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A B S T R A C T

In situ leaf area index (LAI) measurements are essential to validate widely-used large-area or global LAI products
derived, indirectly, from satellite observations. Here, we compare three common and emerging ground-based
sensors for rapid LAI characterisation of large areas, namely digital hemispherical photography (DHP), two
versions of a widely-used commercial LAI sensor (LiCOR LAI-2000 and 2200), and terrestrial laser scanning
(TLS). The comparison is conducted during leaf-on and leaf-off conditions at an unprecedented sample size in a
deciduous woodland canopy. The deviation between estimates of these three ground-based instruments yields
differences greater than the 5% threshold goal set by the World Meteorological Organization. The variance at
sample level is reduced when aggregated to plot scale (1 ha) or site scale (6 ha). TLS shows the lowest relative
standard deviation in both leaf-on (11.78%) and leaf-off (13.02%) conditions. Whereas the relative standard
deviation of effective plant area index (ePAI) derived from DHP relates closely to TLS in leaf-on conditions, it is
as large as 28.14–29.74% for effective wood area index (eWAI) values in leaf-off conditions depending on the
thresholding technique that was used. ePAI values of TLS and LAI-2x00 agree best in leaf-on conditions with a
concordance correlation coefficient (CCC) of 0.796. In leaf-off conditions, eWAI values derived from DHP with
Ridler and Calvard thresholding agrees best with TLS. Sample size analysis using Monte Carlo bootstrapping
shows that TLS requires the fewest samples to achieve a precision better than 5% for the mean ± standard
deviation. We therefore support earlier studies that suggest that TLS measurements are preferential to mea-
surements from instruments that are dependent on specific illumination conditions. A key issue with validation
of indirect estimates of LAI is that the true values are not known. Since we cannot know the true values of LAI,
we cannot quantify the accuracy of the measurements. Our radiative transfer simulations show that ePAI esti-
mates are, on average, 27% higher than eLAI estimates. Linear regression indicated a linear relationship between
eLAI and ePAI–eWAI (R2= 0.87), with an intercept of 0.552 and suggests that caution is required when using
LAI estimates.

1. Introduction

Leaf area index (LAI) is an essential climate variable (ECV) that
describes the amount of leaf material in an ecosystem (Nemani et al.,
2003; Asner et al., 2003; Disney et al., 2016). LAI is commonly used as a
measurement of forest structure and its temporal patterns are used to
monitor how biological cycles are connected and correspond to climate
change (Polgar and Primack, 2011; White et al., 2009; Bequet et al.,
2011; Calders et al., 2015b). To be useful for climate modelling, full

end-to-end traceability and assessment of the uncertainty of the process
from sensor measurement through to the generation of the ECV product
and the resulting time-series is needed (Dowell et al., 2013). Space-
borne estimates of LAI are essential to provide a greater spatial and
temporal coverage compared to in situ estimates, but the retrieval
process is more complex due to the mixed contributions of leaves, other
tree elements, understorey vegetation and soil to the measured radia-
tion flux. We require knowledge of the measurement uncertainty and
the uncertainty of the derived ECV and its time-series. It is critical to
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benchmark the different (global) space-derived LAI products and
compare these against in situ measurements to ensure their accuracy
and reliability. The Global Climate Observing System (GCOS) specified
the target requirements for LAI products to be a maximum of 15%
uncertainty and 10% stability (the maximum acceptable change in
systematic error per decade) (GCOS, 2016), with some target require-
ments being as low as 5% (WMO, 2012). WMO (2012) listed different
breakthrough and threshold requirements depending on the application
area of LAI products.

In situ observations are key for the validation of these global
spaceborne LAI products. However, comparison of different in situ
sensors demonstrated a level of variability typically above these tar-
geted GCOS requirements (Ryu et al., 2010b; Woodgate et al., 2015b).
These ground-based sensors measure light transmission and are there-
fore sensitive to all plant constituents (not just leaves), and plant area
index (PAI) is therefore a more correct term. Ground-based sensors can
essentially only measure PAI or WAI in deciduous forests, whereas LAI
is the key input parameter for models related to climate, agricultural
meteorology or hydrology (WMO, 2012). For clarity, within this paper
we interpret LAI, PAI and WAI for broadleaved woody species as fol-
lows:

• LAI is half of the green leaf area per unit of horizontal ground
surface area (Chen and Black, 1992).

