

Metadata en besturingskenmerken van lagekosteninfrastructuren
voor de publicatie van gelinkte data

Metadata and Control Features for Low-Cost Linked Data Publishing Infrastructures

Miel Vander Sande

Promotoren: prof. dr. ing. E. Mannens, prof. dr. ir. R. Verborgh
Proefschrift ingediend tot het behalen van de graad van

Doctor in de industriële wetenschappen

Vakgroep Elektronica en Informatiesystemen
Voorzitter: prof. dr. ir. K. De Bosschere

Faculteit Ingenieurswetenschappen en Architectuur
Academiejaar 2017 - 2018

ISBN 978-94-6355-090-1
NUR 983
Wettelijk depot: D/2018/10.500/8

Examination board

Chair

prof. dr. Patrick De Baets Ghent University, Belgium

Secretary

prof. dr. Sofie Van Hoecke Ghent University, Belgium

Reading commi�ee

prof. dr. Antoon Bronselaer Ghent University, Belgium

dr. Femke Ongenae Ghent University, Belgium

dr. Herbert Van de Sompel Los Alamos National Laboratory, USA

dr. Javier David Fernández García WU Vienna, Austria

prof. dr. Craig Knoblock University of Southern California, USA

Supervisors

prof. dr. Erik Mannens Ghent University, Belgium

prof. dr. Ruben Verborgh Ghent University, Belgium

And the information superhighway showed the average person what some nerd

thinks about Star Trek.

– Homer J. Simpson

iii

You tried your best and you
failed miserably. The lesson is:
Never try.

— Homer J. Simpson

Preface

The last thesis I wrote was at the Polytechnic University of Valencia in Spain,
where I was doing a study exchange program to finish my masters. Most pages
were wri�en in a dark room without windows, since it was the only place where
I could resist the sun, and all the fun. There, it became apparent that, when
you have a lot of things going on, writing any kind on dissertation is tough.
This would be later confirmed by my mother and her long-winded PhD track.
While I was writing, I also took a course called “Internet de nueva generación”
(or in English: the new generation internet), because I felt passionate about
the subject. It always fascinated me how the internet, and in particular the
Web, advanced the way people interact with knowledge and information. As
computers evolved, so did the di�erent ways in which Web content could be
portrayed, or presented to users.

The first Web pages I visited had white backgrounds, black text, and a few blue
links. They were displayed in the early Web browser Netscape, which ran from
a floppy disk. Things got a lot more colorful a few years later, when the Yahoo!
GeoCities platform allowed teenagers, like me, to build their own (painfully
ugly) website with li�le technical background. I remember how Adobe Flash,
with all its graphical power, slowly turned Web pages into sophisticated and
animated applications that matched an o�line so�ware experience. And how
the release of Google Chrome in 2008 marked browsers su�iciently powerful
to replace Flash, which made Web applications vendor-independent and back
in the hands of open standards such as html, css and JavaScript. Now, we
even run these applications on our phones, where we replaced clicking links
by touching, swiping, moving, and even talking. Throughout, the Web has
been, and is, the driving force behind true digital innovation, and therefore
has a indisputable impact on modern society. The ability to connect, integrate,
and repackage information on a global scale, motivated me to tackle one of its
many open challenges in my doctoral work.

This new generation internet course introduced me to Semantic Web and
Linked Data technology, although I did not actually realize that at the time.
The entire class was taught in Spanish, and, because of a collaboration with

v

Preface

universities in Barcelona and Madrid, was done over video conferencing with
low audio quality. As my understanding of the Spanish language was quite
non-existent (which it still is), I spent most of my time in class looking at the
figures that were displayed on the slides. Because I sometimes recognized an
acronym or a logo, I took comfort in the assumption that I already knew most
of the material anyway. Needless to say, if it was not for the graded a�en-
dance, I would have flunked miserably. Imagine my surprise when I started
recognizing things when reading the introductory material for my new job as
a Semantic Web researcher at the Multimedia Lab (now IDLab) of Ghent Uni-
versity and iMinds (now imec).

Now, I know that Linked Data is facilitating technology for the Web applica-
tions of today, as they rely, more than ever, on information that is shared over
the Web. However, as user expectations of such applications continue to rise,
so does the complexity of the technology to share Linked Data. In that process,
it is o�en disregarded that such complexity shi� raises the bar for adoption,
causing the under-resourced or under-informed organizations to abandon ship.
Therefore, this dissertation is about the e�ects of simplifying these solutions,
thus lowering the bar and democratizing the publication of Linked Data.

Since I joined the Knowledge on Web-Scale (KNoWS) team in the fall of 2011,
I have taken a deep dive into the broad subject of Web, Semantic Web, and
Linked Data. Within that domain, our team was able to touch upon an existing
vacuum between the theoretical, scientific concepts produced by the research
community, and what the industry considers production-ready. As commu-
nity newcomers, we positioned ourselves as advocates of “stu� that works” to
remind everyone that the Web environment is crucial and even indispensable
for the dissemination of their work. Here, with the support of iMinds, I could
bridge what was a collection of emerging, but still experimental technology
with that digital innovation companies were striving for. Our first major team-
e�ort led to Everything is Connected : an application that autonomously creates
a movie explaining the link between two random concepts using video, images,
and text plucked from the Web. That application got us our first conference
award, and put us on the map. A�er that, I pushed for evolving things beyond
so�ware engineering and, from scratch, we started implementing be�er re-
search practice within our team. Over the years, I have seen our methodology
strengthen, our papers improve, and our workflows mature, without abandon-
ing our “works in practice” mindset. I can proudly say that this dissertation,
and the work by my fellow generation of colleagues, contribute to that e�ort’s
first real payo�.

Before, during, and a�er the writing of this dissertation, many people have
contributed—colleague or not, knowingly or unknowingly—who all deserve a
proper thanking. First and foremost, my thanks goes out to my entire examina-
tion commi�ee, who provided valuable or extensive comments, and, of course,
my supervisors. Ruben, thank you for being a great accomplice, inspiration,
discussion partner, and co-author. Our collaboration has been more than pro-
ductive, and calling this doctoral work partly yours is only fair. Together with

vi

Preface

the team, we made ourselves indisputable in the community, got our Linked
Data Fragments work widely known, improved the use of scientific method,
and wrote a bunch of high-quality papers. Erik, thank you for keeping the ship
afloat, so everyone could work (more or less) worry-free. You, solving my oc-
casional problematic project and enabling me to work half-time for the Krook
project, meant a great deal to me. An since I promised some guys on a cycling
trip to include a metaphor: just like on the Tourmalet, you stood behind me
the entire time.

Further thanks to all KNoWS’ former members Tom, Sam C., Davy, Laurens,
Dieter D.P., Dieter D.W., Hajar, and current members Pieter C., Anastasia, Ben,
Gerald, Martin, Dörthe, Ruben T., Joachim, Pieter H., Brecht, Julian, Cristian,
Gayane, and Sven. Working together was always fun and e�ective, whether
it was for a project, a paper, or a conference travel. The same holds for other
members of IDLab that have contributed directly or indirectly to my work. A
special mention goes out to Femke O., who is always willing to help, guide and
review, regardless of the size of her workload—I repaid that in Japanese Ramen,
and the tandem Laura and Kristof, who are always willing to help with stupid
questions and quests for o�ice supplies. Also a big thanks to all project partners
and co-authors that I worked with along the way.

Parts of my research were conducted abroad, which yielded several tools, pub-
lications, and events. Therefore, I thank my international companions Karl,
Magnus, Dominique, Javier, Laurens R., Olaf, Maria-Esther, Pedro, Jacco,
Harish, Lyudmila, and Wouter B. Herbert and Craig, to you I am especially
grateful for welcoming me in your institutions overseas. I had two wonderful
experiences at ISI-USC in Los Angeles, and the Los Alamos National Labora-
tory. With the help of your teams, limited time turned into great value.

Thanks are also due to Robby, Kasper, Ma�hias, Liesbeth, Jole, Sam D., and
Wouter D. for joining me in our Krook adventure for imec. This dissertation
was not wri�en despite of, but because of our great team; the fun and creativity
were a much needed distraction. Although things did not exactly work out the
way we wanted to, it was not by a lack of trying.

Thanks too to my mother, for introducing the PhD challenge, my father, for
showing endless patience in that regard, and my brother, for se�ing the family
engineering bar high. Also thanks to my friends for all the support, entertain-
ment, company, and the occasional beer.

Now all that is le� for me to do is thanking you, my beautiful Sara. Despite
being involved so late in the game, you have had a substantial impact on this
dissertation, as well as on me. Among many other things, I am grateful for, in
order of importance, making sure I did not starve, supporting me in every way
possible, and pu�ing my mind of things when needed. I would recommend
you to any thesis writer, if you were not already mine.

Miel
Gent, February 6, 2018

vii

Contents

Preface v

Summary xi

Samenva�ing xv

List of Figures xix

List of Tables xxii

1 Introduction 1

1.1 Research questions . 3
1.2 Outline . 6

2 The Web of Linked Data 9

2.1 Architecture of the Web . 10
2.2 Linked Open Data . 14
2.3 Relation to the Semantic Web 15
2.4 Extract-Transform-Load workflows for rdf data 21
2.5 Publishing Linked Data . 23
2.6 Conclusion . 27

3 Sustainable apis for Linked Data publishing 35

3.1 Towards sustainable Linked Data querying 36
3.2 Preliminaries of the Web of Linked Data 39
3.3 Characterizing Web apis . 39
3.4 The Linked Data Fragments conceptual model 42
3.5 Exploring new interface trade-o�s 47
3.6 Conclusion . 50

4 �ery Execution 55

4.1 Triple Pa�ern Fragments: a new interface trade-o� 56
4.2 �erying a tpf interface with sparql 60

Contents

4.3 Evaluation of the tpf interface 66
4.4 Adding Approximate Membership metadata 76
4.5 Evaluating Approximate Membership metadata 85
4.6 Conclusion . 89

5 Federation of interfaces 97

5.1 Reviving Virtual integration with low-cost interfaces 98
5.2 Source selection for federated query processing 99
5.3 �erying a federation of tpf interfaces 101
5.4 Experiments . 102
5.5 Conclusion . 107

6 Discovering interfaces 113

6.1 Discovery of Linked Datasets and Web Services 114
6.2 �antifying the discovery process 118
6.3 Hypermedia-based discovery approach 120
6.4 Federated query processing through hypermedia 125
6.5 Experiments . 129
6.6 Conclusion . 141

7 Accessing history 147

7.1 Publishing Linked Data preservation e�orts 148
7.2 Sustainable publishing and querying of Linked Data archives . 150
7.3 Reconstructing institutional history from archives 151
7.4 Storage solutions for rdf archives 153
7.5 Publishing versioned Linked Data 157
7.6 �erying versioned and distributed Linked Data 160
7.7 Making sense of changing statements 163
7.8 Conclusion . 166

8 Conclusions 171

8.1 Review of the Research �estions 172
8.2 Open challenges and future directions 175

x

Summary

The information on the Web has grown beyond human processing capabilities
at a remarkable rate. Therefore, automated so�ware applications that help
users plow through the vast amount of documents (e.g., search engines) have
gained presence, with the increasing expectation of being more and more in-
telligent. Instead of simply returning documents, they should autonomously
retrieve, process, and understand Web content to generate precise answers.
Hence, because of a machine’s flawed understanding of human-readable con-
tent, the Semantic Web community started publishing datasets in a structured
format, annotated with machine understandable semantics, and with links to
each other; all by using the Web’s architecture. These e�orts led to the de-
ployment of the Web of Linked Data, which now contains more datasets than
ever.

Linked Data is most commonly materialized using the Resource Description
Framework (rdf), which leverages the global http uri scheme to identify con-
cepts and relationships. To describe knowledge, rdf organizes these uris in
basic relationship statements—called triples—containing three components: a
subject, a predicate, and an object. When uris are shared among datasets,
they automatically become interconnected. Using the sparql query language,
applications can pose complex questions to these rdf collections.

To be properly consumable by applications, data is commonly published us-
ing a Web api, of which three are prominent for rdf. The first and foremost
option is to publish datasets as data dumps, where a dataset is serialized in
one or more files and made available for download. The second option is the
more granular interface Linked Data documents, where a certain uri can be
dereferenced to provide more information about that uri in triples. The third
option is o�ering full access to the sparql query language over http through a
sparql endpoint. Unfortunately, only a limited fraction of the existing datasets
is available in a queryable interface, while existing interfaces su�er from avail-
ability issues. Reasons are as economical as they are technical. Because of its
fine-granularity, hosting a sparql endpoint requires complex and expensive
infrastructure. Publishers that cannot a�ord to host one at high availability,

Summary

resort to publishing inexpensive data dumps instead. Since these need to be
downloaded first, it cannot be considered live querying.

This doctoral work investigates alternative Linked Data interfaces that lead
to more sustainability, thereby further democratizing the publication of live
queryable Linked Data. Therefore, there is an emphasis on the characteristics
that allowed the Web to scale. In particular, the focus is on solutions with
minimal server complexity (minimizing the cost for data publishers) while still
enabling live querying (maximizing the utility for Linked Data applications).
Such sustainable infrastructure can revive a virtual integration strategy. Instead
of le�ing a third-party aggregate and redistribute their data, publishers can
o�er their Linked Datasets through a query interface of their own and remain
in control. Consuming applications integrate data on demand by querying a
federation of distributed interfaces, which conforms be�er to a Web of Linked
Data vision.

In order to open up a wider spectrum of possible interfaces, the Linked Data
Fragments conceptual model introduced a uniform view on all Linked Data
apis. Each of these apis publishes a fragment of a certain rdf dataset defined
by a selector—the condition on which rdf triples are selected—embedded in
the request uri. The response to each request is therefore a Linked Data Frag-
ment, consisting of three components: data, metadata, and controls. This model
facilitates the identification of gaps in usability, availability, or other require-
ments that should be addressed, and designing new interface trade-o�s that
can be evaluated.

As primary novel instance of the Linked Data Fragments model, this thesis
defines Triple Pa�ern Fragments, an interface to rdf triples with low server
cost with a triple pa�ern as selector. This pa�ern is the basic element of a
sparql query and is similar to a triple, except that each component can con-
tain a variable that can match one or more triples. Triple Pa�ern Fragments
have all triples of a dataset that match this triple pa�ern as data, an estimate
of the number of triples that match as metadata, and a hypermedia form that
enables retrieving any Triple Pa�ern Fragment of the same dataset as controls.
These components are embedded in a self-descriptive response that embeds all
information necessary for the client’s task. This enables adding features to the
Triple Pa�ern Fragments interface in a backward-compatible fashion; clients
discover supported features at run time, which they can use or ignore as they
see fit. Supported by Triple Pa�ern Fragments, this work covers four impor-
tant capabilities that should be o�ered to client-side applications in a Web
of Linked Data: (a) executing complex queries; (b) querying multiple sources;
(c) discovering relevant interfaces; and (d) accessing the history of datasets.

To execute complex sparql queries over a Triple Pa�ern Fragments interface,
a client architecture and an iterator-based query algorithm are introduced.
Based on the cardinality metadata, the algorithm creates a dynamic pipeline
that favors the most selective triple pa�ern to produce incremental results.
Evaluation shows that server load is reduced and caching e�ectiveness in-

xii

Summary

creases, leading to lower costs to maintain high server availability. These ben-
efits come at the expense of increased bandwidth and slower, but more stable
query execution times. Adding additional approximate membership metadata
to cope with the dominance of triple membership requests reduces bandwidth,
but introduces too much overhead. It does however enable temporarily allow-
ing imprecise results and retracting these a�er validation, which speeds up
execution for most queries.

The query execution techniques are generalizable to federations of interfaces
in a straightforward way; hence supporting virtual integration of several dis-
tributed data sources. The Triple Pa�ern Fragments client is extended with
a mediator layer that abstracts a collection of interfaces and eliminates irrel-
evant sources during query execution. When tested on the public Web, the
results show a competitive recall compared to the state-of-the-art sparql fed-
eration systems and comparable performance for certain queries.

To enable discovering Linked Data interfaces before they can be queried, this
thesis also proposes a peer-to-peer discovery method. Using hypermedia and
Linked Data principles, distributed interfaces exchange lightweight dataset
summaries with an active and a reactive process. Active discovery scans the
dataset for external uris, dereferences them, and follows the returned links to
the other interface’s summary. Reactive discovery retrieves the summary of an
interface as a reaction to a discovery http request. A client receives hyperlinks
to relevant fragments published by other interfaces, which are constructed
from the collected summaries, to optimize its source selection process. Hence,
the distinction between query execution and federated query execution fades.
In context of evaluation, a quantification of Linked Data interface discovery
approaches is introduced to enable proper measurement and comparison with
other systems. The experimental results show promise in execution time gain,
but poor recall, which points out more intelligent consumption is needed.

Finally, this work covers the problem of query reproducibility—a result of ever
dri�ing Web content—by publishing the history of Linked Datasets. Extend-
ing the Triple Pa�ern Fragments interface with a time-dimension enables the
same low-cost publishing and querying techniques to be applied for rdf archiv-
ing systems. A pragmatic file-based archiving technique is discussed accord-
ingly. The complete toolstack enables analyzing the evolution of facts and syn-
chronizing between sources, which is verified using a digital humanities Use
Case for reconstructing institutional history. However, the importance of data
provenance information for explaining changes and trusting sources cannot be
underestimated.

In conclusion, this doctoral work shows how lightweight interfaces can lower
the cost for Linked Data publishers compared to more expressive endpoints,
while enabling applications to query the publishers’ data with the necessary
reliability. Increased a�ention for smaller datasets from under-resourced data
institutions, which are o�en owners of highly specific and carefully curated
data, unlocks more indispensable knowledge. More nuance and demanding

xiii

Summary

less from servers enables doing more with Linked Data; hence, making the
Web of Linked Data a sustainable reality.

xiv

Samenva�ing

Het wereldwijde Web groeit met een ongelofelijke snelheid. De hoeveelheid
beschikbare informatie is intussen zo groot dat deze niet langer door mensen
kan verwerkt worden. Bijgevolg zijn ook het aantal geautomatiseerde so�ware
applicaties, zoals bijvoorbeeld zoekmachines, toegenomen. Zij helpen gebrui-
kers door deze grote hoeveelheid informatie te ploegen. Bovendien wordt ver-
wacht dat deze applicaties steeds intelligenter worden. Zo volstaat het voor
de eindgebruiker niet langer dat deze applicaties enkel een lijst van relevante
documenten weergeven. Men gaat er namelijk van uit dat deze applicaties
autonoom informatie op het Web doorzoeken, verwerken en begrijpen om een
precies antwoord op de gestelde vraag te formuleren. Daarnaast bevat het Web
veelal inhoud geschreven voor menselijke eindgebruikers wat het voor geauto-
matiseerde so�ware bemoeilijkt om deze teksten te begrijpen. Om deze rede-
nen begon de Semantisch Web beweging met het publiceren van datasets die
op dergelijke manier gestructureerd en geannoteerd zijn dat ze door machines
kunnen worden verwerkt. Bovendien zijn deze datasets ook met elkaar gelinkt
door middel van de architectuur van het Web. Deze inspanningen hebben ge-
leid tot de implementatie van het Web van gelinkte data dat nu meer datasets
bevat dan ooit.

Gelinkte data worden meestal opgeslagen met behulp van het Resource De-
scription Framework (rdf), dat het globale http uri-systeem gebruikt om con-
cepten en relaties te identificeren. Om kennis te beschrijven hanteert rdf een
bepaalde formulering — triple�en genaamd — die uit drie componenten be-
staat: een onderwerp, een predicaat en een object. Door uris te delen tus-
sen datasets worden deze automatisch gekoppeld. Met behulp van de sparql
query taal kunnen applicaties complexe vragen stellen aan deze rdf collecties.

Data worden gewoonlijk gepubliceerd met behulp van een Web Application
Programming Interface opdat applicaties ze vlot zouden kunnen gebruiken.
Specifiek voor rdf bestaan er drie prominente interfaces. De eerste en popu-
lairste mogelijkheid is het publiceren van datasets als data dumps. Een dataset
wordt in één of meer bestanden geforma�eerd en vervolgens online ter be-
schikking gesteld via download. De tweede mogelijkheid is de meer granulaire

Samenva�ing

interface Linked Data documenten. Door een bepaalde uri te bezoeken, wordt
er een document opgevraagd met meer informatie over die uri. Deze informa-
tie is beschreven in rdf triple�en. De derde mogelijkheid is volledige toegang
bieden tot de sparql query taal via het http protocol aan de hand van een
sparql eindpunt. Helaas hebben er slechts een beperkt aantal van de beschik-
bare datasets een zo een bevraagbare interface. Bovendien zijn de datasets
die wel over een bevraagbare interface beschikken frequent onbeschikbaar. De
redenen hiertoe zijn zowel economisch als technisch. Vanwege zijn fijne gra-
nulariteit vereist een sparql eindpunt een erg complexe en dure infrastructuur.
Data verdelers die zich niet kunnen veroorloven om zo’n eindpunt betrouwbaar
aan te bieden, verkiezen vaak het publiceren van goedkope data dumps als al-
ternatief. Aangezien deze eerst moeten worden gedownload, kan dit niet als
direct bevraagbaar worden beschouwd.

Dit doctoraat onderzoekt alternatieve interfaces voor gelinkte data die leiden
tot een meer houdbare situatie en daarmee het publiceren van direct bevraag-
bare gelinkte data verder democratiseren. Daarom besteedt dit proefschri�
extra aandacht aan de karakteristieken die de schaalbaarheid van het Web ga-
randeren. Specifiek wordt er gekeken naar oplossingen met minimale server
complexiteit (het minimaliseren van de kost voor data verdelers), die tegelijk
directe bevraging mogelijk maken (het maximaliseren van de bruikbaarheid

voor applicaties van gelinkte data). Een dergelijke infrastructuur kan virtuele

integratie strategieën nieuw leven inblazen. In plaats van hun data te laten ag-
gregeren en herverdelen door een derde partij, bieden verdelers gelinkte data-
sets aan met hun eigen bevraagbare interface en behouden bovendien op deze
manier de controle over hun data. Applicaties die data gebruiken integreren
deze op aanvraag door verschillende gedistribueerde interfaces te bevragen,
wat beter aansluit bij de visie van een Web van gelinkte data.

Om een breder spectrum van mogelijke interfaces open te breken, introdu-
ceerde het conceptueel model Linked Data Fragments een uniforme kijk op alle
apis voor gelinkte data. Elke van deze apis publiceert een fragment van een be-
paalde rdf dataset, gedefinieerd door een selector — de voorwaarde waarmee
rdf triple�en worden geselecteerd — vervat in de verzoek uri. Het antwoord
op elk verzoek is daarom een Linked Data Fragment dat drie componenten be-
vat: data, metadata, en controls. Dit model ondersteunt de identificatie van op-
portuniteiten in gebruiksvriendelijkheid, beschikbaarheid of andere vereisten.
Het laat ook toe nieuwe afwegingen voor interfaces te ontwerpen die kunnen
geëvalueerd worden.

Deze thesis introduceert Triple Pa�ern Fragments als eerste nieuwe instantie
van het Linked Data Fragments model: een interface voor rdf triple�en met
lage server kost met een triplet patroon als selector. Dit patroon is het basis
element van een sparql-vraag en is gelijkaardig aan een triplet, behalve dat
elk component een variabele kan beva�en waaraan een of meerdere triple�en
kunnen voldoen. Een Triple Pa�ern Fragment hee� als data component alle
triple�en van een dataset die aan dit triplet patroon voldoen. Verder hee� het
als metadata component een inscha�ing van het aantal triple�en dat voldoen

xvi

Samenva�ing

en als controls component een hypermedia formulier dat toelaat om elk Triple
Pa�ern Fragment van dezelfde dataset op te halen. Deze componenten zi�en
vervat in een zelf-beschreven antwoord dat alle nodige informatie bevat voor
de taak van de applicatie. Dit laat toe om kenmerken toe te voegen aan de
Triple Pa�ern Fragments interface op een achterwaards compatibele manier.
Hierdoor ontdekken applicaties interface kenmerken tijdens de uitvoering die
ze, indien nodig, kunnen negeren. Dit werk omvat vier belangrijke mogelijkhe-
den die moeten aangeboden worden aan applicaties op een Web van gelinkte
data, ondersteund door Triple Pa�ern Fragments: (a) uitvoeren van complexe
bevragingen; (b) bevragen van meerdere bronnen; (c) relevante interfaces ont-
dekken; en (d) toegang bieden tot de geschiedenis van datasets.

Om complexe sparql bevragingen uit te voeren over een Triple Pa�ern Frag-
ments interface, worden een cliënt architectuur en een iterator-gebaseerde be-
vragingsalgoritme geïntroduceerd. Op basis van de kardinaliteit metadata cre-
ërt het algoritme dynamisch een volgorde van uitvoering die voorrang gee�
aan het meest selectieve triplet patroon om iteratieve resultaten te berekenen.
De evaluatie toont aan dat de server belasting gereduceerd wordt en e�ectivi-
teit van de cache verhoogt, wat tot lagere kosten leidt om hoge server beschik-
baarheid te garanderen. Nadelen zijn echter verhoogde bandbreedte en tragere
maar stabiele uitvoertijden van bevragingen. Toevoegen van extra benaderde
lidmaatschap metadata, om de dominantie van triplet lidmaatschap bevragin-
gen tegen te gaan, vermindert bandbreedte, maar introduceert meer kosten.
Het maakt wel het tijdelijk toelaten van inaccurate resultaten mogelijk, wat
voor veel bevragingen de uitvoering versnelt.

De technieken voor het uitvoeren van bevragingen zijn direct uitbreidbaar naar
collecties van interfaces, dus ook virtuele integratie wordt ondersteund. De
cliënt wordt uitgebreid met een mediator laag die een collectie van interfaces
abstraheert en irrelevante bronnen elimineert tijdens de uitvoering. De resul-
taten van testen op het publieke Web tonen een competitieve volledigheid in
vergelijking met de modernste sparql federatie systemen en een vergelijkbare
uitvoertijd voor sommige bevragingen.

Deze thesis stelt een gelijke-naar-gelijke ontdekkingsmethode voor interfaces
tot gelinkte data. Door gebruik te maken van hypermedia en de principes van
gelinkte data kunnen gedistribueerde interfaces lichte dataset samenva�ingen
uitwisselen met een actief en reactief proces. Actieve ontdekking overloopt de
dataset voor externe uris, vraagt ze op en volgt de links naar de samenva�ing
van de andere interface. Reactieve ontdekking vraagt de samenva�ing van een
andere interface op als reactie op een ontdekking-http verzoek. Een cliënt ont-
vangt hyperlinks naar relevante fragmenten die gepubliceerd zijn door andere
interfaces, geconstrueerd uit de verzamelde samenva�ingen, om het bron se-
lectieproces te optimaliseren. Hierdoor vervaagt het onderscheid tussen het
uitvoeren van bevragingen en het uitvoeren van bevragingen over interface col-

lecties. In context van evaluatie is een kwantificatie van gelinkte data ontdek-
kingsmethodes geïntroduceerd om correcte metingen en vergelijkingen tussen
systemen mogelijk te maken. De resultaten van de experimenten tonen winst

xvii

Samenva�ing

in uitvoeringstijd, maar tegelijk zijn de antwoorden onvolledig, wat wijst op
een nood voor meer intelligente consumptie.

Ten slo�e kaarten we in deze thesis het probleem van reproduceerbaarheid aan.
Bevragingen over gedistribueerde bronnen zijn moeilijk om correct te reprodu-
ceren, omdat inhoud van het Web temporeel uit elkaar drij�. Dit kan worden
opgelost door ook de geschiedenis van gelinkte datasets te publiceren. De Tri-
ple Pa�ern Fragments interface uitbreiden met een tijdsdimensie laat aan een
lage kost data te publiceren en rdf archieven te bevragen. Aansluitend be-
spreekt dit doctoraat een pragmatische techniek voor archivering. De totale
verzameling oplossingen laat toe om de evolutie van feiten te analyseren en
tussen bronnen te synchroniseren. Dit tonen we aan met een casus uit de di-
gitale geesteswetenschappen over de reconstructie van een institutionele ge-
schiedenis. Het belang van informatie over de herkomst van data kan echter
niet worden onderschat om veranderingen te verklaren en bronnen te vertrou-
wen.

Dit doctoraat toont aan dat lichtere interfaces de kosten voor verdelers van
gelinkte data kunnen verlagen ten opzichte van meer expressieve eindpunten,
terwijl applicaties de gepubliceerde data met de nodige betrouwbaarheid kun-
nen bevragen. Verhoogde aandacht voor kleinere datasets van instituties met
weinig middelen, die vaak eigenaars zijn van zeer specifieke en voorzichtig
gecureerde data, opent meer onmisbare kennis. Meer nuance en minder van
servers eisen maakt het mogelijk om meer uit gelinkte data te halen, wat het
Web van gelinkte data een houdbare realiteit maakt.

xviii

List of Figures

2.1 A client requests a resource identified by url ur in a html repre-
sentation using http. The server responds successfully with the
html page. 12

2.2 An http response can be cached by the client and several interme-
diaries, unloading the server for all reusable requests. 13

2.3 Linking Open Data cloud diagram 2017, by Andrejs Abele, John
P. McCrae, Paul Buitelaar, Anja Jentzsch and Richard Cyganiak.
h�p://lod-cloud.net/ . 16

2.4 Adequate tools exist for rdf to execute the five responsibilities of
Extract-Transform-Load workflows defined by Vassiliadis [43]. . . . 21

3.1 All Web apis to rdf triples o�er Linked Data Fragments of a dataset.
These fragments di�er in the specificity of the data they contain,
and thus a�ect the cost to create them, the bandwidth to trans-
fer them, their reusability through caching, and the overall perfor-
mance of client and server. 45

3.2 Complete setup with five sequential levels that are impacted by
interface features and therefore subject for investigation. 49

4.1 A three-tier architecture for the tpf client facilitates adding sup-
port for future interface features without many alterations. 61

4.2 Main measurements on the influence of client numbers 67
4.3 Average execution times per client of a dbpedia query mix with

variable dataset sizes . 71
4.4 The distribution of average number of triples per used tpf page

for di�erent queries shows that most fragments either contain few
data triples (20–30 triples are metadata), or the maximum number
(page size). 75

4.5 The chosen rdf format impacts the time to serialize, transfer, and
deserialize tpf pages. Additionally applying gzip compression and
decompression (indicated by *) has an important e�ect, except on
eri, which is already small. 76

List of Figures

4.6 The membership modeling ontology published and maintained at
h�p://semweb.mmlab.be/ns/membership. 80

4.7 The triple pa�erns of Listing 4.8 with the least number of matches
at each stage become nodes in the evaluation tree. Note how the
third level of consists entirely of membership subqueries (single
triples), and can thus be evaluated with the help of an amf. 82

4.8 This sparql query execution timeline compares regular and oppor-
tunistic query execution, assuming r total query results and f false
positives. Note how both approaches achieve 100% recall and pre-
cision at a shared point in the end, but there exists a period during
which only opportunistic execution reaches 100% recall (shaded). . 83

5.1 A mediator layer adds support for querying a federation of tpf
interfaces with an unaltered query engine and http layer. 101

5.2 Evaluation times of FedBench query execution on the tpf clien-
t/server setup compared to SPARQL endpoint federation systems
(timeout of 300s). These measurements should be considered to-
gether with the recall for each query (Table 5.2). The tpf-related
measurements were performed in the context of the public Web;
the numbers for the four SPARQL endpoint federation systems are
adopted from [30]. 106

6.1 Active discovery discovers Linked Data interfaces by dereferencing
foreign uris in the dataset and retrieving the linked Triple Pa�ern
Fragment. 123

6.2 Reactive discovery discovers interfaces by retrieving fragments from
the Referer header. 126

6.3 The data summary generation time increases linearly with the num-
ber of distinct subjects and objects. 132

6.4 Hypermedia construction time is negligible compared to the total
response time. 139

6.5 Hypermedia-based querying with full-index servers decreases the
mean execution time with 50% compared to the naive federation
approach . 140

6.6 For a few queries, hypermedia-based querying with a discovery
index is several magnitudes faster than with a full-index. However,
most queries are only slightly faster, not yielding any claims on
query time decrease. 141

7.1 Enhancements of the proposed Linked Data publishing strategy to
the common approach. 149

7.2 Our use case exists of an illustrative semantically integrated net-
work of three organizations publishing the datasets dbpedia, viaf,
and UGentMemorialis. 152

xx

http://semweb.mmlab.be/ns/membership

List of Figures

7.3 By applying hdt horizontally and vertically, we can create a sim-
ple, but e�icient rdf archive. The operation lookup(D, t) retrieves
a valid hdt file Dt with a given dataset name D and timestamp t . . 154

7.4 Memento adds a time dimension to an Original (Web) Resource
uri-r by defining “follow your nose” (hypermedia) pa�erns between
TimeGate uri-g and Memento resources uri-mx. Source: h�p://www.mementoweb.

org/guide/quick-intro . 158
7.5 A client can transparently navigate from a tpf Resource to a tpf

Memento at a specific datetime t . 160
7.6 The client was extended to support versioning and multiple servers,

without changing the core query engine. 162
7.7 By running the same query over dbpedia from 2008 to 2016, we can

detect an increase in awards won by Belgian academics. 163
7.8 By running the same query over UGentMemorialis, viaf and dbpedia

for every year, we gain insight in the evolution of Wikipedia activ-
ity for professor Jacques-Joseph Haus. 163

xxi

http://www.mementoweb.org/guide/quick-intro
http://www.mementoweb.org/guide/quick-intro

List of Tables

3.1 General characteristics of Web apis 41
3.2 Data dumps, Linked Data documents, and sparql endpoints each

impose a di�erent trade-o� mix of Web api characteristics 46

4.1 Average individual query execution time (in seconds) for the three
dbpedia dataset sizes with 48 concurrent tpf clients 71

4.2 Properties of our WatDiv queries (template from which the query is
generated, number of triple pa�erns, number of variables, join ver-
tex count [35]), and the number of tpf pages requested during their
execution. WatDiv distinguishes linear queries (L), snowflake-shaped
queries (F), star queries (S), and complex queries (C). 74

4.3 Comparison of regular tpf versus tpfwith Bloom filter setup (greedy
tpf algorithm) . 86

4.4 Comparison of regular tpf versus tpf with gcs setup (greedy tpf
algorithm) . 86

4.5 Comparison of regular tpf versus tpf with Bloom filter setup (op-
timized tpf algorithm) . 87

4.6 Comparison of regular tpf versus tpf with gcs setup (optimized
tpf algorithm) . 87

5.1 The FedBench datasets available at h�p://fedbench.fluidops.net/
resource/Datasets . 103

5.2 Recall of FedBench query execution on the tpf client/server setup
tested on the public Web compared to sparql endpoint federation
systems (timeout of 300s). All occurrences of incomplete recall are
highlighted. The tpf-related measurements were performed in the
context of this dissertation; the numbers for the other four systems
are adapted from [30]. 104

6.1 The compression rate of data summaries is very high (99%) with
acceptable creation time (11 min) 133

http://fedbench.fluidops.net/resource/Datasets
http://fedbench.fluidops.net/resource/Datasets

List of Tables

6.2 Active discovery is able to find interfaces for all links. No links
are found for KEGG–Chebi, since it does not contain any outgo-
ing links. (#l=number of links, #f=number of fragments, #s=number of fragments

stored in index, #req=number of sent requests, sct=summary construction time,

et=execution time) . 135
6.3 Reactive discovery appends the backlinked interfaces to the active

discovery results. (#f=number of fragments, #s=number of fragments stored

in index, #req=number of sent requests, asct=avg. summary construction time,

aet=avg. execution time) . 136
6.4 The recall of each query’s results depends on the starting dataset.

Due to only using links one level deep, only interfaces with the
relevant interfaces as direct neighbors contribute to recall. 137

7.1 An dbpedia archive based on hdt files decreases storage space and
the time-to-publish significantly. 155

7.2 Fourteen dbpedia versions 2.0 to 2015-10 can be stored with a high
average compression rate of 13%. 156

xxiii

I can’t promise I’ll try, but I’ll
try to try.

— Bart Simpson

1
Introduction

Linked Data enables machines to autonomously retrieve, process, and understand

Web content. However, access to these data seems to be problematic: only a lim-

ited number of datasets is available through a queryable interface, while existing

interfaces fail to o�er a reliable service. The reasons seem to be as economical as

they are technical. This dissertation pinpoints the current caveats in Linked Data

publishing that explain the apparent absence of datasets in live queryable form.

Consequently, it investigates new Web interfaces and appropriate consumption

techniques to improve the status quo.

This is called “tip of the
tongue” phenomenon.
Usually, somebody
suddenly does recall hours
later.

This may sound familiar. Someone tells you about
a movie starring a famous actor, but somehow, you
cannot remember his name. A�er fruitless a�empts
to search your memory, you eventually surrender
and accept that you just can’t recall. Such predica-
ments are quite common, and yet, it sounds almost
nostalgic nowadays. With the World Wide Web—the internet’s most popular
application—at our disposal, a few interactions with a search engine on your
smartphone prevent it from ever happening. Moreover, depending on your age,
you might not even know what I’m talking about.

Today, the Web has outgrown itself from a simple document exchange system
to a common memory, complimenting the traditional media as primary source
of information. In its twenty-five years of existence, over four billion Web pages
have been created [1, 2]; that is an incredible accomplishment. What is truly re-
markable though, is that we access this unseen volume of information through
a single system, a global distributed machine that simply works. Thanks to the
simplicity of its protocol (i.e., http) and the flexibility of the content formats
(e.g., html), it was allowed to scale and to sustain [3].

With the growing quantities of information, the way we interact with the Web
evolved—along with our expectations. To aid surfers in finding information

1

Introduction

faster, automated so�ware applications, like search engines, have gained more
and more presence. Since then, there has been an increasing appeal for these
services to be intelligent [4]: autonomously retrieving, processing, and under-
standing Web content to generate precise answers, rather than returning a
list of matching documents. Accordingly, all the big Web companies have in-
troduced their own digital assistant by now: Google Now, Apple’s Siri, Ama-
zon’s Echo, and Microso�’s Cortana. Given the aforementioned scenario, they
would give you a straight answer to the question “What actor starred in the
movie X”; or at least try to.

For over a decade of research, preparing the Web for such autonomous com-
puter programs—so-called intelligent agents [5, 4]—has been the priority of
the Semantic Web community. This e�ort involves dealing with an important
caveat: computers cannot understand and interpret Web content, they need
data. This led to the development of a Web of Linked Data [6] by using the
Web’s architecture to publish datasets in a structured format, annotated with
machine understandable semantics, and with links to each other. Now, more
datasets exist as Linked Data than ever before [7].

As of May 2016, the
lodstats project [8]
indicates over 150 billion
Linked Data facts
distributed over
9,960 datasets.

Despite these e�orts, however, a significant amount
of these Linked Data are not easily accessible, nor
reliably live queryable, on the Web. Easy access is
mostly a ma�er of interoperability: agents should
be able to consume data in a uniform way without
much prior knowledge or development e�ort. Live
queryable enables agents to ask questions directly

to the data, which limits processing costs and guarantees freshness of results.
Essentially, it takes well-designed Web apis to publish Linked Data in such a
manner.

Yet, the majority of datasets is simply published as downloadable dumps [9],
which cannot be considered a live queryable form—the dataset needs to be
downloaded first. Some datasets are published using a live queryable api, but
su�er from frequent downtime [10]. To o�er a �ality of Service (QoS) to their
users, however, applications require a reliable data source. Unfortunately, the
complexity or demand by this QoS o�en exceeds the foreseen, considered, or
guaranteed service by data publishers. Hence, consuming present Linked Data
requires applications to do much of the heavy processing, or deal with the
unavailability; li�le alternative apis exist. This limits building the envisioned
intelligent agents to the happy few: those who can a�ord extensive dataset
crawling, large-scale data integration, high-volume centralized data storage,
and a complex query infrastructure [11]. Hence, it is hardly a surprise that
Google, Apple, Amazon and Microso� are currently pioneering in this area.

Throughout the years, my research team and I developed a vision that tackles
this issue by addressing the current sparse choice in Web apis to publish Linked
Data. In the current status-quo, publishers choose between deploying an ex-
pressive query infrastructure, which is expensive to host reliably (i.e., not suf-

2

1.1. Research questions

fering frequent downtimes), or hosting inexpensive, yet not directly queryable,
data dumps. Hence, we must reconsider our options regarding Web-scale pub-
lication of Linked Data. Between the two extremes mentioned above lies a
whole spectrum of possible Web interfaces, which has remained largely unex-
plored. This led to Linked Data Fragments, a conceptual model to methodically
analyze the benefits and drawbacks an interface brings for clients and servers.

During the course of my doctoral work, I have defined and evaluated alterna-
tive Web interfaces, supported by the Linked Data Fragments model. In par-
ticular, these interfaces aim at minimal server complexity (minimizing the cost
for data publishers) while still enabling live querying (maximizing the utility
for applications). This enables more (under-resourced) parties to host an af-
fordable, live queryable, and reliable service. On this premise, my work covers
four important capabilities that interfaces should o�er client-side applications:

1. executing expressive queries (i.e., able to join di�erent facts);
2. querying more than one source;
3. discovering interfaces on the Web that are relevant to a query;
4. ensuring query reproducibility through accessing prior dataset versions.

This research initially defines an interface restricted in the granularity of the
queries it accepts. Each capability corresponds with a series of transparent,
interchangeable, and discoverable features that enhance this interface. These
features either modify the navigation or the metadata it provides, of which
I measured and analyzed the e�ect in a practical Web context; hence, extra
a�ention was given to network communication, caching infrastructure, server
load, and client numbers to test real-world feasibility.

I believe the outcomes of my research further democratize Linked Data pub-
lishing, conceiving more live queryable Linked Data. The essence is that, by
enabling more nuance and demanding less from servers, you can get more
done, hence, making the Web of Linked Data a sustainable reality.

1.1 Research questions

To facilitate reliable Linked Data applications, the publishing Web interface
should be su�iciently useful for clients, while being a�ordable to host with high
availability. Hence, the first research question of this thesis is rather general:

Research �estion 1: Can a Web interface for Linked Datasets designed for
low server cost enable complex live querying for clients?

To answer this question, an interface should combine benefits from both ex-
pressive interfaces and the non-expressive data dumps. Therefore, we compro-
mise on the query granularity of the interface to make queries more predictable
for servers. A coarse-grained interface limits the expressiveness of the individ-
ual queries, thus lowering the processor (cpu) cost to answer them? From a
pure performance perspective, restricted expressiveness is a major limitation

3

1.1. Research questions

to query execution. However, we argue that, despite sacrificing performance
for lower server load, the query response time will still be acceptable for real-
world scenarios; that is, executing queries used in actual Web applications, in
contrast to the overly complex synthetic queries built to stress test systems.
This leads to the following hypothesis:

Hypothesis 1: A client can execute real-world queries over a restricted Linked
Data Web interface with a response time below four seconds and a lower server
cpu load than more expressive interfaces.

A maximum waiting time of
four seconds without
additional feedback to the
user is generally considered
acceptable [12]

For an acceptable response time, a client needs to
process queries with a minimum level of e�iciency.
In database literature, this process is optimized us-
ing various types of statistical metadata [13]. How-
ever, given the distributed Web environment, where
client and server usually do not share the same ma-
chine, we pose our second research question:

Research �estion 2: To what extent can interface metadata enhance com-
plex query evaluation in a practical Web se�ing?

For each request, each type of metadata has to be shipped from the server to
the client. We selected two suitable metadata types from literature: (a) car-

dinality, an estimation of the number of results; and (b) approximate member-

ship, a compact representation of the result set. In addition to query response
time, we investigate their applicability in a practical se�ing, i.e., the impact
on network tra�ic, client load and server load. Hence, we state the following
hypothesis:

Hypothesis 2: Extra metadata reduces at least one third of the network tra�ic
required by clients to answer a query.

As mentioned at the beginning, this work aims to facilitate a Web of Linked
Data. Hence, besides querying a single interface, we should also enable query-
ing multiple semantically integrated interfaces. Therefore, we pose our third
research question:

Research �estion 3: Can restricted low-cost Linked Data Web interfaces
form an e�icient architecture for query evaluation over a federation of inter-
faces?

A low-cost server-side interface establishes a more balanced division of labor
between client and server. The server provides the data and some limited
query processing, while the client is responsible for the global query execu-
tion. This architecture is very native to existing federation frameworks (e.g.,
ANAPSID [14], FedX [14], and SPLENDID [15]), where servers are not aware
of each other and, hence, require a client to integrate the partial results. Thus,
our hypothesis is the following:

4

1.1. Research questions

Hypothesis 3: A client can evaluate queries over a federation of low-cost in-
terfaces on a public network with a performance similar to the state-of-the-art
federation frameworks ANAPSID, FedX, and SPLENDID.

Being part of a distributed system, Linked Data interfaces are sca�ered across
the Web. Hence, before we can query a federation of interfaces, we have to
discover them first [16], which leads to our fourth research question:

Research �estion 4: How can we e�ectively discover distributed Linked
Data interfaces?

From a piece of data, Linked Data allows discovering other related data through
its links, but this does not ensure e�icient querying yet. Hence, we investigate
whether its principles can be applied to interfaces, leading to the following
hypothesis:

Hypothesis 4: A client can e�ectively discover distributed interfaces by rely-
ing solely on Linked Data principles.

When querying multiple interfaces, the data they publish might start dri�ing
in time. This requires temporal synchronization between interfaces. However,
up to this point, access to prior versions of Linked Datasets has not been con-
sidered. Thus, we pose our fi�h and final research question:

Research �estion 5: Can low-cost interfaces improve access to prior ver-
sions of Linked Datasets?

As our low-cost interfaces are of lower complexity, they could also simplify the
implementation of existing Web versioning strategies [17]. This should enable
clients to navigate from version to version transparently. Hence, we formulate
our final hypothesis:

Hypothesis 5: Clients can query published prior versions of Linked Datasets
without specifying the exact version.

5

1.2. Outline

1.2 Outline

This dissertation reports my findings and developments in eight chapters. It
clusters peer-reviewed work from three journal and three conference publica-
tions, which are listed at the end of each chapter. Following this introduction,
my research is covered by the following chapters:

Chapter 2 – The Web of Linked Data introduces background knowledge on
Linked Data and its relation to the Semantic Web. I introduce the di�er-
ent standards used throughout this dissertation and cover the current
Linked Data publishing interfaces.

Chapter 3 – Sustainable apis for Linked Data publishing explains what
Web interfaces Linked Data publishers use, and what their current pit-
falls are. Subsequently, I discuss important characteristics for Web apis,
introduce the Linked Data Fragments model accordingly, and describe
how to explore new Linked Data interfaces.

Chapter 4 – �ery Execution illustrates how clients can execute queries on
the public Web using a low-cost interface, covering both Research �es-
tion 1 and Research �estion 2. In particular, I highlight di�erent kinds
of metadata an interface can provide to aid the client in this process.

Chapter 5 – Federation of interfaces argues to revive virtual integration as
publishing strategy where each publisher has its own interface and in-
tegration happens on the client. Hence, we extend query execution over
multiple low-cost interfaces by introducing a mediator layer, thereby
covering Research �estion 3.

Chapter 6 – Discovering interfaces discusses my work on discovering
Linked Data interfaces using hypermedia and how it assists query clients
to select relevant sources. We enable interfaces to discover each other
using http concepts, exchange summaries of the data they publish, and
inform clients about their peers. Thereby, this chapter investigates Re-
search �estion 4.

Chapter 7 – Accessing history addresses distributed interfaces dri�ing over
time by introducing a few archiving techniques and a straightforward so-
lution to publish them on the Web. This enables synchronizing sources
and executing queries over time, resolving Research �estion 5.

Chapter 8 – Conclusions evaluates the posed research questions and com-
piles the lessons learned from the preceding chapters. Also, it looks at the
way forward: which fundaments did we lay down and what challenges
are le�? Based on my research outcome, I question some established as-
pects in Linked Data querying on the public Web, and suggest a couple
of research directions.

6

References

References

[1] April Netcra�. Web Server Survey. 2004.

[2] Antal Van den Bosch, Toine Bogers, and Maurice De Kunder. “Estimat-
ing search engine index size variability: a 9-year longitudinal study.” In:
Scientometrics 107.2 (2016), pp. 839–856.

[3] Roy T Fielding and Richard N Taylor. “Principled design of the modern
Web architecture.” In: ACM Transactions on Internet Technology (TOIT)

2.2 (2002), pp. 115–150.

[4] James Hendler. “Is there an intelligent agent in your future?” In: Nature

11 (1999).

[5] Michael Wooldridge and Nicholas R Jennings. “Intelligent agents: The-
ory and practice.” In: The knowledge engineering review 10.2 (1995), pp. 115–
152.

[6] Tom Heath and Christian Bizer. “Linked data: Evolving the web into a
global data space.” In: Synthesis lectures on the Semantic Web: theory and

technology 1.1 (2011), pp. 1–136.

[7] Max Schmachtenberg, Christian Bizer, and Heiko Paulheim. “Adoption
of the Linked Data Best Practices in Di�erent Topical Domains.” English.
In: International Semantic Web Conference. 2014, pp. 245–260. isbn: 978-
3-319-11963-2. doi: 10.1007/978-3-319-11964-9_16.

[8] LODStats. AKSW. 2016. url: h�p://stats.lod2.eu/ (visited on 05/01/2016).

[9] Ivan Ermilov, Michael Martin, Jens Lehmann, and Sören Auer. “Linked
Open Data Statistics: Collection and Exploitation.” In: Knowledge Engi-

neering and the Semantic Web. Ed. by Pavel Klinov and Dmitry Mouromt-
sev. Vol. 394. Communications in Computer and Information Science.
Springer, 2013, pp. 242–249. isbn: 978-3-642-41359-9. doi: 10.1007/978-3-
642-41360-5_19.

[10] Carlos Buil-Aranda, Aidan Hogan, Jürgen Umbrich, and Pierre-Yves Van-
denbussche. “sparqlWeb-�erying Infrastructure: Ready for Action?”
In: The 12

th
International Semantic Web Conference. Ed. by Harith Alani,

Lalana Kagal, Achille Fokoue, Paul Groth, Chris Biemann, Josiane Xavier
Parreira, Lora Aroyo, Natasha Noy, Chris Welty, and Krzysztof Janowicz.
Nov. 2013.

[11] Laurens Rietveld, Ruben Verborgh, Wouter Beek, Miel Vander Sande,
and Stefan Schlobach. “Linked Data-as-a-Service: The Semantic Web
Redeployed.” In: European Semantic Web Conference. Ed. by Fabien Gan-
don, Marta Sabou, Harald Sack, Claudia d’Amato, Philippe Cudré-Mau-
roux, and Antoine Zimmermann. Springer International Publishing, June
2015, pp. 471–487.

[12] Fiona Fui-Hoon Nah. “A study on tolerable waiting time: how long are
web users willing to wait?” In: Behaviour & Information Technology 23.3
(2004), pp. 153–163.

7

https://doi.org/10.1007/978-3-319-11964-9_16
http://stats.lod2.eu/
https://doi.org/10.1007/978-3-642-41360-5_19
https://doi.org/10.1007/978-3-642-41360-5_19

References

[13] Surajit Chaudhuri. “An overview of query optimization in relational sys-
tems.” In: The 17

th
ACM SIGACT-SIGMOD-SIGART symposium on Prin-

ciples of database systems. ACM, 1998, pp. 34–43.

[14] Maribel Acosta, Maria-Esther Vidal, Tomas Lampo, Julio Castillo, and
Edna Ruckhaus. “ANAPSID: An Adaptive �ery Processing Engine for
sparql Endpoints.” In: The Semantic Web – ISWC 2011. Ed. by Lora Aroyo,
Chris Welty, Harith Alani, Jamie Taylor, Abraham Bernstein, Lalana Ka-
gal, Natasha Noy, and Eva Blomqvist. Vol. 7031. Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, 2011, pp. 18–34. isbn: 978-3-
642-25072-9.

[15] Olaf Görlitz and Ste�en Staab. “SPLENDID: sparql Endpoint Federa-
tion Exploiting void Descriptions.” In: The 2

nd
International Workshop on

Consuming Linked Data. Ed. by Olaf Hartig, Andreas Harth, and Juan Se-
queda. Bonn, Germany, Oct. 2011. url: h�p://uni-koblenz.de/~goerlitz/
publications/GoerlitzAndStaab%5C%5C_COLD2011.pdf.

[16] André Freitas, Edward Curry, João Gabriel Oliveira, and Sean O’Riain.
“�erying Heterogeneous Datasets on the Linked Data Web: Challenges,
Approaches, and Trends.” In: IEEE Internet Computing 16 (1 2012), pp. 24–
33.

[17] Herbert Van de Sompel, Michael Nelson, and Robert Sanderson. http
Framework for Time-Based Access to Resource States – Memento. Request
For Comments 7089. Internet Engineering Task Force, Dec. 2013. url:
h�ps://tools.ietf.org/rfc/rfc7089.

8

http://uni-koblenz.de/~goerlitz/publications/GoerlitzAndStaab%5C%5C_COLD2011.pdf
http://uni-koblenz.de/~goerlitz/publications/GoerlitzAndStaab%5C%5C_COLD2011.pdf
https://tools.ietf.org/rfc/rfc7089

Can’t you people take the law
into your own hands? I mean,
we can’t be policing the entire
city!

— Chief Wiggum

2
The Web of Linked Data

At the rate the Web is growing, an a�ractive vision is having intelligent computer

programs to help us plow through these vast volumes of information. However,

because of their flawed understanding of natural languages, a precondition is a

massive deployment of structured, machine-understandable, and interconnected

data on the Web. This chapter discusses the di�erent practices, standards, and

technologies used to deploy such Web of Linked Data.

When the Web came about, it was primarily designed for human consump-
tion [1]. People were enabled to put text online quick and painless, containing
links to other documents that might be relevant—so-called hypertext [2, 3].
This paradigm swi�ly turned the World Wide Web into a revolution. Over 4.7
billion pages [4, 5] currently in existence bring about the world’s largest source
of information. Unsurprisingly, those Web documents are hardly wri�en by
hand anymore, but generated from structured data contained in databases.

A recent google search for
Venus returns pages about
the planet, the brand and
tennis player Venus
Williams.

Yet, the rapidly growing volume of available doc-
uments uncovered a fallacy in the resulting dom-
inance of natural language: machines struggle to
understand or interpret Web content. By publish-
ing the raw structured data itself, however, a large
potential is uncovered. First, machines are enabled
to handle tasks more intelligently. For instance, current keyword-based search
engines can return a high number of documents (high recall), but are not able
to give you an exact answer (low precision). Furthermore, they are receptive
to ambiguous terms. Access to raw data can increase the accuracy of answers
and disambiguation. Second, publishers are encouraged to break down data

silos, i.e., positioning a dataset in a context broader than its own. When raw
data is no longer only available to its owner, it can be reused by third-parties.
Furthermore, the data can be connected to records or facts residing in exter-
nal databases, eventually creating a global distributed database with uniform
access.

9

2.1. Architecture of the Web

To realize both facets, the w3c community project Linking Open Data [6] pro-
posed to construct a Web of Linked Data [7]. That the goals are ambitious, is
clear from this statement by Heath and Bizer [8]:

Just as the World Wide Web has revolutionized the way we con-
nect and consume documents, so can it revolutionize the way we
discover, access, integrate, and use data.

Linked Data proposes to expose, share, and interconnect previously indepen-
dent datasets via the Web’s architecture. Starting from a single piece of data,
any person or machine is able to find other related data through hyperlinks.
However, opposed to documents, these links also connect arbitrary things and
concepts.

2.1 Architecture of the Web

Before we can fully understand Linked Data and how its possible publication
methods work, we need a basic understanding of the Web’s architecture. It was
designed to scale globally and this turned out to be the key factor for its pop-
ularity. In the following, we explain its core components, the rest constraints
and how they are used to construct apis.

2.1.1 Core components and architectural properties

The internet and the Web
are commonly confused. In
reality, the internet is a
global network of
interconnected computers
which runs several other
applications as well, like
email or instant messaging.

In essence, the Web is a distributed hypermedia in-
formation system that runs on top of the inter-
net. With distributed, we mean that content does
not have to be stored on a single machine, but can
be shared by several, stored in di�erent locations.
With hypermedia, we mean a generalized concept
of hypertext, where not only text is interconnected
by links, but also other forms of media, e.g., video
and images.

At its conception, Berners-Lee, Cailliau, and Gro� [9] defined the core com-
ponents for the identification, transport, and representation of a web resource:
anything that can be obtained from or identified on the Web. This originally
referred to static files and documents, but evolved over time to cover basically
“any information that can be named: a document or image, a temporal ser-
vice (e.g. ‘today’s weather in Los Angeles’), a collection of other resources, a
non-virtual object (e.g. a person), and so on” [10].

