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Abstract. We determine the Ringel duals for all blocks in the parabolic versions
of the BGG category O associated to a reductive finite dimensional Lie algebra.
In particular we find that, contrary to the original category O and the specific
previously known cases in the parabolic setting, the blocks are not necessarily
Ringel self-dual. However, the parabolic category O as a whole is still Ringel
self-dual. Furthermore, we use generalisations of the Ringel duality functor to ob-
tain large classes of derived equivalences between blocks in parabolic and original
category O. We subsequently classify all derived equivalence classes of blocks of
category O in type A which preserve the Koszul grading.
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1. Introduction and main results

For a reductive finite dimensional complex Lie algebra g with a fixed triangular
decomposition, consider the Bernstein-Gelfand-Gelfand category O from [BGG] (see
also [Hu]) and its parabolic generalisation by Rocha-Caridi in [RC]. It is well-known
that blocks in parabolic category O are described by quasi-hereditary algebras which
possess a Koszul grading, see [Ba1, BGS, So1, Ma2]. Moreover, graded lifts of blocks
of category O are Koszul dual to graded lifts of blocks in the parabolic versions of O.
It was proved in [So2] that parabolic category O, as a whole, is Ringel self-dual. It
is well-known that for full category O, even every individual block is Ringel self-
dual, as follows from [So1, Struktursatz 9]. The same holds for the principal block
in parabolic category O, see [MS3]. One of our observations which motivated the
present paper is that arbitrary blocks in parabolic category O are, surprisingly, not
Ringel self-dual in general. This is our first main result.

Theorem A. Blocks in parabolic category O are, in general, not Ringel self-dual.
However, every block is Ringel dual to another block in the same parabolic category.
The Ringel dual of a block is also equivalent to a block with the same central character
in a different parabolic version of O.

Ringel duality between two blocks always implies an equivalence, as triangulated
categories, of the bounded derived categories of these blocks given by the derived
Ringel duality functor, see [Rin, Ha, Ric1]. From our proof of Theorem A, it follows
easily that, for parabolic category O, this equivalence lifts to the graded setting for
the Koszul grading. On the other hand, the Koszul duality functor, see [BGS, MOS],
also induces an equivalence between the derived categories of a graded lift of a block
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and its Koszul dual. However, this equivalence does not correspond to a derived
equivalence in the ungraded sense. Moreover, we show explicitly that two Koszul
dual algebras need not be derived equivalent in the sense of [Ric1], by considering
an example for category O.

We are interested in derived equivalences in the sense of [Ric1] which lift to the
graded setting, see explicit Definition 3.2. We refer to this as a gradable derived
equivalence or being gradable derived equivalent. Hence, for parabolic categoryO, the
Ringel duality functor induces a gradable derived equivalence, whereas the Koszul
duality functor does not.

In the current paper we start the systematic study of derived equivalences for (par-
abolic) category O. Some interesting derived equivalences for g = sl(n) have been
obtained by Chuang and Rouquier in [CR] and by Khovanov in [Kh]. By construc-
tion, the ones in [CR] are gradable. We take an approach independent from the
previous results but recover the derived equivalences in [CR, Kh]. Our results are
rather conclusive for category O for type A, whereas there remain open questions
for the parabolic versions of O over other reductive Lie algebras.

Consider a reductive finite dimensional complex Lie algebra g with a fixed Cartan
subalgebra h and a fixed Borel subalgebra b containing h. Consider O = O(g, b)
and let W = W (g : h) be the Weyl group and Λint the set of integral weights. For a
coset Λ ∈ h∗/Λint, we denote the corresponding integral Weyl group by WΛ. For a
dominant λ ∈ Λ, the stabiliser of λ in WΛ under the dot action is denoted by WΛ,λ

and the block in the category O(g, b) containing the simple highest weight module
with highest weight λ by Oλ(g, b). Our second main result is an analogue of [So1,
Theorem 11] for derived categories, restricted to type A.

Theorem B. Consider two Lie algebras g and g′ of type A, with respective Borel
subalgebras b and b′. Then there is a gradable derived equivalence

Db(Oλ(g, b)) ∼= Db(Oλ′(g′, b′))

for dominant λ ∈ Λ and λ′ ∈ Λ′, if and only if, for some decompositions

WΛ
∼= X1 ×X2 × · · · ×Xk and WΛ′

∼= X ′1 ×X ′2 × · · · ×X ′m
into products of irreducible Weyl groups, we have k = m and there is a permutation
ϕ on {1, 2, . . . , k} such that WΛ,λ ∩ Xi

∼= WΛ′,λ′ ∩ X ′ϕ(i) and Xi
∼= X ′ϕ(i), for all

i = 1, 2, . . . , k.

Note that, according to [So1, Theorem 11] (restricted to type A), there is an equiv-
alence Oλ(g, b) ∼= Oλ′(g′, b′) if the following stronger condition is satisfied: There is
a Coxeter group isomorphism WΛ →WΛ′ which swaps WΛ,λ and WΛ′,λ′ .

To present the remainder of the main results, we need more notation. We consider
again an arbitrary complex reductive Lie algebras g and henceforth only consider
integral weights, which is justified by the results in [So1]. Hence Λ = Λint and we
leave out the reference to Λ. For every integral dominant weight λ, the block Oλ now
consists of all modules in O with the same generalised central character as the simple
module with highest weight λ. To any integral dominant weight µ, we associate a
parabolic subalgebra qµ of g, uniquely defined by the fact that the Weyl group of
its Levi factor is Wµ. The full subcategory of O consisting of all modules which are
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locally qµ-finite is denoted by Oµ. The integral part of this category decomposes
naturally into subcategories Oµλ . Graded lifts of the latter categories, with respect

to the Koszul grading, are denoted by ZOµλ .

Theorem C. Consider the algebra g = sl(n) and four integral dominant weights
λ, λ′, µ, µ′. If we have isomorphisms of groups

Wλ
∼= Wλ′ and Wµ

∼= Wµ′ ,

then there is a gradable derived equivalence between Oµλ and Oµ
′

λ′ . In particular, we
have equivalences of triangulated categories

Db(Oµλ) ∼= Db(Oµ
′

λ′ ) and Db(ZOµλ) ∼= Db(ZOµ
′

λ′ ).

A more complicated formulation of this result for arbitrary g can be found in The-
orem 6.1. Theorem C generalises [Kh, Proposition 7], which corresponds precisely
to the case λ = λ′ = 0 in the ungraded setting. Furthermore, our approach gives an
explicit form of the functor and the tilting complex, which describe the equivalence.
It also provides a purely algebraic proof, whereas the proof in [Kh] depends on the
geometric description of O. Theorem C, for µ = µ′, gives the derived equivalences
which can be constructed from [CR, Theorem 6.4 and Section 7.4]. It seems that in
this case even the functors describing the derived equivalence are isomorphic, as can
be checked by hand for small cases. In [CR] these functors have the elegant property
that they are defined directly to act between the two relevant categories. On the
other hand, they are defined in terms of total complexes for a complex of functors
which becomes arbitrarily big. The functors in the current paper have the drawback
that they are defined implicitly by using an auxiliary regular block in category O,
see Theorem D. The advantage is that the functor on the latter category inducing
the equivalence is a well-understood functor with elegant properties.

Our results are formulated in terms of four types of functors on category O, viz.
projective, Zuckerman, twisting and shuffling functors, see [MS2] or the preliminar-
ies for an overview. Twisting functors commute with projective functors, see [AS],
and shuffling functors commute with Zuckerman functors, see [MS2]. The non-trivial
commutation relations between twisting and Zuckerman functors, and between shuf-
fling and projective functors, lie at the origin of the failure of blocks to be Ringel
self-dual. It is also these commutation relation that we exploit to obtain the derived
equivalences. As an extra result, we extend the Koszul duality between projective
and Zuckerman functors of [Ry] to the full parabolic and singular setting.

For any x ∈ W , the derived twisting functor LTx and shuffling functor LCx are
auto-equivalences of the category Db(O0). For an integral dominant ν, we intro-

duce the notation W †ν for the subgroup of W generated by all simple reflections
which are orthogonal to all reflections in Wν . Let wν0 stand for the longest element
of Wν . Theorem C can be obtained by an iterative application of the following
theorem.

Theorem D. Consider g a finite dimensional complex reductive Lie algebra and an
integral dominant ν, λ, µ ∈ h∗ such that Wν is of type A.

(i) Assume that Wµ ⊂Wν×W †ν . Then there is a dominant integral µ′ with Wµ′ =

wν0Wµw
ν
0 . The auto-equivalence LTwν0 of Db(O0) restricts to an equivalence
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of triangulated categories between two subcategories, equivalent to, respectively,

Db(Oµλ) and Db(Oµ
′

λ ), yielding a gradable derived equivalence Db(Oµλ) →̃ Db(Oµ
′

λ ).

(ii) Assume that Wλ ⊂Wν×W †ν . Then there is a dominant integral λ′ with Wλ′ =
wν0Wλw

ν
0 . The auto-equivalence LCwν0 of Db(O0) restricts to an equivalence

of triangulated categories between two subcategories, equivalent to, respectively,
Db(Oµλ) and Db(Oµλ′), yielding a gradable derived equivalence Db(Oµλ) →̃ Db(Oµλ′).

Note that the two parts can be interpreted as Koszul duals of one another using
[MOS, Section 6.5]. When wν0 = w0 and µ = 0 in Theorem D(ii), the categories
Oλ and Oλ′ are equivalent by [So1, Theorem 11]. However, our equivalence of the
derived categories is not induced by that equivalence, but is rather given by the
derived Ringel duality functor.

The paper is organised as follows. In Section 2 we recall some results on category O
and Koszul and Ringel duality. In Section 3 we give an explicit example of Koszul
dual algebras which are not derived equivalent and introduce the notion of gradable
derived equivalence. We use this to study shuffling in the parabolic setting. In
Section 4 we obtain several results on the graded lifts of translation functors. In
particular, we extend the Koszul duality of [Ry] between translation functors and
parabolic Zuckerman functors to the generality we will need it. In Section 5 we study
the commutation relations between shuffling and projective functors. In Section 6 we
construct the derived equivalences between blocks in parabolic category O, proving
Theorems C and D. This is used in Section 7 to classify the blocks in category O
for Lie algebras of type A up to gradable derived equivalence, proving Theorem B.
In Section 8 we determine the Ringel duals of all blocks in parabolic category O,
proving Theorem A, and study the Koszul-Ringel duality functor.

2. Preliminaries

We work over C. Unless explicitly stated otherwise, commuting diagrams of functors
commute only up to a natural isomorphism. Graded always refers to Z-graded.

2.1. Category O and its parabolic generalisations. We consider the BGG cat-
egory O, associated to a triangular decomposition of a finite dimensional complex
reductive Lie algebra g = n− ⊕ h ⊕ n+, see [BGG, Hu]. For any weight ν ∈ h∗, we
denote the corresponding simple highest weight module by L(ν). We also introduce
an involution on h∗ by setting ν̂ = −w0(ν), with w0 the longest element of the Weyl
group W = W (g : h). We denote by 〈·, ·〉 a W -invariant inner product on h∗ and the
set of integral, not necessarily regular, dominant weights by Λ+

int. For any λ ∈ Λ+
int,

the indecomposable block in category O containing L(λ) is denoted by Oλ.

For B the set of simple positive roots and µ ∈ Λ+
int, set Bµ = {α ∈ B | 〈µ+ρ, α〉 = 0}.

Let u−µ be the subalgebra of g generated by the root spaces corresponding to the
roots in −Bµ. Then we have the parabolic subalgebra qµ of g, given by

qµ := u−µ ⊕ h⊕ n+.

