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This work proposes the variational determination of two-electron reduced density matrices corresponding to
the ground state of N -electron systems within the doubly-occupied-configuration-interaction methodology.
The P , Q, and G two-index N -representability conditions have been extended to the T1 and T2 (T2′) three-
index ones and the resulting optimization problem has been addressed using a standard semidefinite program.
We report results obtained from the doubly-occupied-configuration-interaction method, from the two-index
constraint variational procedure, and from the two- and three-index constraint variational treatment. The
discussion of these results along with a study of the computational cost demanded show the usefulness of our
proposal.

I. INTRODUCTION

Although the full configuration interaction (FCI)
method provides the exact solutions of the Schrödinger
equation corresponding to an N -electron system for a
chosen subspace, its practical application is limited to
small size systems with small basis sets, due to its high
computational cost. Many approximate procedures have
been proposed attempting to reduce that computational
effort. Most of these methods express the N -electron
wave function by means of truncated N -electron deter-
minant expansions, in which those determinants are se-
lected according to determined criteria. One of these pro-
cedures is the doubly-occupied-configuration-interaction
(DOCI) method1–6, where all N -electron determinants
involved in the wave function expansion are composed of
doubly occupied orbitals, i.e. the seniority number3,7–10

of all these determinants is zero. The DOCI method
has proven to be a powerful tool to describe systems
with strong correlation11,12 and many other methods may
be derived from it formulating some approximations13.
However, although the computational expense of the
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DOCI method is considerably less than that required in
the FCI treatment, the description of medium or large
size systems cannot be tackled either by that procedure,
as it still scales exponentially albeit in terms of the num-
ber of pairs.

As is well known, the two-electron reduced density
matrix (2-RDM) constitutes an alternative tool to wave
functions to compute the energy.14–17. Moreover, the en-
ergy of the ground state of a N -electron system can be
optimized variationally (v2RDM). Within this technique
the 2-RDM matrix elements are optimized subject to con-
straints so that the resulting 2-RDM is N -representable
(it arises from an N -electron wave function)18–21. The
necessary and sufficient conditions for a 2-RDM to be
N -representable are known22–25, but in practice, only a
limited set of such constrains is used, commonly only
the so-called P , Q, and G two-index N -representability
conditions. