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Abstract

Axial flow around an array of cylinders is commonly encountered in nuclear
reactors and heat exchangers. This geometry is subject to important flow in-
stabilities. The chaotic flow fluctuations due to turbulence are not the only
source of vortex structures: large-scale vortices have also been observed, both
experimentally and numerically. The periodic pressure fluctuations caused by
the coherent vortex structures are possibly a source of fretting and fatigue in the
aforementioned applications. In order to comprehend this phenomenon, Large-
Eddy Simulations are performed on a numerical domain containing a single rigid
cylinder with periodic boundary conditions, representative for a cylinder in an
infinite square array. The research in this paper mainly focuses on the influ-
ence of the cylinder spacing, which is analyzed by calculating the Cross Spectral
Density (CSD) function of the cylinder wall pressure for different cylinder spac-
ings. The spectral analysis shows that the amplitude of the pressure fluctuations
increases up to a well-determined intercylinder gap, after which it decreases ex-
ponentially for incrementing gap size. With the weakening of the instability,
the location on the cylinder circumference where the maximum pressure ampli-
tude occurs, changes as well. Finally, it is shown that the coherent vortices are
transported as a whole at a convection speed which is dependent on the cylinder
spacing. An updated model for this convection speed is proposed.

Keywords: Flow-induced vibrations, Kelvin-Helmholtz instability,
Large-Eddy Simulations, spectral analysis

1. Introduction

An array of cylinders subjected to axial flow is encountered in numerous ap-
plications. Of special interest are heat exchanger geometries in general (Kakag

*Corresponding author. Tel. +32 9 264 32 97, Fax. +32 9 264 35 90
Email address: laurent.demoerloose@ugent.be (Laurent De Moerloose)

Preprint submitted to Journal of Fluids and Structures February 6, 2018



et al. (2012)) and nuclear reactor core arrays specifically (Paidoussis (1982)).
The problem of fluid-elastic instabilities in both cross-flow (Pettigrew and Tay-
lor (2003)) and axial flow (Au-Yang (2001); Paidoussis (1998)) has been investi-
gated analytically, experimentally and numerically. Most analyses focus on the
buckling behaviour of a single cylinder (Modarres-Sadeghi et al. (2007)) or of
an array of cylinders. Chaotic dynamics, due to turbulence-induced vibrations,
are also analyzed extensively (Curling and Paidoussis (1992); Paidoussis and
Botez (1993)). However, the tube bundle geometry gives rise to non-chaotic
flow phenomena as well. The earliest recollection of the existence of coherent
vortices dates back to Nikuradse (1930). The secondary flow described in that
report finds its origin in nonuniform turbulent mixing in a non-circular duct,
but is relatively weak compared to the vortex street which dominates the ve-
locity field. A schematic representation is shown in Figure 1, which indicates
that the flow instability is related to a cross-flow mechanism across the gap
between two adjacent cylinders, creating coherent vortices on either side of the
gap. The vortex street is not stationary, but is transported through the flow.
The symbol U, denotes the convection speed of the coherent structures. An
example of the transverse velocity component across a cylinder gap region - ob-
tained through the Large-Eddy Simulations described in this paper - is shown
in Figure 1. Both the axial flow speed difference and the cross-flow fluctuations
cause pressure oscillations on the cylinder wall. As a result, the cylinder wall
pressure distribution is greatly dependent on the large-scale vortices. This pro-
vides the opportunity to analyze the vortex street by considering the cylinder
wall pressure, which is the subject of this paper.
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Figure 1: (Left) Schematic representation of the cross-flow mechanism in a plane located
between two cylinders. The grey area represents the cylinder wall located behind the depicted
flow region. The thick black line is a flow path due to the cross-flow across the gap region,
neglecting turbulent fluctuations. The dotted line shows the same flow path an instant dt¢
later, assuming the large-scale vortices are transported with an axial convection speed Uk.
(Center) Three-dimensional representation of the square cylinder array. (Right) An example
of the cross-flow velocity component in a plane located in between two cylinders. Results are
obtained with a Large-Eddy Simulation.

The large-scale vortices are related to the close spacing of the cylinders.
Consider the schematic top view of a square cylinder array in Figure 2. The
drawn array is assumed to be infinitely wide and long, i.e. boundary and en-
trance effects are not taken into account. Two flow regions are distinguished:
the gap region (g), located in between two adjacent cylinders, and the subchan-
nel region (s), positioned in the middle of four cylinders. Due to the smaller
flow area, the influence of the cylinder wall friction on the flow is stronger in the
gap region than in the subchannel region. Consequently, the axial flow velocity
in the subchannel region is higher than in the gap region. The flow velocity
difference between a gap region and a neighbouring subchannel region leads to
the existence of a Kelvin-Helmholtz instability.
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Figure 2: Schematic view of the square array of cylinders (top view). The blue letters indicate
flow regions: gap (g) and subchannel (s). The black capital letters represent the geometrial
parameters: diameter (D) and pitch (P).

A substantial number of articles describe the flow field in an array of cylinders
subjected to axial flow. At first, experimental measurements have provided
some insight in the flow dynamics. Curling and Paidoussis (1992) developed a
correlation for the frequency spectrum of the turbulent wall-pressure field in a
square array of cylinders. This empirical correlation is based on measurements
of water flowing through an apparatus containing four cylinders and eight half-
cylinders and was consequently only verified for a single pitch-over-diameter-
ratio (P/D). Moller (1991) analyzed the air flow through a rectangular channel
containing four tubes and concluded that the frequency at which the pressure
amplitude becomes maximal, is solely dependent on the geometry of the flow.
He proposed a correlation to quantify this hypothesis, which will be discussed
later. Finally, Guellouz and Tavoularis (2000) performed windtunnel tests on
a rectangular channel containing a single cylinder and measured the convection
speed U, of the occurring flow instability in the gap region by smoke injection.
As a result, they obtained a correlation for the convection speed as a function
of the P/D-ratio, which will be discussed in Section 5.

With the improved computational power, more recent sources in literature
apply Computational Fluid Dynamics (CFD) to investigate the large-scale vor-
tices in an array of cylinders. Several authors apply an Unsteady Reynolds-
Averaged Navier-Stokes (URANS) methodology. Merzari et al. (2008) per-
formed URANS calculations with anisotropic turbulence modelling on a tri-
angular cylinder array and concluded that URANS accurately predicts the am-
plitude and temporal frequency of the large-scale vortices, but not the spatial
wavelength. This conclusion is based on the comparison of numerical and ex-
perimental results on a P/D-ratio of 1.06. In contrast, Yan and Yu (2011)
calculated the flow through a similar geometry with Reynolds stress modelling
and for different P/D-ratios and came to the conclusion that the amplitude of
the large-scale vortices becomes maximal at a P/D-ratio equal to 1.03.

Despite the large amount of research, few investigations were performed on
a square array of cylinders subjected to axial flow. The experimental investi-



gations by Moller (1991) and Guellouz and Tavoularis (2000) do not consider a
two-dimensional array of cylinders. On the other hand, the numerical investi-
gations by Merzari et al. (2008) and Yan and Yu (2011) consider a triangular
array. Although this geometry is commonly encountered in Boiling Water Reac-
tors (Paidoussis (1998)) and new nuclear reactor prototypes such as MYRRHA
(Merzari et al. (2016)), most nuclear reactors worldwide are Pressurized Water
Reactors and thus contain a square array, which is therefore equally important
to analyze. Additionally, it should be noted that LES methods are generally
more accurate than URANS (Piomelli (2012)), but only a few publications re-
port LES results. An example is the work by Abbasian et al. (2010), who used a
Smagorinsky model to compute the flow in a finite triangular array for a P/D-
ratio equal to 1.08, without investigating the influence of the P/D-ratio on the
flow instability.