The full subcategory of Oλ with objects given by the modules in Oλ which are U(qµ)-
locally finite is denoted by Oµλ . These are subcategories of parabolic category O as
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introduced in [RC]. By construction, Oµλ is a Serre subcategory ofOλ. We denote the
corresponding exact full embedding of categories by ıµ : Oµ ↪→ O. The left adjoint
of ıµ is the corresponding Zuckerman functor, denoted by Zµ, it is given by taking
the largest quotient inside Oµ. The categories Oµ0 and Oλ are indecomposable. The
category Oµλ may decompose, e.g. in the case g = B(2) = so(5), for wλ0 = s and
wµ0 = t, where s and t are the two different simple reflections.

We define the set Xλ as the set of longest representatives in W of cosets in W/Wλ.
The non-isomorphic simple objects in the category Oλ are indexed by Xλ:

{L(w · λ) |w ∈ Xλ}.
Now, for x ∈ Xλ, the module L(x ·λ) is an object of Oµλ if and only if x is a shortest
representative in W of a coset in Wµ\W . The set of such shortest representatives
x ∈ Xλ is denoted by Xµ

λ .

We denote by d the usual duality on O, which restricts to Oµ and to each block in
these categories, see [Hu, Section 3.2]. For x ∈ Xµ

λ , consider the following structural
modules in Oµλ : the standard module (or generalised Verma module) ∆µ(x · λ) with
simple top L(x · λ), the costandard module ∇µ(x · λ) := d∆µ(x · λ), the injective
envelope Iµ(x · λ) and projective cover Pµ(x · λ) of L(x · λ), the indecomposable
quasi-hereditary tilting module Tµ(x · λ) with highest weight x · λ.

Consider a minimal projective generator of Oµλ given by

(1) Pµλ :=
⊕
x∈Xµ

λ

Pµ(x · λ),

where Pµ(x · λ) is the indecomposable projective cover of L(x · λ) in Oµλ , and the
algebra Aµλ := Endg(P

µ
λ ). Then we have the usual equivalence of categories

Oµλ →̃ mod-Aµλ; M 7→ Homg(P
µ
λ ,M).

We consider the Bruhat order ≤ on W , with the convention that e is the smallest
element. It restricts to the Bruhat order on Xµ

λ . The order on the weights is defined
by x · λ ≤ y · λ if and only if y ≤ x. From the BGG Theorem on the structure
of Verma modules, see e.g. [Hu, Section 5.1], it follows that the algebras Aµλ are
quasi-hereditary with respect to the poset of weights Xµ

λ · λ. The standard modules
coincide with the ones above.

Remark 2.1. We will use the term (generalised) tilting module for a module of a
finite dimensional algebra satisfying properties (i)-(iii) in [Ha, Section III.3]. When
we refer to the modules in (parabolic) category O that simultaneously admit a
standard and a costandard filtration, see e.g. [Hu, Chapter 11], we will use the term
quasi-hereditary tilting module, or q.h. tilting module. Then a q.h. tilting module
is a (special case of) a partial generalised tilting module, whereas the characteristic
q.h. tilting module is a generalised tilting module, see e.g. [Rin, Theorem 5].

When µ is regular, meaning that the corresponding parabolic category Oµ is the
usual category O, we leave out the reference to µ. Similarly, we will leave out λ (as
in L(x) := L(x.λ)), or replace it by 0, whenever it is regular. By application of [So1,
Theorem 11], all categories Oµλ , with λ arbitrary integral regular dominant and µ
fixed, are equivalent, justifying this convention.
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Consider the translation functor θonλ : O0 → Oλ to the λ-wall and also its adjoint
θoutλ : Oλ → O0, which is the translation out of the λ-wall, see [Hu, Chapter 7]. For
x ∈W , denote by θx the unique projective functor on O0 which maps P (e) to P (x),
see [BGe]. Note that, in particular, θoutλ ◦ θonλ = θwλ0

. By [Hu, Theorem 7.9] or [Ja],

for any x ∈W , we have

(2) θonλ L(x) =

{
L(x · λ), x ∈ Xλ;

0, otherwise.

2.2. Koszul duality for category O. Consider a finite dimensional algebra B. If
B is a quadratic positively graded algebra, we denote its quadratic dual by B!, as
in [BGS, Definition 2.8.1]. If B is, moreover, Koszul, we denote its Koszul dual by
E(B) = Ext•B(B0, B0). By Theorem 2.10.1 in [BGS], we have E(B) = (B!)opp for
any Koszul algebra B. For a positively graded algebra B, we denote by B-gmod its
category of finitely generated graded modules.

For a complex M• of graded modules, that is Mj =
⊕
i∈Z
Mj

i , where j ∈ Z, we use

the following convention

(M•[a]〈b〉)ij =Mi+a
j−b,

for shift in position in the complex and degree in the modules. This corresponds to
the conventions in [BGS], but differs slightly from [MOS]. A module M , regarded
as an object in the derived category put in position zero, is denoted by M•.

For any Koszul algebra B, [BGS, Theorem 2.12.6] introduces the Koszul duality
functor KB, a covariant equivalence of triangulated categories

(3) KB : Db(B-gmod) →̃ Db(B!-gmod).

As in [MOS, Section 3] or [MSa, Section 2], we introduce the full subcategory
of Db(B-gmod) of linear complexes of projective modules in B-gmod, which we
denote by LPB. Then [MSa, Theorem 2.4] (or, more generally, [MOS, Theorem 12])
establishes, for any quadratic algebra B, an equivalence

εB : LPB →̃ B!-gmod.

From [MOS, Chapter 5] it follows that εB is isomorphic to the restriction of KB in
case B is Koszul.

As proved in [Ba1], Aµλ has a Koszul grading, where the Koszul dual algebra is

E(Aµλ) ∼= Aλµ̂, see also [BGS, So1, Ma2]. We also have (Aµλ)opp ∼= Aµλ (as graded

algebras) as an immediate consequence of the duality functor d. The algebras Aµλ
are even standard Koszul in the sense of [ADL], see [Ma2].

The graded module categories are denoted by ZOµλ := Aµλ-gmod. We will sometimes
replace the notation HomZO by homO.

It is more convenient to work with the composition of the usual Koszul duality
functor with the duality d to obtain a contravariant functor

(4) Kµλ := dKAµλ : Db(ZOµλ) →̃ Db(ZOλµ̂),
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where we also identify the graded module categories corresponding to the isomor-
phism E(Aµλ) ∼= Aλµ̂. This functor satisfies

(5) Kµλ(M•[i]〈j〉) = Kµ
λ (M•)[j − i]〈j〉,

see [BGS, Theorem 3.11.1]. Similarly, we define εµλ = dε
A
µ
λ

, as a contravariant

equivalence of categories

(6) εµλ : LPµ
λ →̃

ZOλµ̂.

We conclude this subsection with the introduction of the graded lifts to ZO of the
translation functors on O, as studied in [St1]. We denote them by the same symbols
as on O and use the grading convention of [St1]. This means that the graded version
of equation (2) is

(7) θonλ L(x)〈0〉 = L(x · λ)〈−l(wλ0 )〉,
for all x ∈ Xλ, and that

(8) homO0(θoutλ M,N) ∼= homOλ(M, θonλ N〈l(wλ0 )〉),
see also [MOS, Lemma 38]. This implies that

(9) θoutλ P (x · λ)〈0〉 = P (x)〈0〉.

2.3. Twisting and shuffling functors. We will use the twisting functor Ts, which
is an endofunctor on each integral block Oλ corresponding to a simple reflection s,
see [AS, MS2]. For any w ∈ W with reduced expression w = s1s2 · · · sm, we can
define the functor

Tw = Ts1Ts2 · · ·Tsm ,
where the resulting functor does not depend on the choice of a reduced expression,
see [KM, Corollary 11]. The functor Tw is right exact and its derived functor LTw
is an auto-equivalence of Db(O0), see [AS, Corollary 4.2]. This property extends
to a singular block of category O, see e.g. [CM1, Proposition 5.11], so we have an
auto-equivalence

(10) LTw : Db(Oλ) →̃ Db(Oλ).

Twisting functors admit graded lifts, see [MO, Appendix] or [KM, Theorem 1.1].
By [AS, Theorem 3.2], the following diagram commutes:

(11) Db(O0)
LTw // Db(O0)

Db(Oλ)
LTw //

θoutλ

OO

Db(Oλ).

θoutλ

OO

The shuffling functor Cs corresponding to a simple reflection s, see [Ca, MS2], is
the endofunctor of O0 defined as the cokernel of the adjunction morphism from the
identity functor to the projective functor θs. For any w ∈W with reduced expression
w = s1s2 · · · sm, we can define the functor

Cw = CsmCsm−1 · · ·Cs1 ,
where the resulting functor does not depend on the choice of a reduced expression,
see [MS1, Lemma 5.10] or [KM, Theorem 2] and [MOS, Section 6.5]. The functor
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Cw is right exact and LCw is an auto-equivalence, with inverse dLCwd, of Db(O0),
see [MS1, Theorem 5.7], so

(12) LCw : Db(O0) →̃ Db(O0).

The two basic types of derived auto-equivalences in this sections will be exploited
to obtain more complicated derived equivalences in the remainder of the paper. We
note that they also appear in more abstract generality in [We, Theorem 6.15 and
Proposition 9.18].

2.4. Ringel duality for category O. For a quasi-hereditary algebra B, we denote
its Ringel dual as in [Rin], by

R(B) := EndB(T )opp,

with T the characteristic q.h. tilting module in B-mod. The Ringel dual is again
quasi-hereditary. If B is basic, we have R(R(B)) ∼= B, see [Rin, Theorem 7].

We also consider the following covariant right exact functor

RB = HomB(·, T )∗ : B-mod→ R(B)-mod,

with ∗ being the canonical duality functor from mod-R(B) to R(B)-mod. We call
RB the Ringel duality functor. From [Rin, Theorem 6] and [MS3, Proposition 2.2],
it follows that RB restricts to an equivalence between the additive subcategories
of projective modules of B and tilting modules of R(B) and between the additive
subcategories of tilting modules of B and injective modules of R(B). It also restricts
to an equivalence between the category of B-modules with standard flag and the
category of R(B)-modules with costandard flag. Finally, its left derived functor
induces an equivalence

LRB : Db(B-mod) →̃ Db(R(B)-mod).

As Oλ and Oµ0 are Ringel self-dual, it is natural to compose the Ringel duality
functor with a fixed equivalence which realises the self-duality. In case λ = 0, we
can choose the Ringel duality functor as

(13) Rµ := Ll(wµ0 )Cw0 : Oµ0 → O
µ
0 ,

see [MS3, Proposition 4.4]. In particular, the restriction of Ll(wµ0 )Cw0 to the cate-

gory Oµ0 is a right exact functor.

In case µ = 0, the Ringel duality functor can be interpreted as

(14) Rλ := Tw0 : Oλ → Oλ,

see [MS3, Section 4.1].

2.5. The centre and coinvariants. For an integral dominant λ, consider Bλ and
the corresponding semisimple Lie algebra gλ, generated by the root spaces of g
corresponding to elements in ±Bλ. The Weyl group of this algebra is isomorphic
to Wλ. Then hλ := gλ ∩ h is a Cartan subalgebra in gλ. Now we can consider the
algebra of coinvariants for Wλ given by

C(Wλ) := S(hλ)/〈S(hλ)Wλ
+ 〉.
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The algebra C(Wλ) inherits a positive grading from S(hλ) which is defined by giving
constants degree 0 and elements of h degree 2.

For the particular case Wλ = W , we set C := C(W ). For w ∈ W , let wC denote the
C-C bimodule obtained from CCC by twisting the left action of C by w (note that W
acts on C by automorphisms). For X a subgroup of W , let CX denote the algebra
of X-invariants in C. Similarly, for a simple reflection s, we denote by Cs the algebra
of s-invariants in C.

