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ABSTRACT 

Neuropathic pain is caused by a lesion or disease of the somatosensory system and affects 7-10% 

of the general population.  Neuropathic pain will likely become more common because of the 

ageing of the global population, increased incidence of diabetes and survival from cancer.  The 

burden of chronic neuropathic pain appears to be related to the number of neuropathic symptoms 

more than the intensity or duration of pain, highlighting the peculiarity of this chronic pain 

disorder.  A significant increase of drug prescriptions and visits to health care providers is 

observed and the quality of life is more impaired in patients suffering from neuropathic chronic 

pain than in those with non-neuropathic chronic pain. 

Progress in our understanding of the pathophysiology of neuropathic pain provides enthusiasm 

for the development of new diagnostic procedures and personalized interventions.  

We critically provide a current update about the epidemiology, mechanisms, pathophysiology, 

classification, diagnosis, screening, prevention and management of neuropathic pain.  We 

present the recent up-to-date diagnostic criteria and describe the advances in targeted 

pharmacological and non-pharmacological treatments. Finally, we describe approaches which 

will lead to better personalized therapeutic strategies and incorporate evidence emphasizing the 

need for a multidisciplinary approach to the management of neuropathic pain.  
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INTRODUCTION 

Distinct definitions of neuropathic pain have been used over the years, leading researchers to call 

for a unified nomenclature. Recently, neuropathic pain has been defined as "pain caused by a 

lesion or disease of the somatosensory system", a definition that has since been widely accepted1. 

Importantly, neuropathic pain may be mechanistically dissimilar to other chronic pain conditions 

and is therefore diagnosed and treated differently. 

Neuropathic pain will likely become more common because of the ageing of the global 

population, increased incidence of diabetes, and cancer survival.  Neuropathic pain is associated 

with a significant increase of drug prescriptions and visits to health care providers 2, 3. Sleep 

disturbances, anxiety and depression are frequent and severe in patients suffering from 

neuropathic pain and quality of life is more impaired in patients with chronic neuropathic pain 

than in those with chronic non-neuropathic pain 2, 4. The burden of chronic neuropathic pain 

appears to be related to the number of neuropathic symptoms more than the intensity or duration 

of pain, highlighting the peculiarity of this chronic pain disorder 2, 4
. 

Recent progress in our understanding of the pathophysiology of neuropathic pain provides 

optimism for the development of new diagnostic procedures and personalized interventions with 

favorable therapeutic outcomes despite an increased failure rate of randomized clinical trials in 

the past ten years 5, 6, 7,8. 

This review critically presents a current update about the presentation, causes, diagnosis, and 

treatment of neuropathic pain.  We provide up-to-date diagnostic criteria, describe the recent 

advance in targeted treatments that may lead to better personalized therapeutic strategies and 

incorporate evidence indicating that the management of neuropathic pain should be based upon a 

multidisciplinary approach.  

 

EPIDEMIOLOGY  

The estimation of the incidence and prevalence of neuropathic pain has been difficult because of 

the variety of diagnostic tools and definitions. Furthermore, the epidemiology of neuropathic 

pain has not been carefully studied until recently. The prevalence of neuropathic pain in the 

chronic pain population has been mainly estimated on the basis of retrospective and prospective 

studies 9 conducted by specialized centers with a focus on specific conditions such as post-
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herpetic neuralgia 10, 11, painful diabetic polyneuropathy 12-15, post-surgery neuropathic pain 16, 

multiple sclerosis 17, 18, spinal cord injury 19, stroke 20 and cancer 21, 22.   

Another approach to estimating the prevalence of neuropathic pain is based on the use of  

validated screening tools in the form of simple questionnaires 23. Despite some limitations, 

inherent to the  variety of definitions and diagnostic criteria of neuropathic pain, several large 

epidemiological surveys conducted in different countries (UK, France, US and Brazil), using 

these tools, have provided valuable new information on the general prevalence of neuropathic 

pain 3. Using similar methodologies and screening tools such as the Douleur Neuropathique 4 

(DN4) or the Leeds Assessment of Neuropathic Symptoms and Signs (LANSS) pain scale 24, 25 

the population prevalence of chronic neuropathic pain has been estimated to range from 7% to 

10% 3, 26-28. Chronic neuropathic pain is more frequent in women and in older patients and, most 

commonly affects the lower back and lower limbs, neck and upper limbs. Lumbar and cervical 

painful radiculopathies are the most frequent cause of chronic neuropathic pain. Consistent with 

these data, a survey of more than 12,000 chronic pain patients with both nociceptive and 

neuropathic pain types, referred to pain specialists in Germany29 , revealed that 40% of all 

patients experience at least some characteristics of neuropathic pain (especially patients with 

chronic back pain and radiculopathy).  

 

PATHOPHYSIOLOGY/MECHANISMS 

Translational research: from basic science to clinical studies 

A lesion or disease of the peripheral somatosensory nervous system leads to altered and 

disordered transmission of sensory signals into the spinal cord (Figure 1). Preclinical science has 

described a number of changes from the periphery through to higher centers of the central 

nervous system (CNS) that appears to relate to neuropathic pain in patients. These changes result 

from alterations in ion channels within the affected nerve with increased function of sodium 

channels leading to increased excitability coupled with a loss of potassium channels which 

normally modulate neural activity. At the spinal central ending of the sensory nerves, there is 

increased expression and function of calcium channels leading to increased transmitter release. If 

a fiber is disconnected from the periphery there will be sensory loss but the fibers at the injury 

site can generate ectopic activity, e.g., neuroma afferents, and so pain from a numb area results 

