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Abstract 

1. Temperate forests across Europe and eastern North America have become denser since 

the 1950s due to less intensive forest management and global environmental changes 

such as nitrogen deposition and climate warming. Denser tree canopies result in lower 
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light availability at the forest floor. This shade may buffer the effects of nitrogen 

deposition and climate warming on understorey plant communities. 

2. We conducted an innovative in-situ field experiment to study the responses of co-

occurring soil microbial and understorey plant communities to nitrogen addition, 

enhanced light availability, and experimental warming in a full-factorial design. 

3. We determined the effects of multiple environmental drivers and their interactions on the 

soil microbial and understorey plant communities, and assessed to what extent the soil 

microbial and understorey plant communities co-vary. 

4. High light led to lower biomass of the soil microbes (analysed by phospholipid fatty 

acids), but the soil microbial structure, i.e., the ratio of fungal biomass to bacterial 

biomass, was not affected by light availability. The composition of the soil bacterial 

community (analysed by high-throughput sequencing) was affected by both light 

availability and warming (and their interaction), but not by nitrogen addition. Yet, the 

number of unique operational taxonomic units was higher in plots with nitrogen addition, 

and there were significant interactive effects of light and nitrogen addition. Light 

availability also determined the composition of the plant community; no effects of 

nitrogen addition and warming were observed. The soil bacterial and plant communities 

were co-structured, and light availability explained a large part of the variance of this co-

structure. 

5. We provide robust evidence for the key role of light in affecting both the soil microbial 

and plant communities in forest understoreys. Our results advocate for more multifactor 

global-change experiments that investigate the mechanism underlying the (in)direct 

effects of light on the plant–soil continuum in forests. 
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Introduction 

Global change is affecting ecosystems through multiple environmental drivers (Vitousek 1994; 

Schroter et al. 2005). Increased atmospheric nitrogen (N) deposition and climate warming are 

amongst the most important ones, and they interact in complex ways (Sala et al. 2000). In 

temperate forests across Europe and eastern North America, the canopy cover has been 

increasing since the 1950s, mainly caused by changes in forest management, atmospheric N 

deposition, and climate (Schroter et al. 2005; Gold, Korotkov & Sasse 2006; McMahon, Parker 

& Miller 2010; Rautiainen, Wernick, Waggoner, Ausubel & Kauppi 2011; Kauppi et al. 2015). 

Denser forest canopies cause more shading and lower ground-level temperatures and may buffer 

the effects of both N deposition and climate warming on the forest understorey. Denser canopies 

can thus buffer the temperature experienced by understorey plants (De Frenne et al. 2013; Melin 

et al. 2014; Scheffers, Edwards, Diesmos, Williams & Evans 2014; Valladares, Laanisto, 

Niinemets & Zavala 2016), which can explain the lagged response of understorey plants to 

climate warming (Bertrand et al. 2011; De Frenne et al. 2013). In addition, shade potentially 

limits plant responses to increased N deposition (Hautier, Niklaus & Hector 2009; Verheyen et al. 

2012; Borer et al. 2014; Farrer & Suding 2016; Walter et al. 2016). 

To date, studies on the effect of global environmental change have involved various drivers, such 

as N deposition, climate warming, precipitation, and CO2 concentration (Ciais et al. 2005; 

Hyvonen et al. 2007; Ramirez, Craine & Fierer 2012; von Rein et al. 2016). However, the role of 

light has rarely been considered, in spite of its importance in light-limited habitats such as the 
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forest understorey. The few light-related studies showed that enhanced light availability can 

increase the cover of Rubus spp. (Walter et al. 2016), and enhance plant community responses to 

climate warming (De Frenne et al., 2015). A direct experimental test of the effects of light, 

integrated with other global environmental change drivers, is still lacking, for both the soil 

microbial and understorey plant communities in temperate forests. 

The soil microbial community can be severely influenced by environmental change drivers such 

as enhanced atmospheric N deposition and climate warming (Yergeau et al. 2012; De Vries, 

Dobbertin, Solberg, Van Dobben & Schaub 2014; Carey 2016; Farrer & Suding 2016). For 

example, in plots with N addition, N-demanding taxa may become more abundant than 

oligotrophic taxa, which eventually affects the metabolic capabilities of the soil microbial 

community (Ramirez, Craine & Fierer 2012). Experiments showed that climate warming may 

cause shifts in soil microbial composition or function that affect the global carbon and N cycles 

via changes in, e.g., the biomass of microbial decomposers (Allison, Wallenstein & Bradford 

2010), the rate of heterotrophic respiration (Suseela, Conant, Wallenstein & Dukes 2012), and 

the efficiency of recalcitrant substrate utilization (Frey, Lee, Melillo & Six 2013). In natural 

conditions, multiple global environmental change drivers co-occur (Leuzinger et al. 2011), and 

the influence of multiple, combined global environmental change drivers on soil microbial 

communities may differ from the influences of the drivers applied in isolation (e.g., effects may 

be additive or one driver may dominate the overall effect). 