Consider again an integral dominant λ and set Cλ := CWλ . By [So1, Endomorphis-
mensatz 7], we have EndOλ(P (w0 · λ)) ∼= Cλ. We also recall Soergel’s combinatorial
functor

Vλ = HomO(P (w0 · λ),−) : O0 → Cλ-mod

from [So1, Section 2.3]. By [So1, Theorem 10], we have

(15) Vθoutλ
∼= C⊗Cλ Vλ and Vλθonλ ∼= ResCCλV,

for any integral dominant λ. All these statement admit canonical graded lifts, as
the grading on O can be introduced via Vλ, see e.g. [St1].

From Cλ ∼= EndOλ(P (w0 · λ)) and [Br, Lemma 6.2] or [MS3, Theorem 5.2(2)], it
follows that Cλ is isomorphic to the centre of Aλ. More generally, we denote the
centre of Aµλ by C

µ
λ.

In the remainder of this subsection we consider g = sl(n). Then W ∼= Sn and C
µ
λ

has been calculated in [Br, St3]. For an integral dominant λ, it follows from [So1,
Theorem 11] that Oλ is uniquely determined, up to equivalence, by a composition
p(λ) = (p1, · · · , pk) of n. This composition is defined by demanding that Wλ, as a
subgroup of Sn, is naturally given by Sp1 × Sp2 × · · · × Spk . It is well-known, by a
result of Borel, that Cλ is, as a graded algebra, isomorphic to the cohomology ring of
a partial flag variety. The Hilbert-Poincaré polynomial for Cλ, with p(λ) as above,
is hence well-known, see e.g. [Ch], and is given by

(16)

∞∑
i=0

dim (Cλ)2i z
i =

(
n∏
i=1

(1− zi)

)
/

 k∏
j=1

pj∏
l=1

(1− zl)

 .

2.6. Extension quivers in parabolic category O. We demonstrate the basic
property that the Ext1-quiver of a parabolic singular block can be read off immedi-
ately from the Ext1-quiver of the principal block O0.

Proposition 2.2. For x, y ∈ Xµ
λ , we have an isomorphism

Ext1
Oµλ

(L(x · λ), L(y · λ)) ∼= Ext1
O0

(L(x), L(y)).

Proof. As Oµλ is a Serre subcategory of Oλ, we immediately have

Ext1
Oµλ

(L(x · λ), L(y · λ)) ∼= Ext1
Oλ(L(x · λ), L(y · λ)).

Now, the Koszul duality of [BGS] implies an isomorphism

Ext1
Oλ(L(x · λ), L(y · λ)) ∼= Ext1

Oλ0
(L(x−1w0), L(y−1w0)).

Applying the same procedure again, but now to the right-hand side above, concludes
the proof. �
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The elements of Ext1
Oµλ

(L(x ·λ), L(y ·λ)) correspond to morphisms from Pµ(y ·λ) to

Pµ(x · λ) such that the top of Pµ(y · λ) maps to the top of the radical of Pµ(x · λ).
As the (Koszul) grading on Aµλ is such that the degree 0 part is semisimple and the
algebra is generated by the degree 0 and 1 parts, this can also be expressed as

Ext1
Oµλ

(L(x · λ), L(y · λ)) ∼= homOµλ
(Pµ(y · λ)〈1〉, Pµ(x · λ)).

Proposition 2.2 and equation (9) then imply the following corollary.

Corollary 2.3. For x, y ∈ Xµ
λ with P := Pµ(x · λ) and Q := Pµ(y · λ), the graded

translation functor θoutλ induces an isomorphism

homOµλ
(P 〈1〉, Q) ∼= homOµ0 (θoutλ P 〈1〉, θoutλ Q).

3. Graded versus non-graded derived equivalences

3.1. The example of the Koszul duality functor. The Koszul duality functor
in equation (3) gives an equivalence between bounded derived categories of graded
modules. We demonstrate, however, that Koszul dual algebras are, in general, not
derived equivalent as ungraded algebras.

Proposition 3.1. Despite the existence of an equivalence of triangulated categories
Db(ZOµλ) ∼= Db(ZOλµ̂) as given in (4), in general, the categories Db(Oµλ) and Db(Oλµ̂)

are not equivalent as triangulated categories.

Proof. Note that Aµλ and Aλµ̂
∼= E(Aµλ) are not derived equivalent, if their centres

are not isomorphic, see [Ric1, Proposition 9.2]. Consider the socle of the left regular
module for the two centres. For Aλ this socle is simple, by Subsection 2.5. It follows
easily from [Br, Lemma 6.2] that the number of simple modules in that socle for Aλ

must be at least the number of non-isomorphic indecomposable projective-injective
modules. This is the cardinality of the right Kazhdan-Lusztig cell of wλ0w0. �

3.2. Gradable derived equivalences. In this subsection we define a special case
of the concept of a derived equivalence (see [Ric1, Definition 6.5]), which we will
investigate for category O further in the paper.

Definition 3.2. Two finite dimensional graded algebras B and D are said to be
gradable derived equivalent if one of the following equivalent properties is satisfied.

(i) There is a triangulated equivalence from Db(B-gmod) to Db(D-gmod) which
commutes with the degree shift functor 〈1〉.

(ii) There is a triangulated equivalence from Db(B-mod) to Db(D-mod), with in-
verse G, such that F and G admit graded lifts.

Remark 3.3. It is clear that the failure of the Koszul duality functor to satisfy the
requirement in Definition 3.2(i), see equation (5), is precisely what prevents it from
being the graded lift of an ungraded equivalence.

Now we state and prove two simple propositions which demonstrate equivalence of
the two properties in Definition 3.2.
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Proposition 3.4. Consider two finite dimensional graded algebras B and D such
that there is an equivalence

F̃ : Db(B-gmod)→ Db(D-gmod).

If F̃ commutes with 〈1〉, then F̃ is a graded lift of an equivalence

F : Db(B-mod)→ Db(D-mod).

Moreover, if G̃ is inverse to F̃ , then G̃ is the graded lift of an inverse G to F .

Proof. Take a minimal projective generator PD for D-mod and the graded lift P̃D.
Denote by T • the object in Db(B-mod) obtained by forgetting the grading on

F̃−1(P •D). One deduces straightforwardly that T • is a tilting complex according
to [Ric1, Definition 6.5] with Dopp ∼= EndDb(B-mod)(T •). The first assertion of the

proposition then follows from [Ric1, Theorem 6.4].

Now we consider the inverse G̃. From F̃ G̃ ∼= Id ∼= G̃F̃ and F̃ 〈1〉 ∼= 〈1〉F̃ it follows

that G̃〈1〉 ∼= 〈1〉G̃. Hence we can use the first part to obtain that G̃ is the graded
lift of a triangulated functor G. The construction, moreover, implies that FG and
GF acts as identity functors restricted to the subcategories of projective modules.
As they are triangulated functors it follows that F and G are mutually inverse. �

Proposition 3.5. Let B and D be finite dimensional graded algebras and

F : Db(B-mod) → Db(D-mod)

an equivalence with inverse G. Assume that F and G admit graded lifts F̃ and G̃,

respectively. Then F̃ gives an equivalence of triangulated categories

F̃ : Db(B-gmod)→ Db(D-gmod).

Proof. First we prove that F̃ is essentially surjective (dense). Consider the for-
getful functor fD : Db(D-gmod) → Db(D-mod) and an indecomposable object X •
in Db(D-gmod) and set Y• := G̃X •. As we have fDF̃ G̃ ∼= fD, it follows that

fDF̃ (Y•) ∼= fDX •. By [BGS, Lemma 2.5.3], the proof of which extends easily to

the derived category, we then find that there is j ∈ N such that X • ∼= F̃ (Y•)〈j〉, or

F̃ (Y•〈j〉) ∼= X •.

The density of F̃ hence follows.

For X •,Y• ∈ Db(B-gmod), we have the commutative diagram⊕
j∈N HomDb(B-gmod)(X •,Y•〈j〉)

F̃ //

fB

��

⊕
j∈N HomDb(D-gmod)(F̃X •, F̃Y•〈j〉)

fD
��

HomDb(B-mod)(fBX •, fBY•)
F // HomDb(D-mod)(fDF̃X •, fDF̃Y•)

Here F , fB and fD act by isomorphisms and hence so does F̃ . As F̃ respects it then

follows easily that F̃ is full and faithful. Hence F̃ is an equivalence of categories.
By construction it is also an equivalence of triangulated categories. �

Finally, we note the following immediate extension of [Ric1, Proposition 9.2].
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Lemma 3.6. Consider two finite dimensional graded algebras B,D which are grad-
able derived equivalent. Then there is an isomorphism of graded algebras Z(B) ∼=
Z(D), with canonically inherited grading on the centres.

3.3. An application: derived shuffling in the parabolic setting. We use the
results of the previous subsection to extend (12) to the form of (10) and (11). First
we point out two subtleties (a) and (b). Consider the exact inclusion ıµ : Oµ0 → O0

leading to a faithful (see e.g. [Ba1, Lemma 2.6]) triangulated functor

ıµ : Db(Oµ0 ) → Db(O0).

Hence Db(Oµ0 ) is canonically equivalent to a subcategory of Db(O0).

(a) By construction, Oµ0 is a full Serre subcategory of O0 and Cs restricts to a
right exact endofunctor of Oµ0 , which we denote by Cµs . However, its left derived
functor LCµs need not be isomorphic to the restriction of LCs to Db(Oµ0 ), viewed
as a subcategory as above. A trivial example is g = sl(2), as then Cµs ∼= 0 for µ
singular. However, a restriction of LCs is never zero as LCs is an equivalence.

(b) The objects of the subcategory Db(Oµ0 ) are the complexes in Db(O0) for which
the module in each position is a module in the subcategory Oµ0 of O0. However, this
subcategory is neither full, nor isomorphism closed. It is not full as, for instance,
there can be higher extensions in O0 between projective objects in Oµ0 . It is not
isomorphism closed, see, for instance, the projective resolution in Db(O0) of a module
in Oµ0 . The functor LCs maps, by the definition of a derived functor, objects in
Db(Oµ0 ) to something only isomorphic to objects in Db(Oµ0 ). To properly define a
restriction of LCs to Db(Oµ0 ) is hence a non-trivial problem.

Proposition 3.7. For any w ∈W , there is an endofunctor LCw of Db(Oµ0 ), which
yields an auto-equivalence and admits a commuting diagram

Db(O0)
LCw // Db(O0)

Db(Oµ0 )
LCw //

ıµ

OO

Db(Oµ0 ).

ıµ

OO

The same holds in the graded setting.

Proof. An inverse of LTw is given by by dLTwd, see [AS, Section 4]. Proposition 3.5
thus implies that the graded lift of LTw induces an auto-equivalence of Db(ZOλ). So
the diagram (11) admits a graded lift with equivalences on the horizontal arrows.
Then we apply [MOS, Sections 6.4 and 6.5], see also [Ry] or Proposition 4.7. This
implies a commutative diagram, where the horizontal arrows are equivalences

Db(ZO0)
LCw // Db(ZO0)

Db(ZOµ0 )
F̃ //

ıµ

OO

Db(ZOµ0 ),

ıµ

OO

for F̃ := (Kµ̂)−1 ◦LTw ◦Kµ̂. As LTw is a triangulated functor which commutes with

〈1〉, equation (5) implies that F̃ commutes with 〈1〉, so Proposition 3.4 implies that F̃
is the lift of an ungraded equivalence and hence a gradable derived equivalence. �
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Remark 3.8. Consider the complex 0 → IdO0 → θs → 0 of exact functors, where
the non-zero map is given by the adjunction morphism, cf. [Ric2] and [MS1, Re-
mark 5.8]. Applying this to a complex in Db(O0) and taking the total complex
defines a triangulated endofunctor of Db(O0), isomorphic to LCs. This endofunctor,
by construction, preserves the image of Db(Oµ0 ) under ıµ, since both the identity and
θs do. This gives an alternative construction of the equivalence in Proposition 3.7.