In this paper, the flow instability in a square array geometry is investigated
with LES. Spectral analysis of the pressure profile on the cylinder wall reveals
key aspects of the Kelvin-Helmholtz instability. The aim of this investigation is
to provide a thorough understanding of these characteristics and, more specifi-
cally, how the cylinder spacing affects the flow field in a square array of cylinders.

This paper is organized as follows. Section 2 introduces the mesh charac-
teristics as well as the applied numerical methods. Section 3 is devoted to the
grid convergence analysis and the investigation of the influence of numerical
parameters on the flow field. In Sections 4 and 5, the results are presented and
discussed. Finally, the conclusions are given in Section 6.



Nomenclature

CFD Computational Fluid Dynamics
CSD Cross-Spectral Density

DFT Discrete Fourier Transform
Atiow through-flow area [m?]

Awall wall surface area [m?]

Cs Smagorinsky model parameter [-]
foa, farve Smagorinsky model quantities

D cylinder diameter [m)

Dy, hydraulic diameter [m]

fmin dimensional frequency [Hz]

G tophat filtering function

h cell width [m]

k discrete frequency variable [-]

L domain length [m]

n discrete time variable [-]

N number of divisions [-]

D (wall) pressure [Pal]

P cylinder pitch [m]

P(0,z,St) Fourier variable of the pressure [Pa]
Re Reynolds number [-]

(r,0,2) cylindrical coordinate system [(m,m,m)]

LES
PSD

URANS
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Large-Eddy Simulation
Power Spectral Density
Unsteady Reynolds-Averaged Navier-Stokes

shear stress tensor [1/s]

Strouhal number [-]

time [s]

number of considered time steps [-]
instantaneous velocity [m/s]

mean velocity [m/s]

convection velocity [m/s]

cartesian coordinate system [(m,°,m)]
general spatial coordinate [m]
coherence function [-]

LES filter width [m]

dynamic viscosity [Pa.s]

kinematic viscosity [m?/s]

turbulent kinematic viscosity [m?/s]
fluid density [kg/m?]

residual stress tensor [m?/s?]

wall shear stress [m?/s?]

2. Method

In this paper, the flow in an infinite square array of infinitely long cylinders
is modelled with a single-cylinder geometry. As the array is assumed to be
infinitely wide and long, both array boundary and flow entrance effects are ne-
glected. The fluid is incompressible, Newtonian and isothermal. Multiple cases
are computed using Large-Eddy Simulations in OpenFOAM®. Subsequently, a
spectral analysis is performed on the cylinder wall pressure profile, after which
these frequency spectra are autocorrelated. The influence of the cylinder spacing
on the cylinder wall pressure spectrum is analyzed.

2.1. Flow domain

The flow domain consists of a rectangular channel located around a single
cylinder, as shown in Figure 3a. This cross-section can be considered as a unit
cell for the square array shown in Figure 2. Due to the absence of entrance or ar-
ray boundary effects, there are only two geometrical parameters of importance:
the cylinder diameter D and the pitch P. The latter is the distance between
A no-slip condition is applied on the

the centres of two adjacent cylinders.




rigid and stationary cylinder wall, represented by the thick black line in Figure
3a. Periodic boundary conditions are enforced on the outer domain limits: the
boundaries which are periodic are depicted in the same color in Figure 3a. The
in- and outlet are located on the bottom and top side of the geometry shown in
Figure 3b. The in- and outlet conditions are also periodic, but with a prescribed
pressure gradient in the axial direction.

P
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Figure 3: (a) Schematic top view of the flow domain. The pitch P and diameter D are shown.
The boundaries of the same color are periodic. The thick black line denotes the cylinder wall.
The x- and y-axis and the reference 6 equal to 0° are also shown. (b) View of a coarse mesh
on the 5% upper part of the domain.

2.2. Non-dimensional variables

Before going into the details of the numerical analysis, the relevant non-
dimensional parameters are identified. The mean axial flow speed U is made
non-dimensional by defining the Reynolds number:

Rep, = LY Pn _UDn (1)
m v

where p is the fluid density and g and v denote the dynamic and kinematic
viscosity, respectively. Assuming infinitely long cylinders, the only relevant
geometrical parameters are the pitch P and the diameter D. The P/D-ratio
is the non-dimensional parameter related to the cylinder spacing. However,
the finite length of the numerical domain has some influence on the results, as
will be discussed in Section 3. The domain length L is made non-dimensional
by dividing it by the hydraulic diameter Dy, which is equal to four times the
through-flow area divided by the wall perimeter in the domain:
P2 - 1D?
—p )
The frequency of the pressure fluctuations is made non-dimensional by multi-
plication with the ratio of the hydraulic diameter and the mean axial flow speed,
giving the following equation for the Strouhal number:

St:f(l])h. (3)

Dy =4




2.3. Large-Eddy Simulation

In Large-Eddy Simulations (LES), the large eddies are resolved and the
smallest vortices, which are universal in nature according to Kolmogorov’s hy-
pothesis, are modelled. The small-scale turbulent eddies are modelled with
a stress tensor - called the subgrid-scale stress - in the momentum equation.
The direct calculation of the large vortices causes the computational load to be
considerably higher compared to URANS.

The sub-grid scale stress model applied in this thesis is the Smagorinsky
model with dynamic Lagrangian averaging (Meneveau et al. (1996)). Firstly,
the tophat filtering function G(x,z’, A) is defined as follows:

G(z,2',A) = %’ |m—x'|§% (4)
Y 0, elsewhere

where the filter width A is equal to the geometric average of the cell width in
the three dimensions: A = (h,hyh,)/3.

The filtering function is multiplied with a field variable f and subsequently
integrated over the entire domain. This filtering operation is applied to the
Navier-Stokes equations for an incompressible, isothermal, Newtonian fluid. A
filtered variable f is denoted by f. The flow equations become:

ou;
or; 0 (5)
owy , 0 . _  10(p+pa) I O*u;
or ' 0z, (i) = p Oz Ox; - Y 0,0, (©)
where 7;; is the residual stress, given by:
Tij = Uiy — Ui Uj. (7)

An additional pressure term p4 is inserted into the momentum equation in
order to achieve the desired mean axial flow speed. The filtered variables @ and
P are calculated directly by solving the filtered Navier-Stokes equations, which
requires an appropriate model for the residual stress 7;;. The Smagorinsky
model yields, with the Einstein notation:

8ij —
Tij — ?]Tkk = 721/7537;]' (8&)

v = (CsA)?|S] (8b)

where S;; = %(gz + g%) and |S|= (25;; Si;)'/2.
Cy is the Smagorinksy constant. This parameter is updated with information
extracted from the filtered variables. The latter is done by defining another
filtering function, the test filter, based on a filter width A: A = 2A. A variable

f which is filtered with the test filter, is denoted by f. The Smagorinsky model
parameter is calculated with the Lagrangian dynamic model given by Equation

9).

_ fom(,t)
Cslot) = farn(x,t)

(9)



The quantities frp; and farps are calculated from two additional transport
equations (Meneveau et al. (1996)). The applied discretisation scheme is the
standard Gaussian finite volume integration. The pressure velocity coupling
was done with the PISO-algorithm and the standard geometric-algebraic multi-
grid solver in OpenFOAM was used. Time stepping is done with the standard
backward Euler scheme.

2.4. Spectral analysis

After the LES simulation in OpenFOAM, the pressure profile on the cylinder
wall is postprocessed. The wall pressure is dependent on two spatial dimensions
- the axial (z) and circumferential (0) coordinate on the cylinder wall - and on
the time variable n. 6 is set equal to 0° in a gap region, which means that
the subchannel regions adjacent to it are designated by 6 = 45°r — 45°. All
multiples of 90° also correspond to a gap region.

First, the temporal Discrete Fourier Transform is calculated with Equation (10).
The number of time steps considered is denoted by N, the duration of 1 time
step is At. The frequency is expressed with the Strouhal number.

pl 27rnk
P(0, z, St) Z ) (10)

Applying Equation (3) yields St = NLN %

The obtained Fourier variables P are substituted into a spatial autocorrela-
tion, called the Cross Spectral Density (CSD), given by:

Nz

91+m , 2, St) (02+m ,z+ Az, St).

2’
(11)

The Power Spectral Density (PSD) is a special case of the CSD: PSD(0, St) =
CSD(6,0,0,St). Both quantities are made non-dimensional: the PSD is divided
by the constant p?U3D), and the CSD is converted to the coherence function

v

N
CSD(01,02, Az, 5t) = — Z

m=0 2z=0

CSD(61,02,Az, St)
PSD(6:, 5t)

’}/(91,02,AZ,St) = (12)

As the noise on the CSD is rather large, an averaging procedure is applied:
the total time batch is divided into several parts and the CSD is calculated for
each part separately, after which the global CSD is found by taking the average
of the computed CSD profiles. However, one should take into account that this
procedure affects the frequency limitation of the CSD due to the finite summa-
tion in the CSD formulation. The lowest frequencies (near to zero) are merely a
numerical residu of the calculation. Decreasing the size of the summation, e.g.
by splitting the time batch in smaller parts, increases the minimum frequency
above which the CSD has a physical meaning. This limitation is checked in



Section 4 by calculating the theoretical minimal frequency obtainable with the
CSD calculations as follows:
1 . fm,inDh Dh

& Stpin = - : 13
NevalAt U NevalAtU ( )

fmin =

where N,,q and At represent the number of considered time steps and the time
step size respectively.

3. Grid convergence analysis

In order to determine the sensitivity of the solution on the grid, different
meshes are constructed for a constant flow domain. The reference geometry
has a P/D-ratio equal to 1.085 and an L/Dp-ratio of 15. The grid convergence
study is done with a Reynolds number Rep, equal to 14,000. The different
cases are listed in Table 1. The simulation results are shown in Figure 4. All
figures in this paragraph contain non-dimensional variables. The wall profile in
the subchannel region is similar for all the computed cases.

Table 1: Cases with different grid properties applied on the reference flow domain in order to
determine the grid convergence.

Case | Azt [-] | yT [] | AzT [-] | Number of cells [-]
X50 100 2 20 2,620,800
X30 60 2 20 4,368,000
X20 | 40 2 20 6,552,000
Y06 100 1.2 20 3,307,200
706 100 2 12 4,233,600

Figure 4b shows that changing the Az"-value alters the PSD significantly,
but not in the Strouhal number range between 0 and 0.4, which is the relevant
Strouhal number range in this paper. In this region of interest, the PSD profiles
are similar for all cases. For higher Strouhal numbers, it is argued that the X50
case is the most precise case because it has the finest mesh and thus allows the
calculation of smaller eddies than the X20 and X30 case. As the refined meshes
in cases Y06 and Z06 do not yield significantly different results compared to case
X50, the resolution of case X50 is applied in the remainder of this paper. The
correlation used as a benchmark in this figure (red curve) is Curling’s correlation
(Curling and Paidoussis (1992)). Additionally, Piomelli (2012) states that the
following range is appropriate for the mesh:

Az

Azt = =15 — 40

Yr

y+=y%<1 (14)
Azt = % = 50 — 150
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in which Az, y and Az denote the cell spacing along the cylinder circumference,

the radial height of the first cell next to the cylinder wall and the cell spacing in
the axial direction, respectively. The wall shear stress 7,,, expressed in m?/s?, is
used to define the velocity U, = /7. yr is subsequently defined as y, = v/U;.
It was verified that the conditions in Equation (14) were met for all cases in
Table 3.
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Figure 4: Results of the grid sensitivity analysis. The profiles are time-averaged values for
a point on the cylinder wall located in the subchannel region (6 = 45°). (a) Wall velocity
profile (b) PSD(45°,St) obtained from LES calculations and Curling’s correlation (Curling
and Paidoussis (1992)).

Additionally, the influence of the domain length on the PSD is investigated.
Two cases containing a single cylinder with the same cylinder diameter and
pitch, but with different cylinder length, are defined in Table 2 and the results
are shown in Figure 5. The conclusion is that a domain length of 15 times the
hydraulic diameter is sufficient not to have an influence of the domain length on
the PSD profile in the subchannel region. In the simulations presented further
in this paper, the L/Djy-ratio is above 15 in most cases, although the lowest
L/Dy-ratio is equal to 9. This is deemed to give acceptable results, as these
results will be compared with literature. Curling’s correlation does not follow
the present simulation data, especially at Strouhal numbers above 2. This is
possibly due to the level of turbulence in the experiments by Curling which is
presumably higher than in the LES calculations shown here.

Table 2: Cases defined to analyze the sensitivity on the domain length. The cylinder has a
diameter equal to 0.2m and a pitch of 0.217m. The hydraulic diameter D}, equals 0.1 m.

Case L/Dy, -] | Number of cells [-]
L/Dp =15 15 2,620,800
L/Dy =30 30 5,241,600
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Figure 5: Effect of the domain length on PSD(6 = 45°,St). The profiles are average values
for a point on the cylinder wall located in the subchannel region. The compared cases have a
L/Dyp-ratio of 15 and 30, respectively.

4. Analysis of the PSD

Important features of the flow can be extracted from the PSD, such as the
location and frequency of the dominant pressure fluctuations. Consequently, the
first complete flow analysis is aimed at the PSD only. The numerical simulations
on which this analysis relies are performed on different cases, which are listed in
Table 3. The Reynolds number Rep, is 10,000 in all simulations and the fluid
is water. As a result, the mean axial flow velocity U is adapted according to the
chosen cylinder spacing, i.e. P/D-ratio, which differs for all the defined cases.
The used time step is denoted by At. This variable is made non-dimensional by
multiplication with the ratio U/Az. Not all time steps are taken into consider-
ation in the subsequent spectral analysis: it is well known that the simulation
requires some time steps to get physical turbulence (Piomelli (2012)). Also, the
first time steps of every calculation are influenced by the initialization of the
flow and therefore have to be omitted from further analysis. It was checked
for all cases that regime conditions were achieved. This occurred after having
calculated between 2 and 5 through-flow times. Consequently, the number of
time steps Neyq; used in the spectral analysis is different for every case, as given
in Table 3.

Considering the discussion in Section 2, the minimal Strouhal number St,,;y,
which is defined in Equation 13, is calculated for all the cases defined in Table
3. Case P/D = 1.2 yields the highest value for St,;, i.e. 0.006. The noise
in the PSD-graph remains however high even for Strouhal numbers above this
minimal value. Additionally, the PSD is periodic over 90° due to the flow
domain’s periodicity. The PSD’s periodicity has been verified with the present
simulations. The relative error on the PSD made by assuming periodicity for
the Strouhal number up to 4, equals 9.0% in case P/D = 1.06 and 4.3% in case
P/D = 1.2. This error was defined as the average absolute difference of the
local PSD value with the periodic PSD value, divided by the latter. Taking into
account the noise on the PSD, these errors are small and thus periodicity over
90° can be assumed safely in the subsequent analysis. In the first part of this

12



section, a general overview of the PSD will be given. Subsequently, it will be
discussed to what extent the observed features depend on the Reynolds number
and on the P/D-ratio.

Table 3: Non-dimensional characteristics of the cases computed to analyze the influence of
the P/D-ratio on the PSD. For all cases, Rep, equals 10,000.

Case P/D | L/Dy | AtU/Az | Neyar Cells
P/D=1.02 | 1.02 23 0.063 29,220 | 4,800,000
P/D=1.03 | 1.03 21 0.030 52,620 | 4,800,000
P/D=1.04 | 1.04 20 0.027 67,884 | 4,800,000
P/D=1.06 | 1.06 17 0.231 20,672 | 4,800,000
P/D =1.085 | 1.085 15 0.268 48,000 | 4,800,000
P/D=1.15 | 1.15 11 0.196 54,720 | 6,400,000

P/D=1.2 1.2 9 0.160 50,000 | 3,072,000
P/D=13 1.3 13 0.112 20,733 | 11,520,000
P/D=14 1.4 10 0.088 8,973 | 11,520,000

4.1. General view of the PSD

The primary features of the PSD will be investigated by using the simulation
results from two cases defined in Table 3: cases P/D = 1.06 and P/D = 1.2.
The PSD graphs for these cases are shown in Figures 6 and 7. The PSD is
made non-dimensional by dividing it with (p?U3Dj). All figures in this para-
graph are made non-dimensional, unless specified otherwise. Note that the
graphs differ substantially: very sharp peaks are found for case P/D = 1.06,
whereas a smoother profile is obtained for case P/D = 1.2. It is expected that
this is related to the relative strength of the flow instability compared to the
turbulent content of the flow. On the one hand, an instability exists because of
the flow speed difference between the gap and the subchannel region, creating
periodic pressure fluctuations. It is therefore understandable that sharp peaks
are located at the dominant frequencies corresponding to these fluctuations.
On the other hand, turbulence is a non-periodic phenomenon and consequently
causes a break-up of the periodic instability. As a result, the periodic behaviour
decays quickly when the turbulence become more dominant. Apparently, the
instability is dominant for case P/D = 1.06 whereas the turbulence is more
important for case P/D = 1.2. In conclusion, the instability is strong for small
P/ D-ratios only, whereas it is only of minor importance when the space between
the cylinders becomes larger.

For a Reynolds number of 10,000, sharp peaks are present up to a P/D-
ratio of 1.085, below which the general look of the PSD is similar to the one
depicted in Figure 6. It was not investigated at which P/D-ratio the PSD
obtains a smoother profile, but this is certainly the case for P/D larger than
1.2. As the presence of these peaks is related to the relative importance of the
Kelvin-Helmholtz instability compared to the turbulence, it is expected that

13
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Figure 6: PSD for case P/D = 1.06, as a function of 6 and Strouhal number. (a) Global view
(b) Zoom at small S¢
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Figure 7: PSD for case P/D = 1.2, as a function of  and Strouhal number. Note the difference
in color scale compared to Figure 6.
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the continuous profile is favoured for higher Reynolds numbers, which will be
discussed next.

4.2. Influence of the Reynolds number

The PSD characteristics do not change significantly with the Reynolds num-
ber as long as the flow remains turbulent everywhere (Lexmond et al. (2005)).
However, laminarisation cannot be prevented in (parts of) the flow domain at a
Reynolds number Re = 10,000, especially considering that the local Reynolds
number in the gap is lower. It is therefore not surprising that the Reynolds
number affects the PSD and CSD graphs. This is shown in Figure 8, depicting
the PSD as a function of § and the Strouhal number for P/D = 1.085 and for
two different Reynolds numbers. At a Reynolds number of 15,000, a maximum
occurs at a lower Strouhal number than for Reynolds number 10,000 (0.14 and
0.18 compared to 0.2 and 0.27, respectively). This shift is related to the Strouhal
number definition: the denominator contains U, which is 1.5 times as large for
the high Reynolds number case as it is for the low Reynolds number case. Ad-
ditionally, the non-dimensional PSD values are lower for Re = 15,000 than for
Re = 10,000. This is influenced by the denominator of the non-dimensional
PSD, which is considerably larger for the high Reynolds number case. The
dimensional PSD increases with increasing Reynolds number: the higher flow
velocity and higher turbulent intensity provoke stronger pressure fluctuations.
Abbasian et al. (2010) performed LES calculations on a circular flow channel
containing four rods and eight half-rods and showed that the amplitude of the
pressure oscillation grows in the gap region for increasing Reynolds number (for
a P/D-ratio equal to 1.08), thereby confirming that the dimensional PSD is
higher for the higher Reynolds number.
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1.0e-05

5.0e-06

Figure 8: PSD(0, St) for P/D = 1.085. Note the difference in color scale between both graphs.
(a) Re = 10,000 (b) Re = 15,000

In the simulations described in following sections, the Reynolds number is

equal to 10,000. The Reynolds number is kept low to limit computational re-
sources and it also has the beneficial effect that the influence of turbulence on
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the flow is limited. However, this does not mean that the Kelvin-Helmholtz in-
stability disappears at higher Reynolds numbers. Merzari et al. (2008) showed
that the coherent structures are still present at a Reynolds number of 38,754
with P/D = 1.06.

4.83. Influence of the cylinder spacing

The previous section already indicates that the cylinder spacing strongly af-
fects the coherent flow structures. For very large P/D-ratios, the cylinder cluster
effectively reduces to independent cylinders, unaffected by the distant presence
of their neighbours. For smaller cylinder spacings, the flow field changes due to
the difference between gap and subchannel regions, leading to the occurrence of
a Kelvin-Helmholtz instability. The characteristics of the cylinder wall pressure
fluctuations change substantially. In this section, the values and the location
of the pressure maxima and the frequency content of the wall pressure field are
analyzed by means of the PSD. The characteristics of the cases used in this
analysis are listed in Table 3.

4.8.1. Mazimum amplitude

The PSD amplitude is a direct measure for the strength of the cylinder
wall pressure fluctuations or, similarly, for the strength of the Kelvin-Helmholtz
instability in the flow. For each case in Table 3, the maximal value of the PSD
is determined. Figure 9a shows the maximal value of the PSD as a function of
the P/D-ratio of the corresponding case. The logarithmic scale on the vertical
axis allows the visualization of the rapid decrease of the PSD maximum at
higher cylinder spacings. It should be noted that the noise on the PSD signal
is large. Therefore, the algebraic average of the PSD over the entire range of
the circumferential coordinate € at the Strouhal number at which the local PSD
maximum arises is calculated -rather than only taking the average in the axial
direction, as given in Equation 11. This corresponds to the average value over
a vertical line located at the specified Strouhal number in Figure 8a. The result
is given in Figure 9b. It is noted that the overall trend is similar in both cases,
meaning that the noise on the local PSD value does not significantly influence
the qualitative trend.

Figure 9 shows a strong decrease of the PSD maximum for increasing cylinder
spacing, at least for P/D larger than 1.03. The decrease is nearly exponential.
For example, the maximal value for the PSD at P/D equal to 1.4 is a factor
10* smaller than in the case of P/D equal to 1.2. This indicates that the
Kelvin-Helmholtz instability is barely present for the geometries with the largest
cylinder spacing in this analysis. It is noted that the maximal transverse velocity
component has a magnitude of the order of 0.0002 m/s, whereas the mean axial
flow velocity for case P/D = 1.4 equals 33.43 m/s. This indicates that the
Kelvin-Helmholtz instability will have a negligible influence on the PSD profile.
As mentioned before, the turbulence field was not fully developed for the last
two cases in Table 3.

The driving force behind the Kelvin-Helmholtz instability is the axial flow
velocity difference between the gap and subchannel region. The distinction
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Figure 9: Variation of the PSD maximum as a function of P/D. The PSD is calculated as
a mean value over the entire range of the axial coordinate. (a) PSD maximum located at
a single circumferential position on the cylinder wall (b) PSD maximum averaged over the
circumferential direction, at the same Strouhal number as the local maximum

between both subregions becomes increasingly smaller for increasing cylinder
spacing, which explains the rapid decrease of the PSD maximum for P/D larger
than 1.03. However, the PSD maximum for P/D equal to 1.02 is significantly
smaller than for 1.03. The reason for this behaviour is the following: the Kelvin-
Helmholtz instability results in cross-flow between one subchannel through a
neighbouring gap region towards another subchannel. The viscous forces, mainly
present in the gap region due to the vicinity of the wall, inhibit this fluid motion.
For an increasingly smaller gap between the cylinders, the friction in the gap
becomes more important, therefore reducing the cross-flow speed and thus the
pressure fluctuation amplitude. The resulting graph of the PSD maximum as a
function of the P/D-ratio is thus the result of two phenomena: the viscous forces
in the gap region inhibiting the cross-flow through the gap and the (axial) flow
velocity difference between the gap and subchannel region, the source of the flow
instability. It is remarkable that Yan and Yu (2011), who performed URANS
simulations on a periodic element of a hexagonal array at a Reynolds number
of 38,754, also find that the pressure fluctuations are maximal at P/D = 1.03.