30.  The remaining intact fibers are hyperexcitable, so called “irritable nociceptors” 31. Overall, 
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there is a combination of ongoing pain, numbness and evoked pains.  Altered sodium channel 

function within damaged peripheral nerves is the rationale for the use of drugs such as lidocaine 

and carbamazepine for neuropathic pain. Recently, oxcarbazepine was shown to be more 

effective in patients with “irritable nociceptor” phenotype, where abnormal sodium channel 

activity could be assumed 32. The altered inputs into the spinal cord coupled with increased 

calcium channel function, best understood by enhanced expression of their alpha-2 delta subunit 

which causes greater expression of the channel in the terminal, now results in increased 

transmitter release and enhanced excitability of spinal neurons. This subunit is the site of action 

of the drugs, gabapentin and pregabalin 33. The spinal cord outputs to the brain with projections 

to the thalamus and cortex and parallel pathways to the limbic brain. Thus patients report high 

pain ratings as a consequence of the former projections and anxiety, depression and sleep 

problems as painful messages start to dominate limbic function. The main substrate for the 

central sensitization is activation of the NMDA receptor for glutamate. Hyperexcitable spinal 

neurons exhibit increased responses to many sensory modalities and expand their receptive 

fields, central sensitization 34, 35. This is the most plausible explanation for dynamic, static and 

cold allodynia and is reflected by enhanced thalamic neuronal coding 36. Hyperexcitability is 

compounded by a loss of GABA mediated inhibitions at spinal levels 37 and there are less well 

understood functional changes in non-neuronal cells within the spinal cord such as microglia 

which contribute to the development of hypersensitivity 38. Consequently, the brain receives 

altered and abnormal sensory messages. Areas such as the cingulate cortex and amygdala have 

been implicated in the ongoing aversive state and comorbidities associated with neuropathic pain 

39. Projections from these forebrain areas now alter descending controls running from the 

periaqueductal grey to the brain stem. Under normal conditions, there is a balance between 

descending inhibitions and excitations, but after peripheral neuropathy, the latter now dominate. 

A number of studies have shown that the brainstem excitatory pathways are more important in 

the maintenance rather than induction of the pain state. 

 

Noradrenergic inhibitions, through spinal alpha-2 receptors are attenuated and enhanced 5HT 

facilitations through 5HT2 and 3 receptors gain the upper hand 40. Descending inhibitions can be 

assessed through Diffuse Noxious Inhibitory controls (DNIC) the animal counterpart of the 

human Conditioned Pain Modulation (CPM, Figure 2A), where one pain inhibits another through 
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descending pathways. DNIC is mediated by the noradrenergic inhibitory system and both DNIC 

and CPM are lost after neuropathy. Animals that recruit noradrenergic inhibitions have markedly 

reduced hypersensitivity after neuropathy despite identical levels of nerve damage. Thus at 

peripheral, spinal and central levels there is a gain of excitation and facilitation and a loss of 

inhibition. These shift the sensory pathways to a state of hyperexcitability. It appears that there 

may be a sequence of changes over time from the periphery to the brain as the neuropathic pain 

state becomes chronic.  

These events have been deduced from the use of animal models of neuropathy, the majority of 

which use surgical lesions of peripheral sensory nerves 41. The animal models use ligation of 

parts or branches of peripheral nerves, constriction and transection. The majority of animals 

show hypersensitivity (most often mechanical as assessed with von Frey testing, but which also 

can include hot and cold) which contrasts to patients but this is most likely due to the 

homogeneity of the genetic strain of animal. Models of diabetic neuropathy have been bedeviled 

by ill health of the animals but these are improving. 

Recently, clinical research is revealing ectopic activity in primary afferents as having a key role 

in the maintenance of neuropathic pain following peripheral nerve injury. Patients with painful 

diabetic polyneuropathy and traumatic peripheral nerve injury showed a complete abolition of 

ipsilateral spontaneous and evoked pain when treated with a peripheral nerve block with 

lidocaine 42. Similarly, a blockade of the dorsal root ganglion by intraforaminal epidural 

administration of lidocaine resulted in relief of painful and non-painful sensations in patients 

with phantom pain 43. Microneurography studies have also indicated a spontaneous activity in C-

nociceptors related to pain supporting a peripheral mechanism for neuropathic pain 44, 45. 

 

Human pain modulation mechanisms  

Individuals experience and cope with chronic neuropathic pain differently; some are mildly 

affected, while others suffer debilitating dysfunction. Individuals also vary substantially in their 

responses to therapeutic interventions; for some, pharmacological treatments are highly 

efficacious and in others only modest reductions in pain occur. A key factor in this variability 

may be the way the pain message is modulated in the CNS. While ascending from its entry port, 

the dorsal horn, into the CNS, until arriving at the cerebral cortex, the area critical for 

consciousness, the signal may be augmented or reduced, modifying the assumed correlation 
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between the extent of the peripheral pathology, and the extent of the pain syndrome. Most pain 

patients express a pro-nociceptive pain modulation profile, i.e. pain messages are augmented in 

their central system 46.  Pronociception can be inhibitory due to less efficient CPM, facilitatory 

due to enhanced summation, or both, less efficient CPM and enhanced temporal summation 

(Figure 2B). The temporal summation is augmented in neuropathic and non-neuropathic pain. 

Neuropathic  pain patients present with a higher slope of increase 46. CPM has been shown to be 

less efficient in a variety of pain syndromes compared to healthy controls 47.  

 

Studies have shown that the pain modulation profile predicts the development and extent of 

chronic post-operative pain 48-50. The prospect of harnessing pain modulation seems promising 

for a more individualized approach to pain management. A ‘fix the dysfunction’ principle has 

been advocated, suggesting that patients who express a facilitatory pro-nociceptive profile could 

be treated by a drug that reduces the facilitation, e.g., gabapentinoids, and patients who express 

an inhibitory pro-nociceptive profile could be treated with an SNRI, that is expected to enhance 

the inhibitory capacity by reuptake inhibition of noradrenaline 48. It is likely that patients 

expressing both less efficient CPM and enhanced temporal summation may need a combination 

of treatments. Indeed, the level of CPM predicts the efficacy of duloxetine in patients and is 

restored by both duloxetine and tapentadol, both having norepinephrine reuptake inhibition 

(NRI) actions. Actions on these descending controls underlie the actions of TCA and SNRI in 

neuropathic pain patients 40. Moreover, an altered patient’s pain modulation profile can be 

reversed towards normality when pain is treated such as in osteoarthritis patients treated with 

arthroplasty surgery. In the case when the diseased joint is replaced, the majority of patients will 

be free of pain and the central and peripheral processes normalize 42, 51, 52.   

 

Notably, pain modulation is highly influenced by expectancy-induced analgesia, referring to 

changes due to patients and providers’ beliefs and desires 53, 54  affecting response to treatment 

for neuropathic pain. In laboratory settings, expectancy-induced analgesia influences clinical 

pain in Irritable Bowel Syndrome 55-57, idiopathic and neuropathic pain 58. Recently, Petersen et 

al. tested expectancy-induced analgesia in patients who developed neuropathic pain after 

thoracotomy 59, 60. Patients received lidocaine in an open (e.g. patients were told: ‘The agent you 

have just been given is known to powerfully reduce pain in some patients) and hidden (“This is a 
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control condition for the active medication ) fashion in accordance with a previously described 

protocol 61 showed large significant reduction  of ongoing pain, maximum wind-up-like pain and 

area of hyperalgesia (Figure 3) 58, 59. These findings point to a clinically relevant endogenous 

pain inhibitory mechanism with relevant implications for clinical trial designs and practices. 

These effects should be reduced in clinical trials and intentionally enhanced in daily clinical 

practices as a strategy to optimize pain management. 

 

Classification of central and peripheral neuropathic pain 

The pathology of the peripheral disorders causing neuropathic pain predominantly involves the 

small lightly or unmyelinated peripheral nerves, namely the A delta and C fibers 4 (Figure 4).  

An approach to classifying these peripheral disorders is to subdivide them into those that have a 

generalized (usually symmetrical) and those that have a focal (usually asymmetrical) distribution 

(Table 1).   

The most clinically important painful generalized peripheral neuropathies include those due to 

diabetes, pre-diabetes and other metabolic dysfunctions, human immunodeficiency virus, 

chemotherapeutic agents, immune-system and inflammatory disorders, inherited neuropathies 

and channelopathies.  No definite cause is found in many patients with a painful peripheral 

neuropathy – a disorder called idiopathic small fiber neuropathy. The topography of the pain in 

these disorders typically encompasses the distal extremities, often called a “glove and stocking” 

distribution.  This pattern is characteristic of dying-back, length-dependent, distal peripheral 

neuropathies.  Less frequently, the pain has a proximal distribution.  This pattern occurs when 

the pathology involves the sensory ganglia. Painful focal peripheral disorders are due to 

pathological processes that involve one or more peripheral nerves or nerve roots.  These 

disorders include post-herpetic neuralgia, post-traumatic neuropathy, post-surgical neuropathy, 

cervical and lumbar polyradiculopathies, complex regional pain syndrome type 2 and trigeminal 

neuralgia 62.   

 

Central neuropathic pain is due to a lesion or disease of the spinal cord or brain. Cerebrovascular 

disease affecting the central somatosensory pathways (post-stroke pain) and neurodegenerative 

diseases, most notably Parkinson’ disease, are brain disorders that often cause central 

neuropathic pain 63. Spinal cord lesions or diseases that cause neuropathic pain include spinal 
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cord injury, syringomyelia and demyelinating diseases such as multiple sclerosis, transverse 

myelitis and neuromyelitis optica 64.  

 

 

DIAGNOSIS/SCREENING AND PREVENTION      

Grading system and screening tools to assess sensory symptoms 

Chronic neuropathic pain is characterized by a lesion or a disease of the nervous system and 

should be distinguished from other chronic pain syndromes. This distinction is of particular 

importance since specific treatment recommendations exist for neuropathic pain.  

A grading system was proposed which is intended for determining the level of certainty with 

which the pain in question is neuropathic 4 (Figure 5A). If the patient's history suggests that there 

is a neurological lesion or disease and the pain could be related to such (e.g. by using validated 

screening tools, see below) and the pain distribution is neuroanatomically plausible the pain is 

termed possible neuropathic pain. Probable neuropathic pain requires supporting evidence 

obtained by a clinical examination of sensory signs (e.g. bed-side testing, quantitative sensory 

testing, see below). Definite neuropathic pain requires that an objective diagnostic test confirms 

the lesion or disease of the somatosensory nervous system (e.g. neurophysiological tests, skin 

biopsies as detailed below). The separation of neuropathic pain from other chronic pain 

syndromes is relevant for using the correct treatment. A grading system should be used to 

determine the certainty with which the pain in question is neuropathic. A finding of probable 

neuropathic pain in a given individual patient should lead to treatment according to the 

neuropathic pain treatment guidelines.  

 

Based on the assumption that characteristic qualities of sensory perceptions exist, that are 

indicative of neuropathic pain, several screening tools have been developed to identify 

neuropathic pain conditions or neuropathic components to chronic pain syndromes 65.These 

simple to use patient-reported questionnaires, e.g. DN4 or painDETECT 25, 66 assess 

characteristic neuropathic pain symptoms (e.g., burning, tingling, sensitivity to touch, pain 

caused by light pressure, electric shock like pain, pain to cold or heat, numbness) and can 

distinguish between neuropathic and non-neuropathic pain with high specificity and specificity. 

 



10 
 

Psychophysical and objective diagnostic tests to demonstrate nerve damage 

Different psychophysical and diagnostic tests are available for investigating somatosensory 

pathway function, including bedside evaluation and assessment of sensory signs as well as 

neurophysiological techniques, skin biopsy, and corneal confocal microscopy (Figure 5B). 

 

- Bedside sensory assessment of sensory signs 

In addition to sensory symptoms patients with neuropathic pain also demonstrate a variety of 

distinct sensory symptoms and signs that can coexist in combinations 67. Diagnostic sensory bed-

side examinations should include the following modalities: touch, pinprick, pressure, cold, heat, 

vibration, temporal summation and after sensations 68. To assess either a loss (negative) or a gain 

of somatosensory function (positive sensory signs) the responses can be graded as normal, 

decreased or increased. The stimulus-evoked (positive) pain types are classified as hyperalgesic 

or allodynic, and according to the dynamic or static character of the stimulus. 

 

- Quantitative sensory testing 

A psychophysical technique to test the afferent nociceptive and non-nociceptive systems in the 

periphery and the central nervous system is quantitative sensory testing (QST) which uses 

standardized mechanical and thermal stimuli (graded v. Frey hairs, several pinprick stimuli, 

pressure algometers, quantitative thermotesting). An advantage of QST is that it assesses a loss 

as well as a gain of function of the whole spectrum of different afferent fiber classes 69. A 

standardized protocol for QST was proposed by the nationwide German Network on Neuropathic 

Pain 70 including 13 parameters of sensory testing procedures for the analysis of the exact 

somatosensory phenotype of neuropathic pain patients. To evaluate plus or minus signs in 

patients, an age- and gender-matched database for absolute and relative QST reference data was 

established for healthy human subjects. For most variables pathological values of positive and 

negative signs can be detected on the basis of reference data. 

