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Abstract 

The search for the cognitive determinants of mathematical skill has a long history. For some time it 

has been thought that mathematical proficiency is not determined by a single unique underlying 

cognitive factor but by multiple cognitive components such as memory, spatial processing or 

executive function. Yet it remains unclear exactly what these cognitive components are and how it 

is that they have an impact on mathematical skills. I argue that specific neurocognitive explanatory 

models of cognitive components promise to increase our understanding of how cognitive 

components play a role in numerical and mathematical tasks and determine performance. I outline 

how recent advances in the understanding of the neurocognitive mechanisms of sensory 

processing, working memory and executive functions lead to meaningful hypotheses about their 

functional involvement in mathematical performance. I also touch upon how this might shed light on 

dyscalculia and its comorbidity with other learning deficits.  
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The search for the cognitive systems that support mathematical skills has a long history. It 

has long been thought that mathematical proficiency is determined by multiple cognitive 

components (e.g., Geary, 1993), comprising both cognitive functions (such working memory) and 

mental representations (such as multiplication facts stored in memory). Some influential accounts 

emphasized cognitive functions, whereas others highlighted the representations. Geary (1993), for 

instance, proposed working memory to be a crucial factor explaining individual differences in math 

achievement. Dehaene (1992) specified a cognitive model that was based on three crucial types of 

representation: verbal, Arabic and analog, each being the core code for specific numerical abilities: 

the verbal code for arithmetic tables, the Arabic code for multi-digit operations and the magnitude 

code for approximate calculation.   

 

With the advent of neuroimaging techniques, attention has shifted away from this multiple 

component approach toward he search for quantity representation as the central determinant of 

math skill and dyscalculia. With brain imaging studies revealing consistent activation associated 

with experimental manipulation of quantity, the intraparietal sulcus (IPS), and in particular its more 

anterior regions forming the horizontal segment, has been taken as the brain region at the core of 

mathematical processing, the efficiency of which determines math skill (Butterworth, Varma & 

Laurillard, 2011; Dehaene, Molko, Cohen & Wilson, 2004). This view has been strengthened by 

demonstrations that this area is processing numerical magnitude in young children, as shown with 

functional magnetic resonance imaging (fMRI) in 4-year old children (Cantlon, Brannon,  Carter  & 

Pelphrey, 2006) and with EEG (Izard, Dehaene-Lambertz & Dehaene, 2008) and functional Near 

Infrared Spectroscopy (fNIRS, a brain imaging technique that measures brain activity in the outer 

surface of the brain based on the amount of absorption of near-infrared light that is emitted to the 

brain) in children of a few months old (Hyde, Boas, Blair  & Carey, 2010). Moreover the fact that 

many animal species show the same behavioral characteristics as humans when processing 
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quantity and that neurons in the homologue intraparietal areas of the macaque code numerical 

magnitude in a way that is compatible with the behavioral characteristics (Nieder & Miller, 2004; for 

reviews see Geary, Berch, & Mann Koepke, 2015), has been taken as strong evidence that the 

quantity representing neural system situated in the intraparietal sulci constitutes the phylogenetic 

precursors of formal mathematical competencies. Of course, in animals and in preverbal infants 

these representations are approximate rather than exact. That is why this system is often referred 

to as the approximate number system (ANS). The proposal that the ANS is the biologically based 

center of our intuitive understanding of number is strengthened by genetic studies showing that the 

contribution of parietal areas to mathematical tasks is heritable (Pinel & Dehaene, 2013) and that 

genetic diseases that are associated with math problems are accompanied by structural and 

functional impairments of the parietal areas (Molko, Cachia, Rivière, Mangin, Bruandet, Le Bihan & 

Dehaene, 2003). It has also been taken as an ontogenetic starting point for the development of 

more complex and schooling-induced formal arithmetic. It has been proposed that an impaired or 

inaccurate quantity representation system is taken to be the most important determinant of math 

skill and the core deficit of developmental dyscalculia. For instance, Halberda, et al. (2008) found 

that the precision with which the quantity of two sets of dots can be compared correlates 

retrospectively with scores on standardized math tests, but the strength of this relation is currently 

debated (Chen & Li, 2014; De Smedt, Noël, Gilmore, & Ansari, 2013; Fazio, Bailey, Thompson & 

Siegler, 2014). 

 

An important question that can be raised is how a single factor like the ANS can be 

reconciled with the multifaceted nature of mathematical cognition and with the heterogeneity of 

developmental dyscalculia. Indeed, the major picture that emerges from the literature is that 

developmental dyscalculia is associated with many more cognitive deficits,  is relatively 

heterogeneous and often co-occurs with other developmental disorders. Although the exact 
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numbers vary largely from study to study, it is clear that comorbidity of dyscalculia with dyslexia, 

ADHD, developmental dyspraxia among other common childhood disorders is not exceptional 

(Shalev, Auerbach, Manor & Gross-Tsur, 2000). Critically, brain imaging studies also suggest 

multiple brain areas are recruited during the solving of mathematics problems. In addition to the 

ANS in the IPS, multiple areas are engaged even during the solving of numerical problems that are 

thought to directly tap the ANS, such as number comparison (Arsalidou & Taylor, 2011; Fias, 

Menon & Szucs, 2013). Although the activations obtained with brain imaging are merely 

correlational with cognitive activity and although clear relations with math skill have not always 

been reported, the involvement of a broad set of brain regions suggests a more complex picture 

than that implied by the ANS theory. 

 

Demonstrating that number processing is subserved by multiple brain regions is an important 

first step, but in itself it leaves the functional specification of cognitive components unexplained. 

What is needed are neurocognitive theories that describe in detail the representations and 

processes that subserve arithmetic tasks and how they are implemented in neural systems. Such 

knowledge is needed to come to a deeper understanding of what determines math skill and 

difficulty. Below, I review some of the neurocognitive components that have been documented to 

be strongly related to number processing and are therefore plausible sources of variability in 

mathematical achievement. 

 

1. Accessing quantity representations 

 

Single cell recordings in the IPS of macaque monkeys (Macaca mulata) while they view dot 

displays of varying numerosity have established the precise characteristics of how quantity is 

neurally encoded. The most important property of these neurons is that they are tuned to a specific 
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number (Nieder & Miller, 2004). This property is called number selectivity and means that the 

neurons have a preferred number and respond maximally when their favorite numerosity is 

displayed (e.g. 3 dots). The neural response decreases as a function of the numerical distance 

between the number displayed (hence a weaker response for 2 and 4 compared to 3 and an even 

weaker response to 1 and 5). Using the technique of fMRI adaptation, Piazza, Izard, Pinel, Le 

Bihan & Dehaene (2004) were able to demonstrate that the same property characterizes the neural 

coding of number in the IPS of human adults, with a more precise tuning for symbolic numerals 

(e.g. ‘5’, ‘8’) than for number presented non-symbolically as collections of dots (Piazza, Pinel, Le 

Bihan & Dehaene, 2007).   

 

The question that directly follows is how sensory input that conveys numerical information, 

either in non-symbolic format or as number symbols (like digits or number words) is transmitted to 

the number-selective coding in IPS. In other words, what type of preprocessing is needed to 

transform sensory input to access the parietal quantity representations. We initially addressed this 

question with computational modeling (Verguts & Fias, 2004).  

 

Our starting point was that the transformation of neural activity in retinotopic visual areas 

induced by  a collection of dots into a number-selective neural code is non-linear. More concretely, 

when two dots are presented, then the neuron with the preference for 2 should respond, but when 

another dot is added, then the number 2 neuron should not respond, but rather the number 3 

neuron should respond. Consequently, a direct coupling between sensory input and number-

selective neurons is not a sufficient explanation. A computationally plausible way to accomplish 

such non-linear transformation is to have an intermediate layer. We built an artificial network that 

comprised an additional layer of neurons between an input layer and an output layer. We used the 

back propagation learning algorithm (Rumelhart & McClelland, 1986) and we trained the network to 



  neurocognitive components 

  6 

give appropriate number-selective responses. After learning, the intermediate layer had learned to 

summate or accumulate the number of objects that were presented at input. More concretely, with 

more objects presented, more neurons became active. Based on this work, we hypothesized that 

for non-symbolic quantities, the number-selective neurons in IPS can only be a accessed via a 

preprocessing stage that converts visual input into an accumulation code, which is sensitive to 

number, but is not number-selective. 

 

The biological reality of this hypothesis was later confirmed by the observation that neurons in 

the lateral intraparietal area of the macaque monkey followed the principles of accumulation coding 

(Roitman, Brannon  & Platt, 2007). This observation was further supported with a series of human 

fMRI studies demonstrating a pattern of brain activity that is consistent with the hypothesis of 

accumulation coding (Santens, Roggeman, Fias & Verguts, 2010). A region of the parietal cortex 

that is functionally equivalent to the lateral intraparietal area of the monkey, but in humans located 

more medially, showed increasing  activation with visual displays containing more dots. It was also 

shown that this region was more important during the processing of non-symbolic numerosities 

compared to the processing of Arabic numerals, which is consistent with the model, as mapping 

symbols to number-selective neurons can be done directly and does not require preprocessing. We 

also demonstrated that, although accumulative activity in this region has been shown to be limited 

to 4 elements in visual short-term memory tasks (Todd & Marois, 2004), accumulation does not 

level off at four elements in the context of a task requiring enumeration (Knops, Piazza, Sengupta, 

Eger & Melcher, 2014; Roggeman, Fias  & Verguts, 2010). To situate accumulation coding and 

number-selective coding with respect to each other, my colleagues and I performed an fMRI 

adaptation study, in which we could show that the processing stream from visual input, via number-

sensitive to number-selective processing follows a posterior to anterior gradient along the dorsal 
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visual processing stream, which runs from occipital to parietal cortex (See Figure 1; Roggeman, 

Santens, Fias & Verguts, 2011). 

 

It is clear that considerable processes precede the seemingly simple translation of dot displays 

into number-related neural codes. Although there is no direct evidence that explicitly supports this, 

it can reasonably be predicted that the integrity and quality of the accumulation system and by 

extension of the whole dorsal stream (i.e. visual information that is processed from occipital to 

parietal cortex) is a prerequisite for an efficiently functioning number-selective processing system. 

As the number-selective processing system forms the neural implementation of the ANS, this 

would imply that not only the number representation itself but also the mechanisms that provide 

access to it can potentially contribute to mathematics learning. It is not difficult to imagine that 

impoverished preprocessing may, through development, lead to an ANS low in precision. 

 

Despite the fact that converting symbolic numbers (i.e. in Arabic or verbal format) into a 

number-selective neural code is less complicated, in the sense that it is a linearly separable 

problem, the pathways that are followed also need to be intact for normal development. The 

precise mechanisms of the numeral to number-selective coding pathway are not fully understood, 

but evidence is accumulating that an inferior temporal region in the ventral stream of the right 

hemisphere is involved (Shum, Hermes,  Foster,  Dastjerdi, et al., 2013). The precise properties of 

this visual number form area are not yet described. Crucially, the Arabic number system is a base-

ten positional system in which numeral position determines the associated quantity (e.g., the 4 in 

43 represents 40, but 4 in 34). Hence, determining position-specific digit identity is essential, thus 

structurally resembling - at least partially - the coding of position of letters in word reading. It might 

therefore be very revealing to explore to what extent the visual number form area (in the right 

hemisphere) and the visual word form area (in the left hemisphere) have common processing 
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characteristics and to what extent they differ from each other. This information might open a 

window to understand how and why developmental dyscalculia regularly co-occurs with 

developmental dyslexia (Shalev et al., 2000). It also might constitute a more detailed functional 

elaboration of the idea that developmental dyscalculia, as expressed in poor ANS representations, 

might be attributed to initial deficiencies in mapping numerals to number magnitude (Noël & 

Rousselle, 2011; Rousselle & Noël, 2007; vanMarle, Chu, Li, & Geary, 2014). 

 

2. Working memory: the role of serial order 

 

Of course, number processing as it occurs in arithmetic or math consists of more than 

coding the numerical magnitude value of a numeral. It requires relating different numerals to each 

other, possibly producing new ones, as when computing the sum of two numbers. This requires a 

working memory that permits relevant numbers to be kept in mind, relating them to each other, and 

performing operations on them (Bull & Lee, 2014). This is confirmed by studies showing that 

occupying working memory resources in dual-task situations may impair number processing tasks. 

This is true for verbal as well as for visuo-spatial working memory, depending on the task (see 

Raghubar, Barnes & Hecht, 2010). Also correlational approaches reveal a link between working 

memory and numerical task performance as well as general math skill (for a review, see Geary, 

1993). Furthermore, brain imaging evidence shows that brain activity in the IPS during a working 

memory task is predictive of arithmetical performance two years later (Dumontheil & Klingberg, 

2012). 

 

Working memory is a cognitive function that consists of several subcomponents. Of course, an 

important overall distinction  is between verbal working memory operating via a phonological loop 

and visuospatial working memory operating as a visuospatial sketchpad (Baddeley, 1986). The 
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differential contributions of these two working memory modalities to mathematical processing have 

been described to some extent, with verbal working memory contributing more to rote verbal 

memory retrieval as in table-based multiplication and visuospatial working memory contributing 

more to strategy-based calculation as in column-wise addition (Imbo, Vandierendonck & De 

Rammelaere, 2007). Yet, there are other basic subcomponents to be distinguished. A first 

distinction that can be made is between item memory and order memory. Both aspects of 

information are important for efficient working memory and are based on distinct neural circuits 

(Majerus, D’Argembeau, Martinez Perez, Belayachi, et al, 2010). Second, storage and operation 

are seldom distinguished in their relation to mathematical achievement. Overall, the specific 

relationships of these subcomponents of working memory with math skill have not been explored. 

Typically, investigations of working memory involvement in math skill are confined to relating 

capacity as a relatively global measure of working memory function to performance. Yet, there is 

reason to believe that the link between working memory and number processing can be described 

at a more refined functional level. I will focus on order working memory and attentional 

mechanisms in working memory respectively to illustrate this point.  

 

2.1. Number processing shares neural resources with working memory 

 

At a behavioral level, there is a close resemblance between processing the ordinal aspects 

of number (which is the larger number?) and the ordinal aspects of information that is maintained 

in working memory (which of the two items was further in the working memory sequence?). An 

important factor driving performance in both number comparison and working memory order 

judgments is the distance effect. It is more difficult to determine which of two numbers is the larger 

the closer the numbers in terms of magnitude of the numbers. Similarly, the closer two items are in 

working memory, the more difficult it is to determine which of the two items is positioned before (or 
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after) the other (Marshuetz, 2005). In addition, Marshuetz et al.’s (2000) early brain imaging study 

of adults showed that judgments about serial order in working memory (Remember z-t-g-p-l. Are t-

g in the correct order?) but not identity judgments (Did t belong to the working memory sequence?) 

recruit areas in the bilateral IPS similar to those activated in number processing.  

 

In a study that used the same type of order and item judgment tasks, Majerus et al. (2010) 

went one step further. They presented either sequences of faces or of nonwords and engaged 

participants in an order judgment task or an item judgment task. It was discovered that the IPS of 

the right hemisphere was involved in order judgments with both types of stimuli, suggesting that 

the neural coding of serial position in working memory occurs at least partially in a modality-

independent way. Modality-specific effects were observed for face stimuli in the right fusiform area 

and for letter strings in the left hemisphere language processing areas. These results suggest that 

working memory emerges from the use of modality-independent ordering processes geared toward 

sensory networks that underlie the processing and storage of modality-specific item information. 

The fact that the intraparietal sulci are involved in processing order in a stimulus-independent 

fashion is further corroborated by a study that investigated to extent to which the processing of 

numerical and of alphabetical order recruit the same brain areas. This study revealed that the brain 

activations induced by a number comparison task (which of two numbers is the largest?) and by an 

alphabet position comparison task (which of two letters is the furthest in the alphabet?) overlapped 

in a number of brain areas comprising the intraparietal sulci and premotor cortices (Fias, 

Lammertyn, Caessens & Orban, 2007), which are highly similar to those brain areas that are active 

in the serial order working memory tasks as described above.  

 

Although suggestive of overlapping neural circuitry for the processing of order as expressed 

by numbers, letters, or position in working memory, these studies by themselves are not 
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conclusive. Indeed, because of the fact that there are thousands of voxels in the brain and for 

methodological and statistical reasons, it is impossible to determine an overlap purely de visu. 

What is needed is a demonstration of the very same voxels being active in the different task 

contexts, in the very same subject and in the very same scanning session. That is exactly what 

Attout, Fias, Salmon & Majerus (2014) aimed to do. They searched for the neural correlates of the 

distance effect as it was observed in three tasks addressing order: a number comparison task (is 

this number larger than 65?), an alphabet position task (are the two letters in alphabetic order?) 

and a working memory order task (do the two letters occur in the same order as you have just 

learned them?). It was found that the activity in the  horizontal segment of the left IPS reflected the 

distance effect in all three tasks. The corresponding area in the right hemisphere was jointly 

activated by the number and working memory task, although it was not activated in the alphabetic 

task. Also in some superior frontal areas that are typically observed in working memory tasks, a 

overlapping activations between the three tasks were observed.  

 

Hence, generally speaking, brain imaging studies strongly suggest that the neural circuitry 

that is used to process numerals is strongly related to the processing of serial order in working 

memory. It is not clear at this point, however, which common operational mechanism is expressed 

in this overlapping neural circuitry. There are a several possibilities that one can consider. First, it 

is possible that somehow numbers are used to provide the serial position code of working memory. 

This can be done in a more or less explicit way as when using counting to tag items in working 

memory (Noël, 2009). However, it is also possible that the link is not made via procedural aspects 

of counting. Instead it may be that it are the representational characteristics of the number-

selective neural system itself that are important. Botvinick and Watanabe (2007) showed that a 

computational model of working memory in which ordinal rank was coded with the same properties 

as number-selective neurons is able to predict behavioral serial position effects in working memory 
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in great detail. Second, it is also meaningful to consider the possibility that a number is not 

processed in isolation but always in the context of other numbers, whereby working memory 

provides this context. By placing numbers in working memory together with other numbers and by 

doing this in a systematic way, numbers may acquire their functional meaning. A straightforward 

prediction of this idea is that number processing is to a large extent context dependent. One of the 

cases where a strong context dependency is observed is the relationship between number 

magnitude and space. That is what will be discussed in the next section.  

 

2.2. Serial position in working memory links numbers to space 

 

The representation and processing of number is tightly connected to the representation and 

processing of space. This is typically interpreted as an expression of the fact that numbers are 

represented as positions on a spatial mental number line typically running from left to right in left-

to-right reading cultures and vice versa in right-to-left reading cultures (Dehaene, Bossini & Giraux,  

1993).   

 

One of the most important pieces of evidence in support of this link between number and 

space comes from the SNARC effect, which is an acronym for Spatial Numerical Association of 

Response Codes (Dehaene et al., 1993). It reflects faster left hand than right hand responses for 

small numbers and faster right hand than left hand responses for large numbers, expressing a 

clear association between small numbers and left and large numbers and right. In right-to-left 

reading cultures, these associations are reversed (Shaki & Fischer, 2008; Zebian, 2005;). The 

SNARC effect isn’t confined to one particular task, but has been observed in parity (odd-even) 

judgment, magnitude comparison, and even in tasks that don’t require processing of the number 

semantics at all, such as indicating whether a number is presented in italics or not, or even when a 
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number is presented merely as a background against which shapes are presented and the shapes 

have to be responded to (Fias, Lauwereyns & Lammertyn, 2001). This suggests a high degree of 

automatic processing of number magnitude and its relation to space.  

 

The SNARC effect is commonly interpreted as an expression of the fact that a number’s 

magnitude is represented as a position on an oriented number line in memory (see Hubbard, 

Piazza, Pinel, & Dehaene, 2005). Yet, a number of observations suggest that the associations 

between number and space are more flexible than would be expected from a long-term memory 

representation. First, the SNARC effect is range dependent. Dehaene et al. (1993) and Fias, 

Brysbaert, Geypens & Ydewalle  (1996) showed that numbers 4 and 5 were preferentially 

responded to with the right hand when they were represented in the context of small numbers (i.e. 

the range from 0 to 5). However, when the same numbers were presented in the context of larger 

numbers (i.e. the range from 4 to 9), the numbers 4 and 5 showed faster left than right hand 

responses. So apparently, it is not long term absolute numerical magnitude that drives the SNARC 

effect but rather the number’s magnitude relative to the context in which it occurs. Second, it has 

been shown that the SNARC effect depends on visual imagery (Bächtold, Baumüller & 

Brugger,1998). When participants are asked to imagine number stimuli as being placed on a ruler 

a typical SNARC effect is observed. Yet, when participants are instructed to imagine numbers as 

being positioned on a clock face, the SNARC effect reverses, with the small numbers associated to 

right and the large numbers associated with left, which is consistent with how numbers appear on a 

clock. Third, the SNARC effect has been shown to be flexibly dependent on reading habits (Shaki 

& Fischer, 2008). When Russian - Hebrew bilinguals had read a Russian text just before the 

SNARC effect was measured, a normal SNARC effect was observed, but after having read a 

Hebrew text, which is read from right to left, the SNARC effect was reversed. All these 
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observations indicate that spatial coding is not inherently associated to number but that it is 

constructed during task execution, suggesting a crucial role of working memory.  

 

A straightforward way to test the involvement of working memory is to use a dual-task 

design in which one task occupies working memory resources and then measure the SNARC 

effect while executing the main number processing task. Herrera, Macizo & Semenza (2008) used 

this approach with a visuospatial working memory load and found that the SNARC effect in a 

number comparison task was abolished. van Dijck, Gevers & Fias (2009) extended this approach 

by adding a condition in which verbal working memory was loaded by asking participants to keep a 

string of consonants in memory and by including a parity judgment task. It was observed that 

working memory load indeed abolished the SNARC effect in the two tasks but that it occurred in a 

modality-dependent fashion. The parity judgment SNARC effect was abolished by a verbal working 

memory load but not by a visuospatial working memory load, the opposite being the case for the 

number comparison task.  

 

The necessity of having working memory resources available for the SNARC effect to occur 

raises an important question: Which aspect of working memory processing determines the SNARC 

effect? As was highlighted above, working memory order tasks and number processing tasks 

share neural resources, hence a plausible candidate is the processing and representation of serial 

position (Fias, van Dijck & Gevers, 2011). One possibility is that it is serial position in working 

memory rather than number magnitude itself that is related to space. This can explain the SNARC 

effect if one makes the additional assumption that while executing a number task working memory 

is invoked to temporary store number stimuli and their responses as part of the task set to facilitate 

and to optimize task performance (Monsell, 2003).  Storing numbers in working memory as a 

function of magnitude is a very efficient way to fully exploit the limited working memory resources 
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as it allows chunking (rather than having one number in each available slot, one can organize 

numbers in chunks [e.g. 1-2, 3-4, 5-6 etc.] and then allocate a chunk to a slot) and as it facilitates 

efficient access to specific numbers (e.g. if you have located 4 then you know that 5 is next to it).  

 

To test the hypothesis that serial order in working memory is spatially coded and to 

determine whether this drives the SNARC effect, van Dijck and Fias (2011) designed the following 

experimental procedure. Participants were asked to encode and remember a sequence of numbers 

that was ordered arbitrarily (e.g. 6-3-1-9-8-4). During the retention interval numbers were 

presented and participants had to perform a parity judgment task, but only if the presented number 

was part of the memory list. This latter restriction was imposed to make sure that participants 

accessed working memory to solve the task. Thereafter a recognition task was administered to 

verify whether the participants had correctly memorized the sequence. This cycle (encoding, parity 

judgment during retention interval and then recognition task) was then repeated each time with a 

different list of to-be-remembered numbers. With this design it is possible to separate numerical 

magnitude from serial order in working memory and thus to determine whether the left or right hand 

response times were modulated by serial position in working memory and/or numerical magnitude. 

It was clearly found that serial position in working memory was associated to space with initial 

items receiving faster left hand response than right hand responses, the opposite being true for 

items towards the end of the memory sequence. Number magnitude by itself was not 

systematically associated to the side of response.  

 

To take this idea one step further, it was reasoned that the generator of the SNARC effect 

is not specifically number related and therefore does not have anything to do with numbers as such 

and that therefore the same effect can be obtained with whatever information is stored in working 

memory. This was tested in a follow-up experiment in which it were not sequences of numbers that 
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were stored in working memory but rather fruit and vegetable names. And a fruit/vegetable 

categorization task was administered instead of a parity judgment task. Again an association was 

found between position in the sequence and space, with initial items associated with left and end 

items associated with right. Interestingly, the same participants were subsequently administered a 

classic parity judgment task to measure their conventional SNARC effect. It was found that the size 

of the position-space association correlated significantly with the size of the SNARC effect, 

corroborating the hypothesis that it is serial position in working memory that drives the SNARC 

effect.  

 

         In sum, the temporary position-space associations are what drive the SNARC effect, rather 

than the long-term semantic representations of number to which the SNARC effect is traditionally 

ascribed. This provides a natural explanation for the fact that the SNARC effect has been shown to 

be flexibly dependent on the range of numbers used, on reading habits and on visual imagery, as 

well as for the fact that the SNARC effect has also been demonstrated with non-numerical ordinal 

information like letters, days of the week or months of the year (Gevers, Reynvoet & Fias, 2003; 

Gevers, Reynvoet & Fias, 2004). It is suggested that efficient number processing does not merely 

entail retrieving the correct semantic information and corresponding responses, but that it 

mobilizes working memory resources to create a mental workspace in which information is 

systematically ordered to facilitate performance.  

 

2.3. Workspace engages spatial attention 

 

      Number processing has been shown to engage mechanisms of spatial attention, the original 

idea being that spatial attention is used to move back and forth along the mental number line. The 

main sources of evidence are twofold. First, Fischer, Castel, Dodd & Pratt (2003) used a variant of 
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the Posner cueing paradigm. In this paradigm a spatial cue is typically presented that directs 

attention to the left or the right. If a target is presented at the cued location, then target detection is 

facilitated. In Fischer et al.’s variant, a numeral was presented centrally as the cue. It was found 

that a small number cue facilitated detection of a left target and that a large number cue facilitated 

right target detection. Second, Zorzi, Priftis & Umiltà (2002) examined left hemineglect patients’ 

performance on a number bisection task. After brain damage to the right hemisphere, left 

hemineglect patients ignore the left side of visual space. This is truly an attentional deficit and is 

not caused by problems at the level of sensory input. As a consequence of their attentional bias, 

patients exhibit behaviors like eating only the right side of their plate or shaving the right but not the 

left side of their face. In more formal tests, neglect patients show a rightward bias in a line bisection 

task: when asked to mark the midpoint of a line, patients deviate toward the right since they ignore 

the left side of the line. Analogous to this, Zorzi et al. (2002) asked left neglect patients which 

number is the midpoint between two other numbers. The patients produced answers that 

systematically deviated toward larger numbers. So, for instance, when asked which number is the 

midpoint between 1 and 9, neglect patients say 6 or 7 rather than the correct number 5. 

Importantly, this occurs in the absence of problems in mental arithmetic. Hence, patients have no  

difficulty computing the correct result of problems like (1+9)/2, excluding the possibility that their 

number bisection error is due to an impaired capacity for mental arithmetic. 

 

Recall the theoretical proposal that the link between numbers and space is not so much 

attributable to the properties of the long term representation of number magnitude taking the form 

of a spatially oriented mental number line, but rather to the involvement of working memory to 

serially order numbers as a function of task requirements. Therefore one can wonder to what 

extent the number cueing paradigm and the number bisection task in neglect derive from spatial 

attention mechanisms that operate in the workspace in which serial position is spatially coded.  
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To test whether spatial attention operates in working memory, van Dijck, Abrahamse, 

Majerus & Fias (2013) embedded the cueing paradigm of Fischer et al. (2003) in a working 

memory context. Participants first had to memorize a list of numbers in arbitrary order and during 

the retention interval they had to detect a left or right appearing target that was preceded by a 

number cue, only having to respond when the number belonged to the list they maintained in 

working memory (see Figure 2). The results show a cueing effect, not on the basis of the numerical 

magnitude of the number, but of the position of the number in the memorized list: with a cue from 

the beginning of the list, left targets were detected faster and with a cue from the end of the list, 

right targets were detected faster. This was the case, irrespective of whether participants indicated 

target detection by a manual or a vocal response and was also replicated in some modified 

versions of this paradigm (for an overview see Abrahamse, van Dijck, Majerus & Fias, 2014). The 

effect is strong and robust, in contrast to the original Fischer et al. study which has been proven to 

be difficult to replicate (Zanolie & Pecher, 2014). It is highly likely that the reason that the effect is 

weak in the original paradigm is due to the fact that encoding in working memory was not required 

for task performance and that therefore subjects may not have consistently stored numbers in 

working memory spontaneously (van Dijck, Abrahamse, Acar, Ketels & Fias, 2014). 