To conclude this discussion, a correlation which relates the PSD maximum
to the P/D-ratio, is proposed in Equation (15). The data from Figure 9b are re-
produced in Figure 10, on which the new correlation is superimposed. The most
accurate fit to the results presented in Figure 9 was obtained with a piecewise-
defined function. For P/D smaller than 1.03, a linear function was determined
by applying a least-squares model to three datapoints: for P/D equal to 1 - at
which the PSD due to the Kelvin-Helmholtz instability is assumed to be zero -
1.02 and 1.03. For larger gap sizes, an exponential function provided the best
fit. It is noteworthy that the constant in the exponential is rather large: around
30. As the noise on the PSD found in literature is large (Paidoussis (1998)),
there is some uncertainty about this value.
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Figure 10: Variation of maximum of the circumferentially averaged PSD as a function of P/D.
The curve is given by Equation (15).

4.83.2. Circumferential position of the PSD maximum

Due to the geometrical periodicity, the PSD-graph is periodic in 8. There-
fore, only values of 6 within the range of [0° — 90°] are shown. The local PSD
maximum - the value shown in Figure 9a - is found on a well-determined circum-
ferential coordinate on the cylinder wall. Figure 11 shows the circumferential
position at which the maximal value of the PSD is located. There are two
maxima, one at an angle 01 ;q, smaller than 45° and another one at an angle
02 mae larger than 45°. For almost all data points, 01 mer + 02.maz = 90°,
indicating symmetry with respect to the subchannel region. Secondly, the angle
is constant for low P/D-ratios, up to P/D = 1.06. In this case, 01 4, and
02 masz become 13° and 77°, respectively. The pressure fluctuations along the
cylinder are thus stronger close to the gap region than to the subchannel region,
which is probably related to the fact that the cross-flow is strongest in the gap
region. However, the influence of the viscous forces on the flow is also strongest
around 0°. The obtained limit of 61 ;4 equal to 13° is the result of these two
influences. For higher P/D-ratios, and thus a decreasingly strong instability, the
angles come closer together. This is due to the relatively stronger turbulence: in
case there were only turbulent fluctuations, the PSD maximum would be located
at 45°. This is due to the slightly higher flow velocity in the subchannel region
compared to the gap region. As the local Reynolds number is higher in the
subchannel region, the turbulent fluctuations and thus the pressure oscillations
are strongest in the subchannel region. When increasing the cylinder spacing
even further, the distinction between the gap and the subchannel disappears
and the PSD is homogeneous over the entire frequency range and for all angles
0.

Another remark about Figure 11 is in order. The graph only shows the
position along the cylinder circumference of the absolute PSD maximum for
every case. However, there is a smaller local maximum which is located at 45°
and at a higher Strouhal number for P/D = 1.15 and P/D = 1.2. This is shown
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Figure 11: Variation of the circumferential position of the PSD maximum as a function of
P/D (blue and red dots). The line connecting the blue datapoints is given by Equation (16).

in Figure 7. The local maximum located around 6 equal to 45° is provoked by
turbulence, of which the level is highest in the subchannel region. Therefore,
the graphs confirm that turbulence becomes more dominant with respect to
the instability for increasing cylinder spacings. The presence of a local PSD
maximum around 45° is expected to occur if P/D > 1.15. At some point, the
turbulence effects outweigh the coherent structures, giving rise to an absolute
maximum around 45°. This happens for P/D > 1.2 and as long as there
is a noticeable difference between gap and subchannel regions, as previously
mentioned.

Lastly, a least squares fit is applied to the data in Figure 11. This yields the
following result, which is valid until P/D = 1.2:

P\? P
Opraw = 19.5 (D) — 40.275 (D> + 21.02 [rad (16)

in which 0,4, is expressed in radians and obtains the value of 7/4 rad or 45°
when P/D equals 1.2. For cylinder spacings beyond P/D = 1.2, the PSD
maximum is still located at 45° until the cylinders are placed so far apart that
the distinction between gap and subchannel region disappears, at which point
a homogeneous PSD is expected.

4.8.8. Frequency corresponding to the PSD mazimum

It is observed that the PSD maximum does not occur at a universal Strouhal
number value. Instead, the Strouhal number St,,,, at which the PSD maxi-
mum occurs, is different for each computed case. Figure 12 shows the variation
of Stz as a function of the cylinder spacing (red squares). The function
is peculiar: the exact behaviour of the Strouhal number St,,,; is not clear.
The function appears to decrease with increasing P/D for low P/D-ratios and
goes through a minimum at P/D = 1.04. However, the dimensional frequency
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fmaz = StmazU/Dp, (not shown) is monotonously decreasing with increasing
P/D.
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Figure 12: Variation of the Strouhal number at which the PSD maximum occurs Stmaz,
according to the present simulations (red squares) and Méller’s correlation (blue diamonds),
respectively.

Méller (1991) investigated axial air flow through a rectangular channel con-
taining four cylindrical rods placed side by side and proposed Equation (17) to
quantify the influence of the cylinder spacing on the Strouhal number corre-
sponding to the maximum PSD. However, care should be taken when interpret-
ing these results. Moller defines the Strouhal-number in a different way than in
this paper, i.e. based on the cylinder diameter D and the velocity U; = /Tu.
Also, this correlation was developed with empirical data of flows with higher
Reynolds numbers -between 20,000 and 200,000- and therefore includes a larger
effect of turbulence.

_ fD\ ! P-D
Sto,) ' = (—= = 0.808 0.056 17
sty = (42 L )
The wall shear stress 7, is computed from the force equilibrium between the
pressure gradient over the domain length and the wall shear stress:

™
Aflow Ap = AwallpT'w = (P2 - ZD2) Ap = (WDL)pTw

2 T 12
Ap P” — 4D
p mDL

Moller’s correlation, adapted to the Strouhal number definition used in this
paper, is compared to the present LES results in Figure 12. It is concluded that
the overall trend is similar for both the Large-Eddy Simulations (red squares)
and Moller’s correlation (blue diamonds), but the latter predicts consistently
higher values for the Strouhal number at which the PSD maximum occurs. The
discrepancy between both could be due to the numerical error on 7, obtained

Ty = (18)
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from LES, as well as due to the low Reynolds number at which the simulations in
this paper were performed. However, it is more probable that the finite domain
length influences this result. A characteristic frequency fpr and corresponding
Strouhal number Stpy, related to the domain length L, is defined as follows:

= —, (19a)

_ foL Dy _ U.Dy
Stpy, = 1PLZ = ZeTh (19b)

In Equation (19), the characteristic speed is the convection speed U, which is
the speed at which the periodic instability is transported through the flow. U,
is considered to be more appropriate as a reference velocity than the average
flow speed U because it is more closely related to the physics of the occurring
eddies than U. Moving ahead of the analysis in Section 5, the convection speed
can be estimated with an adapted version of the correlation defined by Guellouz
and Tavoularis (2000):

U, P
=1 (1 —exp(~17 5 + 16.3)). (20)