Changes in the soil microbial community composition and structure can affect the plant 

community through, for instance, plant-soil feedbacks associated with the processes of soil 

organic matter decomposition and mineralization, or pathogenic and beneficial interactions (De 

Deyn & Van Der Putten 2005; Bardgett & Van Der Putten 2014; Larios & Suding 2015; Van 
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Der Putten, Bradford, Brinkman, Van De Voorde & Veen 2016). Likewise, changes in plant 

community composition and diversity can also modulate soil microbial activities (Lange et al. 

2015). To better understand the mechanisms behind the combined effects of multiple 

environmental drivers on light-limited ecosystems such as forest understoreys, it is important to 

not only look at the responses of the understorey plants or the responses of the soil microbes and 

the understorey plants separately, but to also quantify co-occurring responses (von Rein et al. 

2016). Hence, studies should investigate the plant-soil continuum together to make realistic 

predictions on the effects of global environmental changes (von Rein et al. 2016). Plants and soil 

microbes might respond differently to different global environmental change drivers (Farrar & 

Suding, 2016), and the interaction between the multiple drivers may attenuate or increase the 

magnitude of the responses of both plants and soil microbes. A recent meta-analysis of a large 

database of studies on multiple environmental drivers showed that global change drivers indeed 

affect terrestrial ecosystems and that the effects may be less dramatic than expected if several 

drivers occur concurrently (Leuzinger et al. 2011). 

Here we report findings from an innovative, in-situ experiment under a scenario of multiple 

environmental changes. We assessed the individual and interactive effects of N deposition, light 

availability, and climate warming on the biomass of the soil microbes, as well as the composition 

and diversity of the soil bacterial and understorey plant communities in a full-factorial 

experiment in an ancient temperate deciduous forest. We hypothesized that: (i) illumination and 

warming under the dense canopy of the studied ancient forest will shift the composition of the 

soil microbial and understorey plant communities. Meanwhile, we expect weak or no effects of 

N addition because of N saturation in the study area; (ii) the interactive effects of two or three 

simultaneously applied drivers on the composition of soil microbial and plant communities will 
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differ from the effects of the drivers applied in isolation. We specifically expected illumination 

to enhance community responses to N and warming; (iii) the soil microbial and plant community 

will co-vary, as both communities are expected to respond concurrently to the applied global 

environmental change drivers.  

 

Materials and Methods 

Study area  

The experiment was performed in the Aelmoeseneie forest, a temperate deciduous forest in 

Belgium (50.97°N, 3.81°E) owned by Ghent University, which has been forested since at least the 

1770s. Ash (Fraxinus excelsior L.) and pedunculate oak (Quercus robur L.) were the dominant tree 

species. The soil developed from a quaternary layer of sandy loam on a shallow impermeable clay 

and sand complex of tertiary origin (Vanhellemont, Baeten & Verheyen 2014). The recorded mean 

annual temperature and mean annual precipitation (1981-2010) were 10.6 ℃ and 786 mm, with the 

precipitation evenly distributed over the year and the mean temperature of the warmest and coldest 

month 16.8 ℃ and 2.4 ℃. The N deposition in 2009 was 25.3 kg ha
-1 

(Verstraeten, Sioen, Neirynck, 

Roskams & Hens 2012). 

Experimental design 

Forty 0.5 m × 0.5 m plots with a similar canopy cover and without any disturbance were randomly 

established in 2011. The distance between two plots ranged from 5 m to 200 m (the closest two 

plots – the farthest two plots). The similar canopy cover ensured homogenized natural light 

availability for all plots. There were no statistically significant differences in plant species richness, 

evenness, and composition between the plots at the beginning of the experiment (De Frenne et al. 

2015). The three manipulated environmental drivers were N addition (N), illumination (L), and 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

warming (W). A full-factorial design resulted in eight possible combinations: all drivers applied in 

isolation, the two-factor and three-factor interactions (with five replicates each, i.e., 40 plots in 

total). 

Transplantation. In addition to the naturally occurring species, we introduced three characteristic, 

relatively tall, competitive native plant species (Urtica dioica L., Rubus fruticosus agg. and 

Aegopodium podagraria L.) at the start of the experiment in September 2011 in all plots. Three 

rhizome fragments of c. 7 cm length per species were transplanted along the two diagonal axes of 

each plot (min. 10 cm away from the corners of the plot). The rhizomes of each of these species 

were collected within the same forest at < 500 m distance. This was key for the experiment because 

these species are expected to strongly respond to resource alterations and affect the understorey 

dynamics, but did not occur in any of the plots due to closed-canopy conditions before the 

experiment started (except for A. podagraria 3% ground cover in one single plot and R. fruticosus 

0.5% and 2% ground cover in two of the 40 plots, repectively). Transplantation was thus needed to 

overcome dispersal limitation because the selected plots are surrounded by dense forest and these 

species would most likely not naturally colonize the plots within the timeframe of this study. By 

transplanting these light-demanding plants to the naturally light-limited study area, we can assess 

the effects of resource manipulation on plant community change unequivocally. Interestingly, the 

transplanted species disappeared almost completely in the plots without resource manipulation. 

More description of the full experiment design can be found in De Frenne et al. (2015). 

N addition. In half of the plots, we added 10 g N m
-2 

year
-1

. Ammonium nitrate was dissolved in 

400 ml distilled water and applied four times per year (Jan., Apr., Jun., and Sep.). After the solution 

was sprayed onto the plots, 200 ml distilled water was immediately added to avoid salt deposition 

on the plants. Plots without N addition received 600 ml distilled water. Each spraying amounted to 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

0.33 % of the total mean annual precipitation. This resulted in a mean top soil concentration 

increase of 4.39 g inorganic-N kg
-1

 dry soil in N added plots.
 
 

Illumination. Additional light was provided by two 14 W fluorescent tubes (coolwhite 4000 K, 

spectral peaks at 546 nm and 611 nm), which were suspended at 65 cm above the forest floor with 

a wooden frame and protected by a plastic cover in 20 plots (one plot in treatment L was destroyed, 

leaving 19 plots for data analyses). The lamps switched on at sunrise and off at sunset to simulate 

the natural photoperiod of the study area. The timing was adjusted every two or three weeks 

throughout the whole year to match the seasonal variation in day length. Unilluminated plots were 

equipped with the same frame and cover but with dummy lamps. Photosynthetically active 

radiation (PAR) was measured after canopy flush on 14 June 2012 under cloudless conditions at 

five height intervals (20 cm, 30 cm, 40 cm, 50 cm, and 60 cm above the soil surface) in three plots 

per treatment using PAR Quantum sensors connected to Spectrosense 2+ meters (Skye Instruments, 

UK). The illuminated and unilluminated plots differed significantly in PAR influx (76.4 ± 10.8 

µmol m
-2

 s
-1

 vs. 6.7 ± 0.4 µmol m
-2

 s
-1

), and there was no effect of illumination on the measured 

temperatures (De Frenne et al. 2015). The applied increase in light availability is similar to the 

difference between denser canopy conditions in deciduous forest during the growing season and 

the typical light intensity in small clearings or more open forest types. During the growing season, 

the PAR levels in the understorey of temperate deciduous forests with a high leaf area index 

typically vary between 5 – 77 µmol m
-2

 s
-1

, whereas the PAR levels in small clearings or in forests 

with a lower leaf area index vary between 11 – 121 µmol m
-2

 s
-1 

(Hutchison & Matt 1977; Clinton 

1995; Nilsen et al. 2001; Fladeland, Ashton & Lee 2003; Augspurger, Cheeseman & Salk 2005).
 
 

Warming. Hexagonal open-top chambers (OTCs) passively warmed the air and soil temperatures. 

The OTCs were 60 cm high, consisted of six inclined plexiglas walls and an open top, and covered 
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a ground surface area of 1.15 m
2
. We set our 0.5 m × 0.5 m plots right beneath the open top, in the 

core area of the open-top chamber, to avoid the effects of the inclined OTC walls on precipitation, 

soil moisture, and air humidity. We installed three Type T miniature thermocouples (TC Direct, 

Nederweert, NL) in one unwarmed-unilluminated plot; one unwarmed-illuminated plot; one 

warmed-unilluminated plot and one warmed-illuminated plot (12 sensors in total). The 

temperatures were logged at 5 min intervals at 20 cm above the soil surface, at the soil surface and 

at 5 cm below the soil surface. Overall, the mean temperature (14 Sep. 2011 – 01 Apr. 2015) was 

raised by 1.43 ℃ (20 cm), 1.26 ℃ (soil surface), and 3.21 ℃ (-5 cm) in the OTCs compared to 

unwarmed plots, i.e., plots without OTC. The mean daily minimum and maximum temperatures 

were raised by 1.63 ℃ and 1.46 ℃ (20 cm), 0.85 ℃ and 1.79 ℃ (soil surface), 3.72 ℃ and 2.59 ℃ 

(-5 cm). 

Data collection 

Soil sampling. Soil cores for the analyses of microbial biomass and bacterial community 

composition were taken with a 2.7 cm diameter auger from 0-10 cm soil depth on 2 April 2015. In 

each plot, two opposite sample sites were selected at 5 cm distance from the plot centre. The two 

soil cores from one plot were pooled and homogenized. Soil samples were immediately sieved 

through a 1-mm mesh and stored at -18 ℃ until the start of the extraction. To avoid cross 

contamination, the auger was sterilized with 75 % ethanol between the plots. 

Soil microbial biomass. Phospholipid fatty acids (PLFAs) were extracted and derived according 

to Huygens et al. (2011). In total, 42 PLFA biomarkers were detected. We selected 19 PLFAs as 

useful biomarkers, which accounted for 91 % of the detected biomass. Those selected biomarkers 

were assigned to different functional microbial groups. Soil microbial structure was calculated as 
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the ratio of total fungal biomass to total bacterial biomass. See Supplementary Materials and 

Methods and Table S1 in Supporting Information for the details of extraction and assignment. 

Soil bacterial community. The bacteria dominated the microbial community in the experimental 

plots; they made up 90.7 % to 91.9 % of the total microbial biomass in the different treatments. 

Hence, we only quantified the composition of the soil bacterial community, using high-throughput 

sequencing. The total DNA extraction from the soil samples was carried out with the 

PowerSoil®DNA Isolation kit and purified by means of the Wizard®DNA Clean-Up System, 

following the manufacturer’s instructions. The 16 S rRNA gene v3-v4 region was amplified by 

PCR using the barcoded versions of the primers described by Klindworth et al. (2013). Sequencing 

was done on an Illumina MiSeq platform. The operational taxonomic units (OTUs) table was 

created using MOTHUR (v.1.38) (Schloss et al. 2009). See Supplementary Materials and Methods 

for details of the extraction, sequencing and OTUs table obtainment. 

Plant community. The cover of all plants below 1 m height in each plot was assessed in 2015, in 

April for Anemone nemorosa L. and Ranunculus ficaria L. and in June for all other species. 

Data analysis 

We investigated how the three drivers - N addition, illumination, and warming - (interactively) 

affected soil microbial biomass, soil bacterial community composition, and plant community 

composition. Next, we investigated whether and how the aboveground (plants) and belowground 

(soil microbes) communities were linked. All data analyses were performed in R 3.3.2 (R 

Development Core Team 2016). 

Soil microbial biomass. We used one-way analysis of variance (ANOVA) to test for the effects 

of the treatments on the biomass of each functional microbial group and the microbial structure 

(PLFA data), and Tukey’s post-hoc test to investigate the differences among the treatments. We 
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then applied three-way ANOVA to test for the main and interactive effects of the three drivers on 

each functional microbial group (the three-way interaction was never significant and therefore 

omitted). 

Shared and unique OTUs of the bacterial community. The analyses of the bacterial community 

(high-throughput sequencing data) were conducted after proportional normalization. The 

abundance of each  OTU was rescaled by taking the proportion of the OTU’s read in the total 

reads, multiplying the result with the minimum sample size (1803 reads) and then rounding to 

the nearest integer to account for sample size differences (McMurdie & Holmes 2014). This 

resulted in a scaled taxon-abundance matrix comprised of 4110 OTUs. We calculated the number 

of shared and unique OTUs between the pairs of treatments: ‘N added’ vs. ‘No N added’, 

‘Illuminated’ vs. ‘Unilluminated’, and ‘Warmed’ vs. ‘Unwarmed’. We used chi-square tests to 

assess differences in the number of unique OTUs in each pair of treatments (Schmidt, White & 

Denef 2016). 

Alpha diversity of the soil bacterial and plant community. We calculated two indices of alpha 

diversity: (i) the species richness, i.e., the number of species or OTUs in a plot, and (ii) the inverse 

Simpson diversity index, taking into account the number of plant species or OTUs present and the 

relative abundance of each plant species or OTU, using the package vegan (Oksanen et al. 2016). 

Three-way ANOVA was used to characterize the individual and interacting effects of the three 

drivers (the three-way interaction was never significant and therefore omitted). 

Beta diversity of the soil bacterial and plant community. We used model-based multivariate 

abundance analysis to test beta diversity of the soil bacterial and the plant community (Wang, 

Naumann, Wright & Warton 2012). The model fits individual generalized linear models (GLMs) 

to each plant or bacterial species (OTU) and then uses these models to make community-level 
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inferences about the importance of the model predictors based on resampling. The multivariate 

abundance models were constructed using a forward selection procedure, i.e., by systematically 

adding variables to the null model and testing for significant model improvement between nested 

models by likelihood-ratio tests (anova.manyglm function, 500 for the bacteria community, 

5,000 PIT-trap resampling runs for the plant community). Model improvements were considered 

significant at the 0.05 significance level. Mean-variance relationships were modelled by a 

negative binomial model, and Dunn-Smythe residuals of each model were evaluated for 

normality and homoscedasticity. The significance of the final model parameters was used to 

assess community-level effects of the model predictors. 

The linkage of the soil bacterial and plant community. We conducted co-inertia analysis 

(hereafter referred to as COIA), a general and flexible eigenvector framework with no constraint 

regarding the number of variables that allows to measure the concordance (i.e. co-structure) 

between two multivariate datasets that share the same objects (plots in our case) (Dolédec and 

Chessel, 1994; Dray et al., 2003). The method finds a common space into which the plots and 

species of the datasets can be projected and compared (the distance between plots reflects their 

similarity). We used the ade4 package (Dray et al., 2007) to apply COIA to two pairs of datasets: 

i.e., plant data vs. PLFA biomarkers and plant data vs. bacterial OTU data (at phylum level). We 

also applied COIA to two subsets of the PLFA data and looked at plant data vs. fungal biomarkers 

and plant data vs. bacterial biomarkers. Prior to the COIA, we performed Principal Component 

Analysis (PCA) on the Hellinger-transformed community datasets. We evaluated the strength of 

the coupling between each pair of datasets with the RV coefficient, which is a multivariate 

generalization of the Pearson correlation coefficient. The RV coefficient gives a measure of the 

global similarity of the two datasets between 0 and 1: the closer the coefficient is to 1, the stronger 
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the correlation between the datasets. We then used the Monte-Carlo test (with 999 random 

permutations) to assess the significance of the co-structure between the datasets. 

 

Results 

Soil microbial biomass 

The biomass of the functional microbial groups differed significantly between the treatments (Fig.1, 

Table S2).The highest total microbial biomass occurred in the treatment of warming and N addition 

combined (WN), while the lowest total microbial biomass occurred in the treatment of N addition, 

illumination, and warming combined (WLN). The WN treatment significantly differed from the 

WLN treatment for all functional microbial groups. Three other significant differences in the 

biomass of functional microbial groups between treatments were found. First, the WN treatment 

differed from the LN treatment (combined illumination and N addition), with significantly higher 

biomasses of Gram-negative bacteria, total biomass of bacteria and total biomass of the microbial 

community in the WN treatment (i.e., the treatment without illumination). Second, the WN 

treatment differed from the L treatment, with a significantly higher biomass of Gram-negative 

bacteria in the WN treatment (i.e., the treatment without illumination). Third, the W treatment 

differed from the WLN treatment, with a significantly higher biomass of Gram-positive bacteria 

and Actinobacteria in the W treatment (i.e., the treatment without illumination). 

Illumination was the only driver that showed a strong negative effect on all functional microbial 

groups (P < 0.001); neither N addition, warming, nor the two-way interactions had an effect (Fig.1, 

Table S3). The three drivers did not affect the soil microbial structure (Table S3). 
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Composition and diversity of the soil bacterial and plant communities 

Seventeen phyla were identified in the soil bacterial community. Acidobacteria, Actinobacteria, 

and Proteobacteria accounted for 94 % of all reads and were the main phyla in all treatments 

(unclassified phyla were not taken into account) (Fig. S1). Concerning alpha diversity, none of 

the three drivers had an effect on phylum richness, but the interactive effect of N addition and 

warming was significant for the inverse Simpson index (P = 0.031). The beta diversity of the soil 

bacterial community was significantly affected by illumination (P = 0.004), warming (P = 0.012) 

(Table 1 and Table S4), the interaction between illumination and warming (P = 0.006), and the 

interaction between illumination and N addition (P = 0.002) (Table 1). N addition did not 

significantly affect the soil bacterial community composition (P = 0.09). The three drivers also 

affected the number of unique OTUs found in the plots. The number of unique OTUs was 

significantly (P < 0.001) higher in plots in which the driver was manipulated, i.e., in the plots with 

N addition, in illuminated plots, and in warmed plots (Fig. 2a), and the highest number of unique 

OTUs was found in the plots with N addition (Fig. 2a). The shared OTUs made up between 92.6 

and 95.6 % of the overall OTU abundance (Fig. 2b), and there was no significant effect of the three 

drivers on the number of shared OTUs (Fig. 2a). 

