
1ScIeNtIfIc REPORTs |  (2017) 7:17935  | DOI:10.1038/s41598-017-18068-5

www.nature.com/scientificreports

BIGL: Biochemically Intuitive 
Generalized Loewe null model 
for prediction of the expected 
combined effect compatible with 
partial agonism and antagonism
Koen Van der Borght1, Annelies Tourny2, Rytis Bagdziunas3, Olivier Thas2,4, Maxim Nazarov3, 
Heather Turner  3, Bie Verbist1 & Hugo Ceulemans1

Clinical efficacy regularly requires the combination of drugs. For an early estimation of the clinical 
value of (potentially many) combinations of pharmacologic compounds during discovery, the observed 
combination effect is typically compared to that expected under a null model. Mechanistic accuracy of 
that null model is not aspired to; to the contrary, combinations that deviate favorably from the model 
(and thereby disprove its accuracy) are prioritized. Arguably the most popular null model is the Loewe 
Additivity model, which conceptually maps any assay under study to a (virtual) single-step enzymatic 
reaction. It is easy-to-interpret and requires no other information than the concentration-response 
curves of the individual compounds. However, the original Loewe model cannot accommodate 
concentration-response curves with different maximal responses and, by consequence, combinations 
of an agonist with a partial or inverse agonist. We propose an extension, named Biochemically Intuitive 
Generalized Loewe (BIGL), that can address different maximal responses, while preserving the 
biochemical underpinning and interpretability of the original Loewe model. In addition, we formulate 
statistical tests for detecting synergy and antagonism, which allow for detecting statistically significant 
greater/lesser observed combined effects than expected from the null model. Finally, we demonstrate 
the novel method through application to several publicly available datasets.

The treatment of heterogeneous disorders such as cancer, infectious diseases and autoimmune diseases is often 
complicated by adverse effects that limit the tolerable dose of a single agent, or by the gradual development of 
resistance. Combination therapy, i.e. the simultaneous treatment with multiple therapeutic agents, presents an 
approach to mitigate such complications. Individual agents are selected that differ in terms of adverse activities 
and hence can be administered at tolerable doses, yet that all converge on a key disease-causing process, thus 
maximizing the treatment’s efficacy. A combination of multiple effective drugs also encumbers the evolution of 
resistance, which then requires the simultaneous evasion of multiple mechanisms of action on the same process. 
Therefore, combination therapies are increasingly adopted as the standard of care for various diseases1.

Consequently, combinations of pharmacological compounds are routinely tested and their activities assessed 
during early drug discovery. Generating all the data needed for complete mechanistic understanding and modeling  
of these compound interactions with differential equations is labor intensive and generally not feasible or too 
costly at this early stage. However, reading out activities in concentration-response, e.g. from a serial dilution 
of the single agents in the combinations, is typically straightforward and affordable. Conveniently, these sin-
gle agent results enable the formulation of a plausible expectation of their combined effect under a null model. 
Comparison of the observed effect of a combination of compounds to that predicted by the null model, then 
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allows an assessment of the potential of that combination. The most promising combinations are the ones with an 
observed effect that significantly exceeds the expected effect; these are called synergistic.

Notably, the null model does not aim to be mechanistically accurate. In fact, typically the most attractive 
combinations are the ones that show the largest favorable deviation from the null model. By its very definition, a 
synergy call rejects the null model, i.e. it disproves the mechanism underlying it. The costly and labor-intensive 
modelling of the actual mechanism underlying the combination effect of interest is reserved for those few com-
binations that are the most attractive and that have their favorable effect confirmed. It often involves elaborating 
systems of differential equations and custom data generation.

The choice of a null model for the early (and scalable) evaluation of compound combinations is mostly 
inspired by convenience. Can base-line effect expectations be computed leveraging only the limited information 
that is routinely available during early discovery, i.e. on concentration response curves?