 

- Neurophysiological techniques 



11 
 

The Aβ-fiber mediated standard neurophysiological techniques (i.e. nerve conduction studies, 

trigeminal reflexes and somatosensory evoked potentials) do not provide information on 

nociceptive pathway. However, they are still useful to identify damage along the somatosensory 

pathways and are widely used for assessing peripheral and central nervous system diseases 

causing neuropathic pain 71. Laser evoked potentials (LEPs) are the easiest and most reliable 

neurophysiological technique for assessing nociceptive pathway function 68, 72). Laser-generated 

radiant heat pulses selectively excite Aδ and C nociceptors in the superficial skin layers 73. LEPs 

related to Aδ-fibers activation have been standardized for clinical application. They consist of a 

lateralized component (N1), generated in the SII area and in the insular cortex bilaterally, and a 

vertex potential consisting of a N2–P2 complex 74.  In diseases associated with nociceptive-

pathway damage, LEPs can be absent, reduced in amplitude or delayed in latency75, 76,77.  

- Skin biopsy 

Skin punch biopsies assesses epidermal innervation consisting mainly of unmyelinated C-fiber 

terminals, with relatively few small myelinated A-fibers that lose their myelin sheath and reach 

the epidermis as unmyelinated free nerve endings 78, 79. The technique is regarded as the most 

sensitive tool for diagnosing small-fiber neuropathies 80, the relationship between skin biopsy 

data and neuropathic pain is, however, still unclear. One study in 139 patients with peripheral 

neuropathy suggested that a partial sparing of intraepidermal nerve fibers, as assessed with skin 

biopsy is associated with provoked pain 81.  

 

- Corneal confocal microscopy  

The corneal innervation consists of small-myelinated Aδ and C-fibers. Corneal confocal 

microscopy is a non-invasive, in vivo, technique, useful for assessing corneal innervation and 

quantifying corneal nerve fiber damage in patients with peripheral neuropathies82, 83.  

Although corneal confocal microscopy represents a novel and promising tool for investigating 

small nerve fiber damage in patients with peripheral neuropathy, this technique has several 

limitations, such as the high cost and the reduced availability in most clinical centers. It is still 

unclear the influence of some conditions such as sicca syndrome, eye diseases or previous eye 

surgery on the corneal confocal variables. No study has reliably investigated the association 

between corneal confocal microscopy variables and neuropathic pain. 
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PREVENTION 

Existing treatments have meaningful but modest benefits, and interventions that prevent 

neuropathic pain can therefore have a substantial impact on public health. The identification of 

risk factors is essential to preventing neuropathic pain.  Primary prevention of neuropathic pain 

involves interventions administered to generally healthy individuals who are at risk for 

developing neuropathic pain. An important example is provided by the live attenuated 84 and 

subunit adjuvanted 85 herpes zoster vaccines, which reduce the likelihood of developing herpes 

zoster in older individuals and thereby prevent postherpetic neuralgia. Secondary prevention 

involves administering preventive interventions to individuals who are experiencing an illness, 

injury, or treatment that can cause chronic neuropathic pain. Examples of this approach include 

the peri-operative treatment of surgical patients to prevent chronic post-surgical pain 86 and 

antiviral or analgesic treatment in patients with herpes zoster to prevent postherpetic neuralgia 87. 

Proper management of health conditions, such as diabetes, that cause neuropathic pain, may 

prevent neuropathic pain before it even presents 88. Increased attention to prevention has great 

potential to reduce the suffering and disability experienced by many patients with chronic 

neuropathic pain. Leading a healthy lifestyle and education regarding pain-causing health 

conditions are important components of prevention, especially in those who are at greater risk of 

developing neuropathic pain 89. Prevention programs that would combine mutually reinforcing 

medical and behavioral interventions may lead to greater preventive benefits. 

 

MANAGEMENT  

Pharmacological approach  

Different drug classes for the treatment of peripheral or central neuropathic pain have been 

evaluated in randomized controlled trials 4, 90. In this section we will only present drugs given in 

single or repeated dose administration and with long-term efficacy (Figure 6; Table 2).  

- Drugs effective in neuropathic pain  

Antidepressants and antiepileptics have been the most studied drugs in neuropathic pain. Among 

antidepressants, tricyclic antidepressants (TCAs), particularly amitriptyline, and serotonin–

norepinephrine reuptake inhibitors (SNRIs), particularly duloxetine, have confirmed efficacy in 
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various neuropathic pain conditions. Their analgesic efficacy seems largely mediated by their 

action on descending modulatory inhibitory controls, but other mechanisms have been proposed, 

particularly an action on beta-2 adrenoceptors 91. Among antiepileptics, the efficacy of 

pregabalin and gabapentin, including extended release formulations, is best established for the 

treatment of peripheral neuropathic pain, and to a lesser extent spinal cord injury pain. However 

the number of negative trials has increased over the last 5 years. Their analgesic effects are 

mainly related to a decrease in central sensitization through binding to the alpha2-delta subunit 

of calcium channels 92.  

Opioids have also been found effective, mainly in peripheral NP. Tramadol, a weak opioid with 

serotonin and norepinephrine reuptake inhibition, seems to have less potential for misuse and 

abuse than stronger opioids but should be used with caution in the elderly. Opioid agonists, 

particularly oxycodone and morphine, are moderately effective, but there is concern about 

prescription opioid-associated overdose diversion, misuse and morbidity 93.   

An additional effect of pregabalin or gabapentin combined with TCAs or opioids as compared to 

monotherapy has been reported in peripheral neuropathic pain 94, 95, 96. However, in a large study 

with a trial design reflecting clinical practice the efficacy and side effect profile of monotherapy 

at high dosages (600 mg pregabalin or 120 mg duloxetine) were similar to those of combination 

therapy at moderate dosages (300 mg pregabalin and 60 mg duloxetine daily) in patients with 

diabetic neuropathic pain not responding to monotherapy at moderate dosages 97.  