• PAI is half of the surface area of all above-ground vegetation matter
per unit of horizontal ground surface area.

• WAI is half of the surface area of all above-ground woody matter per
unit of horizontal ground surface area.

Two of the most widely-used 2D ground-based passive instruments
are digital hemispherical photography, DHP (Origo et al., 2017;
Woodgate et al., 2015b) and the LAI-2000 or LAI-2200 (hereafter re-
ferred to as LAI-2x00) (Ryu et al., 2010a,b). Methodological errors can
occur at any stage during data acquisition and analysis (Jonckheere
et al., 2004). Measurement protocols for these instruments require
specific light conditions and levelling, while analysis protocols gen-
erally involve image thresholding (DHP) and/or linking below and
above canopy measurements to derive canopy gap fraction (LAI-2x00).

More recently, 3D terrestrial LiDAR (light detection and ranging)
instruments are being used to estimate PAI and to quantify forest
structure (Jupp et al., 2009; Calders et al., 2014; Vaccari et al., 2013;
Cuni-Sanchez et al., 2016). Terrestrial LiDAR, also called terrestrial
laser scanning (TLS), is an active remote sensing technique that accu-
rately measures distances by transmitting laser pulses and analysing the
returned energy as a function of distance or time (Newnham et al.,
2015; Calders et al., 2015). TLS measurements are insensitive to light
conditions and inclination sensors provide accurate instrument level-
ling information (Woodgate et al., 2015b).

This paper presents a direct comparison of effective PAI and WAI
from three different sensors (DHP, LAI-2x00 and TLS) at the scale of
medium-resolution satellite-products. Study areas in other comparisons
of this sort are generally small, which hinders their ability to produce
reliable comparison statistics that are representative of the wider ve-
getated area. For example, the number of sample points per study area
in Woodgate et al. (2015b) ranged from 4 to 72, with a maximum plot
area of 0.5 ha and only a few sample plots had coincident measure-
ments of all three sensors. Ryu et al. (2010b) used a large study area,

Fig. 1. The location of the 6 plots (1 ha) within the wider 6 ha study area.
Figure modified from Origo et al. (2017).
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covering 9 ha, but with only 47 coincident DHP and LAI-2000 sampling
points i.e. approximately 5 sample points per ha. In this study we use
176 coincident DHP, LAI-2x00 and TLS measurements covering a 6 ha
deciduous woodland site (i.e. approximately 30 sample points per ha).
Measurements are collected in both leaf-on and leaf-off conditions,
which allows us to better understand and quantify uncertainties related
to PAI and WAI, and their sensitivity to leaf-presence. This large
number of samples allows us to address issues of spatial variance and
provide recommendations for more efficient use of current resources.
We also present simulations of gap fraction using a Monte Carlo ray
tracing (MCRT) radiative transfer model representation of a highly
realistic 3D forest canopy. In this way, we can control all aspects of the
crown structure, acquisition parameters and light conditions, which
would not be possible using measured data. These simulations elucidate
some of the more interesting relationships between PAI, WAI and LAI.

2. Materials and methods

2.1. Data collection and analysis

The study area was located within Wytham Woods, Oxford, UK and
covered six ha of a larger 18 ha Smithsonian plot (Smithsonian Tropical
Research Institute, 2016). The deciduous forest was dominated by Sy-
camore (Acer pseudoplatanus), Ash (Fraxinus excelsior) and Hazel (Cor-
ylus avellana) (Butt et al., 2009). The study area was divided into
6× 1 ha plots (Fig. 1). Coincident data were collected at 176 locations
within an approximate 20m×20m grid (Held et al., 2015; Woodgate
et al., 2012) covering the six ha study area. Some locations were
sampled multiple times (two or four samples) with DHP and LAI-2x00
as part of a separate study and the gap fraction values for these different
samples were averaged. Sensor data for this study were collected in
leaf-on (June & July 2015) and leaf-off (December 2015 & January
2016) conditions. The sampling locations were marked with flags so
sampling in both campaigns was done at the same locations. DHP
images were collected in both field campaigns in a quasi-simultaneous
fashion to the LAI-2x00 measurement to achieve similar illumination
conditions (either overcast or after sunset).

