zcm)γm (z̀c1)δ1 · · · (z̀cn)δn where αj , γj ∈ N, βj , δj ∈ {0, 1}
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and with
∑m
j=1 αj+

∑n
j=1 βj = p,

∑m
j=1 γj+

∑n
j=1 δj = q. It easily follows that Pp,q is a finite dimensional

complex vector space with dimension

dimPp,q =

min(n,p)∑
j=0

(
n

j

)(
p− j +m− 1

m− 1

)min(n,q)∑
j=0

(
n

j

)(
q − j +m− 1

m− 1

) .
Since each complex polynomial in (x1, . . . , x2m, x̀1, . . . , x̀2n) may be written also as a polynomial in the
variables (z1, . . . , zm, z

c
1, . . . , z

c
m, z̀1, . . . , z̀n, z̀

c
1, . . . , z̀

c
n), we can easily check the relation

Pk =

k⊕
j=0

Pj,k−j .

In the previous section, it was mentioned that Pk is the eigenspace of Ex corresponding to the eigenvalue
k. A similar property can be proved in the Hermitian context.

Lemma 3. If Rp,q(z, z†) is a homogeneous polynomial of degree (p, q) then

Ez[Rp,q] = pRp,q, and Ez† [Rp,q] = qRp,q.

Proof.
Applying the chain rule (see [6]) and differentiating with respect to the complex variable λ, we have on
the one hand

∂λRp,q(λz, λ
cz†) =

m∑
j=1

zj∂zjRp,q(λz, λ
cz†) +

n∑
j=1

z̀j∂z̀jRp,q(λz, λ
cz†) = EzRp,q(λz, λcz†),

and on the other hand,

∂λRp,q(λz, λ
cz†) = ∂λ

[
λp (λc)

q
Rp,q(z, z

†)
]

= pλp−1 (λc)
q
Rp,q(z, z

†),

whence,
EzRp,q(λz, λcz†) = pλp−1 (λc)

q
Rp,q(z, z

†).

In particular, for λ = 1 we have Ez[Rp,q] = pRp,q. The proof of the other relation is similar. �

7 Conclusions and Further Research
We have carefully introduced the defining objects for Hermitian Clifford analysis in superspace through
the rules determined by the Hermitian radial algebra. These rules provide a straightforward way of
defining a suitable complex structure in this setting, giving rise to the introduction of all basic elements
in the Hermitian Clifford calculus. This complex structure can be seen either as a special automorphism
on A2m,2n or as the action of the special bivector B through its commutator with vector variables. This
action of B allows to interprete the complex structure as a special element of the set of superrotations.
In forthcoming work we will further develop this theory. This will include a deep study of the group
realization of rotations in superspace and the invariance of the super Dirac operators under the action of
these groups ([9, 10]). Also a Bochner-Martinelli formula in this setting will be established.
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