Comparing the Strouhal number values shown in Figure 12 with the value of
Stpy, for each P/D-ratio, it is concluded that the former is close to! a discrete
multiple of the latter in five of the seven cases (not shown). This leads to the
conclusion that the domain length probably influences the frequency content of
the PSD, a hypothesis which will be reinforced in Section 4.3.4. This is due
to the periodic boundary conditions at the in- and outlet of the domain: these
boundary conditions force a discrete number of large eddies into the domain,
therefore artificially strengthening the harmonics of fpr. However, it is not ex-
pected that this numerical phenomenon significantly affects the circumferential
position of the PSD maximum neither does it affect the qualitative trend of the
PSD amplitude, which are discussed in the previous sections. Also, it should be
noted that the Strouhal number corresponding to the PSD maximum is not the
same harmonic of Stpy, for all cases: for example, St,,q./Stpr, is about four in
case P/D = 1.06, whereas this ratio becomes five for case P/D = 1.03. This
possibly explains why the qualitative trend of St,,4, is similar to Moller’s cor-
relation, whereas both datasets do not match quantitatively. For completeness,
it should be stressed that this ratio does not yield a discrete value in two cases:
it is equal to 6.7 for P/D = 1.02 and 2.3 for P/D = 1.15. However, the PSD
contains several local maxima next to the absolute maximum described here. In
case P/D = 1.02, a local maximum occurs at 4 Stpy, and in case P/D = 1.15,
one occurs at 3 Stpyr. This again indicates that, although the Strouhal number
Stmaz i likely to be influenced by the finite domain length, the qualitative trend
found in Figure 12 is of physical nature.

1The phrase “close to” means: Stmaz lies within ten percent of a multiple of Stpr., al-
though the margin was smaller than ten percent for most cases meeting this criterion.
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4.8.4. Harmonic content of the PSD

Figure 6 shows that the PSD does not exhibit a single maximum. In fact,
up to a P/D-ratio of 1.085, the function PSD(6,St) contains several maxima,
all located at the same value of 0, but at a different Strouhal number. The
difference in Strouhal number between two adjacent maxima, Styp;fe, is nearly
constant, which leads to the assumption that the extrema indicate harmonics in
the instability. Figure 13 shows the value of this frequency shift as a function
of the P/D-ratio. It is noteworthy that multiple values per P/D-ratio were
plotted, not just one value averaging the shifts between the different adjacent
maxima (black dots). All black points at a certain P/D-ratio are close to each
other, confirming the fact that the frequency shifts are either of physical or nu-
merical nature and not due to noise. Additionally, there appears to be a local
maximum at P/D = 1.03, but looking at the remaining data points, the general
conclusion is that the frequency shift increases with the P/D-ratio. The ques-
tion is whether this harmonic content is a numerical or physical phenomenon.
The only numerical parameter which could cause this PSD-characteristic, is the
domain length. The Strouhal number Stpy,, which is defined in Equation (19),
corresponds very well to the obtained values (red dots). This is a strong in-
dication that the harmonic content observed in the PSD graph is a numerical
phenomenon, related to the finite domain length and the predicted convection
speed. In order to check the domain length’s influence, another case is defined
with the following geometrical parameters: P/D = 1.085 and L/D; = 22.5.
Table 4 contains the case characteristics and allows the comparison to the case
where L/Dj, = 15, which was used previously (this is case P/D = 1.085 in
Table 3). According to Equation (19), the theoretical variable Stpy is equal
to 0.043. Using the procedure described in Section 5, it was verified that the
convection speed U, did not yield a significantly different value compared to the
case where L/D = 15, such that Equation (20) is applicable. The PSD profile
of the newly-defined case showed a nearly constant frequency shift between two
local PSD maxima as well. This Strouhal number shift lies within a 5% margin
of Stpr. This confirms the hypothesis that the domain length influences the
harmonic shift in the PSD-profile. Consequently, this shift is likely to be a nu-
merical phenomenon. Finally, it should be noted that Stp; and the frequency
shift from the simulation do not match for P/D = 1.04. There is no clear reason
for this discrepancy.

Table 4: Non-dimensional characteristics of two cases computed to analyze the influence of
the harmonic shift in the PSD. For all cases, Rep, equals 10,000 and P/D = 1.085.

Case L/Dy | AtU/Az | Neyar Cells
L/Dy =15 15 0.268 | 48,000 | 4,800,000
L/Dp =225 225 0.268 | 54,000 | 7,200,000
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Figure 13: Variation of the Strouhal number shift between adjacent PSD maxima as a func-
tion of P/D. The black diamonds show the simulation results (Stspif:). The characteristic
Strouhal number Stpy, is depicted by the red squares.

5. Analysis of the CSD

Some flow characteristics cannot be estimated with the PSD. This is due
to the definition of the PSD: the two coordinates Af and Az are set to zero.
This effectively means that each term composing the PSD contains information
about only one location in space. However, in order to determine the convec-
tion speed, the pressure profiles at different locations on the cylinder wall need
to be compared, as is the case in the more general definition of the CSD. The
frequency- and space-dependent CSD therefore provides valuable information
to further understand the axial flow through an array of cylinders. Because
the main interest of this research is to determine the convection speed of the
instability, only the axial coordinate is varied, while keeping the circumferential
position fixed: CSD(64,6;, Az, St).

The function CSD(6;, 0, Az, St) is periodic over 90°, as assumed in Equation (11).

The coherence is defined similar to Equation 12: (61,601, Az, St) = CSD(64, 01, Az, St)/PSD(6,, St).
Every term in the definition of the CSD thus consists of the product of the

Fourier variables of two points having the same circumferential coordinate, but

a different axial position.

5.1. Characteristic shape
Figure 14 shows the amplitude and phase angle of the function v(0;, 61, Az, St).

The vertical axis shows the differential axial position Az and the horizontal axis
shows the Strouhal number. The P/D-ratio is equal to 1.085 and the angle 6 is
set to zero. Firstly, the coherence amplitude becomes one and the phase angle
becomes zero for Az equal to zero: this is due to the definition of the coherence.
Secondly, both the amplitude and phase plots exhibit hyperbolically-shaped
bands. Moreover, the bands in the amplitude and phase plot are correlated: the
coherence amplitude is minimal when the phase angle is 180° and the amplitude
is maximal when the phase angle equals 0°.
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Figure 14: Coherence (0,0, Az, St) in case P/D = 1.085 with Az/Dj up to 5. (a) Amplitude
(b) Phase

The occurrence of hyperbolic bands in the CSD profile has been observed
before. De Ridder et al. (2016) performed Large-Eddy Simulations on an annu-
lar flow geometry with a Reynolds number equal to 127,000 and found a similar
profile for the CSD. The explanation for the CSD bands presented in that pa-
per is based solely on the transport of a perfect, non-viscous vortex structure
through the array. Although the bands in the phase plot can be explained by
the presence of moving waves, it does not clarify the amplitude behaviour. If
two points on the cylinder surface, which are positioned Az apart, see a similar
pressure profile with a time delay 7 22 due to the finite transport speed of the
instability, the amplitude does not change as a function of Az. If the pressure
profile in the first point is symbolized by z(t) and in the second point by y(t) -t
being the continuous time parameter- the Fourier variables in the CSD would
be as follows:

v = ot = ) V() = XW e ) @)

27k Az 9 21k Az
]T Uc) = | X (k) efp(—JT Uc) (22)

where X (k) is the DFT of signal x(t), X* is the complex conjugate of X and ||
is the amplitude of a complex variable. According to the CSD definition, this
product is subsequently used in a summation over the axial coordinate. As it
is assumed that the same pressure profile is seen over the entire cylinder - with
a time delay dependent on the relative position of the points on the wall - the
theoretical X (k) is not dependent on the axial position. The conclusion is that
the amplitude of the coherence would be independent of the parameter Az,
which is clearly not the case. In other words, the coherence bands cannot be
explained completely with a moving wave hypothesis. Additionally, it should
be noted that the global coherence profile is not hyperbolic: due to the periodic
boundary conditions, the CSD profile is relatively symmetric around half of
the cylinder length (Az/D; = 7.5 in this particular case). This is shown in