4. Graded translation functors

4.1. Translation through the principal block.

Proposition 4.1. As graded functors, we have

θonλ θ
out
λ 〈0〉 ∼=

⊕
j∈N

Id
⊕cj
Oλ 〈j − l(w

λ
0 )〉, with cj := dim (C(Wλ))j .

In particular, ±l(wλ0 ) are exactly the extremal degrees in which Id appears.

Proof. The ungraded statement follows easily from [BGe, Theorem 3.3] and [Ja,
Formula 4.13(1)]. It thus suffices to prove that

Vλθonλ θoutλ
∼=
⊕
j∈N

V⊕djλ 〈j − l(wλ0 )〉, for some dj ≥ dim (C(Wλ))j .

Using equation (15) and ignoring an overall grading shift, we find

Vλθonλ θoutλ
∼= C⊗Cλ Vλ.

So it suffices to prove that

dim C2i − dim(Cλ)2i + dim(C)2i ≥ dim C(Wλ)2i,

for all i ∈ N, where, of course, dim(C)2i = δi0. Consider a Wλ-equivariant morphism
h � hλ. This extends to a graded morphism S(h) � S(hλ) which we compose with
the canonical surjection S(hλ) � C(Wλ) to find ξ : S(h) � C(Wλ). By construction
S(h)W+ , and hence the corresponding ideal, is in the kernel of ξ. This implies a
morphism of graded algebras

η : C � C(Wλ).

As (Cλ)+ = C
Wλ
+ is in the kernel of η, this proves the desired inequalities. �

As an application, we prove the following proposition, which we need later.

Proposition 4.2. Consider two objects X •,Y• of Db(ZOµλ) such that

homDb(Oµλ)(X •,Y•〈j〉) = 0 if j > 0.

Then θoutλ induces isomorphisms

homDb(Oµ0 )(θ
out
λ X •, θoutλ Y•) ∼= homDb(Oµλ)(X •,Y•),

homDb(Oµ0 )(θ
out
λ X •〈1〉, θoutλ Y•) ∼= homDb(Oµλ)(X •〈1〉,Y•).
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Proof. Consider i ∈ Z, then equation (8) and Proposition 4.1 imply that

homDb(Oµ0 )(θ
out
λ X •〈i〉, θoutλ Y•) ∼= homDb(Oµλ)(X •〈i〉,

⊕
j∈N

(Y•)⊕cj 〈j〉).

Now, if i = 0, the result follows by the assumptions as c0 = 1. If i = 1, the result
follows from the assumptions and c1 = 0 and c0 = 1. �

This proposition generalises Corollary 2.3 and hence provides an alternative proof.

4.2. Translating standard modules. In this subsection we completely describe
the graded translation of standard modules to and from the wall. These results
generalise [St1, Theorem 8.1(3) and Theorem 8.2(2)] to arbitrary walls and the
parabolic setting. Consider the bijection

bλ : W → Xλ ×Wλ,

which is inverse to multiplication and denote by b1λ and b2λ the composition of bλ with
the projection on the Xλ-component and the Wλ-component, respectively.

Theorem 4.3. For any x ∈ Xµ, we have

θonλ ∆µ(x) ∼=

{
∆µ(b1λ(x) · λ)〈l(b2λ(x))− l(wλ0 )〉, if b1λ(x) ∈ Xµ;

0, otherwise.

In particular, for any y ∈ Xλ and u ∈Wλ, we have

θonλ ∆(yu) ∼= ∆(y · λ)〈l(u)− l(wλ0 )〉.

Theorem 4.4. For any x ∈ Xµ
λ , the standard filtration of θoutλ ∆µ(x · λ) satisfies(

θoutλ ∆µ(x · λ) : ∆µ(xu)〈j〉
)

= δj,l(u) for all u ∈Wλ,

moreover, there are no other standard modules appearing in the filtration.

In the remainder of this subsection we prove these two theorems.

Lemma 4.5. For any x ∈ Xλ, u ∈Wλ and j ∈ N, we have

[∆(xu) : L(x)〈j〉] = δj,l(u).

Proof. We prove the Koszul dual statement, which is

dim ExtjO(∆(vy), L(y)) = δj,l(v),

for any y ∈ Xλ, v ∈ Wλ and i ∈ N. That the left-hand side is zero, for j > l(v),
follows immediately from [Hu, Theorem 6.11]. For any simple reflection s ∈Wλ and
v ∈Wλ such that sv > v, the procedure in the proof of [Ma1, Proposition 3] shows

dim ExtkO(∆(svy), L(y)) = dim Extk−1
O (∆(vy), L(y)),

which proves the claim inductively. �

Proof of Theorem 4.3. It suffices to prove the non-parabolic case, as the remainder
follows via an application of the Zuckerman functor, which commutes with transla-
tion functors. The non-parabolic result follows from equation (7), Lemma 4.5 and
[Ja, Formula 4.12(2)]. �
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Proof of Theorem 4.4. For any y ∈ Xµ, [Hu, Theorem 3.3(d)] and equation (8) yield(
θoutλ ∆µ(x · λ) : ∆µ(y)〈j〉

)
= homOµλ

(∆µ(x · λ), θonλ ∇µ(y)〈j + l(wλ0 )〉).

Theorem 4.3 then implies that the only y which can appear non-trivially are those
for which we have b1λ(y) = x, which is precisely the set xWλ ⊂ Xµ. �

Remark 4.6. By using Proposition 4.7, an alternative proof of Theorem 4.4 would
be to determine a resolution of standard modules in Oµ by Verma modules. This
can be obtained by applying parabolic induction to g of the BGG resolutions for the
Levi subalgebra of qµ, see e.g. [Hu, Section 6].

4.3. Koszul duality. In this subsection we derive a slight generalisation of [Ry,
Theorem 4.1] and [MOS, Theorem 35].

Proposition 4.7. There are commutative diagrams of functors as follows:

Db(ZOµλ)
ıµ // Db(ZOλ)

Kλ̂

Db(ZOλ)
LZµ // Db(ZOµλ)

Kλ̂
µ

Db(ZOλ̂µ)
θoutµ //

Kλ̂
µ

OO

Db(ZOλ̂0 )

OO

Db(ZOλ̂0 )
θonµ 〈l(w

µ
0 )〉
//

Kλ̂

OO

Db(ZOλ̂µ)

OO

Before proving this we list some consequences. Recall the cj ’s from Proposition 4.1.

Corollary 4.8. On Db(ZOµλ), we have

LZµ ◦ ıµ ∼=
⊕
j∈N

Id
⊕cj
ZOµλ

[j]〈j〉.

For any M in ZOλ which is locally U(qµ)-finite and for any k ∈ N, we have

LkZµM ∼= M⊕ck〈k〉.

Proof. This is a direct application of Proposition 4.7 to Proposition 4.1. In particu-
lar, the maps in the complex LZµ ◦ ıµ(N•) are trivial for any N ∈ ZOµλ , which yields
the result about the cohomology functors. �

Remark 4.9. Note that Corollary 4.8 also implies the isomorphism

LZµ ◦ ıµ ∼=
⊕
j∈N

Id
⊕cj
Oµλ

[j] on Db(Oµλ)

as all projective modules and homomorphism spaces between them are gradable.

Corollary 4.10. Consider two objects X • and Y• in Db(Oµλ) such that

HomDb(Oµλ)(X •,Y•[k]) = 0, for all k 6= 0.

Then ıµ induces an isomorphism

ıµ : HomDb(Oµλ)(X •,Y•) →̃ HomDb(Oλ)(ı
µX •, ıµY•).

Proof. As ıµ is faithful, the morphism is always injective. So it suffices to prove that
the dimensions of the spaces of homomorphisms agree. This follows from

HomDb(Oλ)(ı
µX •, ıµY•) ∼= HomDb(Oλ)(LZµıµX •,Y•),

given by adjunction, and Remark 4.9. �
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Corollary 4.11. Consider two objects X • and Y• in Db(Oµλ). If either

θoutλ X • ∼= θoutλ Y• inside Db(Oµ0 ) or ıµX • ∼= ıµY• inside Db(Oλ),

then X • and Y• are isomorphic in Db(Oµλ). The same is true for Db(ZOµλ).

Proof. The property in the graded setting follows immediately from Proposition 4.1
and Corollary 4.8. The ungraded version now follows from Remark 4.9. �

Now we turn to the proof of Proposition 4.7.

Lemma 4.12. The translation functor θoutλ : Db(ZOµλ)→ Db(ZOµ0 ) restricts to a full
and faithful functor θoutλ : LPµ

λ → LPµ, the image of which is the full subcategory
of LPµ given by linear complexes of projective modules in add(θoutλ Pµλ ).

Proof. Recall that the categories of linear complexes of projective modules are full
subcategories of the derived categories. By equation (9), θoutλ restricts to a func-
tor from LPµ

λ to LPµ. To prove that this is full and faithful, consider two linear

complexes P• and Q• of projective modules in ZOµλ . Proposition 4.2 now implies

θoutλ : homLPµλ
(P•,Q•) →̃ homLPµ(θoutλ P•, θoutλ Q•).

The description of the image is a consequence of Corollary 2.3. �

Corollary 4.13. The following is a commutative diagram of functors:

ZOµλ
ıµ //

��

ZOλ

(ελ̂)−1

��

LPλ̂
µ

θoutµ //

(ελ̂µ)−1

LPλ̂

Proof. Using the standard properties of Kλ̂µ, see [BGS, Theorem 3.11.1], and equation

(9) implies that, for any x ∈ Xµ
λ ,

θoutµ (ελ̂µ)−1L(x · λ) ∼= P λ̂(w0x
−1)• ∼= (ελ̂)−1L(x · λ).

Corollary 2.3 can then be applied to show that the complexes corresponding to

θoutµ (ελ̂µ)−1M and (ελ̂)−1ıµM , for any M in ZOµλ , are isomorphic. As, by construction,
this isomorphism is natural, this concludes the proof. �

Proof of Proposition 4.7. The first diagram follows from [MOS, Theorem 30 and
Proposition 21], in combination with Corollary 4.13. The second diagram is the
adjoint reformulation of the first. �

4.4. A generalisation of Bott’s theorem. Take ρ to be the half of the sum
of positive roots. Then Z−ρ is the Zuckerman functor to the category of finite
dimensional modules. Bott’s extension of the Borel-Weil theorem then reads

LkZ−ρ(∆(x)) = δk,l(x)L(e) and LkZ−ρ(∆(y · λ)) = 0, for all k ∈ N,
for all x ∈W and all y ∈ Xλ with λ singular. For an overview of the approach with
Zuckerman functors, see e.g. [Co, dS]. We can now generalise this. Let

bµ : W →Wµ ×Xµ
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denote the bijection defined as the inverse of multiplication. Define x1 and x1 by
bµ(x) = (x1, x

1) as in [Le, Proposition 3.4].

Theorem 4.14. For any x ∈ Xλ and any integral dominant µ, we have

LkZµ(∆(x · λ)) =

{
δk,l(x1)∆

µ(x1 · λ), if x1 ∈ Xλ;

0, otherwise.

In particular, for any y ∈ Xµ and u ∈Wµ, we have

LkZµ(∆(uy)) = δk,l(u)∆
µ(y).

Setting µ = −ρ (so x = x1 and x1 = e) yields the original result of Bott.

Proof. This follows from a direct application of the Koszul duality functor to the
statement in Theorem 4.3 by using Proposition 4.7. �

Remark 4.15. This could also be proved directly by using parabolic induction to
reduce to the Bott’s theorem for the Levi subalgebra. This would yield an alternative
proof of Theorem 4.3 by applying Proposition 4.7.

4.5. Translation through the wall. In this subsection we gather some technical
results on translation through the wall which will be needed later and which can be
formulated most generally by ignoring grading.