The characterization of the Web’s architecture, however, happened at a later
stage by Fielding [10], who captured the architectural principles of large-scale
distributed hypermedia systems in his conceptual framework Representational

10

2.1. Architecture of the Web

State Transfer (rest). Its biggest contribution is protecting scalability by in-
troducing a total of six constraints, which allow expansion without negatively
impacting its actors. We discuss the most relevant constraints below.

Client-Server

The Web is an instance of the client-server model: a distributed application
where a central server provides data to a number of connected client machines.
They communicate using the standardized http protocol [11], which defines
a request–response messaging pa�ern demonstrated in Figure 2.1. Thereby, a
Web client performs an action on a Web resource by sending an http request
to a Web server, which contains the following components:

• an http Verb indicating the desired operation on the resource, which
is either GET (request the resource representation), HEAD (request the re-
source without representation), POST (perform an action), PUT (add the
resource), or DELETE (remove the resource);

• a Uniform Resource Locator (url) to identify the subject resource.
A typical url could have the form h�p://www.example.com/index.html,
which includes the protocol (http), a hostname (www.example.com), and
a path that identifies the resource in that domain (index.html);

• a number of Request Header fields
1 to supply certain parameters such

as the originating host, what file format is desired, or the length of the
message body;

• an optional Message Body containing additional content.

Header fields are colon
separated (e.g., Host:
www.example.com) and are
defined in the specification.
However, custom headers
are also possible.

In return, the server send an http response back
with these components:

• a Status Code indicating whether the re-
quest succeeded (ranges 1XX and 2XX), failed
(ranges 4XX and 5XX) or further action is re-
quired (ranges 3XX);

• a number of Response Header fields con-
taining additional information from the server, such as caching infor-
mation or the file format of the message body;

• an optional Message Body containing the
representation of the requested resource.

Resources can be represented in a variety of formats, the most well-known un-
doubtedly being the Hypertext Markup Language (html). It is the standard
markup language for creating human-consumable hypertext pages. Through
clickable links and submission forms, these pages can contain actionable hy-
permedia to other resources, identified by their url. Besides html, many other
representations exist in accordance to the type of resource. Examples are struc-
tured data formats such as json and xml, or media formats such as jpeg.

1. h�ps://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html#sec5.3

11

http://www.example.com/index.html
www.example.com
https://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html#sec5.3

2.1. Architecture of the Web

Client Server

GET ur
Accept: text/html

200 OK
Content-Type: text/html

<html>...</html>

Figure 2.1: A client requests a resource identified by url ur in a html representation
using http. The server responds successfully with the html page.

Stateless and Cacheable

To enable a server to scale over many clients, the http request-response cycle
should be stateless. Note that this applies to application state, i.e., the point in
the client’s session with the server, and not to the resource state. A server does
store the value of the resource that is reflected in the representation and can
be modified using the right http verb.

The server, however, should not store any state about the client’s application
on the server side, which is the only way to scale to millions of concurrent
users. No context is preserved between requests, thus a request contains all
necessary information to process it. A client can interact with a server without
prior knowledge by passing (parts of) the applications state to the server as
needed.

Their statelessness allows resources to be cached and reused by others. Field-
ing [10] describes its importance as such:

The advantage of adding cache constraints is that they have the
potential to partially or completely eliminate some interactions,
improving e�iciency, scalability, and user-perceived performance
by reducing the average latency of a series of interactions.

A request can also explicitly
state it should not be
cached with
Cache-Control:

no-cache. To indicate when
the resource last changed,
the server also adds a
Last-Modified header to
the response.

On the Web, clients and intermediaries can cache
responses. Therefore, responses must implicitly or
explicitly define themselves as cacheable to not pre-
vent clients from reusing stale or inappropriate data
in response to further requests. This is enabled
by the http protocol through the response headers
Expires and Etag that tells a cache—who intercepts
the request—how long it should store the response.

Caching is implemented in stages: a request is
routed through several caches before it reaches the
server. Based on the caching headers in the request,

12

2.1. Architecture of the Web

any of these caches can validly intercept the request and already return a
cached response. Figure 2.2 illustrates the di�erent caches that can be applied
to the interaction in Figure 2.1. We identify two common types of caches: (a) a
local cache implemented on the client for resources it already requested, and
(b) an http cache implemented on the server or a proxy server for resources
others already requested.

Client Local cache HTTP cache Server

GET ur
cache miss GET ur

cache hit

200 OK

200 OK

Figure 2.2: An http response can be cached by the client and several intermediaries,
unloading the server for all reusable requests.

Uniform interface

The uniform interface is the core di�erentiating feature of the rest architec-
ture. Besides simplifying and decoupling the architecture, it enables clients
and server to evolve independently [10]. This constraint is implemented on
the Web through four sub constraints.

Resource identification in requests. Resources are identified by Uniform Re-
source Identifiers (uri), a generalization of the http url, so they can become
the subject of an http request (e.g., as target of a hyperlink). Note that a uri
can only identify one resource, but a resource can be identified by multiple
uris.

Resource manipulation through representations. A client can only assess a re-
source as zero or more representations (each available in a suitable data for-
mat, for instance html, or in case of an image, jpeg) and manipulate a resource
through zero or more representations. They represent the state of a resource as
a byte-string, encoded in a format indicated by the internet media type or mime
type, e.g., text/html (document) or image/jpeg (image). Both the server and
client can choose the mime type at will, which is included in the http headers
(e.g., Accept and Content-Type).

Self-descriptive messages. All exchanged messages include all the information
necessary to be processed and cannot rely on other messages. Statelessness is
one aspect, but also the well-understood http verbs contribute.

Hypermedia As The Engine Of Application State (hateoas). A�er a client has
accessed a resource, the response should include server-provided links that of-

13

2.2. Linked Open Data

fer all the available actions and resources it needs to carry on. If interaction
continues, succeeding responses will contain hyperlinks to di�erent actions
that are currently available. Thereby, navigation between resources happens
through hypermedia controls such as links or forms, which drive the applica-
tion state—like an engine. As a result, client and server require no out-of-band

information to interact, such as documentation.

2.1.2 Web Application Programming Interfaces

The rest constraints are a recommended architectural style for building a “Web
api” (Web Application Programming Interface) or “Web service”. In the broad-
est sense, a Web api is any application that communicates through the http
protocol [12]. Regular websites can be conceived of as apis for humans, where
the interface is determined by the html pages o�ered by a server. In the stricter
sense, the term “Web api” mostly refers to interfaces that have been designed
for an automated, machine-based consumption of Web content. Such an inter-
face can range from providing access to a single resource to an entire dynamic
network of interconnected resources.

Instead of rest, some apis follow a remote-procedure calling (rpc) style, in
which http simply acts as a tunneling mechanism for method invocation. rpc
also applies a client–server interaction with a request-response mechanism.
However, similar to object oriented programming, the api is centered around
actions a client performs on the server. This o�en leads to a certain contract

between client and server, sacrificing scalability for developer comfort.

In contrast to rpc, rest captures the design of the human Web: we browse
the Web by clicking links and forms (respectively <a> and <form> in html).
Therefore, with rest Web apis, machines similarly use such hypermedia con-
trols to navigate from one resource to another [13, 14]. A hypermedia control is
a declarative construct that informs clients of a hypermedia interface of possi-
ble application and/or session state changes in their interaction with a server,
and explains them how to e�ectuate such changes. The benefit of rest apis is
that, like websites, they are self-describing: once the basic mechanisms (html,
xml, . . .) are implemented, no external documentation is necessary to browse
and consume the api or website.

2.2 Linked Open Data

Initiated by Tim Berners-Lee’s call for “raw data now” [15], there is an ongoing
e�ort to make data a first-class citizen on the Web. Situated in a larger, societal
context, this premise became the goal of the Open Data movement [15]. They
pursue making certain data freely available on the Web for anyone to use or
redistribute, without any legal restrictions. Enabling anybody to build appli-
cations with your data, addresses the creativity, input, and workload of a huge
community. As a result, the return can be way larger than a single company
can handle, while the investment is a lot less.

14

2.3. Relation to the Semantic Web

Around the world, many governments have started designing and implement-
ing Open Data strategies in light of transparency and economic potential [16].
To aid them in their deployment, Berners-Lee [17] defined a five star scheme:

⋆ put data on the Web with an open license2;
⋆⋆ make the data structured (e.g., spreadsheets instead of an image);

⋆ ⋆ ⋆ have it in a non-proprietary format (e.g., csv instead of Excel);
⋆ ⋆ ⋆⋆ use uris to identify things, so people can point at it, and return something

meaningful when requested;
⋆ ⋆ ⋆ ⋆ ⋆ link your data to other data to provide context.

The fi�h star urges data owners to adopt a Linked Data approach, which Bizer,
Heath, and Berners-Lee [7] define as “a set of best practices for publishing and
connecting structured data on the Web”. Applying these practices, and their
supporting technology, can integrate distributed datasets semantically, and
thus, completely break the data silos in the process. When published under an
open license, the contraction Linked Open Data (lod) is used instead. Every
few years, the Linking Open Data project [6] publishes the lod-cloud [18, 19]:
a diagram symbolizing all datasets available on the Web and the existing links
between them. Figure 2.3 displays the 1,139 available datasets in 2017, illus-
trating the variety of participating domains. Coming from only twelve datasets
ten years ago, we can consider the interest in Linked Data far from over.

Linked Data is most commonly materialized using the Resource Description
Framework (rdf) [20], which entails the use of basic relationship statements
and the global http uri scheme to identify resources. Linking is achieved by
reusing the same uri to refer to the same resource, or by expressing equivalence
between di�erent uris that identify the same resource [21]. In Section 2.3.1, rdf
is explained in more detail as part of the Semantic Web.

2.3 Relation to the Semantic Web

When there is talk about Linked Data, the term Semantic Web is never far
o�. In essence, the Semantic Web is the vision to make the current Web more
machine-understandable [22]. This e�ort entails “pu�ing data on the Web in a
form that machines can naturally understand, or converting it to that form.” [23]
With additional semantics, machines are able to execute sophisticated tasks
that go beyond parsing and transforming. For instance, if a machine parses
an html page about train routes, it needs a programmer to interpret the con-
tent and implement how to propose travel routes to a user. When this page is
semantically annotated, any program that understands the semantics of trans-
port can apply route planning autonomously. Hence, what used to be so�ware
programs, can now evolve into intelligent agents [24].

Demonstrated by the rise of digital assistants (as mentioned in Chapter 1),
the presence of such intelligent agents is slowly becoming a reality. With the

2. Popular open licenses are the Open Data Commons Public Domain Dedication and License (pddl),
the Open Data Commons A�ribution License (odc-by), and the Creative Commons Zero (cc0).

15

2.3. Relation to the Semantic Web

Figure 2.3: Linking Open Data cloud diagram 2017, by Andrejs Abele, John P. McCrae,
Paul Buitelaar, Anja Jentzsch and Richard Cyganiak. h�p://lod-cloud.net/

Web growing at accelerating rate, it became generally accepted that agents are
a necessity in order deal with the increasing complexity [25]. These agents,
however, go beyond that what can be witnessed today. A�er instructing your
personal agent with a task, it is able to browse the Web, collect the relevant
data, connect pieces of information, and even communicate with other intel-
ligent agents. Important here is the established Artificial Intelligence concept
of knowledge representation [26]. Knowledge is represented in a formal do-
main model or ontology, so that machines can make complex decisions au-
tonomously, o�en through means of reasoning. From the facts expressed in
data, new knowledge can be derived by applying descriptive logic [27].

This ability to roam the Semantic Web as a global dataspace is the merit of
Linked Data [8]. In an a�empt to clarify their relationship, Tim Berners-Lee
described Linked Open Data as “the Semantic Web done right”3 and the Se-
mantic Web as “a web of data that can be processed directly or indirectly by
machines.” [23], making both terms co-occur ever since. During the unfolding
research e�orts, the Semantic Web community was sidetracked from the Web
aspect, and mainly focused on ge�ing the knowledge management right. The

3. h�p://www.w3.org/2008/Talks/0617-lod-tbl

16

2.3. Relation to the Semantic Web

Linking Open Data project therefore a�empts to reinstate some important ne-
glected aspects, such as actually “building a global Web of machine-readable
data” [7].

Berners-Lee, Hendler, and
Lassila [22] conclude that
we simply have to “accept
that paradoxes and
unanswerable questions are
a price that must be paid to
achieve versatility” (e.g.,
contradicting statements
can coexist in
Wikidata [28]).

Gaining knowledge from the Semantic Web, for ex-
ample by means of reasoning, operates under an
open world assumption [29, 30]. In a Web con-
text, this means that when a statement is absent
in a certain document, it is impossible to determine
whether it is false or nonexistent. Hence, we are
never in possession of the whole truth, as “anyone
can say anything about anything” [20].

As this makes absolute sense in a global data space,
the open world assumption is reflected in the Se-
mantic Web technology stack. This stack refers to
a collection of standards, led by the World Wide Web Consortium (w3c), and
remains under active development. In the remainder of this section, we discuss
the prominent ones:

Resource Description Framework (rdf) a framework to represent struc-
tured knowledge in triples, consisting of a subject, predicate, and ob-
ject [20].

sparql Protocol and rdf �ery Language (sparql) a combination of a
language to query rdf data in stores [31] and a communication pro-
tocol [32] on top of http to use the sparql language remotely.

Web Ontology Language (owl) a domain modeling language to represent
complex knowledge about things and the relations between them [33].
It is computational logic-based, so reasoners can exploit the expressed
knowledge.

2.3.1 Representing Linked Data in the Resource Description

Framework

The Resource Description Framework (rdf) [20] is a graph-based representa-
tion of information on the Web. Adopted as a w3c recommendation in 1999,
rdf was initially launched as a metadata exchange format [34] to establish “a
vendor-neutral and operating-system-independent system of metadata” [35].
At its launch, rdf was heavily tied to the hierarchical xml for syntax so exist-
ing tools could be reused. Both were developed around the same period and
strived to improve interoperability; but in contrast to xml, rdf saw li�le up-
take. It was not until the Semantic Web vision gained widespread believe, that
the standard was successfully revived. Today, rdf is used more generally to de-
scribe concepts or model information contained in Web resources. It provides
a model and syntaxes to implement and represent Linked Data [20].

In rdf, data is expressed as triples. A triple is a statement composed of a subject,
predicate, and object and can hence be considered as a simple sentence. For

17

2.3. Relation to the Semantic Web

instance, the statement below describes the relationship between Umberto Eco
and one of his works:

"The Name of the Rose"’s author is Umberto Eco.

In this sentence, we can distill the subject (The Name of the Rose), predicate
(has author), and object (Umberto Eco). In rdf, each of these components is
in fact a Web resource and is therefore identified by a uri. Thus, the sentence
above is modeled as follows:

<http://dbpedia.org/resource/The_Name_of_the_Rose>
<http://dbpedia.org/ontology/author>

<http://dbpedia.org/resource/Umberto_Eco>.

By using uris, each concept is uniquely identified on the Web, which enables
unambiguous referencing to, for instance, books, authors and the relationship
“has author”. Sharing these among systems achieves interoperability and in-
terconnection between data.

There are several serialization formats standardized by w3c to represent rdf
data:

rdf/xml: a verbose xml syntax to smoothen transition in the early days [36].
It has been largely succeeded by more e�iciently processable syntaxes
such as Turtle.

N-Triples: the most straightforward syntax that encodes triples line-based in
plain text [37]. Triples and uris are wri�en and repeated in full, making
it quite verbose.

Turtle: a lean superset of N-triples that uses shorthands and uri prefixes to
avoid verbosity by repetition [38]. The user-friendly Turtle is the most
common today, and is used in this thesis to represent rdf.

Some serializations also support graph statements, also known as quads. A set
of rdf triples—an rdf graph—can be identified by a single uri, which can be
perceived as an additional fourth triple component.

N-�ads: a superset of N-Triples adding a fourth graph element per line.
Trig: a superset of Turtle that adds a bracket-based syntax for graphs.
JSON-LD: a json representation that approaches rdf from a more Linked

Data and Web api perspective [39]. Regular json constructs are anno-
tated with rdf terms in a separate predefined context.

An rdf graph can represent more complex knowledge. For instance, the state-
ments below enhance our prior example statement. Note that we use Turtle
syntax to write triples, which should, just like N-Triples, use angular brackets
(<>) to indicate uris. However, for brevity, Turtle allows to abbreviate uris with
prefixes, like so:

@prefix dbr: <http://dbpedia.org/resource/> .
@prefix dbo: <http://dbpedia.org/ontology/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

18

2.3. Relation to the Semantic Web

dbr:The_Name_of_the_Rose dbo:author dbr:Umberto_Eco.
dbr:The_Name_of_the_Rose rdf:type dbo:Book.
dbr:Umberto_Eco dbo:birthDate "1932-01-05"^^xsd:date.

The triple on the first line is
identical to the triple we
discussed earlier.

The above triples state that something identified
by dbr:The_Name_of_the_Rose is of type dbo:Book

and has a relationship identified by dbo:author

with something identified by dbr:Umberto_Eco. In
turn, the thing identified by dbr:Umberto_Eco is related to 5 January 1932 with
the predicate dbo:birthDate. However, by visiting the uris and applying the
machine-readable semantics captured by the schema—in this case the dbpedia
ontology prefixed by dbo:—a so�ware application can interpret that a book The

Name of the Rose is authored by Umberto Eco, who was born on 5 January 1932.

Frequently, the xsd
datatypes [40] are used
which also occur in xml
files.

Note that in rdf, the object of a triple can have a lit-
eral value as object instead of a uri, which is the
case in the last line. Literals are used to represent
basic values like strings, numbers, and, in this case,
dates, and can have an optional datatype (also rep-
resented by a uri). In many cases, the use of literals is unavoidable. However,
for proper linking, the use of uris is preferred for reusable concepts, so they
are referenceable.

A subject or object can also contain a blank node, which is a resource in the
rdf graph not identified by uri or literal.

2.3.2 �erying with sparql

Knowledge can be derived from Linked Data by querying it. For rdf collections,
this is commonly done using the sparql1.1 �ery Language and Protocol, a
w3c specification [31]. The acronym “sparql” refers to two distinct concepts:

1. the sparql language: a query syntax and algebra to formalize ques-
tions, and;

2. the sparql protocol: a http interface for clients to request the execu-
tion of sparql queries by a server.

The la�er can be considered a Web interface, so we discuss it later in this sec-
tion in conjunction with other Linked Data interfaces. The former defines a
query language with an sql-like syntax used to select and retrieve rdf data. In
the sparql language, the basic construct is a basic graph pa�ern (bgp). A bgp
is able to match a number of triples in a dataset, and is composed of one or
more triple pa�erns. Just like an rdf triple, a triple pa�ern also contains a sub-
ject, predicate, and object, except, each term can be a wildcard. For instance,
a triple pa�ern aimed at selecting all works by Umberto Eco is expressed as
follows:

?work dbo:author dbr:Umberto_Eco.

19

2.3. Relation to the Semantic Web

1 PREFIX dbr: <http://dbpedia.org/resource/>
2 PREFIX dbo: <http://dbpedia.org/ontology/>
3
4 SELECT ?name
5 WHERE {
6 ?work dbo:author dbr:Umberto_Eco.
7 ?work dbo:name ?name.
8 }

Listing 2.1: This sparql query selects all works by Umberto Eco.

Finding triples that match this pa�ern is the task of the sparql query processor.
For this example, every triple in the dataset that has dbo:author as predicate
and dbr:Umberto_Eco as object will match the above query. With a bgp, we
can add a collection of connected triples enclosed in brackets; for instance, to
also return the label:
{
?work dbo:author dbr:Umberto_Eco.
?work dbo:name ?name.
}

The first triple pa�ern yields a set of uris, each identifying a work authored by
Umberto Eco. The second triple pa�ern yields the label associated with each
of those uris. That is, from the description of the work, the object of the triple
that has the work’s uri as subject and the dbo:name as predicate is chosen.

In addition to triple pa�erns, a bgp can contain FILTER clauses, which pose
conditional constraints on the bgp’s solutions. For instance, to yield only the
work “The Name of the Rose”, the values that match ?name can be filtered with
a regular expression:
{
?work dbo:author dbr:Umberto_Eco.
?work dbo:name ?name.
FILTER regex(?name, "The Name of the Rose")
}

In total, there exist four query types that define the operation performed on
bgps:

SELECT: returns a result set of variables bounded to the matching triples;
CONSTRUCT: creates new rdf triples by substituting values from the matching

triples in triple templates;
DESCRIBE: returns an implementation-specific description of the matching re-

sources;
ASK: returns a Boolean indicating whether the pa�ern matches or not.

Given the prior example, Listing 2.1 shows a complete sparql SELECT query.

The sparql language o�ers many assisting constructs as well, which turn it into
a very expressive language. These include optional parts (i.e., OPTIONAL), short-
hands (e.g., PREFIX), composition (e.g., UNION and INTERSECT), negation (e.g.,
FILTER NOT EXISTS and MINUS), and aggregation (e.g., COUNT and DISTINCT).

20

2.4. Extract-Transform-Load workflows for rdf data

2.3.3 Modeling domains with the Web Ontology Language

In the Semantic Web domain, the terms Vocabulary and Ontology are o�en
used synonymously, referring to a domain model of defined concepts and their
relationships. The result can vary from very formal, i.e., defining inference
rules, to a more loose approach, i.e., defining flexible data schemas.

For rdf, ontologies are o�en expressed in rdf Schema (rdfs) [41] and its suc-
cessor the Web Ontology Language (owl) [33]. As these are not directly rele-
vant to this dissertation, we will not discuss them in more detail. Note however
that many of the uris in predicates and objects originate from reused ontolo-
gies and eventually materialize the semantics for a machine.

2.4 Extract-Transform-Load workflows for rdf data

An organization’s rdf collection is o�en not continuous, but is generated peri-
odically from the current data collection with an Extract-Transform-Load (etl)
process. Data can reside in heterogeneous sources, which need more complex
transformations first in order to be unified [42].

rdbmsjson ... xml

Extract

Transform

Load

rdf Index

• extracting the appropriate data from the
sources;
• transporting them to a special-purpose part of

the data warehouse for processing;

Examples: custom

approaches, odbc,

xslt.

• transforming and expanding the source data to
fit the target data structure;
• isolating and cleansing of problematic tuples,

in order to guarantee that business rules and
database constraints are respected;

Example (lan-

guages): r2rml,
rml, and xslt.

• loading of the cleansed, transformed data to
the appropriate position in the warehouse, along
with the refreshment of its accompanying indexes
and materialized views.

Example output:

data dumps (e.g.,

Turtle), triple stores

(e.g., Virtuoso), or

dedicated indexes

(e.g., hdt).

custom

uniform

model

rdf

Figure 2.4: Adequate tools exist for rdf to execute the five responsibilities of Extract-
Transform-Load workflows defined by Vassiliadis [43].

21

2.4. Extract-Transform-Load workflows for rdf data

2.4.1 A three-step workflow

The etl process originates from data warehousing, where one or more dis-
parate sources are integrated in a central repository. In total, the three-step
workflow “Extract, Transform, and Load”, handles five responsibilities defined
by Vassiliadis [43], as shown in Figure 2.4. Adequate rdf tools exist for each
responsibility, which are briefly discussed below.

The Extract step is implementation-specific and deals with the heterogeneity
of data. Many di�erent file formats are read into a main uniform data model so
the rdf etl tool can process it. This model is o�en kept in memory and should
be su�iciently flexible to not hinder the transformation to a graph structure.
Most tools target structured [44] or unstructured [45] data. There is li�le reuse
except for established extraction methods such as xslt [46] or odbc [47].

An alternative to etl is
Ontology-based Data
access (obda), where
semantics-based operations
on the data are interpreted
at runtime; hence, the rdf
representation only exists
virtually. Most rdf
mapping languages can be
used for both obda and etl.
Popular examples are
Ontop [48], Morph [49], or
Ultrawrap [50].

The Transform step compels rdf publishers to adapt
the etl workflow [51]. Extracted heterogeneous
data can conveniently (a) be translated into a rdf
graph structure, (b) adopt or construct resource
uris, and (c) be annotated with schema information.
This process became known as rdf mapping [52],
and is now supported by many etl tools [53].
To increase the uniformity of the approaches and
make mapping definitions reusable, a few map-
ping languages came about to interpret relational
databases as rdf. A well-known example of such
language is the w3c Recommendation r2rml [54].
In order to also support formats other than tabu-
lar source formats (e.g., spreadsheets and relational

databases) [55], Dimou et al. [56] developed rml: a superset of r2rml that adds
support for heterogeneous and hierarchical sources.

The Load step prepares the rdf for publication or analysis, very o�en through
search and querying. Its target is a data dump in one of the serialization
formats or an rdf index, which enables e�icient lookups of uris, pa�erns or
triples. A combination of di�erent indexes with a sparql processor is called
an rdf database or triplestore. Common examples are Virtuoso [57] or Al-
legroGraph [58]. These are complex systems that consist of many modules,
requiring large-scale infrastructure when the data size is large. However, also
more lightweight, dedicated indexes exist. A prominent example is Header-
Dictionary-Triples (hdt): a compressed self-indexed binary rdf format [59].

2.4.2 Header-Dictionary-Triples (hdt)

Designed with exchange in mind, hdt targets the ever increasing data volumes
by dealing with the redundancy, verbosity, and ine�icient machine processabil-
ity custom to rdf representations. With hdt, an rdf dataset is encapsulated
into a single file, consisting of three components:

22

2.5. Publishing Linked Data

• a Header with metadata about the dataset for discovery and as entry
point;

• a Dictionary to encode all uris and literals to avoid redundancies;
• a Triples encoding scheme which both compresses and indexes for search

operations.

The result is a highly compressed read-only binary archive, which reduces the
original dataset size up to 15 times [59]. For big semantic data management
systems, hdt o�ers 25% storage space compared to state-of-the-art rdf in-
dexes, while still competing in query performance [60].

The Triples component enables very e�icient search and browse operations.
Triple pa�ern lookups can be performed fast without having to decompress
any data, keeping storage and memory usage within acceptable bounds. In
addition, it can estimate the cardinality of such pa�erns e�iciently, which is
useful for optimizing query planning over hdt files.

An hdt file is immutable; that is, only read operations can be performed a�er
its creation. This is a considerable limitation in comparison to triple stores or
other writable indexes. However, for some use cases like archiving, the inability
to change can be considered an advantage. The hdt generation process is also
slow and memory-intensive, which may or may not be a problem depending
on the use-case. In the use-cases mentioned in this dissertation, though, hdt
makes an excellent storage candidate due to its query capabilities and limited
size. Therefore, it plays an important role in the described experiments later
on.

2.5 Publishing Linked Data

Just like any form of data, Linked Data is published using a Web api, so applica-
tions can consume it properly. In the following, we discuss the most prominent
used interfaces.

2.5.1 Data dump

A data dump is the most straightforward way to publish a Linked Dataset: one
or more files contain all triples of the dataset, serialized in one of the rdf rep-
resentations, e.g., Turtle or N-Triples. These files—possibly compressed into an
archive—are uploaded to a fileserver and made available for download. From a
rest perspective, the entire dataset is the Web resource, which is identified by
its download url. Common data dumps are the dbpedia datasets4, Freebase5

Geonames6, or the Virtual International Authority File (viaf)7. More datasets
can be found at h�ps://old.datahub.io/dataset?res_format=RDF.

4. h�p://wiki.dbpedia.org/develop/datasets
5. h�ps://developers.google.com/freebase
6. h�p://www.geonames.org/export
7. h�p://viaf.org/viaf/data

23

https://old.datahub.io/dataset?res_format=RDF
http://wiki.dbpedia.org/develop/datasets
https://developers.google.com/freebase
http://www.geonames.org/export
http://viaf.org/viaf/data

2.5. Publishing Linked Data

For publishers, data dumps are a low-complexity solution, as file servers are
fairly simple and inexpensive. However, they cannot be considered a solu-
tion for live queryable data: before sparql queries can be executed, clients
must download (or stream) the dataset in its entirety over http, ingest them
in a sparql-aware system, and process the query locally. On the one hand,
this o�ers universality: clients can process datasets as they see fit and ingest
them in an access point of choice, optimized for the kind of task they want to
perform—even beyond sparql queries. On the other hand, if the files are large,
there is a significant bandwidth and client processing cost involved. Depend-
ing on the use case and total dataset size, this also means the cost for clients
to use the data is high, and thus possibly out of reach for a significant number
of consumers. Therefore, data dumps mostly suit data-intensive tasks. For a
client that only needs a few triples, downloading the entire dump to retrieve
these triples is very ine�icient. Finally, if (part of) the data becomes outdated,
the client has to restart downloading and processing entirely.

Some initiatives have aimed to facilitate the usage of data dumps. For instance,
the lod Laundromat [61] harvests data dumps from the Web in various rdf
formats, cleans up quality issues relating to the serialization, and republishes
the dumps in standards-conform formats at their own location (including new
download uri).

2.5.2 sparql endpoints

As mentioned earlier, we can make a much more fine-grained selection of rdf
data with the sparql query language [31] through highly specific and flexible
custom queries. For a client, the easiest way to execute such a query is to ship
it to a server that hosts the corresponding dataset. This interaction is stan-
dardized in the sparql protocol [32]: a client sends sparql queries through
a specific http interface, the sparql endpoint, and the server, a�empts to ex-
ecute these queries and responds with their results. Such an interface is sup-
ported by many triple stores, such as Virtuoso [57] and Jena tdb [62]. Popular
public running instances are dbpedia (h�p://dbpedia.org/sparql), the BioPortal
sparql portal (h�p://sparql.bioontology.org), and the scolary data portal dblp
(h�p://dblp.rkbexplorer.com/sparql).

1 SELECT DISTINCT ?t
2 WHERE {
3 ?s rdf:type ?t
4 }

Listing 2.2: This sparql query selects all distinct classes in the dataset.

A sparql endpoint is identified by the standardized base url which exposes a
single resource /sparql, to which a query is appended to construct the http
request uri. For example, the result of executing the query in Listing 2.2 on the
dbpedia dataset endpoint, is available as the following resource:

24

http://dbpedia.org/sparql
http://sparql.bioontology.org

2.5. Publishing Linked Data

dbpedia.org/sparql?query=SELECT+DISTINCT+%3Ft+%7B+%3Fs+rdf%3Atype+%3Ft+%7D

From a rest perspective, this uri identifies the Web resource, which is the
result set (represented in one of the sparql result formats). In a sense, sparql
endpoints therefore expose an infinite number of rest resources, which are
determined by the clients’ choice of a query.

While enabling clients to send arbitrary sparql queries leads to low bandwidth
consumption and low client cost, the processing of individual requests is po-
tentially very expensive for the server in terms of server cpu time and memory
consumption. In fact, it has been shown that the evaluation problem for sparql
is PSPACE-complete [63]. This makes hosting a public sparql endpoint a costly
endeavour for publishers. Also, it contributes to sparql endpoint availability
being magnitudes lower than that of regular http servers [64], making them
less useful for executing multiple tasks subsequently. However, in the case of
private sparql endpoints, the number of users, requests, and the cost per re-
quest are under stricter control, and cache reuse is possibly higher, allowing
for more e�icient provisioning. Therefore, highly available endpoints in enter-
prise contexts can be viable and cost-e�ective. For instance, both the BBC’s
2010 World Cup website [65] and Springer Nature’s scolary data platform Sci-
Graph8 run on a sparql backend. Chapter 3 reprises the issues with public
endpoints in more detail.

2.5.3 Linked Data documents

A more granular way to access Linked Data is publishing them according to
the four Linked Data principles by Berners-Lee [17]:

1. Use uris as names for things.
2. Use http uris so that people can look up those names.
3. When someone looks up a uri, provide useful information, using the

standards (e.g., rdf).
4. Include links to other uris so that they can discover more things.

These principles divide an rdf dataset in several Linked Data documents, each
of which contains triples related to a specific entity. Examples can be found
with publishers such as dbpedia (h�p://dbpedia.org/page/DBpedia), the movie
database LinkedMDB (h�p://data.linkedmdb.org/page/film/2014), or the mul-
tilingual encyclopedic dictionary BabelNet (h�p://babelnet.org/rdf/page). Al-
though not standardized, there exists a de-facto definition formalized by Har-
tig [66] that is used in this dissertation:

Definition 1 (Linked Data document). A Linked Data document du is a collec-
tion of rdf triples that describes the entity identified by a uri u if there exists
a triple (s, p, o) ∈ du such that s = u or o = u.

8. h�p://www.springernature.com/gp/researchers/scigraph

25

http://dbpedia.org/page/DBpedia
http://data.linkedmdb.org/page/film/2014
http://babelnet.org/rdf/page
http://www.springernature.com/gp/researchers/scigraph

2.5. Publishing Linked Data

Note that there might be multiple Linked Data documents that describe an
entity identified by u. However, according to the Linked Data principles [17],
the uri u may also serve as a reference to a specific Linked Data document
which is considered an authoritative source of data about the entity identi-
fied by u. The retrieval process of this document is called dereferencing the
uri u. For instance, the uri h�p://dbpedia.org/resource/Umberto_Eco denotes
the author Umberto Eco, and looking up this uri leads to a document with
triples in which the uri is the subject or the object. This is a crucial property
of Linked Data: if a client does not know what entity a uri represents, it can
find information by performing an http GET request.

From a rest perspective, the entity is the Web resource, the Linked Data doc-
ument is its representation (e.g., in an rdf format or html), and all uris are
its hypermedia links. Hence, the rest notion of a “resource” thus coincides
with the rdf notion of a “resource”. For example, data about the rdf re-
source h�p://dbpedia.org/resource/Umberto_Eco is available through the rest
resource with that same url.

The server performance for responses can be high, and their cost is low, since
the required data lookups to generate each document are light. Furthermore,
the set of resources per dataset is finite, and resources can be reused by many
clients, leading to high cache reuse. These factors allow high availability of the
interface at low cost.

Dereferencing allows discovering related data from one particular authoritative
source only. For instance, the aforementioned url allows to discover informa-
tion about Umberto Eco from the dbpedia [67] dataset, but not from any other
sources with information about the same concept. Furthermore, discovery of
one resource comes down to merely retrieving its entire representation, and
does not directly give access to all resources in the dataset.

Hartig and Pirrò [68]
studied the scope for
sparql1.1 Property Path

pa�erns i.e., a feature to
express navigational
routes [31], and introduced
a classification according to
their ability to be evaluated
completely under
context-based semantics,
i.e., Web-safeness).

Several approaches exist to execute queries over
Linked Data documents, as surveyed by Hartig [69].
One family of approaches uses pre-populated in-
dex structures [70], i.e., prefetching and preprocess-
ing documents, and another focuses on live explo-
ration by a traversal-based query execution [71],
i.e., applying a follow-your-nose method by follow-
ing links.

Typically, such query approaches have longer query
execution times than sparql endpoints, but—unlike
data dumps—allow for live querying. The required
bandwidth is generally smaller than that of data

dumps, but the e�iciency can still be low depending on the type of query.
For instance, chains of triple pa�erns connected with a variable (e.g., <s>

foaf:made ?o. ?o foaf:name <o>.) can result in an explosion of http requests.
Furthermore, completeness with regard to a dataset cannot be guaranteed, and
certain queries are di�icult or impossible to evaluate without an index [69]. In

26

http://dbpedia.org/resource/Umberto_Eco
http://dbpedia.org/resource/Umberto_Eco

2.6. Conclusion

particular, queries for pa�erns with unbound subjects (e.g., ?s foaf:made <o>)
pose problems, since Linked Data documents are by definition single-resource-
centric—a client can only navigate using a resource’s incoming and outgoing
links.

2.5.4 Other specialized Web apis to Linked Data

In addition to the (de facto) standard interfaces, several other http interfaces
for rdf exist. One important motivation was having write support. An early
a�empt for a read/write interface was the sparql Graph Store Protocol [72],
part of thew3c sparql specification. It describes http operations to manipulate
rdf graphs through sparql queries, but is barely used. A later w3c recommen-
dation, namely Linked Data Platform [73], defines a read/write Linked Data
http interface that adheres more to rest. The api details several concepts that
extend beyond the Linked Data principles, such as containers and write access.

Linked Data Platform has already been implemented by several big platforms
such as Apache Marmo�a9, OpenLink Vituoso10, and TopBraid Live11. How-
ever, it was designed primarily for consistent read/write access to Linked Data
resources, not to enable reliable and/or e�icient query execution.

Additionally, there exist a few custom http interfaces for triples, such as the
Linked Data api [74] and Restpark [75]. Some of them aim to bridge the gap
between the sparql protocol and the rest architectural style underlying the
Web [76]. However, none of these proposals are widely used and no query
engines for them are implemented to date.

2.6 Conclusion

The Web of Linked Data can be considered a practical embodiment of the Se-
mantic Web. Therefore, this chapter first introduced the Web’s core archi-
tectural aspects that are key for its success and allowed it to scale globally.
Many of these aspects are incorporated in Semantic Web technologies to make
Web content more understandable for machines. Supported by this technology
stack, the Linked Open Data initiative aims to publish more
machine-understandable datasets on the Web in an interconnected way. By
querying these, applications can derive knowledge. To publish Linked Data on
the Web, several Web interfaces exist. They all have their merits, but also show
fallacies in enabling complex queries.

9. h�p://marmo�a.apache.org
10. h�ps://virtuoso.openlinksw.com
11. h�ps://www.topquadrant.com/products/topbraid-live

27

http://marmotta.apache.org
https://virtuoso.openlinksw.com
https://www.topquadrant.com/products/topbraid-live

References

This chapter was partly based on the publications:

Ruben Verborgh, Miel Vander Sande, Olaf Hartig, Joachim Van Herwegen,
Laurens De Vocht, Ben De Meester, Gerald Haesendonck, and Pieter Colpaert.
“Triple Pa�ern Fragments: a Low-cost Knowledge Graph Interface for the Web.”
In: Journal of Web Semantics 37–38 (Mar. 2016), pp. 184–206. issn: 1570-8268.
doi: 10 .1016/ j .websem.2016 .03 .003. url: h�p: / / linkeddatafragments .org/
publications/jws2016.pdf

Miel Vander Sande, Ruben Verborgh, Anastasia Dimou, Pieter Colpaert, and
Erik Mannens. “Hypermedia-based discovery for source selection using low-
cost Linked Data interfaces.” In: International Journal on Semantic Web and

Information Systems 12.3 (2016), pp. 79–110. issn: 1552-6283. doi: 10 . 4018 /
ijswis.2016070103

References

[1] Sareh Aghaei, Mohammad Ali Nematbakhsh, and Hadi Khosravi Farsani.
“Evolution of the World Wide Web: From WEB 1.0 TO WEB 4.0.” In: In-

ternational Journal of Web & Semantic Technology 3.1 (2012), p. 1.

[2] Ted H. Nelson. “Complex Information Processing: A File Structure for
the Complex, the Changing and the Indeterminate.” In: The 1965 20th

National Conference. ACM ’65. Cleveland, Ohio, USA: ACM, 1965, pp. 84–
100. doi: 10.1145/800197.806036.

[3] Ray McAleese and Catherine Green. Hypertext: state of the art. Intellect
Books, 1990.

[4] Maurice de Kunder. The size of the World Wide Web (The Internet). Aug. 31,
2017. url: h�p://web.archive.org/web/20170831172922/h�p://www.
worldwidewebsize.com.

[5] Antal Van den Bosch, Toine Bogers, and Maurice De Kunder. “Estimat-
ing search engine index size variability: a 9-year longitudinal study.” In:
Scientometrics 107.2 (2016), pp. 839–856.

[6] Chris Bizer, Tom Heath, Danny Ayers, and Yves Raimond. “Interlinking
Open Data on the Web.” In: Demonstrations track, 4

th
European Semantic

Web Conference, Innsbruck, Austria. 2007.

[7] Christian Bizer, Tom Heath, and Tim Berners-Lee. “Linked Data – The
Story So Far.” In: International Journal on Semantic Web and Information

Systems 5.3 (Mar. 2009), pp. 1–22.

[8] Tom Heath and Christian Bizer. “Linked data: Evolving the web into a
global data space.” In: Synthesis lectures on the Semantic Web: theory and

technology 1.1 (2011), pp. 1–136.

28

https://doi.org/10.1016/j.websem.2016.03.003
http://linkeddatafragments.org/publications/jws2016.pdf
http://linkeddatafragments.org/publications/jws2016.pdf
https://doi.org/10.4018/ijswis.2016070103
https://doi.org/10.4018/ijswis.2016070103
https://doi.org/10.1145/800197.806036
http://web.archive.org/web/20170831172922/http://www.worldwidewebsize.com
http://web.archive.org/web/20170831172922/http://www.worldwidewebsize.com

References

[9] Tim Berners-Lee, Robert Cailliau, and Jean-François Gro�. “The world-
wide web.” In: Computer networks and ISDN systems 25.4-5 (1992), pp. 454–
459.

[10] Roy Thomas Fielding. “Architectural Styles and the Design of Network-
based So�ware Architectures.” PhD thesis. University of California, 2000.

[11] Roy Thomas Fielding, Jim Ge�ys, Je�rey Mogul, Henrik Frystyk, Larry
Masinter, Paul Leach, and Tim Berners-Lee. Hypertext Transfer Protocol

(http). Request For Comments 2616. Internet Engineering Task Force,
June 1999. url: h�p://tools.ietf.org/html/rfc2616.

[12] Ruben Verborgh. “Serendipitous Web Applications through Semantic Hy-
permedia.” PhD thesis. Ghent, Belgium: Ghent University, Feb. 2014.
url: h�ps://ruben.verborgh.org/phd/ruben-verborgh-phd.pdf.

[13] Mike Amundsen. “Hypermedia Types.” In: rest: From Research to Prac-

tice. Ed. by Erik Wilde and Cesare Pautasso. Springer, 2011, pp. 93–116.

[14] Roy Thomas Fielding. rest apis must be hypertext-driven. Oct. 2008. url:
h�p:/ / roy.gbiv.com/untangled/2008/rest- apis- must- be- hypertext-
driven.

[15] Tim Berners-Lee. “Sir Tim Berners-Lee: Raw data, now.” In: Wired UK 2
(2012), p. 2013.

[16] Noor Huijboom and Tijs Van den Broek. “Open data: an international
comparison of strategies.” In: European journal of ePractice 12.1 (2011),
pp. 4–16.

[17] Tim Berners-Lee. Linked Data – Design issues. Ed. by Tim Berners-Lee.
July 27, 2006. url: h�p://www.w3.org/DesignIssues/LinkedData.html
(visited on 06/18/2009).

[18] Anja Jentzsch, Richard Cyganiak, and Chris Bizer. State of the LOD Cloud.
2011. url: h�p://lod-cloud.net/state/state%5C_2011.

[19] Max Schmachtenberg, Christian Bizer, and Heiko Paulheim. “Adoption
of the Linked Data Best Practices in Di�erent Topical Domains.” English.
In: International Semantic Web Conference. 2014, pp. 245–260. isbn: 978-
3-319-11963-2. doi: 10.1007/978-3-319-11964-9_16.

[20] Richard Cyganiak, David Wood, and Markus Lanthaler. rdf 1.1 Concepts

and Abstract Syntax. Recommendation. World Wide Web Consortium,
Feb. 25, 2014. url: h�p://www.w3.org/TR/rdf11-concepts/.

[21] Michael Hausenblas. “Exploiting linked data to build web applications.”
In: ieee Internet Computing 13.4 (2009), p. 68.

[22] Tim Berners-Lee, James Hendler, and Ora Lassila. “The Semantic Web.”
In: Scientific American 284.5 (May 2001), pp. 34–43.

[23] Tim Berners-Lee, Mark Fische�i, and Michael L Foreword By-Dertouzos.
Weaving the Web: The original design and ultimate destiny of the World

Wide Web by its inventor. HarperInformation, 2000.

29

http://tools.ietf.org/html/rfc2616
https://ruben.verborgh.org/phd/ruben-verborgh-phd.pdf
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://www.w3.org/DesignIssues/LinkedData.html
http://lod-cloud.net/state/state%5C_2011
https://doi.org/10.1007/978-3-319-11964-9_16
http://www.w3.org/TR/rdf11-concepts/

References

[24] Stan Franklin and Art Graesser. “Is it an Agent, or just a Program?: A
Taxonomy for Autonomous Agents.” In: Intelligent agents III agent theo-

ries, architectures, and languages (1997), pp. 21–35.

[25] James Hendler. “Is there an intelligent agent in your future?” In: Nature

11 (1999).

[26] Ronald J Brachman, Hector J Levesque, and Raymond Reiter. Knowledge

representation. MIT press, 1992.

[27] Franz Baader. The description logic handbook: Theory, implementation

and applications. Cambridge university press, 2003.

[28] Denny Vrandečić and Markus Krötzsch. “Wikidata: a free collaborative
knowledgebase.” In: Communications of the ACM 57.10 (2014), pp. 78–85.

[29] Raymond Reiter. “On closed world data bases.” In: Logic and data bases.
Springer, 1978, pp. 55–76.

[30] Peter F Patel-Schneider and Ian Horrocks. “A comparison of two mod-
elling paradigms in the Semantic Web.” In: Web Semantics: Science, Ser-

vices and Agents on the World Wide Web 5.4 (2007), pp. 240–250.

[31] Steve Harris and Andy Seaborne. sparql 1.1 �ery Language. Recom-
mendation. World Wide Web Consortium, Mar. 21, 2013. url: h�p : / /
www.w3.org/TR/sparql11-query/.

[32] Lee Feigenbaum, Gregory Todd Williams, Kendall Grant Clark, and Elias
Torres. sparql 1.1 Protocol. Recommendation. World Wide Web Consor-
tium, Mar. 21, 2013. url: h�p://www.w3.org/TR/sparql11-protocol/.

[33] w3c owl Working Group. owl 2 Web Ontology Language Document

Overview. Recommendation. World Wide Web Consortium, 2012. url:
h�ps://www.w3.org/TR/owl2-overview/.

[34] Eric Miller. “An introduction to the Resource Description Framework.”
In: Bulletin of the Association for Information Science and Technology 25.1
(1998), pp. 15–19.

[35] World Wide Web Consortium et al. World Wide Web Consortium pub-

lishes Public Dra� of Resource Description Framework (rdf). 1997. url:
h�p://www.w3.org/Press/RDF (visited on 09/16/2003).

[36] Fabien Gandon and Guus Schreiber. rdf 1.1 xml syntax. Recommenda-
tion. World Wide Web Consortium, Feb. 25, 2014. url: h�ps://www.w3.
org/TR/rdf-syntax-grammar.

[37] David Becke�. rdf 1.1 N-Triples. Recommendation. World Wide Web
Consortium, Feb. 25, 2014. url: h�p://www.w3.org/TR/n-triples/.

[38] David Becke�, Tim Berners-Lee, Eric Prudh́ommeaux, and Gavin Ca-
rothers. rdf 1.1 Turtle. Recommendation. World Wide Web Consortium,
Feb. 25, 2014. url: h�p://www.w3.org/TR/turtle/.

[39] Manu Sporny, Dave Longley, Gregg Kellogg, Markus Lanthaler, and Ni-
klas Lindström. json-ld 1.0. Recommendation. World Wide Web Con-
sortium, Jan. 16, 2014. url: h�p://www.w3.org/TR/json-ld/.

30

http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-protocol/
https://www.w3.org/TR/owl2-overview/
http://www.w3.org/Press/RDF
https://www.w3.org/TR/rdf-syntax-grammar
https://www.w3.org/TR/rdf-syntax-grammar
http://www.w3.org/TR/n-triples/
http://www.w3.org/TR/turtle/
http://www.w3.org/TR/json-ld/

References

[40] Ashok Malhotra and Paul Biron. xml Schema Part 2: Datatypes Second

Edition. Recommendation. World Wide Web Consortium, Oct. 28, 2004.
url: h�ps://www.w3.org/TR/xmlschema-2/.

[41] Dan Brickley and Ramanathan V. Guha. rdf Vocabulary Description Lan-

guage 1.0: rdf Schema. Recommendation. World Wide Web Consortium,
Feb. 10, 2004. url: h�p://www.w3.org/TR/rdf-schema/.

[42] Ceri Binding, Michael Charno, Stuart Je�rey, Keith May, and Douglas
Tudhope. “Template Based Semantic Integration:” English. In: Interna-

tional Journal on Semantic Web and Information Systems 11.1 (Jan. 2015),
pp. 1–29. issn: 1552-6283. url: h�p : / / www. igi - global . com / article /
template-based-semantic-integration/135560.

[43] Panos Vassiliadis. “A survey of Extract–transform–Load technology.” In:
International Journal of Data Warehousing and Mining (IJDWM) 5.3 (2009),
pp. 1–27.

[44] Kostas Patroumpas, Michalis Alexakis, Giorgos Giannopoulos, and Spiros
Athanasiou. “TripleGeo: an etl Tool for Transforming Geospatial Data
into rdf Triples.” In: EDBT/ICDT Workshops. 2014, pp. 275–278.

[45] Sören Auer, Sebastian Dietzold, Jens Lehmann, Sebastian Hellmann, and
David Aumueller. “Triplify: light-weight linked data publication from re-
lational databases.” In: The 18

th
international conference on World wide

web. ACM, 2009, pp. 621–630.

[46] James Clark et al. xsl transformations (xslt). Recommendation. World
Wide Web Consortium, 1999, p. 103. url: h�p://www.w3.org/TR/xslt.

[47] Robert Signore, Michael O. Stegman, and John Creamer. The ODBC so-

lution: Open database connectivity in distributed environments. McGraw-
Hill, Inc., 1995.

[48] Mariano Rodriguez-Muro, Roman Kontchakov, and Michael Zakharya-
schev. “Ontology-based data access: Ontop of databases.” In: Interna-

tional Semantic Web Conference. Springer. 2013, pp. 558–573.

[49] Freddy Priyatna, Oscar Corcho, and Juan Sequeda. “Formalisation and
experiences of R2RML-based SPARQL to SQL query translation using
morph.” In: The 23

rd
international conference on World wide web. ACM.

2014, pp. 479–490.

[50] Juan F Sequeda and Daniel P Miranker. “Ultrawrap: SPARQL execution
on relational data.” In: Web Semantics: Science, Services and Agents on the

World Wide Web 22 (2013), pp. 19–39.

[51] Srividya K. Bansal. “Towards a semantic extract-transform-load (etl)
framework for big data integration.” In: Big Data (BigData Congress),

2014 ieee International Congress on. ieee, 2014, pp. 522–529.

[52] Satya S Sahoo, Wolfgang Halb, Sebastian Hellmann, Kingsley Idehen,
Ted Thibodeau Jr, Sören Auer, Juan Sequeda, and Ahmed Ezzat. A survey

of current approaches for mapping of relational databases to rdf. Deliver-
able. w3crdb2rdf Incubator Group, Jan. 8, 2009, pp. 113–130.

31

https://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/rdf-schema/
http://www.igi-global.com/article/template-based-semantic-integration/135560
http://www.igi-global.com/article/template-based-semantic-integration/135560
http://www.w3.org/TR/xslt

References

[53] Tomáš Knap, Maria Kukhar, Bohuslav Macháč, Petr Škoda, Jiří Tomeš,
and Ján Vojt. “UnifiedViews: an etl framework for sustainable rdf data
processing.” In: European Semantic Web Conference. Springer, 2014, pp. 379–
383.

[54] Souripriya Das, Seema Sundara, and Richard Cyganiak. r2rml: rdb to

rdf mapping language. Recommendation. World Wide Web Consortium,
Sept. 27, 2012. url: h�p://www.w3.org/TR/r2rml.

[55] Ma�hias Hert, Gerald Reif, and Harald C Gall. “A comparison of rdb-
to-rdf mapping languages.” In: The 7

th
International Conference on Se-

mantic Systems. ACM, 2011, pp. 25–32.

[56] Anastasia Dimou, Miel Vander Sande, Jason Slepicka, Pedro Szekely,
Erik Mannens, Craig Knoblock, and Rik Van de Walle. “Mapping hierar-
chical sources into rdf using the rml mapping language.” In: ieee Inter-

national Conference on Semantic Computing (ICSC). ieee, 2014, pp. 151–
158. doi: 10.1109/ICSC.2014.25.

[57] Orri Erling and Ivan Mikhailov. “Virtuoso: rdf Support in a Native rdbms.”
In: Semantic Web Information Management. Ed. by Roberto de Virgilio,
Fausto Giunchiglia, and Letizia Tanca. Springer, 2010, pp. 501–519. isbn:
978-3-642-04328-4.

[58] J Aasman. “AllegroGraph 4.0–industry’s first real time rdf store.” In: Pre-

sentation at Semantic Technologies Conference (SemTech 2009), San Jose.
2009.

[59] Javier D. Fernández, Miguel A. Martínez-Prieto, Claudio Gutiérrez, Axel
Polleres, and Mario Arias. “Binary rdf Representation for Publication
and Exchange (hdt).” In: Web Semantics: Science, Services and Agents on

the World Wide Web 19 (Mar. 2013), pp. 22–41.

[60] Miguel A Martínez-Prieto, Carlos E Cuesta, Mario Arias, and Javier D
Fernández. “The solid architecture for real-time management of big se-
mantic data.” In: Future Generation Computer Systems 47 (2015), pp. 62–
79.

[61] Wouter Beek, Laurens Rietveld, Hamid R. Bazoobandi, Jan Wielemaker,
and Stefan Schlobach. “lod Laundromat: A Uniform Way of Publish-
ing Other People’s Dirty Data.” In: The 13

th
International Semantic Web

Conference. Ed. by Peter Mika, Tania Tudorache, Abraham Bernstein,
Chris Welty, Craig Knoblock, Denny Vrandečić, Paul Groth, Natasha
Noy, Krzysztof Janowicz, and Carole Goble. Vol. 8796. Lecture Notes in
Computer Science. Springer, Oct. 2014, pp. 213–228.

[62] Michael Grobe. “rdf, Jena, SPARQL and the Semantic Web.” In: The 37
th

Annual ACM SIGUCCS Fall Conference: Communication and Collabora-

tion. 2009. isbn: 978-1-60558-477-5.

[63] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. “Semantics and
Complexity of sparql.” In: ACM Transactions on Database Systems 34.3
(Sept. 2009), 16:1–16:45. issn: 0362-5915.

32

http://www.w3.org/TR/r2rml
https://doi.org/10.1109/ICSC.2014.25

References

[64] Carlos Buil-Aranda, Aidan Hogan, Jürgen Umbrich, and Pierre-Yves Van-
denbussche. “sparqlWeb-�erying Infrastructure: Ready for Action?”
In: The 12

th
International Semantic Web Conference. Ed. by Harith Alani,

Lalana Kagal, Achille Fokoue, Paul Groth, Chris Biemann, Josiane Xavier
Parreira, Lora Aroyo, Natasha Noy, Chris Welty, and Krzysztof Janowicz.
Nov. 2013.

[65] Jem Rayfield. BBC World Cup 2010 dynamic semantic publishing. May 1,
2010. url: h�p://www.bbc.co.uk/blogs/bbcinternet/2010/07/bbc_world_
cup_2010_dynamic_sem.html.

[66] Olaf Hartig. “sparql for a Web of Linked Data: Semantics and Com-
putability.” In: The Semantic Web: Research and Applications. Ed. by Elena
Simperl, Philipp Cimiano, Axel Polleres, Oscar Corcho, and Valentina
Presu�i. Springer, 2012, pp. 8–23.

[67] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian
Becker, Richard Cyganiak, and Sebastian Hellmann. “dbpedia—A crys-
tallization point for the Web of Data.” In: Web Semantics: Science, Ser-

vices and Agents on the World Wide Web 7.3 (2009), pp. 154–165. url:
h�p://www.websemanticsjournal.org/index.php/ps/article/view/164.

[68] Olaf Hartig and Giuseppe Pirrò. “A context-based semantics for SPARQL
property paths over the web.” In: European Semantic Web Conference.
Springer. 2015, pp. 71–87.

[69] Olaf Hartig. “An Overview on Execution Strategies for Linked Data �e-
ries.” In: Datenbank-Spektrum 13.2 (2013), pp. 89–99.

[70] Jürgen Umbrich, Katja Hose, Marcel Karnstedt, Andreas Harth, and Axel
Polleres. “Comparing Data Summaries for Processing Live �eries over
Linked Data.” In: World Wide Web 14.5–6 (2011), pp. 495–544.

[71] Olaf Hartig, Christian Bizer, and Johann-Christoph Freytag. “Executing
sparql �eries over the Web of Linked Data.” In: The 8

th
International

Semantic Web Conference. Ed. by Abraham Bernstein, David R. Karger,
Tom Heath, Lee Feigenbaum, Diana Maynard, Enrico Mo�a, and Krish-
naprasad Thirunarayan. Springer, 2009, pp. 293–309.

[72] Chimezie Ogbuji. sparql 1.1 Graph Store http Protocol. Recommenda-
tion. World Wide Web Consortium, Mar. 21, 2013. url: h�p://www.w3.
org/TR/sparql11-h�p-rdf-update/.