 

Topical agents (lidocaine and capsaicin patches) are also prescribed. Lidocaine is believed to act 

on ectopic neuronal discharges through its sodium channel–blocking properties. The efficacy of 

lidocaine 5% patches has been assessed in focal peripheral NP, particularly post-herpetic 

neuralgia, but their therapeutic gain is modest compared with placebo 98, 99. Capsaicin initially 

activates transient receptor potential vanilloid 1 (TRPV1) ligand-gated channels on nociceptive 

fibers leading to TRPV1 desensitization and defunctionalization. The sustained efficacy (up to 3 

months) of a single application of high-concentration capsaicin patch (8%) has been reported in 

PHN and diabetic and non-diabetic painful neuropathies. The long-term safety of repeated 

applications seems favorable based on open studies, but there are no long-term data on the 

effects on epidermal nerve fibers in patients.  
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Botulinum toxin type A (BTX-A), a potent neurotoxin commonly used for the treatment of focal 

muscle hyperactivity, has shown efficacy in neuropathic pain for up to 3 months after a single 

set of injections, possibly through a central or mechanotransduction effect. A recent larger-scale 

trial has confirmed the efficacy of repeated administrations over 6 months, with enhanced 

effects of the second injection 90.  

- Drugs with inconsistent results or lack of efficacy  

Studies of antiepileptics other than alpha2delta ligands (for example, topiramate, oxcarbazepine, 

carbamazepine, valproate, zonisamide, lacosamide, levetiracetam) have reported negative, weak 

or inconsistent results in neuropathic pain, although some are probably effective in subgroups of 

patients. Oromucosal cannabinoids (2.7 mg delta-9-tetrahydrocannabinol/2.5 mg cannabidiol) 

have been found variably effective, particularly in multiple sclerosis–associated pain, but 

several unpublished trials were negative on the primary outcome. Results for selective serotonin 

reuptake inhibitors (SSRIs), N-methyl-D-aspartate (NMDA) antagonists, mexiletine and topical 

clonidine have generally been inconsistent or negative except in patient subgroups.  

 

- Emerging drug treatments  

A few drugs targeting novel mechanisms of action are under clinical development for the 

treatment of peripheral neuropathic pain. These include in particular subtype selective sodium 

blocking agents particularly Nav1.7 antagonists 100 and EMA 401, a novel angiotensin type II 

antagonist that has been found effective in a phase II clinical trial in postherpetic neuralgia 101.  

 

- Therapeutic recommendations  

Numerous therapeutic recommendations for neuropathic pain have been proposed in recent years 

102-107. Based on a new systematic review and meta-analysis of all drug studies published since 

1966, including unpublished trials 108, pregabalin, gabapentin and SNRIs, particularly duloxetine 

and TCAs, have strong recommendations for use and are recommended as first-line drugs for the 

treatment of peripheral and central neuropathic pain. High-concentration capsaicin patches, 

lidocaine patches and tramadol have weak quality of evidence and are recommended as second-

line treatment for peripheral neuropathic pain only. Strong opioids and BTX-A (for specialists 

only) also have weak recommendations for use. There are weak, against or inconclusive 

recommendations for the use of all other drug treatments for neuropathic pain in general.   
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- Recommendations for future therapeutic trials in neuropathic pain  

The outcome of clinical trials in neuropathic pain is modest, with numbers needed to treat (NNT) 

for 50% pain relief (the number of patients necessary to treat to obtain one responder as 

compared with placebo) ranging from 6 to 8 for positive studies in the latest meta-analysis 108. 

Several reasons may account for these results 90, including high placebo responses (which may 

underestimate drug effects), the paucity of use of validated diagnostic criteria for neuropathic 

pain in clinical trials, and trial failures. Thus, it has been proposed over the past decade that a 

preferable therapeutic approach to neuropathic pain should focus mainly on stratifying patients 

according to clinical phenotypes (symptoms and signs) 67, 109, 110 10, 67, 77, 111, 112, which are 

suggestive of specific mechanisms, whereas most trials have essentially been conducted in 

patients classified according to their etiology. A number of recently well-conducted prospective 

trials tend to support the relevance of phenotypic subgrouping of patients, which should lead to a 

more personalized pain therapy in the future 90, 99, 113 114. In particular, two often combined 

phenotypes, the presence of mechanical allodynia and preserved nociceptive function, seem to 

predict the response to systemic or topical sodium channel blockers, BTX-A and clonidine gel in 

distinct clinical trials 90, 99, 113.  

 

Interventional therapies for neuropathic pain 

Pharmacological treatments for chronic neuropathic pain  are effective in <50% of patients and 

may be associated with adverse effects that limit their clinical utility 115. Interventional 

treatments, such as invasive procedures to deliver drugs to targeted areas or ablation/modulation 

of specific neural structures or pathways provide alternative treatment strategies in selected 

patients with refractory neuropathic pain 116, 117 (Figure 7). 

 

- Neural Blockade and Steroid Injections 

Local anesthetic nerve blocks have been used as a diagnostic tool to determine if a particular 

nerve or nerve root is involved in pain signaling or is the source of ectopic activity that leads to 

neuropathic pain. The results of these procedures, however, need to be interpreted with caution, 

as their predictive value in defining treatment is uncertain.  Perineural injection of steroids 

provides transient relief (1-3 months) for trauma- and compression-related peripheral 

neuropathic pain118. Epidural and paravertebral local anesthetic and steroid nerve blocks were 
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given a weak recommendation by NeuPSIG (Neuropathic Pain Special Interest Group, 

International Association for the Study of Pain) for the treatment of acute zoster-associated 

neuropathic pain117.  Epidural steroid injections are commonly used in the treatment of cervical 

and lumbar radiculopathies, but their efficacy and safety remain controversial. An evidence-

based review of randomized trials on epidural steroid injection suggested a modest effect size 

with pain relief lasting <3 months, 119  consistent with NeuPSIG’s weak recommendation for its 

use in radiculopathy secondary to a lumbar herniated disc. Transforaminal epidural steroid 

injections were more likely to yield positive results than caudal and interlaminar techniques. 

Recent controlled trials provide moderate evidence that subcutaneous injection of botulinum 

toxin A has a beneficial role in the treatment of peripheral neuropathic pain (e.g., diabetic 

neuropathic pain, postherpetic and trigeminal neuralgia) 90, 120, 121. Although sympathetic 

ganglion blocks have been used to treat pain some patients with complex regional pain 

syndromes (CRPS; causalgia, reflex sympathetic dystrophy), the evidence for long-term benefit 

is weak. 