X(k)* Y (k) = X(k)" X (k) eap(~
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Figure 15, in which the parameter Az/Dj, is extended to 15, corresponding to
the entire domain length.
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Figure 15: Coherence (0,0, Az, St) in case P/D = 1.085 and L/Dy = 15 with Az/Dj, up to
15. (a) Amplitude (b) Phase

The coherence profile in Figure 15 possibly indicates the presence of stand-
ing waves in the flow domain. Standing waves would influence the coherence
amplitude, but the phase behaviour cannot be the result of a standing wave:
only 0° and 180° phase change can occur in a standing wave. Consequently, it is
hypothesized that the presence of both standing and travelling waves in the flow
domain lead to the observed CSD. This is verified by automatically generating
pressure data of known wave forms and subsequently calculating the coherence
function. This theoretical pressure profile is applied to an array of points along
a straight line, which is similar to a set of points with the same circumferential
coordinate, but located at different axial positions. The presumed Reynolds
number is 10,000. The ratios P/D and L/D), are chosen equal to 1.085 and 15,
respectively. The ratio U./U is set to 1.02, which is the mean value obtained
for P/D = 1.085 in paragraph 5.3. The spatial resolution is kept the same as in
the original case P/D = 1.085, i.e. 400 points distributed over a total length of
15D},. The theoretical pressure profile is dependent on one spatial parameter z
and on the time instant ¢. It is defined as:

& U.t z
p(z,t) = Zsm (27rmL) sin (27rmL/2)

m=1

60 U .
+ Zsin (27rmLc [t — UJ)

m=1

The standing wave time frequencies are chosen equal to a multiple of U./L
and the spatial wavelengths are set to a multiple of L/2. For the travelling waves,
the frequency is a multiple of U./L. As such, the periodic boundary conditions
are reproduced in the theoretical pressure profile. The resulting coherence func-
tion (for which no circumferential coordinate is determined) is shown in Figure
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16. These graphs strongly resemble Figures 14 and 15, which is an indication
that the proposed hypothesis is correct. There are two discrepancies between
the theoretical coherence profile in Figures 15 and 16. The first one is at St = 0.
As shown in Equation 23, the very low frequencies are not excited and, as such,
the coherence amplitude is minimal whereas it is maximal in the coherence ob-
tained from the simulations. Secondly, the coherence obtained from LES fades
quickly for an increasing value of Az. Due to other perturbations, i.e. tur-
bulence or the generation of new Kelvin-Helmholtz instabilities, the pressure
profile is distorted during the transport in the axial direction. Consequently,
the coherence amplitude maximum value decreases for increasing Az. Also, the
hyperbolic bands disappear for high Strouhal numbers. High frequencies corre-
spond to smaller vortices, which are more sensitive to dissipation by turbulence.
This leads to a reduced pressure correlation and a corresponding phase shift,
which becomes zero on average.

In the previous paragraph, it has been established that the coherence func-
tion behaviour is due to both a standing and a travelling wave phenomenon.
The latter is intuitively understood, as it is related to the transport of an in-
stability through the flow domain. This is why the convection speed U, was
used in Equation (23). By contrast, the standing waves are counter-intuitive.
This effect is not related to the finite domain length L, even though L appears
in Equation (23). In order to confirm this, the coherence is calculated for case
L/D;, = 22.5 described in Table 4. The amplitude and phase of this coher-
ence function are shown in Figure 17. The bands in Figures 17b and 17d are
located on the same position as for the smaller domain length L/Dj; = 15. The
difference between both cases is that the central region in Figures 17a and 17c
is elongated, because the bands around Az/Dj; = 0 are similar in both cases,
independent of the domain length.

The explanation for the standing wave phenomenon is not related to the
domain length, but it is due to another numerical aspect: the definition of the
pressure reference point. In incompressible flow, the Navier-Stokes equations
only define the pressure gradient. Consequently, if an appropriate pressure field
p* is found, any pressure profile p = p* + C (where C is a constant value) is also
a valid solution. In order to overcome this ambiguity, the OpenFOAM solver
defines a pressure reference point at which the pressure is set to zero gauge
pressure by definition. In all time steps, the pressure in this point is constant
and the flow field is calculated accordingly. The periodic flow instability which
is transported through the domain consists of a number of frequency compo-
nents. If the time frequency of one of these components is denoted with f,
the corresponding spatial wavelength is: A = U./f. Therefore, it is expected
that the points located at an axial distance equal to (a multiple of) A from the
pressure reference point also experience (nearly) zero pressure. The location
of these pressure nodes is thus related to the transport of the flow instability
and is dependent on the frequency (or, equivalently, the Strouhal number) as
well as the convection speed. This explains why the convection speed occurs in
the expression for the standing wave and also why the pressure nodes are not
located on the same axial position for all Strouhal numbers. In order to verify
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Figure 16: Coherence v(Az, St) of the theoretical pressure profile defined in Equation (23).
(a) Amplitude, with Az/Dj, up to 15 (b) Amplitude, with Az/D), up to 5 (c) Phase, with
Az/Dy, up to 15 (d) Phase, with Az/Dj, up to 5
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Figure 17: Coherence (0,0, Az, St) in case P/D = 1.085 and L/Dy, = 22.5. (a) Amplitude,
with Az/Dj up to 22.5 (b) Amplitude, with Az/Dy up to 5 (c) Phase, with Az/Dy, up to
22.5 (d) Phase, with Az/Dj, up to 5
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this reasoning, the radial force Fq in the direction of 8 = 0° is calculated with
a discrete approximation of the pressure integral:

No—1
Eo = Z p cos(m Abeer) Acenr (24)

m=0

where Ny represents the number of divisions in the circumferential direction and
Abey; is the circumferential angle taken by a single cell. Finallly, A, is the size
of the cell face on the wall. By performing the CSD operation on the force Fi.,
the influence of the pressure reference point should be removed. The definition
of the CSD in Equations (10) and (11) is directly applicable if the pressure is
replaced by the radial force. In that case, the CSD is no longer dependent
on the circumferential position as was the case for the pressure profile. The
coherence of the radial force is denoted with vr. The coherence amplitude and
phase in the case of P/D = 1.085 and L/Dj, = 22.5 are shown in Figure 18.
The bands in the phase plot are the same as in Figure 17, but the bands in
the coherence amplitude are almost invisible. The disappearance of the bands
seems to support the hypothesis that the standing wave phenomenon is related
to the pressure reference point. The decay of the coherence amplitude for higher
Az and St has already been discussed.

Finally, the phase angle shift of the coherence is solely related to the finite
velocity at which the vortex structure is transported, i.e. the travelling waves
in the flow domain. The axial distance over which the coherence undergoes
a 360° phase shift is therefore equal to the distance travelled by the Kelvin-
Helmholtz instability during one oscillation period T = 1/f = Dy /(StU).
In other words, the axial length between two adjacent bands in the coherence
phase graph, further denoted by Azpgng, is a measure of the convection speed
U., which is the speed at which the coherent structures are transported axially
through the domain.

5.2. Influence of the circumferential coordinate

In this section, the influence of the parameter 67 on (01,61, Az, St) is dis-
cussed. Curling and Paidoussis (1992) states that when the angle 6; is chosen
closer to the subchannel region, the convection speed increases and the hyper-
bolic bands in the CSD-profile come closer together. In order to verify this, the
phase angle of the coherence function (01,61, 3Dy, St) from the LES calcula-
tion are superimposed on Curling’s correlation in Figure 19. The dataset from
the numerical analysis does not show a noticeable difference between the gap
and subchannel region. Additionally, Guellouz and Tavoularis (2000) postulated
Equation (25) for the convection of the flow instability, which indirectly means
that the convection speed is independent of 8; (at least for small 6, close to
the gap region):

P
% = 1.04 (1 — exp(~109 5 + 10.6)) : (25)
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the present simulation results, the lines show Curling’s correlation (Curling and Paidoussis
(1992)).
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Consequently, there is some uncertainty about the influence of the angle 6.
It is noted that Guellouz’s correlation only considers the coherent structures,
whereas Curling’s experiments also show a significant turbulence level. Still, as
the turbulence level in the presented simulations is low, Guellouz’s correlation
is assumed to be a good description of the convection speed.