The underlying theoretical principles that are used by different ac-
tive and passive ground-based instruments are described in Appendix A.
All these instruments correct for some of the clumping in different
ways. Therefore, the comparison in this paper will focus on effective
parameters (eLAI, ePAI, eWAI), which provides a like for like com-
parison.

Full details of the data analysis can be found in Appendix B. The
LAI-2x00 and DHP methods calculate a single Pgap(θ) per measurement
location and view zenith angle interval, whereas the TLS method also
calculates a vertically resolved Pgap(θ, z) for each location and zenith
angle interval. We compared two different automated DHP thresh-
olding techniques: the global binary automated threshold method from
Ridler and Calvard (1978) (DHP(G)) and two-corner classification
procedure from Macfarlane et al. (2014) (DHP(TC)). We retrieved ePAI
and eWAI by inverting the gap fraction model using a Pgap estimate of
the hinge region in leaf-on and leaf-off conditions, respectively. The
LAI-2x00 and DHP method used Eq. (A.2) and the TLS method used Eq.
(B.4). The hinge region is generally used to approximate the 57.5° hinge
angle (Jupp et al., 2009; Zhao et al., 2011; Calders et al., 2015b), where
G(θ) is essentially invariant at 0.5 over different theoretical leaf and
wood angle distributions (Ross, 1981; Woodgate et al., 2015a). This
allows us to convert the gap fraction model without making assump-
tions about the foliage and wood orientation function. At the hinge
angle the path length through the canopy to the top is about twice the
canopy height, which implies significant spatial averaging is occurring
(Jupp et al., 2009).

We used the lm function from the stats package in R (R Development
Core Team, 2011) to implement a linear regression to compare esti-
mates from the different ground-based sensors. We report the

coefficient of determination, R2, as well as the concordance correlation
coefficient (CCC). The CCC computes the agreement on a continuous
measure obtained by two methods (Lin, 1989) and ranges between −1
(perfect discordance) and 1 (perfect concordance).

2.2. Sampling experiment

Preliminary findings in Woodgate et al. (2012) suggested that
measurements obtained using different sampling designs (grid, VALERI,
SLATS) yielded comparable results. Here, we used a 20m grid sampling
(Wilkes et al., 2017) that resulted in 176 sample locations covering 6 ha
or 36 locations per hectare. To optimise the use of resources, we ana-
lysed the effect of number of samples on the mean and standard de-
viation of the sampled unit. The analysis was done for the site (6 ha)
and plot (1 ha) scale. For each sampling unit (site or plot), the global
average and standard deviations were calculated from all data within
the site or plot area. We employed a Monte Carlo bootstrapping pro-
cedure where a set number (in our case 1000) of random samples were
removed for each sample number. For each permutation the absolute
difference between the global and sample statistic was calculated.

2.3. Simulation experiment

We used the librat Monte Carlo ray tracing (MCRT) model to si-
mulate gap fraction images (Lewis, 1999). This model has been tested in
previous studies against other models (Widlowski et al., 2015, 2007;
Pinty et al., 2004), as well as against observations (Disney et al., 2006,
2011; Calders et al., 2013; Woodgate et al., 2016). Librat estimates the
radiative transfer regime within a canopy stochastically by following
the interactions of sample rays propagating through a scene (i.e. a
virtual forest) from sensor to source (Disney et al., 2000). This simu-
lation environment enabled us to simulate ePAI, eLAI and eWAI from
the same locations with exactly the same illumination conditions. We
used the 1 ha Järvselja birch stand scene model, a canopy scene gen-
erated for the fourth phase of the radiative transfer model inter-
comparison (Widlowski et al., 2015). This 49 year old deciduous stand
resembled the forest structure of Wytham Woods well, had a stem
density of 1017 trees/ha and was dominated by birch, common Alder
and aspen. A leaf-off version of the scene was generated by removing all
of the leaves, while a leaves-only version was created by removing all of
the woody components. Ten locations were chosen randomly
throughout the scene, with the minimum distance between the sensor
location and nearest tree being 0.5m. Gap fraction was simulated di-
rectly (i.e. a black and white image) using an orthographic hemi-
spherical lens approximating 5.5megapixels at 1.5 m above the terrain.
We retrieved ePAI, eLAI and eWAI by inverting the gap fraction model
(Eq. (A.2)) using a Pgap estimate of the hinge region of 55–60° degree
zenith.