Lemma 4.16. Consider an indecomposable X • ∈ Ob(Db(O0)) such that we have

θwλ0
X • ∼= (X •)⊕|Wλ|. Then there is an indecomposable Y• ∈ Ob(Db(Oλ)) and k ∈ N

such that θonλ X • ∼= (Y•)⊕k.

Proof. We take Y• to be some indecomposable direct summand of θonλ X •. Then

there is some A• ∈ Ob(Db(Oλ)) such that

θonλ X • ∼= Y• ⊕A•.

Applying θoutλ to the above isomorphism implies that there must be some p ∈ N
for which θoutλ Y• ∼= (X •)⊕p . Applying θonλ , while using the ungraded version of
Proposition 4.1, to the latter isomorphism then yields

(Y•)⊕|Wλ| ∼= θonλ (X •)⊕p .

This implies the claim with k = |Wλ|/p. �

Corollary 4.17. Consider indecomposable X • ∈ Ob(Db(O0)) such that we have

θwλ0
X • ∼= (X •)⊕|Wλ|. There is an indecomposable Y• ∈ Ob(Db(Oλ)) such that

θoutλ Y• ∼= X • if and only if θonλ X • contains |Wλ| indecomposable summands.

Lemma 4.18. Consider a module M ∈ Ob(O0) such that θwλ0
M ∼= M⊕|Wλ| and for

which V yields an algebra isomorphism V : EndO0(M) →̃ EndC(VM). Then Vλ
also induces an algebra isomorphism Vλ : EndOλ(θonλ M) →̃ EndCλ(Vλθonλ M).
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Proof. Equation (15) and the faithfulness of θoutλ and induction imply that we have
a commuting diagram of algebra homomorphisms:

EndO0(M⊕|Wλ|)
V // EndC(VM⊕|Wλ|)

EndOλ(θonλ M)
Vλ //

?�

θoutλ

OO

EndCλ(Vλθonλ M)
?�

IndC
Cλ

OO

As the upper horizontal arrow is an isomorphism by assumption, so is Vλ. �

Lemma 4.19. Consider objects X • of Db(Oλ) and Y• of Db(Oµ0 ) such that we have
θoutλ X • ∼= ıµY• in Db(O0). Then there exists Z• ∈ Db(Oµλ) such that

X • ∼= ıµZ• and Y• ∼= θoutλ Z•.

Proof. Applying θonλ to θoutλ X • ∼= ıµY• and using the commutation of inclusion and
translation, implies

(X •)⊕|Wλ| ∼= ıµθonλ Y•.
Hence X • ∼= ıµZ•, for some Z•. Applying θoutλ to the latter yields an isomorphism
ıµY• ∼= ıµθoutλ Z•, so the conclusion follows from Corollary 4.11. �

5. Shuffling and projective functors

Unlike twisting functors, shuffling functors do not commute with projective functors
in general. Here we investigate their intertwining relations. We consider the principle
block O0 for an arbitrary reductive Lie algebra g.

Theorem 5.1. For two simple reflections s, t ∈W , we have{
θsCt ∼= Ctθs, if st = ts;

θsCst ∼= Cstθt, if s, t generate S3.

The above statement is formulated in [MS2, Section 11], however, the proof of [MS2,
Section 11] is not complete (it proves only a special case of the statement). Below,
we follow the alternative argument outlined in [MS2, Remarks 11.2 and 11.4].

Corollary 5.2. Consider ν ∈ Λ+
int such that Wν is of type A. For any simple

reflection s ∈ Wν ×W †ν , we have Cwν0 θs
∼= θs′ Cwν0 , with s′ the simple reflection

defined as s′ = wν0sw
ν
0 .

Set Q(w) := add(CwP ), with w ∈W , and P a projective generator for O0.

Proposition 5.3.

(i) For ν ∈ Λ+
int and a simple reflection s ∈Wν×W †ν , we have Cwν0 θs

∼= θwν0 swν0Cwν0
if and only if the category Q(wν0 ) is stable under action of θwν0 swν0 .

(ii) For any y ∈W , we have Cw0θy
∼= θw0yw0Cw0.

Remark 5.4. Note that the stability of Q(w) is not an obvious property. Already
for g = sl(3), the category Q(s) is not stable under projective functors.
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Now we start the proofs. Define the graded lift of Ct via the exact sequence

(17) Id〈1〉 adj−→ θt → Ct → 0.

Lemma 5.5. For a simple reflection t, define the functor Ft as the kernel of the
adjunction morphism in (17). Then Ftθt ∼= 0 ∼= θtFt.

Proof. As Id is exact, Ft is left exact. Then θtTt is also left exact and so is Ttθt, as
θt maps injective modules to injective modules. By construction, we have

FtL = 0 if θtL 6= 0 and FtL ∼= L if θtL ∼= 0.

This implies immediately that θtFt ∼= 0.

To prove that Ftθt acts trivially on all simple modules, it suffices to consider a
simple module L with θtL 6= 0. But then θtL has simple socle L and the latter is not
annihilated by θt. This means that the adjunction morphism is injective on both L
and θtL, which implies FtθtL = 0. The claim follows. �

Proof of Theorem 5.1. Assume first that s and t commute but are distinct, in par-
ticular we have θsθt ∼= θts ∼= θtθs. We can compose (17) with θs on both sides. This
yields exact sequences

θs〈1〉 → θst → Ctθs → 0 and θs〈1〉 → θst → θsCt → 0.

From [BGe, Theorem 3.5] and Kazhdan-Lusztig combinatorics it follows that the
morphism θs〈1〉 → θst is unique, up to a non-zero scalar, implying Ctθs ∼= θsCt.

Now consider the case s = t. Using Lemma 5.5 and the relation θ2
s
∼= θs〈1〉⊕ θs〈−1〉

we obtain two short exact sequences

0→ θs〈1〉 → θs〈1〉 ⊕ θs〈−1〉 → θsCs → 0;

0→ θs〈1〉 → θs〈1〉 ⊕ θs〈−1〉 → Csθs → 0.

The only possible way to have such an injection θs〈1〉 ↪→ θs〈1〉⊕ θs〈−1〉 corresponds
to θs〈1〉 →̃ θs〈1〉. This implies indeed θsCs ∼= θs〈−1〉 ∼= Csθs.

Finally, assume that the simple reflections s and t together generate a group isomor-
phic to S3. Using the definitions of Cs and Ct via (17), we construct a commutative
diagram with exact rows and columns as follows:

Id〈2〉 //

��

θs〈1〉 //

��

Cs〈1〉 //

��

0

θt〈1〉 //

��

θtθs //

��

θtCs //

��

0

Ct〈1〉 //

��

Ctθs //

��

Cst

��

// 0

0 0 0
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Now we compose every functor in the diagram with the exact functor θs and use the
above result, for the case s = t, in the first row of the following diagram:

0 // θs〈2〉
α1 //

f1
��

θs〈2〉 ⊕ θs
α2 //

g1

��

θs //

h1
��

0

θsθt〈1〉
β1 //

f2
��

θsθtθs
β2 //

g2

��

θsθtCs //

h2
��

0

θsCt〈1〉
γ1 //

��

θsCtθs
γ2 //

��

θsCst

��

// 0

0 0 0

This diagram contains a surjection θsθtθs � θsCst given by h2 ◦ β2 = γ2 ◦ h2. The
kernel of this map can be described as the direct sum of the image of β1 with the
preimage under β2 of the image of h1. Because the top row is a split exact sequence,
the latter corresponds to the image of θs under g1. This implies the exact sequence

θs ⊕ θsθt〈1〉 → θsθtθs → θsCst → 0.

From Kazhdan-Lusztig combinatorics we know that θsθtθs ∼= θsts⊕θs. As there is no
graded morphism θs → θsts and the only graded morphism θs → θs is the identity,
up to a scalar, we finally obtain an exact sequence

θsθt〈1〉 → θsts → θsCst → 0.

Analogously we can compose θt with every functor in the first diagram, eventually
yielding an exact sequence

θsθt〈1〉 → θsts → Cstθt → 0.

From Kazhdan-Lusztig combinatorics it, moreover, follows that there is only one
graded morphism θsθt〈1〉 → θsts, which concludes the proof. �

Proof of Corollary 5.2. If s ∈W †ν , the result follows immediately from Theorem 5.1.
The case s ∈ Wν can be reduced to Wν

∼= Sn generated by s1, · · · , sn and s = si,
for some 1 ≤ i ≤ n. In case i ≤ n/2, we take the reduced form

wν0 = snsn−1 · · · s2s1snsn−1 · · · s3s2 · · · snsn−1sn−2snsn−1sn;

if i ≥ n/2, we take

wν0 = s1s2 · · · sn−1sns1s2 · · · sn−2sn−1 · · · s1s2s3s1s2s1.

In both cases, apply Theorem 5.1 repeatedly, giving the result with s′ = sn−i+1. �

Lemma 5.6. For any simple reflection t ∈W , we have VCt ∼= tC⊗C V.

Proof. Since both sides are right exact, it is enough to check the isomorphism on
the category of projective modules in O0. [Ba2, Theorem 4.9] implies that there is a
unique injective bimodule homomorphism C ↪→ C⊗Ct C. We claim that the cokernel
of this maps is isomorphic to tC. Indeed, this cokernel is isomorphic to C both as a
left and as a right C-module. As a Ct-Ct-bimodule, we obviously get a decomposition
of the cokernel into a direct sum of two copies of Ct. To determine the action of the



DUALITIES AND DERIVED EQUIVALENCES FOR CATEGORY O 21

remaining generator, it is enough to compute the rank two case. In that case the
statement is easily checked by a direct computation. �

Corollary 5.7. For ν ∈ Λ+
int and a simple reflection s ∈Wν ×W †ν , we have

VCwν0 θs ∼= Vθwν0 swν0Cwν0 .

Proof. By Subsection 2.5, we have

Vθs ∼= C⊗Cs C⊗C V and Vθwν0 swν0 ∼= C⊗
C
wν0 sw

ν
0
C⊗C V.

By induction and the choice of a reduced expression for wν0 , Lemma 5.6 implies
VCwν0 ∼=

wν0C⊗C V. A straightforward computation gives an isomorphism

C⊗
C
wν0 sw

ν
0

wν0C ∼= wν0C⊗Cs C,

of C-C bimodules. Combining the three isomorphisms yields the claim. �

Lemma 5.8. Soergel’s combinatorial functor V is full and faithful when restricted
to the category Q(w), for any w ∈W .

Proof. As LCw is an auto-equivalence of Db(O0), see equation (12), Cw provides
an isomorphism from HomO0(P, P ′) to HomO0(CwP,CwP

′) for any two projective
modules P, P ′ in O0. The claim hence reduces to the statement that the functor
VCw is full and faithful on the category of projective modules. By Lemma 5.6 this
reduces to [So1, Struktursatz 9]. �

Proof of Proposition 5.3. We prove claim (i) first. It is clear that if the proposed
equivalence of functors holds, then the fact that the category Q(wν0 ) is stable under
θwν0 swν0 follows from the fact that θs preserves the category of projective modules.
Hence we focus on the other direction of the claim.

The two composed functors in the proposition are right exact, as shuffling functors
are right exact and projective functors are exact functors mapping projective mod-
ules to projective modules. Hence it suffices to prove the isomorphism as functors
restricted to Q(e), the full subcategory of projective modules in O0.

By assumption both functors restrict to functors between Q(e) and Q(wν0 ). Hence,

the combination of Lemma 5.8 and Corollary 5.7 concludes the proof of claim (i).

Now we consider claim (i) for wν0 = w0. As the category Q(w0) is the category of
q.h. tilting modules, see e.g. [MS3, Section 4.2], it is stable under the action of all
projective functors. Therefore claim (ii) holds for y = s a simple reflection. The full
statement then follows by induction on the length of y and [Ma1, Equation (1)]. �

We have the following application of Proposition 5.3(2).