Even though several null models exist, such as Bliss Independence2, arguably the most frequently used null 
model is the one proposed by Loewe3. The Loewe model, also known as Concentration Additivity, is a mecha-
nistically inspired and biochemically interpretable model that conceptualizes the assay under study as a (virtual) 
single-step enzymatic reaction, even if the underlying biology is in fact much more complicated (for instance 
if the assay relies on entire cells or even organisms), and hence the model is obviously incomplete at best. The 
conceptual biochemical mechanism posits that the effective binding of an enzyme molecule by any compound 
switches its activity state (turning it on or off, depending on the activity state of unbound enzyme). Moreover, 
compound binding to an enzyme molecule is mutually exclusive, i.e. compounds compete for binding. Under 
this model (under the two classical Loewe constraints), the fraction of bound and thereby identically affected 
enzyme molecules increases with the concentration of any compound. Once all enzyme molecules are occupied 
by compound, a maximal response is achieved which is inherently the same for all effective compounds and their 
combination. However, the common maximal response implied by the classical Loewe model regularly proves 
untenable. Thus, in cellular assays it occurs that different compounds elicit maximal responses in the same assay 
that differ in magnitude (partial agonism) or even in direction (agonism/antagonism, for instance in receptor 
signaling). The classical Loewe model cannot accommodate these cases.

Although several methods have been described that can cope with partial agonism or agonism/antagonism, 
these are no longer easily biochemically interpretable (see Discussion). Therefore, we propose a novel direct 
generalization of the Loewe model, called BIGL (Biochemically Intuitive Generalized Loewe), which maintains 
the biochemical interpretability of the classical Loewe model, even in cases of partial agonism and antagonism.

The BIGL model together with two bootstrap statistical tests for synergy calling (MeanR/MaxR) have been 
implemented in R as the R package BIGL (https://cran.r-project.org/web/packages/BIGL). We demonstrate the 
method on some publicly available datasets.

Results
Hill equation: occupancy or readout as a function of concentration. The Hill equation is the established  
model to describe the concentration-response of a biochemical reaction with cooperativity4; it expresses the occu-
pancy oj, i.e. the fraction of enzyme bound to compound j, at a given compound concentration c (equation (1A)). 
Under the constraint that the binding of a compound j to a molecule of enzyme affects the enzymatic activity in 
a binary way, the occupancy oj equals the fractional (enzymatic) effect Ej(c), i.e. the observed effect relative to the 
maximum enzymatic effect.
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where ij and hj are the inflection point (half maximal effective concentration, EC50) and the Hill or cooperativity  
coefficient, respectively. The equation was derived to describe a single-step enzymatic reaction with positive 
(hj > 1) or negative (hj < 1) cooperativity, but is often used to describe other, more complicated assays, for instance 
a cellular assay. In practice a four-parameter log-logistic function (4PLL), which amounts to a linearly trans-
formed version of the occupancy oj, is used to directly fit the assay readout values Rj(c) (equation (1B)). For a 
recent mechanistic derivation of this equation, see Mager 20035.
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The above equation contains an intercept b that denotes the activity when no compound is bound to enzyme 
(at c = 0) and a scaling factor (mj − b), where mj is the maximal effect of the compound. Note that the baseline 
activity b is the same for all compounds, because it refers to o = c = 0, which reflects absence of any compound. 
Equations (1A) and (1B) describe occupancy and readout as a function of concentration of a given compound, 
respectively. When used in the context of compound combination studies, equations (1A) and (1B), which apply 
to single compounds, are called the marginal (or mono-therapy) concentration response functions.

Inverse Hill equation: concentration as function of occupancy or readout. By simple rearrange-
ment an inverse marginal function can be derived that describes concentration as a function of occupancy (equa-
tion (2A)) or readout (equation (2B)), respectively.

https://cran.r-project.org/web/packages/BIGL
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Classical Loewe or Concentration Additivity model. The classical Loewe model (equation (3A)) 
describes the occupancy of enzyme exposed to a combination of two or more compounds. More specifically, 
occupancy is defined as the fraction of enzyme bound to any of the compounds in the mix. Under the first classi-
cal Loewe constraint that binding of compound to molecules of enzyme affects their activity in a binary (on/off) 
way, occupancy equals the fractional enzymatic effect of the mix of compounds.
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In equation (3A), cj is the concentration of compound j in the combination, and Cj(o) is the concentration 
of compound j that would result in occupancy o when the compound would be administered as mono-therapy. 
Upon using equation (2A), equation (3A) becomes
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By numerical solution of equation (3A.1), the occupancy can be computed under the assumption of Loewe 
Additivity6. Note that only the parameters of the Hill equation for the mono-therapies are required.