3. Results

The individual measurements of gap fraction (Pgap) around the
hinge angle are shown in Fig. 2a and b. The three different passive
methods (LAI-2x00, DHP(G) & DHP(TC)) were benchmarked against
the TLS measurements because the latter are insensitive to illumination
conditions and inclination sensors provide accurate levelling. Fig. 2c
and d show the corresponding ePAI and eWAI. In leaf-on conditions, the
TLS and LAI-2x00 measurements agreed best (CCC=0.796, and slope
of 1.06), whereas the DHP values were consistently lower. In leaf-off
conditions, we observed the best agreement between TLS and the DHP
(G) method (CCC=0.306). The strongest linear relationship was be-
tween the LAI-2x00 and TLS, however, there was a significant under-
estimation of LAI-2x00 values compared to the TLS (slope of 0.54).

Fig. 3 illustrates the spatial variation within the study area of the
TLS values and the residuals for the passive methods. The leaf-on TLS
Pgap value of 0.171 at coordinate x=160, y=80 resembles an outlier
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but was actually caused by a clearing in the forest and registered by all
instruments. Although Fig. 3 shows spatial variation in ePAI and eWAI,
the mean plot and study area (site) values showed similar trends
(Fig. 4). Similar to the individual measurements, the LAI-2x00 averages
agreed best with TLS averages in leaf-on conditions, whereas DHP(G)
estimates agreed best with TLS in leaf-off conditions. The relative ePAI
standard deviation for the study area is similar for TLS (11.78%) and
DHP(TC) (11.83%), followed by LAI-2x00 (15.38%) and DHP(G)
(15.52%). In leaf-off conditions, the relative standard deviation around
the study area average is 13.02% for TLS, 15.23% for LAI-2x00, 28.14%
for DHP(G) and 29.74% for DHP(TC).

The large number of samples meant we could quantify the precision
of each ground-based sensor using Monte Carlo bootstrapping (Fig. 5).
The analysis for the different plots showed similar results and therefore
we only showed results for plot P1 and the 6 ha study area. Table 1
summarises the number of samples required to achieve a precision of
better than 5% for the mean ± standard deviation. Generally, a larger
amount of samples was required to achieve the same precision for a
larger area. The difference in required samples to achieve the same

precision between leaf-on and leaf-off conditions was relatively small
(ranging from 0 to 2) for TLS and LAI-2x00 but larger for both DHP
methods. For example, the DHP(TC) method required 13 more samples
for a 1 ha area (P1) and 39 more samples for the whole 6 ha study area
in leaf-off conditions compared to leaf-on conditions.

Examples of simulated gap fraction images for the Järvselja birch
stand scene model are shown in Fig. 6a. Simulations at 10 locations
(Fig. 6b) showed that the average ePAI estimate (2.77 ± 0.44) was
approximately 27% higher than the simulated eLAI values
(2.18 ± 0.35). The average eLAI was approximately 43% higher than
ePAI–eWAI (1.52 ± 0.31). The difference was largest for location F
(64%) and smallest for location J (28%). Linear regression indicated a
strong linear relationship between eLAI and ePAI–eWAI (R2= 0.87),
with an intercept of 0.552.

4. Discussion

Within this paper, we compared three different ground-based in-
struments and quantified aspects of their measurement uncertainty.