The following analysis is proposed: the CSD is calculated for 6; = 0° and
0, = 45°, respectively. For each of these plots, the axial distance between two
adjacent bands was determined at Strouhal numbers equal to 0.3, 0.5 and 1, re-
spectively. The results are shown in Figure 20. For now, only the red datapoints
are compared to the blue ones. The red datapoints result from the coherence
at #; = 0° especially for a Strouhal number equal to 0.3 and 0.5, the distance
between adjacent bands Az seems to be equal. For a Strouhal number of 1,
the variation is apparently somewhat higher, due to the decay of the coherence
phase bands for larger Strouhal numbers, but still there is no clear distinction
between both datasets. Increasing the Strouhal number beyond 1 is impossible
for most cases, as the spatial period cannot be discerned with sufficient accuracy
due to the fading of the CSD bands.

Although the noise on the CSD could hide a minor influence of the angle 61,
the simulations do not show any dependence of the CSD on the parameter 6.
This leads to the conclusion that the coherent structures are transported as a
whole; the vortices outside of the gap region and the cross-flow inside the gap
region are not moving relative to each other. No experimental (Meyer (2010);
Curling and Paidoussis (1992)) evidence has indicated otherwise so far.

5.3. Influence of the cylinder spacing

The qualitative image of the coherence function (1,61, Az, St), as shown in
Figure 14, does not change when altering the P/D-ratio, but the width between
the CSD bands is dependent on the cylinder spacing. The hypothesis is that
the flow speed difference between the gap and subchannel region decreases for
increasing cylinder spacing. It is logical that this change will affect the speed
at which the coherent structures are transported in the axial direction, the so-
called convection speed U.. It was noted in Section 5.1 that the convection
speed is determined indirectly from the coherence graph. To do so, a Strouhal
number is chosen beforehand and the corresponding axial separation Azpgng
corresponding to a 360° phase shift is measured. This band width, Azpgnq, is the
distance covered by the pressure fluctuation corresponding to the predetermined
Strouhal number during one oscillation period. As such, the convection speed
equals

Uc = AZband f (26)

Obviously, the resulting vortex street is the superposition of all individual
instabilities, each at a different frequency f (or corresponding Strouhal number
St). U. should be determined at different frequencies, which is done for three
different Strouhal numbers: 0.3, 0.5 and 1. For the graphs corresponding to the
Strouhal numbers 0.5 and 1 in Figure 20, it is observed that Az is halved when
the frequency is doubled, therefore indicating that U, is a constant value for a
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certain geometry. However, this conclusion is not entirely valid: from Figure 20
and Equation (26), it is clear that the convection speed is significantly lower
for St = 0.3 than for the other two Strouhal numbers. In other words, the
convection speed U, is not solely dependent on the P/D-ratio, but decreases
somewhat for low-frequency components. This is contradictory to the assump-
tion made by Guellouz and Tavoularis (2000). Although the LES results show
some dependence of the convection speed on the Strouhal number, the discrep-
ancy between lower and higher Strouhal numbers is neglected in the following
analysis. In order to determine the dependence on the P/D-ratio, the con-
vection speed is calculated with Equation (26) for all datapoints presented in
Figure 20. As there is no dependence on 61, the values for Azpq,q are calculated
with the average of the results for 6; equal to 0° and 45°. The resulting convec-
tion speed U, is shown as a function of the P/D-ratio, in Figure 21. Strouhal
numbers equal to 0.5 and 1 respectively, yield similar values for the convection
speed (blue dots). The only exception is in case P/D = 1.02, where the value
for U, at a Strouhal number equal to 1 was so large compared to other values,
that it was deemed reasonable to remove this outlier from the graph. However,
a Strouhal number equal to 0.3 gives values for the convection speed which are
roughly 10 percent lower than for the higher Strouhal numbers. Additionally,
notice the monotonous increase of U, /U for increasing P/D-ratio. As the space
between the cylinders becomes larger, the instability is spread over a larger
distance, hereby increasing Azpand-

The correlation defined by Guellouz and Tavoularis (2000) (Equation (25)) is
shown as a red line in Figure 21. The simulation data exhibit a similar behaviour
as this correlation, although at a consistently higher value. Consequently, an im-
proved correlation (shown as a green curve in Figure 21) is proposed by altering
the coefficients in Guellouz’s correlation:

g P
% = 1.11 (1 — exp(—17 55 + 16.3)>, (27)

As can be seen from Figure 21, this ratio is larger than one for P/D-ratios
above 1.1. This result is unexpected, because one would assume that the con-
vection speed would become equal to U when the cylinder spacing is large:
the distinction between gap and subchannel disappears and the entire flow ex-
periences approximately the same flow speed (except for the region close to
the cylinder wall). However, one should take into account that the convection
speed is only relevant up to a certain P/D-ratio. Indeed, if the driving force be-
hind the instability - the flow speed difference between the gap and subchannel
region - decays, the coherent structures will weaken and eventually disappear
altogether, rendering the term “convection speed” moot. Consequently, the cor-
relation should only be evaluated for relatively small P/D-ratios. Considering
the discussion about the PSD in previous chapter, a limit value of P/D = 1.2
is a logical choice. U./U is larger than one for the range P/D = 1.1 — 1.2.
As U is not the maximal flow speed but the mean flow speed, this is possible.
The convection speed U, is expected to be somewhere between the gap and
subchannel region speeds, depending on the exact location of the vortices. If
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the bulk of the vortex street is located more towards the subchannel region, the
convection speed is likely to be higher. In other words, U./U > 1 indicates that
the vortices leading to the largest pressure fluctuation on the cylinder wall are
located more towards the subchannel region.
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Figure 21: Ratio of the convection speed to the flow speed % as a function of the P/D-ratio.

6. Conclusion

Large-Eddy Simulations are performed on a single-cylinder approximation
of an infinite array of cylinders subjected to external axial flow. The aim of
this paper is to comprehend the behaviour of the coherent vortex structures
occurring in this flow. These coherent structures exist due to the axial flow speed
difference between the gap and subchannel regions in the geometry, resulting in
a Kelvin-Helmholtz instabilty. The pressure profile on the cylinder wall obtained
from the CFD calculations is used in a spectral analysis.

Regarding the numerical aspects, this paper shows that the influence of the
single-cylinder domain boundaries on the flow is not negligible. The finite do-
main length and the periodic in- and outlet conditions force a discrete number of
eddies into the flow domain, therefore altering the frequency content of the pres-
sure profile on the cylinder wall. These boundary conditions cannot be altered
without neglecting the assumption of an infinite array of infinitely long cylinders.
However, the computational effort is severely reduced compared to the analysis
of a flow domain containing multiple cylinders. Moreover, the present analysis
shows that the single-cylinder approximation still provides useful information
to enhance the physical understanding of the flow instability.

The strength of the flow instability is influenced significantly by the cylin-
der spacing, quantified through the pitch-over-diameter (P/D) ratio. Up to a
P/ D-ratio equal to 1.03, the instability becomes stronger for increasing cylinder
spacing due to the reduced friction in the gap region. For higher P/D-ratios,
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the instability weakens exponentially due to the decreasing difference between
the gap and subchannel regions. The circumferential position on the cylinder
wall at which the highest pressure is observed, shifts from the gap to the sub-
channel region for increasing cylinder spacing. As the bulk of the large-scale
vortices are shifted towards the subchannel region, the convection speed also
increases. An improved correlation for the convection speed as a function of the
P/ D-ratio is proposed. The influence of the Strouhal number on the convection
speed is small for relatively large Strouhal numbers and is therefore neglected.
The circumferential position at which the convection speed is determined, does
not influence the result.
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