 

As far as the number bisection bias in neglect patients is concerned, there are also 

indications that working memory is involved. First, it has been shown that the bisection bias with 

lines does not correlate with the bisection bias observed with numbers (Rossetti, Jacquin-Courtois, 

Aiello, Ishihara, Brozzoli & Doricchi, 2011). Even more importantly, the number bisection bias was 

only observed in patients whose lesion extended more anteriorly in frontal areas and whose 

working memory capacity was affected (Doricchi, Guariglia, Gasparini & Tomaiuolo, 2005). 

Second, van Dijck, Gevers, Lafosse, Doricchi & Fias (2011) reported on a single case who showed 
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right spatial neglect after left hemisphere lesion as evidenced by a bias towards the left in a line 

bisection task. Surprisingly, however, this patient did not present a bias toward smaller numbers in 

the number bisection task as expected, but a bias towards larger numbers. Her SNARC effect was 

normal with small numbers associated with left and large numbers with right, indicating that her 

number-space associations were not reversed as they should have been if numbers are spatially 

arrayed on a mental number line. Further investigations of her working memory showed that she 

had pronounced problems with initial items of verbal sequences encoded in working memory, 

which is consistent with the direction of her number bisection bias. Of course, this is only a single 

case and it is difficult to judge at this point to what extent the involvement of a specific working 

memory deficit accounts for the pattern of number bisection bias in neglect patients. A study 

involving multiple cases shows that a working memory deficit is not the determining factor in all 

cases (Storer & Demeyere, 2014), but that study does not exclude the possibility that number 

bisection bias can be determined by multiple factors of which working memory is one (e.g. van 

Dijck, Gevers, Lafosse & Fias, 2012). 

 

In sum, it is clear that number processing, spatial attention and working memory are tightly 

interwoven. Moreover, they recruit common brain areas, in particular the intraparietal sulci. A 

crucial question, then, is to what extent this configuration of rather basic processes is a 

determining factor of mathematical skill. In a study that investigated number processing in a group 

of children with visuospatial disabilities, Bachot, Gevers, Fias & Roeyers (2005) found that children 

(aged 7 to 12) with a small visuospatial working memory capacity and poor performance on 

number concept (e.g. 12 is 9 apples more than?) and complex addition tasks (26+63=) also 

exhibited a reduced SNARC effect in a number comparison task, compared to a control group that 

was matched on age and verbal intelligence.  In contrast, evidence suggests that in adults there is 

an opposite relation between the SNARC effect obtained in a parity judgment task and 
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mathematical proficiency (Hoffmann, Mussolin, Martin & Schiltz, 2014) with smaller SNARC effects 

in math-proficient participants, and no mediating effect of visuospatial working memory capacity. 

The authors attribute this to the fact that those proficient in math are more efficient in inhibiting the 

magnitude information which is irrelevant in a parity judgment task (see also Hoffmann, Pigat, & 

Schiltz, 2014). Yet, the Bachot and the Hoffmann studies remain essentially correlational in nature 

and don’t directly address the link between space and mental arithmetic. A recent study used fMRI 

to directly assess the involvement of the neural circuits of spatial processing in complex mental 

arithmetic (2-digit addition and subtraction). Knops, Thirion, Hubbard, Michel & Dehaene  (2009) 

used multivariate decoding to distinguish the patterns of activation in parietal regions between 

leftward versus rightward eye movements. Interestingly these same patterns also distinguished 

between subtraction (associated with leftward) and addition (associated with rightward), suggesting 

the involvement of mechanisms of spatial attention in mental arithmetic. To what extent this reflects 

the movement of spatial attention over working memory positions or over long-term number 

representations needs to be determined. Recent theories of working memory even suggest that the 

distinction between working and long-term memory may not be that strict after all. Theories like the 

one of Cowan (1999) or Oberauer (2009) or suggest that working memory builds on activations in 

long-term memory with mechanisms of attention operating on these pre-activated segments of 

long-term memory (see also D’Esposito & Postle, 2015). 

 

Clearly, a lot of work needs to be done to establish the details of how number, space and 

working memory interact and to test how it relates to mathematical proficiency. Whether or not the 

mechanism of orienting attention in a spatially-oriented working memory sequence will prove to 

contribute to mathematical skills, it is an illustrative case of how constructing and testing 

functionally explicit models will permit progress to be made in advancing our understanding of how 

it is that working memory and mathematical skill might be related. It is also worth considering to 
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what extent ordinal working memory processing also contributes to other achievement domains 

such as language development (Majerus, Poncelet, Greffe, & Van der Linden, 2006), and 

eventually may provide explanatory ground for explaining comorbidities between developmental 

dyscalculia and dyslexia.    

 

3. Executive functions 

 

For efficient mathematical learning and performance, it is necessary to be endowed with 

good sensory processing systems (to estimate numerosity or to encode numerical symbols) and 

efficient systems to store, maintain and access information in memory (for instance, to keep track 

of intermediate results of calculations), but of equal importance are the executive functions that 

control the way these information processing and storage systems are orchestrated to be optimally 

configured for dealing with requirements dictated by task and context, for instance, for removing 

the results of intermediate calculations from working memory when they are not necessary 

anymore (Hitch, 1978).     