Fig. 2. Individual measurements for all 176 sample locations in leaf-on and leaf-off conditions. (a, b) Gap fraction around the hinge angle; (c, d) ePAI and eWAI.
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Similar to Woodgate et al. (2015b), Ryu et al. (2010b), our results in-
dicated that the agreement between these instruments does not meet
the 5% accuracy specified by WMO (2012). Ryu et al. (2010b) also
reports higher estimates from LAI-2x00 measurements compared to
DHP in savanna ecosystems. Woodgate et al. (2015b) compared the

DHP(G) method against the DHP(TC) method for a range of Australian
ecosystems. They found that PAI estimates were significantly different
in three out of 11 sites, with DHP(G) resulting in a lower PAI compared
to DHP(TC). We observed a larger ePAI for DHP(G) compared to DHP
(TC) for the 6 ha study site (p < 0.001) and plots P2, P5, P6, P7, P8

Fig. 3. Spatial maps of leaf-on ePAI and leaf-off eWAI. (a) Leaf-on ePAI estimates from TLS; (b) ePAI residuals of TLS vs. passive sensors; (c) Leaf-off eWAI estimates from TLS; (d) eWAI
residuals of TLS vs. passive sensors.

Fig. 4. Plot and study area (site) averages of gap fraction and leaf-on ePAI and leaf-off eWAI. The errorbars denote±1 standard deviation.
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(p < 0.01), whereas there was no significant difference for P1. TLS
ePAI estimates were largest, but not significantly different compared to
LAI-2x00 for the study area and all plots. These larger values are be-
cause partial laser beam hits will always be classified as full hits,
therefore underestimating the gap fraction. Two critical parameters in

reducing the number of partial hits are the beam exit diameter and the
beam divergence. The impact of partial hits in TLS data can be reduced
by taking the intensity of the returns into account or by using full-
waveform processing (if available) (Hancock et al., 2014; Jupp et al.,
2009).

This study is unique as it presents a large number of coincident ePAI
and eWAI measurements, whereas other studies had a much smaller
sample size or only collected data in leaf-on conditions. The relative
standard deviation was found to be smallest for TLS estimates in both
leaf-off and leaf-on conditions, whereas this was variable for the other
methods. The DHP(TC) relative standard deviation was comparable
with TLS in leaf-on conditions, but more than doubled in leaf-off con-
ditions. This might be due to more of the smaller plant constituents (e.g.
twigs) being visible in leaf-off DHP images, resulting in more mixed
pixels that are harder to classify. While hand-levelling resulted in si-
milar results compared to tripod-levelling in leaf-on conditions (Origo

Fig. 5. Mean relative deviations of average and standard deviation (stddev) as a function of sample size. The errorbars denote± 1 standard deviation. Only the study area and plot P1
data are shown here, the other five plots show similar behaviour.

Table 1
Number of samples required to achieve a precision of better than 5% for the mean ±
standard deviation.

Plot (area) Parameter DHP(TC) DHP(G) LAI2x00 TLS

P1 (1 ha) ePAI 11 15 12 9
eWAI 24 25 10 8

Site (6 ha) ePAI 11 17 17 11
eWAI 50 47 17 13
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et al., 2017), this has not been validated in leaf-off conditions and the
combination of twigs and hand-levelling might result in more mixed
pixels. However, hand-levelling can reduce the DHP acquisition time by
a factor of eight and Fig. 5 demonstrates the importance of the number
of samples on the mean relative deviation. Part of this deviation is due
to the structural variation within the forest (Fig. 3) and part of this
results from methodological errors during acquisition and analysis.