[73] Steve Speicher, John Arwe, and Ashok Malhotra. Linked Data Platform

1.0. Recommendation. World Wide Web Consortium, Feb. 26, 2015. url:
h�p://www.w3.org/TR/ldp/.

[74] Dave Reynolds. Linked Data api. Ed. by Dave Reynolds. 2015. url: h�ps:
//code.google.com/p/linked-data-api (visited on 08/02/2015).

[75] Luca Ma�eis. Restpark: Minimal restful api for Retrieving rdf Triples.
2013. url: h�p://lma�eis.github.io/restpark/restpark.pdf.

33

http://www.bbc.co.uk/blogs/bbcinternet/2010/07/bbc_world_cup_2010_dynamic_sem.html
http://www.bbc.co.uk/blogs/bbcinternet/2010/07/bbc_world_cup_2010_dynamic_sem.html
http://www.websemanticsjournal.org/index.php/ps/article/view/164
http://www.w3.org/TR/sparql11-http-rdf-update/
http://www.w3.org/TR/sparql11-http-rdf-update/
http://www.w3.org/TR/ldp/
https://code.google.com/p/linked-data-api
https://code.google.com/p/linked-data-api
http://lmatteis.github.io/restpark/restpark.pdf

References

[76] Erik Wilde and Michael Hausenblas. “restful sparql? You Name It! –
Aligning sparql with rest and Resource Orientation.” In: The 4

th
Work-

shop on Emerging Web Services Technology. ACM, 2009, pp. 39–43. isbn:
978-1-60558-776-9.

34

I’d trade it all for a li�le more.

— Mr. Burns

3
Sustainable apis for Linked

Data publishing

No one size fits all, and in publishing Linked Data on the Web, this is no di�erent.

However, the existing Linked Data interfaces seem to suggest otherwise. In terms

of query execution, they cover two extremes in query expressiveness, forcing most

of the load on either the publisher or the consumer. This chapter therefore intro-

duces the Linked Data Fragments conceptual model to open up a wider spectrum of

possible interfaces. First, we sketch how current Linked Data publishing practices

restrict consuming applications, including the role of existing interfaces. Then, we

introduce important characteristics to assess Web apis, describe the Linked Data

Fragments model, and explain how it can be applied to explore new interfaces.

Linked Data’s main premise is that multiple datasets can be uniformly ac-
cessed and interpreted by both humans and machines, facilitating knowledge
integration and sharing. The uniform interface enables answering more com-
plex questions, possibly by combining multiple Linked Datasets. This poten-
tial has inspired organizations in various domains to adopt Linked Open Data
principles and to start implementing them at scale [1].

One of these domains is the Libraries, Archives, and Museums (lam) com-
munity, in which organizations acknowledged the benefits of Linked Data for
their inherent focus on knowledge sharing [2]. A recent survey [3] on Linked
Data adoption, indicates that the 96 lam participants identified 172 projects
or services being implemented. Of the 76 projects that were su�iciently de-
scribed in the survey, 67% published Linked Data. The size of some available
datasets in that area already ranges between tens of millions and billions of
triples [4]. Prominent examples include WorldCat.org (15 billion), Europeana
(4 billion), The European Library (2 billion), Library of Congress (500 million),
and the British National Library (100 million). E�orts are currently ongoing
in a wide range of domains [5], including electronic thesis and dissertations

35

3.1. Towards sustainable Linked Data querying

(etd) [6], image collections (e.g., the Ge�y museum1), and digital humanities
(e.g., DARIAH2, and cultural heritage (e.g., Pleiades3).

Another prominent domain is government. Here, the adoption of Linked Data
originates from a policy enhancement perspective, perceived as desirable follow-
up to Open Data (see Section 2.2). Shadbolt and O’Hara [7] state that, with
Linked Data “inference will no longer be an oligopoly of governments and large
corporations”, which results in that “informed decision-making and service
provisioning can be devolved to local governments, communities, the private
sector, charities, nongovernmental organizations, and even individuals”. Sev-
eral government data portals already publish a significant amount of rdf, such
as data.gov [8], data.gov.uk [9], and the EU Open Data Portal4.

Finally, other large Linked Data producers are the Life Sciences domain [10]
or community e�orts such as dbpedia [11] and Wikidata [12].

These and similar e�orts have lead to more Linked Datasets than ever before.
The lodstats project [13] indicated that, as of May 2016, there are over 150 bil-
lion Linked Data triples distributed over 9,960 datasets. However, there seems
to be a discrepancy between what exists and what can be queried on the pub-
lic Web. Of the 9,960 datasets, only 2,973 are error-free (i.e., dumps cannot be
parsed or downloaded; endpoints are down or fail to respond). Furthermore,
2,838 are dumps opposed to 151 sparql endpoints [14]. Despite that the ma-
jority of triples (98%) is served by the endpoints, this number is dominated
by a minority of datasets. For live queryable data, downloadable rdf data
dumps hardly qualify, as they imply high bandwidth usage and high client
costs and weakened control for publishers; a queryable interface using sparql
is preferred instead. Unfortunately, a recent rdf dump crawl collected over 38
billion triples5, indicates that, along with the 900,129 crawled Linked Data doc-
uments [1], many small datasets out there fail to be published in a queryable
way.

3.1 Towards sustainable Linked Data querying

In a Web of Linked Data, we cannot consider data dumps as the only access
mechanism appropriate. A�er all, human consumers of Web content do not
need to download an entire website before being able to read one or more
webpages—so why should machine clients have to?

To facilitate complex querying in an interoperable way, support for sparql
querying is recommended in a lod environment [15]. Therefore, hosting a
public endpoint is the most obvious choice [16]. Examples are Europeana [4]
serving metadata on 2.4 million objects, the British Museum6 publishing over

1. h�p://www.ge�y.edu/research/tools/vocabularies/lod
2. h�p://www.dariah.nl/
3. h�ps://pleiades.stoa.org
4. h�p://data.europa.eu/euodp/en/linked-data
5. h�p://lodlaundromat.org
6. h�p://collection.britishmuseum.org/sparql

36

data.gov
data.gov.uk
http://www.getty.edu/research/tools/vocabularies/lod
http://www.dariah.nl/
https://pleiades.stoa.org
http://data.europa.eu/euodp/en/linked-data
http://lodlaundromat.org
http://collection.britishmuseum.org/sparql

3.1. Towards sustainable Linked Data querying

750,0000 records, and, of course, dbpedia o�ering access to over 1 billion rdf
triples7.

Sadly, these organizations are rare and the amount of live queryable Linked
Datasets on the Web still appears to be low. With “live queryable”, we mean
Linked Data that can be queried without first downloading the entire dataset.
With “low availability”, we mean a two-sided problem:

• the majority of datasets is not published in queryable form [13]; and
• datasets that are published in a public sparql endpoint su�er from fre-

quent downtime (i.e., more than 5% of the time on average) [17].

3.1.1 The caveats of public sparql endpoints

In March 2015, the lodstats project [13] listed 10,059 dataset descriptions, out
of which only 464 referred to a sparql endpoint, and only 230 of these end-
points responded within 10 seconds with an http 200 OK status code to our
GET request for their base url. In 2016, only 151 error-free endpoints out of
9,960 datasets are listed, which is only 0.02% [14]. A 2013 survey revealed that
the majority of public sparql endpoints had an uptime of less than 95% [17]. In
other words, the average endpoint is down for more than 1.5 days each month.
According to measurements conducted in 2016, the number of endpoints has
tripled since 2011, but the availability rate has not improved; only 44.67% of
535 known endpoints have su�icient availability (> 95%) [18].

Some systems allow
publishers to expose only
a subset of all sparql
queries; e.g., by placing
restrictions on the allowed
query execution times.
However, even with such
restrictions, the availability
of public sparql endpoints
remains low, not to mention
the interoperability chaos it
creates [17].

These facts make developing and running live ap-
plications on top of public endpoints an unrealistic
endeavor in practice. This unavailability becomes
all the more problematic if we consider queries over
multiple, distributed datasets. As identified by a
developer of the popular Virtuoso triple store, a
practical use case for public sparql endpoints is to
provide such endpoints “for lookups and discovery;
sort of a dataset demo” [19]. If reliable access is
needed, a common practice is to download a data
dump and host a local endpoint. The scenario then
becomes that of before, inheriting the same draw-
backs.

For an explanation, we reprise the architectural properties of the Web from Sec-
tion 2.1. Exposing a query interface as expressive as sparql on the public Web
contrasts with most other Web apis, whose main purpose is to expose a less

powerful interface than the underlying database. Doing the opposite evidently
has a few important drawbacks.

In addition to the unpredictability of the total number of users and requests,
the processing cost per request can vary significantly because of the relatively

7. h�ps://dbpedia.org/sparql

37

https://dbpedia.org/sparql

3.1. Towards sustainable Linked Data querying

high expressive power of sparql (with di�erent fragments of sparql having a
di�erent computational complexity [20]). In most other Web apis, the cost
per request is bounded more strongly, because the interface is designed to
restrict the query capabilities. Regardless of the absolute value of this cost,
the high variations in the individual factors of the product make it di�icult
to correctly predict the necessary computational resources. Due to this un-
predictability, infrastructure costs for a public sparql endpoint are generally
high and the so�ware systems complex. Furthermore, the relatively high ex-
pressive power causes clients to perform very individualized requests. As a
consequence, caching such requests only allows for limited reuse, since other
clients needing di�erent requests is more likely.

3.1.2 Economical repercussions for publishers

While high availability is possible with a public sparql endpoint, it is poten-
tially expensive. Not all Linked Data publishers enjoy su�icient financial re-
sources and consider the maintenance cost of a reliable public sparql end-
point too high. But even the organizations that more or less do, like Euro-
peana, British Museum, or dbpedia, are not able to combine a high number of
users with an expected availability in “number of nines” [21, 22], counting the
number of leading nines in the availability percentage. In the lam community,
for instance, institutions consider selecting infrastructure required to surface
functional Linked Data (e.g. triplestores, sparql engines, indexing platforms)
a high threshold for their projects [23]. Easily deployable, comprehensive pub-
lishing solutions are not available. In general, Linked Data publishing costs are
higher than publishing those of well established traditional publishing solu-
tions (e.g., Integrated Library Systems and Digital Asset Management systems)
and as such present a proposition that is hardly feasible or sustainable [23].
Also, adoption of a Linked Data publication approach does not mean giving up
on the traditional approach. Indeed, the traditional systems typically provide a
wide variety of services beyond description and discovery. Hence, early Linked
Data adopters have no other option than to invest in both. All the more reason
infrastructure costs have to be as low as possible.

Rather than facing frequent unavailability, organizations prefer a more a�ord-
able, more reliable, but less expressive interface such as downloadable data

dumps or Linked Data documents. Indirectly, sparql querying is still possible
client-side, but is no longer live or fast. As described in Section 2.5, the com-
plete dataset needs first to be downloaded, and, then, indexed in a local rdf
database, or a lot of links need to be traversed first [24, 25]. Furthermore, their
consumption is only possible on su�iciently powerful machines—not on mo-
bile devices, whose popularity continues to increase—and requires a technical
background to set up.

If we want Semantic Web applications on top of live Linked Datasets to become
a reality, we must reconsider our options regarding Web-scale publication of
Linked Data. Surely, current interfaces cannot cover the wide variety of pos-

38

3.2. Preliminaries of the Web of Linked Data

sible use cases and their specific requirements. Between the two extremes of
data dumps and sparql endpoints lies a whole spectrum of possible Web in-
terfaces, which has remained largely unexplored. In particular, the practical
aspects of Linked Data querying have been understudied so far [17]. Focus
has been on query execution time, precision and recall, while the feasibility of
most of sparql and Linked Data query approaches in a public Web se�ing is
questionable. A Web context introduces many important characteristics, re-
strictions and opportunities, which are not mentioned or evaluated.

3.2 Preliminaries of the Web of Linked Data

Before we can have a closer inspection into interfaces, some general concepts
on the Web of Linked Data need to be introduced first. The Web of Linked Data
can be considered a collection of interconnected datasets, which are typically
modeled in the rdf data model. Formally, the (infinite) set of all rdf triples can
be considered T= (U∪B) ×U× (U∪B∪L), with as U, B, and L, as the disjoint,
infinite sets of uris, blank nodes, and literals, respectively.

On the Web, these triples appear in digestable datasets, which contain enti-
ties, concepts and relationships about a specific domain in machine-readable
semantics. We call such a dataset a Linked Dataset. Because blank nodes serve
li�le purpose in a Web context—they are not identifyable by uri, hence they
cannot serve as web resources (see Section 2.1.1)—and can be transformed into
uris via skolemization (i.e., by applying a template) [26], we assume for reasons
of simplicity that a Linked Dataset does not contain blank nodes.

Definition 2 (Linked Dataset). A Linked Dataset D ⊆ T∗ is a finite set of blank-
node-free rdf triples, where T∗= U × U × (U ∪ L).

The http uris in U are native to the Web and, thus, directly accessible through
http methods. For instance, one can perform a simple http request and ex-
pect a response. A successful response thereof is a Linked Data document dis-
cussed in Section 2.5.3. Retrieving a Linked Data document is thus a possible
way to obtain a fraction of a Linked Dataset over http. It is an example of a
restricted Linked Data interface that only allows access to fragments about that
particular uri. Other examples include data dumps, apis, or sparql endpoints.
These interfaces di�er in their expressiveness, namely all data, simple queries,
or complex queries.

Definition 3 (Linked Data interface). A Linked Data interface iD ∈ I provides
Web access to a Linked dataset D through interface-specific operations, with I

as the set of all Web api interfaces.

3.3 Characterizing Web apis

A Linked Data interface can be considered a Web Application Programming
Interface (api) to rdf data. In Section 2.1.2, we introduced the Web api as an

39

3.3. Characterizing Web apis

interface designed for automated, machine-based consumption of Web con-
tent. These come in two architectural styles: rpc and rest.

When used for publishing data—like in this context—a Web api generally has
two main objectives:

• to abstract any database-specific aspects, such as schema or query lan-
guage, from the client; and

• to restrict the type of queries clients can execute.

Interestingly, both are means for scalability, i.e., maximizing the number of
data consumers that can be sustained over a long period of time. Databases
are abstracted through the uniform http interface, which scales the interoper-
ability with clients. Restricting the types of queries protects the computational
resources necessary to process them. Furthermore, it increases the chance that
resources are reused through caching. Both balance the load on the server and,
thus, scale the cost or infrastructure.

It is vital to acknowledge these objectives. In fact, negligence in this regard
causes sparql endpoints to fail on the public Web (i.e., providing direct sparql
access). Thus, what impacts the characteristics of the api, is its design in terms
of (a) how the interface is defined, (b) what data it gives access to, and (c) with
what query granularity.

In general, we distinguish four main api characteristics: throughput, cost, cache

reuse, and bandwidth. These can apply to either servers in general or to clients
performing a specific task [27]. The responses of an api are assumed to be
complete and accurate. Table 3.1 describes the characteristics in more detail.

Given a task T a client needs to complete, two Web apis I and I ′ might exhibit
di�erent behavior. For instance, a client might be able to complete T using
a single large operation o with server-side cost c against I , whereas n smaller
operations o′1, … , o′n with costs c′1, … , c′n might be needed in the case of I ′. We
assume here that the cost c′i of each individual smaller operation o′i is less
than the cost of the large operation, c, but the total server cost for I ′ is ∑n

1 c′i ,
which may be greater than c. If, however, some of these n smaller operations
are cacheable, multiple clients executing tasks similar to T could reuse already
generated responses from a cache, lowering the total number of requests—and
thus the cost—for the server. Which of these factors dominates depends on the
number of clients, the cost per request, the cache reuse ratio, the similarity of
tasks, and other factors. In general, if costs increase to a certain level, a server
might become fully occupied and unable to fulfill new incoming requests, and
hence start a period of unavailability. It is thus important to examine how
choosing a specific interface influences the cost for the server, to ensure high
availability measurements.

Unsurprisingly, the choice in architectural style has an important impact on
these characteristics. For instance, rpc-based apis tend to involve more in-
dividualized and uncached requests, analogous to the one-on-one communi-
cation of so�ware apis and system apis on local machines. rest apis tend to

40

3.3. Characterizing Web apis

Server Client

Throughput

rate at which tasks can be

completed

The maximum num-
ber of requests it can
handle per time in-
terval (i.e., the in-
verse of the aver-
age request process-
ing time).

The total number
of api requests re-
quired to complete
the task. Di�erent
apis will require
a di�erent num-
ber of requests—
depending on the
request granularity
an api o�ers—to
fulfill tasks at the
same rate.

Cost

amount of resources a re-

quest consumes

The consumption of
cpu, ram, and i/o.

The time it takes to
process one or more
server responses
into the desired
result for a given
task.

Cache reuse

ratio of items that are re-

quested multiple times from

the cache, versus the number

of items it stores

Lowering cost by
subsequently serv-
ing responses, that
are reusable by
multiple clients,
from a cache.

Priorly retrieved
data that is reusable
in the current task
or future tasks.

Bandwidth

the total required size of

http communication

The number of
retrieved responses
× the average
response size (ig-
noring the relatively
small request size).
A portion of the
responses might
be cached, and
thus involve cache
bandwidth instead
of server bandwidth.

The number of
retrieved responses
× the average
response size (ig-
noring the relatively
small request size).

Table 3.1: General characteristics of Web apis

41

3.4. The Linked Data Fragments conceptual model

o�er reusable resources that are consumed by multiple clients. For instance,
a personalized webpage might still reuse images and other assets from a cache.
Many individual variations are however possible, depending on the granularity
of operations/resources in the api. Each variation burdens clients with restric-
tions that we need to take into account. Therefore, we introduce an important
final characteristic to assess the practical use of the api, namely the e�iciency

for clients:

e�iciency E�iciency for the client is the fraction of data retrieved from the
server during the execution of a task over the amount of data required
to execute that task.

3.4 The Linked Data Fragments conceptual model

As Web apis always have thrived in diversity, the spectrum of Linked Data
interfaces cannot be a story of two extremes. Interfaces o�er either powerful
query capabilities (e.g., sparql endpoints), or low server-side cpu cost (e.g.,
data dumps and Linked Data documents). With the task of query evaluation
currently happening either fully on the server side, or fully on the client side,
a sustainable Web of Linked Data that is queryable is not yet within reach.

Linked Data Fragments is a
specification [28]
maintained by the w3c
Hydra community group.

To be�er balance these and other trade-o�s in dif-
ferent ways, we designed the Linked Data Frag-
ments (ldf) [29] conceptual model, a uniform view
on all interfaces to rdf data. Thereby, it is easier
to identify where the gaps are in an api’s require-

ments, so they can be addressed. For instance, poor usability for the targeted
applications that is caused by insu�icient client performance, or low avail-
ability that is caused by excessive server cost. At the same time, it facilitates
designing new interface trade-o�s to hypothesize over, possibly leading to an
advancement of the state-of-the-art in Linked Data publishing.

Throughout this section, I adopted the formal definitions for ldf performed
by Hartig O. and Verborgh R. in [30] indicated by a gray backdrop like this
one. These formalisms are lay the groundwork for some of the definitions and
pseudo-code in Chapter 4, and are therefore indispensable.

3.4.1 Definition

Our model looks at what all Linked Data apis have in common. In one way
or another, they all publish a subset or fragment of a certain Linked Dataset.
Hence, we uniformly call the response to each request a Linked Data Fragment

(ldf).

Each fragment returns a set of triples that were somehow selected, which is
abstracted by the notion of a selector :

selector: the condition on which rdf triples are selected to be included in the
ldf.

42

3.4. The Linked Data Fragments conceptual model

The selector largely shapes the uris and thus how the Web api is partitioned in
a set of possible http resources. Therefore, it determines the specificity of the
individual queries that clients can ask the server. An ldf can be fine-grained,
like sparql (CONSTRUCT) queries, or course-grained, like a dereferenceable uri.
Evidently, the selector directly impacts how the workload is balanced between
client and server. Finding an optimal balance is important, as it increases the
granularity of engagement Linked Data publishers can take [31]. This ability
to optimize between api cost and e�iciency, installs a lower threshold for pub-
lishing queryable Linked Data, ultimately leading to more available and easily
consumable datasets.

Formally, the selector is considered a function on which triples can obtained
from the Linked Dataset. For instance, it can select all triples of the dataset
whose subject is the uri u or the triple-pa�ern-based selector functions defined
later in Section 4.1.

Definition 4 (selector function). A selector function is a function that maps
from 2T∗ to 2T∗.

In addition to the selector, three (possibly empty) parts compose an ldf, which
we describe as follows:

data: rdf triples obtained from the dataset;
metadata: rdf triples that describe the data triples;
controls: links and forms to retrieve other related ldfs of the same or other

datasets.

The data denotes the set of triples that were selected. The metadata can be any
extra information about the fragment that can be useful to the client. This can
be generic, like the name of the author, licensing information, or a description,
or task-specific, like statistics for query optimization or filter operations.

The controls are hypermedia controls [32, 33] in accordance with the rest ar-
chitectural style (discussed in Section 2.1.1), which ldf apis can add to their
representations. Formally, we consider those that do not alter resource state
and, given some (possibly empty) input, cause a client to request a specific url
when activated.

Definition 5 (control). A (resource-state-invariant) control is a function that
maps from some set to U.

Controls can have zero arguments, i.e., a constant function such as urls or
hyperlinks, or multiple arguments, i.e., forms that can be invoked with field
values. Particularly interesting are hypermedia controls that contain selectors
and thus can generate urls to new fragments. These allow clients to access
more data from the same dataset.

Finally, given the concepts and definitions above, ldfs of a certain Linked
Dataset D published by a Linked Data interface iD , are formally defined as
follows.

43

3.4. The Linked Data Fragments conceptual model

Definition 6 (Linked Data Fragment). LetD ⊆ T∗be a finite set of blank-node-
free rdf triples. A Linked Data Fragment (ldf) of D is a tuple f = ⟨u, s, Γ, M, C⟩
with the following five elements:

• u is a uri (which is the “authoritative” source from which f can be re-
trieved);

• s is a selector function;
• Γ is a set of (blank-node-free) rdf triples that is the result of applying the

selector function s to D, i.e., Γ = s(D);
• M is a finite set of (additional) rdf triples, including triples that represent

metadata for f ;
• C is a finite set of controls.

By specifying the values for u, s, Γ, M , and C , any rdf-based data on the Web
can be described as an ldf (we will apply this to define well-known Linked Data
interfaces later on). However, note that this formalization (Definition 6) should
be distiguished from its representation in a response to clients (see Section 4.1
and Section 4.4 for examples). For instance, even though a selector function is
a component of their definitions, this function is not necessarily represented
inside of the response.

3.4.2 Pages and collections

In some cases, an ldf’s data can be quite large (i.e., the set Γ contains many
elements), e.g., a data dump may contain millions of triples. To avoid forcing
clients to download such a large fragment completely, a server that hosts ldfs

may apply paging. If so, overly large responses are partitioned in to multiple
pages. This enables clients to inspect the data only partially, or consume the
metadata of a fragment without having to download its actual data. Formally,
such a page is captured as follows.

Definition 7 (ldf page).
Let f = ⟨u, s, Γ, M, C⟩ be an ldf of some finite set of blank-node-free rdf triples
D ⊆ T∗. A page partitioning of f is a finite, nonempty set Φ whose elements are
called pages of f and have the following properties:

1. Each page � ∈ Φ is a tuple � = ⟨u′, uf , sf , Γ′, M′, C′⟩ with the following six
elements: (i) u′ is a uri from which page � can be retrieved, where u′ ≠ u,
(ii) uf = u, (iii) sf = s, (iv) Γ′ ⊆ Γ, (v) M′ ⊇ M , and (vi) C′ ⊇ C .

2. For every pair of two distinct pages �i = ⟨u′i , uf , sf , Γ′i , M′
i , C′i ⟩ ∈ Φ and

�j = ⟨u′j , uf , sf , Γ′j , M′
j , C′j ⟩ ∈ Φ it holds that u′i ≠ u′j and Γ′i ∩ Γ′j = ∅.

3. Γ = ⋃⟨u′,uf ,sf ,Γ′,M′,C′⟩∈Φ Γ′.
4. There exists a strict total order ≺ on Φ such that, for every pair of two

pages �i = ⟨u′i , uf , sf , Γ′i , M′
i , C′i ⟩ ∈ Φ and �j = ⟨u′j , uf , sf , Γ′j , M′

j , C′j ⟩ ∈ Φ
with �j being the direct successor of �i (i.e., �i ≺ �j and
¬∃�k ∈ Φ ∶ �i ≺ �k ≺ �j), there exists a control c ∈ C′i with u′j ∈ img(c).

Each page should contain all metadata and controls of the corresponding frag-
ment, despite the presence of the control c for navigating from one page to the

44

3.4. The Linked Data Fragments conceptual model

more generic requests

lower client throughput

higher server throughput

higher client cost

lower server cost

higher cache reuse

higher bandwidth

more specific requests

lower server throughput

higher client throughput

lower client cost

higher server cost

lower cache reuse

lower bandwidth

data

dump

Linked Data

document

sparql

result

(Chapter 4)

triple pa�ern

fragments

various types of

Linked Data Fragments

Figure 3.1: All Web apis to rdf triples o�er Linked Data Fragments of a dataset. These
fragments di�er in the specificity of the data they contain, and thus a�ect
the cost to create them, the bandwidth to transfer them, their reusability
through caching, and the overall performance of client and server.

next. If a server provides paging, it should avoid sending overly large chunks
by redirecting clients from a fragment to the first page of the fragment. Also,
similar to ldfs, the formalization of ldf pages (Definition 7) is independent
from the representation in the response.

In many cases, a Web server that provides access to a Linked DatasetD exposes
an interface iD to retrieve multiple, di�erent fragments of the dataset. As a last
general concept, we define such a collection of ldfs.

Definition 8 (ldf collection). Let D ⊆ T∗ be a finite set of blank-node-free
rdf triples, and let c be a hypermedia control. A c-specific ldf collection over
D is a set F of ldfs such that, for each ldf f ∈ F with f = ⟨u, s, Γ, M, C⟩, the
following three properties hold:

1. f is an ldf of D;
2. s ∈ dom(c);
3. c(s) = u.

3.4.3 Application to existing interfaces

To put this framework into practice, we apply it to three existing interfaces:
sparql endpoints, data dumps, and Linked Data documents. As demonstrated
in Figure 3.1, they di�er greatly in the granularity of the selector and, thus, the
trade-o� they impose according to the characteristics mentioned in Section 3.3.
Table 3.2 summarizes these per interface.

A data dump as an ldf

A data dump of a dataset is a single fragment, hence, the selector is as follows:

selector: the identifier of the dump (e.g., the filename or url).

45

3.4. The Linked Data Fragments conceptual model

Throughput Cost

Cache

reuse

Bandwidth

S
e

r
v

e
r Data dumps High Low Very high High

Linked Data

documents

High Low Very high Medium

sparql

endpoints

Low High Low Low

C
l
i
e

n
t Data dumps Low High High High

Linked Data

documents

Low Medium High High

sparql

endpoints

High Low Low Low

Table 3.2: Data dumps, Linked Data documents, and sparql endpoints each impose a
di�erent trade-o� mix of Web api characteristics

When requesting this identifier, the response is a fragment with the following
components:

data: all triples of the dataset;
metadata: data about the dataset or the dump, such as version, author, or

licensing details (the metadata set may be empty for some data dumps);
controls: empty, as the data dump contains the entire graph, so no controls

to obtain other fragments are necessary.

rdf documents that contain
http uris, contain
hypermedia, including
sparql result sets or rdf
data dumps. Thus, we only
explicitly mention them for
Linked Data documents.

While some data dumps are divided across mul-
tiple archives (e.g., dbpedia 20148), we can regard
such archives as dumps of sub-graphs of a larger
dataset. Hence, our conceptual framework still ap-
plies. However, their controls remain empty, as
there is no hypermedia to navigate from one sub-
graph to another.

A sparql endpoint as ldfs

As our conceptual framework applies to interfaces that return triples from
a dataset, we focus on only describing the CONSTRUCT query. Other clauses
SELECT (returns solution mappings), ASK (returns a Boolean), DESCRIBE (is im-
plementation-dependent [34]) cannot guarantee the correct subset of
rdf triples. Note that creating a triple-based description of any other result
form, such as solution mappings from SELECT, are possible. However, being
conceptually similar, our focus on CONSTRUCT is no major limitation.

selector: defined based on the CONSTRUCT query.

8. h�p://wiki.dbpedia.org/Downloads2014

46

http://wiki.dbpedia.org/Downloads2014

3.5. Exploring new interface trade-o�s

As the use of CONSTRUCT
queries entails, a selector
may also return triples that
are not contained in the
dataset.

The response to a sparql CONSTRUCT query can be
considered an ldf with the following properties:

data: all triples that are contained in the result of
the query;

metadata: the metadata set is empty, as none are
mentioned in the sparql specification;

controls: o�en, no explicit hypermedia controls are
provided in the response because it is assumed
that the client using the interface can extract
the endpoint url (e.g., /sparql) from the re-
quest url (e.g., /sparql?query=. . .). This end-
point url is also the control of the ldf collec-
tion exposed by a sparql endpoint.

A Linked Data documents interface as ldfs

In accordance with Definition 1, a Linked Data document for a specific entity
with uri u in a Linked Data documents interface has the following selector:

selector: implementation-specific which matches all triples that have u as
subject or object.

Each document can therefore be considered an ldf with the following charac-
teristics:

data: rdf triples that are related to the entity, e.g., having u as subject or
object;

metadata may describe the provenance of the Linked Data document [35] or
other types of metadata;

controls http uris in the data triples act as dereferenceable hyperlinks; both
link to entities belonging to the same dataset as u are expected, as, in ac-
cordance with the Linked Data principles, links leading to other datasets.

Note that di�erent fragments may have di�erent hypermedia controls for this
type of interface (which is not the case for data dumps or sparql endpoints).

3.5 Exploring new interface trade-o�s

The Linked Data Fragments framework reveals a complete spectrum between
Linked Data documents and the sparql protocol, in which the state-of-the-art
of Linked Data publishing can be advanced. This enables exploration in the
following three dimensions:

• selector, allowing more or less complex questions for the server;
• controls, modifying the response by adding or replacing navigational

information for clients;
• metadata, modifying the response by adding or replacing any other in-

formation clients can use.

47

3.5. Exploring new interface trade-o�s

This doctoral work preserves focus by only studying variations in the metadata

and controls dimension. As a selector, we use a triple pa�ern, which remains
constant. The resulting Triple Pa�ern Fragments interface is introduced in the
next chapter. In the remainder of this chapter, we first discuss the general
approach for defining a new interface using features and how these can be
evaluated.

3.5.1 Defining reusable interface features

Each variation in a certain dimension is materialized as a new interface feature,
which is defined by Verborgh and Dumontier [36] as “a part of an interface that
identifies, describes, and a�ords a certain kind of interaction across Web apis”.
Common examples are full-text search, autocompletion, or file uploads. The
goal is to move towards provider-independent, abstract interfaces, instead of
the current practice of building many provider-specific interfaces.

Interface features enable reusable interface parts, both for the user and the api
implementer. Clients can target one or more features instead of a specific api.
Through the feature’s interface, a client can determine how to be semantically
compatible and how to invoke it. An api implementer can implement features
as they see fit, but reuse a feature’s interface, and thus possibly an existing
implementation. The use of these features achieves a more extensive “loose-
coupling” between client and server, but also enables be�er quantification to
compare interfaces.

The experiments in this thesis test the introduced features in a practical context
of client-side sparql query execution on the public Web. The focus on query
execution ensures a client task, necessary to assess a Web api’s performance,
as mentioned in Section 3.3. The public Web context ensures the practical
relevance and external validity of this work.

3.5.2 Evaluating interface features in public Web conditions

When evaluating new interface features in public Web conditions, three con-
siderations exist. First, analogously to the Web itself, ldf interfaces should ex-
ist in a distributed, scalable manner in order to succeed. Generating additional
metadata or controls introduces overhead on the server, which influences the
ability to scale towards multiple clients. Second, the communication between
client and server uses the http protocol. Modeling, serialization, and com-
pression determine the extra load of the overall network tra�ic. Third, with
query execution on the client, novel approaches need to apply this metadata
intelligently to increase e�iciency.

Figure 3.2 illustrates a complete client-server setup and the five sequential lev-
els impacted by interface features. To gain a clear picture for a particular fea-
ture, each level needs to be considered.

48

3.5. Exploring new interface trade-o�s

Client HTTP Server

(5) Consuming (4) Shipping (1) Selecting

(3
)G

en
er

at
in

g

(2
)M

od
el

in
g

�ery
Execution

rdf
database

sparql
query

Results

Figure 3.2: Complete setup with five sequential levels that are impacted by interface
features and therefore subject for investigation.

selecting: a feature makes a good candidate if it is usable for both the context
of rdf and the context of the Web, e.g., they are resistant to the delays
and work well with the protocols and serializations.

generating: the necessary feature can be extracted or generated with di�er-
ent methods. We identify those who minimize server overhead, e.g., the
average cpu usage, which directly impacts the cost of hosting such in-
terface reliably.

modeling: we design how features are communicated to the client. To ensure
the scalability of our approach in the distributed Web environment, we
strive for self-descriptive interfaces. An rdf description on how the client
should interpret the feature is included in the server’s response, ensuring
complete decoupling between client and server.

shipping: shipping (meta)data from server to client on the Web is subject
to its characteristics: the http protocol, the available network band-
width, and the resource-oriented design. Therefore, we study techniques
that improve the e�ects of di�erent features on caching and response

size. The former determines how a feature should be embedded in the
request-response cycle. For example, considering a single request, is the
metadata supplied in-band or as a separate resource? The la�er dictates
download speeds, thus requires optimal serialization or compression.

consuming: client-side query execution can be improved by using additional
metadata or controls, provided by the interface. For instance, the num-
ber of required http requests to solve a query can be lowered; or the
recall of query results can be increased.

49

3.6. Conclusion

3.6 Conclusion

While Linked Data production may be on the rise in several domains, the
availability of live queryable datasets on the Web remains low. The majority
of datasets is not published in queryable form—they have to be downloaded
first—and the ones that are published in a public sparql endpoint su�er from
frequent downtime. Both issues are a consequence of the high costs to host
a public sparql endpoint with high availability due to the language’s expres-
siveness. Therefore, under-resourced publishers opt for inexpressive, but more
a�ordable interfaces.

The Linked Data Fragments (ldf) [29] conceptual model allows us to analyze
these existing Web interfaces to rdf in a uniform way. It helps determining the
trade-o� between client and server an interface o�ers in context of the Web
api characteristics throughput, cost, cache reuse, and bandwidth. Based on that
knowledge, we can identify the requirements, such as usability and availability,
that should be addressed.

ldf can be used to explore new interfaces o�ering di�erent combinations of
characteristics. In the end, such advancements can lead to more sustainable
live queryable Linked Data. Of crucial importance is the use of interface fea-

tures that are reusable and comparable across apis. They establish a loose cou-
pling between client and server indispensable for scale and dealing with inter-
face heterogeneity.

50

References

This chapter was partly based on the publications:

Miel Vander Sande. “Studying Metadata for be�er client-server trade-o�s in
Linked Data publishing.” In: The Doctoral Consortium at the 15

th
International

Semantic Web Conference (ISWC 2016). Vol. 1733. CEUR, 2016, pp. 471–487

Ruben Verborgh, Miel Vander Sande, Olaf Hartig, Joachim Van Herwegen,
Laurens De Vocht, Ben De Meester, Gerald Haesendonck, and Pieter Colpaert.
“Triple Pa�ern Fragments: a Low-cost Knowledge Graph Interface for the Web.”
In: Journal of Web Semantics 37–38 (Mar. 2016), pp. 184–206. issn: 1570-8268.
doi: 10 .1016/ j .websem.2016 .03 .003. url: h�p: / / linkeddatafragments .org/
publications/jws2016.pdf

Miel Vander Sande, Ruben Verborgh, Patrick Hochstenbach, and Herbert Van
de Sompel. “Towards sustainable publishing and querying of distributed Linked
Data archives.” In: Journal of Documentation (2017)

References

[1] Max Schmachtenberg, Christian Bizer, and Heiko Paulheim. “Adoption
of the Linked Data Best Practices in Di�erent Topical Domains.” English.
In: International Semantic Web Conference. 2014, pp. 245–260. isbn: 978-
3-319-11963-2. doi: 10.1007/978-3-319-11964-9_16.

[2] Seth van Hooland and Ruben Verborgh. Linked Data for Libraries, Archives

and Museums. Facet Publishing, June 2014. isbn: 978-1856049641.

[3] Karen Smith-Yoshimura. Linked Data Survey results 1 – Who’s doing it.
2014. url: h�p://hangingtogether.org/?p=4137 (visited on 09/04/2014).

[4] Antoine Isaac and Bernhard Haslhofer. “Europeana Linked Open Data
– data.europeana.eu.” In: Semantic Web 4.3 (2013), pp. 291–297.

[5] Erik T Mitchell. “The Current State of Linked Data in Libraries, Archives,
and Museums.” In: Library Technology Reports 52.1 (2015), pp. 5–13.

[6] Lucas Mak, Devin Higgins, Aaron Collie, and Shawn Nicholson. “En-
abling and integrating ETD repositories through linked data.” In: Library

Management 35.4/5 (2014), pp. 284–292. doi: 10.1108/LM-08-2013-0075.
eprint: h�p://dx.doi.org/10.1108/LM-08-2013-0075.

[7] Nigel Shadbolt and Kieron O’Hara. “Linked data in government.” In: ieee
Internet Computing 17.4 (2013), pp. 72–77.

[8] James Hendler, Jeanne Holm, Chris Musialek, and George Thomas. “US
government Linked Open Data: semantic.data.gov.” In: ieee Intelligent

Systems 27.3 (2012), pp. 25–31.

[9] Nigel Shadbolt, Kieron OH́ara, Tim Berners-Lee, Nicholas Gibbins, Hugh
Glaser, Wendy Hall, et al. “Linked open government data: Lessons from
data.gov.uk.” In: ieee Intelligent Systems 27.3 (2012), pp. 16–24.

51

https://doi.org/10.1016/j.websem.2016.03.003
http://linkeddatafragments.org/publications/jws2016.pdf
http://linkeddatafragments.org/publications/jws2016.pdf
https://doi.org/10.1007/978-3-319-11964-9_16
http://hangingtogether.org/?p=4137
https://doi.org/10.1108/LM-08-2013-0075
http://dx.doi.org/10.1108/LM-08-2013-0075

References

[10] Li Ding, Timothy Lebo, John S Erickson, Dominic DiFranzo, Gregory
Todd Williams, Xian Li, James Michaelis, Alvaro Graves, Jin Guang Zheng,
Zhenning Shangguan, et al. “TWC LOGD: A portal for linked open gov-
ernment data ecosystems.” In: Web Semantics: Science, Services and Agents

on the World Wide Web 9.3 (2011), pp. 325–333.

[11] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian
Becker, Richard Cyganiak, and Sebastian Hellmann. “dbpedia—A crys-
tallization point for the Web of Data.” In: Web Semantics: Science, Ser-

vices and Agents on the World Wide Web 7.3 (2009), pp. 154–165. url:
h�p://www.websemanticsjournal.org/index.php/ps/article/view/164.

[12] Fredo Erxleben, Michael Günther, Markus Krötzsch, Julian Mendez, and
Denny Vrandečić. “Introducing Wikidata to the linked data web.” In:
International Semantic Web Conference. Springer, 2014, pp. 50–65.

[13] Ivan Ermilov, Michael Martin, Jens Lehmann, and Sören Auer. “Linked
Open Data Statistics: Collection and Exploitation.” In: Knowledge Engi-

neering and the Semantic Web. Ed. by Pavel Klinov and Dmitry Mouromt-
sev. Vol. 394. Communications in Computer and Information Science.
Springer, 2013, pp. 242–249. isbn: 978-3-642-41359-9. doi: 10.1007/978-3-
642-41360-5_19.

[14] LODStats. AKSW. 2016. url: h�p://stats.lod2.eu/ (visited on 05/01/2016).

[15] Erik T Mitchell. Library linked data: Research and adoption. American
Library Association, 2013.

[16] Julia Marden, Carolyn Li-Madeo, Noreen Whysel, and Je�rey Edelstein.
“Linked Open Data for Cultural Heritage: Evolution of an Information
Technology.” In: The 31

st
ACM International Conference on Design of Com-

munication. SIGDOC ’13. Greenville, North Carolina, USA: ACM, 2013,
pp. 107–112. isbn: 978-1-4503-2131-0. doi: 10.1145/2507065.2507103.

[17] Carlos Buil-Aranda, Aidan Hogan, Jürgen Umbrich, and Pierre-Yves Van-
denbussche. “sparqlWeb-�erying Infrastructure: Ready for Action?”
In: The 12

th
International Semantic Web Conference. Ed. by Harith Alani,

Lalana Kagal, Achille Fokoue, Paul Groth, Chris Biemann, Josiane Xavier
Parreira, Lora Aroyo, Natasha Noy, Chris Welty, and Krzysztof Janowicz.
Nov. 2013.

[18] Pierre-Yves Vandenbussche, Jürgen Umbrich, Luca Ma�eis, Aidan Hogan,
and Carlos Buil-Aranda. “SPARQLES: Monitoring public sparql end-
points.” In: Semantic Web Preprint (2016), pp. 1–17.

[19] Orri Erling. SEMANTiCS 2014 (part 3 of 3): Conversations. Aug. 2014. url:
h�ps://www.openlinksw.com/dataspace/doc/oerling/weblog/Orri%5C%
20Erling%5C%27s%5C%20Blog/1815.

[20] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. “Semantics and
Complexity of sparql.” In: ACM Transactions on Database Systems 34.3
(Sept. 2009), 16:1–16:45. issn: 0362-5915.

52

http://www.websemanticsjournal.org/index.php/ps/article/view/164
https://doi.org/10.1007/978-3-642-41360-5_19
https://doi.org/10.1007/978-3-642-41360-5_19
http://stats.lod2.eu/
https://doi.org/10.1145/2507065.2507103
https://www.openlinksw.com/dataspace/doc/oerling/weblog/Orri%5C%20Erling%5C%27s%5C%20Blog/1815
https://www.openlinksw.com/dataspace/doc/oerling/weblog/Orri%5C%20Erling%5C%27s%5C%20Blog/1815

References

[21] Manish Marwah et al. “�antifying the Sustainability Impact of Data
Center Availability.” In: SIGMETRICS Performance Evaluation Review 37.4
(Mar. 2010), pp. 64–68. issn: 0163-5999. doi: 10.1145/1773394.1773405.

[22] James E. J. Bo�omley. “Implementing Clusters for High Availability.” In:
The Annual Conference on USENIX Annual Technical Conference. ATEC
’04. Boston, MA: USENIX Association, 2004, pp. 44–44. url: h�p: / /dl .
acm.org/citation.cfm?id=1247415.1247459.

[23] T Erik et al. “The Evolving Direction of LD Research and Practice.” In:
Library Technology Reports 52.1 (2015), pp. 29–33.

[24] Jürgen Umbrich, Katja Hose, Marcel Karnstedt, Andreas Harth, and Axel
Polleres. “Comparing Data Summaries for Processing Live �eries over
Linked Data.” In: World Wide Web 14.5–6 (2011), pp. 495–544.

[25] Olaf Hartig, Christian Bizer, and Johann-Christoph Freytag. “Executing
sparql �eries over the Web of Linked Data.” In: The 8

th
International

Semantic Web Conference. Ed. by Abraham Bernstein, David R. Karger,
Tom Heath, Lee Feigenbaum, Diana Maynard, Enrico Mo�a, and Krish-
naprasad Thirunarayan. Springer, 2009, pp. 293–309.

[26] Richard Cyganiak, David Wood, and Markus Lanthaler. rdf 1.1 Concepts

and Abstract Syntax. Recommendation. World Wide Web Consortium,
Feb. 25, 2014. url: h�p://www.w3.org/TR/rdf11-concepts/.

[27] Ruben Verborgh, Erik Mannens, and Rik Van de Walle. “Bo�om-up Web
apis with self-descriptive responses.” In: The 6

th
International Workshop

on Modeling Social Media. Feb. 2015.

[28] Ruben Verborgh. Linked Data Fragments. Uno�icial Dra�. Hydra w3c
Community Group, June 5, 2016. url: h�p://www.hydra-cg.com/spec/
latest/linked-data-fragments/.

[29] Ruben Verborgh, Miel Vander Sande, Pieter Colpaert, Sam Coppens, Erik
Mannens, and Rik Van de Walle. “Web-scale querying through linked
data fragments.” In: 7

th
Workshop on Linked Data on the Web, Proceed-

ings. Seoul, Korea, 2014, p. 10.

[30] Ruben Verborgh, Olaf Hartig, Ben De Meester, Gerald Haesendonck,
Laurens De Vocht, Miel Vander Sande, Richard Cyganiak, Pieter Col-
paert, Erik Mannens, and Rik Van de Walle. “�erying Datasets on the
Web with High Availability.” In: The 13

th
International Semantic Web Con-

ference. Ed. by Peter Mika, Tania Tudorache, Abraham Bernstein, Chris
Welty, Craig Knoblock, Denny Vrandečić, Paul Groth, Natasha Noy, Krzys-
ztof Janowicz, and Carole Goble. Vol. 8796. Lecture Notes in Computer
Science. Springer, Oct. 2014, pp. 180–196.

53

https://doi.org/10.1145/1773394.1773405
http://dl.acm.org/citation.cfm?id=1247415.1247459
http://dl.acm.org/citation.cfm?id=1247415.1247459
http://www.w3.org/TR/rdf11-concepts/
http://www.hydra-cg.com/spec/latest/linked-data-fragments/
http://www.hydra-cg.com/spec/latest/linked-data-fragments/

References

[31] Laurens Rietveld, Ruben Verborgh, Wouter Beek, Miel Vander Sande,
and Stefan Schlobach. “Linked Data-as-a-Service: The Semantic Web
Redeployed.” In: European Semantic Web Conference. Ed. by Fabien Gan-
don, Marta Sabou, Harald Sack, Claudia d’Amato, Philippe Cudré-Mau-
roux, and Antoine Zimmermann. Springer International Publishing, June
2015, pp. 471–487.

[32] Mike Amundsen. “Hypermedia Types.” In: rest: From Research to Prac-

tice. Ed. by Erik Wilde and Cesare Pautasso. Springer, 2011, pp. 93–116.

[33] Roy Thomas Fielding. rest apis must be hypertext-driven. Oct. 2008. url:
h�p:/ / roy.gbiv.com/untangled/2008/rest- apis- must- be- hypertext-
driven.

[34] Steve Harris and Andy Seaborne. sparql 1.1 �ery Language. Recom-
mendation. World Wide Web Consortium, Mar. 21, 2013. url: h�p : / /
www.w3.org/TR/sparql11-query/.

[35] Olaf Hartig and Jun Zhao. “Publishing and Consuming Provenance Meta-
data on the Web of Linked Data.” In: The 3

rd
International Provenance and

Annotation Workshop. Ed. by Deborah L. McGuinness, James R. Michaelis,
and Luc Moreau. June 2010.

[36] Ruben Verborgh and Michel Dumontier. “A Web api ecosystem through
feature-based reuse.” In: arXiv preprint arXiv:1609.07108 (2016).

54

http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/

When will I learn? The answer
to life’s problems aren’t at the
bo�om of a bo�le, they’re on
TV!

— Homer J. Simpson

4
�ery Execution

If we want to make sense of Linked Data, we need more sustainable Linked Data

interfaces to query it. In this case, sustainability desires solutions with minimal

server complexity (minimizing the cost for data publishers) while still enabling

live querying (maximizing the utility for Linked Data applications). This chapter

therefore addresses Research �estion 1 and Research �estion 2. To this end, we

introduce the Triple Pa�ern Fragments interface, a novel trade-o� interface which

restricts queries to triple pa�erns and includes cardinality metadata. We demon-

strate client-side query processing using this interface and investigate whether it

can preserve a low server cost (Hypothesis 1). Accordingly, we evaluate adding

approximate membership metadata to the interface in context of the public Web

and its characteristics (Hypothesis 2).

Intelligent applications consume a Web of Linked Data by querying it. Un-
fortunately, due to the availability issues of sparql endpoints [1] and a lack
of e�icient alternatives [2], this is not yet possible in a sustainable way. This
inconvenient truth prevents Linked Data applications to o�er a reliable ser-
vice to users, which reveals an urgency for exploring interfaces that o�er new
trade-o�s.

The Linked Data Fragments (ldf) framework not only enables us to analyze
existing Web apis to rdf in a uniform way, it also allows us to define new apis
with a di�erent combination of characteristics. Hence, we envisioned an in-
terface that facilitates sparql query execution, but deals with unavailability
issues by (a) limiting the cost for the server, and (b) ensure a high reuse of
cached responses. These are intentionally aspects of scalability retrieved from
the Web’s architecture and rest constraints discussed in Section 2.1.1. Both
aspects can be achieved by using a resource partitioning more granular than
Linked Data documents, but far less expressive than sparql endpoints. Ac-
cordingly, we developed Triple Pa�ern Fragments (tpf), a low-cost interface to
rdf triples.

55

4.1. Triple Pa�ern Fragments: a new interface trade-o�

With a granularity coarser than a sparql endpoint, executing a sparql query
over a tpf interface is still possible, but the query needs to be split client-side
into several sequential requests. To optimize this process—and to reduce the
number of requests needed per client—the interface also provides metadata

about its rdf dataset.

Using statistical and other metadata to optimize the query process has been
an extensive research topic in databases for decades [3], and has been applied
to sparql over rdf data. However, most e�orts so far assume a centralized or
local database environment (e.g., rdf triple stores). In a Web environment, the
request-response paradigm, public network delay (which should stay below
the common http request timeout of ±30s), and preserving the uniform inter-
face, quickly restrict the applicability of many metadata types. For instance,
a histogram [4] is an e�icient metadata type for selectivity estimation, but is
cumbersome to serialize and produces a sizable http response.

This chapter evaluates cardinality metadata—inherent to tpf—and approximate

membership metadata in a decentralized public Web se�ing. These metadata
types were selected because they are easily calculated or estimated, easily
shipped (because of their compactness), and easily semantically described. The
choice for amf also resulted from the query algorithm, as we will explain in
Section 4.4.

Finally, to avoid the inflation of custom apis for which dedicated clients are
needed [5], we supply tpf with hypermedia controls. Such controls allow
clients to identify whether they are talking to a tpf interface or some other in-
terface, and how to access tpfs through it. A hypermedia-aware client should
be able to access the api by using hypermedia controls provided in the re-
sponses [6].

4.1 Triple Pa�ern Fragments: a new interface trade-o�

To properly position Triple Pa�ern Fragments among existing interfaces, we
define it by applying the ldf model and discuss its response format.

Throughout this chapter, I adopted the formal definitions for tpf performed
by Hartig O. and Verborgh R. in [7], which build on the formalisms from Sec-
tion 3.4 and are indicated by this gray backdrop. Again, they are included be-
cause they are essential for understanding some of the definitions and pseudo-
code in Chapters 5 to 7.

4.1.1 Definition

As the name suggest, this interface provides triple-pa�ern-based access to rdf
datasets. This basic element of sparql was briefly introduced in Section 2.3.2
and can be wri�en formally in the following fashion.

56

4.1. Triple Pa�ern Fragments: a new interface trade-o�

Given that V is the infinite set of all variables that is disjoint from the sets
U (the set of all uris), B (all blank nodes), and L (all literals), a triple pa�ern is
any tuple tp ∈ (U ∪ L ∪ V) × (U ∪ V) × (U ∪ L ∪ V).

Proceeding with an ldf-compliant definition, the selector of the tpf interface
is as follows.

selector: a triple pa�ern; a triple is returned when its subject, predicate, or
object match the value or variable of the corresponding term.

This pinpoints an interesting compromise along the axis in Figure 3.1, because
(a) triple pa�erns are the most basic building blocks of sparql queries [8],
and (b) low-cost indexes exist that e�iciently return triples that match a given
triple pa�ern [9]. The former facilitates client-side querying, as each frag-
ment directly answers a part of the query, while the la�er helps maximizing
server-side availability through minimal cpu and memory cost. Formally, tpf
introduces a specific type of selector function.

Definition 9 (triple-pa�ern-based selector function). Let tp be a triple pat-
tern. The triple-pa�ern-based selector function for tp, denoted by stp , is a se-
lector function that, for every set D ∈ 2T∗, is defined by stp(D) = {t ∈ D ∣
t is a matching triple for tp}.

The Restpark api [10] was
designed around the same
time as tpf. Coincidentally,
they are very much
alike—Restpark only defines
the triple-pa�ern-based
selector, but shares the
same motivation: some
innovation happens
through simplification.

A tpf interface provides access to Linked Data Frag-
ments with the following properties:

data: all triples of a dataset that match a given
triple pa�ern;

metadata: an estimate of the number of triples
that match the given triple pa�ern, i.e., the
cardinality ;

controls: a hypermedia form that allows clients to
retrieve any tpf of the same dataset.

As mentioned in Section 3.4.2, a tpf server should
divide each fragment into reasonably sized pages to prevent clients acciden-
tally downloading very large chunks. For instance, a response for a triple pat-
tern with three unbound variables would contain all triples of the dataset if
it is not paged. This explains the presence of the cardinality metadata: like
in any paged interface on the Web, it is beneficial to know how many items
there are in total since each page only shows a part of the whole. The default
page size of tpf was fixed at 100 data triples; its e�ect is discussed later on
in Section 4.3.3.

Note that the tpf interface requires the presence of a cardinality estimation,
but does not define how or where this estimation is done. Typically, this re-
sponsibility is le� to the datasource—the database or index that stores the
Linked Datasets to which the tpf interface provides access. This is not an
unrealistic demand; cardinality estimation is a common feature in databases,
because it can be done cheap and e�iciently (exact counting is more di�icult).

57

4.1. Triple Pa�ern Fragments: a new interface trade-o�

A good example thereof is hdt (see Section 2.4.2), which is why it is currently
the recommended datasource for tpf interfaces.

A server could wield a
variable page size, e.g., an
approximated optimum
based on run-time
observations (possibly with
machine learning).
However, this impacts
resource partitioning
significantly, which limits
caching. More interesting
could be fixed page sizes
per triple pa�ern based on
its estimated
selectivity—less selective
means bigger pages.

The hypermedia controls or forms consist of
three fields (subject, predicate, object), such
that the server o�ers a finite number of re-
sources that correspond to triple-pa�ern queries.
For instance, the result of a query for (?s, ?p,
foaf:Person) on a given dataset could be available
as the resource h�p://fragments.dbpedia.org/en?
object=h�p%3A%2F%2Fxmlns.com%2Ffoaf%2F0.1%
2FPerson. A hypermedia-aware client accesses the
api by using hypermedia controls provided in the
responses [6]. The structure is deliberately not de-
fined in any specification, as we define an interface
feature (Section 3.5), not the api itself.

We conclude with the combined—they are closely
connected—formal definition of Triple Pa�ern Frag-
ment and a Triple Pa�ern Fragment collection.

Definition 10 (Triple Pa�ern Fragment). Given a control c, a c-specific ldf
collection F is called a Triple Pa�ern Fragment collection if, for every possible
triple pa�ern tp, there exists one ldf ⟨u, s, Γ, M, C⟩ ∈ F , referred to as a Triple

Pa�ern Fragment, that has the following properties:

1. s is the triple-pa�ern-based selector function for tp.
2. There exists a triple ⟨u, void:triples, cnt⟩ ∈ M with cnt representing

an estimate of the cardinality of Γ, that is, cnt is an integer that has the
following two properties:

a) If Γ = ∅, then cnt = 0.
b) If Γ ≠ ∅, then cnt > 0 and abs(|Γ| − cnt) ≤ � for some F -specific

threshold �.
3. c ∈ C .

The threshold � accommodates for implementation di�erences in calculating
the approximate number of triples matching a given triple pa�ern; interfaces
are not required to return the exact number, but they should strive to mini-
mize �. By Definition 10, tpfs have to include the collection-specific hyperme-
dia control, which makes any tpf collection a hypermedia-driven rest api [6].
Hence, by discovering an arbitrary fragment of such a collection, tpf clients
can directly reach and retrieve all fragments of the collection, which covers
the complete set of all possible triple pa�erns.