- Neurostimulation Therapies 

Spinal Cord Stimulation (SCS)  

The relative safety and reversibility of SCS, as well as its cost-effectiveness over the long term, 

has made it an attractive strategy for managing patients with refractory, chronic NP 122-124. 

Systematic reviews, randomized controlled trials, and several case series provide evidence for 

long-term efficacy of SCS relative to conventional medical management in patients with CRPS 

type I and treatment-refractory failed back surgery syndrome (FBSS) with radicular symptoms 

125-127 SCS offered better pain relief, health-related quality of life, and functional capacity that 

were sustained at 24 months of treatment 128, 129. Both NeuPSIG and the European Academy of 

Neurology gave a weak recommendation to SCS use in CRPS type I and FBSS with 

radiculopathy on the basis of the moderate evidence from controlled trials 116, 117, 130.  The NICE 

guidance also recommended SCS as a possible treatment for adults with chronic pain of 

neuropathic origin17.  The NeuPSIG report considered the evidence for the efficacy of SCS in 

diabetic neuropathic pain to be low and made an “inconclusive” recommendation. Two 

subsequent randomized trials of SCS in subjects with painful diabetic neuropathy provide 

additional evidence for its efficacy, with greater reduction in pain and improvements in quality 
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of life measures compared to a control group 131, 132. Although SCS is used to treat several other 

neuropathic pain states, (e.g., post-amputation stump and phantom pains, post-herpetic neuralgia, 

spinal cord injury, and traumatic peripheral neuralgias), the evidence for its effectiveness is 

based primarily on small observational studies. The success of SCS for neuropathic pain may 

depend on appropriate selection of patients, based on psychological traits, sensory phenotype, 

and pain mechanism 133, 134. 

Traditional SCS parameters use a monophasic, square-wave pulse at a frequency in the 30–100-

Hz range that results in paresthesia in the painful region135.   Newer stimulation parameters, such 

as burst (40-Hz burst with 5 spikes at 500 Hz per burst) and high-frequency (10 kHz with 

sinusoidal wave forms) SCS, provide paresthesia-free stimulation and equivalent or better pain 

relief compared to traditional SCS 136, 137.  

 

Dorsal Root Ganglion (DRG), Peripheral Nerve, and Peripheral Nerve Field Stimulation 

Neurostimulation of afferent fibers outside the spinal cord (e.g., DRG and peripheral nerves) and 

subcutaneous peripheral nerve field stimulation have been reported to provide pain relief in a 

variety of chronic neuropathic pain states, such as postsurgical and post-traumatic neuralgia, 

CRPS, occipital neuralgia, and postherpetic neuralgia 138, 139. A multicenter, prospective, cohort 

study in subjects with chronic neuropathic pain reported that DRG stimulation provided 56% 

pain reduction with a 60% responder rate (>50% reduction in pain) 140.  These preliminary 

observations require further validation with controlled trials.  

SCS and peripheral nerve stimulation are generally safe and reversible therapies. However, 

hardware-related, biological complications such as infections and programming- or treatment-

related adverse effects (e.g., painful paresthesias) have been reported in 30-40% of patients 141, 

142. Systematic reviews have reported the most common hardware-related complication, lead 

migration, to have rates of 20-27% 143.  Other hardware-related complications include lead 

fracture and malfunction (6-10%), and battery failure. Pain over the device components has a 

reported incidence of 1-12% across studies.  Wound infection (2.5-10%) and wound breakdown 

are major complications associated with DRG stimulation that sometimes require removal of the 

device.   

 

Epidural and Transcranial Cortical Neurostimulation 
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Stimulation of the pre-central motor cortex (M1) below motor threshold using invasive (epidural, 

[EMCS]) or transcranial noninvasive techniques (e.g., repetitive transcranial magnetic 

stimulation [rTMS], transcranial direct current stimulation [tDCS]), has been proposed for drug-

resistant peripheral and central neuropathic pain 144-146.   M1 rTMS and EMCS may reduce pain-

related thalamic hyperactivity or activate descending inhibitory pathways.  Meta-analysis reports 

suggest that 60-65% of patients respond (>40% pain reduction) to EMCS 146.  Repetitive sessions 

(5-10 over 1-2 weeks) with high-frequency rTMS (5-20 Hz) of contralateral M1 have shown 

benefits in a mixture of central, peripheral, and facial neuropathic pain states, with effects lasting 

>2 weeks after the stimulation.  Anodal tDCS over M1 has been reported to be beneficial in 

reducing several neuropathic conditions (phantom pain, trigeminal neuralgia, diabetic 

neuropathy, post-stroke pain, and pain associated with multiple sclerosis).  The primary 

advantage of noninvasive neurostimulation techniques is their excellent safety profile; hence 

they have been suggested as complementary therapies in patients with chronic refractory 

neuropathic pain. Relative contraindications of TMS include a history of epilepsy and the 

presence of aneurysm clips, deep brain electrodes, or cochlear implants. 

 

Deep Brain Stimulation (DBS) 

The use of chronic intracranial stimulation for neuropathic pain remains controversial. Multiple 

DBS sites, including the internal capsule, various nuclei in the sensory thalamus, periaqueductal 

and periventricular gray, motor cortex, septum, nucleus accumbens, posterior hypothalamus, and 

anterior cingulate cortex, have been examined as potential brain targets for pain control 147.  The 

NICE guidelines recognize that the procedure may be efficacious in some patients refractory to 

other forms of pain control, but current evidence on the safety of DBS shows serious potential 

risks 148. Contrary to NICE, the EAN guidelines give inconclusive recommendations to DBS 130. 

 

- Intrathecal Therapies  

Intrathecal therapies have been suggested as a targeted drug delivery option in patients with 

severe and chronic pain refractory to conservative treatments, including psychological, physical, 

pharmacological and neuromodulation therapies 149, 150.  The Polyanalgesic Consensus 

Conference report highlighted that this therapy is associated with risks for serious morbidity and 

mortality and made recommendations to reduce the incidence of these serious adverse effects 151.  
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The only two FDA approved drugs are morphine and ziconitide, an N-type calcium channel 

antagonist 152. The most frequently reported adverse reactions associated with intrathecal 

ziconitide are dizziness, nausea, confusional state, memory impairment, nystagmus, and 

elevation of serum creatine kinase.  Ziconitide is contraindicated in patients with a history of 

psychosis and patients should be monitored for evidence of cognitive impairment, hallucinations, 

or changes in mood and consciousness. 