Corollary 5.9. Consider ∆µ(x · λ)• as an object of Db(Oλ), then

LCw0θ
out
λ ∆µ(x · λ)• ∼= θout

λ̂
∇µ(wµ0xw

λ
0w0 · λ̂)•[l(wµ0 )].

Moreover, the same equation holds considering ∆µ(x · λ)• as an object of Db(Oµλ)

and LCw0 the endofunctor on Db(Oµ0 ) defined in Proposition 3.7.
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Proof. By Theorem 4.3 and Proposition 5.3(2), we have

LCw0θ
out
λ ∆µ(x · λ)• ∼= LCw0θwλ0

∆µ(x)• ∼= θ
wλ̂0
LCw0∆µ(x)•.

Applying then [MS3, Proposition 4.4(1)], gives

LCw0θ
out
λ ∆µ(x · λ)• ∼= θ

wλ̂0
∇µ(wµ0xw0)•[l(wµ0 )].

The result now follows by applying Theorem 4.3. The reformulation inside Db(Oµ0 )
follows from the commuting diagram in Proposition 3.7 and Corollary 4.11. �

Finally, we derive useful expression for regular parabolic q.h. tilting modules.

Proposition 5.10. For any x ∈ Xµ, we have Tµ(x) ∼= θw0w
µ
0 x
L(wµ0w0).

Proof. As L(wµ0w0) ∼= ∆µ(wµ0w0) ∼= ∇µ(wµ0w0) is a tilting module in Oµ0 and pro-
jective functors preserve tilting modules, it follows that θw0w

µ
0 x
L(wµ0w0) is a tilting

module in Oµ0 . From Kazhdan-Lusztig combinatorics, see e.g. [Ma2, Equations (2.1)
and (2.2)], it follows by induction on the length l(w0w

µ
0x) that the highest weight

of θw0w
µ
0 x
L(wµ0w0) is x · 0.

It remains to prove the indecomposability of θw0w
µ
0 x
L(wµ0w0). By [Ma3, Theorem 16],

the Koszul-Ringel self-duality of O0 maps θw0w
µ
0 x
L(wµ0w0) to a module isomorphic to

θ
wµ̂0
L(w0x

−1). This module is the translation through the wall of a simple module,

which has simple top and hence is indecomposable. �

6. Construction of derived equivalences

Theorem 6.1. Let g be a reductive Lie algebra, λ, λ′, µ, µ′ ∈ Λ+
int and ν1, ν2 ∈ Λ+

int,
such that Wν1

∼= Sn1 and Wν2
∼= Sn2, for some n1, n2 ∈ N. Assume that

Wλ = G1 ×G2, Wλ′ = G′1 ×G′2, Wµ = H1 ×H2, Wµ′ = H ′1 ×H ′2 with

• G2 = G′2 ⊂W
†
ν1 and H2 = H ′2 ⊂W

†
ν2 ;

• G1
∼= G′1 and both are subgroups of Wν1;

• H1
∼= H ′1 and both are subgroups of Wν2.

Then Aµλ and Aµ
′

λ′ are gradable derived equivalent, so, in particular, we have equiva-
lences of triangulated categories

Db(Oµλ) ∼= Db(Oµ
′

λ′ ) and Db(ZOµλ) ∼= Db(ZOµ
′

λ′ ).

For sl(n), the formulation of the theorem simplifies substantially. In this case,
without loss of generality, we can take ν1 = ν2 = −ρ, so G2 = G′2 = H2 = H ′2 = {e}.
Then we obtain precisely Theorem C.

The remainder of this section is devoted to the proof of Theorem 6.1.

Lemma 6.2. For λ ∈ Λ+
int, assume there is ν ∈ Λ+

int such that wλ0 ∈Wν ×W †ν where

Wν is of type A. Then there is λ′ ∈ Λ+
int such that wλ

′
0 = wν0w

λ
0w

ν
0 and a triangulated

equivalence Fλλ′ : Db(Oλ)→ Db(Oλ′) leading to a commutative diagram of functors
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Db(O0)
LCwν0 // Db(O0)

Db(Oλ)

θoutλ

OO

Fλλ′ // Db(Oλ′)

θout
λ′

OO

Proof. For x ∈ Xλ, set Sx := Cwν0 θ
out
λ P (x · λ). Corollary 5.2 yields

(18) θ
wλ
′

0
Sx ∼= S

⊕|Wλ′ |
x .

By Lemma 5.8, EndO0(Sx) ∼= EndC(VSx). Hence (18) and Lemma 4.18 imply

EndOλ′ (θ
on
λ′ Sx) ∼= EndCλ′ (Vλ′θ

on
λ′ Sx).

The algebra can then be computed by using equation (15) and Lemma 5.6,

EndOλ′ (θ
on
λ′ Sx) ∼= EndCλ′ (ResCCλ′

wν0C⊗C C⊗Cλ VλP (x · λ)).

Under the isomorphism Cλ ∼= Cλ′ , we can identify the modules

ResCCλ′
wν0C⊗C C⊗Cλ VλP (x · λ) and ResCCλC⊗Cλ VλP (x · λ).

Therefore we obtain

(19) EndOλ′ (θ
on
λ′ Sx) ∼= EndOλ(P (x · λ)⊕|Wλ|).

This formula implies that θonλ′ Sx decomposes into |Wλ′ | indecomposable direct sum-
mands. Equation (18) and Corollary 4.17 thus imply that there is an indecomposable
Tx ∈ Oλ′ such that Sx ∼= θoutλ′ Tx. Then we define

S =
⊕
x∈Xλ

Sx and T =
⊕
x∈Xλ

Tx.

Now equation (19) can be rewritten as

EndOλ′ (T
⊕|Wλ|
x ) ∼= EndOλ(P (x · λ)⊕|Wλ|).

The same calculation for Pλ, rather than P (x · λ), implies

(20) EndOλ′ (T ) ∼= EndOλ(Pλ) = Aλ.

As LCwν0 is an auto-equivalence ofDb(O0), the module S does not have self-extensions.

As θoutλ′ : Db(Oλ′)→ Db(O0) is faithful, by construction, the module T then satisfies

(21) ExtiOλ′ (T, T ) = 0, for i > 0.

For any projective module P in O0, we claim that θonλ′ Cwν0P is a module in add(T ).
Indeed, by Corollary 5.2 we obtain(

θonλ′ Cwν0P
)⊕|Wλ′ | ∼= θonλ′ Cwν0 θwλ0

P,

where Cwν0 θwλ0
P is clearly a module in add(S) and θonλ′ S

∼= T⊕|Wλ|.

As LCwν0 is an auto-equivalence of Db(O0), [Ric1, Theorem 6.4] implies that Cwν0P0 is
a generalised tilting module. Hence, P0 has a coresolution by modules in add(Cwν0P0).
By the above paragraph, applying the exact functor θonλ′ leads to a coresolution of
θonλ′ P0 by modules in add(T ). As T has no self-extensions by equation (21), this
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immediately implies that every indecomposable summand in θonλ′ P0 has such a cores-
olution. Thus, in particular, there is some r ∈ N for which there is an exact sequence

(22) 0→ Pλ′ → T0 → T1 → · · ·Tr−1 → Tr → 0,

where Ti ∈ add(T ).

Equations (21) and (22) imply that T is a generalised tilting module, or a tilting
complex (contained in one position) in the sense of [Ric1]. The equivalence then
follows from equation (20) and [Ha, Theorem III.2.10] or [Ric1, Theorem 6.4].

Finally, we prove the existence of the commutative diagram. It suffices to prove
that LCwν0 ◦ θ

out
λ
∼= θoutλ′ ◦ Fλλ′ , restricted as functors on the category of projective

modules in Oλ, as both are triangulated functors. By construction, the functor Fλλ′
acts on the category of projective modules by mapping P (x ·λ) to Tx and its action
on morphisms corresponds to the algebra isomorphism determined in equation (20).
The equivalence of the functors LCwν0 ◦ θ

out
λ and θoutλ′ ◦ Fλλ′ acting between add(Pλ)

and add(S), thus follows from construction of the isomorphism (20). �

Lemma 6.3. In the setup of Lemma 6.2, any object X • in Db(Oλ) satisfies

LZµıµFλλ′X • ∼= Fλλ′LZµıµX •.

Proof. According to Corollary 4.11, it is sufficient to prove that

θoutλ′ LZµıµFλλ′X • ∼= θoutλ′ Fλλ′LZµıµX •.

That this is true follows from the fact that Zuckerman and inclusion functors com-
mute with translation functors (and hence also with shuffling functors), see e.g.
[Ba1, Lemma 2.6(a)] and the diagram in Lemma 6.2. �

Lemma 6.4. Consider λ, ν as in Lemma 6.2 and an arbitrary µ ∈ Λ+
int. There is a

an equivalence Fµλλ′ : Db(Oµλ) → Db(Oµλ′) of triangulated categories which admits a
commutative diagram of functors

Db(Oλ)
Fλλ′ // Db(Oλ′)

Db(Oµλ)

ıµ

OO

Fµ
λλ′ // Db(Oµλ′).

ıµ

OO

Proof. Consider the minimal projective generator Pµλ of Oµλ in (1). By Lemma 6.2,

there is a complex S• := Fλλ′ ı
µ Pµλ in Db(Oλ′) with

(23) EndDb(Oλ′ )(S
•) ∼= EndDb(Oλ)(ı

µPµλ ) ∼= EndDb(Oµλ)(P
µ
λ ) ∼= Aµλ,

where the latter isomorphism follows from Corollary 4.10. Lemma 6.2 and Propo-
sition 3.7 yield θoutλ′ S• ∼= ıµLCwν0 θ

out
λ Pµλ . Lemma 4.19 thus implies the existence of

T • ∈ Db(Oµλ) such that

(24) ıµT • ∼= S• and θoutλ′ T • ∼= LCwν0 θ
out
λ Pµλ .

The second property in (24) and the faithfulness of θoutλ′ give an injection

HomDb(Oµ
λ′ )

(T •, T •[k]) ↪→ HomDb(Oµ0 )(LCwν0 θ
out
λ Pµλ ,LCwν0 θ

out
λ Pµλ [k]).
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The right-hand side is zero, if k 6= 0, by Proposition 3.7. So we find

(25) HomDb(Oµ
λ′ )

(T •, T •[k]) = 0 if k 6= 0.

The first property in equation (24) and equation (25) allow us to apply Corollary
4.10 and deduce, using equation (23), that

(26) EndDb(Oµ
λ′ )

(T •) ∼= EndDb(Oλ′ )(S
•) ∼= Aµλ.

By equations (25) and (26), the result would follow from [Ric1, Theorem 6.4], if we
could show that add(T •) generates Db(Oµλ) as a triangulated category.

Now we focus on the latter statement. Remark 4.9 and Lemma 6.3 yield⊕
j∈N
LZµFλλ′(P •λ )⊕cj [j] ∼= LZµFλλ′ıµLZµP •λ .

As, for every x ∈ Xλ,

LZµP (x · λ)• ∼=

{
Pµ(x · λ)•, if x ∈ Xµ

λ ;

0, if x 6∈ Xµ
λ ;

we find ⊕
j∈N
LZµFλλ′(P •λ )⊕cj [j] ∼= LZµıµT • ∼=

⊕
j∈N

(T •)⊕cj [j].

This implies that LZµFλλ′P •λ ∈ add(T •). The fact that Fλλ′P
•
λ generates Db(Oλ′)

as a triangulated category (which is an immediate consequence of Lemma 6.2) hence
implies that add(T •) generates Db(Oµλ′) as a triangulated category. The existence
of the commuting diagram then follows by the same arguments as in the proof of
Lemma 6.2. �

Lemma 6.5. The functor Fµλλ′ from Lemma 6.4 admits a graded lift, yielding an
equivalence of triangulated categories

F̃µλλ′ : Db(ZOµλ) → Db(ZOµλ′).