 

Numerous studies have confirmed the contribution of executive functions to efficient 

arithmetical processing. Correlational studies have found mathematical and arithmetical skill to be 

associated with individual differences in executive function. An excellent example is the finding 

Bull, Johnston & Roy (1999) arithmetic performance is correlated with scores on the Wisconsin 

card sorting task suggesting the involvement of inhibitory process in mental arithmetic. Other 

studies have used dual-task paradigms to show that arithmetic performance deteriorates when 

participants simultaneously perform a task that consumes executive resources. This has been 

shown to be the case for multi-digit addition (Imbo, Vandierendonck & De Rammelaere, 2007) and 

multiplication (Imbo, Vandierendonck & Vergauwe, 2007), but, intriguingly, also for single-digit 
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arithmetic (e.g. De Rammelaere, Stuyven, & Vandierendonck, 2001). The latter finding suggests 

that the impact of executive functions also comprises relatively basic levels of processing and is 

not restricted to complex capacities like storage of intermediate outcomes as involved in carrying or 

borrowing (Hitch, 1978).  

  

Although the existence of a link between executive control and arithmetic performance is 

clear, the literature on executive functions typically considers it a very heterogeneous construct 

comprising several independent sub functions (e.g. updating, task shifting, monitoring, etc.; 

Miyake, Friedman, Emerson, Witzki, Howerter & Wager, 2000). In the dual-task studies in 

particular, the applied executive load typically is not further specified and does not permit one to 

pinpoint precisely which executive functions contribute to efficient mental arithmetic.  

 

At the same time, the specification of mental arithmetic at the processing level also remains 

rather vague. Processes like retrieval- and strategy-based calculation are distinguished but many 

questions remain unanswered: How exactly are these processes executed? Which representations 

do they depend on? How do they elapse over time? Which neural resources do they recruit from? 

Finding an answer to such questions is extremely difficult, especially if one takes into account that 

executive involvement is very much dependent on the nature of the task and may vary with age 

and/or level of skill (Raghubar et al., 2010).  

 

Although the previous sounds somewhat discouraging it should not be a reason to abandon 

hope. Indeed, adding computational modeling and neuroimaging to the arsenal of instruments to 

study executive control has been shown to permit a level of theorizing that allows a detailed 

explanatory account of an important cognitive control function. Specifically, by imposing 

computationally derived and biologically plausible constraints, the executive function of 
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performance adaptation has now become largely understood at a neurocognitive mechanistic level. 

Recently, this knowledge has been applied to the context of mental arithmetic.  

 

Performance adaptation is the capacity to self-regulate with the goal of optimizing behavior. 

This form of self-regulation is often referred to as cognitive control. Cognitive control can be seen 

as the operation of top-down functions that configure the components of a cognitive system in such 

a way that they are adapted to efficiently deal with the task requirements. Cognitive control 

requires the coupled operation of a monitoring system and an adaptive system, together forming a 

closed loop system. The monitoring system keeps track of how well the participant is doing and on 

the basis of that information the adaptation system imposes top-down control to optimise 

performance. The neural mechanism that underlies this control loop has been rather well described 

with the anterior cingulate cortex (ACC) and the dorsolateral prefrontal cortex (DLPFC) being key 

structures. The ACC continuously monitors task performance and if problems in performance (a 

difficult or erroneous response) are detected, then a signal is sent to the DLPFC which in turn will 

then impose top-down changes on the neural networks involved in task execution in order to 

optimize the efficiency of task performance with reduced risk of committing errors  (Botvinick, 

Braver, Barch, Carter & Cohen, 2001). This mechanism has been mainly investigated with 

standard conflict tasks like the Stroop task, the Simon task or the flanker task, in which relevant 

stimulus aspects (e.g. ink color) need to be processed in the context of irrelevant stimulus aspects 

(e.g. color word) that may interfere with the processing of the relevant information. Recently, this 

framework has begun to be applied to the context of arithmetic performance.  

 

Desmet, Imbo, De Brauwer, Brass, Fias & Notebaert (2012) investigated the behavioral 

consequences of errors in mental arithmetic, more precisely in verification of multiplication facts in 

which participants have to indicate whether a presented answer for a single-digit multiplication 
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problem is correct or not (e.g. 4x5=20, or 6x7=48). It was observed that accuracy improved and 

reaction times slowed down on trials that followed errors. This was the case for errors that were 

committed by the participant, but also for trials in which an erroneous answer was proposed (e.g. 

8x7 = 48), provided that the incorrect answer was table-related (i.e., a correct answer to another 

simple multiplication problem). This finding clearly supports the fact that cognitive control 

processes are at play when people solve even simple arithmetic problems.  

 

A recent neuroimaging study confirms the involvement of ACC and DLPFC while solving 

arithmetic problems. Ansari, Grabner, Koschutnig, Reishofer & Ebner (2011) found stronger 

activation of ACC and bilateral DLPFC when participants committed an error while solving simple 

arithmetic problems of any operations. Interestingly, the right DLPFC was found to be modulated 

by mathematical competence as measured by a standardized mathematical test with highly 

competent individuals activating this area more on an incorrectly solved trial than less skilled 

individuals, suggesting efficiency of error detection is related to overall mathematical competence, 

or that individuals who are sensitive to errors develop stronger mathematical skills. 

 

Rinne and Mazzocco (2014) established a developmental link between cognitive control 

and proficiency. In a longitudinal study they found that the successful detection of errors 

contributes to the development of arithmetic proficiency from grades 5 to 8. More specifically, they 

investigated the extent to which a good alignment or calibration between confidence in judgments 

of arithmetic performance and the accuracy of those judgments is related to the development of 

arithmetic skill. Calibration was shown to be related to performance, that it was particularly poor in 

children with mathematics learning disability and calibration in grade 5 predicted gains in arithmetic 

accuracy from grade 5 to grade 8.   
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It is clear that cognitive control and self-regulation contribute to mathematical skill. It is 

interesting to see how a neurocognitive framework has proven to be inspirational to start to form an 

initial picture of the underlying mechanisms. Yet, it is also important to realize that the models that 

are developed in the context of basic laboratory tasks don’t necessarily transfer to the context of 

mathematical skill. Laboratory tasks are quite simple and often don’t require much more than 

mapping a stimulus to a response, without much variety in solution strategies. In contrast, 

arithmetic and math often engage tasks that are more complex and can be solved by multiple 

procedural strategies (Lemaire & Siegler, 1995). An interesting avenue for further research could 

be to see how quality of performance determines strategy selection (Uittenhove & Lemaire, 2012; 

for a similar idea in a developmental perspective, see Qin, Cho, Chen, Rosenberg-Lee, Geary, & 

Menon, 2014).  