Fourteen plant species were observed across all plots. The two most abundant species were 

Anemone nemorosa L. and Oxalis acetosella L. (Fig. S2). The alpha diversity of the plant 

community was not significantly affected by the three drivers, but the effect of the two-way 

interaction of N addition and warming on plant species richness was marginal significant (P = 

0.063). The beta diversity of the plant community was significantly affected by illumination only 

(P = 0.026, Table S4). 
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Co-structure between the soil microbial and the plant community 

There was no significant co-structure between the soil microbial (measured as PLFA biomarkers) 

and plant communities or the fungal biomarkers (Table 2) in all plots. Yet, we saw significant 

co-structure between the soil bacterial and plant communities, for both the bacterial biomarkers 

(PLFA data, Table 2) and the bacterial phyla (OTU data, Table 2, Fig. 3). When we split the 

dataset into illuminated plots and unilluminated plots, we only saw co-structure in the 

illuminated plots, between the plant community on the one hand and the overall soil microbial 

community (19 PLFA biomarkers) and the soil bacterial community (15 PLFA biomarkers, 17 

phyla) on the other hand (Table 2). 

 

Discussion 

Light availability emerged as a critical driver for both soil microbes and understorey plants in our 

experiment. Denser canopies in forests do not merely reduce light availability in the understorey 

but may also affect, for instance, light quality, temperature, humidity, soil mineralisation, and 

decomposition (Neufeld & Young 2003; Valladares, Laanisto, Niinemets & Zavala 2016). In our 

full-factorial experiment, we were able to separate the effects of nitrogen availability, light 

availability, and temperature in the understorey unequivocally, one of the strengths of our study. 

In illuminated plots, the soil microbial biomass was significantly lower and the composition of the 

soil bacterial community and the plant community differed when compared to unilluminated plots. 

The response to light of the soil microbial and plant communities may be explained in two (non-

exclusive) ways. (i) Light drives the species composition of the plant community through 

asymmetric resource competition (Valladares, Laanisto, Niinemets & Zavala 2016), and 

differences in plant community composition result in a different quality and quantity of litter, 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

which in turn affects the nutrient supply to the soil microbial community (Strickland, McCulley, 

Nelson & Bradford 2015). (ii) Light availability affects the allocation of the photosynthetic 

products in plants, resulting in, e.g., more investment in aboveground plant biomass and less 

belowground carbon allocation (to root exudates and rhizodeposition), which eventually results in 

reduced soil microbial biomass (Drake et al. 2013; Balasooriya, Denef, Huygens & Boeckx 2014). 

It is likely that the plant community in our plots changed first, as a result of illumination, and that 

this change in the plant community then affected the soil microbial community composition. We 

speculate that the time scale in which soil microbial community starts to change is after 2.5-year 

manipulation as we have documented increases of plant heights under illuminated plots than in 

unilluminated plots in 2014 (De Frenne et al. 2015). Light availability is a key environmental 

driver in shaping plant community composition and diversity, and in linking the aboveground 

and belowground communities, in various ecosystems. In grasslands, for instance, taller plants 

are more competitive and reduce the light availability for smaller plants, which results in changes 

in the plant community composition and diversity loss with fertilization (Hautier, Niklaus & 

Hector 2009). An altered plant community can affect soil heterotrophic activities via, for 

instance, litter decomposition (Spehn, Joshi, Schmid, Alphei & Korner 2000). In an agro-

ecosystem for example, Lau et al. (2012) found that the aboveground biomass of soybean 

significantly increased with light availability (PAR 279.12 ± 44.65 µmol m
-2

 s
-1

 vs. 51.25 ± 8.45 

µmol m
-2

 s
-1

) most likely through Rhizobia. Because the process of N-fixation by Rhizobia is 

highly correlated with the products of photosynthesis. Hence, light availability can affect both 

aboveground and belowground communities in direct and indirect ways in different ecosystems. 

The co-structure we found between the soil bacterial and plant communities in illuminated plots 

supports the idea that the abiotic factor light availability affects the soil bacteria through its effect 
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on the understorey plants. We found no co-structure between the soil fungal and plant 

communities. Cassman et al. (2016), on the contrary, found co-structures between the plant and 

soil fungal communities but not between the plant and soil bacterial communities in grassland 

ecosystems with long-term N addition. The difference between our study and Cassman et al. (2016) 

may be caused by the differences in resource limitation and the composition of the soil microbial 

and plant communities in different ecosystem types, e.g., in forests vs. grasslands (Nacke et al. 

2011; Kaiser et al. 2016). 