4.1.2 Response format

The manner in which servers can represent tpf resources is defined in the tpf
specification [11]. When a fragment is requested, the http response should
include the data, metadata, and controls, as the rdf serialization in Listing 4.1

58

http://fragments.dbpedia.org/en?object=http%3A%2F%2Fxmlns.com%2Ffoaf%2F0.1%2FPerson
http://fragments.dbpedia.org/en?object=http%3A%2F%2Fxmlns.com%2Ffoaf%2F0.1%2FPerson
http://fragments.dbpedia.org/en?object=http%3A%2F%2Fxmlns.com%2Ffoaf%2F0.1%2FPerson
s

4.1. Triple Pa�ern Fragments: a new interface trade-o�

1 <http://fragments.dbpedia.org/2014/en#metadata> {
2 <http://fragments.dbpedia.org/2014/en#metadata> foaf:primaryTopic <>.
3 <http://fragments.dbpedia.org/#dataset>
4 hydra:member <http://fragments.dbpedia.org/2014/en#dataset>.
5
6
7 <http://fragments.dbpedia.org/2014/en#dataset> a void:Dataset, hydra:Collection;
8 void:subset <http://fragments.dbpedia.org/2014/en>;
9 # Controls

10 hydra:search [
11 hydra:variableRepresentation hydra:ExplicitRepresentation;
12 hydra:template "http://fragments.dbpedia.org/2014/en{?s,p,o}";
13 hydra:mapping [hydra:variable "s"; hydra:property rdf:subject],
14 [hydra:variable "p"; hydra:property rdf:predicate.],
15 [hydra:variable "o"; hydra:property rdf:object]
16].
17
18 <http://fragments.dbpedia.org/2014/en> a hydra:PartialCollectionView;
19 hydra:itemsPerPage "100"^^xsd:integer;
20 hydra:first <http://fragments.dbpedia.org/2014/en?page=1>;
21 hydra:next <http://fragments.dbpedia.org/2014/en?page=2>
22 # Metadata
23 dcterms:title "Linked Data Fragment of DBpedia 2014"@en;
24 dcterms:description "Triple Pattern Fragment of the ’DBpedia 2014’
25 dataset containing triples matching the pattern { ?s ?p ?o

}."@en;
26 dcterms:source <http://fragments.dbpedia.org/2014/en#dataset>;
27 void:triples "377367913"^^xsd:integer;
28 }
29
30 # Data
31 dbpedia:Barack_Obama a foaf:Person;
32 ...

Listing 4.1: The metadata graph in TriG describes a three-field form and paging
information using the Hydra Core Vocabulary.

illustrates. This is self-descriptive, meaning that (a) extensions to the tpf in-
terface are features of a composable api, ensuring backward-compatibility;
(b) clients can discover at run time which features are supported. Note that
preference is given to the quad-based formats N-�ads [12], TriG [13], or json-
ld [14] to properly separate the data triples from the others by using a named
graph. However, triple-based formats can be considered if content negotiation
reveals the client does not support quads.

To stimulate community
participation, the tpf
specification is maintained
by the Hydra w3c
Community Group.

Line 1 indicates the start of the rdf graph that con-
tains the metadata, which describes the given doc-
ument (line 2). Next, line 7 defines a dataset or
tpf collection—in this case dbpedia 2014—that is
a member of all datasets hosted on this domain
(lines 3 and 4).

Lines 10 to 16 describe the hypermedia controls using the Hydra Core Vocab-
ulary [15], which allows Web apis to describe the rdf equivalent of html links

59

4.2. �erying a tpf interface with sparql

and forms (as mentioned in Section 2.1). Since these controls are used to search
the entire dataset, and not the fragment or page, they are a�ached to the
dataset resource (line 7). A templated link [16] o�ers a similar functionality to
html forms (line 12). To construct new tpf urls, a client can fill in rdf:subject,
rdf:predicate, and rdf:object, which are mapped to s, p, and o (lines 13
to 15). The choice of field names is not imposed, as the in-band hypermedia
avoids the need to standardize these names and/or the tpf url structure.

Line 27 describes the cardinality of the fragment as an xsd:integer, enclosed
in a triple with predicate void:triples. The amount of data triples in the re-
sponse will be a lot less, as a tpf should be paged; hence the added information
on page size (line 19) and links for navigating from one page to another (lines 20
and 21). The data component is simply represented as rdf triples added to the
default graph (line 31).

4.2 �erying a tpf interface with sparql

To use the tpf interface to execute sparql queries over remote Linked Datasets,
we introduce a tpf query client.

4.2.1 Client architecture

Generally speaking, a client accepts a sparql query and the uri of an arbitrary
page of some fragment of the tpf collection. As mentioned before, any such
tpf page contains a hypermedia control informing the client that the interfaces
supports lookups by triple pa�erns. A�er obtaining such a hypermedia control,
the client executes the query by applying a query processing algorithm.

To anticipate on future features added to the tpf interface, like the ones that
will be introduced in Chapters 5 to 7, we propose the three-tier architecture
shown in Figure 4.1. There are three layers in total:

1. the �ery Engine;
2. the Hypermedia Layer;
3. the http Layer.

The �ery Engine uses a query decomposition process to recursively isolate
triple pa�erns from the remaining graph pa�ern, and a query execution algo-

rithm that determines the order in which that occurs. A single sparql query
therefore results in several requests to the server, which are ultimately per-
formed by the http layer. In between, the Hypermedia Layer is responsible for
translating every request for a triple pa�ern into a concrete http request for
a tpf.

At the end of this section, we describe the query execution algorithm that is
used in our experiments. As more interface features will be introduced in the
next chapters, this algorithm remains constant throughout this dissertation.
This ensures that the impact of these interface features can be measured accu-
rately. The three-tier client model ensures no modifications to the algorithm

60

4.2. �erying a tpf interface with sparql

�ery Engine

SPARQL Processing

Hypermedia Layer

Fragments interaction

HTTP Layer

Resource representation requests

Dataset A

Client
Server

Figure 4.1: A three-tier architecture for the tpf client facilitates adding support for
future interface features without many alterations.

or its implementation are necessary. Before we proceed to the explanation,
however, we recollect some standard definitions of sparql to ensure a be�er
understanding.

4.2.2 Preliminaries of sparql

As already introduced in Section 2.3.2, a sparql query is commonly centered
around a basic graph pa�ern (bgp). Such bgp is embedded in the WHERE clause of
the query, as shown in Listing 4.2 and defined by the sparql specification [8].

A bgp, usually denoted by B, is considered any finite set of triple pa�erns.
Triple pa�erns (or bgps) can be combined with specific operators [8, 17] (e.g.,
FILTER or UNION; see Section 2.3) in other sparql graph pa�erns P . For any
such pa�ern P , the set of all variables that occur in P is denoted by vars(P).

Next, we look at the standard (set-based) query semantics for sparql.

The query result of a graph pa�ern P over a Linked Dataset (of rdf triples)
D is defined as a set denoted by [[P]]D and that consists of so called solution

mappings, that is, partial mappings � ∶ V → (U ∪B ∪ L).
An rdf triple t is a matching triple for a triple pa�ern tp if there exists a solution
mapping � such that t = �[tp], where �[tp] denotes the triple (pa�ern) that we
obtain by replacing the variables in tp according to �. Usage of �[tp] can be
extended to a bgp B by applying � to every triple pa�ern in B, which we denote
by �[B].

Finally, in context of the query algorithm that is about to be introduced, we also
include the semantics of sparql graph pa�erns when used to query a Linked

61

4.2. �erying a tpf interface with sparql

Dataset that is published as a collection of tpfs. Specifically, the following def-
inition specifies the expected query result of evaluating a sparql graph pa�ern
over a tpf collection.

Definition 11 (query semantics). Let D ⊆ T∗ be a finite set of blank-node-free
rdf triples, and let F be some tpf collection over D. The evaluation of a sparql
graph pa�ern P over F , denoted bya [[P]]F , is defined by [[P]]F = [[P]]D .

a. As usual when introducing multiple evaluation functions to define query semantics (e.g., [18]),
we overload notation here. That is, depending on the object represented by the subscript, [[P]]⋅
denotes the evaluation of P over a set of rdf triples or over a tpf collection.

Observe that, by Definition 11, an approach to execute sparql queries over tpf
collections is sound and complete if and only if the approach returns query
results that are equivalent to the results expected from evaluating the queries
directly over the Linked Datasets exposed as tpf collections. While this re-
quirement seems trivial in the context of tpf collections, we emphasize that
for other types of ldf collections it is not necessarily possible to ensure such
an equivalence. For instance, query evaluation over a Linked Data documents
interface (which is an ldf collection) cannot be guaranteed to be complete with
respect to all data in the Linked Dataset that is exposed by the interface [19,
20] (unless all links between the Linked Data documents are bidirectional).

4.2.3 �ery engine

An execution tree is o�en
represented in a (relational)
algebra, so it can optimized
and simplified easily. Also
sparql has such algebra
described in its
specification [8], but for the
sake of simplicity, this is
not discussed here.

In short, a complex sparql query is evaluated by
first transforming the query into a query tree (query
decomposition). The root node of that tree rep-
resents the query result, while a leaf node repre-
sents each triple pa�ern in the query. In between,
each node in the tree represents an intermediate
operation on the partial mappings �. These partial
mappings originate from the leaf nodes that each
correspond to a Triple Pa�ern Fragment request.
The majority of operations are extracted from the

WHERE clause of the query; only operations that apply to the final resultset like
DISTINCT are not.

The sequence of operation is directed from the leaves to the root, eventually
leading to a complete result. One particular operation is the basic graph pa�ern
B, which combines triple pa�erns conjunctively according to their shared vari-
ables. Thus, a B node will always be directly above multiple triple pa�ern leafs
in the tree. Other possible operation nodes represent other sparql constructs
that were mentioned in Section 2.3.2, such as FILTER, UNION or DINSTINCT. A
sparql graph pa�ern P which contains a FILTER clause, therefore consists of
two directly connected operation nodes: one bo�om node for B, and one top
node for FILTER.

62

4.2. �erying a tpf interface with sparql

1 SELECT ?person ?city WHERE {
2 ?person a dbpedia-owl:Architect. # tp1 (± 2,300 matches)
3 ?person dbpprop:birthPlace ?city. # tp2 (± 572,000 matches)
4 ?city dc:subject dbpedia:Category:Capitals_in_Europe. # tp3 (± 60 matches)
5 } LIMIT 100

Listing 4.2: This sparql query finds architects born in European capitals.

For reasons of simplicity, we will only discuss a query execution algorithm lim-
ited to the evaluation of bgps without special clauses. It determines how a B
operation node, which combines several tpfs, processes partial mappings �.
Basically, the fragment cardinality metadata is used to determine an e�icient
execution order (query execution algorithm). In order to enable incremental

results, this is implemented using the common iterator model [21] as basis.
Iterators allow a consumer to obtain individual results of each operation sepa-
rately, one at the time; hence, they are popular in query execution systems for
computing results incrementally, and increasing the flexibility of implement-
ing query operators [22].

Our algorithm executes queries by constructing a tree of iterators, each pro-
viding three operation functions:

• Open initializes the data structures needed to perform the operation,
• GetNext returns the next result of the operation, and
• Close ends the iteration and releases allocated resources.

Such an iterator tree computes a query result in a pull-based fashion; that is,
during execution, the GetNext function of each iterator calls GetNext on the
child(ren) and uses the input obtained by these calls to produce the next re-
sult(s). In other words, the algorithm constructs a pipeline of iterators where
each iterator is the source iterator Is of the next iterator.

In total, we employ three types of non-blocking iterators, i.e., results can be
returned without having to pull in all input results first.

TriplePa�ernIterator: generates solution mappings for a triple pa�ern using
a tpf interface;

BasicGraphPa�ernIterator: generates solution mappings for a basic graph
pa�ern using a tpf interface and a combination of multiple Triple-

PatternIterators;
RootIterator: an initialization-free helper that returns an empty mapping �∅

exactly once, and nil a�er that. It is used as a starting source iterator.

A TriplePatternIterator (Listing 4.3) reads solution mappings from a source
iterator Is and combines them with possible mappings for a given triple pat-
tern tp. For instance, assume the client is given the query in Listing 4.2, and the
uri h�p://fragments.dbpedia.org/2015/en to retrieve a page from a tpf inter-
face to the dbpedia 2015 dataset. If its triple pa�ern is
⟨?person, dbpprop:birthPlace, ?city⟩ and the source iterator has returned

63

http://fragments.dbpedia.org/2015/en

4.2. �erying a tpf interface with sparql

�s = {?city ↦ dbpedia:Amsterdam}, the TriplePatternIterator will subse-
quently request ⟨?person, dbpprop:birthPlace, dbpedia:Amsterdam⟩ triples
through the tpf interface. If the tpf response contains a triple
⟨dbpedia:Erick_van_Egeraat, dbpprop:birthPlace, dbpedia:Amsterdam⟩,
then the iterator will return the combined solution mapping � ∪ �s = {?city ↦
dbpedia:Amsterdam, ?person ↦ dbpedia:Erick_van_Egeraat}. A Triple-

PatternIterator has two member variables: self.� to hold the current tpf
page from which it is reading, and self.�s to hold the most recently read
mapping from self.�. If this page is read, the next page of the same tpf is
requested if it exists (line 5). If the fragment has no more pages, the next map-
ping self.�s is read from the source iterator Is , and the first page of the tpf
for the mapped triple pa�ern self.�s[tp] is fetched (lines 7 to 9). That way,
the solution mappings resulting from matching triples in the tpf’s pages are
compatible with the corresponding input mappings self.�s .

1 Function TriplePatternIterator.GetNext()

Data: A source iterator Is ; a triple pa�ern tp; a control c of a c-specific
tpf collection F

Output: The next mapping �′ such that �′ ∈ [[{tp}]]F , or nil when no
such mappings are le�

2 self.� ← an empty page without triples or controls if self.� is

unassigned;
3 while self.� is empty or only contains read triples do

4 if self.� has a control to a next page with url u�′ then

5 self.� ← GET u�′ ;
6 else

7 self.�s ← Is.GetNext();
8 return nil if self.�s = nil;
9 self.� ← GET c({self.�s[tp]}), resulting in page 1 of the tpf

for self.�s[tp];
10 end

11 end

12 t ← an unread triple from self.�;
13 � ← a solution mapping �′ such that dom(�′) = vars(tp) and �′[tp] = t;
14 return � ∪ self.�s ;
15 end

Listing 4.3: A TriplePatternIterator incrementally evaluates a triple pa�ern tp
over a c-specific tpf collection F .

Finally, a BasicGraphPatternIterator combines the above two iterators to
evaluate bgps. For an empty bgp, the BasicGraphPatternIterator construc-
tor creates a RootIterator instead (as the corresponding query result contains
only the empty mapping �∅); for a singleton bgp, a TriplePatternIterator is
constructed (as no further decomposition is needed). In all other cases, List-
ing 4.4 is executed.

64

4.2. �erying a tpf interface with sparql

1 Function BasicGraphPatternIterator.GetNext()

Data: A source iterator Is ; a bgp B with |B| ≥ 2; a control c of a c-specific
tpf collection F

Output: The next mapping �′ such that �′ ∈ [[B]]F , or nil when no such
mappings are le�

2 � ← nil;
3 self.Ip ← nil if self.Ip is unassigned;
4 while � = nil do

5 while self.Ip = nil do

6 self.�s ← Is .GetNext();
7 return nil if self.�s = nil;
8 foreach triple pa�ern tpj ∈ B do

9 �j1 = ⟨uj1, uj , s, Γj1, M j
1, C j1⟩ ← GET c({self.�s[tpj]}), resulting in

page 1 of that tpf;
10 cnt j ← cnt where ⟨uj , void:triples, cnt⟩ ∈ M j

1;
11 end

12 if ∀j ∶ cnt j > 0 then

13 � ← j such that cnt j ≤ cntk ∀tpk ∈ B;
14 I� ← TriplePatternIterator(RootIterator(), self.�s[tp�], c);
15 self.Ip ← BasicGraphPatternIterator(I� , self.�s[B ⧵ {tp�}], c);
16 end

17 end

18 � ← self.Ip .GetNext();
19 self.Ip ← nil if � = nil;
20 end

21 return � ∪ self.�s ;
22 end

Listing 4.4: A BasicGraphPatternIterator incrementally evaluates a bgp B over
a c-specific tpf collection F .

This algorithm is greedy

causing some join cases to
lead to a Cartesian product.
Early improvements
by Van Herwegen et al. [23]
and Acosta and Vidal [24]
propose global decisions in
favor of local ones at higher
client cost.

The main principle of a BasicGraphPatternIter-

ator is that it creates a separate iterator pipeline
for each incoming solution mapping. The iterator
has two member variables: self.Ip to hold the cur-
rent iterator pipeline, and self.�s to hold the most
recently read mapping from its source iterator Is .
Upon reading a mapping self.�s , a BasicGraph-

PatternIterator identifies which of the triple pat-
terns in {self.�s[tpj] | tpj ∈ B} has the lowest esti-
mated total matches by fetching the first pages of
the corresponding tpfs (lines 8 to 13). Then, a new iterator pipeline self.Ip is
created, consisting of a TriplePatternIterator for the identified triple pat-
tern and a BasicGraphPatternIterator for the remainder of B (lines 14 to 15).

65

4.3. Evaluation of the tpf interface

The mappings � returned by this pipeline are then combined with the input
mapping self.�s and returned (lines 18 to 21). In other words, the bgp is eval-
uated by spli�ing o� the “simplest” triple pa�ern at each stage. For Listing 4.2,
the BasicGraphPatternIterator would thus split o� tp3, and create a pipeline
for {tp1, tp′2}. This process is dynamic: instead of constructing a static pipeline
for a bgp upfront, a local pipeline is decided at each step.

Note in particular that only TriplePatternIterators read more than one page
of a tpf. BasicGraphPatternIterators only fetch first pages, and never read
actual data, only metadata. In an e�icient implementation, pages are cached
locally, so that the TriplePatternIterator need not fetch the first page again—
and in general, no page should be fetched more than once.

4.3 Evaluation of the tpf interface

This client is wri�en in
JavaScript, so it can be used
either as a standalone
application, or as a library
for browser and server
applications. We provide all
source code of the
implementations, as well as
the full benchmark
configuration at
h�ps://github.com/
LinkedDataFragments.

This evaluation aims to compare the relationship
between server cost and performance of triple-
pa�ern-based query execution to query execution
over other ldfs, sparql endpoints in particular. As
a basis for the experiments, we implemented the
query execution approach from Section 4.2 as an
open-source ldf client for sparql queries.

4.3.1 Influence of client numbers

A first experiment should indicate whether tpf re-
duces server-side costs compared to sparql end-
points, hence being a more scalable alternative to
publish Linked Data in queryable form. We mea-

sure cost as cpu usage, the cache hit ratio, and the average response time.
The usage of ram and i/o highly depend on the implementation of the data
source and are therefore not included directly. With scalability, we mean its
sustainability under an increasing number of clients that concurrently access
the interface. A maximum of 240 simultaneous clients was set, as any higher
number would measure an unrealistic scenario.

Experimental setup

In this experiment, we compare a tpf client/server setup to four sparql end-
point based setups. For the la�er we use Virtuoso (6.1.8 and 7.1.1) [25] and
Jena Fuseki [26] (tdb 1.0.1 and hdt 1.1.1), respectively; and for the tpf server
we use an hdt [9] backend. In all cases, the hdt file was memory-mapped and
thus not entirely available in the memory. Virtuoso was configured with the
recommended se�ings NumberOfBuffers = 595000, MaxDirtyBuffers = 455000,
and MaxCheckintRemap as 1/4 of NumberOfBuffers.

66

https://github.com/LinkedDataFragments
https://github.com/LinkedDataFragments

4.3. Evaluation of the tpf interface

100 101 102
101
102
103
104

clients

q
u

e
r
i
e

s
p

e
r

h
o

u
r

Virtuoso 6 Virtuoso 7 Fuseki–tdb Fuseki–hdt Triple Pa�ern Fragments

(a) Server performance per client (log-log plot)

100 101 102
0

2

4

clients

d
a

t
a

s
e

n
t

(
m
b

)

(b) Server network tra�ic

100 101 102
0
50
100
150
200

clients

#
t
i
m

e
o

u
t
s

(c) �ery timeouts

100 101 102
0

10

20

clients

s
e

n
t

(
m
b

)

(d) Cache network tra�ic

100 101 102
0

50

100

clients

c
p
u

u
s
e

(
%

)

(e) Server processor usage per core

100 101 102
0

50

100

clients

c
p
u

u
s
e

(
%

)

(f) Client processor usage per core

100 101 102
10−3
10−2
10−1
100
101

clients

a
v

g
.
t
i
m

e
(
s
)

(g) �ery 3 execution time (log-log plot)

100 101 102
10−1

100

101

clients

a
v

g
.
t
i
m

e
(
s
)

(h) �ery 3 execution and 1st solution time
(do�ed) (log-log plot)

Figure 4.2: Main measurements on the influence of client numbers

To measure the cost and performance of the tpf server and the sparql end-
points under varying loads, we set up an environment with one server and
a variable number of clients on the Amazon aws platform. The complete setup
consists of 1 server (4 virtual cpus, 7.5 gb ram), 1 http cache (8 virtual cpus,
15 gb ram) and 60 client machines (4 virtual cpus, 7.5 gb ram), capable of
running 4 single-threaded clients each. All machines have Intel Xeon E5-2666
processors running at 2.60 ghz. The http cache acts as a proxy server be-
tween servers and clients and was chosen for its bandwidth capabilities (iden-

67

4.3. Evaluation of the tpf interface

tified by Amazon with specific cpu/ram combinations). The maximum life-
time of cached resources is set to 5 mins, with a maximum of 1000 simultane-
ously cached documents that are replaced according to the Last-Recently-Used
strategy.

As a benchmark for the experiment, we chose the Berlin sparql Benchmark
(bsbm) [27], for the following reasons:

• the bsbm was designed to compare sparql endpoints across architec-
tures [27], and we aim to compare our client–server architecture to such
traditional server architectures;

• the bsbm aims to simulate realistic workloads with large amounts of
rdf data [27];

• the bsbm contains parameterized queries to create di�erent workloads
for large numbers of clients.

In particular, we used a bsbm instance with a dataset size of 100M triples.
To mimic the variability of real-world scenarios, each client executes di�erent
bsbm query workloads based on its own random seed. Some of the bsbm queries
use the ORDER BY operator, which our tpf client necessarily implements with
a blocking iterator, so the first solution can only be output a�er all solutions
have been computed. Therefore, (only) for measurements of the first solution
time we use variants of these queries without ORDER BY, assuming the user
application prefers streaming results and sorts locally. A�er every 1-second
interval during the evaluation, we measure on the server, cache, and clients
the current value of several properties, including cpu usage of each core and
network i/o. For every tested number of clients, the http cache starts cold and
is not reset during query workload execution.

Results

Figures 4.2a to 4.2h summarize the main measurements of the evaluation. All
x-axes use a logarithmic scale, because we varied the number of clients ex-
ponentially. We measured all data points for Virtuoso 7 (as latest and best
performing version) and our proposed solution. For the other alternatives, we
measured the points most relevant for the analyses. Figure 4.2a shows that
the per-client performance of sparql endpoints decreases significantly with
the number of clients. Even though a tpf setup executes sparql queries with
lower performance, the performance decrease with a higher number of clients
is significantly lower. Because of caching e�ects, tpf querying starts perform-
ing slightly be�er with a high number of clients (n > 100). The per-core pro-
cessor usage of the sparql endpoints grows rapidly (Figure 4.2e) and quickly
reaches the maximum; in practice, this means the endpoint spends all cpu time
processing queries while newly incoming requests are queued. The tpf server
consumes only limited cpu, because each individual request is simple to an-
swer, and due to the coarser granularity of the selector function, the cache can
answer several requests (Figure 4.2d).

68

4.3. Evaluation of the tpf interface

1 PREFIX bsbm-inst: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/>
2 PREFIX bsbm: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/vocabulary/>
3 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema\#>
4 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns\#>
5
6 SELECT ?product ?label
7 WHERE {
8 ?product rdfs:label ?label .
9 ?product a \%ProductType\% .

10 ?product bsbm:productFeature \%ProductFeature1\% .
11 ?product bsbm:productPropertyNumeric1 ?p1 .
12 FILTER (?p1 > \%x\%)
13 ?product bsbm:productPropertyNumeric3 ?p3 .
14 FILTER (?p3 < \%y\%)
15 OPTIONAL {
16 ?product bsbm:productFeature \%ProductFeature2\% .
17 ?product rdfs:label ?testVar }
18 FILTER (!bound(?testVar))
19 }
20 ORDER BY ?label
21 LIMIT 10

Listing 4.5: BSBM query template 3: finding products that satisfy 2 numerical
inequalities and an OPTIONAL clause (%...% indicates a parameter that
is replaced at runtime according to the current query workload).

At the client side, we observe the opposite (Figure 4.2f): clients of sparql end-
points hardly use cpu, whereas tpf clients use between 20% to 100% cpu. With
an increasing number of concurrent tpf clients, the networking time dominates
and, thus, the per-client cpu usage decreases, whereas the memory consump-
tion does not vary significantly (ca. 0.5 gb per client, and 8 gb on the server).

Figure 4.2b shows the outbound network tra�ic on the server with an increas-
ing number of clients. This tra�ic is substantially higher for the tpf server, be-
cause tpf clients need to perform several requests to evaluate a single query.
The cache ensures that responses to identical requests are reused; Figure 4.2d
shows that caching is far more e�ective with tpfs.

Some of the bsbm queries perform comparably slow on tpf clients, especially
those queries that depend on operators such as FILTER, which in a triple-
pa�ern-based interface can only be evaluated on the client. The execution
times of some of these queries exceed the timeout limit of 60s (Figure 4.2c).
A “timeout” means that query execution was stopped before all results arrived;
at least a partial result set was already computed. An example of such queries
are instances of bsbm query template 3 given in Listing 4.5. Focusing only on
the queries of this template, we observe that the average execution time of
these queries is comparably higher for tpfs (Figure 4.2g). However, with an in-
creasing number of clients, these times increase only very gradually in the tpf
setup, whereas they rise very rapidly for the sparql endpoints (which have to
compute the queries of all clients concurrently). Furthermore, the time to the
first solution increases more slowly with increased load (Figure 4.2h). Only on

69

4.3. Evaluation of the tpf interface

1 PREFIX dbo: <http://dbpedia.org/ontology/>
2 PREFIX dbp: <http://dbpedia.org/property/>
3 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema\#>
4 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
5
6 SELECT * WHERE {
7 { ?v2 a dbo:Settlement; rdfs:label \%\%v\%\%.
8 ?v6 a dbo:Airport. }
9 { ?v6 dbo:city ?v2. }

10 UNION { ?v6 dbo:location ?v2. }
11 { ?v6 dbp:iata ?v5. }
12 UNION { ?v6 dbo:iataLocationIdentifier ?v5. }
13 OPTIONAL { ?v6 foaf:homepage ?v7. }
14 OPTIONAL {?v6 dbp:nativename ?v8. }
15 }

Listing 4.6: Example query from dbpedia benchmark: finding airport information of a
certain city with two UNION clauses and an OPTIONAL clause (%%...%%
indicates a parameter that is replaced at runtime according to the current
query workload).

the tpf server, cpu usage remains low for this query at all times.

4.3.2 Performance of queries on a real-world dataset

Our second experiment aims to extend the results of the previous experiment
toward real-world datasets and di�erent dataset sizes. It is essential to ascer-
tain whether the majority of typical real-world queries can be executed within
the acceptable limit of four seconds [28].

Experimental setup

The experimental setup is the same as before. However, this time, we want
to validate the behavior of the tpf client for increasing real-world dataset
sizes. To this end, we execute the dbpedia sparql benchmark [29], which
uses a real-world dataset. The benchmark incorporates queries from the pub-
lic dbpedia sparql endpoint log, filtering non-relevant variations and queries
with a low frequency [29]. We use three dataset sizes as made available on-
line: 14,274,065 triples and 52,323,498 triples from the dbpedia benchmark web-
site1, and 377,367,913 triples from the 2014 version of dbpedia (without long
abstracts). In contrast to the bsbm we used in the last experiment, the dbpedia
query logs do not contain parameters. Therefore, clients execute a mix of
15 queries in sequence with di�erent template values for each client. Listing 4.6
shows an example such query template. �ery timeout was set to 60s.

1. h�p://benchmark.dbpedia.org/

70

http://benchmark.dbpedia.org/

4.3. Evaluation of the tpf interface

14M 52M 377M

Q1 0.44 0.42 0.37
Q2 0.50 0.50 0.46
Q3 0.50 0.51 0.91
Q4 0.53 0.60 1.49
Q5 0.47 0.48 0.86
Q6 1.80 10.06 35.16
Q7 0.47 0.46 0.40
Q8 0.50 0.49 0.46
Q9 0.47 0.45 0.39
Q10 0.47 0.45 0.46
Q11 0.52 0.92 0.43
Q12 60.03 60.03 59.95
Q13 2.29 3.16 21.80
Q14 0.48 0.47 0.43
Q15 0.73 1.08 7.69
Total 70.19 80.09 131.27

Table 4.1: Average individual query execution time (in seconds) for the three dbpedia
dataset sizes with 48 concurrent tpf clients

14M 52M 377M

0

100

200

dataset size

e
x

e
c
u

t
i
o

n
t
i
m

e
(
s
)

10 clients

48 clients

96 clients

Figure 4.3: Average execution times per client of a dbpedia query mix with variable
dataset sizes

Results

Figure 4.3 shows the results for 10, 48, and 96 tpf clients. We observe an in-
crease in query execution time, which is minor when going from the 14M graph
to the 52M graph, but more visible for the entire version of dbpedia 2014. The
main cause for this increase is the increased number of elements in the result
set, as the total number of triples influences the number of matching triples
per query. To a lesser degree, the execution times are also influenced by an in-
creased number of triples that match one pa�ern but cannot be used in joins.

The most important observation in this experiment is, however, the high vari-
ance in execution time across queries. Table 4.1 shows the average query ex-

71

4.3. Evaluation of the tpf interface

ecution times for an individual client per query, for the case of 48 concurrent
clients. Note how Q12 reaches the 60s timeout even for the small dataset. This
is due to the presence of various UNION, OPTIONAL, and FILTER constructs, for
which our client does not generate e�icient query plans. Most of the query
execution times remain at the same magnitude for the di�erent dataset sizes,
with small di�erences accounting for factors such as caching and increasing
bandwidth consumption. �eries Q6, Q13 and Q15 are a�ected more clearly
by increasing dataset sizes; at the same time, however, they also yield more
results. This indicates that, more than dataset size, the type of query seems to
be a crucial factor for queries against real-world datasets such as dbpedia.

4.3.3 Influence of serialization formats

The delay to transfer triples from the server into a memory-based representa-
tion of the client is much more crucial for tpf clients than for sparql endpoints,
because the number of required http requests per query can be high. There-
fore, we study the impact of the rdf serialization format of tpf responses on
sparql query execution performance. The serialization format contributes to
the delay in two ways: (a) response processing delay, i.e., coding and decoding
triples, and (b) response download delay, i.e., transporting the response over
a network. A serialization format o�ers a specific mix of both, which can be
more or less suited for a certain Web application. We evaluated di�erent ex-
isting formats to discover a balanced mix between processing and download
cost in the context of our client-side querying algorithm. Subsequently, we can
obtain recommendations on (a) characteristics for new serialization formats,
and (b) server page size configurations.

Serialization formats

To test with a diverse mix of formats we identified three categories—text-based,
processing-oriented binary, and download-oriented binary—from which we se-
lected an overall number of twelve di�erent formats, and used each of them
with and without additional gzip compression, which is common with http.

Text-based formats are string-encoded notations aimed at both human and ma-
chine consumption. We selected N-Triples [30] and its superset Turtle [31]
mentioned in Section 2.3. The Apache Jena riot library2 was used for both
formats, using stream processing when possible. For Turtle, we tested the
three configurations pre�y (pre-sorted by subject with maximal grouping; non
streaming), flat (not pre-sorted and not grouped; triple-based streaming), and
block (pre-sorted by subject and grouped in fixed windows; window-based
streaming). In addition, we tested with the Sesame rio3 library to include
a possible implementation di�erence.

2. h�ps://jena.apache.org/documentation/io/
3. h�p://rdf4j.org/sesame/2.8/docs/programming.docbook?view#Parsing_and_Writing_RDF_with_

Rio

72

https://jena.apache.org/documentation/io/
http://rdf4j.org/sesame/2.8/docs/programming.docbook?view#Parsing_and_Writing_RDF_with_Rio
http://rdf4j.org/sesame/2.8/docs/programming.docbook?view#Parsing_and_Writing_RDF_with_Rio

4.3. Evaluation of the tpf interface

Processing-oriented binary formats are binary notations optimized to reduce
processing delay, which o�en comes with a response size penalty. Fortunately,
such formats tend to work well with common compression, e.g., gzip. This
compensates response size increase at the cost of processing time. In this cat-
egory, we selected rdf Thri� [32], implemented by Jena riot, and Sesame Bi-
nary rdf [33], implemented by Sesame rio. For rdf Thri� we tested both the
default configuration and the Values configuration, where literals are encoded
more e�iciently. For Sesame Binary we used both a bu�er size of 800 and of
1,600 triples.

Download-oriented binary formats are optimized to reduce download delay.
They o�er compression techniques that greatly reduce response size, o�en sac-
rificing processing time. We added the recent eri format [34] using a custom
implementation4 by the authors. We tested with the recommended block sizes
of 1,024, 2,048, and 4,096 triples.

Experimental setup

To obtain collections of tpf responses for which we could measure the impact
of each of the selected serialization formats, we instructed our tpf client im-
plementation to store each tpf page retrieved during a query execution as a
local rdf file. Then, to take the measurements for this experiment we imple-
mented a single-threaded Java application that loads such a local rdf file into
main memory and serializes and deserializes the loaded data using the di�er-
ent serialization formats mentioned before. This application was deployed on
an Intel Xeon cpu (E5-2640 2.50 ghz) with 1 tb hdd raid storage and 64 gb ddr3
1333 mhz ram.

The 20 WatDiv templates
are graphically displayed at
h�p://db.uwaterloo.ca/
watdiv/basic-testing.shtml.
Note that the number of
templates per category does
not necessarily reflects
actual query distributions
for specific datasets.

To ensure diversity of the collections of tpf re-
sponses as considered for this experiment, we used
queries and a dataset of the Waterloo sparql Diver-
sity Test Suite (WatDiv) [35]. In contrast to the pre-
vious two experiments, which focused on realistic
loads, we here specifically want to assess the impact
of di�erent query pa�erns, which is where WatDiv
was designed for. We set up our tpf server with
the WatDiv 10 million triple dataset5 and queried
it using 20 bgp queries that we generated from the
20 query templates in the basic testing use case6 of WatDiv. These query tem-
plates span a wide spectrum of various graph pa�ern structures (cf. Table 4.2).
For each of the 20 queries, Table 4.2 shows the number of tpf pages requested
by our client-side query execution algorithm.

4. h�ps://github.com/webdata/ERI
5. h�p://dsg.uwaterloo.ca/watdiv/watdiv.10M.tar.bz2
6. h�p://dsg.uwaterloo.ca/watdiv/basic-testing.shtml

73

http://db.uwaterloo.ca/watdiv/basic-testing.shtml
http://db.uwaterloo.ca/watdiv/basic-testing.shtml
https://github.com/webdata/ERI
http://dsg.uwaterloo.ca/watdiv/watdiv.10M.tar.bz2
http://dsg.uwaterloo.ca/watdiv/basic-testing.shtml

4.3. Evaluation of the tpf interface

t
e

m
p

l
a

t
e

n
a

m
e

t
r
i
p

l
e

p
a

�
e

r
n

s

v
a

r
i
a

b
l
e

s

j
o

i
n

v
e

r
t
i
c
e

s

tpf pages

L1 3 3 2 9,159

L2 3 2 2 14,815

L3 2 2 1 59,062

L4 2 2 1 357

L5 3 3 2 315

F1 6 5 2 900

F2 8 8 2 184

F3 6 6 2 1,793

F4 9 8 2 869

F5 6 6 2 216

t
e

m
p

l
a

t
e

n
a

m
e

t
r
i
p

l
e

p
a

�
e

r
n

s

v
a

r
i
a

b
l
e

s

j
o

i
n

v
e

r
t
i
c
e

s

tpf pages

S1 9 9 1 251

S2 4 3 1 1,415

S3 4 4 1 455

S4 4 3 1 67

S5 4 3 1 304

S6 3 3 1 33

S7 3 3 1 594

C1 8 9 4 869

C2 10 11 6 431

C3 6 7 1 4

Table 4.2: Properties of our WatDiv queries (template from which the query is gener-
ated, number of triple pa�erns, number of variables, join vertex count [35]),
and the number of tpf pages requested during their execution. WatDiv dis-
tinguishes linear queries (L), snowflake-shaped queries (F), star queries (S),
and complex queries (C).

Results

First, we analyze how much data the collected tpf pages contain (which is
independent of serialization formats). Figure 4.4 shows a distribution of the
number of triples per page. The histogram starts with 25 triples, because a re-
sponse always includes at least 26 triples for metadata and controls, and ends
with 130 triples because a page size of 100 triples was used. All queries show
a similar bimodal distribution with a peak at a triple count of 25 to 35 triples
and a small peak at 125 to 130 triples. The former indicates the presence of
many requests that are used to verify the presence of a single triple, which
results in 0 or 1 data triples. The la�er denotes the initial phase of query exe-
cution where many non-selective triple pa�erns are requested. Most frequent,
these are the triple pa�erns as they occur in the query’s bgp and some of their
early bound derivatives. These pa�erns contain the highest number of vari-
ables, more likely to exceed the given page size. Examples are the triple pat-
terns tp1 and tp2 from the query in Listing 4.2, that have a cardinality of 2,300
and 572,300, respectively. On average, only 2% of all responses contain between
35 and 125 triples. This means http responses are in most cases very small, in a
few cases very big (depending on the page size), and almost never in-between.
Two queries (L2 and L3) have more fragment pages in the in-between groups,
which is directly related to the fact they have more pages overall.

Next, we executed the response serializer for each combination of query and
format, with and without applied gzip compression. For each response, we
measured its serialization time, deserialization time, and transfer time. We
estimate the transfer time by dividing the response size when serialized with
an average network speed of 1mb/s (as in other evaluations [34]). The sum

74

4.3. Evaluation of the tpf interface

[25-30[[35-40[[45-50[[55-60[[65-70[[75-80[[85-90[[95-100[[105-110[[115-120[[125-130[

102

104

[30-35[[40-45[[50-55[[60-65[[70-75[[80-85[[90-95[[100-105[[110-115[[120-125[
number of triples per page

n
u

m
b

e
r

o
f

p
a

g
e

s L1 L2 L3 L4 L5 S1 S2 S3 S4 S5

S6 S7 F1 F2 F3 F4 F5 C1 C2 C3

Figure 4.4: The distribution of average number of triples per used tpf page for di�erent
queries shows that most fragments either contain few data triples (20–30
triples are metadata), or the maximum number (page size).

of all three measurements over all http responses give the total overhead per
query.

Figure 4.5 shows the average overhead over all queries. A first observation
is that transfer time clearly dominates over serialization and deserialization
time. Therefore, the small-size eri format results in roughly 3 times less over-
head compared to Turtle and even 5 times less compared to N-Triples, rdf
Thri�, and Sesame Binary. However, since text-based formats and processing-
oriented formats can be compressed e�ectively, the response size di�erence
can be reduced significantly by applying gzip compression. On average, text-
based formats can be reduced to 110% of the eri response size. Nonetheless, the
processing penalty by applying compression does not compensate the domi-
nance of transfer delay for most formats, as eri keeps an average gain of 1s per
query. For N-Triples though, the combination of its high compression rate and
lower processing cost match the low overhead of eri.

In general, the impact of binary formats is rather limited. This is likely because
tpf pages are small, while such formats are designed to be e�ective on large
amounts of triples. All responses are serialized as a single block or bu�er, which
explains the insignificant di�erence between block sizes for eri and Sesame Bi-
nary. A larger page size could result in a potential overhead decrease. However,
for all tested queries, only 0.24% of all fragments requested more than one page
and only 0.001% more than two. As a result, the benefit of a larger page size
would be negligible in the current algorithm.

Future algorithms could justify larger page sizes by changing the distribution
of page requests. For instance, Van Herwegen et al. [23] reduce the number of
requests by moving the join order optimization from local to global. Based on
multiple heuristics, the client estimates from the intermediate results whether
the approach from Section 4.2.3 is suboptimal, and if so, downloads entire triple
pa�erns separately instead, i.e., downloading all pages of a single tpf at once
and performing a symmetric hash join [36]. Also, the planned migration of the
Web to http/2 [37], with features such as multiplexing (i.e., using a single con-

75

4.4. Adding Approximate Membership metadata

0 5,000 10,000 15,000 20,000 25,000

N-Triples*

eri 1,024*

eri 4,096*

eri 2,048*

Sesame Turtle*

eri 4,096

eri 2,048

eri 1,024

rdf Thri� Value*

rdf Thri�*

Jena Turtle Blocks*

Jena Turtle Pre�y*

Jena Turtle Flat*

Sesame Binary 800*

Sesame Binary 1,600*

Sesame Turtle

Jena Turtle Blocks

Jena Turtle Pre�y

Jena Turtle Flat

rdf Thri� Value

rdf Thri�

N-Triples

Sesame Binary 800

Sesame Binary 1,600

average time (ms)

deserialization

transfer

serialization

Figure 4.5: The chosen rdf format impacts the time to serialize, transfer, and deserial-
ize tpf pages. Additionally applying gzip compression and decompression
(indicated by *) has an important e�ect, except on eri, which is already
small.

nection to sent multiple http requests and receive responses asynchronously)
and push (i.e., a server proactively sends multiple responses for a single re-
quest), could change the circumstances in which the size of a page is consid-
ered optimal.

4.4 Adding Approximate Membership metadata

As the evaluation in Section 4.3 suggests, the required time for a client to eval-
uate certain sparql queries against tpf interfaces can still be unacceptable for
responsive applications. A dominant factor this time is the high number of
http requests. Therefore, by analyzing the nature of these requests, we can lo-
cate possible areas for changing the client/server trade-o�s in the interface. To
this end, we analyze the page requests from Table 4.2, which result from exe-
cuting the WatDiv benchmark [35] against a tpf interface using the algorithm
from Section 4.4.1.

The execution logs revealed a high number of requests for triple pa�erns with-
out variables, i.e., testing the presence of a specific triple in the dataset. Such

76

4.4. Adding Approximate Membership metadata

a request is called a membership subquery.

Definition 12 (Membership subquery). A membership subquery is a triple
pa�ern query without variables that e�ectively checks the membership of a
triple in the dataset.

The templates L2, L4, and F3 respectively produced 50%, 51%, and 74% mem-
bership subqueries. For S5, F5, C1, and C2, this proportion even reached 95% to
98%. Furthermore, the absolute number of requests of some of these templates
is high (e.g., F3 needed 1,335 membership subqueries). A third of query tem-
plates is thus a�ected; the remaining 13 templates produced no membership
subqueries at all. While these numbers do not allow generalized conclusions,
they are certainly an important indication that a reduction of membership sub-
queries can have a considerable influence on the number of http requests—and
thus the overall query execution time.

Therefore, we augmented the metadata of the tpf interface with approximate

membership functions (amf). An amf is a space-e�icient data structure that
is able to indicate whether a set contains an item [38]. False positives can
occur with a fixed probability, while false negatives cannot occur. We study
their applicability as a server-side feature in addition to tpf—can they reduce
the number of http requests during client-side sparql query execution, while
maintaining a low per-request cost for the server?

4.4.1 Approximate membership functions

In the following, we briefly discuss two prominent amf families—Bloom fil-
ters [39] and Golomb-Coded Sets (gcs) [40]—and some existing work from
literature concerning rdf querying using amf.

Bloom filters and gcs both o�er approximate membership assessment with a
predefined false positive probability, but with di�erent size and speed. Recall
and precision are important parameters of an amf f . Given the set of actual
members M and a set of elements T for which we want to test membership,
the set of positively tested elements PT = {t ∈ T ∶ f (t) = true}. We define
recallf (T) = |M ∩ PT |/|M| and precisionf (T) = |M ∩ PT |/|PT |. Both Bloom
filters and Golomb-Coded Sets have 100% recall, i.e., all valid members of M
will always be identified, but less than 100% precision.

Bloom filters

A Bloom filter [39] is a bitmap of m bits populated using k di�erent hash func-
tions, initialized with all bits set to 0. An item is added by calculating k lo-
cations in the bitmap, which are set to 1. Each one is calculated by using a
di�erent hash function to ensure randomness. An item can be tested by cal-
culating k locations using the same hash functions. Hence, both insertion and
testing are O(k). The result of a bit-wise AND of those locations in the filter

77

4.4. Adding Approximate Membership metadata

determines if the item is a member. If false, the item is definitely not in the
set. If true, the item might be in the set, because of false positives.

For a desired false positive probability rate p, the bit-size of a Bloom filter is
proportional to its number of members n. The required size is
m = −n⋅log2 e ⋅ log2 p. For a givenm, the optimal number of hashes k that min-
imizes false positive probability can be calculated with k = m/n ⋅ ln 2. Despite
their compact representation, their size can be too large for network transfer.
A solution is using compressed Bloom filters [41], at the cost of compression
and decompression delays.

Golomb-coded sets

Golomb-coded sets (gcs) [40] provide a cleaner variation of compressed Bloom
filters. First, only a single hash function is used to populate a bitmap with.
For n members, this results in a bitmap of n bits. Then, the locations of the
bitmap that are set to 1, compose a list of indexes l, which is considered to
be uniformly distributed. Next, the di�erences between all subsequent values
of l form a new list l′, which has a geometrical distribution with a parameter
p. Finally, a gcs is created by compressing l′ with golomb-coding, which is an
optimal encoding for discrete geometric distributions [42].

In terms of size, gcs approaches the theoretical minimum of m = −n ⋅ log2 p
more closely than the equivalent Bloom filter. Compared to compressed Bloom
filters, gcs have a minimal size overhead for the same p, but they are more eas-
ily chunked and indexed to deal with uncompressed size issues. Compared to
plain Bloom filters, the query time is magnitudes slower due to decompression.
However, this drawback can be minimized by including an index to quickly find
areas of interest in the filter.

�ery evaluation with approximate membership

In the context of rdf querying, approximate membership functions are in-
cluded in several related works, covering (a) query routing in networks, (b) se-
lectivity estimation for optimizing joins, (c) evolutionary querying, and (d) local
database indexes.

�ery routing applies Bloom filters in caches and indexes for peer-to-peer,
MapReduce or cloud clusters, and Linked Data networks. Most systems [43,
44, 45] construct a data summary of neighboring nodes or clusters to make
query forwarding decisions. Some algorithms exchange these filters between
nodes to maintain their network [46]. This is common in combination with
Distributed Hash Tables (dht) [46, 47], where a dht is used for data routing
and Bloom filters for e�icient communication between nodes.

More directly applicable is selectivity estimation of query pa�erns, e.g., graph
pa�erns, to improve join performance. One approach is to group di�erent
chain-pa�erns, i.e., two distinct triple pa�erns connected by a single variable,
according to their frequency [48]. A Bloom filter tests in what frequency group

78

4.4. Adding Approximate Membership metadata

a chain pa�ern resides, which optimizes the pa�ern execution order. Other
applications include representing equivalent classes to optimize hash joins,
ranges of values for merge joins [49], and distributed n-way joins [50]. Al-
though these works inspire future directions, many require more than a single
triple pa�ern and have high demands for the server. Highly relevant is the pro-
posal to extend the ask query response [51] with combinations of bindings, i.e.,
two variables in a triple pa�ern, to improve source selection in sparql query
federation frameworks. Bloom filters from di�erent sources indicate overlap
and save redundant requests. However, the benefit in a single-server setup is
unclear.

Evolutionary querying is an alternative approach to sparql query processing.
Possible solutions are first gathered as an initial population, e.g., the entire
dataset, which then mutate and evolve to be refined incrementally. Oren,
Guéret, and Schlobach [52] use a combination of fingerprinting and Bloom
filters to rapidly evaluate approximate answers against large rdf datasets. Al-
though this is a centralized solution, it advocates anytime answers, which is in
line with the opportunistic querying presented in this paper. The algorithm is
initiated with random values, which returns initial results fast, but with low
accuracy.

Finally, in the area of databases, Bloom filters are an e�icient technique to
prevent unnecessary disk access [53]. In such cases, the size of the filter and
its impact on transfer delays are not applicable.

4.4.2 Definition and Response format

The self-descriptive nature of the tpf interface allows us to add amfs as ex-
tra server feature without any interference, as long as we can describe them.
Therefore, we created the membership modeling ontology shown in Figure 4.6
(henceforth denoted with the prefix ms). To di�erentiate the impact on re-
sponse size, we consider two di�erent amf techniques discussed earlier:
the uncompressed Bloom filters [39] and the compressed Golomb-Coded Sets
(gcs) [40].

The membership ontology defines ms:Function for generic functions and its
subclasses ms:ApproximateMembershipFunction and ms:HashFunction. To al-
low for Bloom filters and gcs, the former has ms:BloomFilter and
ms:GolombCodedSet as subclasses. Finally, ms:hashFunction associates
instances of these classes with hash functions that can be instances of al-
gorithms such as ms:MD5 or ms:MurmurHash3. Using this ontology, we define
an interface feature that provides amf metadata in the metadata graph of re-
sponses. The result is the subject of a specification in the Hydra w3c Commu-
nity Group [54].

As mentioned in Section 4.1, each regular tpf contains a void:triples state-
ment expressing the approximate total number of triples in the dataset that
match the tpf’s triple pa�ern [11]. For instance, each page of the tpf for the

79

4.4. Adding Approximate Membership metadata

Figure 4.6: The membership modeling ontology published and maintained at h�p://
semweb.mmlab.be/ns/membership.

pa�ern “?x rdf:type foaf:Person” contains a metadata triple stating there
are 96,300 matching triples in the dataset. Given a page size of 100 data triples,
these data triples would be spread across 963 pages. Suppose that during the
execution of a certain sparql query, the client arrives at a list of 215 potential
mappings for “?x rdf:type foaf:Person”. In order to verify with a minimum
number of http requests whether these mappings are valid, the 215 tpfs for
the corresponding triples need to be downloaded, checking which mappings
result in a triple that exists within the dataset.

By defining an interface feature that allows this fragment to contain an amf,
the clients can determine approximately whether a certain ?x results in a triple
of the dataset. Thus, the properties of the ldfs, to which this enhanced tpf
interface gives access to, become:

data & controls: equivalent to tpf;
metadata: equivalent to tpf plus an amf per variable in the triple pa�ern rep-

resenting the variable’s set of matching uris or literals.

The hash functions
themselves are not detailed
in the listing, but their
parameters need to be
explicitly available (either in
the response or by
dereferencing their url).

Listing 4.7 shows an example amf for the triple pat-
tern “?x rdf:type foaf:Person”. In this case, it
is a Bloom filter (line 4) with two specific Mur-
mur functions as hash functions (line 6). Lines 7
to 10 explicitly specifies that the members of the
collection are the triples of the fragment, and
that the amf has been built by using the sub-

ject of these triples. This allows the client to
interpret how exactly this amf can be used. For instance, if the triple
dbp:Elvis_Presley rdf:type dbo:Artist is part of the dataset, then the full
uri of dbp:Elvis_Presley must yield a positive value in the membership func-
tion. Note that the false positive rate and the possible false negative rate are
also specified in lines 11 and 12, allowing a client to estimate the certainty of
each result. Finally, the amf data itself has been made available in base64-
encoded form (line 13).

This metadata allows a client to unambiguously recreate the amf and verify

80

http://semweb.mmlab.be/ns/membership
http://semweb.mmlab.be/ns/membership

4.4. Adding Approximate Membership metadata

1 <#metadata> foaf:primaryTopic <#fragment>.
2 <#metadata> {
3 <#fragment> void:triples 96300. # existing count metadata
4 _:membershipFunction a ms:BloomFilter; # AMF metadata
5 ms:hashSize 524288;
6 ms:hashFunction <MyMurmur1>, <MyMurmur2>;
7 ms:memberCollection [
8 ms:sourceCollection <#fragment>;
9 ms:projectedProperty rdf:subject

10];
11 ms:falsePositiveRate 0.05;
12 ms:falseNegativeRate 0.0;
13 ms:binaryRepresentation "QmF...ZTY"^^xsd:base64Binary.
14 }

Listing 4.7: The self-descriptive amf metadata in the tpf fragment for ?x rdf:type

foaf:Person allows the client to interpret and evaluate approximate
membership.

the approximate membership of elements. Note that this self-descriptive ap-
proach does not require a contract between the client and the server, e.g., no
hash function has to be agreed upon silently. Furthermore, clients that do not
use this metadata feature, such as the tpf client from Section 4.2, will not be
a�ected by it and can thus continue to use the interface. It is up to the server’s
discretion whether or not to provide an amf on a page. If it is present, an
amf-aware client can use it; if not, the original algorithm without amfs can be
followed. This lets the server choose freely what metadata to include—based
on, for instance, the computational e�ort to create the amf.

4.4.3 �erying an amf-enabled tpf interface with sparql

To query tpfs with amf metadata, we will add a small extension to the al-
gorithm presented in Section 4.2. Consider the following example query for
dbpedia:

1 SELECT ?p ?c WHERE {
2 ?p a <http://dbpedia.org/ontology/Artist>. # tp1
3 ?p <http://dbpedia.org/ontology/birthPlace> ?c. # tp2
4 ?c <http://www.w3.org/2000/01/rdf-schema#label> "York"@en. # tp3
5 }

Listing 4.8: This sparql query finds artists born in cities named “York”.

Given a regular tpf interface, the current algorithm will compute results for
each bgp B by recursively evaluating and binding each triple pa�ern tpi ∈ B in
an order determined by the count metadata in their respective fragments. For
example, by fetching the first page of the tpfs for the query in Listing 4.8 where
B = {tp1, tp2, tp3}, we obtain the count metadata {(tp1, 96 300), (tp2, 625 811),
(tp3, 2)}. Therefore, we start iterating over tp3, which will supply values for ?c.
This leads to 2 subqueries B′ = {tp1, tp′2} where the remaining triple pa�erns
are bound to concrete values of ?c (note that tp1 is una�ected because it does

81

4.4. Adding Approximate Membership metadata

not contain ?c). For instance, for ?c = dbp:York, we obtain count metadata
{(tp1, 96 300), (tp′2, 207)}. �ery execution thus continues with the smallest
fragment tp′2, which results in 207 subqueries B′′ = {tp′1} in which tp1 is
bound to possible values of ?p. These 207 subqueries are indeed membership
queries, because they check the presence of a concrete triple without variables,
e.g., “dbp:Adam_Thomas rdf:type dbo:Artist”. All values of ?p that result in
a match are solution mappings to the query. This process leads to an evaluation
tree, as shown in Figure 4.7.

GET ?c rdfs:label "York" (2)

GET ?p dbo:birthPlace
dbp:Category:York (0)

GET ?p dbo:birthPlace
dbp:York (207)

GET dbp:Adam_Thomas
a dbo:Artist (1)

GET dbp:Barry_Tait
a dbo:Artist (0)

GET dbp:Caroline_-
Hill a dbo:Artist (0)

GET dbp:Dustin_Gee
a dbo:Artist (1)

…

each of the 3 levels represents
(states of) a TriplePatternIterator

evaluate using amf from
GET ?p a dbo:Artist

Figure 4.7: The triple pa�erns of Listing 4.8 with the least number of matches at each
stage become nodes in the evaluation tree. Note how the third level of
consists entirely of membership subqueries (single triples), and can thus
be evaluated with the help of an amf.

As described in Listing 4.3, the whole of Figure 4.7 is executed by a Graph-

PatternIterator, which chains together TriplePatternIterators for each
of the three levels in the tree. Each TriplePatternIterator reads solution
mappings from the iterator above it and tries to extend them with mappings
for a given triple pa�ern. For instance, the iterator at level 2 with pa�ern “?p
dbo:birthPlace ?c” receives mappings for ?c from the iterator at level 1. For
each ?c, it tries to find mappings for ?p, which are then passed on to level 3. Fi-
nally, the TriplePatternIterator on level 3 with pa�ern
“?p rdf:type dbo:Artist” either confirms or rejects mappings depending on
whether the triple for a given ?p exists. This produces a total of 207 requests,
which amount to 98% of the total http tra�ic.

Listing 4.9 presents an extension of the original TriplePatternIterator to
make use of amf metadata. When a TriplePatternIterator is initiated, the
first page of the corresponding tpf for its initial triple pa�ern is requested (line 2).
This fragment typically already resides in the client cache, since it was formerly
requested by a GraphPatternIterator for count metadata. If the response
contains amf metadata, a membership test function is created and assigned to
the iterator (line 4). In our example, this translates to a request for the tpf for
“?p rdf:type dbo:Artist”, which contains an amf for all mappings of ?p. If
no amf metadata is found, we assign a constant function True that always re-
turns true (possible match), so that a verification request is always necessary.

When GetNext is called, the TriplePatternIterator first reads an upstream
mapping �s from its source iterator Is (line 14). Then, we test whether the

82

4.4. Adding Approximate Membership metadata

only allow

certain results

temporarily allow

uncertain results

start
execution

start
execution

1st result
computed

1st result
computed

n < r results
computed

n < r results
computed

r results
computed

r results
computed

r + f results
computed

0% recall 100% recall 100% recall

100% precision

Figure 4.8: This sparql query execution timeline compares regular and opportunistic
query execution, assuming r total query results and f false positives. Note
how both approaches achieve 100% recall and precision at a shared point in
the end, but there exists a period during which only opportunistic execution
reaches 100% recall (shaded).

triple (pa�ern) tp′ resulting from this mapping is present in the current amf.
If the test returns true, we have a true positive or false positive, so the tpf cor-
responding to tp′ is fetched and assigned to the iterator. For instance, if the
mapping {?p = Adam_Thomas} returns true, we retrieve the tpf for “dbp:Adam_-
Thomas rdf:type dbo:Artist” to verify whether this triple is a true or false
positive. If the test returns false, tp′ is a true negative and need not be
checked. For instance, if the mapping {?p = Barry_Tait} returns false, we
are sure the corresponding tpf is empty, so we do not need to perform the http
request.