Proof. As translation, shuffling and inclusion functors admit graded lifts, it follows
easily that so does Fµλ,λ′ .

We can switch the roles of λ and λ′ and construct a functor Fµλ′λ. We define the
(gradable) functor Gµλ′λ = dFλ′λd. Then Gµλ′λ admits commutative diagrams with
dLCwν0 d, analogous to the ones in Lemmata 6.2 and 6.4 and is also gradable. By

construction, Fµλλ′G
µ
λ′λ and, respectively, Gµλ′λF

µ
λλ′ , are isomorphic to the respective

identity functors when restricted to the categories of projective modules in Oµλ′ and
Oµλ , respectively. Hence Gµλ′λ is an inverse to Fµλ′λ. The result thus follows from
Proposition 3.5. �

Lemma 6.6. Consider λ, λ′, µ ∈ Λ+
int and ν1 ∈ Λ+

int such that Wν1
∼= Sn, for some

n ∈ N. Assume that Wλ = G1 ×G2 and Wλ′ = G′1 ×G′2, where

• G2 = G′2 is a subgroup of W †ν1;

• G1
∼= G′1 and both are subgroups of Wν1.
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Then Aµλ and Aµλ′ are gradable derived equivalent. In particular, we have equivalences
of triangulated categories

Db(Oµλ) ∼= Db(Oµλ′) and Db(ZOµλ) ∼= Db(ZOµλ′).

Proof. There are k ∈ N and pi ∈ N, for 1 ≤ i ≤ k, such that p1 + · · ·+ pk = n and

G1 = Sp1 × Sp2 × · · · × Spk
as a subgroup of Sn. Then G2, as a subgroup of Sn, is equal to

G2 = Spσ(1) × Spσ(2) × · · · × Spσ(k) ,
for some σ ∈ Sk. It suffices to prove the lemma for σ such that it only interchanges
two neighbors (j, j + 1) for some 1 ≤ j < k. Then we choose an integral dominant
ν such that Wν is equal to the subgroup of Wν1 ⊂W defined as

p1+p2+···+pj−1︷ ︸︸ ︷
S1 × S1 × · · · × S1 ×Spj+pj+1×

pj+2+···+pk︷ ︸︸ ︷
S1 × · · ·S1 .

For the case we consider, this leads to wλ
′

0 = wν0w
λ
0w

ν
0 and the equivalences follow

from Lemma 6.4, Lemma 6.5 and Definition 3.2. �

Proof of Theorem 6.1. To prove the theorem it suffices to restrict to either λ = λ′

or µ = µ′ as the full statement follows by composition of the two. The case µ = µ′

is precisely Lemma 6.6.

The graded equivalence for λ = λ′ follows immediately from composing Lemma 6.6
with the equivalence in equation (4). The fact that the equivalence then descends
to the non-graded categories follows from Proposition 3.4 and equation (5). �

Finally, we note how the results in this section lead to a proof of Theorem D. Part
(ii) follows immediately from Lemmata 6.2, 6.4 and 6.5. Part (i) then follows from
Koszul duality as in the proof of Theorem 6.1. The link with derived twisting
functors follows from [MOS, Theorem 39].

7. The classification for type A

In this section we prove the following theorem, which implies Theorem B.

Theorem 7.1. Consider two Lie algebras g, g′ of type A with fixed Borel subalgebras
b, b′, classes Λ ∈ h∗/Λint and Λ′ ∈ (h′)∗/Λ′int with the corresponding integral Weyl
groups WΛ,W

′
Λ′ and two dominant weights λ ∈ Λ, λ′ ∈ Λ′. Then the following

statements are equivalent:

(I) There is a gradable equivalence Db(Oλ(g, b)) ∼= Db(Oλ′(g′, b′)).

(II) There is a graded algebra isomorphism Z(Oλ(g, b)) ∼= Z(Oλ′(g′, b′)).

(III) For some decompositions

WΛ
∼= X1 ×X2 × · · · ×Xk and W ′Λ′

∼= X ′1 ×X ′2 × · · · ×X ′m
into products of irreducible Weyl groups, we have k = m and there is a permu-
tation ϕ on {1, 2, . . . , k} such that WΛ,λ ∩Xi

∼= WΛ′,λ′ ∩X ′ϕ(i) and Xi
∼= X ′ϕ(i)

for all i = 1, 2, . . . , k.
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Note that, as we only consider type A in this section, we do not need to distinguish
between isomorphisms of Coxeter groups and isomorphisms of Coxeter systems.
Before proving Theorem 7.1 we need the following preparatory lemma.

Lemma 7.2. Consider Coxeter groups W and W ′ of type A with respective Young
subgroups X and X ′. There is a graded algebra isomorphism C(W )X ∼= C(W ′)X

′
if

and only if, for some decompositions

W ∼= X1 ×X2 × · · · ×Xk and W ′ ∼= X ′1 ×X ′2 × · · · ×X ′m
into products of irreducible Weyl groups, we have k = m and there is a permutation
ϕ on {1, 2, . . . , k} such that X∩Xi

∼= X ′∩X ′ϕ(i) and Xi
∼= X ′ϕ(i) for all i = 1, 2, . . . , k.

Proof. First we assume that W and W ′ are simple. Without loss of generality, we as-
sume that W ∼= Sn and W ′ ∼= Sm with m ≥ n. Denote the compositions of n and m,
corresponding to X and X ′, by (p1, · · · , pk) and (q1, · · · , ql), respectively. A graded
algebra isomorphism implies, in particular, a graded vector space isomorphism, so
equation (16) implies that

l∏
j=1

qj∏
a=1

(1− za) =

k∏
j=1

pj∏
b=1

(1− zb)
m∏

s=n+1

(1− zs)

must be equal in C[z]. If m > n, then the irreducible factorisation of the right-
hand side contains a term (1− exp(2πi

m )z), with i2 = −1, which never occurs in the
factorisation of the left-hand side. Hence m = n, or W ∼= W ′. The same argument
can now be used if the maximum of {pj , 1 ≤ j ≤ k} were larger than the maximum
of {qj , 1 ≤ j ≤ l}. By similar reasoning and induction it then follows that the
compositions are the same up to ordering and hence we find X ∼= X ′.

Now consider an arbitrary Coxeter group W of type A. It follows easily from the
definitions that, if we consider the decomposition W ∼= W1 ×W2 × · · · ×Wk, for
some k, such that each Wi is irreducible and set Xi = X ∩Wi, then we have

C(W )X ∼= C(W1)X1 ⊕ C(W2)X2 ⊕ · · · ⊕ C(Wk)
Xk .

The general result now follows. �

Proof of Theorem 7.1. By [So1, Theorem 11], we can take reductive Lie algebras g̃

and g̃′ for which there are Borel subalgebras b̃ and b̃′, Weyl groups W and W̃ , and
integral dominant weights λ̃ and λ̃′ such that

(a) Oλ(g, b) ∼= Oλ̃(g̃, b̃) and Oλ′(g′, b′) ∼= Oλ̃′(g̃
′, b̃′);

(b) WΛ
∼= W̃ and W ′Λ′

∼= W̃ ′;

(c) WΛ,λ → W̃λ̃ and W ′Λ′,λ′ → W̃ ′
λ̃′

under the above isomorphisms.

Moreover, by [Mat, Proposition A.4], we can chose g̃ and g̃′ to be of type A. By
(a), the properties in claim (I) and claim (II) are true if and only if they are true

for Oλ̃(g̃, b̃) and Oλ̃′(g̃
′, b̃′). Furthermore (b) and (c) imply that also the property in

claim (III) is true if and only if it holds for W and W̃ . Therefore it suffices to prove
the equivalences between the three statements restricted to the integral setting. So,
henceforth we can assume Λ = Λint and Λ′ = Λ′int.
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Claim (I) implies claim (II) by Lemma 3.6. Now assume that claim (II) holds. The
results repeated in Subsection 2.5 imply that there must be a graded isomorphism
between Cλ(W ) and Cλ′(W

′). Application of Lemma 7.2 then proves that claim (II)
implies claim (III). The fact that claim (III) implies claim (I) is an immediate
consequence of Lemma 6.6. �

8. Ringel duality

In this section we study Ringel duality for arbitrary blocks in parabolic category O
for arbitrary reductive Lie algebras. We will obtain two version of the Ringel duality
functor, which generalise the ones in equations (13) and (14).

8.1. Ringel duality for parabolic category O. The main result here is:

Theorem 8.1. Consider a reductive Lie algebra g and λ, µ ∈ Λ+
int.

(i) There are isomorphisms of (graded) algebras: Aµ
λ̂
∼= R(Aµλ) ∼= Aµ̂λ.

(ii) The restriction of the endofunctor Ll(wµ0 )Tw0 of Oλ to the full subcategory Oµλ
yields a Ringel duality functor Rµλ satisfying

Rµλ : Oµλ → O
µ̂
λ and Rµλ(∆µ(x · λ)) ∼= ∇µ̂(w0w

µ
0xw

λ
0 · λ).

Remark 8.2. This theorem easily leads to a proof of Theorem A. In particular,

there are blocks Oµλ which are not equivalent to Oµ̂λ , as demonstrated explicitly in
Subsection 8.4 for completeness.

Before proving Theorem 8.1, we establish some preparatory lemmata.

Lemma 8.3. For x ∈ Xµ
λ , consider ∆µ(x · λ)• as an object in Db(Oλ). Then

LTw0∆µ(x · λ)• ∼= ∇µ̂(w0w
µ
0xw

λ
0 · λ)•[l(wµ0 )].

Proof. Using [MOS, Section 6.5] and Proposition 4.7, one can consider the Koszul
dual of (the graded version of) Corollary 5.9. Corollary 4.11 and equation (11)
then allow us to interpret this as the proposed isomorphism. We also provide the
sketch of a proof without the use of Koszul duality, following the proof of [MS3,
Proposition 4.4(1)]. Applying parabolic induction to the classical BGG resolution
(see [Hu, Chapter 6] or [Le]) for the Levi subalgebra of qµ, yields an exact complex

(27) 0→ Cl(wµ0 ) → · · · → Cj → Cj−1 → · · ·C0 → ∆µ(x · λ)→ 0, with

Cj =
⊕

u∈Wµ,l(u)=j

∆(ux · λ).

As Verma modules are acyclic for Tw0 , see [AS, Theorem 2.2], we can compute
LTw0∆µ(x · λ)• by evaluating Tw0 at the complex (27) (where ∆µ(x · λ) is deleted).
Now [AS, Theorem 2.3] implies

Tw0∆(ux · λ) ∼= ∇(w0ux · λ).

The complex D• = LTw0C• = Tw0C• is hence of the form

Dj =
⊕

u∈Wµ̂,l(u)=j

∇(uw0x · λ) =
⊕

u∈Wµ̂,l(u)=l(wµ0 )−j

∇(uw0w
µ
0x · λ).
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We have w0w
µ
0x · λ = y · λ with y := w0w

µ
0xw

λ
0 ∈ X

µ̂
λ . As the maps in the complex

satisfy a dual version of the ones in the complex C•, we find

LTw0∆µ(x · λ)• ∼= ∇µ̂(y · λ)•[l(wµ0 )],

which concludes the proof. �

Lemma 8.4. The restriction of the endofunctor Ll(wµ0 )Tw0 of Oλ to the full subcat-

egory Oµλ is right exact.