Analogously, equation (3B) describes the classical Loewe Additivity (LA) model as a function of readout.
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Upon using equation (2B), equation (3B) becomes
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which is the unnormalized form of the null model as derived by Greco7.

Biochemically Intuitive Generalized Loewe (BIGL). In practice, it sometimes occurs that the maximal 
responses of individual compounds in the same assay differ. Such cases cannot be reconciled with classical Loewe’s 
first constraint, which stipulates that the binding of a molecule of enzyme to any compound in the mixture 
results in an identical switch of binary activity state of that molecule. Indeed, this first constraint implies a single 
maximal response, reflecting saturation of all enzyme with compound. However, we propose a generalization  
of the Loewe model by allowing for varying and fractional compound effects at the enzyme molecule level. 
The classical Loewe model (equation (3A)) remains valid to describe enzyme occupancy, i.e. the fraction of 
enzyme bound to compound, because this equation does not refer to the (possibly compound-specific) maximal  
readouts mj. However, the linear transformation that maps occupancy to readout (equation (1B)) can be 
compound-specific: the scaling factors (mj − b) then also account for variable and fractional compound effects. 
Yet, these scaling factors cannot be applied directly to the readout of combination activities. Our solution arises 
from the inherent properties of the classical Loewe model in that the readout of a combination is the sum of the 
readouts that are caused by the individual compounds in the combination. Hence, the readout of a combination 
can be written as a weighted average of the compound-specific readouts of equation (1B); this gives equation (3C)
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where weight fj(o) is the fraction of enzyme that are bound to compound j among those bound to any compound 
in the combination (with occupancy o). This fraction is exactly the interpretation that is given to the term c
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the additive Loewe model (equation (3A)). Since by equation (3A) the sum of the f o( )j
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(3C) correctly expresses a weighted average. Upon using equations (1B) and (2A), equation (3C) becomes
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In summary, the BIGL model is applicable for combinations of compounds with different maximal responses. 
It is described by equations (3A) and (3D). The former expresses Concentration Additivity (classical Loewe) and 
is used for the calculation of the occupancy. The latter is subsequently used for the prediction of the readout r for 
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the combination experiment under Loewe. Note that the BIGL model only requires parameter estimates from the 
marginal concentration response curves to predict the null readout of compound combinations.

Two statistical tests for synergy. In a synergy experiment compounds are tested in several concentration 
combinations. If the assay readout values deviate too strongly from what is predicted under BIGL model (here 
referred to as the null model), the combination effect is called synergistic or antagonistic. Statistical tests are 
designed to measure the evidence in the data against the null model in the presence of variability. Two hypothesis  
tests are proposed here. Both tests basically contrast the observed readouts of the combination experiments with 
those predicted from the null model (equations (3A) and (3D)). The only unknown parameters in the null model 
originate from the Hill equations (equation (1B)), and these are estimated from the mono-therapy data. The 
first test assesses the average deviation from the null model, and is referred to as the MeanR test. The second test 
makes use of the largest absolute deviation between observed and predicted readout among all concentration 
combinations, and allows for the identification of concentration combinations at which synergy or antagonism 
is present. This test is referred to as the MaxR test. Details about the construction, assumptions and theory of the 
statistical tests are presented in Supplementary Methods. Results from a simulation study demonstrate the validity  
of the two testing procedures; see Supplementary Results (Supplementary Figures S1 and S2).