 

 

Psychological therapies 

Psychological therapies are likely to play an increasingly important role in our attempts to help 

people adapt to neuropathic pain. People with chronic pain are not passive; they actively attempt 

to change the causes of pain and change their own behavior in response to pain. But, for many 

patients change without therapeutic help is unachievable, and repeated misdirected attempts to 

solve the problem of pain drive them further into a cycle of pain, depression, and disability 153  

Psychological interventions are designed to promote the management of pain and to reduce its 

adverse consequences. Cognitive Behavioral Therapy (CBT) has received most research 

attention; however CBT is not a single treatment, and can usefully be thought of as a family of 

techniques woven together by a clinical narrative of ‘individual change’ delivered by therapists 

actively managing treatment. The targets of treatment go beyond the analgesic to domains of 

affect, function, and social engagement. Secondary outcomes are sometimes reported because 

they are deemed important to treatment delivery (e.g., therapeutic alliance; self-efficacy), or 

because they are valued by one or more stakeholder (e.g., return to work; analgesic use). 

Trials of CBT reflect clinical practice: they are largely undertaken with samples heterogeneous 

by medical diagnosis, but homogenous in the extent of depression, anxiety, disability, social 

withdrawal, and difficulty self-managing pain. The most recent Cochrane systematic review of 

psychological interventions for chronic pain identified sixty-five trials, of which analyzable data 

were available from thirty-five. There are studies of both specific Behavioral Therapies (BT) and 

programs of CBT across multiple comparisons in different domains of outcome (pain, disability, 

mood), which taken together give a clear picture—there are small to moderate effects of CBT 

over comparisons 154. In a companion review of fifteen trials delivering treatment using the 

internet, a similar broadly positive conclusion emerged, although the confidence in the estimates 
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of effects was low 155. Psychological treatments other than BT and CBT were included in this 

review, but there were no trials of sufficient quality to include. More recently a specific 

Cochrane review of trials specifically undertaken with neuropathic pain patients found no 

evidence, reporting only two small trials 156.  There is no evidence base for or against the 

efficacy and safety of psychological interventions for chronic neuropathic pain. That the 

evidence for the efficacy of psychological interventions for chronic neuropathic pain is either 

missing or underwhelming is not surprising, and is in line with the evidence for non-

psychological interventions 157. There is an urgent need for studies of treatments designed 

specifically for patients with neuropathic pain, in particular those with painful diabetic 

neuropathy 158. It is likely that these studies will be different to those that went before in both 

content and design. First, needed are studies of CBT with content specifically designed to meet 

the psychosocial needs of patients with neuropathy, in particular with regard to the multiple 

sensory challenge, co-morbidity, and polypharmacy 159. A recognition that neuropathic pain 

increases with age will also mean that an understanding of later life accommodation to illness 

will be important 160. Second, a methodological focus on individual experience and trajectories 

of change is needed, either through single case experiments or through ecological momentary 

assessment 161. Third, communication technology, in particular the use of mobile health 

innovation, is likely to play an important role in future solutions. The computing technology 

already exists to deliver behavior change interventions to patients distant from therapists. What is 

missing is the basic behavioral science of how to manage effective therapeutic relationships at a 

distance, and how technology can augment and improve face-to-face CBT 162. Technical 

psychological variables—such as catastrophic thinking, acceptance, or readiness to change—

should be relegated to process variables. Conversely, essential will be a pragmatic focus on 

patient reported outcomes with the scope of reducing pain, improving mood, and reducing 

disability which ultimately results in improving quality of life. CBT remains an excellent 

candidate treatment for development. 

 

QUALITY OF LIFE 

Neuropathic pain can significantly impair quality of life as it often associates with other 

problems such as loss of function, anxiety, depression, disturbed sleep, and impaired cognition. 

Health Related Quality of Life (HRQoL) is a measure that captures broad dimensions of health 
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including physical, mental, emotional and social functioning. HRQoL is increasingly used when 

assessing the efficacy of different interventions to manage chronic neuropathic and non-

neuropathic pain. It is particularly useful when calculating quality-adjusted life years (QALYs) 

necessary for cost-utility analyses.  

The most commonly used HRQoL instruments are presented below. Some of them are general 

whereas others have been designed to assess HRQoL in neuropathic pain.   Meyer-Rosberg and 

colleagues validated both the SF-36 and Nottingham Health Profile (NHP) in the assessment of 

HRQoL in neuropathic pain related to peripheral nerve or root lesion in patients attending 

multidisciplinary pain clinics 163. The scores of all eight dimensions in the Short Form 36 Health 

Survey (SF-36) were significantly lower in the neuropathic pain patients compared with the 

general population in line with another study 164. 

The onset of neuropathy in diabetic patients has been shown to significantly decrease all aspects 

of quality of life 165. If diabetic polyneuropathy is accompanied by pain, both physical and 

mental components of quality of life are further affected 166. A recent study also showed that 

both EuroQol five dimensions (EQ-5D) and Short Form-6 dimension (SF-6D) questionnaires can 

discriminate between chronic pain patients with or without neuropathic pain 167. The role of 

psychological factors in impairing quality of life in neuropathic pain has been analyzed in two 

recent studies 168, 169.   One of them showed that pain catastrophizing associated with decreased 

HRQoL in neuropathic pain 168. 

The SF-36 and the EQ-5D have been the most commonly used instrument in clinical trials e.g.  

to assess the efficacy of gabapentin in post-herpetic neuralgia170, diabetic polyneuropathy 171, or 

neuropathic pain due to peripheral nerve injury 164, the efficacy of duloxetine in diabetic 

peripheral neuropathy 172, and the efficacy of spinal cord stimulation in diabetic 

polyneuropathy173,172 174. Improvement in pain scores was positively correlated with 

improvement in quality of life. The largest improvements were in patients achieving ≥50% pain 

relief. General HRGoL instruments enable comparison of neuropathic pain with other conditions 

and the general population. A sensitive HRQoL instrument specifically developed for 

neuropathic pain would help to analyze factors that are affected by neuropathic pain and help to 

focus management to all domains that are affected. 
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OUTLOOK  