Proof. Lemma 8.3 implies that LiTw0N = 0, if i 6= l(wµ0 ), for any N ∈ Ob(Oµλ)
with standard flag. So, in particular, for projective objects of Oµλ . The fact that
LiTw0M = 0 for i < l(wµ0 ) and arbitrary M ∈ Oµλ can then be derived by induction
on the projective dimension of M in Oµλ , by considering short exact sequences. �

Proof of Theorem 8.1. First we prove part (ii). By Lemmata 8.3 and 8.4, the endo-
functor Ll(wµ0 )Tw0 of Oλ restricts to a right exact functor

Rµλ : Oµλ → Oλ
which maps standard modules to modules contained in the subcategory Oµ̂λ . Sub-
sequently, all simple modules, being the tops of standard modules, are mapped to

modules in this subcategory. As Oµ̂λ is a full Serre subcategory, this leads to the
conclusion that we actually obtain a right exact functor

Rµλ : Oµλ → Oµ̂λ .
By Lemma 8.3, this functor restricted to the full subcategory of modules in Oµλ with
a standard flag, yields an exact functor from this category to the category of modules

in Oµ̂λ with costandard flag. This is an equivalence as it has as inverse, namely, the
restriction of dLl(wµ0 )Tw0d, by Lemma 8.3, equation (10) and the fact that Oµλ is

isomorphism closed in Oλ. Part (ii) then follows from [MS3, Proposition 2.2].

In particular, this implies R(Aµλ) ∼= Aµ̂λ. By [So1, Theorem 11] there is an isomor-
phism Aλ ∼= A

λ̂
. Under this isomorphism, the set of idempotents corresponding to

X µ̂
λ are mapped to the ones corresponding to Xµ

λ̂
, implying that Aµ̂λ

∼= Aµ
λ̂
. This

proves the ungraded isomorphisms of algebras in (i).

By the previous conclusions in this proof, [MS3, Proposition 2.2(2)] implies that the
functor Ll(wµ0 )Tw0 maps a minimal projective generator of Oµλ to a characteristic q.h.

tilting module of Oµλ′ . As the derived functor is an equivalence between the derived

categories and is gradable, it follows that R(Aµλ) ∼= Aµ̂λ holds as graded algebras. �

Remark 8.5. Moreover, [MS3, Proposition 2.2] also implies that

Db(Oµλ) ∼= Db(Oµ̂λ) ∼= Db(Oµ
λ̂
).

When g is not of type A, this is outside the scope of Theorem 6.1. However it can
be proved similarly as will be done in the next subsection.

Remark 8.6. An anonymous referee brought to our attention an insightful different
method for proving Theorem 8.1(i). We set qµ = l⊕w+, with w+ the radical and l the
Levi subalgebra of the parabolic subalgebra qµ, leading to parabolic decomposition

g = w−⊕ l⊕w+. Consider A = U(g), B = U(w+), H = U(l) and B = U(w−). This
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gives a triangular decomposition in the sense of [GGOR, Section 2.1], when taking
into account footnote 1.

For a complex Lie algebra a such that dim(a) = d < ∞, the extension groups
Ext•U(a)(C, U(a)) can be calculated from the Chevalley-Eilenberg complex

0→ U(a)→ a∗ ⊗ U(a)→ · · · →
j∧

(a∗)⊗ U(a)→ · · · →
d∧

(a∗)⊗ U(a)→ 0.

This can be re-interpreted as the Koszul resolution of the trivial a-module C, shifted
over d positions;

0→
d∧

(a)⊗ U(a)→
d−1∧

(a)⊗ U(a)→ · · · →
d−j∧

(a)⊗ U(a)→ · · · → U(a)→ 0,

yielding dim ExtiU(a)(C, U(a)) = δi,d. Hence B is Gorenstein and one can apply

[GGOR, Proposition 4.3], which implies that the Ringel dual of Oµλ is the category
of right A-modules, which are finitely generated, H-semisimple (and locally finite),
B-locally nilpotent and which admit generalised central character χλ. To interpret
these as left A = U(g)-modules we can apply an anti-automorphism of U(g). The
principal automorphism corresponding to X 7→ −X for X ∈ g shows that the
Ringel dual is equivalent to Oµ

λ̂
. The Chevalley anti-automorphism of U(g) gives an

equivalence with Oµ̂λ .

8.2. An alternative approach. The following result is a reformulation of the re-
sults in the previous subsection, but we provide an alternative proof, stressing the
link with our construction of derived equivalences.

Proposition 8.7. We have R(Aµλ) ∼= Aµ
λ̂

. Moreover, the Ringel duality functor

Rµλ : Oµλ → O
µ

λ̂
satisfies, for every x ∈ Xµ

λ , the following:

Rµλ(∆µ(x · λ)) ∼= ∇µ(wµ0xw
λ
0w0 · λ̂).

Lemma 8.8. For all integral dominant λ, µ, there is an equivalence of triangulated
categories Fµλ : Db(Oµλ)→ Db(Oµ

λ̂
) such that the following diagram commutes:

Db(O0)
LCw0 // Db(O0)

Db(Oλ)
Fλ //

θoutλ

OO

Db(O
λ̂
)

θout
λ̂

OO

Db(Oµλ)
Fµλ //

ıµ

OO

Db(Oµ
λ̂
).

ıµ

OO

Proof. This is proved identically to Lemmata 6.2 and 6.4, the only change being
that Proposition 5.3(ii) is used rather than Proposition 5.3(i). �

Corollary 8.9. For all x ∈ Xµ
λ , we have Fµλ (Pµ(x·λ)•) ∼= Tµ(wµ0xw

λ
0w0λ̂)•[l(wµ0 )],

implying that R(Aµ
λ̂
) := EndOµ

λ̂
(Tµ
λ̂

) ∼= Aµλ.
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Proof. Lemma 8.8, Proposition 5.3(ii) and Corollary 5.9 imply

θoutλ ıµFµλ P
µ(x · λ)• ∼= LCw0θx∆µ(e)• ∼= θw0xw0L(wµ0w0)•[l(wµ0 )].

Proposition 5.10 then implies

θoutλ ıµFµλ P
µ(x · λ)• ∼= Tµ(wµ0xw0)•[l(wµ0 )] ∼= θout

λ̂
ıµTµ(wµ0xw0w

λ̂
0 · λ̂)•[l(wµ0 )].

The equivalence thus follows from Corollary 4.11.

The isomorphism of the endomorphism algebras then follows from the fact that
both modules correspond to complexes contained in one position exchanged by an
equivalence of triangulated categories. �

The proof of Proposition 8.7 then follows easily from this corollary.

8.3. Parabolic and singular Koszul-Ringel duality. In this subsection we com-
pose the Koszul duality (4) with the Ringel duality. We also study the link with
the category of linear complexes of q.h. tilting modules LTµλ, a full subcategory

of Db(ZOµλ), see [MO]. By [MO, Corollary 6], the category LTµλ is equivalent to

gmod-R(Aµλ)!. Hence Theorem 8.1 and equation (6) implies that there are equiva-
lences of categories

LPµ̂
λ
∼= ZOλµ ∼= LTµλ

∼= ZOλ̂µ̂ ∼= LPµ

λ̂
.

We now give explicit descriptions of these equivalences, which will be useful for
practical application in e.g. [CM2].

Lemma 8.10. Consider integral dominant λ, µ.

(i) The functor LRµλ induces an equivalence of categories

LRµλ : Db(ZOµλ) →̃ Db(ZOµ
λ̂
),

which restricts to an equivalence of categories

LPµ
λ →̃ LTµ

λ̂
with Pµ(x · λ)• 7→ Tµ(wµ0xw

λ
0w0 · λ̂)•.

(ii) The functor LRµλ induces an equivalence of categories

LRµλ : Db(ZOµλ) →̃ Db(ZOµ̂λ),

which restricts to an equivalence of categories

LPµ
λ →̃ LTµ̂λ with Pµ(x · λ)• 7→ T µ̂(w0w

µ
0xw

λ
0 · λ)•.

Proof. The equivalences of derived categories (in the ungraded sense) follow from
[MS3, Proposition 2.2(2)] and Theorem 8.1. The graded version then follows from
application of Proposition 3.5. Alternatively, the (graded) equivalence can be proved
as in Section 6 by using Proposition 5.3(ii) rather than Corollary 5.2. It is a general
feature that the Ringel duality functor maps indecomposable projective modules to
indecomposable q.h. tilting modules, see e.g. [MS3, Proposition 2.1(2)]. The explicit
description then follows from the action on standard modules in Theorem 8.1. �
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We compose functors to obtain the contravariant Koszul-Ringel duality functor

Φµ
λ = Kµ̂λ ◦

(
LRµ̂λ

)−1
: Db(ZOµλ) →̃ Db(ZOλµ),

yielding an equivalence of triangulated categories.

Corollary 8.11. The contravariant functor Φµ
λ above restricts to an equivalence

Φµ
λ : LTµλ →

ZOλµ which satisfies, for any x ∈ Xµ
λ , the following:

(1) Φµ
λ(Tµ(x · λ)•) ∼= L(wλ0x

−1wµ0 · µ).

(2) The complex T •L in LTµλ, which is isomorphic to L(x·λ)• in Db(ZOµλ), satisfies

Φµ
λ(T •L ) ∼= T λ(wλ0x

−1wµ0 · µ).

(3) The complex T •∇ in LTµλ, isomorphic to ∇µ(x · λ)• in Db(ZOµλ), satisfies

Φµ
λ(T •∇) ∼= ∆λ(wλ0x

−1wµ0 · µ).

(4) The complex T •∆ in LTµλ, isomorphic to ∆µ(x · λ)• in Db(ZOµλ), satisfies

Φµ
λ(T •∆) ∼= ∇λ(wλ0x

−1wµ0 · µ).

Proof. The first property follows from combination of Lemma 8.10(ii) and the well-

known property Kµ̂λ(P (x · λ)•) ∼= L(x−1w0 · µ)•, see e.g. [BGS, Theorem 3.11.1].
The other three properties then follow from the first one and [MO, Theorem 9].
Property (3) also follows from the combination of Theorem 8.1(ii) with the property
Kµλ(∆µ(x · λ)•) ∼= ∆λ(x−1w0 · µ̂)•, see [BGS, Theorem 3.11.1]. �

The following is a standard property for categories of linear complexes.

Lemma 8.12. Consider M• ∈ ObLTµλ. Then Tµ(x · λ) is a submodule of Mk if

and only if L(wλ0x
−1wµ0 · µ)〈k〉 is a subquotient of Φλ

µ(M•).

Proof. The property is clearly true for complexes contained in one position as, by
construction,

Φµ
λ(Tµ(x · λ)•[k]〈k〉) ∼= L(wλ0x

−1wµ0 · µ)〈k〉.

The full statement then follows by induction, using distinguished triangles inDb(ZOµλ)
such that the cone belongs to LTµλ. �

8.4. A block which is not Ringel self-dual. Consider g = sl(4), with W = S4

with simple reflections s1, s2, s3 and choose λ, µ ∈ Λ+
int such that wλ0 = s3 and

wµ0 = s1. The Ext1-quiver of Oµλ and Oµ̂λ can be obtained from Proposition 2.2 and
[St2, Appendix A]. As we have a duality preserving isomorphism classes of simple
modules, we neglect the directions on the edges. We order the simple modules
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according to the Bruhat order. The Ext1-quiver of Oµλ is given by

L(s3 · λ)

L(s2s3 · λ)

L(s2s1s3 · λ) L(s3s2s3 · λ)

L(s3s2s1s3 · λ)

We have wµ̂0 = s3 and similarly we obtain the Ext1-quiver of Oµ̂λ ,

L(s2s3 · λ)

L(s2s1s3 · λ) L(s1s2s3 · λ)

L(s1s2s1s3 · λ)

L(s2s1s3s2s3 · λ)

This implies thatOµλ contains precisely one simple module which has a first extension
with only one other simple module. Its projective cover is a non-simple standard

module, so is not injective. Also Oµ̂λ has precisely one simple module which has a
first extension with only one other simple module. This module is a simple standard
module, which thus has an injective projective cover by [Ir]. This implies that Oµλ
is not equivalent to Oµ̂λ .
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