For each negative amf result, this proposed extension of the algorithm saves
an http request. Depending on the type of query, cumulative savings can be
extensive, as with the query in Listing 4.8. The positive results, however, still
need to be verified in case false positives would have occurred.

While we cannot eliminate the verification http calls without endangering
the correctness (precision) of query results, it is possible to further reduce the
query time, as we will discuss in the next section.

4.4.4 Opportunistic query results

Regardless of whether the query execution produces results, the engine spends
time on ensuring the result set is valid; it could be that possible result candi-
dates need to be ruled out before being able to decide that the result set is in
fact complete. Due to the approximate nature of amfs, it is possible that at
a certain point during Listing 4.9, the in-memory result set R already contains
all r valid results. However, they cannot be returned yet, because R can still
contain a number of false positives f . Only a�er the membership of all posi-
tive results of the amf has been verified against the tpf interface, the f false
positives can be discarded and all r matches can be returned safely.

For some use cases, it might be acceptable to temporarily consider incorrect
results, especially if we are able to indicate which results can be trusted and
which results cannot. If at first, we optimistically assume that all positive

83

4.4. Adding Approximate Membership metadata

1 Function TriplePatternIterator.Init()

Data: A source iterator Is ; a triple pa�ern tp; a control c of a c-specific
tpf collection F

2 �1 = ⟨u1, u, s, Γ1, M1, C1⟩ ← GET c({tp}), resulting in page 1 of the tpf for tp;
3 if ⟨amf, rdf:type, ms:ApproximateMembershipFunction⟩ ∈ M1 then

4 self.membership_test ← amf where
⟨amf, rdf:type, ms:ApproximateMembershipFunction⟩ ∈ M1;

5 else

6 self.membership_test ← True where ∀x ∶ True(x) = true;
7 end

8 self.current_fragment ← ∅;
9 end

10 Function TriplePatternIterator.GetNext()

Output: The next mapping �n or nil when no such mappings are le�
11 � ← nil;
12 while � = nil do

13 while self.current_fragment is empty or only contains read triples do

14 self.�s ← Is.GetNext();
15 return nil if self.�s = nil;
16 tp′ ← self.�s[tp];
17 if self.membership_test(tp′) = true then

18 self.current_fragment ← GET tpf for tp′;
19 end

20 end

21 t ← an unread triple from self.current_fragment;
22 � ← a solution mapping �′ with dom(�′) = vars(tp) and �′[tp] = t;
23 end

24 return � ∪ self.�s ;
25 end

Listing 4.9: A TriplePatternIterator with support for amf metadata. To simplify
the pseudo-code, the paging details from Listing 4.3 have been omi�ed from the Get-
Next() function.

matches of the amf are actual matches (i.e., we disregard the false positive
rate), the client is able to reach 100% recall earlier, temporarily tolerating a pre-
cision below 100%. For each of those approximate matches, the client can ex-
press the probability that it is valid, namely 1−p with p the false-positive rate of
the amf. As membership subqueries progress, the client can update the prob-
ability for true positives from 1 − p to 1, and retract false positives by se�ing
their probability to 0. This opportunistic method of providing query results is
important if fast results and eventual full precision are preferred over slower
results with immediate precision. At no point in time, incorrect query results
are presented as correct results of the query.

Figure 4.8 compares regular querying and opportunistic querying. Note in par-

84

4.5. Evaluating Approximate Membership metadata

ticular how both approaches eventually reach 100% recall and precision at the

same time. In other words, even though the opportunistic algorithm temporar-
ily allows uncertain results and thus a precision of less than 100%, the appli-
cation eventually obtains the accurate result set. Also, the application that
receives the result knows at each moment in time whether a result is certain
or not, and can thus decide to either use it or not.

As an example, consider an application that displays photos of artists based on
the results of a certain sparql query. A�er a few http calls, the query client
returns 50 matches, all of which have a probability of 99%. The application can
decide to already start downloading photos of the 50 matching artists, without
displaying them to the user yet. Once 48 of the 50 matches are confirmed, the
48 photos can be displayed immediately; only 2 photos need to be discarded.
The user thus sees the photos faster than if they had only been retrieved a�er
full precision was achieved. This example indicates that opportunistic query
answering has direct concrete uses in Web applications.

4.5 Evaluating Approximate Membership metadata

In the following, we discuss our evaluation of executing sparql queries against
tpf interfaces with an amf feature. From these experiments, we aim to assess
whether amfs are a valuable asset in the metadata dimension. Given the pres-
ence of amfs, the client should be able to omit a portion of requests over http,
which has a direct impact on the overall execution time. We do not expect
much extra load on the server, since an amf using a non-cryptographic hash
function can be computed fast.

4.5.1 Experimental setup

We extended the existing implementations of the tpf client7 and server8 to
support both Bloom filters and Golomb-coded sets. The server is configured
by specifying the amf and the desired false positive probability. We chose the
32-bit MurMurHash3 hash function for gcs and fnv-1 for the Bloom filter for
their ease of implementation. (they perform equivalently in this context). The
server calculates a membership function on the fly for each request for a triple
pa�ern with a single variable.

We ran the experiments with di�erent false positive probabilities p: 1/1024 ≈
0.1%, 1/128 ≈ 1%, and 1/64 ≈ 1.6%. In each experiment, we executed 250 que-
ries generated from 125 diverse WatDiv sparql templates on three interfaces:
(a) regular tpf interface, (b) tpf with Bloom filters, and (c) tpf with gcs. All
three cases were tested with both the original and the optimized client by Van
Herwegen et al. [23]; the last two setups were tested with and without oppor-
tunistic querying. All experiments were run on a single Amazon ec2 machine

7. h�ps://github.com/LinkedDataFragments/Client.js/tree/amq
8. h�ps://github.com/LinkedDataFragments/Server.js/tree/amq

85

https://github.com/LinkedDataFragments/Client.js/tree/amq
https://github.com/LinkedDataFragments/Server.js/tree/amq

4.5. Evaluating Approximate Membership metadata

with an 8-core Intel Xeon e2680 v2 cpu and 15gb ddr3 ram, using a query time-
out of 3 minutes and the WatDiv 100M triples dataset from Aluç et al. [35]. The
http requests were routed through an nginx cache instance to enable http
caching and to enforce a realistic Web bandwidth of 1Mbps per request. We
published the full result logs online9.

metric # requests 1
st

result time (s) 100% recall time (s) total time (s)

queries in group equal lower higher equal lower higher equal lower higher equal lower higher
p=1/1024 81

qrs.
126
qrs.

43
qrs.

177
qrs.

0
qrs.

73
qrs.

152
qrs.

3
qrs.

95
qrs.

154
qrs.

1
qry.

95
qrs.

orig. group avg. 2,953 45,213 24,312 1 – 7 96 134 67 96 42 67

avg. di�erence –15,217 +10 – +6 –41 +23 –32 +22

p=1/128 79
qrs.

134
qrs.

37
qrs.

173
qrs.

0
qrs.

77
qrs.

150
qrs.

3
qrs.

97
qrs.

153
qrs.

1
qry.

96
qrs.

orig. group avg. 1,469 44,712 23,623 0 – 7 97 134 66 98 42 66

avg. di�erence

–14,210

+5 – +5 –28 +24 –32 +23

p=1/64 80
qrs.

129
qrs.

41
qrs.

174
qrs.

0
qrs.

76
qrs.

152
qrs.

3
qrs.

95
qrs.

156
qrs.

1
qry.

93
qrs.

orig. group avg.

2,340 44,842 24,626

1 – 7 96 134 66 97 42 66

avg. di�erence

–13,341

+15 – +4 –41 +21 –33 +21

Table 4.3: Comparison of regular tpf versus tpf with Bloom filter setup (greedy tpf
algorithm)

metric # requests 1
st

result time (s) 100% recall time (s) total time (s)

queries in group equal lower higher equal lower higher equal lower higher equal lower higher
p=1/1024 83

qrs.
123
qrs.

44
qrs.

195
qrs.

0
qrs.

55
qrs.

160
qrs.

0
qrs.

90
qrs.

167
qrs.

0
qrs.

83
qrs.

orig. group avg.

2,271 45,598 26,919

1 – 10 94 – 70 91 – 72

avg. di�erence

–11,761

+18 – +8 – +15 – +16

p=1/128 83
qrs.

132
qrs.

35
qrs.

196
qrs.

0
qrs.

54
qrs.

154
qrs.

0
qrs.

96
qrs.

153
qrs.

0
qrs.

97
qrs.

orig. group avg.

2,152 45,924 21,168

1 – 11 96 – 67 98 – 66

avg. di�erence

–11,594

+5 – +8 – +16 – +16

p=1/64 81
qrs.

122
qrs.

47
qrs.

199
qrs.

0
qrs.

51
qrs.

167
qrs.

2
qrs.

81
qrs.

164
qrs.

2
qrs.

84
qrs.

orig. group avg.

2,930 45,032 26,602

1 – 11 91 122 72 93 122 70

avg. di�erence

–10,521

+31 – +7 –3 +13 –3 +12

Table 4.4: Comparison of regular tpf versus tpf with gcs setup (greedy tpf algorithm)

4.5.2 Impact on the number of http requests

Tables 4.3 to 4.6 summarize the results of the experiments. They compare each
amf-enabled setup against a regular tpf client/server setup, grouping each of
the 250 queries on whether they resulted in an equal, lower, or higher mea-
surement for (a) number of requests, (b) time to first result, (c) time to 100%

9. h�ps://github.com/LinkedDataFragments/TPF-Membership-Metadata-Results

86

https://github.com/LinkedDataFragments/TPF-Membership-Metadata-Results

4.5. Evaluating Approximate Membership metadata

metric # requests 1
st

result time (s) 100% recall time (s) total time (s)

queries in group equal lower higher equal lower higher equal lower higher equal lower higher
p=1/1024 82

qrs.
155
qrs.

13
qrs.

166
qrs.

0
qrs.

84
qrs.

200
qrs.

0
qrs.

50
qrs.

173
qrs.

0
qrs.

77
qrs.

orig. group avg.

1,590 18,240 11,387

1 – 5 120 – 71 110 – 69

avg. di�erence

–4,920

+2 – +5 – +21 – +18

Table 4.5: Comparison of regular tpf versus tpf with Bloom filter setup (optimized tpf
algorithm)

metric # requests 1
st

result time (s) 100% recall time (s) total time (s)

queries in group equal lower higher equal lower higher equal lower higher equal lower higher
p=1/1024 87

qrs.
147
qrs.

16
qrs.

199
qrs.

0
qrs.

51
qrs.

203
qrs.

0
qrs.

47
qrs.

209
qrs.

0
qrs.

41
qrs.

orig. group avg.

2,743 18,326 10,816

1 – 9 120 – 74 114 – 88

avg. di�erence

–1,154

+3 – +5 – +14 – +11

Table 4.6: Comparison of regular tpf versus tpf with gcs setup (optimized tpf algo-
rithm)

recall (i.e., with opportunistic querying enabled), and (d) total query execu-
tion time. The number of queries per group is indicated, together with their
average measurement value in the regular setup, and the average decrease or
increase in respectively the lower and higher groups. For example, the top-le�
value cell of Table 4.3 shows that, for Bloom filters with p = 1/1024, 126 queries
had a lower number of http requests; for each of these 126 queries, the regu-
lar setup needed on average 45,213 requests, whereas the amf-enabled setup
required 15,217 fewer requests.

Our experiments show that, with p = 1/1024, amfmetadata decreases the num-
ber of http calls for roughly half of all considered queries (Bloom: 126 queries
or 50.4%; gcs: 123 queries or 49.2%). As expected from the analysis in Sec-
tion 4.4, those queries that benefit from improvements are queries with rela-
tively many http requests: the average number of requests per query in the
lower group is 45,213 (gcs: 45,598), compared to 2,953 (gcs: 2,271) for que-
ries that do not improve. The improvements let us conclude that a substantial
number of these 45,000+ requests per query were membership subqueries; the
amf-based query algorithm manages to decrease their number by 15,217 (gcs:
11,761) on average. 43 queries (gcs: 43) result in a slightly higher number of re-
quests, albeit negligible compared to the total number: 10 versus 24,312 (gcs:
18 / 26,919). Note that in general, the number of requests per query is very
high because of the potentially high number of results in the WatDiv dataset.
While numbers of this scale clearly highlight query pa�erns, many real-world
queries can be evaluated with tighter constraints.

A similar pa�ern arises with the optimized tpf algorithm [23], which consumes
fewer http requests overall because of full client-side joins, but has potentially
longer query times for the same reason. Even more queries benefit from lower

87

4.5. Evaluating Approximate Membership metadata

request numbers: 155 (62%) for Bloom and 147 (58.8%) for gcs. We see a reduc-
tion of roughly the same ratio, both with Bloom filters and gcs, although the
absolute request numbers are lower.

The observations generalize to the cases for p = 1/128 and p = 1/64, albeit with
slightly di�erent observations. As is expected from a higher number of false
positives, we see a decreasing average gain with increasing p. Interestingly,
we see the number of queries with fewer http requests increase slightly for
higher p values; we assume this is correlated with the smaller response size,
which allows for a higher throughput.

4.5.3 Impact on query execution time

In all cases (excluding 1 or 2 exceptions), both the first result times and total
query times remain the same or even increase, contrarily to what we had ex-
pected. As Tables 4.3 and 4.4 indicate, about one in three queries have their
execution time prolonged with about 20 seconds, or a third of their time. This
prolongation is higher for Bloom filters than gcs, which see a more limited
e�ect absolutely (18 seconds) and proportionally (about a quarter). The cause
of these elevated query times is likely the increased response size: since the
server automatically sends amfs for all pa�erns with one variable (even if the
client does not use the amf), the server-side computation time and client-side
retrieval time increase. Given a connection of 1Mbps and on-the-fly amf gen-
eration, as in this experiment, the decreased number of requests is apparently
insu�icient for the considered queries and dataset to result in temporal gains.
This is confirmed by the fact that gcs performs be�er, as gcs representations
are encoded more e�iciently.

Interestingly, higher false-positive probabilities do not have a profound e�ect
on query time. For the given constraints, the higher number of requests seems
to be compensated by the decreased complexity of generating, transferring,
and interpreting amfs. This is an indication that further experimentation with
low probabilities might be beneficial.

The prolonged total query time also hinders the e�ectiveness of opportunistic
querying. Whereas its goal is to achieve full recall earlier—at the expense of
temporarily allowing <100% precision—the slower overall execution prevented
a globally positive result. The potential benefit of opportunistic querying is evi-
denced by the 3 queries that, with Bloom filters, achieve 100% recall 41 seconds—
about a third—earlier. Since opportunistic results have no negative influence
on query time, the increased recall times for ±95 queries must be entirely due
to the slower speed of the amf approach under the 1Mbps and on-the-fly con-
straints. Should we succeed in speeding up amf generation and/or transfer
time, we could expect to see a broader influence of opportunistic results. Fur-
thermore, the number of false positives that needed to be revoked was either
0 or 1 for all of the considered queries, revealing a low temporary impact on
precision.

88

4.6. Conclusion

Further research will need to assess the relation of this observation to on-
the-fly generation and bandwidth, and perhaps also even higher false positive
rates.

4.5.4 Impact on server load

Finally, we measured the average cpu load during query execution for two dif-
ferent amf configurations and two di�erent false positive probabilities. Com-
pared to the normal server cpu usage (9.2%), the amf configurations show an
increase of 1.6% (p = 1/1024), 2% (p = 1/128) and 5.7% (p = 1/64) for Bloom,
and 1% (p = 1/1024), 1.6% (p = 1/128), and 1.9% (p = 1/64) for gcs. This is a
very acceptable overhead which does not impact the server’s low-cost nature.
Bloom has a higher impact than gcs because of the many hashes it needs to
calculate, which apparently outweigh the overhead of Golomb compression.
Note that all amf metadata is created at query time and can still benefit from
pre-computation and/or caching.

4.6 Conclusion

Application development for the Web of Linked Data can be stimulated by
lowering server cost for Web apis to rdf. The resulting cheaper infrastructure
enables more organizations to host queryable Linked Data and at the same
time, ensure a more reliable service through more uptime (Research �es-
tion 1). Triple Pa�ern Fragments (tpf) therefore restricts the granularity of the
interface to ?s ?p ?o pa�erns and provides clients with cardinality metadata.
Hence, tpf introduces a new trade-o� mix for client-side sparql execution with
(a) low server cost; (b) higher execution time; and (c) higher bandwidth usage.

Results show that, with increasing client numbers, the tpf interface gener-
ally has low and more constant cpu load than sparql endpoints during query
execution. �erying also benefits strongly from regular http caching. As ex-
pected, response times are significantly higher, not receiving all results within
the timeout window for some queries. However, they are more stable than with
sparql endpoints and, due to incremental results, cause the first result to drop
in before the timeout. These findings generalize towards real-world datasets
such as dbpedia. A vast majority of queries stays well below the four-second
limit, despite being a�ected by the dataset size. Also, we detected a strong
influence of the query type, especially when non-bgp sparql constructs are
involved. Note that these results were obtained with existing sparql bench-
marks that focus on performance, not server cost, which make these results
even more promising. Overall we can validate Hypothesis 1.

In general, response times correlate with the number of requests; hence, more
requests result in slower query response times, aggravated by the network de-
lay (Research �estion 2). More compact response formats do decrease the
overall overhead, but compressing the reponses by gzip (commonly used within
the http protocol) achieve the same benefits. For typical page sizes (e.g., the

89

4.6. Conclusion

default 100) of a tpf interface, serialization, and deserialization cost even in-
crease to the time per request. Yet, a re-evalution is desired with alternative
query algorithms and the presence of http/2. For certain types of queries, most
of that request overhead are in fact membership subqueries. However, adding
additional Approximate Membership Functions (amf) metadata to the tpf in-
terface does not show immediate improvement. amfs do drastically reduce the
number of requests for half of the tested queries, with some queries experi-
encing li�le overhead thanks to local caching. Hence, these findings validate
Hypothesis 2. Because of long delays introduced to generate amfs, though, the
total execution time is in fact higher on average.

Although it does not a�ect the low-cost nature of the server—cpu load increase
is only limited, real-time computation of amf metadata should be avoided. We
recommend to pre-compute or pre-cache it in advance. Also, serving amfs in a
separate resource, and link to it in the response, could reduce the transfer and
generation overhead. An intelligent client can then decide when to download
and use membership metadata, for example based on the query type. This
avoids a computational overhead for queries that are not improved. Enabling
opportunistic querying can already compensate this: retracting results a�er
validation is rare and only e�ects a small number of results. A separate amf
resource can further exploit the http caching benefits of tpf. While Bloom
filters are preferred for lower computation time, the smaller size of Golomb-
coded sets would prevail in the presence of caching.

With respect to dereferencing, tpf interfaces mitigate the authority issue that
occurs with Linked Data documents; their hypermedia form allows clients to
inquire about any uri, regardless of whether it resides in the server’s dataspace.
Therefore, we can discover information about a given subject in di�erent in-
terfaces. In fact, tpf can be considered as additional constraints to the Linked
Data principles [55]: each tpf with a fixed subject ({ <s> ?p ?o }) has its own
http uri, represents triples about a certain subject, and includes links to other
documents that allow to discover more things (all related tpfs). At the same
time, the interface remains fully compatible with dereferencing. For instance,
dereferencing the url h�p://dbpedia.org/resource/Walt_Disney could result in
an http 303 redirect to the fragment resource h�p://fragments.dbpedia.org/en?
subject=h�p%3A%2F%2Fdbpedia.org%2Fresource%2FWalt_Disney, which con-
tains all triples with this particular url as a subject. Moreover, tpf servers can
present their own (not just dbpedia’s) metadata of Walt Disney; and all re-
sources that have Walt Disney as object.

Finally, the transparent and self-descriptive nature of tpf responses has its
merits. Clients can find out dynamically if this and other features are sup-
ported. This was illustrated by adding amf metadata to the existing tpf inter-
face. The server can choose freely whether or not to add metadata to a certain
response; clients can reactively use metadata when possible, or ignore it when
they do not support or need it.

90

http://dbpedia.org/resource/Walt_Disney
http://fragments.dbpedia.org/en?subject=http%3A%2F%2Fdbpedia.org%2Fresource%2FWalt_Disney
http://fragments.dbpedia.org/en?subject=http%3A%2F%2Fdbpedia.org%2Fresource%2FWalt_Disney

References

This chapter was partly based on the publications:

Ruben Verborgh, Miel Vander Sande, Olaf Hartig, Joachim Van Herwegen,
Laurens De Vocht, Ben De Meester, Gerald Haesendonck, and Pieter Colpaert.
“Triple Pa�ern Fragments: a Low-cost Knowledge Graph Interface for the Web.”
In: Journal of Web Semantics 37–38 (Mar. 2016), pp. 184–206. issn: 1570-8268.
doi: 10 .1016/ j .websem.2016 .03 .003. url: h�p: / / linkeddatafragments .org/
publications/jws2016.pdf

Miel Vander Sande, Ruben Verborgh, Joachim Van Herwegen, Erik Mannens,
and Rik Van de Walle. “Opportunistic Linked Data �erying through Approx-
imate Membership Metadata.” In: The Semantic Web – ISWC 2015. Ed. by
Marcelo Arenas et al. Vol. 9366. Lecture Notes in Computer Science. Bethle-
hem, PA: Springer International Publishing, Oct. 2015, pp. 92–110. isbn: 978-3-
319-25006-9. doi: 10.1007/978-3-319-25007-6_6. url: h�p://linkeddatafragments.
org/publications/iswc2015-amf.pdf

References

[1] Carlos Buil-Aranda, Aidan Hogan, Jürgen Umbrich, and Pierre-Yves Van-
denbussche. “sparqlWeb-�erying Infrastructure: Ready for Action?”
In: The 12

th
International Semantic Web Conference. Ed. by Harith Alani,

Lalana Kagal, Achille Fokoue, Paul Groth, Chris Biemann, Josiane Xavier
Parreira, Lora Aroyo, Natasha Noy, Chris Welty, and Krzysztof Janowicz.
Nov. 2013.

[2] Olaf Hartig. “An Overview on Execution Strategies for Linked Data �e-
ries.” In: Datenbank-Spektrum 13.2 (2013), pp. 89–99.

[3] Yannis E Ioannidis. “�ery optimization.” In: ACM Computing Surveys

(CSUR) 28.1 (1996), pp. 121–123.

[4] Yannis Ioannidis. “The History of Histograms (Abridged).” In: The 29
th

International Conference on Very Large Data Bases. Vol. 29. VLDB ’03.
Berlin, Germany: VLDB Endowment, 2003, pp. 19–30. isbn: 0-12-722442-
4. url: h�p://dl.acm.org/citation.cfm?id=1315451.1315455.

[5] Ruben Verborgh, Erik Mannens, and Rik Van de Walle. “Bo�om-up Web
apis with self-descriptive responses.” In: The 6

th
International Workshop

on Modeling Social Media. Feb. 2015.

[6] Roy Thomas Fielding. rest apis must be hypertext-driven. Oct. 2008. url:
h�p:/ / roy.gbiv.com/untangled/2008/rest- apis- must- be- hypertext-
driven.

[7] Ruben Verborgh, Olaf Hartig, Ben De Meester, Gerald Haesendonck,
Laurens De Vocht, Miel Vander Sande, Richard Cyganiak, Pieter Col-
paert, Erik Mannens, and Rik Van de Walle. “�erying Datasets on the
Web with High Availability.” In: The 13

th
International Semantic Web Con-

ference. Ed. by Peter Mika, Tania Tudorache, Abraham Bernstein, Chris

91

https://doi.org/10.1016/j.websem.2016.03.003
http://linkeddatafragments.org/publications/jws2016.pdf
http://linkeddatafragments.org/publications/jws2016.pdf
https://doi.org/10.1007/978-3-319-25007-6_6
http://linkeddatafragments.org/publications/iswc2015-amf.pdf
http://linkeddatafragments.org/publications/iswc2015-amf.pdf
http://dl.acm.org/citation.cfm?id=1315451.1315455
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

References

Welty, Craig Knoblock, Denny Vrandečić, Paul Groth, Natasha Noy, Krzys-
ztof Janowicz, and Carole Goble. Vol. 8796. Lecture Notes in Computer
Science. Springer, Oct. 2014, pp. 180–196.

[8] Steve Harris and Andy Seaborne. sparql 1.1 �ery Language. Recom-
mendation. World Wide Web Consortium, Mar. 21, 2013. url: h�p : / /
www.w3.org/TR/sparql11-query/.

[9] Javier D. Fernández, Miguel A. Martínez-Prieto, Claudio Gutiérrez, Axel
Polleres, and Mario Arias. “Binary rdf Representation for Publication
and Exchange (hdt).” In: Web Semantics: Science, Services and Agents on

the World Wide Web 19 (Mar. 2013), pp. 22–41.

[10] Luca Ma�eis. Restpark: Minimal restful api for Retrieving rdf Triples.
2013. url: h�p://lma�eis.github.io/restpark/restpark.pdf.

[11] Ruben Verborgh. Triple Pa�ern Fragments. Uno�icial Dra�. Hydra w3c
Community Group, Sept. 29, 2017. url: h�p://www.hydra-cg.com/spec/
latest/triple-pa�ern-fragments/.

[12] Gavin Carothers. rdf 1.1 N-�ads. Recommendation. World Wide Web
Consortium, Feb. 25, 2014. url: h�p://www.w3.org/TR/n-quads/.

[13] Chris Bizer and Richard Cyganiak. rdf 1.1 TriG. Recommendation. World
Wide Web Consortium, Feb. 25, 2014. url: h�p://www.w3.org/TR/trig/.

[14] Manu Sporny, Dave Longley, Gregg Kellogg, Markus Lanthaler, and Ni-
klas Lindström. json-ld 1.0. Recommendation. World Wide Web Con-
sortium, Jan. 16, 2014. url: h�p://www.w3.org/TR/json-ld/.

[15] Markus Lanthaler and Christian Gütl. “Hydra: A Vocabulary for Hyper-
media-Driven Web apis.” In: The 6

th
Workshop on Linked Data on the Web.

Vol. 996. May 2013.

[16] Mike Amundsen. “Hypermedia Types.” In: rest: From Research to Prac-

tice. Ed. by Erik Wilde and Cesare Pautasso. Springer, 2011, pp. 93–116.

[17] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. “Semantics and
Complexity of sparql.” In: ACM Transactions on Database Systems 34.3
(Sept. 2009), 16:1–16:45. issn: 0362-5915.

[18] Pablo Barceló. “�erying Graph Databases.” In: The 32
nd

Symposium on

Principles of Database Systems (PODS). 2013.

[19] Olaf Hartig. “sparql for a Web of Linked Data: Semantics and Com-
putability.” In: The Semantic Web: Research and Applications. Ed. by Elena
Simperl, Philipp Cimiano, Axel Polleres, Oscar Corcho, and Valentina
Presu�i. Springer, 2012, pp. 8–23.

[20] Olaf Hartig. “How Caching Improves E�iciency and Result Complete-
ness for �erying Linked Data.” In: The 4

th
Workshop on Linked Data

on the Web. Ed. by Christian Bizer, Tom Heath, Tim Berners-Lee, and
Michael Hausenblas. Mar. 2011.

92

http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
http://lmatteis.github.io/restpark/restpark.pdf
http://www.hydra-cg.com/spec/latest/triple-pattern-fragments/
http://www.hydra-cg.com/spec/latest/triple-pattern-fragments/
http://www.w3.org/TR/n-quads/
http://www.w3.org/TR/trig/
http://www.w3.org/TR/json-ld/

References

[21] Goetz Graefe. “�ery Evaluation Techniques for Large Databases.” In:
ACM Computing Surveys (CSUR) 25.2 (June 1993), pp. 73–169. issn: 0360-
0300.

[22] Joseph M. Hellerstein, Michael Stonebraker, and James Hamilton. “Ar-
chitecture of a Database System.” In: Foundations and Trends in Databases

1.2 (2007), pp. 141–259. doi: 10.1561/1900000002.

[23] Joachim Van Herwegen, Ruben Verborgh, Erik Mannens, and Rik Van
de Walle. “�ery Execution Optimization for Clients of Triple Pa�ern
Fragments.” In: The 12

th
Extended Semantic Web Conference. Ed. by Fa-

bien Gandon, Marta Sabou, Harald Sack, Claudia d’Amato, Philippe Cu-
dré-Mauroux, and Antoine Zimmermann. June 2015.

[24] Maribel Acosta and Maria-Esther Vidal. “Networks of Linked Data Ed-
dies: An Adaptive Web �ery Processing Engine for rdf Data.” In: The

Semantic Web – ISWC 2015. Ed. by Marcelo Arenas et al. Vol. 9366. Lec-
ture Notes in Computer Science. Springer International Publishing, 2015,
pp. 111–127. isbn: 978-3-319-25006-9.

[25] Orri Erling and Ivan Mikhailov. “Virtuoso: rdf Support in a Native rdbms.”
In: Semantic Web Information Management. Ed. by Roberto de Virgilio,
Fausto Giunchiglia, and Letizia Tanca. Springer, 2010, pp. 501–519. isbn:
978-3-642-04328-4.

[26] Michael Grobe. “rdf, Jena, SPARQL and the Semantic Web.” In: The 37
th

Annual ACM SIGUCCS Fall Conference: Communication and Collabora-

tion. 2009. isbn: 978-1-60558-477-5.

[27] Christian Bizer and Andreas Schultz. “The Berlin sparql benchmark.”
In: International Journal on Semantic Web and Information Systems 5.2
(2009), pp. 1–24.

[28] Fiona Fui-Hoon Nah. “A study on tolerable waiting time: how long are
web users willing to wait?” In: Behaviour & Information Technology 23.3
(2004), pp. 153–163.

[29] Mohamed Morsey, Jens Lehmann, Sören Auer, and Axel-Cyrille Ngonga
Ngomo. “dbpedia sparql Benchmark – Performance Assessment with
Real �eries on Real Data.” In: The 9

th
International Semantic Web Con-

ference. 2011. isbn: 978-3-642-25072-9.

[30] David Becke�. rdf 1.1 N-Triples. Recommendation. World Wide Web
Consortium, Feb. 25, 2014. url: h�p://www.w3.org/TR/n-triples/.

[31] David Becke�, Tim Berners-Lee, Eric Prudh́ommeaux, and Gavin Ca-
rothers. rdf 1.1 Turtle. Recommendation. World Wide Web Consortium,
Feb. 25, 2014. url: h�p://www.w3.org/TR/turtle/.

[32] Andy Seaborne. rdf Binary using Apache Thri�. Ed. by Andy Seaborne.
Sept. 29, 2017. url: h�p://afs.github.io/rdf-thri�.

[33] Jeen Broekstra. Binary rdf in Sesame. Nov. 2011. url: h�p://www.rivuli-
development.com/2011/11/binary-rdf-in-sesame.

93

https://doi.org/10.1561/1900000002
http://www.w3.org/TR/n-triples/
http://www.w3.org/TR/turtle/
http://afs.github.io/rdf-thrift
http://www.rivuli-development.com/2011/11/binary-rdf-in-sesame
http://www.rivuli-development.com/2011/11/binary-rdf-in-sesame

References

[34] Javier D Fernández, Alejandro Llaves, and Oscar Corcho. “E�icient rdf
Interchange (eri) Format for rdf Data Streams.” In: The 13

th
Interna-

tional Semantic Web Conference. Ed. by Peter Mika, Tania Tudorache,
Abraham Bernstein, Chris Welty, Craig Knoblock, Denny Vrandečić, Paul
Groth, Natasha Noy, Krzysztof Janowicz, and Carole Goble. Springer,
2014, pp. 244–259.

[35] Güneş Aluç, Olaf Hartig, M Tamer Özsu, and Khuzaima Daudjee. “Di-
versified stress testing of rdf data management systems.” In: The 13

th

International Semantic Web Conference. Ed. by Peter Mika, Tania Tudo-
rache, Abraham Bernstein, Chris Welty, Craig Knoblock, Denny Vran-
dečić, Paul Groth, Natasha Noy, Krzysztof Janowicz, and Carole Goble.
Springer, 2014, pp. 197–212.

[36] Annita N. Wilschut and Peter M. G. Apers. “Dataflow �ery Execution
in a Parallel Main-memory Environment.” In: The 1

st
International Con-

ference on Parallel and Distributed Information Systems. PDIS ’91. Miami,
Florida, USA: IEEE Computer Society Press, 1991, pp. 68–77. isbn: 0-8186-
2295-4. url: h�p://dl.acm.org/citation.cfm?id=382009.383658.

[37] Mike Belshe, Martin Thomson, and Roberto Peon. Hypertext Transfer

Protocol version 2 (http/2). Request For Comments 7540. Internet Engi-
neering Task Force, 2015. url: h�ps://tools.ietf.org/html/rfc7540.

[38] Elias Szabo-Wexler. Approximate Membership of Sets: A Survey. Survey.
Carnegie Mellon University, Jan. 2014. url: h�p://www.cs .cmu.edu/
~lblum/flac/Presentations/Szabo-Wexler_ApproximateSetMembership.
pdf.

[39] Burton H. Bloom. “Space/Time Trade-o�s in Hash Coding with Allow-
able Errors.” In: Communications of the ACM 13.7 (July 1970), pp. 422–
426. issn: 0001-0782. doi: 10.1145/362686.362692.

[40] Felix Putze, Peter Sanders, and Johannes Singler. “Cache-, hash-, and
space-e�icient Bloom filters.” In: Journal of Experimental Algorithmics

14 (2009), p. 4.

[41] Michael Mitzenmacher. “Compressed Bloom filters.” In: Transactions on

Networking 10.5 (2002).

[42] R.G. Gallager and David C. Van Voorhis. “Optimal source codes for geo-
metrically distributed integer alphabets.” In: Transactions on Information

Theory 21.2 (Mar. 1975), pp. 228–230. issn: 0018-9448. doi: 10.1109/TIT.
1975.1055357.

[43] Imen Filali, Francesco Bongiovanni, Fabrice Huet, and Françoise Baude.
“A survey of structured p2p systems for rdf data storage and retrieval.”
In: Trans. large-scale data-and knowledge-centered systems. 2011.

[44] Juan Li and Son Vuong. “OntSum: A Semantic �ery Routing Scheme
in p2p Networks Based on Concise Ontology Indexing.” In: 21

st
Interna-

tional Conference on Advanced Information Networking and Applications

(AINA’07). ieee, May 2007, pp. 94–101. doi: 10.1109/AINA.2007.104.

94

http://dl.acm.org/citation.cfm?id=382009.383658
https://tools.ietf.org/html/rfc7540
http://www.cs.cmu.edu/~lblum/flac/Presentations/Szabo-Wexler_ApproximateSetMembership.pdf
http://www.cs.cmu.edu/~lblum/flac/Presentations/Szabo-Wexler_ApproximateSetMembership.pdf
http://www.cs.cmu.edu/~lblum/flac/Presentations/Szabo-Wexler_ApproximateSetMembership.pdf
https://doi.org/10.1145/362686.362692
https://doi.org/10.1109/TIT.1975.1055357
https://doi.org/10.1109/TIT.1975.1055357
https://doi.org/10.1109/AINA.2007.104

References

[45] Padmashree Ravindra, Seokyong Hong, HyeongSik Kim, and Kemafor
Anyanwu. “E�icient Processing of rdfGraph Pa�ern Matching on MapRe-
duce Platforms.” In: The 2

nd
International Workshop on Data Intensive

Computing in the Clouds. Sea�le, Washington, USA: ACM, 2011, pp. 13–
20. isbn: 978-1-4503-1144-1. doi: 10.1145/2087522.2087527.

[46] Felix Heine. “Scalable p2p based rdf querying.” In: The 1
st

international

conference on Scalable information systems. 2006.

[47] Xiaofei Zhang, Lei Chen, and Min Wang. “Towards e�icient join process-
ing over large rdf graphs using MapReduce.” In: Scientific and Statistical

Database Management. 2012, pp. 250–259.

[48] Hai Huang and Chengfei Liu. “Estimating Selectivity for Joined rdf Triple
Pa�erns.” In: Conference on Information and Knowledge Management (2011),
pp. 1435–1444. doi: 10.1145/2063576.2063784.

[49] Thomas Neumann and Gerhard Weikum. “Scalable Join Processing on
Very Large rdfGraphs.” In: The International Conference on Management

of Data. ACM, 2009, pp. 627–640. isbn: 978-1-60558-551-2. doi: 10.1145/
1559845.1559911.

[50] Cosmin Basca and Abraham Bernstein. “Avalanche: Pu�ing the spirit of
the Web back into Semantic Web querying.” In: Scalable Semantic Web

Knowledge Base Systems. 2010, pp. 64–79.

[51] Katja Hose and Ralf Schenkel. “Towards Benefit-based rdf Source Se-
lection for sparql�eries.” In: The 4

th
International Workshop on Seman-

tic Web Information Management. SWIM ’12. Sco�sdale, Arizona: ACM,
2012, 2:1–2:8. isbn: 978-1-4503-1446-6.

[52] Eyal Oren, Christophe Guéret, and Stefan Schlobach. “Anytime query
answering in rdf through evolutionary algorithms.” In: Lecture Notes in

Computer Science 5318 (2008), pp. 98–113. issn: 0302-9743. doi: 10.1007/
978-3-540-88564-1-7.

[53] Xu Pu, Jianyong Wang, Ping Luo, and Min Wang. “AWETO: E�icient in-
cremental update and querying in rdf storage system.” In: The 20

th
in-

ternational conference on information and knowledge management. ACM,
2011, pp. 2445–2448.

[54] Miel Vander Sande and Ruben Verborgh. LDF Membership Metadata. Un-
o�icial Dra�. Hydra w3c Community Group, 2013. url: h�p : / / www.
hydra - cg . com / spec / latest / linked - data - fragments / membership -
metadata/.

[55] Tim Berners-Lee. Linked Data – Design issues. Ed. by Tim Berners-Lee.
July 27, 2006. url: h�p://www.w3.org/DesignIssues/LinkedData.html
(visited on 06/18/2009).

95

https://doi.org/10.1145/2087522.2087527
https://doi.org/10.1145/2063576.2063784
https://doi.org/10.1145/1559845.1559911
https://doi.org/10.1145/1559845.1559911
https://doi.org/10.1007/978-3-540-88564-1-7
https://doi.org/10.1007/978-3-540-88564-1-7
http://www.hydra-cg.com/spec/latest/linked-data-fragments/membership-metadata/
http://www.hydra-cg.com/spec/latest/linked-data-fragments/membership-metadata/
http://www.hydra-cg.com/spec/latest/linked-data-fragments/membership-metadata/
http://www.w3.org/DesignIssues/LinkedData.html

Shut up, brain. I got friends
now. I don’t need you anymore.

— Lisa Simpson

5
Federation of interfaces

A Web of Linked Data consists of multiple data sources published through multi-

ple interfaces. Hence, virtually integrating datasets through querying a federation

of interfaces has been given much a�ention in research. However, the high costs

of available live queryable Linked Datasets have not yet made this deployable

in practice. Many institutions instead depend on an aggregator to o�er query

access over physically integrated datasets. This chapter argues that virtual in-

tegration is a be�er fit for many data publishers with the right infrastructure,

and therefore investigates Research �estion 3. To enable query execution over

a federation of Triple Pa�ern Fragments interfaces, we introduce and evaluate a

mediator layer that extends current tpf clients (Hypothesis 3). Existing source

selection techniques—determining relevant sources to evaluate a query—are com-

patible with this approach and recommended to be used in conjunction. Hence,

we also provide an overview of the most prominent approaches from literature.

The Web is a fully distributed system—and thus so is the Web of Linked Data.
Within this enormous collection, each data source specializes in its very own
part of the truth. Some of them, like dbpedia [1], contain essential facts about
a broad range of subjects; others, like Linked Open Drug Data [2], o�er a com-
prehensive corpus of triples about highly select topics. This knowledge only
reaches its highest potential when we are able to answer any non-trivial query
across di�erent data sources. As a result, the need for such federated queries

intensifies as the Linked Open Data cloud is trending toward a more decentral-
ized graph structure, with additional linking hubs besides dbpedia arising [3].
Federation is thus necessary to achieve the Web of Data vision [4]: a global,
machine-understandable dataspace with web-scale integration and interoper-
ability.

Unfortunately, we do not see federated querying over distributed interfaces in
practice yet. One reason is that they su�er most from the low availability of live
queryable Linked Datasets. The joint availability of all interfaces is calculated
by the product of their individual availability, thus it can only decrease with

97

5.1. Reviving Virtual integration with low-cost interfaces

the number of sources. Besides that, there is an interoperability issue where
some datasets are published as a sparql endpoint and some are not. Most
data publishers in the lam or Open Data community make their collections of
rdf statements available as Linked Datasets for batch download. Then, one
or more aggregators step in and collect the distributed datasets and publish a
merged dataset either—again—for batch download or as a machine-queryable
endpoint.

This physical integration approach is cost-e�ective for institutions that expose
Linked Datasets and aggregators o�en add value, for example, by performing
data cleansing and mapping equivalent uris. But when the aggregated dataset
is exposed as a centralized query endpoint, it cannot really be considered fed-

erated querying. Furthermore, besides the discussed infrastructure scalability
issues, the approach also has a some important drawbacks.

First, data in di�erent organizations evolves at a di�erent pace. Keeping an
aggregated dataset continuously synchronized with the evolving distributed
datasets is a non-trivial technical challenge [5]; tackling it in a realistic manner
would necessarily involve additional infrastructure (and hence investment) at
the end of the institutions that expose them. Lacking this, at any moment in
time, it is uncertain whether or not an aggregated dataset is in sync with the
state of the datasets it merges.

Second, data publishers o�en fear loosened control when making their Linked
Datasets available for reuse. Considering their own datasets as highly curated,
they might be reluctant to allow a merge with datasets perceived to be of lower
quality—especially in the lam community. In addition, descriptions originat-
ing from di�erent institutions are commonly made available under di�erent li-
censes, making it di�icult to understand what the terms of use for aggregated
descriptions are, especially when licenses are in conflict. Although maintain-
ing the data provenance for the entire aggregation could ensure a basic sense
of control, this burdens institutions to share this information as well.

5.1 Reviving Virtual integration with low-cost interfaces

An interesting alternative for institutions is to expose their Linked Datasets
through their own query endpoints. In this case, client applications query dis-
tributed datasets, benefiting from a uniform query interface. This virtual inte-

gration approach is more expensive for institutions because it requires main-
taining these endpoints. Also, it yields the non-trivial source selection prob-

lem [6], as client applications need to limit the distributed datasets they consult
for any given query in order to balance completeness of results with acceptable
latency.

Source selection is an important step in federated sparql query execution
frameworks [7, 8, 9]. It usually involves pre-computed summaries and/or the
retrieval of extra (meta-)data from the endpoints, and happens as a separate

step before the actual execution. While this step is intended to reduce the num-

98

5.2. Source selection for federated query processing

ber of requests to servers, and hence the overall query evaluation time, source
selection itself also takes time. Since source selection can be performed inde-

pendently of the actual query execution, existing source selection algorithms
can be used in conjunction with di�erent execution strategies.

Despite its issues, virtual integration does not have the significant drawbacks
of physical integration described earlier. If technological advances can be made
that ameliorate problems related to data source selection, uniform access for
clients, and maintenance costs, it is an a�ractive alternative to avoid conflicts
on policy level. Triple Pa�ern Fragments is therefore an interesting approach to
revive the virtual integration strategy. Due to its low-cost server-side interface,
it counters the availability issues of sparql endpoints and makes hosting an
own query endpoint a�ordable.

Federated query processing has been studied in the context of sparql end-
points, where most sparql endpoint federation frameworks apply a client-
server architecture. The tpf query setup from Section 4.2 implements this
paradigm natively, thereby making an extension toward multiples sources
straightforward. Hence, we introduce a tpf-specific federation mediator in Sec-
tion 5.3. First, however, it is important to be aware of what source selection
techniques exists in literature, since such step can optionally precede the pro-
posed mediator.

5.2 Source selection for federated query processing

Source selection determines which interfaces potentially can contribute to the
result set of a particular query, and happens when the list of available dataset
interfaces is known (for instance through manual or automatic discovery; see
Chapter 6). A client evaluates a federated sparql query by decomposing it
in subqueries that retrieve and join partial results. Therefore, this process is
known to be an important performance factor [6]: an overestimation of can-
didate sources can increase execution time, an underestimation can decrease
the recall of results. The exact impact on query performance (e.g., execution
time), however, depends on several aspects, such as the number of sources, the
amount of empty results, source response time, and parallel execution.

Rakhmawati et al. [10] identified three types of federation frameworks: (a) fed-
eration over sparql endpoints, (b) federation using Linked Data traversal, and
(c) federation over custom repository apis. The first type expects all data sources
to be exposed using sparql endpoints. The second type relies on dereference-
able Linked Data documents, exposed by data providers that apply the Linked
Data principles; query results are constructed by following links and looking up
uris. In most federation frameworks, source selection happens triple pa�ern-
wise, i.e. sources are selected for each triple pa�ern in the query, using the four
source-selection strategies, which are discussed below, separately or jointly.

99

5.2. Source selection for federated query processing

ASK queries Schwarte et al. [11] presented FedX, which sends ASK queries
to a predefined list of sources to check whether they contain triples matching
a given pa�ern. Despite the many http requests this requires, it is one of the
best performing systems in terms of execution time.

Dataset profiling To capture important meta-information about a dataset,
compact descriptions (e.g., the Vocabulary of Interlinked Datasets void [12] to
describe rdf datasets) are automatically generated. This includes statistical
properties (e.g., average number of distinct subjects and the co-occurrence fre-
quency of uris in triples), pa�erns (e.g., topics, clusters) [13, 14], and content
information (e.g., present classes and properties). These dataset profiles are
generated by the server, but shipped on-demand to the client. With this infor-
mation, a source selection process can estimate the so-called exclusive groups—
sets of triple pa�erns that only yield results for a specific source—to avoid un-
necessary requests.

The extension [15] to the ANAPSID system [7] gathers information about the
distinct predicates of data sources and applies smart heuristics to estimate the
source selection and improve query planning. Recently, more lightweight sum-
maries are used in HIBISCUS [8]. For each distinct predicate, this approach
gathers uri authorities for the subjects and predicates.

Some works have studied scalable methods to profile huge datasets using
MapReduce [16, 17], employable on heavy infrastructure such as cloud-sys-
tems. Works in this area target a very broad spectrum of applications by gen-
erating as much descriptive information as possible. In contrast, our work puts
infrastructural constraints on publishing Linked Data servers, so it can su�i-
ciently scale on the Web. Limited load, as well as minimal size of the descrip-
tion are preferred to expressiveness.

Data indexing Before or during query execution, the federation system gath-
ers statistics about sources. In contrast to data profiling, the client, not the
server, constructs the metadata with specific queries. One approach is to build
a source model on a schema-level. Paret et al. [18] and Li, Niu, and Zhang
[19] construct a Web of Linked Classes based on classes and their relations,
optionally augmented with instance statistics. Umbrich et al. [20] published
an extensive report on data summaries for live Linked Data querying. Harth et
al. [21] construct QTree indexes, which summarize instance- and schema-level
elements of a dataset in a hierarchical structure combining R-trees [22] and
histograms. �ilitz and Leser [23] presented the early system darq, where an
index of distinct predicates is first composed to select candidate sources.

Caching Cached data can also increase e�iciency for future (partial) re-
execution of queries. Although not using data indexing as such, FedX [11]
extensively caches prior source selection output for this purpose.

100

5.3. �erying a federation of tpf interfaces

�ery Engine

SPARQL Processing

Hypermedia Mediator Layer

Hypermedia Layer A Hypermedia Layer B

HTTP Layer

Resource representation requests

Dataset A Dataset B

Client
Server

Figure 5.1: A mediator layer adds support for querying a federation of tpf interfaces
with an unaltered query engine and http layer.

5.3 �erying a federation of tpf interfaces

As an enhancement to the tpf client introduced in Section 4.2, we propose a
mediator layer to query multiple tpf interface instances with a single query.
A mediator is a so�ware module that abstracts a collection of data resources
for a higher so�ware layer [24], making them independent from each other.
In this case, each tpf interface acts as a datasource wrapper, with the medi-
ator creating a unified tpf view over the interfaces [25]. As a result, the task
of a tpf client when executing a (regular) sparql query over a federation of
tpf interfaces is to compute results identical to those it would obtain when the
query would be evaluated over a single tpf interface that combines the data of
all considered interfaces. That is, a user can “query using a classical query lan-
guage against the federated schema with an illusion that he or she is accessing
a single system” [26].

A�er each query, the list of
eliminated sources is
cleared by default, but it
can also be stored to aid
subsequent queries. In case
sources change, a refresh
strategy should be in place
to ensure completeness.

Figure 5.1 extends the Hypermedia layer from the
original architecture in Figure 4.1. The mediator
federates tpf requests to candidate sources and
uses run time source elimination during query exe-
cution to prevent http requests we know would not
result in a match. Source elimination either refines
the optional source selection step at every iteration
by excluding more specific pa�erns, or, if no prior
source selection was performed, acts as a runtime
optimization.

The client is given a query, and a pre-defined list of tpf interfaces (instead of
a single tpf interface). The mediator creates an abstraction layer to the frag-

101

5.4. Experiments

ment request operation: all interfaces are exposed to the query algorithm as a
single interface. Initially, all interfaces are marked as possible candidates for
each triple pa�ern (unless explicitly ruled out by the optional source selection
step). Each time the client requests a tpf, the mediator consults all candidate
interfaces for the same triple pa�ern.

When a tpf interface returns an empty fragment for a certain triple pa�ern, it
becomes an eliminated source for that pa�ern, which is stored in an interface-
specific elimination list. For each triple pa�ern requested from this interface,
we check the elimination list for a possible ancestor pa�ern. A tpa is an ances-
tor of tpb if each term of tpa is either a variable or equal to the corresponding
term of tpb . If an ancestor pa�ern is found, the interface is no longer marked
as a candidate, since it has no matches for the ancestor pa�ern, nor for more
specific pa�erns.

For all interfaces, the fragments’ data and metadata are merged in a non-
blocking way. As if processing a single Triple Pa�ern Fragment, all triples are
read from a single iterator, regardless of when they arrive, or from which source
they originate. This iterator is depleted when all sources are probed and the
last data triple is consumed. The mediator is therefore non-blocking: the first
results can already be processed before the iterator is depleted..

The count metadata are combined into a single value using an aggregation
function #(tpj), which is a cost function that can be optimized to the type
of interface. For example, #(tpj) can be a weighted sum, taking into account
practical di�erences between N servers, such as response time, page size, etc.
In our implementation, we chose an ordinary sum for simplicity; i.e., #(tpj) =
∑N
i=1 cntij .

5.4 Experiments

We conclude this chapter by evaluating whether Triple Pa�ern Fragments can
o�er an e�icient architecture for sparql query evaluation over a federation of
interfaces. Hence, we aim at results in recall and query execution time similar
to state-of-the-art sparql query federation frameworks under public network
latency.

5.4.1 Experimental setup

We implemented the mediator approach from Section 5.3 in the tpf client
(with source elimination, but without source selection), which now accepts a
set of tpf interfaces and a sparql query. As the previously considered bench-
marks only use a single knowledge graph, we chose the popular FedBench
benchmark [27]. FedBench relies on real-world authoritative datasets that are
prominent in the Web of Linked Data and provides a federated query mix. The

102

5.4. Experiments

distinct # distinct # distinct

dataset # triples subjects predicates objects

DBPedia subset 42,849,609 9,495,865 1,063 13,620,028
NY Times 335,206 21,666 36 191,538
LinkedMDB 6,147,996 694,400 222 2,052,959
Jamendo 1,049,647 335,925 26 440,686
Geonames 107,950,085 7,479,714 26 35,799,392
SW Dog Food 103,465 11,974 118 37,547
KEGG 1,090,830 34,260 21 939,258
Drugbank 517,023 19,693 119 276,142
ChEBI 4,772,706 50,477 28 772,138
SP2B-10M 10,000,457 1,730,250 77 4,690,662

Table 5.1: The FedBench datasets available at h�p://fedbench.fluidops.net/resource/
Datasets

original datasets1 were first cleaned through the lod Laundromat service [28],
since some of them contained invalid rdf. An overview is given in Table 5.1.

Then, each dataset was published through a tpf api on a dedicated Amazon
ec2 machine (2 virtual cpus, 7.5 gb ram) located in the US, each running their
own http cache.

The client can execute the same (regular) sparql queries as in the single-server
scenario, i.e., queries without the SERVICE keyword. The query-mix contains
the Linked Data (LD), Life Science (LS), and Cross Domain (CD) queries from
FedBench, appended with the complex queries (C) by Montoya et al. [29].
The complete query-mix was ran 20 times in sequence on the public Web,
accessed from a desktop computer in Belgium in order to represent realistic
long-distance latency. Per executed query, the client cache was cold and the
timeout was set to 5 minutes.

We compare our measurements with numbers reported by Castillo et al. [30],
who tested the following sparql endpoint federation systems: ANAPSID [7],
ANAPSID EG (ANAPSID using Exclusive Groups), FedX [11] (with a warmed-
up cache), and SPLENDID [31]. Castillo et al. obtained their measurements
with one client and 10 SPARQL endpoints on di�erent machines in a fast local
network. We opted to perform our tests on a public network in order to validate
the federated tpf solution within the context of the Web. Measuring recall and
execution time on the Web gives an indication of the practical feasibility of
real-world tpf-based federation, and a comparison with measurements of the
state-of-the-art on a closed network positions tpf relative to an ideal baseline
without connection delays.

103

http://fedbench.fluidops.net/resource/Datasets
http://fedbench.fluidops.net/resource/Datasets

5.4. Experiments

T
P

F

A
N

A
P

S
I
D

A
N

A
P

S
I
D

E
G

F
e

d
X

(
w

a
r
m

)

S
P

L
E

N
D

I
D

LD1 1.00 1.00 1.00 1.00 1.00
LD2 0.99 1.00 1.00 1.00 1.00
LD3 1.00 1.00 1.00 1.00 0.98
LD4 1.00 1.00 1.00 1.00 1.00
LD5 1.00 0.00 0.00 1.00 1.00
LD6 1.00 0.00 0.00 1.00 1.00
LD7 1.00 0.00 0.09 1.00 1.00
LD8 1.00 1.00 1.00 1.00 1.00
LD9 1.00 1.00 1.00 1.00 1.00
LD10 1.00 1.00 1.00 1.00 1.00
LD11 1.00 1.00 0.00 1.00 1.00
LS1 1.00 1.00 1.00 1.00 1.00
LS2 0.99 0.88 0.88 0.88 0.88
LS3 0.24 1.00 1.00 1.00 1.00
LS4 1.00 1.00 1.00 1.00 1.00
LS5 0.99 1.00 0.00 1.00 1.00
LS6 1.00 0.00 0.00 1.00 1.00
LS7 1.00 1.00 1.00 0.09 1.00
CD1 0.99 0.97 0.97 0.95 0.97
CD2 1.00 1.00 1.00 1.00 1.00
CD3 1.00 0.60 1.00 0.80 0.60
CD4 1.00 0.00 0.00 1.00 1.00
CD5 1.00 0.00 0.00 1.00 1.00
CD6 1.00 0.00 0.00 1.00 1.00
CD7 1.00 0.00 0.00 0.50 0.50
C1 0.02 1.00 0.00 0.00 0.02
C2 0.93 1.00 0.00 0.00 1.00
C3 1.00 0.00 0.00 0.00 1.00
C4 0.00 1.00 0.00 0.00 0.00
C5 1.00 1.00 0.00 0.00 1.00
C6 0.77 1.00 1.00 0.00 1.00
C7 0.00 1.00 0.00 0.00 0.00
C8 0.01 1.00 0.00 0.00 0.00
C9 0.01 0.00 0.00 0.00 0.00
C10 0.00 0.00 0.00 0.00 0.00

queries

= 1.00 22 21 14 20 24
≥ 0.90 27 23 15 21 26
≥ 0.10 30 24 16 24 30
> 0.00 32 24 17 25 32

Table 5.2: Recall of FedBench query execution on the tpf client/server setup tested on
the public Web compared to sparql endpoint federation systems (timeout of
300s). All occurrences of incomplete recall are highlighted. The tpf-related
measurements were performed in the context of this dissertation; the num-
bers for the other four systems are adapted from [30].