Evaluation of the method. First, we evaluated the BIGL methodology on some sham (i.e. self) combina-
tions, which by definition should be additive. We used the sham combinations of 25 compounds as presented in 
Cokol et al.8. After filtering, based on the variance on the estimated log(EC50) to remove poor quality data (see 
Methods), 14 compounds were left and their sham combinations were analyzed both at 8 hours as well as 12 hours. 
Of the 28 sham combinations tested, 4 (14%) were called non-additive, which is slightly higher than expected at 
the 5% significance level (Table 1). The null was rejected for all 4 combinations in favor of an antagonism call. 
However, the combination data of both BRO (8 h) and MET (8 h, 12 h) are showing lower effects than expected 
under the null at higher dose ranges (Fig. 1a). This implies either deviation from additivity or data quality  
issues (e.g. due to toxicity). The TAM combination is also called antagonistic, but this call is clearly driven by one 
extreme outlier (Fig. 1b). In summary, after accounting for outliers and data quality issues, the BIGL call rate for 
deviation of additivity on sham combinations is in line with expectations.

Next, we evaluated the performance of the BIGL methodology on a larger combination dataset, namely the 
OncoPolyPharmacology Screen published by O’Neil9. We successfully executed BIGL analyses on all combination 
data provided by O’Neil (Supplementary Figures S5 and S6 present an overview by heatmap). As a quality control 
prior to further analysis, we applied a similar filtering as used in the Cokol dataset (see Methods) which led us to 
invalidate 72% of the initial combinations (583 pairs of compounds tested in a varying subset of 39 cell lines). 438 

Time ANI BRO C3P CAN CYC HAL MET MMS MYR QMY RAP STA TAM TUN

08h00 0 1 0 0 0 0 1 0 0* 0 0 0 1 0

12h00 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Table 1. Tested sham combinations of Cokol et al.8 at 8 hours and 12 hours. 0 indicates additive call, 1 indicates 
antagonism and -1 indicates synergy. 4 sham combinations are found to be antagonistic. *For Myr-Myr 
combination the p value of MeanR was borderline significant (p = 0.047), but no significant calls for MaxR.

Figure 1. Response surface plots with an indication of synergy/antagonism by blue or red respectively. (a) 
Sham combination of BRO at 8 hours with indication of some areas of antagonism at high dose ranges. (b) Sham 
combination of TAM at 8 hours with indication of antagonism but driven by one extreme outlier.
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(75%) compound pairs were found synergistic in at least one cell line under the BIGL model, which is more than 
the 50% in the O’Neil study, which reports analyses for the Highest Single Agent (HSA) and Bliss null models.

Figure 2 visualizes the fraction of cell lines with synergy calls for each compound pair. For convenience, the 
ordering of the compounds is kept consistent with the heatmap in the O’Neil study. 181 combinations (31%) 
were called synergistic in half of the analyzed cell lines. The O’Neil study highlighted the combination of Wee1 
inhibitor (AZD1775) with MK-8776 as a consistently strong synergistic drug combination, a finding confirmed in 
Guertin et al.10. The combination data for this compound pair in 15 out of 39 cell lines passed data quality criteria; 
the BIGL evaluation returned a synergy call for 13 of those, in line with the O’Neil conclusions. The O’Neil study 
also reports synergy of the pairing of the same Wee1 inhibitor (AZD1775) with an mTOR inhibitor (MK-8669) in 
roughly 30% of the cell lines. The combination data for this compound pair in 18 out of 39 cell lines passed data 
quality criteria, and the BIGL approach called synergy for 6 (33%) of those.

Additionally, the BIGL approach also flagged some combinations that were reported as synergistic elsewhere 
but that were not picked up in the O’Neil study. Figure 3 (marginal dose-response curves) and Fig. 4 (combina-
tion dose-response surface) illustrate the analysis of one such case, namely the combination of Gemcitabine and 
Dasatinib in the LOVO cell line. These figures also visualize the hallmark ability of the BIGL methodology to 
accommodate the partial agonism of Dasatinib (Fig. 3), which classical Loewe handles poorly. In line with findings  
elsewhere11, BIGL flags the combination of Gemcitabine and Dasatinib as synergistic in 14 out of the 18 cell lines 
with quality controlled datasets.