It is important to acknowledge that the variable that can be mea-
sured or inferred is often not the variable that is required in models.
Earth system models provide feedback on climate change and rely on
estimates of LAI to calculate, for example, stomatal conductance and
photosynthesis (Friedlingstein et al., 2006). Small errors in LAI propa-
gated through earth system models can become large errors in several
biophysical and biogeochemical processes (Mahowald et al., 2016; Kala
et al., 2014). Earth system models that use input from global space-
borne LAI products (e.g. MODIS) would therefore benefit from reliable
ground validation for these products. The only approach to derive true
LAI would be to destructively sample the leaves of trees. However, this
is detrimental for the trees, highly impractical and time-consuming, and
such measurements can therefore only be conducted on a very small
scale. By relating gap fraction measurements from ground-based sen-
sors to the variable of interest, these sensors provide a fast and non-
destructive alternative to destructive sampling. However, these sensors
are unable to estimate LAI and can only provide estimates of (effective)
PAI (in leaf-on conditions) and WAI (in leaf-off conditions for deciduous
forests). Our simulation results within a highly realistic 3D virtual birch
stand demonstrated that, on average, the ePAI estimate was 27% higher
than the eLAI estimate. These findings agree with Woodgate et al.
(2016), who suggest a woody-to-total plant material estimate (α) to
convert PAI to LAI. It is not surprising that the sum of individual eWAI
and eLAI simulations is larger than the individual ePAI simulation. For
a specific azimuth/zenith recording, Eq. (A.2) does not distinguish
between single or multiple canopy elements on its path. When both leaf
and wood elements are present in the simulated scene, the woody
structure is preferentially obscured by the leafy crown shell. This in-
teraction provides nonrandom occlusion that raises the gap probability
and reduces the effective PAI.

The drawback of passive instruments is that gap probability esti-
mates from image classification methods are very sensitive to illumi-
nation conditions. Hancock et al. (2014) found that manual thresh-
olding DHPs by different operators resulted in a 17% range in gap
fraction. They argued that TLS measurements should be preferred over
passive measurements as they produce more stable estimates. Calders
et al. (2015b) reported a relative standard deviation in eWAI from re-
peated leaf-off scans of 0.72% (including removing and setting up the
tripod and instrument again over multiple days). Our results support
the recommendation of favouring TLS over passive instruments. The
lower TLS standard deviation results in fewer samples required for a
similar area or a larger area to be sampled with similar resources, which
would benefit the validation of global LAI products. The independence
from illumination conditions and the availability of inclination sensors
allows for more consistent and robust products. TLS not only provides
an integrated canopy metric, but will also provide the vertically re-
solved plant area volume density or PAVD, which is a measure of the
vertical plant material distribution through the canopy (Calders et al.,
2014). Such additional information can significantly improve the phe-
nology information provided to climate models that include phenology.
Calders et al. (2017) demonstrated that the range accuracy of different
same make and model TLS instruments was comparable and within the
manufacturer's specification, which is essential for data interoper-
ability. Other studies have compared different commercial and scien-
tific TLS instruments (Armston et al., 2014; Newnham et al., 2012);
highlighting differences between TLS instrument specification and
configuration need to be considered in the estimation of (effective) PAI.
The primary current disadvantage of TLS instruments is their purchase
cost. However, recent developments have brought down the costs sig-
nificantly and a range of low-cost TLS instruments is currently avail-
able, e.g. the Canopy Biomass LiDAR (Paynter et al., 2016), Leica
BLK360 and FARO FocusM 70. Since time-of-flight TLS instruments are
independent of illumination conditions, the acquisition window is sig-
nificantly larger than that of passive instruments. One could therefore
argue that a TLS fieldwork day is more cost efficient, since more sam-
ples can be collected within the acquisition window. This has important
implications for large area field campaigns where acquisition of

Fig. 6. (a) Example of simulated gap fraction images of eWAI, ePAI and eLAI for location C; (b) eWAI, eAI and eLAI values for 10 different locations; (c) linear regression of eLAI vs. ePAI
minus eWAI.
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different sites under the same illuminations conditions is costly.