104

5.4. Experiments

5.4.2 Recall

Table 5.2 shows the average result recall for each query. For the queries LD,
LS, and CD, the tpf setup reaches a recall of 99% or 100% for all queries except
LS3, which reaches only 24% before it timeouts. Most C queries have low recall
(6 queries have close to 0%), except for C3 and C5 that reach 100%. In total,
13 queries have less than 100% recall, the causes of which can be assigned into
three categories. First, 6 queries (LS3, LS5, C2, C4, C7, C9) time out before all
results have been computed. Especially for the complex queries, this is due to
the amount of data needed by the client to complete the algorithm. Second,
three queries (CD1, LD2, LS2) achieve 100% in most runs, but less than 100%
in some. This is likely due to the client sending many requests out at once,
which can sometimes not all be answered in time. Third, 4 queries (C1, C6,
C8, C10) stop before the timeout without full recall. They cause the client
to send out so many simultaneous requests that these do not all complete in
time, causing the client to abort the execution. The last two causes indicate
the client’s vulnerability to single request time-outs, leading to the omission of
(partial) results. In general, the low recall on the C queries is explained by large
numbers of joins (C1) and/or the presence of complex optional statements
(C6, C7, C8, C9, C10). This requires a large number of triples from all servers,
making request time-outs more likely.

Comparing these (real-Web-based) recall measurements to Castillo et al.’s re-
sults for state-of-the-art SPARQL endpoint federation systems in a fast local
network [30], we observe the following. Overall, tpf and SPLENDID have the
highest number of queries with > 0% and ≥ 10% recall (32 and 30 queries, re-
spectively), tpf has the highest number of queries with ≥ 90% recall (27), and
only SPLENDID has more queries with complete results (24). For the LD que-
ries, the tpf setup is the only one not obtaining 100% recall for LD2. On the
other hand, all other systems except FedX have less than 100% recall for some
of the other LD queries that the tpf setup evaluates with full completion. For
the LS queries, none of the systems obtain 100% recall for LS2. The LS3 query,
for which tpf only has 24% recall, is evaluated completely by all others. For the
CD queries, tpf has the highest recall in all cases and only has less than 100%
average recall for CD1. Especially ANAPSID and ANAPSID EG score badly on
CD queries. In contrast, the C queries are problematic for most systems except

ANAPSID, which achieves 100% recall for 7 out of 10 queries. This contrast for
FedX (and ANAPSID EG) with results of the other queries is related to their
usage of exclusive groups [11], which is not always the best strategy for the
complex queries [15] as estimation errors are more likely to occur. Remark-
ably, tpf and SPLENDID are the only ones to achieve 100% recall for C3, for
which ANAPSID and FedX do not find results. Finally, none of the systems
seem to obtain significant recall for C7–C10, with the exception of ANAPSID
for C7 and C8.

1. h�ps://code.google.com/p/fbench/wiki/Datasets

105

https://code.google.com/p/fbench/wiki/Datasets

5.4. Experiments

LD1 LD2 LD3 LD4 LD5 LD6 LD7 LD8 LD9 LD10LD11 CD1 CD2 CD3 CD4 CD5 CD6 CD7

50

100

e
x

e
c
u

t
i
o

n
t
i
m

e
(
s
)

300 300 300 300

LS1 LS2 LS3 LS4 LS5 LS6 LS7 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

0
50
100
150
200
250
300

e
x

e
c
u

t
i
o

n
t
i
m

e
(
s
)

TPF ANAPSID ANAPSID EG FedX SPLENDID

Figure 5.2: Evaluation times of FedBench query execution on the tpf client/server
setup compared to SPARQL endpoint federation systems (timeout of 300s).
These measurements should be considered together with the recall for each
query (Table 5.2). The tpf-related measurements were performed in the
context of the public Web; the numbers for the four SPARQL endpoint fed-
eration systems are adopted from [30].

5.4.3 Execution time

Next, we study the total query execution times. Our intention is to relate cur-
rent query execution over tpf collections to the state-of-the-art in sparql end-
point federation systems. Hence, we compare to recently published results for
the same queries [30].

Figure 5.2 presents the execution times for all FedBench queries, measured in
seconds. The general trend is that the tpf client performs in between ANAPSID
(lower bound) and ANAPSID EG (upper bound). tpf is occasionally faster than
SPLENDID (LD1, LD3, and notably C5), but sometimes several times as slow
(LD7, CD6, LS5, LS7). We should, however, recall that we compare against a tpf
setup on a public network, so the tpf measurements include network delay.
FedX with a warmed-up cache outperforms all systems for most queries, with
a few notable exceptions such as C6. The timings in Figure 5.2 should, however,
be considered together with the recall in Table 5.2, since not all results might
have been obtained in a shorter execution time. FedX, for instance, does not
find results for the C queries. A likely explanation for this di�erence is again
FedX’s usage of exclusive groups.

Considering the added network delay, a number of queries show promise: CD1,

106

5.5. Conclusion

CD2, CD4, LD2, LD5, LD6, LD8, LD9, LD10, LS1, LS2, LS4, and LS6. These que-
ries are answered in less than 4 seconds. This execution time is comparable to
that of ANAPSID and SPLENDID, and even approximates FedX. A likely expla-
nation is the presence of highly selective triple pa�erns in the query, for which
the simplicity of tpf requests seems to compensate the overhead of query plan-
ning in other systems. For other queries (CD5, CD7, LD1, LD3), the tpf client
performs worse than ANAPSID and SPLENDID, but remains within compara-
ble bounds. A probable cause is the presence of pa�erns like ?x rdf:type ?y,
which can be answered by all data sources. Thus, other systems clearly benefit
from prior source selection, which the current tpf client does not use.

For the remaining regular FedBench queries, the tpf client distinctly reveals its
limitations. These queries (LS3, LS5) time out, or execute significantly slower
(CD3, CD6, LD7, LS7) than SPARQL endpoint federation systems. They con-
tain common predicates like owl:sameAs or foaf:name that trigger requests to
all interfaces. Additionally, a high number of subject joins causes ine�icien-
cies, since they potentially produce many membership requests to all sources,
checking whether a triple is present or not. A possible enhancement is to in-
clude metadata that prevents this, such as the Approximate Membership meta-
data discussed in Section 4.4, at the expense of a more costly server-side in-
terface. Another cause is the presence of a FILTER statement (LS7), which is
currently executed client-side. This indicates room for interface extensions for
such clauses [32].

The limitations of tpf become more apparent with the C queries, 4 of which
time out and another 4 end prematurely (as discussed above). The high num-
ber of produced http requests (3,692 on average) caused by the many triple
pa�erns, contributes significantly to this delay. SPLENDID, FedX, and ANAP-
SID show similar results, but fail on di�erent queries. For the queries where
tpf reaches complete recall (C3, C5), the total execution time is comparable
and even outperforms ANAPSID.

These findings, measured on the public Web, motivate a more in-depth study
of complex queries for tpf, to discover possible client or server enhancements.
In general, though, we notice that the performance gap observed with the
single-server experiments in Section 4.3 becomes smaller in the case of fed-
eration. This indicates that the native query decomposition of tpf, combined
with light requests and metadata, is more e�ective in federated environments,
and should be examined further.

5.5 Conclusion

In a Web of Linked Data, querying federations of Linked Data sources is a ne-
cessity. Federated query processing approaches for sparql endpoints employ
a client-server architecture where a single client queries multiple endpoints.
However, these approaches are not deployable in practice due to the reliability

107

5.5. Conclusion

issues endpoints face. This is currently compensated with physical integration,
i.e., data aggregation by a central party.

Nonetheless, we argue the problem is architectural and continue to propose a
shi� to a virtual integration to consolidate data silos, i.e., composing a consumer
view over distributed datasets that remain in control of the data publishers.
The tendency to conflict on a policy level (e.g., challenging metadata custody
and control), synchronization problems, and high infrastructural costs make
physical integration particularly troublesome. Virtual integration is an a�rac-
tive alternative considering the meaningful steps taken in this work to o�er
low-cost, practical solutions for many publishers. Even though at this point not
all drawbacks of virtual integration can be addressed, technological advances
are being made that ameliorate problems related to data source selection, uni-
form access for clients, and further improve maintenance costs. Triple Pa�ern
Fragments o�ers low server cost and implements the client-server architecture
natively; it hence o�ers an infrastructure more suitable to apply these advance-
ments on than the current queryable interfaces (Research �estion 3).

When tested on a public Web, the tpf client shows a competitive recall com-
pared to the state-of-the-art sparql federation systems and certain queries
even perform comparably—despite performance not being the main concern.
Even without a prior source selection step; the client’s run time source elimina-
tion of sources with zero-result ancestor pa�erns seems adequate for a number
of cases. These findings validate Hypothesis 3.

Be�er query optimization or limited interface extensions could further improve
the situation. Furthermore, an existing source selection strategy could be in-
corporated beforehand in order to reduce the number of considered sources but
doing so might involve additional metadata and/or computations, and thereby
influence the measured parameters.

108

References

This chapter was partly based on the publications:

Ruben Verborgh, Miel Vander Sande, Olaf Hartig, Joachim Van Herwegen,
Laurens De Vocht, Ben De Meester, Gerald Haesendonck, and Pieter Colpaert.
“Triple Pa�ern Fragments: a Low-cost Knowledge Graph Interface for the Web.”
In: Journal of Web Semantics 37–38 (Mar. 2016), pp. 184–206. issn: 1570-8268.
doi: 10 .1016/ j .websem.2016 .03 .003. url: h�p: / / linkeddatafragments .org/
publications/jws2016.pdf

Miel Vander Sande, Ruben Verborgh, Anastasia Dimou, Pieter Colpaert, and
Erik Mannens. “Hypermedia-based discovery for source selection using low-
cost Linked Data interfaces.” In: International Journal on Semantic Web and

Information Systems 12.3 (2016), pp. 79–110. issn: 1552-6283. doi: 10 . 4018 /
ijswis.2016070103

References

[1] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian
Becker, Richard Cyganiak, and Sebastian Hellmann. “dbpedia—A crys-
tallization point for the Web of Data.” In: Web Semantics: Science, Ser-

vices and Agents on the World Wide Web 7.3 (2009), pp. 154–165. url:
h�p://www.websemanticsjournal.org/index.php/ps/article/view/164.

[2] M Sco� Marshall, Richard Boyce, Helena F Deus, Jun Zhao, Egon L Wil-
lighagen, Ma�hias Samwald, Elgar Pichler, Janos Hajagos, Eric
Prudh́ommeaux, and Susie Stephens. “Emerging practices for mapping
and linking life sciences data using rdf—A case series.” In: Web Seman-

tics: Science, Services and Agents on the World Wide Web 14 (2012), pp. 2–
13.

[3] Max Schmachtenberg, Christian Bizer, and Heiko Paulheim. “Adoption
of the Linked Data Best Practices in Di�erent Topical Domains.” English.
In: International Semantic Web Conference. 2014, pp. 245–260. isbn: 978-
3-319-11963-2. doi: 10.1007/978-3-319-11964-9_16.

[4] Tom Heath and Christian Bizer. “Linked data: Evolving the web into a
global data space.” In: Synthesis lectures on the Semantic Web: theory and

technology 1.1 (2011), pp. 1–136.

[5] Martin Klein, Robert Sanderson, Herbert Van de Sompel, and Michael
L. Nelson. “Real-Time Notification for Resource Synchronization.” In:
CoRR abs/1402.3305 (2014). url: h�p://arxiv.org/abs/1402.3305.

[6] Muhammad Saleem, Yasar Khan, Ali Hasnain, Ivan Ermilov, and Axel-
Cyrille Ngonga Ngomo. “A fine-grained evaluation of sparql endpoint
federation systems.” In: Semantic Web Journal 7.5 (2016), pp. 493–518.

109

https://doi.org/10.1016/j.websem.2016.03.003
http://linkeddatafragments.org/publications/jws2016.pdf
http://linkeddatafragments.org/publications/jws2016.pdf
https://doi.org/10.4018/ijswis.2016070103
https://doi.org/10.4018/ijswis.2016070103
http://www.websemanticsjournal.org/index.php/ps/article/view/164
https://doi.org/10.1007/978-3-319-11964-9_16
http://arxiv.org/abs/1402.3305

References

[7] Maribel Acosta, Maria-Esther Vidal, Tomas Lampo, Julio Castillo, and
Edna Ruckhaus. “ANAPSID: An Adaptive �ery Processing Engine for
sparql Endpoints.” In: The Semantic Web – ISWC 2011. Ed. by Lora Aroyo,
Chris Welty, Harith Alani, Jamie Taylor, Abraham Bernstein, Lalana Ka-
gal, Natasha Noy, and Eva Blomqvist. Vol. 7031. Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, 2011, pp. 18–34. isbn: 978-3-
642-25072-9.

[8] Muhammad Saleem and Axel-Cyrille Ngonga Ngomo. “Hibiscus: Hyper-
graph-based source selection for SPARQL endpoint federation.” In: The

Semantic Web: Trends and Challenges. Springer, 2014, pp. 176–191.

[9] Katja Hose and Ralf Schenkel. “Towards Benefit-based rdf Source Se-
lection for sparql�eries.” In: The 4

th
International Workshop on Seman-

tic Web Information Management. SWIM ’12. Sco�sdale, Arizona: ACM,
2012, 2:1–2:8. isbn: 978-1-4503-1446-6.

[10] Nur Aini Rakhmawati, Jürgen Umbrich, Marcel Karnstedt, Ali Hasnain,
and Michael Hausenblas. “A comparison of federation over sparql end-
points frameworks.” In: International Conference on Knowledge Engineer-

ing and the Semantic Web. Springer. 2013, pp. 132–146.

[11] Andreas Schwarte, Peter Haase, Katja Hose, Ralf Schenkel, and Michael
Schmidt. “FedX: Optimization Techniques for Federated �ery Process-
ing on Linked Data.” In: The Semantic Web – ISWC 2011. Ed. by Lora
Aroyo, Chris Welty, Harith Alani, Jamie Taylor, Abraham Bernstein, La-
lana Kagal, Natasha Noy, and Eva Blomqvist. Vol. 7031. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2011, pp. 601–616. isbn:
978-3-642-25072-9. doi: 10.1007/978-3-642-25073-6_38.

[12] Keith Alexander, Richard Cyganiak, Michael Hausenblas, and Jun Zhao.
Vocabulary of Interlinked Datasets (void). Interest Group Note. World
Wide Web Consortium, Mar. 3, 2011. url: h�p://www.w3.org/TR/void/.

[13] Christoph Böhm, Gjergji Kasneci, and Felix Naumann. “Latent topics
in graph-structured data.” In: The 21

st
ACM international conference on

Information and knowledge management. ACM, 2012, pp. 2663–2666.

[14] Besnik Fetahu, Stefan Dietze, Bernardo Pereira Nunes, Marco Antonio
Casanova, Davide Taibi, and Wolfgang Nejdl. “A scalable approach for
e�iciently generating structured dataset topic profiles.” In: The Semantic

Web: Trends and Challenges. Springer, 2014, pp. 519–534.

[15] Gabriela Montoya, Maria-Esther Vidal, and Maribel Acosta. “A Heuristic-
Based Approach for Planning Federated sparql �eries.” In: The 3

rd
In-

ternational Workshop on Consuming Linked Data. Ed. by Juan F. Sequeda,
Andreas Harth, and Olaf Hartig. Nov. 2012.

[16] Christoph Böhm, Johannes Lorey, and Felix Naumann. “Creating void
descriptions for Web-scale data.” In: Web Semantics: Science, Services and

Agents on the World Wide Web 9.3 (2011), pp. 339–345.

110

https://doi.org/10.1007/978-3-642-25073-6_38
http://www.w3.org/TR/void/

References

[17] Benedikt Forchhammer, Anja Jentzsch, and Felix Naumann. “LODOP-
Multi-�ery Optimization for Linked Data Profiling �eries.” In: Inter-

national Workshop on Dataset PROFIling and fEderated Search for Linked

Data (PROFILES), Heraklion, Greece. 2014.

[18] Elien Paret, William Van Woensel, Sven Casteleyn, Beat Signer, and Olga
De Troyer. “E�icient �erying of Distributed rdf Sources in Mobile Set-
tings based on a Source Index Model.” In: The 2

nd
International Confer-

ence on Ambient Systems, Networks and Technologies. Vol. 5. 2011, pp. 554–
561.

[19] Xuejin Li, Zhendong Niu, and Chunxia Zhang. “Towards E�icient Dis-
tributed sparql �eries on Linked Data.” English. In: Algorithms and Ar-

chitectures for Parallel Processing. Ed. by Xian-he Sun, Wenyu �, Ivan
Stojmenovic, Wanlei Zhou, Zhiyang Li, Hua Guo, Geyong Min, Tingt-
ing Yang, Yulei Wu, and Lei Liu. Vol. 8631. Lecture Notes in Computer
Science. Springer International Publishing, 2014, pp. 259–272. isbn: 978-
3-319-11193-3.

[20] Jürgen Umbrich, Katja Hose, Marcel Karnstedt, Andreas Harth, and Axel
Polleres. “Comparing Data Summaries for Processing Live �eries over
Linked Data.” In: World Wide Web 14.5–6 (2011), pp. 495–544.

[21] Andreas Harth, Katja Hose, Marcel Karnstedt, Axel Polleres, Kai-Uwe
Sa�ler, and Jürgen Umbrich. “Data Summaries for On-demand �eries
over Linked Data.” In: The 19

th
International Conference on World Wide

Web. WWW ’10. Raleigh, North Carolina, USA: ACM, 2010, pp. 411–420.
isbn: 978-1-60558-799-8.

[22] Antonin Gu�man. R-trees: A dynamic index structure for spatial searching.
Vol. 14. 2. ACM, 1984.

[23] Bastian �ilitz and Ulf Leser. “�erying Distributed rdf Data Sources
with sparql.” English. In: The Semantic Web: Research and Applications.
Ed. by Sean Bechhofer, Manfred Hauswirth, Jörg Ho�mann, and Mano-
lis Koubarakis. Vol. 5021. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2008, pp. 524–538. isbn: 978-3-540-68233-2.

[24] Gio Wiederhold. “Mediators in the architecture of future information
systems.” In: Computer 25.3 (1992), pp. 38–49.

[25] M Tamer Özsu and Patrick Valduriez. Principles of distributed database

systems. Springer Science & Business Media, 2011. Chap. 9.2, p. 299.

[26] Amit P. Sheth and James A. Larson. “Federated Database Systems for
Managing Distributed, Heterogeneous, and Autonomous Databases.” In:
ACM Computing Surveys (CSUR) 22.3 (Sept. 1990), pp. 183–236. issn:
0360-0300.

[27] Michael Schmidt, Olaf Görlitz, Peter Haase, Günter Ladwig, Andreas
Schwarte, and Thanh Tran. “Fedbench: A benchmark suite for feder-
ated semantic data query processing.” In: The International Semantic

Web Conference. Springer, 2011, pp. 585–600.

111

References

[28] Wouter Beek, Laurens Rietveld, Hamid R. Bazoobandi, Jan Wielemaker,
and Stefan Schlobach. “lod Laundromat: A Uniform Way of Publish-
ing Other People’s Dirty Data.” In: The 13

th
International Semantic Web

Conference. Ed. by Peter Mika, Tania Tudorache, Abraham Bernstein,
Chris Welty, Craig Knoblock, Denny Vrandečić, Paul Groth, Natasha
Noy, Krzysztof Janowicz, and Carole Goble. Vol. 8796. Lecture Notes in
Computer Science. Springer, Oct. 2014, pp. 213–228.

[29] Gabriela Montoya, Maria-Esther Vidal, Oscar Corcho, Edna Ruckhaus,
and Carlos Buil-Aranda. “Benchmarking federated sparql query engines:
are existing testbeds enough?” In: The 11

th
International Semantic Web

Conference. Ed. by Philippe Cudré-Mauroux et al. Springer, 2012, pp. 313–
324.

[30] Simón Castillo, Guillermo Palma, Maria-Esther Vidal, Gabriela Mon-
toya, and Maribel Acosta. Fed-DSATUR Decompositions. Retrieved at 2015-
09-01. 2015. url: h�p://scast.github.io/fed-dsatur-decompositions/.

[31] Olaf Görlitz and Ste�en Staab. “SPLENDID: sparql Endpoint Federa-
tion Exploiting void Descriptions.” In: The 2

nd
International Workshop on

Consuming Linked Data. Ed. by Olaf Hartig, Andreas Harth, and Juan Se-
queda. Bonn, Germany, Oct. 2011. url: h�p://uni-koblenz.de/~goerlitz/
publications/GoerlitzAndStaab%5C%5C_COLD2011.pdf.

[32] Joachim Van Herwegen, Laurens De Vocht, Ruben Verborgh, Erik Man-
nens, and Rik Van de Walle. “Substring Filtering for Low-Cost Linked
Data Interfaces.” In: The 14

th
International Semantic Web Conference. Ed.

by Marcelo Arenas et al. Oct. 2015.

112

http://scast.github.io/fed-dsatur-decompositions/
http://uni-koblenz.de/~goerlitz/publications/GoerlitzAndStaab%5C%5C_COLD2011.pdf
http://uni-koblenz.de/~goerlitz/publications/GoerlitzAndStaab%5C%5C_COLD2011.pdf

Don’t make me run! I’m full of
chocolate!

— Uter

6
Discovering interfaces

A client needs to discover all the Linked Data interfaces in a federation before it

can query these interfaces. Even though data source discovery has a strong impact

on selecting sources that contribute to the query results, federated query execution

research only discusses this marginally. This seems like a missed opportunity with

all the links and semantics rdf datasets have to o�er. Therefore, this chapter

addresses Research �estion 4 by introducing a discovery approach for Linked

Data interfaces based on hypermedia links and controls, and applies it to query

execution over a federation of Triple Pa�ern Fragments interfaces. In addition, we

identify quantitative metrics to evaluate this discovery approach (Hypothesis 4).

We assess to what extent our discovery method facilitates the source selection

process.

In literature, the story of federated query execution is typically told from source

selection onwards [1, 2]: given a fixed set of available data sources, a client de-
termines which of these are necessary to obtain results. A�er that, the actual
query execution against the selected sources happens. However, before any
of this can take place, candidate data sources need to be located first. This
discovery process preceding source selection has hardly received rigorous sci-
entific study so far.

In general, Linked Data source discovery is the process of finding available
Linked Data sources that are relevant to a certain task, for specific defini-
tions of “relevance” and “task”. Although the description of dataset or endpoint
characteristics has been covered, the act of finding, accessing, and processing

such documents is still in its infancy. With an emerging Web of Linked Data,
studying autonomous Linked Data discovery becomes a need, with a special
focus on the impact on client-side tasks such as querying. For federated query
execution in particular, discovery can assist in a more complete selection of
accessed data sources.

113

6.1. Discovery of Linked Datasets and Web Services

Existing discovery works have greatly progressed in closed, custom p2p net-
works (e.g., Distributed Hash Tables) using custom discovery protocols [3], or
centralized repositories that crawl metadata from di�erent sources [4]. How-
ever, with a scale-free http network at our disposal, li�le of its benefits have
been exploited for Linked Data querying. Linked Data interfaces are sca�ered
across a Web connected by hypermedia (see Section 2.1). Hypermedia allows
such interfaces to function similarly to a webpage, providing users with guid-
ance on what type of content they can retrieve, or what actions they can per-
form, as well as the appropriate links to do so. Since the beginning of the
Web, this has been the crucial aspect to its scalability. Thus, we proposed an
approach that reuses hypermedia and the Linked Data principles [5] to

• discover one another, aided by links in their dataset; and
• inform the client at run-time about their discoveries through hyperme-

dia.

First, we investigate an approach where Linked Data interfaces locate each
other (a) by actively following links to others, and (b) as a reaction to being dis-
covered. This process is supported by dataset summaries, exchangeable meta-
data that contains high-level information on a dataset’s structure, and uris.
Opposed to the methods in Chapter 4, this metadata is consumed indirectly—
clients do not process the metadata themselves—by querying clients through
constructed links.

Second, we also study the e�ects of source discovery on federated query pro-
cessing. Both processes are not necessarily independent; an e�ective discovery
approach benefits the source selection stage it precedes. Source selection can
be impacted on several aspects, such as completeness, accuracy, and execution
time. However, we are also interested in the server load, as this impacts the
http response times during query execution.

Although any api that provides client access to Linked Data is considered, we
implemented and evaluated the approach against the lightweight Triple Pat-
tern Fragments interface. To appropriately evaluate such a discovery approach,
we introduce a methodology to quantify its parameters in Section 6.2. This in-
cludes metrics to express the functional and non-functional characteristics of
one discovery approach relative to others. First, however, we layout the rele-
vant related work next.

6.1 Discovery of Linked Datasets and Web Services

The discovery of Linked Data datasets is not a topic unknown to literature.
However, the amount of existing work, and the practical deployment thereof,
is still very limited. Most work (especially in standardization) focusses on
description techniques through dataset vocabularies, which allow discovering
datasets without having to access their actual interfaces. This chapter does
not include any new direction in this field, but employs a custom vocabulary
that is specifically selected for the proposed discovery method. This vocabu-

114

6.1. Discovery of Linked Datasets and Web Services

lary introduced later on, a�er we describe the existing alternatives and their
limitations first.

Vocabularies themselves do not define how interfaces are discovered, but o�en
include an elementary method of access, which we discuss next. A�er that,
we discuss the discovery of Linked Data datasets during query execution, as
some approaches combine both processes. Finally, we also briefly discuss the
discovery of Web services, which has so far been studied more deeply than the
discovery of Linked Data.

6.1.1 Dataset vocabularies

Several vocabularies exist to describe and locate datasets, and some of them
are w3c recommendations. The void vocabulary [6] enables descriptions of an
rdf dataset’s characteristics. It contains concepts to describe general meta-
data (e.g., licenses, name, or author), access metadata (e.g., sparql endpoint,
data dump uri, or lookup uris), and structural metadata (e.g., pa�erns, the
dataset partitioning according to used classes or properties, and vocabularies
statistics). In addition, one can describe the relations with other datasets us-
ing a linkset. A void description is applicable to many fields, including query
federation, data catalogs, and faceted search applications. Unfortunately, void
is not su�iciently fine-grained to serve applications that require e�iciency, like
federated query algorithms or the discovery approach presented in this chap-
ter. For instance, one major limitation is the inability to describe common uri
pa�erns for subjects and objects independently.

A more interface-oriented vocabulary is the sparql Service Description [7],
which is part of the w3c sparql 1.1 recommendation. It covers a high level
description of supported features by the endpoint and other characteristics
useful to clients, i.e., default graph, entailment regime and so on. As its name
suggests, this vocabulary only applies to sparql interfaces, not to the other
interfaces discussed in Section 2.5 or any ldf instance. Therefore, it cannot be
used in a uniform discovery solution.

Popular catalogs are
DataHuba (which uses
dcat), lov (for
vocabularies)b, re3datac

(Registry of Research Data
Repositories), and
datacatalogs.org, a catalog
for catalogs.

a. h�p://datahub.io/
b. h�p://lov.okfn.org/
c. h�p://www.re3data.org/

The dcat vocabulary is used for the description of
data catalogs. Data catalogs are centralized indexes
or repositories that contain dataset metadata. dcat
contains high-level metadata for such catalogs (e.g.,
title, licenses, version, etc.) and datasets (e.g., key-
words, language, etc.). Datasets can be discovered
by querying the indexes for certain characteristics
in this metadata, and extracting their location from
the results. Despite its conception as a generic
vocabulary, specific elements like dcat:byteSize

make dcat mostly targeted toward data dumps,
and not queryable Web interfaces; hence it su�ers
from the same limitation as sparql Service Description. Furthermore, since
dcat only contains detailed catalog information, discovery becomes a two-

115

datacatalogs.org
http://datahub.io/
http://lov.okfn.org/
http://www.re3data.org/

6.1. Discovery of Linked Datasets and Web Services

step process: once the catalog has been found, another process has to discover
the actual dataset. This is helpful for a metadata aggregator, but not for an
e�icient query or discovery process.

6.1.2 Vocabulary-related discovery strategies

Vocabularies describe what can be discovered, but not how this happens. void
suggests two methods for discovering descriptions: (a) via backlinks from Linked
Data documents using the void:inDataset or (b) by deriving uris to void de-
scriptions canonically with a /.well-known/ uri (which is constructed with a
fixed template defined in the specification). Paulheim and Hertling [8] sur-
veyed the state in discovering void descriptions. They concluded that, in 85%
of cases, the sparql endpoint could not be obtained from a Linked Data doc-
ument backlink. The /.well-known/ mechanism has the best coverage (74% of
uris), but only 14% resulted in a usable description. Using dataset catalogs
such as DataHub results in a higher precision for retrieving an endpoint—0.48
compared to 0.19 for /.well-known/, but they are not adopted on a large scale,
su�er from datasets struggling to implement the void standard, and depend
on the implementation of redirection.

The idea behind sparql Service Description is to return the description of an
endpoint on a lookup of its base uri (typically /sparql/). A study by Buil-Aranda
et al. [9] observed that only 35.4% of 427 endpoints registered on DataHub
responded with 200 OK, and only 11.9% returned rdf. This low uptake prevents
e�ective usage for discovery purposes.

In this chapter, we tackle discovery by relying on the widely adopted funda-
mental components of the Web, i.e., hypermedia and http, rather than intro-
ducing a predefined complex contract that needs to be implemented by both
sides.

6.1.3 Discovery during querying

Related techniques are
found in focused Web

crawling [10], where
context graphs guide link
traversal based on topics.

Other strategies can be found in link-traversal-based

querying, where discovery is integrated in the query
execution. Hartig [11] identifies the live exploration

method, which starts from a certain seed, i.e., a uri
from the given query or given parameter, and recur-
sively looks up uris based on links. This follow-your-

nose discovery is able to query priorly unknown sources and can potentially
explore the entire Web of Linked Data (assuming su�icient connectedness).
However, its recursive nature causes discovery and query execution to be slow.
To improve performance, live exploration is augmented with indexes that can
provide seed uris that can shortcut exploration, or guide the exploration pro-
cess. For instance, Ladwig and Tran [12] added a ranked list of uris that is
retrieved from an index.

116

/.well-known/
/.well-known/
/.well-known/
/sparql/

6.1. Discovery of Linked Datasets and Web Services

The method in this chapter is based on similar principles, but deliberately sep-
arates part of the discovery from query execution. Thereby, it improves e�i-
ciency by (a) supporting a range of more complex interfaces such as tpf, and
(b) exploiting reuse between clients by prefetching relevant interfaces in ad-
vance.

6.1.4 Discovery of services

The discovery of a Web service functionality is di�erent from Linked Data dis-
covery: a Web service typically o�ers a handful of operations, whereas Linked
Data interfaces can contain millions or even billions of triples. The process of
(Semantic) Web service discovery was defined by Klusch [13] as locating ex-
isting services that are relevant for a given request based on the description of
their functional and non-functional semantics. Below are three categories of
service discovery approaches, as identified by Klusch.

Directory-based service discovery Directory-based discovery can be cen-
tralized and decentralized. Centralized discovery depends on registries
containing descriptions. Sousuo [4] collects descriptions using meta-
search in existing search engines combined with focused topic crawling,
to o�er free text and keyword search. Decentralized approaches use a
structured peer-to-peer (p2p) network and query routing protocol. For
instance, agora-p2p [14] exploits a Chord ring to distribute the storage
and location of services. An example from federated query processing
is Atlas [3], which uses Distributed Hash Table (dht) to improve source
selection.

Directory-less service discovery Directory-less service discovery
approaches in p2p networks include algorithms such as flooding,
k-random walks, and probabilistic adaptive search. rs2d [15] combines
probabilistic adaptive search with owls, such that each peer maintains a
local view of the network’s semantic overlay. Directory-less approaches
mostly focus on popular services and provide incomplete recall.

Hybrid approaches Finally, hybrid approaches work both in structured and
unstructured p2p networks. meteor-s by Verma et al. [16] uses a set of
service providing and consuming peers, which are grouped on a certain
topic and domain, with a central matchmaking super-peer, which main-
tains a global registry with the service registry concept taxonomies of all
peers.

These approaches use very interesting techniques for Linked Data source dis-
covery, but they are all developed under the assumption of a controllable p2p
network. Their appliance is unclear when translated to a scale-free and http-
bound Web. While they might scale well in terms of performance, they are
likely to fail in terms of interoperability. Thus, in this dissertation, we choose
to remain as close to http as possible. However, we do recommend future re-
search on these techniques in the context of http to improve discovery.

117

6.2. �antifying the discovery process

6.2 �antifying the discovery process

In order to study our discovery process, we need to determine what parameters
can and should be measured. This then allows to compare them in a qualitative
and quantitative way. In particular, it allows us to identify those parameters
whose optimization can or should be the focus of algorithmic design.

6.2.1 Defining discovery

On the Web of Documents, hyperlinks connect documents into a single global
information space. The target consumers are humans, who interact with these
documents through a browser. They answer queries by using search engines,
following links, and interpreting text. This process always has a clear starting
point, i.e., the first url typed in the browser (e.g., google.com), but no prede-
fined end point. Humans discover relevant locations during the query solving
process, while seamlessly transitioning between di�erent Web interfaces.

Linked Data similarly connects di�erent data sources into a single global data
space, and its intended consumers are human and machine agents based on
Web standards and the common rdf data model. On the Web, the location
of all possible data sources cannot be known beforehand, let alone stored in
one place. Since “anyone can say anything about anything” [17], a specialized
discovery method is necessary to find sources to answer queries on a Web scale.
We call such a method a Link Data Interface Discovery process.

Definition 13 (Linked Data Interface Discovery). Given a set of Linked Data
interfaces I , Linked Data Interface Discovery LDID(I , T) is the automated pro-
cess of locating the set of Linked Data interfaces I ′ ⊆ I , whose datasets contain
triples that potentially contribute to the results of a task T .

On the Web, the complete
set of interfaces I is not
known before, during, nor
a�er the discovery process.
However, results gathered
in closed large-scale
simulated environments,
where I is known, can be
generalized to a subweb,
i.e., Web of interfaces used
by a certain application, or
provide indications for the
entire Web.

Practically speaking, the output of an LDID process
is a set of uris that identify Linked Data interfaces
in a Web-like environment, as well as a certain list
of characteristics for each of those interfaces.

In the context of federated query processing, the
task T is the execution of a set of queries Q. Ideally,
a query application also requires only one start-
ing point, even though several servers might be re-
quired to find the desired answer to a query. A fed-
erated query algorithm then applies source selec-
tion to the output of a discovery process in order to
select the relevant interfaces for a particular query.
In contrast to discovery, source selection is typically
repeated for each query.

118

google.com

6.2. �antifying the discovery process

6.2.2 Measuring discovery

To conclude this section, we define several parameters to measure to what ex-
tent the discovery method has succeeded. We discuss a system of measurement

for the functional requirements, the discovery outcome, and measures for the
non-functional requirements, the discovery process.

Measuring outcome

A discovery process ideally strives for completeness: finding all interfaces that
can contribute to the results of a certain task. Thus, there is a direct depen-
dency of the task result completeness on the completeness of a discovery pro-
cess. For instance, in federated query processing, the more interfaces we are
able to discover, the higher our chances of finding all possible answers, i.e.,
reaching completeness. Interfaces can be called relevant to the executed que-
ries, if they provide access to data that contribute to the result.

Definition 14 (Relevant Linked Data Interface). A Linked Data Interface i ∈ I ,
publishing a dataset D, is relevant to the query Q if a non-empty subset of D
is used to compose a result of Q.

The completeness and accuracy of the discovery outcome can be measured
with the default recall and precision metrics in closed-world experiments. How-
ever, in an open world such as the Web, the total number of relevant interfaces
is unknown, since (a) data is distributed over a huge scale-free network, where
counting datasets is infeasible; (b) this network is subject to constant change.
Therefore, closed-world experiments performed on di�erent scales should pro-
vide an indication on Web-scale performance.

Measuring the process

The performance marks of an LDID process are evaluated according to the ob-
jective of a task and the process characteristics, as defined earlier. This creates
a di�erent optimal trade-o� mix of parameters for each process. As a result,
they are incomparable with a single global performance measure. Instead, we
discuss the space of non-functional requirements of LDID in three quantifiable
aspects.

Bandwidth usage: Discovery processes need to communicate with Web re-
sources over http. Depending on their greediness, they can fundamen-
tally di�er in the amount of used bandwidth. This is measured in number

of requests sent to complete the discovery.
Discovery execution time: Depending on the task at hand, a discovery pro-

cess can be fast or slow. For example, in live exploration querying, the
query execution time is directly dependent on the amount of time it took
to gather the set of relevant sources. In contrast, data analysis is o�en
performed o�line, a�er the data is discovered and gathered. Discovery

119

6.3. Hypermedia-based discovery approach

execution time is measured as the amount of time until the completion
of the discovery process.

Server response overhead: When a task is executed, a client relies on servers
to retrieve data or to provide a service. Depending on the discovery pro-
cess, the impact on the default server behavior will be di�erent. For
instance, if the client handles the complete discovery, the server over-
head will be zero. However, if the server is part of the process, e.g., Web
crawling, a certain percentage can be added to its response time. This
is measured as the di�erence in time between server responses with and
without discovery.

6.3 Hypermedia-based discovery approach

In this section, we introduce a hypermedia-based discovery approach to ben-
efit federated query clients during execution. Servers discover relevant inter-
faces using two methods:

Active discovery: servers dereference links from the interface data to dis-
cover relevant interfaces.

Reactive discovery: servers react to being accessed by clients, i.e., other dis-
covering servers or querying clients.

This combination allows the discovery of outgoing links (active), as well as
incoming links (reactive). Both methods rely on three foundations: data sum-

maries, publishing data through a Triple Pa�ern Fragments server, and applying
the Linked Data principles. They make two assumptions: a dataset has one main

domain authority (e.g., h�p://dbpedia.org/ for dbpedia), and the owner of that
domain handles the dereferencing of its uris (e.g., the dbpedia pages). Both are
supported by the lasting need for authoritative sources of information, which
yields the sense of uri ownership—data providers are unlikely to adopt external
uris due to control concerns. Semantical disputes on the interpretation of con-
text, where one party does not agree with the properties that are a�ached to a
resource by another party, also hinder uri adoption. This issue already causes
the non-trivial owl:sameAs problem [18]: a single concept ends up being iden-
tified by multiple uris, which all need to be explicitly linked as identifiers of
the same concept.

In the following, we first describe dataset summarization, then discuss both
active and reactive discovery methods in more detail.

6.3.1 Creating data summaries

The discovery process is performed by an application hosting a Linked Data
interface, which publishes the dataset D (as defined in Section 3.2). Our ap-
proach uses a dataset’s uris UD as a seed. Thereby, the application will first
create a dataset summary from D in order to access these required uris e�i-
ciently. The motivation for this is twofold: as Linked Datasets are potentially

120

http://dbpedia.org/

6.3. Hypermedia-based discovery approach

huge, e�iciently scanning an rdf dataset for uris is fundamental, and metadata
about datasets is exchanged between servers.

Such summaries are a lightweight form of dataset profiling and represent cru-
cial dataset information in a compact manner. As discussed in related work,
they are common in federated query processors. Given the constraints above,
the desired characteristics are therefore:

• a high summarization rate for decreasing scan time and exchange
time over http;

• a low complexity for li�le server load and fast computation;
• quick and accurate matching of triple pa�erns for the hypermedia

construction discussed later on.

Based on these requirements, we reuse the lightweight summaries from the
query federation system HiBISCuS [19] (mentioned in Section 5.2), which are
based on grouping uri authorities of subjects and objects per distinct predicate.
In contrast to their work, we will not use the summaries for query optimization
on the client, but instead let the server (a) iterate over foreign domains in the
datasets and (b) generate specific hypermedia to other interfaces to inform the
client.

Definition 15 (Authority function). An authority function extracts the au-
thority part, standardized by Dürst and Suignard [20], of an rdf term, and is
defined as:

authority(u) =
{
protocol(u) + hostname(u) if isUri(u)

nil otherwise

Saleem and Ngomo [19]
include the protocol in the
uri authority although this
is not the case according to
the standard [20].

The HiBISCuS summaries are generally very
compact—the FedBench datasets (Table 5.1) are re-
duced to approximately 1% of their size, which is
e�icient for exchange and storage. Furthermore,
they contain information about all terms of a triple,
which makes them candidates for e�icient and ac-
curate triple pa�ern matching.

A data summary ds is defined as a set of capabilities {cap1, … , capn}. For a
dataset D, a capability capx is a triple (p, SA, OA) for a specific predicate p.
Herein, SA is the set of distinct subject uri authorities of p in D, and OA the
set of distinct object uri authorities of p inD. When p = rdf:type, an exception
is made whereOA is the set of distinct object uris (instead of their authorities).
We can a�ach a data summary to the metadata of a fragment. An example for
the Jamendo dataset (from FedBench) is given in Listing 6.1.

6.3.2 Active discovery with dereferencing

This subsection details an algorithm in which a server discovers other inter-
faces through uris from its own dataset.

121

6.3. Hypermedia-based discovery approach

1 @base <http://dbtune.org/fragments>.
2 @prefix void: <http://rdfs.org/ns/void#>.
3 @prefix hydra: <http://www.w3.org/ns/hydra/core#>.
4 @prefix ds: <http://semweb.mmlab.be/ns/summaries#>.
5 @prefix mo: <http://purl.org/ontology/mo/>.
6 @prefix foaf: <http://xmlns.com/foaf/0.1/>.
7
8 <> hydra:member <#dataset>.
9 <#dataset> a void:DataSet, hydra:Collection;

10 ds:capability [
11 ds:predicate foaf:based_near;
12 ds:sbjAuthority <http://dbtune.org/>;
13 ds:objAuthority <http://sws.geonames.org/>
14];
15 ds:capability [
16 ds:predicate rdf:type;
17 ds:sbjAuthority <http://dbtune.org/>;
18 ds:objAuthority foaf:Document, mo:MusicArtist
19];
20 ds:capability [
21 ds:predicate foaf:name;
22 ds:sbjAuthority <http://dbtune.org/>;
23].

Listing 6.1: The fragment h�p://dbtune.org/fragments#dataset has its metadata
extended with a dataset summary.

The Jamendo dataset
(Table 5.1) contains 776,611
distinct subjects and
objects, but is covered by
655 samples because there
are only 655 unique
authorities.

Phase 1: Identify external servers The discov-
ering server actively tries to identify other servers
based on data summaries, the Linked Data princi-
ples, and hypermedia. This process is data-driven:
it exploits the links to external datasets, which
are possibly hosted by other servers. Therefore,
we start by identifying a set of foreign uris R =
{r1, … , rn} ⊆ UD in the dataset (with UD as the set

of distinct uris in dataset D; see Section 3.2). Foreign uris di�er in hostname
with the interface, thus their lookup is handled by other servers. We rely on
the data summary generation process to populate UD with one sample uri per
authority for e�iciency reasons.

Phase 2: Dereference entities on external servers The discovering server
acts as a client and discovers other servers by dereferencing each rx ∈ R. In
these responses, it looks for triples (rx , rdfs:isDefinedBy, ufx) (Figure 6.1a).
The uri ufx possibly identifies a tpf fx of the dataset that contains rx . If no such
triple is found, rx does not support this discovery approach, and the discovery
for this uri ends here.

Continuing our previous example, the Jamendo server on domain dbtune.org
could dereference the foreign uri h�p://sws.geonames.org/660013/. This lookup
is subsequently answered by the server on sws.geonames.org, which hosts the
Geonames dataset as Linked Data documents. The response contains the triple

122

http://dbtune.org/fragments#dataset
dbtune.org
http://sws.geonames.org/660013/
sws.geonames.org

6.3. Hypermedia-based discovery approach

Server A Server B

GET rBx ;
Accept: text/turtle

200 OK;
rBx rdfs:isDefinedBy ufB

(a) Dereferencing(a) Dereferencing

GET ufB
200 OK; ⟨dsB , CB⟩

(b) Retrieving fragment(b) Retrieving fragment

Figure 6.1: Active discovery discovers Linked Data interfaces by dereferencing foreign
uris in the dataset and retrieving the linked Triple Pa�ern Fragment.

(h�p://sws.geonames.org/660013/, rdfs:isDefinedBy, h�p://sws.geonames.org/
fragments/), where the object identifies a tpf of the Geonames dataset.

Phase 3: Identify controls and summaries The server requests fx and
looks for hypermedia controls Cx and a data summary dsx in the response
(Figure 6.1b). The hypermedia controls reveal whether the resource is a tpf,
and if so, allow requesting other tpfs of the dataset. The data summary in-
forms the discoverer about the data that can be found in the interface, which
is used later on to construct hypermedia to this server. For the fragment h�p:
//sws.geonames.org/fragments, an extract of the http request cycle is shown
in Listing 6.2. The data summary starts at line 12 and the controls at line 18.

Phase 4: Index storage The tuple ⟨dsx , Cx⟩ is stored in an index Ids with
ufx as key. To prevent the same fragments to be requested multiple times, the
presence of fx is looked up first in the set of keys. Note that in some cases, e.g.,
a cache expiry, it is desirable to re-request a fragment to update its summary
and controls.

Active discovery ends when all sample uris have been dereferenced, so Ids con-
tains of list of discovered summaries.

123

http://sws.geonames.org/660013/
http://sws.geonames.org/fragments/
http://sws.geonames.org/fragments/
http://sws.geonames.org/fragments
http://sws.geonames.org/fragments

6.3. Hypermedia-based discovery approach

1 GET http://sws.geonames.org/fragments HTTP/1.1
2 Accept: text/turtle
3 Referer: http://dbtune.org/fragments
4 --
5 HTTP/1.1 200 OK
6
7 <http://sws.geonames.org/fragments>
8 hydra:member
9 <http://sws.geonames.org/fragments#dataset>.

10 <http://sws.geonames.org/fragments#dataset>
11 a void:Dataset, hydra:Collection;
12 ds:capability [
13 ds:predicate gn:parentFeature;
14 ds:sbjAuthority <http://sws.geonames.org/>;
15 ds:objAuthority <http://sws.geonames.org/>
16];
17 ...
18 hydra:search _:triplePattern.
19 _:triplePattern hydra:template
20 "/fragments{?subject,predicate,object}";
21 hydra:mapping _:subject, _:predicate, _:object.
22 _:subject hydra:variable "subject";
23 hydra:property rdf:subject.
24 _:predicate hydra:variable "predicate";
25 hydra:property rdf:predicate.
26 _:object hydra:variable "object";
27 hydra:property rdf:object.

Listing 6.2: A fragment of the discovered interface returns hypermedia controls and a
data summary.

6.3.3 Reactive discovery with the Referer header

Since active discovery is limited by the foreign uris present in the dataset, its
reach is insu�icient for two reasons. First, queries that require knowledge
about backlinks cannot be answered, leading to low result recall. Since hy-
perlinks are unidirectional, servers can only discover interfaces that host their
outgoing links. For example, the query given in Listing 6.3 needs both triples
from Jamendo and Geonames. However, as Geonames has no links to Jamendo,
Geonames’s index would not contain Jamendo, and is therefore not able to re-
trieve the triples necessary to yield results. Second, when a dataset changes,
its summary in the index of other servers will be outdated. Therefore, a server
needs to notify those who have discovered it about this change.

Referer is actually a
misspelling of the word
“referrer”, but remained
unnoticed until a�er the
standard was released.

Reactive discovery tackles both issues by using the
http Referer header from incoming requests, in-
spired by the work of Mühleisen and Jentzsch [21],
to automatically create new links in the lod cloud.
Referer is standardized in rfc26161, which states:

1. h�p://tools.ietf.org/html/rfc2616#page-140

124

http://tools.ietf.org/html/rfc2616#page-140

6.4. Federated query processing through hypermedia

The Referer request-header field allows the client to specify, for
the server’s benefit, the address (uri) of the resource from which
the Request-uri was obtained

In this approach, two actors are equipped with this header:

�erying clients: a query execution application supplies the last accessed
fragment, which enables the discovery of servers with no explicit link in
their dataset;

Discovering servers: a server doing active discovery supplies a random frag-
ment uri (in practice the index fragment) on which it can be discovered
in turn.

The process happens as follows:

Phase 1: Header inspection When a server receives a request by client,
it checks whether a Referer header is present. If it is, it should be a uri ufx
(Figure 6.2a). Possibly, ufx identifies a Triple Pa�ern Fragment fx .

Phase 2: Dereference the referrer The server verifies that ufx is a foreign
uri with an authority it has not (recently) visited before. If so, the server deref-
erences uri ufx to obtain the resource fx .

Phase 3: Identify controls and summaries The server inspects fx in or-
der to find the summary ds and controls Cx , analogous as in Phase 3 of the
active discovery process. For example, given the request in Listing 6.2, the
Geonames server can react by requesting the referrer uri h�p://dbtune.org/
fragments given in line 3. As a result, it retrieves the summary and controls for
the Jamendo server.

Phase 4: Index storage If both are correctly extracted from the response,
the tuple ⟨dsx , Cx⟩ is stored in an index Ids as well, with ufx as key.

Since http caches can intercept the Referer header, they could prevent re-
active discovery—and caching is a crucial scalability factor for Triple Pa�ern
Fragments. However, the cache could maintain a list of referrers (for instance,
in server logs), which are then passed to the server at a later stage.

6.4 Federated query processing through hypermedia

In this section, we describe how clients consume the result of a discovery pro-
cess for the execution of queries. Clients rely on hateoas (hypermedia as en-
gine of application state; see Section 2.1), where they react autonomously to
links included in http responses. First, we discuss how the hypermedia are
constructed on the server. Second, we describe how the client consumes the
links to retrieve more relevant fragments on the fly. As a running example,

125

http://dbtune.org/fragments
http://dbtune.org/fragments

6.4. Federated query processing through hypermedia

Client Server A Server B

GET ufA ;
Referer: ufB

200 OK; {dsA, CA}

(a) Receive referrer(a) Receive referrer

GET ufB
200 OK; {dsB , CB}

(b) Retrieving fragment(b) Retrieving fragment

Figure 6.2: Reactive discovery discovers interfaces by retrieving fragments from the
Referer header.

1 PREFIX foaf:<http://xmlns.com/foaf/0.1/>
2 PREFIX gn:<http://www.geonames.org/ontology#>
3
4 SELECT ?name ?location ?news WHERE {
5 ?artist foaf:name ?name .
6 ?artist foaf:based_near ?location .
7 ?location gn:parentFeature ?germany .
8 ?germany gn:name "Federal Republic of Germany"
9 }

Listing 6.3: An example query combining the Geonames and Jamendo datasets

we discuss the evaluation of the query in Listing 6.3 over the Geonames and
Jamendo data sources mentioned in the previous section.

6.4.1 Building the server-side hypermedia interface

When a fragment is requested, the server informs the client about the inter-
faces it has discovered in the response. Instead of sending all known interfaces,
it pre-selects the ones most relevant to the requested fragment in order to aid
with source selection. This reduces the chance of source overestimation on the
client.

When handling a request, the server has the following data at its disposal:

126

6.4. Federated query processing through hypermedia

1. the requested triple pa�ern tp = (s, p, o), extracted from the request;
2. an indexed set of data summaries Ids = {uf1 ⇒ ⟨ds1, C1⟩, … , ufn ⇒

⟨dsn , Cn⟩}.

Based on their summaries, the server looks for servers that can possibly an-
swer the requested triple pa�ern as well. Therefore, a server iterates over all
summaries in Ids . For each summary, it checks for a match using the algorithm
in Listing 6.4.

Data: triple pa�ern tp = (s, p, o),
data summary ds = {cap1, … , capn} ∈ Ids
Result: m(tp, ds) ∈ {true,false}

1 capabilities ←
{

{ds[p]} if isU ri(p)
ds otherwise

;

2 for cap = (p, SA, OA) ∈ capabilities do

3 return false if cap = nil;
4 sautℎ ← autℎority(s);
5 oautℎ ← autℎority(o);
6 return true if sautℎ = nil ∧ oautℎ = nil;
7 matcℎs ← (sautℎ = nil ∨ sautℎ ∈ SA);
8 if p = rdf:type then

9 matcℎo ← (oautℎ = nil ∨ o ∈ OA);
10 else

11 matcℎo ← (oautℎ = nil ∨ oautℎ ∈ OA);
12 end

13 return true if matcℎs ∧ matcℎo ;
14 end

15 return false;
Listing 6.4: Determine if a given triple pa�ern matches a data summary, and possibly
its dataset.

First, we select the summaries to iterate over (line 1). If the predicate is a
variable, we select all summaries in the index. If the predicate is a uri, we
look up its entry. Next, we iterate over the selected set of capabilities. If no
entry is found, the summary does not match (line 3). For each summary, if the
subject or object is a uri, we extract its authority (line 4,5). If it is not a uri, it’s
either a variable, blank node or literal, which always match (line 6). Finally,
a server with a data summary only has a chance of matching the requested
triple pa�ern if

1. the predicate is rdf:type, which is an exception in the data summary,
and the object in the pa�ern is an exact match of a uri in the object
authority (line 9); or

2. the subject is a variable or its subject authority is equal to the authority
of the pa�ern’s subject, and the same holds for the object (line 11).

For instance, when the Jamendo server receives an http request for the tp on
line 7 of Listing 6.3, it returns zero triples, as the dataset does not contain

127

6.4. Federated query processing through hypermedia

1 <http://dbtune.org/fragments?object=http%3A%2F%2Fwww.geonames.org%2Fontology%23
parentFeature> rdfs:seeAlso

2 <http://sws.geonames.org/fragments?object=http%3A%2F%2Fwww.geonames.org%2Fontology
%23parentFeature>.

Listing 6.5: Although the Jamendo server returned no triples for the pa�ern tp =
(?x, gn:parentFeature,?y), it contains a hypermedia control to the
corresponding fragment in the Geonames dataset.

gn:parentFeature. Before responding, it scans the index for a match, which
contains the summary for h�p://sws.geonames.org/fragments. As shown in
line 13 of Listing 6.2, the Geonames summary does contain gn:parentFeature

and is a match, since the subject and object of tp are variables. Similarly, when
the tp on line 5 of Listing 6.3 is requested from the server, it returns triples, be-
cause foaf:name is present in the dataset. However, the Geonames summary
does not match, since foaf:name is not present.

For each fragment ufx that matches the requested triple pa�ern (m(dsx , tp) =
true), we create a direct link uri uf ′x . This link points to the fragment for
the same triple pa�ern on a remote server. The resulting set of links H =
{uf ′m , … , uf ′n }, with n ≥ m ≥ 0 and |H | ≥ 0, are the hypermedia controls of the
response, i.e., we add zero or more rdfs:seeAlso links2 to inform the client
about the other servers. For instance, if the Geonames summary matches
the triple pa�ern in Listing 6.3, line 7, the hypermedia triple in Listing 6.5
will be added to the fragment’s response. Then, the client can follow this
rdfs:seeAlso link to collect (more) matching triples.

6.4.2 Client-side query execution

sparql queries can be federated over multiple tpf servers with the tpf client
from Section 4.2 in combination with the mediator layer from Section 5.3. In
the following, we alter the mediator layer to consume the links to relevant
fragments o�ered by the server.

The client starts with one fragment uri, instead of a list, but accesses more
tpf interfaces during execution. The mediator still aggregates multiple frag-
ments from di�erent servers using function #(tpj) = ∑N

i=1 cntij (with tpj as
the requested triple pa�ern) and exposes them as a single fragment. How-
ever, it will first follow the rdfs:seeAlso links present in the first fragments’s
response by calling a recursive function.

To illustrate this process, we execute the query in Listing 6.3 against the Ja-
mendo server from earlier. For each triple pa�ern, the corresponding fragment
is retrieved from the server which results in:

2. h�p://www.w3.org/wiki/UsingSeeAlso

128

http://sws.geonames.org/fragments
http://www.w3.org/wiki/UsingSeeAlso

6.5. Experiments

?artist foaf:name ?name. # 3,505 matches
?artist foaf:based_near ?location. # 3,244 matches
?location gn:parentFeature ?germany. # 0 matches
?germany gn:name "Federal Republic of Germany". # 0 matches

Typically, the algorithm would stop the execution here; the last two pa�erns do
not match any triples and therefore lead to an empty result set. However, the
response for both pa�erns does include a link to a corresponding fragments
on the Geonames server. Now, the algorithm retrieves each link, appends the
result to the original fragment result set and sums the count metadata with # .
Now, both fragments do return matches, which updates the previous results:

?artist foaf:name ?name. # 3,505 matches
?artist foaf:based_near ?location. # 3,244 matches
?location gn:parentFeature ?germany. # 0 + 7,479,713

= 7,479,713 matches
?germany gn:name "Federal Republic of Germany". # 0 + 1 = 1 match

A�er aggregation, the last triple pa�ern has the lowest number of matches,
namely 1. Thus, the algorithm continues with the single matching triple for
this pa�ern and binds the value h�p://sws.geonames.org/2921044/ to the vari-
able ?germany. Finally, the process is repeated for the remaining three triple
pa�erns.

6.5 Experiments

The experimental results presented in this section aim to provide insight in the
performance of the hypermedia-based discovery approach and its impact on
federated query execution. We describe the implementation, test setup, and
performed tests as follows.