Discussion
With the advent of combination therapy (for a recent review, see e.g. He et al.12), the treatment options for many 
diseases have drastically improved. The Loewe or Concentration Additivity is often used as a biochemically 
interpretable null model for an early assessment of the potential of combinations. Even though the very simple 
biochemical reaction mechanism that underlies Loewe is in most cases (e.g. in a cellular or organism context) 
incomplete at best, it still enables the straightforward computation of an easy-to-interpret baseline expectation. 

Figure 2. Heatmap illustrating synergistic combinations. The color indicates the fraction of cell lines for 
which a synergy call was made, accounting for the respective number of cell lines analyzed for a particular pair. 
Fractions based on fewer than 6 cell lines are minimized. Grey heatmap cells represent compounds pairs absent 
from the dataset.
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This computation only requires routinely available concentration-response curves of the individual compounds, 
and no mechanistic information that is typically unavailable during early drug discovery. Used in a synergy call 
context, the Loewe null model enables the prioritization of compound combination that deviate favorably from 
the expectation. These per definition reject Loewe as an accurate mechanistic model. For the most interesting 
combinations, a mechanistic model can be elaborated that explains the deviation from the Loewe null, but this 
typically requires considerably more data generation.

The classical Loewe reference model is not applicable whenever the concentration-response curves of the 
compounds in the combination have different maximal effects, like in pairings of an agonist with a partial or an 

Figure 3. Mono-therapy plots. Mono-therapy data in LOVO cell line for Gemcitabine and Dasatinib.

Figure 4. Response surface of gemcitabine and dasatinib in LOVO cell line. At high dose range of the 
two compounds, the combination data show effects below the expected ones under the null, indicating 
synergistic effects.
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inverse agonist. Whereas several methods that build on classical Loewe have been developed to address these 
issues (Table 2), to the best of our knowledge, BIGL is the first method to handle combinations with partial and 
inverse agonists (see Supplementary Figure S3 and Flaveny et al.13) that preserves the biochemical interpretability 
of the original null model. In this paper, we have derived the model equations of the BIGL method and devel-
oped statistical tests for synergy testing. Moreover, we demonstrated the amenability of the BIGL approach to a 
real world large oncology screen of combinations which contains clear examples of combinations with partial 
agonists9. The BIGL obtained synergy assessment results on this screen were generally consistent with literature. 
Additionally, we showed through simulation (Supplementary Results) and performance on self combinations that 
the type I error rate is controlled in general.

Like classical Loewe, BIGL posits that compounds compete for the same enzymatic binding site (otherwise 
its results would deviate from classical Loewe where this applies). The combination response reflects the sum of 
the difference between maximal and baseline response for each compound, weighted by the fraction of (virtual) 
enzyme bound to that compound. Hence, the most extreme maximal response of any single compound in a com-
bination also defines the most extreme maximal response of that combination, which is achieved by saturation of 
the enzyme with that compound14,15. The response of combinations that include the same concentration of a full 
agonist (i.e. the compound with the most extreme maximal response) will be reduced with increasing concentra-
tions of a partial agonist (i.e. the compound with a less extreme maximal response). Both in clinical applications 
and in discovery, an agonist compound can be combined with a neutral antagonist (which competitively blocks 
the agonist without being enzymatically active) or an inverse agonist (which triggers an enzymatic response in the 
other direction, for instance in assays with a constitutively active receptor, channel or transporter, an inverse ago-
nist would reduce such activity). Known clinical compound combinations target the μ opioid receptor and the α1 
adrenergic receptor16,17. To illustrate the flexibility of BIGL, we simulated the expected response of a combination 
of a partial opioid receptor agonist with a neutral antagonist with dose response taken from18 (Supplementary 
Figure S4). The case of a neutral antagonist presents the extreme case where one of the combination compounds 
show a maximal response equal to baseline. Notably, if a compound combination is specified as a combination of 
individually active compounds, then it could be argued to opt for the alternative null model of the single active 
compound. A straightforward test of a null hypothesis of non-activity for both compounds would enable to auto-
mate the identification of such cases.