The composition of the bacterial community was more responsive to the manipulated drivers than 

the plant community and the soil microbial biomass. Both illumination and warming significantly 

affected the composition of the soil bacterial community. Light availability most likely affects the 

soil bacterial community in an indirect way, via root exudates for instance. Warming, on the other 

hand, can affect the soil bacterial community in a direct way, via metabolic carbon (Schindlbacher 

et al. 2011). We also observed pairwise interaction effects of the three drivers on the composition 

of the bacterial community, whereas we saw only a main effect (of illumination) for the plant 

community. There were interactive effects of illumination with N addition and with warming, 

while N addition alone did not affect the bacterial community. These results support our second 

hypothesis that when N addition and illumination are applied simultaneously, the interactive effects 

of the two drivers on the composition of the soil bacterial community differ from the effect of N 

addition alone. In N-saturated soils, the competition for N between the soil microbial community 

and plant roots is lower than that in N-limited soils (Kuzyakov & Xu 2013). In soils, however, all 

N transformation and uptake processes are correlated with soil carbon resources and regulated by 

soil microbes (Geisseler, Horwath, Joergensen & Ludwig 2010). Light availability can affect soil 

carbon sources via changes in the composition of aboveground plant community or their 
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photosynthesis (Raven & Karley 2006; Strickland, McCulley, Nelson & Bradford 2015; Valladares, 

Laanisto, Niinemets & Zavala 2016). Similarly, increased temperatures can affect the 

decomposition rate of soil organic matter and thus potentially affect the composition of the soil 

bacterial community via the soil nutrient pool (Hopkins et al. 2014; Sierra, Trumbore, Davidson, 

Vicca & Janssens 2015). Warming and enhanced light also interactively affected the composition 

of the soil bacterial community in our study. Yet, to which degree the two drivers are synergetic or 

antagonistic in terms of affecting the soil bacterial community needs further research. von Rein et 

al. (2016), in a warming experiment in an incubator, showed interactive effects of the global 

change drivers warming and drought on the composition of the soil microbial community, with no 

effect of warming alone. Hence, when two or more global change drivers are considered 

simultaneously, the interaction of the drivers may result in additive or attenuated effects and thus 

cause different responses of the studied community when compared to drivers applied in isolation. 

The differences in the soil bacterial community composition between the treatments in our study 

(the unique OTUs, see Fig. 2) suggest a compositional trajectory of change in the bacterial 

community and a taxon-specific succession under different environmental drivers. 

We observed no response of the soil microbial biomass and the plant community composition to N 

addition and warming. Many temperate forests in Europe and North America are N saturated, and 

this may cause the lacking response in the soil microbial biomass and plant community to extra N 

addition (De Schrijver et al. 2008; De Schrijver et al. 2011; Verstraeten et al. 2012). With regard to 

global warming, a lagged response of plant communities has been observed in lowland areas 

(Brohan, Kennedy, Harris, Tett & Jones 2006; Bertrand et al. 2011). The lagged response to 

warming is at least partly due to the large proportion of cosmopolitan and thermophilous species in 

these forests, which results in a higher tolerance to increased temperatures (Bertrand et al. 2011; 
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De Frenne et al. 2015). The response of soil microbial biomass and plant community composition 

to N addition and warming may vary over time (Smith 2011; Contosta, Frey & Cooper 2015; Shi et 

al. 2015), which underpins the importance of the temporal scale in environmental change studies. 

At the global scale, warming is expected to change plant communities (Hooper et al. 2012). The 

lack in response of the plants to N addition and warming in our four-year study does not imply that 

these environmental changes will not affect the soil microbial biomass and understorey plants in 

the longer run. Chronical warming and accumulation of N (i.e., over more than ten years) can shift 

the composition and interaction of the soil microbial and plant communities in forests (Bradford et 

al. 2008), especially if the canopy is opened up (Verheyen et al. 2012). 

Conclusion 

In our four-year experiment in which we simultaneously manipulated three global change drivers 

in an ancient temperate deciduous forest, light availability emerged as a critical driver for both soil 

microbes and plants. Under additional illumination, the soil microbial biomass was lower, the 

composition of the soil bacterial and plant communities was different, and the composition of the 

soil bacterial and plant communities was co-structured. N addition and warming did not 

significantly affect the soil microbial biomass and plant community composition, but warming 

significantly altered the composition of the soil bacterial community. Our results underpin the need 

to concurrently investigate several communities of the plant-soil continuum and to integrate 

multiple environmental drivers when studying the effects of global environmental change on 

ecosystem functioning. In addition, the mechanisms underlying our results also merit further 

investigation.   
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Fig.1 Biomass (mean ± standard error) of the microbial functional groups based on PLFA 

concentrations. The treatments are control (C), N addition (N), illumination (L), warming (W), 

warming + N addition (WN), warming + illumination (WL), illumination + N addition (LN) and 

warming + illumination + N addition (WLN). Each symbol represents a functional microbial 

group: PLFAtot (total biomass of the microbial community), Btot (total biomass of bacteria), Ftot 

(total biomass of fungi), AB (Actinobacteria), NB (Non-specific bacteria), G+ (Gram-positive 

bacteria) and G- (Gram-negative bacteria). 