6.5.1 Experimental setup

We implemented our approach as a plugin for the existing Triple Pa�ern Frag-
ments NodeJS server. This plugin is called the Explorer and runs in a sepa-
rate single-threaded process, asynchronous to the server application, indexing
data summaries as they arrive. The server communicates with the Explorer us-
ing three methods for (a) starting the active discovery; (b) passing a Referer

header if detected in a request; and (c) passing a triple pa�ern from the request
to retrieve a set of rdfs:seeAlso links, i.e., the hypermedia controls.

To test the query execution, we used the FedBench [22] benchmark and its
corresponding collection of datasets. We selected the Cross Domain (CD), Life
Science (LS), and Linked Data (LD) queries from the list of pre-defined queries,
as they make use of multiple servers. �eries LS7 and CD6 are not supported
by our implementation, and are therefore excluded from the results.

129

http://sws.geonames.org/2921044/

6.5. Experiments

In total, we allocated 9 virtual machines as servers in Amazon ec2 Virtual Pri-
vate Cloud, one for each dataset. Each virtual machine has the equivalent of
a dual-core Intel Xeon E5-2670 v2 cpu, 7.5 gb of ram and 32 gb of ssd storage.
The datasets KEGG and ChEBI were merged to avoid dereferencing conflicts,
as they share the same authoritative uri hostname. Each server was provided
with an active nginx3 http cache and a tpf server including the Explorer mod-
ule, both handling the dereferencing and the tpf interface. Its /etc/hosts file
was edited to simulate the di�erent domain names. The specific FedBench
dataset was added to the tpf server as an hdt data source.

An extra virtual machine was created to run the FedBench client and gather
server logs. A plugin for a Triple Pa�ern Fragments client supporting both
hypermedia-based and naive federation was added to the FedBench client.

6.5.2 Feasibility of the discovery approach

In the following, we assess to what extent a discovery approach is feasible by
using hypermedia. First, we inspect the data summary construction, which has
the biggest impact on the server. Next, we expect the number of required http
requests to have a major impact on the discovery execution time. Fortunately,
this number is directly dependent on the amount of links (indicated by a triple’s
object) to other datasets, which is only a small fraction of all uris present.
Therefore, the discovery execution time should scale well with the size of the
dataset, and bandwidth usage should be limited.

Finally, we assess the completeness of our discovery approach. The active dis-
covery is data-driven, which should cover all outgoing links, while reactive dis-
covery should cover all incoming links. Hence, all directly relevant interfaces
should be discovered.

Summary complexity

We measured the summary generation time for each dataset, which is shown
in Table 6.1. Each summary was constructed from its corresponding hdt file.
The results confirm that the summaries are lightweight in terms of complexity
and size.

The largest dataset, i.e., Geonames with 108,000 triples, was summarized in
only 10.85 minutes, while the smallest dataset, i.e., Semantic Web Dog Food,
was summarized in less than a second. These low computation times can par-
tially be explained by the highly e�icient hdt format, which o�ers a highly-
compressed browsable read-only index. However, using such data source is de-
fendable. Opposed to supporting sparql, the tpf interface encourages servers
to adopt more limited, but highly specialized lightweight indexes. Further-
more, no multi-threading was used during generation, which can still be fully
exploited and compensate slower data sources, e.g., writable indexes like x-
rdf-3x [23] or sparql endpoints. Another factor is likely the sole use of uri

3. h�p://nginx.org/

130

http://nginx.org/

6.5. Experiments

authorities, which can be derived with a single inexpensive string operation
(e.g., a highly e�icient regular expression operation).

Next, we look at the generation time and its relationship to the anatomy of the
dataset. In particular, we investigate whether the generation time correlates
with the number of distinct subject, predicates, and objects from Table 5.1.
Their associations are plo�ed in Figure 6.3.

Presumably, the distinct predicates have li�le influence as they are highly out-
numbered by the distinct subjects and objects. For instance, Geonames and
dbpedia have the highest generation times, while dbpedia has 30 times more
distinct predicates than Geonames. Therefore, a Spearman’s rank-order cor-
relation was run to determine the relationship between the number of distinct
predicates and the summary generation time. There is a weak, monotonic re-
lationship between the two variables (� = 0.0425), which can not be considered
statistically significant with a two-tailed p(-value) = 0.90708(� = 0.05). Hence,
the role of the number of predicates in the complexity of summary generation
is not clear.

Now we explore the possible dominance of the number of distinct subjects
and objects. In particular, we want to know whether the time to generate
summaries su�iciently scales, i.e., predictable linear growth is ensured, when
datasets grow larger. A performed Spearman’s rank-order correlation tested
the relationship between the total number of distinct subjects and objects,
and the summary generation time. We observe a strong, positive monotonic
relationship (� = 0.988), which is statistically significant with a two-tailed
p < 0.0001(� = 0.05). Moreover, the solid trendline in Figure 6.3 suggests
a linear relationship between the two variables. This was confirmed using a
Pearson product-moment correlation. There is a strong, positive linear cor-
relation between the total number of distinct subjects and objects, and the
summary generation time with statistical significance, indicated by r = 0.999
with two-tailed p < 0.0001(� = 0.05).
Finally, we study the influence of dataset size, i.e., the total number of triples.
The dataset size is expected to have a similar correlation as subjects and ob-
jects because of their dominance. In Figure 6.3, the dashed trendline already
indicates a linear relationship between the total number of triples and the sum-
mary generation time. To confirm this, a Spearman’s rank-order correlation
was run. There is a significant strong, monotonic relationship between the to-
tal number of triples and the summary generation time given by � = 1.000with
a two-tailed p < 0.0001(� = 0.05). Additionally, a similarly strong, linear cor-
relation is indicated by a Pearson product-moment correlation with r = 0.993,
which is also statistically significant with p < 0.00001(� = 0.05).
The correlation findings above in combination with the overall low execution
times show that the data summaries can be computed in a reasonable time,
which is suggested to be most impacted by the size and more specifically, the
number of subjects and objects in the dataset. Improving the handling of these

131

6.5. Experiments

0 0.2 0.4 0.6 0.8 1

⋅108

0

2

4

6

⋅105

Number of distinct values

G
e

n
e

r
a

t
i
o

n
t
i
m

e
(
m

s
)

predicates

subjects

objects

subjects and objects (solid trendline)

all triples (dashed trendline)

Figure 6.3: The data summary generation time increases linearly with the number of
distinct subjects and objects.

values instead of the predicates, seems more rewarding for optimizing sum-
mary generation.

Summary size

A dataset summary should be su�iciently compact to ensure that (a) the sum-
mary index is able to scale, and (b) summaries can be transferred over http
e�iciently. Consequently, we aim for the summaries to be at least 95% smaller
than the original dataset.

The fourth column in Table 6.1 shows the summarization ratio per dataset. All
values lie above 99% compared to the already compact binary hdt file. They
have a sample mean � = 99.612 and a standard deviation � = 0.990.
Shapiro-Wilk’s test indicates that the summarization ratio scores are not nor-
mally distributed (p < 0.01). Therefore, a one-tailed Wilcoxon signed-rank test
for single sample was performed to test whether the mean summarization ra-
tio is larger than 95%, which yielded a W (-value) = 0. The critical value of
W for N = 10 at p ≤ 0.05(� = 0.05) is 8 and the Z (-value) = −2, 666 with p-
value = 0, 0038(� = 0.05). Hence, the data summaries are significantly small
(� > 95;W < 8).
Because of the uri authorities, summarizing the dataset creates a lot of re-
dundancy, which allows us to greatly compress the result. The created redun-
dancy decreases according to the number of distinct authorities present in the
dataset. This potentially leads to a low summarization ratio for highly variable
datasets (e.g., sameAs.org). However, as previously pointed out, this is rare be-

132

sameAs.org

6.5. Experiments

generation json original hdt

dataset time (ms) size (kb) ratio (%) size (kb)

dbpedia subset 339,598 85.68 99.98 584,679
NY Times 2,237 25.12 99.77 11,344
LinkedMDB 37,840 26.10 99.95 52,413
Jamendo 7,390 53.69 99.70 18,258
Geonames 651,102 26.01 99.99 1,035,674
SW Dog Food 667 83.17 96.80 2,606
KEGG 7,755 1.62 99.98 11,850
Drugbank 3,650 13.27 99.92 16,942
ChEBI 28,233 1.87 99.99 23,502
SP2B-10M 72,482 6.38 99.99 320,662

Table 6.1: The compression rate of data summaries is very high (99%) with acceptable
creation time (11 min)

cause of uri ownership, where data publishers tend to base their uris around
a single domain name.

In terms of absolute size, the summaries remain below a few hundred kilobytes.
The largest summary, i.e., dbpedia, responsible for roughly 40 million triples,
results in only 85 kb. Although this size increases slightly when loaded into
memory, we can conclude that they are su�iciently compact. The server can
load many summaries in memory without introducing large overhead. Fur-
thermore, the current implementation only applies a simple uri dictionary,
thus, a more extensive compression can still massively reduce space.

Discovery execution time and bandwidth usage

To evaluate the performance of our hypermedia-based discovery approach, we
deployed 8 servers, one for each dataset. We excluded the SP2B dataset since
it uses local uris and is not linked to any dataset. Each server was provisioned
with a pre-computed data summary and the server application. The active
discovery process was executed on all machines simultaneously, also triggering
the reactive discovery.

Table 6.2 shows the results for the active discovery phase. All servers were able
to discover their direct neighbors, of which three (dbpedia, LinkedMDB, Drug-
bank) in less than 10s, four (NY Times, Jamendo, Geonames, SW Dog Food) in
less than 7min and one outlier (KEGG–ChEBI) in only 5ms. This outlier is due
to the absence of external uris in the KEGG–ChEBI dataset, which requires no
requests. The di�erence between the two other clusters also correlates with
their di�erences in request count. Thus, higher bandwidth usage reflects on a
higher execution time. The highest execution time was measured for the SW
Dogfood dataset. Although it has the lowest number of triples, the maximum
of 771 requests was sent. This can be explained by its high number of links

133

6.5. Experiments

to personal author websites, resulting in a high number of unique samples.
In general, the low number of requests is a result of using a data summary as
seed. Despite the large number of triples in a dataset, e.g., dbpedia, the request
count can be very low (e.g., 16 requests), due to low authority variance in its
uris.

Next, we analyze the influence of bandwidth usage and dataset size on the dis-
covery execution time. A Spearman’s rank-order correlation was run to deter-
mine the relationship between the number of requests and the discovery execu-
tion time. There is a strong, positive monotonic relationship that is statistically
significant given by a � = 0.952 with a two-tailed p(-value)= 0.00027(� = 0.05).
Furthermore, a Pearson’s product-moment correlation test with r = 0.943 and
p(-value)= 0.00044(� = 0.05) shows a strong, positive linear correlation, which
is also statistically significant. This is confirmed by a coe�icient of determina-
tion R2 = 0.889.

The number of http requests sent, however, is only a fraction of the dataset size
(i.e., the total number of triples). The average request per triple is only 0.1% (� =
0.001). Yet, a Spearman’s rank-order correlation test shows a weak, negative
monotonic relationship between the dataset size and the discovery execution
time with � = −0.38095, which is not statistically significant with a two-tailed
p(-value)= 0.35181(� = 0.05). We observe a similar result with Pearson’s r =
−0.3402 and coe�icient of determination R2 = 0.1157, which indicate a weak
negative linear correlation that is statistically insignificant with a two-tailed
p = 0.409926(� = 0.05). Hence, this suggests that the number of http requests
could be a more suitable predictor than the dataset size.

Finally, Table 6.3 shows the results of the reactive discovery phase. Each server
has discovered the interfaces that were connected through a backlink. Reactive
discovery is cheap in terms of bandwidth usage, as it only needs one requests
per discovery. As a result, its execution times are mostly determined by time
taken to reconstruct the summary from the response, as shown in the last two
columns.

Completeness of the discovery outcome

In terms of completeness, the combination of active and reactive discovery
results in a recall of 1.0 (� = 1.0), as all interfaces relevant to the discovery task
are found. Here, a relevant interface provides access to a dataset to which a
link is included in the discoverer’s dataset.

If the number of stored summaries deviates in Table 6.2, it was already discov-
ered by reactive discovery, or visa versa. During active discovery, both dbpedia
and SW Dog Food found links to OWL or RDFS, but these were detected as
not being fragments. Completeness in context of a query task is discussed in
the next section.

134

6.5. Experiments

dataset links found #l #f #s #req

sct

(ms)

et

(ms)

dbpedia

OWL
NY Times

2 1 1 16 41 1,073

NY Times

dbpedia
Geonames

2 2 1 240 13 30,666

LinkedMDB

dbpedia
Geonames

2 2 2 15 118 6,704

Jamendo Geonames 1 1 1 655 31 218,549
Geonames dbpedia 1 1 1 261 129 24,853

SW Dog Food

OWL
dbpedia
Geonames
Drugbank

4 3 3 771 211 382,787

Drugbank

RDFS
dbpedia
KEGG–ChEBI
OWL

4 2 2 22 126 7,609

KEGG–ChEBI – 0 0 0 0 – 5

Table 6.2: Active discovery is able to find interfaces for all links. No links are found
for KEGG–Chebi, since it does not contain any outgoing links. (#l=number of
links, #f=number of fragments, #s=number of fragments stored in index, #req=number
of sent requests, sct=summary construction time, et=execution time)

6.5.3 Impact on federation query execution

In this second experiment, we measure the impact of our discovery approach
on client-side federated query execution. We ran FedBench on di�erent se-
tups, combining a client variant and a specific index. Two variants of clients
were implemented: (a) a naive client that sends every requests to every server,
without consuming hypermedia, and (b) a hypermedia-based client which im-
plements the query execution algorithm described in this chapter. The naive
client will act as a baseline to measure the impact of the hypermedia-based
client. It mimics existing federation systems that solely rely on triple pa�erns
to do both source selection and query execution. We do not use other state-of-
the-art federation systems as baseline, since the comparison would be unfair.
Such systems are highly tailored to the e�icient, but computationally heavy
sparql interface, which enables very low execution times. Our e�orts aim at
a sustainable solution for both client and server, thus using the slower, but
lightweight tpf interface. We aim at investigating the role of hypermedia in
source-selection, rather than optimizing execution speed.

In addition, we prepared two distinct index provisions: (a) populated with all
summaries of the other datasets (full index), and (b) populated with the sum-

135

6.5. Experiments

dataset links found #f #s #req

asct

(ms)

aet

(ms)

dbpedia

Geonames
Drugbank
SW Dog Food,
LinkedMDB
NY Times

4 4 1 56 73

NY Times dbpedia 1 1 1 123 142
LinkedMDB – 0 0 – – –
Jamendo – 0 0 – – –

Geonames

LinkedMDB
NY Times
SW Dog Food,
Jamendo

4 4 1 49 53

SW Dog Food – 0 0 – – –
Drugbank – 1 1 1 36 76
KEGG–ChEBI Drugbank 1 1 – 30 48

Table 6.3: Reactive discovery appends the backlinked interfaces to the active discov-
ery results. (#f=number of fragments, #s=number of fragments stored in index,
#req=number of sent requests, asct=avg. summary construction time, aet=avg. ex-
ecution time)

maries from its discovery outcome (discovery index). The full index setup pro-
vides insight on the general performance of hypermedia-based source selec-
tion. It creates the ideal scenario where each interface is able to provide a link
to any other interface. This isolates the query execution from any limitations
of the discovery approach, i.e., incomplete indexes. The discovery index setup
provides insight in the relation between discovery outcome and the query algo-
rithm. Here, each interface has a di�erent, more selective index, which enables
studying the impact on query completeness and execution time.

In total, this second experiment addresses query result completeness, server
overhead, and query execution time. First, since we expect the recall of the
discovery outcome to be high, the hypermedia controls should be su�icient to
produce high query result recall as well (> 0.75). Second, we expect a limited
impact of the hypermedia control generation process on the server. The sum-
maries are very compact, directly available in the main memory, and contain all
information for e�iciently producing the links, given the algorithm described
in Section 6.4. Third, given that hypermedia can be generated at low-cost,
sending hypermedia to the client should result in a more selective source se-
lection. These benefits are unlikely to outweigh the extra overhead.

136

6.5. Experiments

�ery result completeness

In the following, we study the completeness and accuracy of the discovery
outcome from Table 6.2 and Table 6.3.

d
b

p
e

d
i
a

N
Y

T
i
m

e
s

L
i
n

k
e

d
M

D
B

J
a

m
e

n
d

o

G
e

o
n

a
m

e
s

S
W

D
o

g
F

o
o

d

D
r
u

g
b

a
n

k

K
E

G
G

–
C

h
E

B
I

CD1 1.00 0.86 0.86 0.00 ERR 0.86 0.86 0.00
CD2 1.00 0.00 0.00 0.00 ERR 0.00 0.00 0.00
CD3 0.00 0.00 0.00 0.00 ERR 0.00 0.00 0.00
CD4 1.00 0.00 0.00 0.00 ERR 0.00 0.00 0.00
CD5 0.00 0.00 ERR 0.00 ERR 0.00 0.00 0.00
CD6 0.00 0.00 0.00 0.00 ERR 0.00 0.00 0.00
CD7 1.00 0.00 0.00 0.00 ERR 0.00 0.00 0.00
LS1 1.00 0.00 0.00 0.00 ERR 0.00 1.00 1.00
LS2 1.00 0.00 0.00 0.00 ERR 0.00 0.96 0.96
LS3 – – – 0.00 ERR – – –
LS4 0.00 0.00 0.00 0.00 ERR 0.00 0.00 0.00
LS5 – – – 0.00 ERR – – –
LS6 0.00 0.00 0.00 0.00 ERR 0.00 0.00 0.00
LD1 1.00 0.00 0.00 0.00 ERR 0.00 0.00 0.00
LD2 1.00 0.00 0.00 0.00 ERR 0.00 0.00 0.00
LD3 1.00 0.00 0.00 0.00 ERR 0.00 0.00 0.00
LD4 1.00 0.00 0.00 0.00 ERR 0.00 0.00 0.00
LD5 0.00 1.00 1.00 ERR ERR 1.00 1.00 0.00
LD7 0.32 0.00 0.00 0.00 ERR 0.00 0.00 0.00
LD8 – – – 0.00 ERR – – –
LD9 0.00 0.00 0.00 0.00 ERR 0.00 0.00 0.00
LD10 0.00 1.00 1.00 0.00 ERR 1.00 1.00 0.00

Table 6.4: The recall of each query’s results depends on the starting dataset. Due to
only using links one level deep, only interfaces with the relevant interfaces
as direct neighbors contribute to recall.

A FedBench run was performed with each server as starting point. In terms
of completeness, Table 6.4 shows the measured recall of each query for each
run, with the number of results from the naive client run as baseline. In gen-
eral, many queries returned no results, which results in zero or undefined recall
(naive client returned 0 results, marked with “–”). Empty result sets are likely
caused by the limitations of the current client, which only consumes the hy-
permedia controls of one fragment response, i.e., the direct neighbors of that
particular server. Therefore, the client cannot retrieve data from interfaces that

137

6.5. Experiments

are more than one link away from the starting point. Given these findings, we
clearly need a more powerful execution algorithm to reach a be�er coverage
in recall.

Using dbpedia as starting point reaches 1.0 recall for most of the queries, be-
cause its index also contains summaries for most datasets. Moreover, queries
LD5 and LD10 contain predicates from dbpedia, and, thus can be answered by
using starting points with links to the dbpedia summary. However, this means
the dbpedia server itself should also be a good starting point, but this is not
reflected in the results. This likely is caused by an error during execution, e.g.,
a failed http request.

The low recall scores demand a more intelligent client algorithm that can deal
with multiple hops, while keeping query execution scalable. Another first en-
hancement would be to define heuristics to estimate the levels of neighboring
links to traverse. While it is unfeasible to blindly traverse interfaces, this would
potentially consume the whole Web, a possible improvement is a dynamic hop
count based on, for instance, the number of joins in a query. The client could
also rely on link traversal during execution to reach non-indexed interfaces
that are out of immediate reach.

Server response overhead

We tested the impact of our discovery approach on a server responding to a
querying client. As stated above, a client solves complex queries by retrieving a
series of fragments from a server. Hypermedia is added to each response, thus
the overhead is measured by its share in hypermedia construction time. To not
endanger scalability, only an overhead below 10% is considered acceptable.

Being implemented as a
simple JavaScript object,
the summary index should
eventually be replaced with
a more e�icient data
structure.

Figure 6.4 shows the average http response time per
server. All servers respond within 3ms on average,
confirming the lightweight character of Triple Pat-
tern Fragments servers in combination with an hdt
data source. A le�-tailed t-test was run to deter-
mine whether hypermedia control construction is
below the 10% accepted response overhead. Hyper-

media construction scores are normally distributed, as assessed by Shapiro-
Wilk’s test (p > 0.05) and there are no outliers in the data. A mean hyperme-
dia construction overhead of 5.24% (� = 0.67%) is reported to be lower than
a hypermedia construction overhead of 10%. This is a statistically significant
di�erence of 4.76% with t-value = −20.094 and p < 0.0001(� = 0.05). For a sin-
gle request, the overhead of constructing addition hypermedia can therefore
be considered negligible.

�ery execution time

First, we measured whether using summary indexes and hypermedia decreases
the average execution time. Figure 6.5 shows the mean execution time for the

138

6.5. Experiments

D
B
P
e
d
ia

N
Y

T
im

e
s

L
in

k
e
d
M

D
B

J
a
m

e
n
d
o

G
e
o
n
a
m

e
s

S
W

D
o
g

F
o
o
d

K
E
G

G
-
C
h
E
B
I

D
r
u
g
b
a
n
k

1

2

3

4

T
i
m

e
i
n

m
s

Hypermedia construction

Total request time

Figure 6.4: Hypermedia construction time is negligible compared to the total response
time.

naive client on index-free servers and the hypermedia-based client on full index

servers. All results achieved full completeness (recall = 1.0), and are ordered
descending according to the number of results.

The score di�erences between the naive and hypermedia-based client are not
normally distributed, as assessed by Shapiro-Wilk’s test (p < 0.01). Hence, a
one-tailed Wilcoxon signed-rank test was performed with Z -value= −1.9642
(N ≥ 20) and p = 0.025(� = 0.05)). This shows that using a hypermedia-based
client on servers with a full index, inflicts a statistically significant decrease
in mean execution time compared to using naive clients on index-free servers.
The di�erence in mean execution time is 10.817s over all queries.

For most queries, we notice a small performance increase for the hypermedia-
based client, caused by its more selective nature. However, the queries LS3,
CD3, and LD4 show an decrease in mean execution time of 50% or more,
which indicates impact. They contain a triple pa�ern with a uri bound to the
object, which is very selective. This enables the indexes to be very selective
for one or more generic pa�erns, i.e., ?x rdf:type ?y, ?x owl:sameAs ?y, or
?x foaf:type ?y. This strictly reduces the amount of requests sent, in con-

139

6.5. Experiments

0 0.5 1 1.5 2 2.5

⋅105

LS1

LD10

LS2

LD1

LD2

LD3

CD1

LD4

LS6

LD5

LD7

CD6

LS4

LD9

CD3

CD5

CD7

CD2

CD4

LS3

LS5

Time in ms

Naive client

Hypermedia-based client (w. full index)

Figure 6.5: Hypermedia-based querying with full-index servers decreases the mean ex-
ecution time with 50% compared to the naive federation approach

trast to the naive client, which keeps accessing all servers. The query CD6
shows a slight decrease in performance. Since its only bounded object is a lit-
eral, the index cannot be selective at first, as literals are not included in the
summaries. Thus, the hypermedia overhead outweighs the gain on future it-
erations of the query algorithm.

Next, we compared the execution time for the discovery index setup with the
full index setup. From Table 6.4, we selected the queries that were answered
with 1.0 recall by at least one starting point. If there are multiple starting points
for one query, we chose the one with the highest execution time. The results
are shown in Figure 6.6.

Shapiro-Wilk’s test indicates that the score di�erences between a full index
and a discovery index are not normally distributed (p < 0.01). A two-tailed
Wilcoxon signed-rank test was therefore performed with W (-value) = 4(N <
20). The critical value of W for N = 15 at p ≤ 0.05(� = 0.05) is 25 and the
Z (-value) = −3.1806 with a p = 0.00148(� = 0.05). Therefore, using a discovery
index elicits a statistically significant change in mean query execution time
compared to using a full index. For most queries, there is a significant decrease,
especially LS3, CD4, and CD2. These queries clearly benefit from the smaller
index, which only gives a few links to check.

In general, we cannot claim hypermedia-based source selection decreases the

140

6.6. Conclusion

0 1 2 3 4 5 6

⋅104

LS1

LD10

LS2

LD1

LD2

LD3

CD1

LD4

LD5

CD7

CD2

CD4

LS3

LS5

Time in ms

Full index

Discovery index

Figure 6.6: For a few queries, hypermedia-based querying with a discovery index is
several magnitudes faster than with a full-index. However, most queries
are only slightly faster, not yielding any claims on query time decrease.

average query time compared to the baseline with source elimination only.
However, the results indicate potential for hypermedia in source selection, in
particular when using more targeted indexes created by discovery. A more
thorough evaluation is advised with a larger number of datasets and a more
extensive query mix.

6.6 Conclusion

�ery federation over low-cost interfaces is a crucial aspect for evolving the
Web towards a global, machine understandable data space. For query federa-
tion systems, an important performance aspect is source selection: determin-
ing which sources are relevant to evaluate a certain sparql query.

However, Linked Data sources need to be discovered first, and this process po-
tentially impacts source selection too. Therefore, we proposed a hypermedia-
based approach to benefit federated query processors (Research �estion 4).
In addition, we defined a framework to evaluate this approach, covering the
quantitative aspects of a discovery process. These quantitative aspects cover
the non-functional requirements completeness and accuracy, and the func-

141

6.6. Conclusion

tional requirements bandwidth usage, execution time, and server overhead.
Existing processes using discovery can thus be formalized, enabling compa-
rability between approaches and the development of a proper methodology.
However, the categorization and metrics are high-level, and need to be studied
in-depth in the future.

Just like hyperlinks fade the boundaries between di�erent Web interfaces for
humans, a discovery process should fade the distinction between query exe-

cution and federated query execution. The experimental results are promising
in terms of server overhead and completeness in the pre-query phase. When
executing federated queries, our approach shows a general decrease in execu-
tion time, but very poor recall. We conclude that the link traversal has been
simplified, but still requires algorithms that intelligently consume hypermedia.

Overall, we have to falsify Hypothesis 4 and acknowledge further steps need to
be taken to call a discovery process e�ective. For instance, combining query ex-
ecution with additional hypermedia or metadata repositories (e.g., LODLaun-
dromat [24], DataHub, or LOD-a-lot [25]) might be necessary to improve recall.
Servers can for instance construct these repositories by dedicating themselves
to the proposed discovery process, opposed to also serving data.

142

References

This chapter was partly based on the publication:

Miel Vander Sande, Ruben Verborgh, Anastasia Dimou, Pieter Colpaert, and
Erik Mannens. “Hypermedia-based discovery for source selection using low-
cost Linked Data interfaces.” In: International Journal on Semantic Web and

Information Systems 12.3 (2016), pp. 79–110. issn: 1552-6283. doi: 10 . 4018 /
ijswis.2016070103

References

[1] Nur Aini Rakhmawati, Jürgen Umbrich, Marcel Karnstedt, Ali Hasnain,
and Michael Hausenblas. “A comparison of federation over sparql end-
points frameworks.” In: International Conference on Knowledge Engineer-

ing and the Semantic Web. Springer. 2013, pp. 132–146.

[2] Muhammad Saleem, Yasar Khan, Ali Hasnain, Ivan Ermilov, and Axel-
Cyrille Ngonga Ngomo. “A fine-grained evaluation of sparql endpoint
federation systems.” In: Semantic Web Journal 7.5 (2016), pp. 493–518.

[3] Zoi Kaoudi, Kostis Kyzirakos, and Manolis Koubarakis. “sparql �ery
Optimization on Top of dhts.” In: The 9

th
International Semantic Web

Conference on The Semantic Web. ISWC’10. Shanghai, China: Springer-
Verlag, 2010, pp. 418–435. isbn: 3-642-17745-X, 978-3-642-17745-3.

[4] Ma�hias Klusch and Xiguo Zhing. “Deployed Semantic Services for the
Common User of the Web: A Reality Check.” In: The International Con-

ference on Semantic Computing. Vol. 8. 2008, pp. 347–353.

[5] Tim Berners-Lee. Linked Data – Design issues. Ed. by Tim Berners-Lee.
July 27, 2006. url: h�p://www.w3.org/DesignIssues/LinkedData.html
(visited on 06/18/2009).

[6] Keith Alexander and Michael Hausenblas. “Describing linked datasets –
on the design and usage of void, the ‘Vocabulary of Interlinked Datasets’.”
In: The Linked Data on the Web Workshop. Citeseer, 2009.

[7] Gregory Todd Williams. sparql 1.1 Service Description. Recommenda-
tion. World Wide Web Consortium, Mar. 21, 2013. url: h�p://www.w3.
org/TR/sparql11-service-description.

[8] Heiko Paulheim and Sven Hertling. “Discoverability of SPARQL End-
points in Linked Open Data.” In: The International Semantic Web Confer-

ence (Posters & Demos). ISWC-PD’13. Sydney, Australia: CEUR-WS.org,
2013, pp. 245–248. url: h�p : / /dl . acm.org /citation . cfm? id=2874399 .
2874461.

143

https://doi.org/10.4018/ijswis.2016070103
https://doi.org/10.4018/ijswis.2016070103
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/TR/sparql11-service-description
http://www.w3.org/TR/sparql11-service-description
http://dl.acm.org/citation.cfm?id=2874399.2874461
http://dl.acm.org/citation.cfm?id=2874399.2874461

References

[9] Carlos Buil-Aranda, Aidan Hogan, Jürgen Umbrich, and Pierre-Yves Van-
denbussche. “sparqlWeb-�erying Infrastructure: Ready for Action?”
In: The 12

th
International Semantic Web Conference. Ed. by Harith Alani,

Lalana Kagal, Achille Fokoue, Paul Groth, Chris Biemann, Josiane Xavier
Parreira, Lora Aroyo, Natasha Noy, Chris Welty, and Krzysztof Janowicz.
Nov. 2013.

[10] Michelangelo Diligenti, Frans Coetzee, Steve Lawrence, C. Lee Giles, and
Marco Gori. “Focused Crawling Using Context Graphs.” In: International

Conference on Very Large Data Bases. 2000, pp. 527–534.

[11] Olaf Hartig. “An Overview on Execution Strategies for Linked Data �e-
ries.” In: Datenbank-Spektrum 13.2 (2013), pp. 89–99.

[12] Günter Ladwig and Thanh Tran. “Linked Data �ery Processing Strate-
gies.” English. In: The International Semantic Web Conference. Ed. by Pe-
ter. Patel-Schneider, Yue Pan, Pascal Hitzler, Peter Mika, Lei Zhang,
Je�Z. Pan, Ian Horrocks, and Birte Glimm. Vol. 6496. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2010, pp. 453–469. isbn:
978-3-642-17745-3.

[13] Ma�hias Klusch. “Service discovery.” In: Encyclopedia of Social Networks

and Mining (ESNAM) (2014). Ed. by R. Alhajj and J. Rokne.

[14] A Basit Khan and Mihhail Matskin. “Agora framework for service discov-
ery and resource allocation.” In: The International Conference on Internet

and Web Applications and Services. ieee, 2010, pp. 438–444.

[15] Ulrich Basters and Ma�hias Klusch. “rs2d: fast adaptive search for Se-
mantic Web services in unstructured p2p networks.” In: The International

Semantic Web Conference. Springer, 2006, pp. 87–100.

[16] Kunal Verma, Kaarthik Sivashanmugam, Amit Sheth, Abhijit Patil, Swa-
pna Oundhakar, and John Miller. “Meteor-s wsdi: A scalable p2p in-
frastructure of registries for semantic publication and discovery of web
services.” In: Information Technology and Management 6.1 (2005), pp. 17–
39.

[17] Tim Berners-Lee. Axioms of Web Architecture: Metadata. Jan. 1997. url:
h�ps://www.w3.org/DesignIssues/Metadata.html.

[18] Harry Halpin, Patrick J. Hayes, James P. McCusker, Deborah L. McGuin-
ness, and Henry S. Thompson. “When owl:sameAs Isn’t the Same: An
Analysis of Identity in Linked Data.” English. In: The International Se-

mantic Web Conference. Ed. by Peter Patel-Schneider, Yue Pan, Pascal
Hitzler, Peter Mika, Lei Zhang, Je� Z. Pan, Ian Horrocks, and Birte Glimm.
Vol. 6496. Lecture Notes in Computer Science. Springer Berlin Heidel-
berg, 2010, pp. 305–320. isbn: 978-3-642-17745-3.

[19] Muhammad Saleem and Axel-Cyrille Ngonga Ngomo. “Hibiscus: Hyper-
graph-based source selection for SPARQL endpoint federation.” In: The

Semantic Web: Trends and Challenges. Springer, 2014, pp. 176–191.

144

https://www.w3.org/DesignIssues/Metadata.html

References

[20] Martin Dürst and Michel Suignard. Internationalized resource identifiers

(iris). Request For Comments 3987. Internet Engineering Task Force, 2005.
url: h�ps://tools.ietf.org/rfc/rfc3987.

[21] Hannes Mühleisen and Anja Jentzsch. “Augmenting the Web of Data
using Referers.” In: The Linked Data on the Web Workshop. 2011.

[22] Michael Schmidt, Olaf Görlitz, Peter Haase, Günter Ladwig, Andreas
Schwarte, and Thanh Tran. “Fedbench: A benchmark suite for feder-
ated semantic data query processing.” In: The International Semantic

Web Conference. Springer, 2011, pp. 585–600.

[23] Thomas Neumann and Gerhard Weikum. “x-rdf-3x: Fast �erying, High
Update Rates, and Consistency for rdf Databases.” In: The International

Conference on Very Large Data Bases. Vol. 3. 1-2. VLDB Endowment, Sept.
2010, pp. 256–263.

[24] Wouter Beek, Laurens Rietveld, Hamid R. Bazoobandi, Jan Wielemaker,
and Stefan Schlobach. “lod Laundromat: A Uniform Way of Publish-
ing Other People’s Dirty Data.” In: The 13

th
International Semantic Web

Conference. Ed. by Peter Mika, Tania Tudorache, Abraham Bernstein,
Chris Welty, Craig Knoblock, Denny Vrandečić, Paul Groth, Natasha
Noy, Krzysztof Janowicz, and Carole Goble. Vol. 8796. Lecture Notes in
Computer Science. Springer, Oct. 2014, pp. 213–228.

[25] Javier D Fernández, Wouter Beek, Miguel A Martínez-Prieto, and Mario
Arias. “LOD-a-lot.” In: International Semantic Web Conference. Springer.
2017, pp. 75–83.

145

https://tools.ietf.org/rfc/rfc3987

Every time I learn something
new, it pushes some old stu�
out of my brain! Remember
when I took that home wine-
making course and forgot how
to drive?

— Homer J. Simpson

7
Accessing history

Content on the Web dri�s and this is no di�erent in a Web of Linked Data that

is connected through persistent uris. Changing resource states make re-executing

a query in its valid context di�icult. This chapter addresses this reproducibility

problem by tackling Research �estion 5 and proposing a sustainable Linked Data

publishing strategy for rdf archives based on virtual integration. Accordingly, we

discuss the necessary enhancements on (a) storage, (b) publishing, and (c) querying

level (Hypothesis 5). First, for storing rdf archives in a queryable way, we discuss

a pragmatic file-system-based technique that covers many common cases. Second,

we extend the low-cost Triple Pa�ern Fragments interface discussed in the previous

chapters to publish these rdf archives on the Web. A time-dimension is added

to the interface to synchronize distributed sources while querying and answering

queries over time. Third, we adjust the query client and federation mediator to

support sparql querying in the time dimension. To put this into practice, this

strategy is discussed in context of the Libraries, Archives, and Museums domain.

Driven by the need for persistent uris, the Web tends to push an eternal now

perspective. A representation returned by requesting an http resource always
captures the then-current state. Yet, the fact that Web content is fleeting—it
disappears or changes over time—makes this quite a contradiction. Changing
resource states can cause content to dri� and create inconsistencies between
resources. For instance, a Web page on average current income that serves as a
reference for a page on unemployment rate in 2004, may no longer support the
made claims. Essentially, as popular information source, the Web struggles
with the problem of reproducibility [1]: query results—either by browsing or
search—need to remain valid when they are regenerated later.

Evidently, as identification by persistent uris drive Linked Data [2], this issue
a�ects the Web of Linked Data as well. Collections of rdf statements experi-
ence factual changes (e.g., demographics or artwork portfolios), or schematic
changes (e.g., use of categories, types or relations) that prevent re-executing a

147

7.1. Publishing Linked Data preservation e�orts

query in its valid context [3]. �erying a federation of dri�ing sources can pro-
duce invalid results due to incompatible schemas, broken links, or combining
facts that are no longer true.

Thus, domains with an increased demand for Linked Data, like Cultural Her-
itage and Open Data, cannot consider digital preservation an a�erthought. In
addition, the responsible institutions are frequently under-resourced, making
low-cost Linked Data publishing their particular interest. For that reason, we
expand the narrative on low-cost interfaces from previous chapters to support
Linked Data archiving. This yields the benefit of querying past versions of a
dataset, which we can use to synchronize distributed interfaces or analyze the
evolution of query results.

To keep a firm connection with the practical se�ing, we approach this chap-
ter from the perspective of Libraries, Archives, and Museums (lams), a domain
where cross-institutional data integration, with the desire for virtual integra-
tion and reproducibility, is prominent and a ma�er of daily concern. Before
we can introduce a sustainable integration strategy though, we need a good
understanding on how these institutions publish Linked Data today.

7.1 Publishing Linked Data preservation e�orts

Well aware that ongoing Linked Data access can not be reliable over time
without preservation [4], Libraries, Archives, and Museums aspire a combined
agenda of long-term digital preservation and access [5, 6]. As mentioned in Sec-
tion 2.4, an Extract-Transform-Load workflow periodically produces a new rdf
collection. Consequently, with a�ention to digital preservation, a Web publish-
ing workflow always applies to an rdf version of the dataset, for which three
conceptually di�erent types exist:

• the live version, representing the last possible state of the dataset, i.e.,
the collection currently known to the publishing institution;

• the current version, representing the latest published state of the dataset,
i.e., the most recent version accessible to consumers;

• an archive version, representing a state of the dataset bounded by a
fixed temporal range for which it is valid, i.e., preserved versions for fu-
ture reference.

Typically, the live version is loaded into an rdf database, which o�ers powerful
functionalities to clients, such as fine-grained querying. Yet, under-resourced
organizations struggle to enhance this workflow to provide e�ective external
access to their digital preservation e�orts—the archive versions. They resort to
the Linked Data publishing approach shown in Figure 7.1a.

Despite its usefulness, the live rdf database rarely serves as current version as
well, but is restricted to internal consumption. This means the database is not
exposed to external consumers and understandably so. As mentioned in Sec-
tion 3.1, there is li�le economical justification to share complex, maintenance-
intensive sparql systems with unpredictable load. Thus, such institutions re-

148

7.1. Publishing Linked Data preservation e�orts

Database
[t4, … [

Dump
[t3, t4[

Dump
[t2, t3[

Dump
[t1, t2[

Dump
[t0, t1[

Internal Data Consumers External Data Consumers

t4 t3 t2 t1

query
live

download
current

download
archive

download
archive

download
archive

una�ordable

(a) Common Linked Data publishing strategy centered around data dumps

Database
[t4, … [

hdt
[t3, t4[

hdt
[t2, t3[

hdt
[t1, t2[

hdt
[t0, t1[

Storage
(Section 7.4)

Publication
(Section 7.5)Memento-enabled tpf Server

�ery
(Section 7.6)tpf Client

query
live

query
current + archives

Internal Data Consumers External Data Consumers

t4 t3 t2 t1

(b) TPF-centric approach with support for (hdt-based) rdf archiving

Figure 7.1: Enhancements of the proposed Linked Data publishing strategy to the
common approach.

lease timely archive versions as data dumps and make them available for down-
load [7]. The most recent dump serves as current version, and is therefore never
entirely up-to-date. In the best case, multiple archive dumps serve as preser-
vation strategy, making the history available for internal and/or external use.
However, issues like the fear of loosened control—when shared, data can be
used for anything and by anyone, might prevent publishers to keep all archives

149

7.2. Sustainable publishing and querying of Linked Data archives

available forever. Despite its inexpensive character, this approach strongly lim-
its functionality for the client, as the data is not directly queryable.

7.2 Sustainable publishing and querying of Linked Data

archives

Given that the current impasse is motivated by a lack of funds, inspecting
whether embracing the low-cost tpf interface can lead to a more sustainable
strategy seems evident. Again, this pinpoints a sweet spot regarding interface

availability by balancing maintenance costs and query functionality, but now
includes both live and archive versions.

We suggest an alternative strategy to facilitate cross-institutional data inte-
gration. Hereby, we employ a virtual integration approach (see Section 5.1);
every organization can publish their own datasets, which clients integrate on
demand through means of querying. This results in the toolchain illustrated
in Figure 7.1b, with focus on three main benefits for the publisher, its inter-
nal consumers, and external consumers. First, infrastructure requirements be-
come lower cost, while query capabilities remain. By restricting the expres-
siveness of the interface, the required computational resources become more
predictable. This lowers the barrier for institutions to publish their metadata
collections online. Second, uniform access to the semantically integrated data
across institutions is achieved by merely relying on the http protocol and a
self-describing interface. Hence, any Web application can interoperate with
the datasets and clients can autonomously discover how to interact. Third, it
provides synchronization in the sense that querying dataset versions that have
matching temporality and that reside in distributed rdf Archives is possible
using the same interface.

As already pointed out
in Section 4.1.1, a publisher
can generate hdt files
relatively cheaply, while the
extended lookup interface
highly increases
functionality for external
and internal consumers.

In contrast to the approach in Figure 7.1a, we argue
to keep the database, holding the live version, unex-
posed, but to recurrently publish archive versions of
a dataset in a compact, but more expressive storage
solution, e.g., the hdt format (introduced in Sec-
tion 2.4.2) or an rdf version control system. This
modest shi� enables digital preservation in com-
bination with access through a low-cost tpf-based
wrapper stack. Complex queries can be executed in

a public se�ing on both a current version, i.e., the most recently extracted in-
dexed version, and its archives. Although the current and live version still do
not coincide, rdf storage solutions, especially hdt, can be of lower mainte-
nance compared to collecting data dumps.

In total, we propose to unlock this functionality by composing three layers:

1. the Storage layer contains techniques to archive rdf data and provide
access to all versions independently;

150

7.3. Reconstructing institutional history from archives

2. the Publication provides a wrapper tpf interface with added support
for temporal queries; and

3. the �ery layer queries multiple temporal tpf interfaces together to
answer complex queries over archives.

All layers are discussed in Sections 7.4 to 7.6, but first, we introduce a proper
use case in the next section to enable a correct validation of this proposed
strategy.

7.3 Reconstructing institutional history from archives

As no one size fits all, the contextual constraints in which a publishing strategy
is beneficial, need clarification. Hence, we embody such constraints in a Digital
Humanities use case that consists of reconstructing memory from distributed

knowledge sources. For example, recreating the status of scientific collaboration
networks or reassembling the virtual presence of institutions as they existed
at some point in the past. Its presence allows us to support and validate the
approach introduced in the previous section. In technical terms, in order to
tackle this type of challenge, a client needs to be able to fulfill two actions:

1. selecting distributed data sources in a manner that ensures that their
contained knowledge temporally coincides, that is, represents the state
of a�airs at a same point in time;

2. querying the selected distributed data sources to retrieve the data re-
quired to reconstruct the desired memory.

As a concrete example, we selected three semantically integrated Linked
Datasets (Figure 7.2) as distributed data sources. This selection of datasets is
heterogeneous regarding the type of knowledge that is represented, the typical
purpose the knowledge serves, and the size of the knowledge database:

dbpedia dbpedia is a large (> 1 billion triples) rdf dataset derived from
Wikipedia. It contains an abundance of common knowledge facts and
acts as a general-purpose linking hub between numerous domain-specific
datasets that reuse dbpedia uris. dbpedia also reuses external uris in-
cluding those from the viaf authority file. dbpedia is versioned in bi-
annual static releases.

Virtual International Authority File (viaf) viaf [8] is a reputable authority
file that is jointly compiled by lams worldwide. An authority file is an
independent index of authority records to relate and govern the headings
used in a bibliographic catalog, thus enforcing authority control. viaf is
a medium-sized (10 million – 1 billion triples) dataset available in various
formats, including as a Linked Dataset. It contains entries pertaining to
organizations and authors, and as such qualifies as a thematic dataset.
As a global authority file, it is a general-purpose dataset that is used in a
wide variety of se�ings, including as a linking hub in the lam community.

UGentMemorialis UGentMemorialis [9] is a small (< 10 million triples), the-

matic, organization-specific Linked Dataset that contains information

151

7.3. Reconstructing institutional history from archives

about professors that worked at the University of Ghent, Belgium. It
is maintained by the University Library, and serves as a prime example
of a lam institution using Linked Data to increase institutional visibil-
ity. UGentMemorialis uses viaf uris to uniquely identify the professors
about which it holds information.

Knowledge:

Purpose:

Size:

common
general

large

thematic
general

medium

thematic
organization-specific

small

dbpedia

Virtual
International

Authority
File

UGent
Memory

Figure 7.2: Our use case exists of an illustrative semantically integrated network of
three organizations publishing the datasets dbpedia, viaf, and UGent-
Memorialis.

These complementary
datasets are created by
di�erent authorities, and,
as is typically the case with
Linked Datasets, they are
interlinked through the
mutual reuse of uris.

In accordance to the aforementioned client ac-
tions, we formulate four queries over dbpedia, viaf,
and/or UGentMemorialis, that each represent a
common query format. Besides the sources’ cur-

rent version, we also target archive versions to en-
able memory reconstruction. Thereby, we tackle
the problem of reproducibility caused by evolving
rdf statements.

Our use case targets both single source and multiple sources, to access the con-
tained knowledge of distributed data sources. Such queries exploit the links
between multiple datasets, i.e., UGentMemorialis is linked to dbpedia via viaf
through the resources that represent authors. By combining multiple sources
that support access to archive versions, we can ensure temporal synchroniza-
tion. The resulting queries are presented below:

�ery to a Single Source (dbpedia)

• Current: What is the number of awards won by Belgian academics?

• Archive: How did the number of awards won by Belgian academics evolve

between 2008 to 2016?

152

7.4. Storage solutions for rdf archives

�ery to Multiple Sources (dbpedia, viaf & UGentMemorialis)

• Current: What is the number of dbpedia triples describing professor “Haus,

Jacques-Joseph” of Ghent University?

• Archive: How did the number of dbpedia triples describing professor “Haus,

Jacques-Joseph” of Ghent University evolve between 2008 and 2016?

7.4 Storage solutions for rdf archives

Data access and preservation are preferably a combined e�ort [6], as
distributed sources need to be synchronized in time when striving for the re-

producibility of queries. Typically, the kind of queries clients want to execute
determines the the publication interface, which in turn sets the requirements
for rdf storage. For the purpose of cost-e�ectively publishing data archives,
we reverse this chain and start from the storage technology, as it is the con-
straining factor for the remainder of the pipeline. In other words, before current

and archive versions can be published on the Web and subsequently queried,
they first needs to be stored in a sustainable rdf archive.

7.4.1 Requirements for rdf archives

Papastefanatos [10] identified the two challenges in Linked Open Data evolu-
tion management:

1. quality control and maintenance, semantic integration issues such as
schema or uri changes;

2. data exploitation, ensuring valuable insights can be retrieved from the
evolution itself.

rdf archive systems should engage in the la�er and o�er so-called lod long
term accessibility [10], where “datasets with di�erent time and schema con-
straints coexist and must be uniformly accessed, retrieved and combined”.
Therefore, they should adhere to the following long-standing characteristics
of data archives. Houghton [11] puts the large data volume forward as ma-
jor challenge. Although the overall cost is decreasing, it is still challenging to
store, maintain, and process the vast amounts of metadata today. Thus, both
infrastructure and so�ware need to e�iciently cope with resource constraints.
Next, Ross [12] states data in a digital library should be read-only in order
to “accept it as authentic”. Metadata collections need to be represented as
immutable snapshot versions to protect them from change and corruption.
Finally, to ensure synchronization, such past versions should be immediately

accessible, i.e., browse and lookup operations on current and past snapshots
need to be equally fast.

In the remainder of this chapter, we discuss a pragmatic approach based on
hdt and the file system, which is su�icient for most common cases.

153

7.4. Storage solutions for rdf archives

7.4.2 Pragmatic Linked Data archives with hdt

For many scenarios, including our publishing strategy in Section 7.2, a “Good
Enough” Linked Data preservation solution [13] is su�icient. Therefore, we
first discuss a pragmatic approach to rdf archiving using the file-system and
the hdt format. O�en, such an approach is more a�ordable for organizations
and serves all of their needs, while avoiding any complex so�ware system.

Figure 7.3 presents a matrix structure which organizes a collection of hdt files.
The vertical axis represents the di�erent rdf collections that are currently
archived. The horizontal axis represents versions of those collections gener-
ated at prior points in time. Each version is valid for the interval between the
time it was generated and when the succeeding version was generated. From
the metadata in the hdt Headers, we can automatically construct a simple in-
dex that supports a lookup(D, t) operation. Thereby, we can retrieve a valid
hdt file Dt with a given dataset name D (e.g., rdf Dataset B) and timestamp t
(e.g., t2). Every newly extracted hdt file is added to the first column, which
contains the current version. All a�ected datasets shi� right in the matrix, and
the index is updated to reflect this change.

rdf dataset A

rdf dataset B

...

rdf dataset Z

hdt A
[t3, t4[

hdt B
[t3, t4[

...

hdt Z
[t3, t4[

hdt A
[t2, t3[

hdt B
[t2, t3[

...

hdt Z
[t2, t3[

hdt A
[t1, t2[

...

hdt Z
[t0, t2[

hdt A
[t0, t1[

hdt B
[t0, t2[

...

Index

lookup(D, t) hdt file Dt

t4 t3 t2 t1

Figure 7.3: By applying hdt horizontally and vertically, we can create a simple, but
e�icient rdf archive. The operation lookup(D, t) retrieves a valid hdt file Dt
with a given dataset name D and timestamp t

154

7.4. Storage solutions for rdf archives

For validation, we re-designed the existing dbpedia archive initially released
by the Los Alamos National Laboratory in 2010. By applying the pragmatic
archiving method, we decreased storage space and time-to-publish by orders
of magnitude, as shown in Table 7.1. Simultaneously, the expressiveness of a
search operation evolved from dbpedia uri dereferencing only to support for
triple pa�ern queries, including dereferencing.

first generation second generation

indexing custom hdt-cpp
indexing time ∼ 24 hours per version ∼ 4 hours per version
storage MongoDB hdt binary files
space 383 gb 179 gb
versions 10 versions: 2.0

through 3.9
14 versions: 2.0
through 2015-10

triples ∼ 3 billion ∼ 6.2 billion
search expressiveness subject-based lookup subject-based lookup

triple pa�ern

Table 7.1: An dbpedia archive based on hdt files decreases storage space and the time-
to-publish significantly.

The first generation used an archiving approach [14] where dbpedia pages are
reconstructed from a custom index, holding the ten dbpedia versions 2.0 to 3.9.
Per dbpedia uri, this index stored the rdf description as a blob in MongoDB.
Adding a new version triggered a re-indexing of the entire database, resulting
in scalability issues that prevented further expansion. With Wikipedia being
a constantly changing system, new dbpedia releases are frequent. Hence, a
maximum of ten versions is unacceptable for an archive.

We replaced this custom solution with fourteen hdt files for version 2.0 to 2015.
The compression ratios are shown in Table 7.2. On average, the size of each hdt
file is only 13% of its N-triples counterpart. This has a huge positive impact on
the amount of rdf triples that can be archived. In total, the second generation

archive contains around 6.2 billion triples, which doubles the original amount
with less storage use (Table 7.1). Storage space is decreased with 53%, allow-
ing adding more snapshots in the future. The etl process benefits as well, as
it takes twenty hours less on average to put a new dbpedia version into the
archive.

As mentioned before, the second generation archive is not restricted to dbpedia
pages. It supports e�icient look-ups by triple pa�ern, which facilitates more
complex query execution. In the next section, we explain how this capability
is leveraged to create a sustainable infrastructure for publishing Linked Data
archives on the Web.

Commonly, the current version of a dataset approximates the live version. As
a result, adjusting the generation frequency of new snapshots to the update
speed of its live versions can be desirable, ultimately resulting in faster incre-

155

7.4. Storage solutions for rdf archives

version release # triples N-Triples hdt size compression

date (millions) size (gb) (gb) ratio (%)

2.0 July
2007

8.5 2.6 1.4 53.85

3.0 January
2008

120.3 18 2.3 12.78

3.1 July
2008

137 21 2.7 12.86

3.2 October
2008

150 22 2.6 11.82

3.3 May
2009

170 25 2.9 11.60

3.4 September
2009

190 28 3.1 11.07

3.5 March
2010

257 37 4.4 11.89

3.6 October
2010

288 42 4.6 10.95

3.7 July
2011

386 55 5.5 10.00

3.8 July
2012

736 103 6.6 6.41

3.9 September
2013

812 115 7.2 6.26

2014 September
2014

866 123 8.2 6.67

2015-04 April
2015

1,030 142 8.8 6.20

2015-10 October
2015

1,087 149 9.2 6.17

Table 7.2: Fourteen dbpedia versions 2.0 to 2015-10 can be stored with a high average
compression rate of 13%.

mental archives. Despite the hdt-based archive serves many archiving scenar-
ios, its update frequency is rather limited. For realistic datasets sizes, the aver-
age hdt generation time is expressed in ma�er of hours. Therefore, scenarios
with live updates, i.e., an update frequency below a couple of seconds, require
rdf archives that handle small incremental changes be�er. Research in this do-
main is still preliminary, yet recent e�orts on benchmarking rdf archives [15,
16], strategies [17, 18], change detection in Linked Data [19], and versioned
rdf indexing [20, 21], show an increasing interest.

156

7.5. Publishing versioned Linked Data

7.5 Publishing versioned Linked Data

Exposing archived rdf versions on the public Web unlocks their real poten-
tial. The solutions described in Section 7.4 already add a temporal dimension
to each Linked Dataset. Hence, the current version, and each of its archive
versions, can be published in a sustainable way through a Triple Pa�ern Frag-
ments api. Although each individual version is thereby queryable, the relation
between them is not. Without prior knowledge, clients cannot automatically
navigate from one version to another using the temporal dimension. Fortu-
nately, the Memento [22] framework can enable such by adding time-based
versioning to the http resources a Linked Data interface exposes.

7.5.1 The Memento framework

Memento [22] is an http-based framework standardized by ietf, in order to
establish a tighter integration between the current and the past Web. In ac-
cordance to the rest principles, it enables accessing priorly archived represen-
tations of Web resources using common “follow your nose” pa�erns. It intro-
duces an extra dimension for content negotiation between client and server: the
datetime dimension.

The Memento protocol defines four resource types, their characteristics and
the relation between them:

Original Resource uri-r: an existing resource on the Web, of which a user
agent is interested in retrieving a past representation from;

Mementos uri-mx (x=1..n): distinct resources that encapsulate prior states
of uri-r at time tx—if they exist;

Timegate uri-g: a resource supporting content negotiation in the datetime
dimension. When requested, it decides on a best matching uri-ms based
on the preferred datetime ti provided by the client—expressed using the
Accept-Datetime header;

TimeMap uri-tm (optional): a resource that provides a version history of
the uri-r it is associated with, including the uri and version/archival
datetime of each known Memento. A user agent finds its way to uri-
tm by following a link—expressed in the Link header—provided by a
TimeGate, a Memento, or an Original Resource.

Its distinction from the mementos allows uri-r to keep a stable uri, since only
old versions get a new one. uri-r is preferably also disconnected from uri-
mi by uri-g to improve caching, instead of datetime negotiated directly. All
three resources are connected using hypermedia, as shown in Figure 7.4, which
enables navigating between them. We demonstrate this with a brief client-
server interaction below.

1. A client discovers uri-g by requesting uri-r and following the link in the
http Link header of type timegate, which is included in the response.

2. The client requests a past representation from uri-g with datetime ne-
gotiation. The request contains a Accept-Datetime: ti header, refer-

157

7.5. Publishing versioned Linked Data

ring to the desired state valid at that time. Then, the server decides
on the closest matching Memento uri-ms with creation time ts , with
ts = min(∀ |ti − tx |). The selected uri-ms is returned in the Location

header and with response code 302 Found, which redirects the client.
3. By following the redirect to uri-ms, the server returns the prior state

of uri-r. The response contains an http Link header of type original

pointing back at uri-r for discoverability. Additionally, links to the
first-memento, next-memento and prev-memento relationships can be
added to the headers as well.