5. Conclusion

Our research demonstrates that caution is needed when using LAI
estimates. The variable we measure with ground-based sensors is often
(effective) PAI or WAI. Based on radiative transfer simulations, we
show that average ePAI estimates are 27% higher than eLAI estimates.
Linear regression indicated a strong linear relationship between eLAI
and ePAI–eWAI (R2= 0.87). Based on our comparison of three different
ground-based sensors, we recommend the use of TLS to provide a more
stable estimate of gap fraction and to derive ePAI or eWAI. TLS gen-
erally requires fewer measurements to capture the spatial variability
than the passive methods tested within this study. The independence
from illumination conditions means that TLS provides more stable
spatial estimates in leaf-on and leaf-off conditions and enabled a larger
measurement acquisition window, which translates to more efficient

fieldwork.
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Appendix A. Theoretical background

The principles of light extinction in plant canopies was first described by Masami and Toshiro (1953) using a Poisson distribution and followed
the common form of the Beer–Lambert law:

= −P θ e( ) G θ θ
gap

( )LAI/cos( ) (A.1)

Pgap(θ) is the canopy gap probability from the ground, looking upward at view zenith angle θ and LAI is the leaf area index. G(θ) is the foliage
orientation function and equals the projection of a unit area of foliage on a plane perpendicular to the direction θ, averaged over elements of all
orientations (Ross, 1981). Eq. (A.1) describes the case of randomly dispersed canopy constituents. Nilson (1971) used a Markov model to account for
non-random spatial distribution of leaves and introduced the clumping index, Ω:

= =− −P θ e e( ) G θ θ G θ θ
gap

( )ΩLAI/cos( ) ( )eLAI/cos( ) (A.2)

Ω describes the degree of dependence of the positions of leaves in neighbouring layers and Ω < 1 is clumped and as Ω approaches 1, the canopy
becomes more homogeneous until Ω=1, which essentially means a random distribution of leaves. eLAI is the effective leaf area index and is defined
as Ω× LAI. It is still difficult to quantify Ω from field measurements (Woodgate et al., 2017), which limits our understanding of clumping. Clumping
occurs at multiple scales within the canopy: shoot level, between-crown level and ecosystem level (Ryu et al., 2010a).

Appendix B. Data processing

B.1 LAI-2x00

The LAI-2x00 instrument (LI-COR Inc., Lincoln, Nebraska USA) measures radiation received by a fish-eye optical sensor in five zenith rings with θ
being 7°, 23°, 38°, 53° and 68°. θ is defined as the mid-point of the finite zenith angle interval used to aggregate measurements from different azimuth
angles. The instrument filters wavelengths above 490 nm to retain a blue band in which the contrast between vegetation and sky is maximal (Zhao
et al., 2011). Pgap was derived from a pair of measurements, as per the LI-COR manual; one related to the radiation under a forest canopy (B) and
comparing them to measurements of skylight collected simultaneously in a nearby open area (A):

=P θ B
A

( )i i
i

i
gap, (B.1)

where subscript i refers to an optical sensor zenith ring (i=1, …, 5). The fourth ring ranges from 47.3° to 58.1° and was used to approximate the
hinge region. The effective plant and wood area index was calculated using Eq. (A.2).

We used two instruments to collect near-simultaneous below and above canopy readings. A LAI-2000 instrument was set up in a nearby open
area, approximately 600m from the study area, to collect above canopy readings autonomously every 30 s. Four below canopy measurements were
taken and averaged for each location with a LAI-2200 instrument. Both instruments had a 90° view cap, oriented towards the South. The instruments
were used at a height of approximately 1.3m, with the sensor oriented North so the operator was excluded from the field of view. The measurements
were paired to calculate Pgap (Eq. (B.1)), matching the times of the individual measurements as closely as possible. The LAI-2000 and its successor,
the LAI-2200, are designed to produce the same results (LI-COR Inc., 2011). We calibrated both instruments against each other using multiple
datasets of simultaneous and co-located measurements. Robust linear regression (rlm function from the MASS package (Venables and Ripley, 2002)
in R (R Development Core Team, 2011) was used for each ring individually. We performed separate calibrations for each measurement campaign to
better match the dynamic range of values for each campaign.

B.2 Digital hemispherical photography

Images were captured using a Canon 5D full-frame DSLR with Sigma 8mm fisheye lens which has a nominal field of view of 180°. The camera
settings were selected based on recommendations from the literature (Woodgate et al., 2015b; Promis et al., 2011; Pueschel et al., 2012; Chianucci
and Cutini, 2012; Glatthorn and Beckschäfer, 2014). The camera was set to record automatic exposure in high quality JPEG and RAW format. The
camera was levelled at each location using the hand-levelling procedure described in Origo et al. (2017), and it was also ensured that field conditions

K. Calders et al. Agricultural and Forest Meteorology 252 (2018) 231–240

238



(such as wind speed and non-uniform background illumination) did not exceed acceptable thresholds based on the literature. Origo et al. (2017)
reported that the average difference between tripod-levelling and hand-levelling for this study area was<2% for effective plant area index. More
importantly, hand-levelling can be up to eight times faster compared to tripod levelling, which is essential for sampling larger areas and providing
validation support to global products at satellite scales.

We converted the RAW image file to jpeg using the open source software functionality of dcraw (www.cybercom.net/∼dcoffin/dcraw/) in order
to avoid the post-processing implemented by the camera software (Macfarlane et al., 2014). Only the blue channel of the image was included for the
analysis in the Hemisphere software (Schleppi and Conedera, 2007) and the pre-loaded Sigma 8mm lens calibration function was used in the
processing. Post-processing of DHP images converted sensor brightness values to gap fraction within pre-specified regions of the image (cells or
rings) by taking the ratio of the number of pixels defined as gap (nG) to the total number of pixels illuminated by the scene (nT):

=P θ( ) nG
nTi i

i

i
gap, (B.2)

The classification of pixels as gap or non-gap was done by thresholding the RGB image into a black (non-gap, nTi− nGi) and white (gap, nGi) image
(Woodgate et al., 2015b; Thimonier and Sedivy, 2010; Weiss et al., 2004). We retrieved ePAI and eWAI by inverting the gap fraction model (Eq.
(A.2)) using a Pgap estimate of the hinge region of 55–60° degree zenith, in leaf-on and leaf-off conditions, respectively.

We compared two different automated thresholding techniques: the global binary automated threshold method from Ridler and Calvard (1978)
(DHP(G)) and two-corner classification procedure from Macfarlane et al. (2014) (DHP(TC)). The DHP(G) uses iterative clustering to determine the
optimal threshold through determination of the mean of the two cluster means. Jonckheere et al. (2005) found that from a selection of methods the
method from Ridler and Calvard (1978) provided the most robust threshold values for a wide range of light and canopy structure conditions. The
DHP(TC) method identifies unambiguous canopy and sky peaks in the image histogram and then detected the two corners at the point of maximum
curvature. Mixed pixels are subsequently classified with the dual binary threshold (Macfarlane, 2011).

B.3 Terrestrial LiDAR

Terrestrial LiDAR data were acquired with a RIEGL VZ-400 terrestrial laser scanner (RIEGL Laser Measurement Systems GmbH). The instrument
has a beam divergence of nominally 0.35mrad and operates in the infrared (wavelength 1550 nm) with a range up to 350m. The pulse repetition
rate at each scan location was 300 kHz, the minimum range was 0.5 m and the angular sampling resolution was 0.04°.

Newnham et al., (2012); Lovell et al., (2011); Calders et al., (2014, 2015b) approximated the vertically resolved directional gap probability from
a single terrestrial LiDAR scan as:

= −

=

∑ <P θ z

w n

( , ) 1

1/
i

w z z θ
N θ

s

gap
( , )

( )
j j i

i

(B.3)

where z is the height above terrain, the numerator in Eq. (B.3) gives the number of laser returns that are below z and N θ( )i is the total number of
outgoing laser pulses for the zenith angle interval. ns is the number of total returns for that transmitted laser pulse and we make the assumption that
for a specific transmitted laser pulse, each return represents a beam area interception of 1/ns.

Jupp et al. (2009) introduced a linear model to estimate vertically resolved eLAI at the hinge region as follows:

= − ×z P θ zeLAI( ) 1.1 ln( ( , ))hgap (B.4)

The effective total LAI is equal to Le(z= zmax), where zmax is the height of the canopy. The zenith ring between 55° and 60° was used to
approximate the hinge region θh (Jupp et al., 2009; Zhao et al., 2011; Calders et al., 2015b). The TLS data were processed in the open source python
library pylidar that implemented the above methods (www.pylidar.org).
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