Fig.2 (a) The number of unique and shared operational taxonomic units (OTUs) for the treatments 

in which a specific driver is manipulated or not manipulated. (b) The relative abundance of shared 

and unique OTUs within each group of treatments. *** Indicates significant differences in the 

number of unique OTUs between the pair of treatments based on a chi-square test (P < 0.001). 

Fig. 3 The co-inertia analysis of the soil bacterial (17 phyla) and plant community compositions 

across all plots. (a) The mutual ordination of the plots as a function of both the soil bacterial and 

plant community compositions, (b) projection of the plant species, and (c) projection of the 

bacterial phyla. Illuminated plots (with L) are shown in red; unilluminated plots (without L) are 

shown in black. The two first canonical axes account for 78.3 % of total co-inertia and the RV 

coefficient is 0.31 (P = 0.002). The arrow length in (a) is proportional to the difference between 

the ordinations of the plant and bacteria data; the position of the arrow tails is determined by the 

ordination of the plant community data, the arrowheads by the bacterial data. Only the plant 

species and bacterial phyla with the highest ordination scores are shown in figures (b) and (c). 

The abbreviations of the plant species in (b): Aep Aegopodium podagraria L., Hom Holcus mollis L., 

Lag Lamium galeobdolon (L.) Crantz, Oxa Oxalis acetosella L., Rir Ribes rubrum L., Rur Rubus 

fruticosus agg., Sth Stellaria holostea L. The abbreviations of the bacterial phyla in (c): Aci Acidobacteria, 

Bac Bacteroidetes, Chl Chlamydiae, Pro Proteobacteria, Ver Verrucomicrobia.  
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Table 1 Final model testing the effects of nitrogen addition (N), illumination (L), and warming 

(W) on the soil bacterial community composition. 

Driver Residual df Test statistic  

(LRTs) 

P value  

N 37 5571.543 0.088 

L 36 5642.737 0.004** 

W 35 5358.399 0.012* 

L:W 34 1754.798 0.006** 

N:W 33 1474.774 0.076 

L:N 32 2080.481 0.002** 

LRTs: Likelihood ratio tests. 

* P < 0.05, ** P < 0.01 

The full model selection is available in Table S4. 

 

 

Table 2 The co-structures between the soil microbial (PLFA data, i.e., four fungal biomarkers 

and fifteen bacterial biomarkers; OTU data of the bacterial community, i.e., 17 phyla) and plant 

communities (14 species) in all plots and subset plots with and without illumination. 

Soil microbial communities RV value 

All plots Unilluminated 

plots 

Illuminated 

plots 

PLFA biomarkers (19) 

- Fungal biomarkers (4) 

- Bacterial biomarkers (15) 

Bacterial OTUs (17 phyla) 

0.25 0.31 0.44* 

0.13 0.14 0.28 

0.24* 0.29 0.43* 

0.31** 0.38 0.43* 

RV: Coefficient values. 

* P < 0.05, ** P < 0.01 (Monte-Carlo tests).  
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SUPPORTING INFORMATION 

Additional supporting information may be found in the online version of this article. 

Supplementary Materials and Methods: Soil microbial biomass and bacterial community 

Figure S1 Relative abundance of the soil bacterial phyla in the different treatments: control (C), 

N addition (N), illumination (L), warming (W), warming + illumination (WL), warming + N 

addition (WN), illumination + N addition (LN), and warming + illumination + N addition (WLN). 

Figure S2 Relative cover of the plant species in the different treatments: control (C), N addition 

(N), illumination (L), warming (W), warming + illumination (WL), warming + N addition (WN), 

illumination + N addition (LN), and warming + illumination + N addition (WLN). 

Table S1 The functional microbial group assignment based on the biomarkers of phospholipid fatty 

acids (PLFAs). 

Table S2 Mean biomass (µg/g) of each functional microbial group and the soil microbial structures 

for the different treatments. 

Table S3 The effects of N addition (N), illumination (L), warming (W) and their interactions on 

the biomass of each functional microbial group and the soil microbial structure. 

Table S4 Multivariate abundance testing of N addition (N), illumination (L), warming (W) and 

the two-way interactions for the beta diversity of the soil bacterial and the plant communities. 
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