As stated above, BIGL is not the first method that generalizes the classical Loewe model. The currently existing  
methods that generalize the classical Loewe model to deal with partial and/or inverse agonisms are listed in 
Table 2. Some of these methods overextend conventional methods beyond their justified application domain by 
simply ignoring inconvenient response curve or compound combination characteristics, even if these are very 
real. Thus, the Generalized Concentration Addition (GCA) method of Howard19 imposes Hill coefficients of 1 
for all compounds and thereby ignores possible cooperativity. The extrapolation method described in Scholze20 
deals with partial agonism by rescaling any maximal effects to the overall most prominent maximal effect, hereby 
ignoring observable differences in maximal effect. A piecewise approach is described in21,22, where contributions 
of compounds are accounted for only within their individual effect range, but completely ignored outside of it. As 
a general guideline, it is advised to deploy methods that correctly consider observed data characteristics.

Another group of methods was designed to address different maximal responses properly. The FLM model23, 
for example, is similar to BIGL in that its function is constructed as a weighted average of terms that are scaled 
to the original marginal dose-response functions. However, it conceptually hinges on effect equivalence con-
cepts that implicitly assume parallel concentration-response curves (with identical Hill coefficients and maximal 
responses). Under those constraints and only then, the FLM model is a special case of the LA model, and by 
extension the BIGL model. In all other cases, the model is mathematically convenient, but biochemically uninter-
pretable. The BRAID model of Twarog et al.24 is another method that adheres to the LA constraints, thus building 
on the Hill dose response for the individual compounds and satisfying the Loewe self-combination additivity 
property. However, the BRAID additivity surface is not Loewe additive24. Therefore, unlike BIGL, it never reduces 

Method
Year 

published
biochemically 
interpretable Comments Tool

A. Classical Loewe (Concentration Additivity)

Loewe3 1926 ✓ not applicable for marginal curves with different 
maximal effect R package BIGL

B. LOF-test of null models

GCA (Howard)19 2009 assumes hill slope = 1 for the marginal curves

Scholze20 2014 rescales curves to common effect levels

FLM23 2016 special cases are compatible with Loewe

Loewe (Di Veroli)21 2016 reverts to highest single agent where classical 
Loewe is undefined MATLAB Combenefit

BIGL 2017 ✓ R package BIGL

C. Response surface capture models

Harbron22 2010 explores multiple null models

BRAID24 2016 BRAID additivity surface is not Loewe additive R packages braidrm and 
braidReports

Table 2. Classical LA and models that generalize classical LA for partial agonism.
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to LA conceptually which limits interpretability. Moreover, as the BRAID model presents a mathematical solution 
to deal with partial agonists, the modeled concentration addition can involve negative concentrations which is 
biochemically unintuitive.

Besides different ways of generalizing the classical Loewe model, the methods listed in Table 2 also differ in the 
way they assess synergy. They can be divided in two types: response surface modeling and lack of fit testing of the 
null model. Response surface models capture the deviation of the observed response surface from the null model 
relying on the parameters of the marginal dose response functions and one additional parameter that enables 
synergy antagonism calling. For example, the BRAID model24 comprises a single interaction parameter κ, which 
is statistically equivalent to 0 under additivity, but deviates under synergy or antagonism. In addition to ena-
bling compound interaction calls, well fitted response surface models can be used for interpolating the effect of 
unobserved compound combinations. However, while a single interpretation parameter supports straightforward 
compound interaction calling, the resulting models often lack the flexibility to accurately adjust the observed 
response surface. For instance, they impose that over the entire concentration range the effects of the compounds 
in the mixture occur in the same direction – either consistently positive or consistently negative6. A better fit and 
hence interpolation performance can be achieved by exploring a bigger modeling space. Thus, multiple reference 
models can be evaluated22, and the compound interaction call based on the best fitting one. However, this may 
encumber the comparison of combinations, if optimal fitting selects different models as reference for the com-
pound interaction assessment. In practice, response surface model methods often face a trade-off of interpolation 
performance versus consistency of interaction assessment. Notably, optimal predictivity typically benefits from 
more extensive model flexibility, as illustrated by mechanism based models (outlined in5). However, these models 
are not designed to support a comparison to a null model, which is different from the second group of methods: 
lack of fit models where compound interaction evaluation only aims to assess the deviation from the null model, 
informally or formally (i.e. statistically). Early examples include various isobologram approaches, which evaluate 
deviation of the null model for isoeffective sections through the dose response surface. Isobologram analyses have 
been extended to the partial agonist case25.

The proposed statistical tests within the BIGL framework are lack of fit methods. They rely on a null model 
that, like the Loewe model, requires no other parameterization than the parameters of the concentration-response 
curves of the individual compounds and as assumptions the ones underpinning the standard practice of fitting 
a four-parameter log-logistic dose-response function or Hill equation (which generalizes the Michaelis-Menten 
equation to accommodate cooperativity as Hill coefficients deviating from one). Additionally, the BIGL lack of fit 
tests assume equality of variance of outcomes – however this could be relaxed in future developments. BIGL naturally  
generalizes Loewe by allowing for different maximal responses. Even though the Loewe and consequently BIGL 
models are inspired by a specific and simple enzymatic mechanism, when used in the context of synergy or antag-
onism call, they are not assumed to be mechanistically accurate. Like Loewe, BIGL is straightforward to compute 
with minimal and routinely available information (concentration-response curves), and enables to select com-
binations of interest. Importantly, the most attractive compound combinations would typically be the ones that 
deviate favorable from the BIGL expectation, and thereby reject BIGL as the mechanism of action.

In summary, we propose BIGL as a tractable and flexible approach to assess compound interaction with mini-
mal and routinely available data requirements, that naturally generalizes the widely used Loewe model and retains 
Loewe’s biochemical interpretability.

Methods
Datasets. The BIGL methodology was applied on two different publicly available datasets. The first dataset, 
which was described in Cokol et al.8, contains 25 sham (self) combinations provided for each compound com-
bination as raw cell growth measurements in a full, 8 concentration checkerboard design (8 × 8) in 24 hour time 
course with 15 minute intervals. In the current study data for the 8 and 12 hour timepoints were analysed.

The second dataset came from the OncoPolyPharmacology screen as described in O’Neil et al.9, which 
describes the assessment of 38 drugs (22 experimental and 16 approved drugs) in a panel of 39 cancer cell lines 
for a total of 583 pairs. The mono-therapy data are expressed as cell growth rate relative to the growth rate of 
DMSO-treated controls.

Estimation details. For the mono-therapy data for each compound pair, a 4-parameter log-logistic function 
was fitted, subject to the constraint that both compounds share the same baseline response. Additionally, to sta-
bilize residual variance during the marginal parameter estimation procedure, the readouts were log-transformed 
to instantaneous growth reads26. Parameters were estimated by a non-linear least squares approach. A model was 
considered of sufficient quality if the standard deviation of log-transformed half-maximally effective concentra-
tion (log(EC50)) estimates for both compounds in a pair did not exceed 10.

The marginal parameters were subsequently used to construct the response surface as predicted by the generalized  
Loewe model and MeanR and MaxR statistics were computed from the predicted and observed off-axis data. Null 
distributions for these statistics were obtained assuming normally distributed off-axis residuals for all compound 
pairs in the O’Neil et al. dataset (see Supplementary Methods). In contrast, a bootstrapping method with 1000 
runs was used for the Cokol et al.8 dataset to approximate null distributions of the MeanR and MaxR statistics. 
Since no replicates were available in the latter dataset, the readout errors for off-axis points during bootstrapping 
were sampled from a centered Gaussian distribution with variance equal to the residual variance estimate from 
the marginal model. In all of the above cases, the Cp matrix (see Supplementary Methods) was calculated using 
100 bootstrap runs and all statistical tests were performed at a significance level of 5%.
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