Figure 7.4: Memento adds a time dimension to an Original (Web) Resource uri-r by
defining “follow your nose” (hypermedia) pa�erns between TimeGate uri-
g and Memento resources uri-mx. Source: h�p://www.mementoweb.org/guide/quick-intro

Only the recommended
Memento setup is
illustrated here; the
specification mentions
alternative interaction
models (e.g., coinciding
Original Resource and
Timegate) if required due to
practical limitations.

Most public web archives around the world1, in-
cluding the massive Internet Archive, currently sup-
port the Memento protocol. As exemplified by the
recent adoption by the w3c2, there is a growing in-
terest in supporting Memento for resource version-
ing systems such as wikis, document management
systems, and so�ware version control systems. The
applicability and power of the Memento protocol
for Linked Data has been pointed out as soon as
the protocol was initially introduced [14] and since

then various e�orts have leveraged it [23, 24, 20]. However, these works do not
consider a client-side query execution scenario over multiple sources, which is
contributed by this chapter.

1. h�p://mementoweb.org/depot/
2. h�ps://www.w3.org/blog/2016/08/memento-at-the-w3c/

158

http://www.mementoweb.org/guide/quick-intro
http://mementoweb.org/depot/
https://www.w3.org/blog/2016/08/memento-at-the-w3c/

7.5. Publishing versioned Linked Data

7.5.2 Access to archived Triple Pa�ern Fragments with

Memento

Adding Memento to downloadable data dumps, Linked Data documents or
sparql endpoints is hindered by their granularity or specification. Download-
able data dumps do not allow modifications to the http layer, preventing to
add extra headers. Linked data documents can support Memento, but, as
mentioned before, are inadequately expressive for complex query execution.
A sparql endpoint can answer such queries, but makes versioning hard due to
the fine granularity of Web resources it exposes. As mentioned in the previous
section, triple indexes that combine sparql with versioning are complex and
increase server cost even more.

Again, the Triple Pa�ern Fragments trade-o� in interface granularity is bene-
ficial. The amount of Web resources induced by triple pa�erns is finite and can
be generated with minimal cost. This facilitates a smooth integration of the
Memento protocol, in addition to low server-side cost and being su�iciently
expressive for complex query execution on the client-side.

Supporting Memento implies implementing the three resource types: Original
Resource, TimeGate, and Memento. As shown in Figure 7.5, we extend the api
to expose the following specific resource types:

tpf Resource: exposes the current version (e.g., the most recent hdt file) and
is appointed as uri-r.

ldf TimeGate: a resource independent of the interface, as it can be employed
for any ldf resource.

tpf Memento: a resource which encapsulates an archive version, i.e., expos-
ing a former representation of the tpf resource.

When requesting a tpf, a Link header to its corresponding ldf TimeGate is
now included in the response. An ldf TimeGate accepts the Accept-Datetime:
t ∈ [ti , tj[header, which redirects the client to a tpf Memento valid at datetime
t . Assuming we use the pragmatic hdt-based rdf archive from Section 7.4,
this memento corresponds with an hdt file H[ti ,tj [retrieved from the archive’s
index based on t . Once redirected, a client can access H[ti ,tj [through the tpf
Memento URI [ti ,tj [it was navigated to.

7.5.3 Transparent time-based Web access to the dbpedia

archive

Support for Memento and
the hdt-based archive was
implemented in the tpf
NodeJS server, available
at h�ps://github.com/
LinkedDataFragments/
Server.js.

We applied this Memento-enabled tpf interface to
the dbpedia archive described in Section 7.4.2 to
enable live querying historical versions of dbpedia
on the public Web. This is established by two
physically separate instances. The public dbpedia
fragments interface on h�p://fragments.dbpedia.
org provides access to the current dbpedia ver-
sion and is the o�icial entry point for query-

159

https://github.com/LinkedDataFragments/Server.js
https://github.com/LinkedDataFragments/Server.js
https://github.com/LinkedDataFragments/Server.js
http://fragments.dbpedia.org
http://fragments.dbpedia.org

7.6. �erying versioned and distributed Linked Data

tpf
ldf

TimeGate
tpf

Memento

hdt [tx−1,tx [hdt [ti ,tj [Index

Current version
Pragmatic hdt-based rdf archive

Link “timegate” Location: URI [ti ,tj [

tURI [ti ,tj [

[ti , tj[

Figure 7.5: A client can transparently navigate from a tpf Resource to a tpf Memento
at a specific datetime t .

ing clients. The archived versions of dbpedia reside on h�p://fragments.
mementodepot.org, exposing each of the fourteen hdt files as tpf Memento
resources. A Link header in each response from h�p://fragments.dbpedia.org
to the dbpedia ldf TimeGate hosted at h�p://fragments.mementodepot.org/
timegate/dbpedia connects both interfaces transparently to clients.

The http communication to negotiate the tpf for ?work dbo:author

dbr:Umberto_Eco. on December 1st, 2013 is illustrated in Listing 7.1.

7.6 �erying versioned and distributed Linked Data

In a virtual integration scenario, the consumer is responsible for physically
integrating data from di�erent publishers. Having discussed the technologies
and architecture for archiving and versioning above, we now present a use case
in which a query is evaluated over a federation of multiple data interfaces on
the Web at several points of time in the past.

We first reprise the architecture from Figure 5.1 to add support for versioning
over multiple data sources to the tpf client. As already pointed out, a sparql
query exceeds the expressiveness of a single triple pa�ern, which forces clients
of the tpf interface to break down that query into multiple triple pa�erns.
Therefore, we introduced a �ery Engine layer in Section 4.2 that implements
a query algorithm which splits a query into one or more tpf requests and pro-
duce results by combining the tpf responses locally. These requests are ulti-
mately performed by the http layer, which we have modified to use the Me-
mento protocol, as shown in Figure 7.6a. The client can now choose di�erent
points in the past to evaluate the query.

160

http://fragments.mementodepot.org
http://fragments.mementodepot.org
http://fragments.dbpedia.org
http://fragments.mementodepot.org/timegate/dbpedia
http://fragments.mementodepot.org/timegate/dbpedia

7.6. �erying versioned and distributed Linked Data

1 (1)
2 HEAD http://fragments.dbpedia.org/en?subject=&predicate=dbpedia-owl%3Aauthor&

object=dbpedia%3AUmberto_Eco HTTP/1.1
3 --
4 HTTP/1.1 200 OK
5 Link: <http://fragments.mementodepot.org/timegate/dbpedia?subject=&predicate=

dbpedia-owl%3Aauthor&object=dbpedia%3AUmberto_Eco>;rel=timegate
6
7 (2)
8 GET http://fragments.mementodepot.org/timegate/dbpedia?subject=&predicate=dbpedia-

owl%3Aauthor&object=dbpedia%3AUmberto_Eco HTTP/1.1
9 Accept-Datetime: Sun, 01 Dec 2013 22:30:00 GMT

10 --
11 HTTP/1.1 302 Found
12 Location: http://fragments.mementodepot.org/dbpedia_3_9?subject=&predicate=dbpedia

-owl%3Aauthor&object=dbpedia%3AUmberto_Eco
13
14 (3)
15 GET http://fragments.mementodepot.org/dbpedia_3_9?subject=&predicate=dbpedia-owl%3

Aauthor&object=dbpedia%3AUmberto_Eco HTTP/1.1
16 --
17 HTTP/1.1 200 OK
18 Memento-Datetime: Sat, 15 Jun 2013 00:00:00 GMT # = Best matching memento
19 Link: <http://fragments.dbpedia.org/en?subject=&predicate=dbpedia-owl%3Aauthor&

object=dbpedia%3AUmberto_Eco>;rel=original,
20 <http://fragments.mementodepot.org/timegate/dbpedia?subject=&predicate=dbpedia-owl

%3Aauthor&object=dbpedia%3AUmberto_Eco>;rel=timegate
21
22 # Payload
23 ...

Listing 7.1: Selects the Memento valid on December 1st, 2013 at 22:30:00 GMT, which
is the Memento from June 15, 2013

In combination with the mediator extension from Section 5.3, we can con-
sult multiple tpf interfaces over time without increasing the complexity of the
query engine itself. The definitive client is shown in Figure 7.6b.

Next, as a use case, we focus our a�ention on the queries formulated in Sec-
tion 7.3. First, we need to translate each query into sparql. Note that we
need to include a UNION statement to deal with the changing schema, an is-
sue discussed in the next section. The sparql adaptation of the single-source
query for the number of awards by Belgian academics is shown in Listing 7.2.
Running it for di�erent times in the past results in the progression displayed
in Figure 7.7.

The sparql adaptation of multi-source query for details about professor Jacques-
Joseph Haus is shown in Listing 7.3. We evaluated this query at 9 timestamps
in the past over UGentMemorialis, viaf, and dbpedia. Note how every year
has a di�erent number of results.

161

7.6. �erying versioned and distributed Linked Data

�ery Engine

SPARQL Processing

Hypermedia Layer

Fragments interaction

HTTP Layer

Memento-aware requests

Dataset A[tx−1,tx [

Dataset A[ti ,tj [

...

Client
Server

(a) single server with versioning sup-
port

�ery Engine

SPARQL Processing

Hypermedia Mediator Layer

Hypermedia Layer A Hypermedia Layer B

HTTP Layer

Memento-aware representation requests

Dataset A[tx−1,tx [

Dataset A[ti ,tj [

...

Dataset B[tx−1,tx [

Dataset B[ti ,tj [

...

(b) multiple servers with versioning
support

Figure 7.6: The client was extended to support versioning and multiple servers, with-
out changing the core query engine.

1 SELECT DISTINCT ?award
2 WHERE {
3 ?person dcterms:subject <http://dbpedia.org/resource/Category:Belgian_academics

>.
4 {
5 ?person <http://dbpedia.org/ontology/award> ?award.
6 } UNION {
7 ?person <http://dbpedia.org/property/awards> ?award.
8 }
9 }

Listing 7.2: The sparql query to answer “What is the number of awards won by
Belgian academics?”

1 SELECT ?professor ?property ?value
2 WHERE {
3 ?professor dbpedia-owl:viafId ?viafId.
4 ?professor foaf:name "Haus, Jacques-Joseph".
5 ?viafId schema:sameAs ?dbpediaId.
6 ?dbpediaId ?property ?value.
7 }

Listing 7.3: The sparql query to answer “What is the number of dbpedia triples
describing professor ‘Haus, Jacques-Joseph’ of Ghent University?”

162

7.7. Making sense of changing statements

2008 2009 2010 2011 2012 2013 2014 2015 2016
0

10

20

30

40
n

u
m

b
e

r
o

f
r
e

s
u

l
t
s

Figure 7.7: By running the same query over dbpedia from 2008 to 2016, we can detect
an increase in awards won by Belgian academics.

2008 2009 2010 2011 2012 2013 2014 2015 2016

50

100

n
u

m
b

e
r

o
f

t
r
i
p

l
e

s

Figure 7.8: By running the same query over UGentMemorialis, viaf and dbpedia for
every year, we gain insight in the evolution of Wikipedia activity for pro-
fessor Jacques-Joseph Haus.

7.7 Making sense of changing statements

From a technical perspective, executing a single sparql query at two di�erent
points in time and comparing the result sets, can show the results’ evolution.
This does not allow, however, to correctly interpret a change between two ver-
sions of the same dataset. An rdf statement could have evolved for several
reasons:

• it was added, because it was not known before;
• it was known before, but it was missing; or
• it replaces a previously present, but incorrect fact.

In some cases, you could make a few assumptions. For instance, in Figure 7.7
and Figure 7.8, the semantics of an amount are hardly debatable. However, one
could argue that simply having less triples already misrepresents the facts. The
same goes for a changed date when the subject and predicate remain stable;
the date might simply be incorrect. Hence, without additional knowledge, se-
mantics can never be deduced with full certainty.

The issues above relate to what Kimball and Ross [25] describe as slowly chang-

ing dimensions of data warehouses. The assumption that dimension tables are
static, is generally considered unrealistic and thus unacceptable. For every at-
tribute within a table, you need a strategy to handle change, which Kimball

163

7.7. Making sense of changing statements

and Ross categorize as seven basic/hybrid slowly changing dimensions tech-
niques or types. Each type defines how facts should be associated with their
stored value.

Type 0: the a�ribute value did not change; facts remain associated with the
original value.

Type 1: the a�ribute value is overwri�en; facts are only associated with the
current value (no change tracking).

Type 2: the new a�ribute value is added to a new duplicate row and the orig-
inal row is labeled as expired; facts are associated with the value in the
then current row.

Type 3: the prior value is added as a new column and the a�ribute value is
overwri�en; facts are associated jointly with both the current and prior
values.

Type 4: rapidly changing a�ributes are added in an separate, related mini-
dimension table; facts are associated with the then current value in the
mini-dimension table.

From the basic types above, three additional hybrid types are composed. Type
5 applies Type 4 while also using Type 1 to kept the current value up to date.
Type 6 stores a�ributes overwri�en by Type 1 in a Type 2 row, and all prior
rows are also overwri�en. Type 7 applies Type 2, but maintains a view limited
to the most current rows or a�ibute values.

A recommendation to
discover and retrieve a prov
record is included in the
prov-aq notea. A Link

header pointing to the prov
description is added to an
http response, linking the
resource to its associated
record. To also add a time
dimension, Coppens et al.
[26] proposed a similar
principle extended with
Memento support.

a. h�p://www.w3.org/TR/2013/
NOTE-prov-aq-20130430

To make sense of changing Linked Data statements,
servers and clients will need to apply similar strate-
gies, albeit not only expressed in rows and columns,
but also with consideration for semantics and rdf’s
hypergraph structure. This underlines the impor-
tance of making provenance information accessible
to clients, in order to explain the changes made
between versions, i.e., where the current resource
state originates from is formally described. This
aligns with scientific practice, where publishing re-
sults is “being associated with provenance to aid in-
terpretation and trust, and description of methods
to support reproducibility” [27].

In Linked Data, data provenance has been a hot re-
search topic for years to establish data trustworthi-

ness [28, 29] on the Web. For that reason, the w3c
Provenance Working Group released the aforementioned prov [30] standard,
so this information can be uniformly modeled and published. For instance,
Listing 7.4 shows an example provenance record in rdf using the prov-o on-
tology, which describes the relation between three di�erent versions in the
dbpedia archive.

Provenance plays an important role in a read-write Web of Linked Data be-
cause of its use for trust assessment [31]. This next step enables both human

164

http://www.w3.org/TR/2013/NOTE-prov-aq-20130430
http://www.w3.org/TR/2013/NOTE-prov-aq-20130430

7.7. Making sense of changing statements

1 @prefix prov: <http://www.w3.org/ns/prov#>.
2 @prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
3
4 <http://fragments.mementodepot.org/dbpedia_2015> prov:wasRevisionOf <http://

fragments.mementodepot.org/dbpedia_2014>;
5 prov:wasGeneratedBy :rev3.
6
7 :rev3 prov:endedAtTime "2012-04-18T14:30:00Z"^^xsd:dateTime.
8
9 <http://fragments.mementodepot.org/dbpedia_2014> prov:wasRevisionOf <http://

fragments.mementodepot.org/dbpedia_3_9>;
10 prov:wasGeneratedBy :rev2.
11
12 :rev2 prov:endedAtTime "2012-04-15T14:30:00Z"^^xsd:dateTime.
13
14 <http://fragments.mementodepot.org/dbpedia_3_9> prov:wasRevisionOf <http://

fragments.mementodepot.org/dbpedia_3_8>;
15 prov:wasGeneratedBy :rev1.
16
17 :rev1 prov:endedAtTime "2012-04-11T12:30:00Z"^^xsd:dateTime.

Listing 7.4: Provenance Record for h�p://example.org/Resource in prov-o

and machine users to manipulate Linked Data in addition to querying. Track-
ing provenance on di�erent levels of granularity will be necessary to explain all
these changes. A loyal sidekick to prov is WebID [32]: an open authentication
mechanism to identify any agent on the Web by a uri. It has been applied to
build distributed social media applications [33] and write decentralized schol-
arly publications [34, 35]. There is no doubt this combination will continue to
gain importance if we manage to scale the Web of Linked Data. Preliminary
support for WebID and provenance has been added to the NodeJS implemen-
tation of the ldf server3 4

Provenance management is a challenging task. Part of the solution can there-
fore be generating it on an operation level. Versioning systems already gather
important information about changes. Describing this directly as provenance
reduces dependency on descriptions by agents or persons [36].

Finally, formalized provenance information can be used to automate decision
logic in so�ware systems. For instance, we can implement the Timegate (of
the Memento framework) in a loosely coupled and generic way, by applying a
semantic reasoner (e.g., the n3 rule reasoner eye [37]) to the provenance infor-
mation.

3. h�ps://github.com/LinkedDataFragments/Server.js/wiki/WebID-authentication
4. h�ps://github.com/LinkedDataFragments/Server.js/tree/feature-prov

165

http://example.org/Resource
https://github.com/LinkedDataFragments/Server.js/wiki/WebID-authentication
https://github.com/LinkedDataFragments/Server.js/tree/feature-prov

7.8. Conclusion

7.8 Conclusion

This chapter addressed the issue of reproducibility when querying distributed
Linked Data sources. As Web content dri�s over time, query results need
to remain valid when they are regenerated later. In that respect, Libraries,
Archives and Museums (lam), in particular the increasing number of under-
resourced institutions, struggle to provide a single queryable point of access
to their digital preservation e�orts. Hence, this chapter proposed an alter-
native publishing strategy that lowers maintenance cost for publishers, and
covers dri�ing sources (Research �estion 5). This entails a shi� to a virtual

integration approach to consolidate these silos of the lams, i.e., composing a
consumer view over distributed datasets that remain in control of the institu-
tions. These claims are supported by a memory reconstruction Use Case based
on three complimentary, but distributed Linked datasets (dbpedia, viaf, and
UGentMemorialis).

Considering that most institutions update a “live” rdf database continuously
through an Extract-Transform-Load process, publishing recurrently extracted
snapshots through a low-cost wrapper stack, avoids the high maintenance cost
of exposing the “live” database directly. For cases where snapshots are cre-
ated at a medium pace (∼ daily), the Header-Dictionary-Triples (hdt) format
is an excellent storage candidate, as it creates very compact immutable files
that are queryable. For dbpedia, this implies an average size gain of 87% com-
pared to the N-Triples format. In combination with the file-system, hdt can
serve as pragmatic, but extremely useful rdf archive, which serves basic digital
preservation needs with li�le resources. Cases with higher update frequencies
though, i.e., more than once per hour, are momentarily dependent on the on-
going research in rdf archiving systems.

Publishing these snapshots with the Triple Pa�ern Fragments (tpf) interface
in combination with Memento, the http datetime negotiation framework, en-
ables complex queries over current and archived versions of a dataset. Hence,
we can validate Hypothesis 5. Potentially, we can gain insight on the evolu-
tion of facts in Linked Data by executing the same query at di�erent comparing
time points. Without essential provenance metadata about the modifications
between versions, however, such insights are not yet reliable. Yet, the same
functionality can be used to synchronize distributed sources on the Web, when
querying multiple interfaces at once.

166

References

This chapter was partly based on the publications:

Miel Vander Sande, Pieter Colpaert, Tom De Nies, Erik Mannens, and Rik Van
de Walle. “Publish data as time consistent web api with provenance.” In: The

23
rd

International Conference on World Wide Web. ACM, 2014, pp. 953–958

Miel Vander Sande, Ruben Verborgh, Patrick Hochstenbach, and Herbert Van
de Sompel. “Towards sustainable publishing and querying of distributed Linked
Data archives.” In: Journal of Documentation (2017)

References

[1] Holm Tetens. “Reproducibility, Objectivity, Invariance.” In: Reproducibil-

ity: Principles, Problems, Practices, and Prospects (2016).

[2] Leo Sauermann, Richard Cyganiak, and Max Völkel. Cool uris for the

Semantic Web. Saarländische Universitäts-und Landesbibliothek, 2011.

[3] Jürgen Umbrich, Michael Hausenblas, Aidan Hogan, Axel Polleres, and
Stefan Decker. “Towards Dataset Dynamics: Change Frequency of Linked
Open Data Sources.” In: The WWW2010 Workshop on Linked Data on the

Web. Apr. 27, 2010. url: h�p:/ /ceur- ws.org/Vol- 628/ ldow2010%5C_
paper12.pdf.

[4] Amanda Kay Rinehart, Patrice-Andre Prudh́omme, and Andrew Reid
Huot. “Overwhelmed to action: digital preservation challenges at the
under-resourced institution.” In: oclc Systems & Services 30.1 (2014),
pp. 28–42.

[5] Margaret L Hedstrom and Sheon Montgomery. Digital preservation needs

and requirements in RLG member institutions. Research Libraries Group
Mountain View, Calif., 1998.

[6] Edward M Corrado and Heather Lea Moulaison. Digital preservation for

libraries, archives, and museums. Rowman & Li�lefield, 2014.

[7] Karen Smith Yoshimura. “Analysis of International Linked Data Survey
for Implementers.” In: D-Lib Magazine 22.7 (2016), p. 6.

[8] Françoise Bourdon and Vincent Boulet. “viaf: A hub for a multilingual
access to varied collections.” In: World library and information Congres:

78
th

IFLA general Conference and Assembly. 2013.

[9] Christophe Verbruggen and Gita Deneckere. UGentMemorialis. Biograph-

ical data of UGent professors between 1817 and 2012 [Dataset]. Ed. by
Christophe Verbruggen and Gita Deneckere. 2016. url: h�p : / / www.
UGentMemorialis.be.

[10] George Papastefanatos. “Challenges and Opportunities in the Evolving
Data web.” In: International Conference on Conceptual Modeling. Springer,
2013, pp. 23–28.

167

http://ceur-ws.org/Vol-628/ldow2010%5C_paper12.pdf
http://ceur-ws.org/Vol-628/ldow2010%5C_paper12.pdf
http://www.UGentMemorialis.be
http://www.UGentMemorialis.be

References

[11] Bernade�e Houghton. “Preservation Challenges in the Digital Age.” In:
D-Lib Magazine 22.7 (2016), p. 1. url: h�p : / / dlib . org / dlib / july16 /
houghton/07houghton.html.

[12] Seamus Ross. “Digital preservation, archival science and methodological
foundations for digital libraries.” In: New Review of Information Network-

ing 17.1 (2012), pp. 43–68.

[13] Jaime Schumacher, Lynne M. Thomas, Drew Vande Creek, Stacey Erd-
man, Je� Hancks, Aaisha Haykal, Meg Miner, Patrice-Andre Prudh́omme,
and Danielle Spalenka. “From Theory to Action:‘Good Enough’ Digital
Preservation Solutions for Under-Resourced Cultural Heritage Institu-
tions.” In: Institute of Museum and Library Services (2014).

[14] Herbert Van de Sompel, Robert Sanderson, Michael L. Nelson, Lyud-
mila Balakireva, Harihar Shankar, and Sco� Ainsworth. “An http-Based
Versioning Mechanism for Linked Data.” In: CoRR abs/1003.3661 (2010).
url: h�p://arxiv.org/abs/1003.3661.

[15] Javier D Fernández, Jürgen Umbrich, Axel Polleres, and Magnus Knuth.
“Evaluating query and storage strategies for rdf archives.” In: The 12

th

International Conference on Semantic Systems. ACM, 2016, pp. 41–48.

[16] Marios Meimaris and George Papastefanatos. “The EvoGen Benchmark
Suite for Evolving rdf Data.” In: MEPDaW/LDQ@ ESWC. 2016, pp. 20–
35.

[17] Marvin Frommhold, Rubén Navarro Piris, Natanael Arndt, Sebastian
Tramp, Niklas Petersen, and Michael Martin. “Towards versioning of
arbitrary rdf data.” In: The 12

th
International Conference on Semantic

Systems. ACM. 2016, pp. 33–40.

[18] Vassilis Papakonstantinou, Giorgos Flouris, Irini Fundulaki, Kostas Ste-
fanidis, and Giannis Roussakis. “Versioning for Linked Data: Archiving
Systems and Benchmarks.” In: BLINK@ ISWC. 2016.

[19] Renata Dividino, André Kramer, and Thomas Go�ron. “An Investigation
of http Header Information for Detecting Changes of Linked Open Data
Sources.” In: The Semantic Web: ESWC 2014 Satellite Events: ESWC 2014

Satellite Events, Anissaras, Crete, Greece, May 25-29, 2014, Revised Selected

Papers. Ed. by Valentina Presu�i, Eva Blomqvist, Raphael Troncy, Harald
Sack, Ioannis Papadakis, and Anna Tordai. Cham: Springer International
Publishing, 2014, pp. 199–203. isbn: 978-3-319-11955-7. doi: 10.1007/978-
3-319-11955-7_18.

[20] Paul Meinhardt, Magnus Knuth, and Harald Sack. “TailR: A Platform for
Preserving History on the Web of Data.” In: The 11

th
International Con-

ference on Semantic Systems. SEMANTICS ’15. Vienna, Austria: ACM,
2015, pp. 57–64. isbn: 978-1-4503-3462-4. doi: 10.1145/2814864.2814875.

[21] Javier D Fernández, Axel Polleres, and Jürgen Umbrich. “Towards E�i-
cient Archiving of Dynamic Linked Open Data.” In: DIACRON@ ESWC.
2015, pp. 34–49.

168

http://dlib.org/dlib/july16/houghton/07houghton.html
http://dlib.org/dlib/july16/houghton/07houghton.html
http://arxiv.org/abs/1003.3661
https://doi.org/10.1007/978-3-319-11955-7_18
https://doi.org/10.1007/978-3-319-11955-7_18
https://doi.org/10.1145/2814864.2814875

References

[22] Herbert Van de Sompel, Michael Nelson, and Robert Sanderson. http
Framework for Time-Based Access to Resource States – Memento. Request
For Comments 7089. Internet Engineering Task Force, Dec. 2013. url:
h�ps://tools.ietf.org/rfc/rfc7089.

[23] Javier D. Fernández, Patrik Schneider, and Jürgen Umbrich. “The dbpedia
Wayback Machine.” In: The 11

th
International Conference on Semantic

Systems. SEMANTICS ’15. Vienna, Austria: ACM, 2015, pp. 192–195. isbn:
978-1-4503-3462-4. doi: 10.1145/2814864.2814889.

[24] Miel Vander Sande, Sam Coppens, Ruben Verborgh, Erik Mannens, and
Rik Van de Walle. “Adding time to Linked Data: a generic Memento
proxy through prov.” In: Poster and Demo of the 12

th
International Se-

mantic Web Conference. Sydney, Australia: CEUR-WS.org, 2013, pp. 217–
220. isbn: 9783642413346. url: h�p://www.iswc2013.semanticweb.org/
sites/default/files/iswc%5C%5C_poster%5C%5C_10.pdf.

[25] Ralph Kimball and Margy Ross. The data warehouse toolkit: The definitive

guide to dimensional modeling. John Wiley & Sons, 2013.

[26] Sam Coppens, Erik Mannens, Davy Van Deursen, Patrick Hochstenbach,
Bart Janssens, and Rik Van de Walle. “Publishing provenance informa-
tion on the web using the memento datetime content negotiation.” In:
WWW2011 workshop on Linked Data on the Web (LDOW 2011). Vol. 813.
2011, pp. 6–15.

[27] Sean Bechhofer, Iain Buchan, David De Roure, Paolo Missier, John Ains-
worth, Jiten Bhagat, Philip Couch, Don Cruickshank, Mark Delderfield,
Ian Dunlop, et al. “Why linked data is not enough for scientists.” In:
Future Generation Computer Systems 29.2 (2013), pp. 599–611.

[28] Davide Ceolin, Paul Groth, Willem Robert Van Hage, Archana No�am-
kandath, and Wan Fokkink. “Trust evaluation through user reputation
and provenance analysis.” In: The 8

th
International Conference on Uncer-

tainty Reasoning for the Semantic Web-Volume 900. CEUR-WS.org. 2012,
pp. 15–26.

[29] Elisa Bertino. “Data Trustworthiness—Approaches and Research Chal-
lenges.” In: Data Privacy Management, Autonomous Spontaneous Security,

and Security Assurance. Springer, 2015, pp. 17–25.

[30] Yolanda Gil and Simon Miles. “prov Model Primer—w3c Working Group
Note.” In: World Wide Web Consortium (w3c) (2013).

[31] Sam Coppens, Ruben Verborgh, Miel Vander Sande, Davy Van Deursen,
Erik Mannens, and Rik Van de Walle. “A truly Read-Write Web for ma-
chines as the next-generation Web?” In: The SW2022 workshop: What

will the Semantic Web look like 10 years from now? Nov. 2012. url: h�p:
//stko.geog.ucsb.edu/sw2022/sw2022%5C_paper3.pdf.

[32] Manu Sporny, Toby Inkster, Henry Story, Bruno Harbulot, and Reto
Bachmann-Gmür. WebID 1.0: Web identification and discovery. Editor’s
dra�. World Wide Web Consortium, 2011.

169

https://tools.ietf.org/rfc/rfc7089
https://doi.org/10.1145/2814864.2814889
http://www.iswc2013.semanticweb.org/sites/default/files/iswc%5C%5C_poster%5C%5C_10.pdf
http://www.iswc2013.semanticweb.org/sites/default/files/iswc%5C%5C_poster%5C%5C_10.pdf
http://stko.geog.ucsb.edu/sw2022/sw2022%5C_paper3.pdf
http://stko.geog.ucsb.edu/sw2022/sw2022%5C_paper3.pdf

References

[33] Andrei Sambra, Amy Guy, Sarven Capadisli, and Nicola Greco. “Build-
ing Decentralized Applications for the Social Web.” In: The 25

th
Inter-

national Conference Companion on World Wide Web. WWW ’16 Com-
panion. Montreal, Canada: International World Wide Web Conferences
Steering Commi�ee, 2016, pp. 1033–1034. isbn: 978-1-4503-4144-8. doi:
10.1145/2872518.2891060.

[34] Ma�hew Gamble and Carole Goble. “Standing on the shoulders of the
trusted Web: Trust, Scholarship and Linked Data.” In: The WebSci10: Ex-

tending the Frontiers of Society. 2010.

[35] Sarven Capadisli, Amy Guy, Ruben Verborgh, Christoph Lange, Sören
Auer, and Tim Berners-Lee. “Decentralised Authoring, Annotations and
Notifications for a Read-Write Web with dokieli.” In: Web Engineering:

17
th

International Conference, ICWE 2017, Rome, Italy, June 5-8, 2017, Pro-

ceedings. Ed. by Jordi Cabot, Roberto De Virgilio, and Riccardo Torlone.
Cham: Springer International Publishing, 2017, pp. 469–481. isbn: 978-3-
319-60131-1. doi: 10.1007/978-3-319-60131-1_33.

[36] Miel Vander Sande, Pieter Colpaert, Ruben Verborgh, Sam Coppens, Erik
Mannens, and Rik Van de Walle. “R&Wbase: Git for Triples.” In: Linked

Data On the Web Workshop. 2013.

[37] Jos De Roo. Euler Proof Mechanism. 2013. url: h�p://eulersharp.sourceforge.
net.

170

https://doi.org/10.1145/2872518.2891060
https://doi.org/10.1007/978-3-319-60131-1_33
http://eulersharp.sourceforge.net
http://eulersharp.sourceforge.net

We can’t fix your heart, but
thanks to modern technology
we can tell you exactly how
damaged it is!

— Dr Hibbert

8
Conclusions

In this dissertation, I have investigated if alternative Web interfaces can lead to

be�er Web-scale publication of Linked Data. I discussed the Linked Data Frag-

ments conceptual model to analyze existing Web apis to rdf data and define new

ones. Consequently, I applied this model to introduce the Triple Pa�ern Fragments

interface to o�er sparql querying to clients with minimal server cost. Then, this

interface was employed to evaluate the e�ects of di�erent metadata on complex

client-side query execution, execute queries over multiple sources, discover data

sources through hypermedia, and e�ectively publish rdf archives. This chapter

lists my general findings, revisits the research questions posed in Chapter 1, and

sketches a general outlook.

On a Semantic Web, intelligent so�ware agents are able to autonomously dis-
cover, query and understand data. However, if the Web of Linked Data is a
practical deployment of the Semantic Web, the Web apis that exist to publish
Linked Data do not su�ice. This research was instigated by the low availabil-
ity of live queryable Linked Data. Despite the growing amount of Linked Open
Data in existence, a high number of datasets on the public Web is either (a) not
queryable with sparql; or (b) subject to frequent downtimes. Considering the
cost and complexity of hosting a public sparql endpoint, it is no surprise many
under-resourced institutions struggle to provide a single queryable point of ac-
cess to their data and resort to hosting downloadable data dumps.

This dissertation therefore opened the discussion on the complete spectrum
of possible Web interfaces, which is embodied by the Linked Data Fragments
model. The current lack of alternatives to sparql endpoints suggest a focus on
large aggregated rdf knowledge bases, publishers with su�icient funds, and a
disregard for established characteristics of the public Web. While there is in-
herently nothing wrong with the concept of a sparql endpoint—it is perfectly
acceptable in a private, predictable environment—the failure to provide a re-
liable query service has huge consequences for the development of Semantic

171

8.1. Review of the Research �estions

Web applications. This is a problem inherent to the concept of powerful end-
point and, thus, cannot be solved by continuing to improve the e�iciency of
sparql servers.

Instead of creating intelligent servers, the interface should facilitate clients to
be intelligent. I therefore defined and evaluated alternative Web interfaces that
democratize publishing datasets and enable clients to execute complex queries.
More a�ention for smaller datasets from under-resourced data institutions—
primarily in the Open Government Data or Cultural Heritage domain—is cru-
cial to unlocking more knowledge, as they are o�en owners of highly specific
and carefully curated data. This aligns with the visible library [1] concept: get
your data out there, and solutions to other data integration problems (e.g., de-
tails about vocabularies and modeling) will follow.

8.1 Review of the Research �estions

The findings in this doctoral work accompanied five research questions I raised
in Section 1.1. I first discuss whether the outcomes have provided me with the
right answers.

In search for an economical and technological sustainable compromise on a
Web interface, I posed my main Research �estion 1:

“Can a Web interface for Linked Datasets designed for low server cost enable

complex live querying for clients?”

The introduced Triple Pa�ern Fragments interface (Chapter 4) achieves low
server cost by restricting the query granularity to a triple pa�ern—the basic el-
ement of a sparql query. On the client-side, a query is split into triple pa�erns,
which results into multiple requests. Compared to a sparql endpoint, general
cpu load is significantly lower and more stable during query execution, which
is due to the coarse granular requests and increased cache hits. Thus, the Triple
Pa�ern Fragments interface achieves low server cost, and by demanding less
complex rdf indexes, enables a�ordable infrastructure for many publishers.
�eries do execute slower, but—despite using a greedy query algorithm—stay
well within the four-second limit for the real-world queries from the dbpedia
sparql benchmark [2] and are una�ected by the number of clients. In terms
of external validity, the LODLaundromat (h�p://lodlaundromat.org/wardrobe)
indicates that, at the time of the writing, around 658,045 Linked Datasets exist,
each of which is available as a Triple Pa�ern Fragments interface [3]. Con-
sequently, a large number of datasets that could previously only be reliably
published as data dumps, can now be provided with live queryable access,
which validates Hypothesis 1 “A client can execute real-world queries over a re-

stricted Linked Data Web interface with a response time below four seconds and

a lower server cpu load than more expressive interfaces.” Hence, enabling more
nuance and demanding less from servers can ultimately increase productivity
with Linked Data.

172

http://lodlaundromat.org/wardrobe

8.1. Review of the Research �estions

In exchange for low server cost, we accept high http bandwidth demands and
slower execution time. We accept this trade-o� as inevitable, yet, as we learn
from database literature [4], the client performance can still be improved with
metadata. However, the practical aspects of Linked Data querying have been
understudied with sole focus on precision and recall, thus we posed Research
�estion 2:

“To what extent can interface metadata enhance complex query evaluation in a

practical Web se�ing?”

The cardinality metadata included in the Triple Pa�ern Fragments definition
can be e�iciently computed when using specific indexes such as hdt [5]. With
the request of a single page, a client-side query algorithm determines the most
selective pa�ern and optimizes locally what triple pa�ern needs to be joined
first. While this renders acceptable results for many query types, it is prob-
lematic for some. Cartesian products and a dominance of membership checks
(checking whether a triple is part of the dataset or not) creates substantial
http bandwidth overhead. The choice in rdf serialization for the response only
has a minimal impact and only requires further e�orts for future less greedy

query algorithms. Additional approximate membership metadata significantly
reduces the amount of http request for a�ected query types, but introduces
counterproductive overhead per request. Such metadata can only lower execu-
tion time when precached and/or provided to the client as a separate resource.
We can validate Hypothesis 2 “Extra metadata reduces at least one third of the

network tra�ic required by clients to answer a query.” ; but clearly the discussion
is broader than reducing requests, motivating more multi-faceted research on
di�erent metadata types. Adding extra interface metadata does show the mer-
its of self-descriptive fragments. Machine processors can discover the capabili-
ties of the query endpoints in an automated way, which they can use or ignore
as they see fit. The trade-o� between server cost/availability and client per-
formance will continue to exist, but benefits from uniformity. This is opposed
to traditional Semantic Web of di�erent endpoints that implement di�erent
standards, versions or features.

Despite possible performance improvements, one could argue whether our ex-
pectations “ask a complex question; wait for the result” of sparql querying
are sustainable at Web-scale. Being an open and unpredictable Web, a finite-
length response seems counter-intuitive; the same goes for instant query re-
sponse times. This dissertation therefore re-evaluated how applications are
developed on top of Linked Data with (a) requiring support for incremental
results, i.e., start processing results during query execution, and (b) introduce
opportunistic querying, i.e., temporarily allow imprecise results.

The upcoming call for a decentralized Web [6]—services and applications on the
Web no longer depend on a single central organization to function—reinforces
this reflection. One of its implications is an extensive distribution of data over
many sources, making the retainment of a traditional query paradigm futile,
and the quest for innovative paradigms imminent. Accordingly, one could ar-

173

8.1. Review of the Research �estions

gue if sparql is here to stay as query language, or whether it will eventually
be replaced by more fi�ing proposals [7].

The notion of Web-scale thus goes beyond a single data source; Linked Data
interconnects datasets to create a global, machine understandable data space.
Data publishers are therefore urged to implement a virtual integration strategy
to deal with the loosened control, synchronization problems, and high infras-
tructural costs of centralized dataset aggregation. Instead, a consumer view is
composed over distributed datasets that remain in control of the data publish-
ers. Triple Pa�ern Fragments could be a suitable candidate to deploy virtual
integration in a sustainable manner, which provoked Research �estion 3:

“Can restricted low-cost Linked Data Web interfaces form an e�icient architecture

for query evaluation over a federation of interfaces?”

The Triple Pa�ern Fragments interface natively adopts the client-server
paradigm found in sparql query federation frameworks (Chapter 5). Even
when running on a public network, query completeness is competitive with
the state-of-the-art, and even for some queries, the execution time is compa-
rable. Hypothesis 3 “A client can evaluate queries over a federation of low-cost

interfaces on a public network with a performance similar to the state-of-the-

art federation frameworks ANAPSID, FedX, and SPLENDID.” can thus be vali-
dated, and, considering no source selection or advance query algorithm has
been applied, this approach has proven itself very promising for query feder-
ation. Rather than seizing server-side control of this costly task, clients are
provided with the resources needed to perform federation themselves. Its self-
descriptive responses can eventually deal with federations of heterogeneous
interfaces through uniformity.

Before any federation can be queried, the interfaces need to be discovered first.
This insight led to Research �estion 4:

“How can we e�ectively discover distributed Linked Data interfaces?”

With Linked Data heavily relying on hyperlinks, it seems evident to apply this
scale-free http network for this purpose. Hence, I proposed an approach where
interfaces can discover each other by exploiting the Linked Data principles to
exchange summaries about their dataset. Results showed that the overhead
is low, especially because the discovery process happens in the background
(Chapter 6). The collected summaries benefit client-side source selection, as
the links between datasets can partially predict the interfaces relevant to que-
ries. It would be interesting to see what integration with existing source se-
lection techniques could yield. Using hyperlinks for communicating relevant
interfaces to clients requires more intelligent consumption, yet they blur the
distinction between query execution and federated query execution, yielding
an a�ractive path towards a global data space. However, the findings were in-
su�icient to validate Hypothesis 4 “A client can e�ectively discover distributed

interfaces by relying solely on Linked Data principles.”

174

8.2. Open challenges and future directions

Finally, the distributed interfaces that result from a virtual integration strategy
also dri� over time. This creates a problem of reproducibility, where interfaces
become out-of-sync and queries can no longer be executed in the same context.
However, with many stakeholders already investing in digital preservation, I
can answer Research �estion 5:

“Can low-cost interfaces improve access to prior versions of Linked Datasets?”

This reproducibility problem can be tackled by also publishing the preserva-
tion e�orts performed by Linked Data publishers in the same low-cost manner
(Chapter 7). The Triple Pa�ern Fragments interface is a suitable fit to sup-
port the Memento protocol—a standardized http framework for time-based
resource versioning. In combination with a (pragmatic) rdf archiving system,
distributed interfaces can be transparently synchronized around a given date-
time during query execution; thus, creating a valid context to reproduce results,
which is crucial in order to revive virtual integration. Hence, I conclude with
validating Hypothesis 5 “Clients can query published prior versions of Linked

Datasets without specifying the exact version.”

By comparing results from di�erent timepoints, the added time dimension also
enables analyzing the evolution of facts. However, without fine-grained prove-
nance information about the changes, we should be careful with the semantics
of such evolution. In general, provenance has a bigger role to play in explaining
how a client obtained an answer, what data sources were used in the process,
and ultimately, how the answer can be trusted.

8.2 Open challenges and future directions

We conclude this thesis by listing the remaining general challenges and possi-
ble directions for developing the introduced technologies.

In this thesis, we have made a case for data publishers to adopt a virtual in-
tegration strategy and supplied an architecture based on Triple Pa�ern Frag-
ments, which is already deployable in practice. One of the main challenges
though, is to obtain a su�iciently fast arrival of results. Evidently, the defini-
tion of “fast” entirely depends on an application’s demands in completeness,
i.e., do we strive for e�iciently retrieving the first result, the last result, half of
the results, or all results? We stress that it is inherently di�icult to impossible
to achieve the same performance as with physical integration; however, the
question is rather whether the achieved performance is su�icient to support
the envisaged applications or use cases, and if not, how it can be improved.
As every compromise sacrifices a benefit on either the consumer side or the
publisher side, finding sweet spots requires thorough research and evaluation
in context of their application domain. For instance, the Triple Pa�ern Frag-
ments interface balances between the expressivity of a sparql endpoint and
the low computational cost of data dumps, at the cost of increased bandwidth
and query execution time.

175

8.2. Open challenges and future directions

Immediate improvements are possible regarding the current greedy client-side
query algorithm. The number of necessary requests can be reduced signifi-
cantly, both for a single-interface and multiple-interfaces setup. Improvements
were already proposed by Van Herwegen et al. [8] and Acosta and Vidal [9].
The former migrates decisions from local to global: based on multiple heuris-
tics, the client estimates from the intermediate results whether the greedy
approach is suboptimal. If so, the triple pa�erns are downloaded separately
instead, resulting in fewer requests. However, because the join process is more
complex, it requires more computational work from the client. The la�er in-
troduced a query engine that be�er adapts to unexpected data source condi-
tions. A bushy tree query plan reduces intermediate results and the schedule
is adaptive to live conditions, such as interface response times. In addition to
exploring these existing methods further, many optimization techniques from
relational databases [10], distributed databases [11], or rdf databases [12] are
directly applicable. However, their e�ectiveness is determined by the live Web
environment and the limited expressiveness of the interface. Literature clos-
est to those circumstances are in the field of federated sparql querying [13].
Approaches that significantly impact page size would also make revisiting re-
sponse serialization worthwhile.

Eventually, improvements on the query algorithm will reach a limit, and re-
search will have to expand beyond Triple Pa�ern Fragments, i.e., equipping
the server-side interface with additional interface features. Examples con-
tained in this thesis were the metadata extension with approximate mem-
bership, and the hypermedia controls extension for discovery and versioning.
Other work has modified the selector to facilitate textual searches [14] or move
certain types of joins from clients to servers [15]. Similar exploration of the
Linked Data Fragments axis—with accompanying client-side adjustments—is
certainly endorsed, in particular di�erences between independent and con-
junctive use. Of great value is the recent work by [16], which presents a formal
framework that enables assessing new Linked Data Fragments interface fea-
tures before implementation. Among other things, the article shows that the
rather conceptual axis used in this dissertation, is in fact be�er represented
as an expressiveness la�ice. In addition to new interface features, di�erent in-
clusion techniques should be investigated. For instance, is metadata included
in the response, or available through a separate resource? Also, vocabularies
that can e�ectively describe interface features and facilitate the client’s utility,
need to be studied accordingly.

For federated queries, a more sophisticated mechanism for source selection can
eliminate several of them beforehand for (parts of) a given query, reducing the
number of needed http requests. Applying this process involves (client-side or
server-side) pre-processing, which in the case of an rdf archive (multiple ver-
sions per dataset) means that extra processing per version would be required.

Interface discovery can also benefit from source selection and query execution
time for use cases which do not need 100% completeness. It is likely that ad-
ditional hypermedia or metadata repositories are necessary to improve com-

176

8.2. Open challenges and future directions

pleteness, possibly constructed by a server dedicated to discovery. A direct
performance improvement is taking into account practical di�erences between
Linked Data interfaces, e.g., response times or page size, while communicating
discovery outcome to the client. �ery e�iciency can also be improved further
by integrating discovery with existing source selection methods. The query
algorithm itself can take advantage of the data summaries currently used for
discovery. However, it remains to be investigated to what extent this extra ef-
fort, if performed by the server, could benefit both the discovery mechanism as
for query execution (reduce query times on the client) as such. Finally, source
selection techniques in general could benefit from machine learning to model
a network of interfaces. Starting from the total set of possible sources, a client
could, for instance, apply binary classifiers to construct a model from the in-
coming fragments, with the eventual relevant sources as positive training data.
Or reinforcement learning could be used for discovering a small network of in-
terfaces, with the possible links as actions and a visited interface’ relevance
as possible reward. Of course, the research challenge would be to extract fea-
tures from a fragment’s data, metadata, or hypermedia, preferably with suf-
ficient performance to train during query execution. This does however bring
us closer to a real intelligent client.

Another challenge is usability : the more accessible the presented techniques
become, the higher the chances of adoption. On the one hand, usability im-
provements should focus on reducing the time and e�ort for data publishers
to bring their data online, as well as version management. On the other hand,
query execution should be facilitated for data consumers. This includes sup-
port for writing queries, which can become complicated—especially when mul-
tiple sources with di�erent vocabularies are consulted. For added ease of use,
more simple query languages should be supported by the client, including vi-
sual languages that allow users to create queries through drag and drop.

Another issue related to usability, is the lack of clear schema evolution man-
agement for Linked Open Datasets. For instance, the public datasets dbpedia
and viaf have both introduced significant changes to the schema over time,
aggravating the reproducibility problem and contributing to the vocabulary

chaos [17]. In the continuing e�ort to expose information as Linked Data, Dun-
sire et al. [17] urge to double our e�orts on supporting infrastructure, along
with “guiding principles and best practices around reuse, extension of existing
vocabularies, as well as development of new vocabularies”. Of course, seman-
tic changes are inevitable; however, it is the deprecation processes—ensuring
backwards compatibility and communicating version changes—that badly re-
quires clear planning and interoperability. Furthermore, in line with the in-
frastructure presented in this dissertation, application developers indicate the
desire for “machine-readable, api-based access to version history” in vocabu-
lary registries as well [17].

While the list of challenges remains long, I hope this thesis provided the means
to invite more stakeholders to the Web of Linked Data, with application de-
velopment gaining because of that. Although it is tempting as a community

177

References

to preach to the choir, we must not restrain ourselves from reflecting criti-
cally at established practice (e.g., the application of public sparql endpoints)
and admit that sometimes innovation happens through simplification. Realiz-
ing a Semantic Web—regardless of its ultimate shape or form—requires more
a�ention to the Web as a running system, its architecture, and the character-
istics that made it succeed; especially because it is exactly that what semantic
technologies complement to other fields such as Artificial Intelligence and Big
Data analytics. Intelligent agents can rise if each field does its part, but also
strengthens the ties between them; I know I will go on doing so.

References

[1] Eric Miller and Uche Ogbuji. “Linked data design for the visible library.”
In: Bulletin of the Association for Information Science and Technology 41.4
(2015), pp. 23–29. issn: 2373-9223. doi: 10.1002/bult.2015.1720410409.

[2] Mohamed Morsey, Jens Lehmann, Sören Auer, and Axel-Cyrille Ngonga
Ngomo. “dbpedia sparql Benchmark – Performance Assessment with
Real �eries on Real Data.” In: The 9

th
International Semantic Web Con-

ference. 2011. isbn: 978-3-642-25072-9.

[3] Laurens Rietveld, Ruben Verborgh, Wouter Beek, Miel Vander Sande,
and Stefan Schlobach. “Linked Data-as-a-Service: The Semantic Web
Redeployed.” In: European Semantic Web Conference. Ed. by Fabien Gan-
don, Marta Sabou, Harald Sack, Claudia d’Amato, Philippe Cudré-Mau-
roux, and Antoine Zimmermann. Springer International Publishing, June
2015, pp. 471–487.

[4] Yannis E Ioannidis. “�ery optimization.” In: ACM Computing Surveys

(CSUR) 28.1 (1996), pp. 121–123.

[5] Javier D. Fernández, Miguel A. Martínez-Prieto, Claudio Gutiérrez, Axel
Polleres, and Mario Arias. “Binary rdf Representation for Publication
and Exchange (hdt).” In: Web Semantics: Science, Services and Agents on

the World Wide Web 19 (Mar. 2013), pp. 22–41.

[6] Luis-Daniel Ibáñez, Elena Simperl, Fabien Gandon, and Henry Story.
“Redecentralizing the Web with Distributed Ledgers.” In: ieee Intelligent

Systems 32.1 (Jan. 2017), pp. 92–95. issn: 1541-1672. doi: 10.1109/MIS.
2017.18.

[7] Olaf Hartig and Jorge Pérez. “LDQL: A �ery Language for the Web
of Linked Data.” In: The Semantic Web - ISWC 2015: 14

th
International

Semantic Web Conference, Bethlehem, PA, USA, October 11-15, 2015, Pro-

ceedings, Part I. Ed. by Marcelo Arenas et al. Cham: Springer Interna-
tional Publishing, 2015, pp. 73–91. isbn: 978-3-319-25007-6. doi: 10.1007/
978-3-319-25007-6_5. url: h�ps://doi.org/10.1007/978-3-319-25007-
6%5C_5.

178

https://doi.org/10.1002/bult.2015.1720410409
https://doi.org/10.1109/MIS.2017.18
https://doi.org/10.1109/MIS.2017.18
https://doi.org/10.1007/978-3-319-25007-6_5
https://doi.org/10.1007/978-3-319-25007-6_5
https://doi.org/10.1007/978-3-319-25007-6%5C_5
https://doi.org/10.1007/978-3-319-25007-6%5C_5

References

[8] Joachim Van Herwegen, Ruben Verborgh, Erik Mannens, and Rik Van
de Walle. “�ery Execution Optimization for Clients of Triple Pa�ern
Fragments.” In: The 12

th
Extended Semantic Web Conference. Ed. by Fa-

bien Gandon, Marta Sabou, Harald Sack, Claudia d’Amato, Philippe Cu-
dré-Mauroux, and Antoine Zimmermann. June 2015.

[9] Maribel Acosta and Maria-Esther Vidal. “Networks of Linked Data Ed-
dies: An Adaptive Web �ery Processing Engine for rdf Data.” In: The

Semantic Web – ISWC 2015. Ed. by Marcelo Arenas et al. Vol. 9366. Lec-
ture Notes in Computer Science. Springer International Publishing, 2015,
pp. 111–127. isbn: 978-3-319-25006-9.

[10] Alon Y Halevy. “Answering queries using views: A survey.” In: The VLDB

Journal 10.4 (2001), pp. 270–294.

[11] Luis Galárraga, Katja Hose, and Ralf Schenkel. “Partout: a distributed
engine for e�icient rdf processing.” In: The 23

rd
International Conference

on World Wide Web. ACM, 2014, pp. 267–268.

[12] Michael Schmidt, Michael Meier, and Georg Lausen. “Foundations of
sparql �ery Optimization.” In: The 13

th
International Conference on

Database Theory. ACM, 2010, pp. 4–33.

[13] Nur Aini Rakhmawati, Jürgen Umbrich, Marcel Karnstedt, Ali Hasnain,
and Michael Hausenblas. “A comparison of federation over sparql end-
points frameworks.” In: International Conference on Knowledge Engineer-

ing and the Semantic Web. Springer. 2013, pp. 132–146.

[14] Joachim Van Herwegen, Laurens De Vocht, Ruben Verborgh, Erik Man-
nens, and Rik Van de Walle. “Substring Filtering for Low-Cost Linked
Data Interfaces.” In: The 14

th
International Semantic Web Conference. Ed.

by Marcelo Arenas et al. Oct. 2015.

[15] Olaf Hartig and Carlos Buil-Aranda. “Bindings-Restricted Triple Pa�ern
Fragments.” In: The On the Move to Meaningful Internet Systems. Ed. by
Christophe Debruyne, Hervé Pane�o, Robert Meersman, Tharam Dil-
lon, eva Kühn, Declan O’Sullivan, and Claudio Agostino Ardagna. Cham:
Springer International Publishing, 2016, pp. 762–779. isbn: 978-3-319-
48472-3. doi: 10.1007/978-3-319-48472-3_48.

[16] Olaf Hartig, Ian Le�er, and Jorge Pérez. “A Formal Framework for Com-
paring Linked Data Fragments.” In: The Semantic Web – ISWC 2017:

16
th

International Semantic Web Conference, Vienna, Austria, October 21–

25, 2017, Proceedings, Part I. Ed. by Claudia d’Amato, Miriam Fernan-
dez, Valentina Tamma, Freddy Lecue, Philippe Cudré-Mauroux, Juan Se-
queda, Christoph Lange, and Je� Heflin. Cham: Springer International
Publishing, 2017, pp. 364–382. isbn: 978-3-319-68288-4. doi: 10.1007/978-
3-319-68288-4_22.

179

https://doi.org/10.1007/978-3-319-48472-3_48
https://doi.org/10.1007/978-3-319-68288-4_22
https://doi.org/10.1007/978-3-319-68288-4_22

References

[17] Gordon Dunsire, Corey Harper, Diane Hillmann, and Jon Phipps. “Linked
data vocabulary management: infrastructure support, data integration,
and interoperability.” In: Information Standards �arterly 24.2/3 (2012),
pp. 4–13.

180

	Preface
	Contents
	Summary
	Samenvatting
	List of Figures
	List of Tables
	1 Introduction
	1.1 Research questions
	1.2 Outline

	2 The Web of Linked Data
	2.1 Architecture of the Web
	2.2 Linked Open Data
	2.3 Relation to the Semantic Web
	2.4 Extract-Transform-Load workflows for rdf data
	2.5 Publishing Linked Data
	2.6 Conclusion

	3 Sustainable apis for Linked Data publishing
	3.1 Towards sustainable Linked Data querying
	3.2 Preliminaries of the Web of Linked Data
	3.3 Characterizing Web apis
	3.4 The Linked Data Fragments conceptual model
	3.5 Exploring new interface trade-offs
	3.6 Conclusion

	4 Query Execution
	4.1 Triple Pattern Fragments: a new interface trade-off
	4.2 Querying a tpf interface with sparql
	4.3 Evaluation of the tpf interface
	4.4 Adding Approximate Membership metadata
	4.5 Evaluating Approximate Membership metadata
	4.6 Conclusion

	5 Federation of interfaces
	5.1 Reviving Virtual integration with low-cost interfaces
	5.2 Source selection for federated query processing
	5.3 Querying a federation of tpf interfaces
	5.4 Experiments
	5.5 Conclusion

	6 Discovering interfaces
	6.1 Discovery of Linked Datasets and Web Services
	6.2 Quantifying the discovery process
	6.3 Hypermedia-based discovery approach
	6.4 Federated query processing through hypermedia
	6.5 Experiments
	6.6 Conclusion

	7 Accessing history
	7.1 Publishing Linked Data preservation efforts
	7.2 Sustainable publishing and querying of Linked Data archives
	7.3 Reconstructing institutional history from archives
	7.4 Storage solutions for rdf archives
	7.5 Publishing versioned Linked Data
	7.6 Querying versioned and distributed Linked Data
	7.7 Making sense of changing statements
	7.8 Conclusion

	8 Conclusions
	8.1 Review of the Research Questions
	8.2 Open challenges and future directions