  

4. Discussion and conclusions 

 

Above I listed a number of neurocognitive components that are meaningfully related to 

mental arithmetic and mathematical processing and can reasonably be expected to be contributing 

factors of achievement and performance levels. Certainly, this list is not complete. There have 

been recent advances in understanding the memory mechanisms that are involved in the learning 

and retrieval of basic arithmetic facts. An important proposal has been made by De Visscher & 

Noël (2014a) who specify sensitivity to interference in memory as an important determinant of 

efficient storage and retrieval of multiplication facts. The nature of the number system results in a 

high degree of similarity among all arithmetic problems, and this in turn creates the potential for 

proactive interference that can hinder efficient storage of the arithmetic tables. Children who are 

particularly sensitive to such interference may experience difficulties memorizing or retrieving basic 

arithmetic facts (De Visscher & Noël, 2014b), a cardinal feature of mathematical learning 
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disabilities (Geary, 1993). In line with this, there are studies that show that intrusion of related 

information is common when these children attempt to retrieval addition or multiplication facts 

(Barouillet, Fayol, & Lathulière, 1997; Geary, Hamson, & Hoard, 2000). Another domain where 

considerable progress is to be expected is the study of the contribution of general learning 

systems, like the hippocampus for memory formation or the basal ganglia for procedural learning. 

A recent study describes results that emphasize the fruitfulness of this path. Supekar, Swigart, 

Tenison, Jolles, Rosenberg-lee, Fuchs & Menon (2013) found that hippocampal volume and the 

way the hippocampus is  functionally connected to prefrontal areas an to the basal ganglia is 

predictive of performance gain induced by a math tutoring program in grade 3 children.   

 

The picture that arises from this functional analysis clearly has a broader scope than the 

idea of a unique explanatory factor determining mathematical competence, specifically the fidelity 

of number representations in the ANS. Essentially, it states that one can be endowed with a very 

sharp and efficient ANS, but efficient use of this system is dependent on many other, poorly 

understood brain and cognitive systems. Of course, my view that a broad spectrum of related 

neurocognitive components needs to be considered is not a plea to dismiss the importance of a 

well-functioning system for quantity representation. To the contrary, quantity representation is a 

vital component of number knowledge and how it can develop and be learned (see for instance, 

vanMarle et al., 2014, who suggest that the ANS supports children’s initial learing of numerical 

symbols (e.g., number words) and their meaning (i.e., their cardinal value) but then becomes less 

important as children become more proficient with formal, symbolic mathematics). Yet, I believe 

that it should be seen as a component in the context of an ensemble of other components that 

together determines what level of mathematical proficiency can be achieved. It is the study of these 

interactions that opens up interesting perspectives. Indeed, the efficiency of some components is 

likely to have an impact on the limits of representational accuracy that can be achieved with 
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practice or training. For instance, with poorly developed systems to map digits to quantity 

representations (Noël & Rousselle, 2011), it is well possible that the quantity representations don’t 

receive the proper input needed to increase the acuity of these representations. Alternatively, it is 

not unthinkable that inaccurate quantity representations put heavy demands on other cognitive 

components, such as executive control.  

 

Compared to a single-component view, a multi-component framework leads to a 

considerable increase in the degrees of freedom for theory development. Although this can be 

viewed as a significant disadvantage from a pragmatic point of view, a certain degree of theoretical 

complexity is the only way to fundamentally increase our understanding of the multifaceted nature 

of mathematical cognition. With increasing complexity and number of components it becomes 

progressively difficult to decide on the validity of one theory over the other. An important way out is 

to nail down the characteristics of the contributing components. This can be achieved by appealing 

to something other than the behavioral data that one wants to account for. In this respect a neural 

specification of the characteristics of the proposed components can provide the necessary 

constraints to limit the number of theoretical accounts (Anderson, 1978). Here, a lot of work has 

already been done, in the sense that the neural underpinnings of quantity representation have 

been described in rather good detail. For the other components we aren’t quite as far yet, but I 

believe that, as I have tried to indicate above, some groundwork has been laid. By further refining 

our understanding of  the neuro-functional organization of these other cognitive components, we 

can increasingly constrain the number of viable theoretical frameworks and ultimately come to a 

satisfactory understanding of how the synergistic interactions among several cognitive components 

permit the mastery of mathematical skills in all their facets, including how they develop – both 

normally and atypically as in dyscalculia or disability. 
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Figure Captions 

 

 

Figure 1: Three consecutive stages of processing visual numerosities are displayed. After visual 

input (consisting of a collection of dots), elements are first located in space (red). Next, a number-

sensitive coding stage accumulates the information available in the location map (green). In a third 

stage, number-selective neurons identify the accumulated number of elements. Adapted from 

Roggeman et al. (2011).  

 

 

Figure 2: Participants first have to encode a series of numbers into working memory. During the 

retention interval they perform a dot detection task. After the fixation cross, a number cue is flashed 

briefly. If the number belongs to the memorized set, participants have to detect the appearance of 

a dot, in which case they have to press a button. After the retention interval a number of questions 

are asked to evaluate if the participants had correctly memorized the series of numbers. Adapted 

from van Dijck et al. (2013). 
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Figure 2 

 

 

 