Limitations of existing neuropathic pain treatments provide a compelling impetus for the 

development of novel interventions with improved efficacy and tolerability, but there have been 

few major advances. The explanations for this slow progress that are receiving the greatest 

attention are inadequate clinical trial assay sensitivity and the need to target treatment to patients 

who are most likely to respond. Assay sensitivity refers to the ability of a clinical trial to 

distinguish an efficacious treatment from placebo (or another comparator). The possibility that 

recent neuropathic pain clinical trials may suffer from limited assay sensitivity is consistent with 

the observation that a considerable number of recent negative trials investigated medications 

with well-established efficacy5, 175. Research designs, methodological features, patient 

characteristics, outcome measures, statistical analysis methods, and statistical power may all play 

a role in accounting for difficulties in demonstrating the benefits of efficacious treatments vs. 

placebo 176, 177. The essence of an evidence-based approach to the design of clinical trials is to 

first examine associations between clinical trial characteristics and study outcomes to identify 

modifiable factors associated with assay sensitivity, and to then apply that knowledge 

prospectively in the design of new trials. An example is provided by a recent analysis of 

neuropathic pain trials that showed that assay sensitivity was compromised by patients with 

highly variable baseline pain ratings 178 which suggests that trials might have greater assay 

sensitivity if highly variable baseline pain ratings were an exclusion criterion 101. 

Another critically important approach to increasing clinical trial assay sensitivity and to 

accelerating the development of personalized pain treatments involves selecting patients who 

have an increased likelihood of treatment response 179. The strongest evidence showing that 

profiles of symptoms and signs can identify treatment responders is a trial in which patients who 

were defined as having an “irritable nociceptor” phenotype had a larger decrease in pain with 

oxcarbazepine vs. placebo than those without this phenotype 32. This is the only trial in which a 

pre-specified primary analysis demonstrated a difference in treatment vs. placebo response in 

patient subgroups identified by phenotyping. These results are very promising, but require 

replication as well as use of phenotyping measures that would be suitable for larger confirmatory 

trials and use in clinical practice 180, 181. Phenotyping could also be used to test whether certain 

patients have a more robust response to non-pharmacologic treatments, for example, invasive, 

psychological, and complementary interventions 180, as well as to identify which patients are 
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most likely to respond to combinations of treatments. Indeed, given the importance of 

expectations and psychological and social factors — including adaptive coping and 

catastrophizing — in the development and maintenance of chronic pain, it would not be 

surprising if phenotyping has as great a role to play in demonstrating the efficacy of 

psychological interventions as it does for medications (Figure 8). 

To advance the design, execution, analysis, and interpretation of clinical trials of pain treatments, 

several public-private partnerships have undertaken systematic efforts to increase assay 

sensitivity and provide validated approaches for phenotyping patients and identifying those most 

likely to respond to treatment. These efforts—which include ACTTION (www.acttion.org), 

EuroPain (www.imieuropain.org), and the German Research Network on Neuropathic Pain 

(www.neuro.med.tu-muenchen.de/dfns/e_index.html )—are providing an evidence-based 

foundation for the design of future neuropathic pain clinical trials and for the development of 

mechanism-based approaches to personalized neuropathic pain treatment. 

 

The emergence of personalized pain medicine 

Personalized medical care refers to the principle that patients can be stratified such that each 

patient receives the most effective and tolerable treatment for their individual needs. Patients can 

be stratified on a number of levels: clinical phenotype, detailed sensory profiling, genetics and 

potentially (in the future) using cellular models. Close consultation with the patient is required 

and this involves complex discussions around the uncertainties of genetic risk and the balance 

between efficacy and tolerability of potential treatments. Human genetics has demonstrated that 

Nav1.7 is a critical pain target 182 and therapeutics aimed at targeting Nav1.7  provide an example 

of a situation in which testing for specific genetic mutations can inform patient care. Loss of 

function mutations lead to congenital insensitivity to pain and gain of function mutations cause 

rare inherited pain disorders including: inherited erythromelalgia (IEM, pain and erythema of the 

extremities, exacerbated by warmth) 183, paroxysmal extreme pain disorder (PEPD, pain and 

erythema affecting the sacrum and mandible) 184 and idiopathic small fiber neuropathy (SFN, 

pain and small-fiber degeneration in the extremities) 185.  

Genetic information can therefore inform diagnostics however the interpretation of genetic 

results is complex and aided by functional analysis of ion channels 186 for instance in the context 

of SFN in which mutations may not be fully penetrant. Finding a mutation in Nav1.7 may have 
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immediate implications for treatment in choosing a drug with activity against VGSCs (not 

normally first line agents in the treatment of neuropathic pain). For example, mexiletine is not 

recommended in the treatment of neuropathic pain but exception is made in IEM in which 

mexiletine has proven efficacy in normalizing abnormal channel properties in vitro 187 and 

clinical efficacy in individual cases.  A further step has been taken in using structural modelling 

of Nav1.7 to predict what treatment a specific mutation will respond to 188 and this was recently 

used to predict efficacy of carbamazepine in IEM associated with the S241T mutation 189. By 

taking a blood sample or skin biopsy from a patient it is now possible to generate nociceptors in 

vitro. In rare Mendelian pain disorders (such as IEM) these nociceptors have been shown to be 

hyper-excitable 190. Treatments such as selective inhibitors of Nav1.7 can be screened in such 

cellular models and related to clinical efficacy in Mendelian pain disorders as proof of concept 

prior to their use in acquired neuropathic pain conditions. Genetic stratification is more 

challenging in common acquired neuropathic pain states such as painful diabetic neuropathy 

which are polygenic with a significant environmental interaction. Despite these limitations the 

prospect of personalized medicine is a step forward towards promising pain management 

strategies.  

 

Conclusions 

Neuropathic pain is a notable health concern since it impairs quality of life and functioning. 

Nervous system mechanisms underlying chronic neuropathic pain have been uncovered through 

animal and human research. Major progressive strides have been made, particularly with the 

utilization of genetics which can guide diagnostics and treatment choices. Technological 

advances have helped improve the efficacy of invasive and non-invasive neurostimulation 

techniques for the treatment of select neuropathic pain states. Moreover, increased understanding 

of pain modulatory mechanisms (e.g. CPM, placebo effects) and psychological therapies, such as 

CBT, is the key for improving patient-oriented outcomes. New and more effective therapeutic 

targets, specifically those that have been individualized based on genotypic and phenotypic 

profiles, are promising and have opened many doors for progressing neuropathic pain basic and 

translational research.  
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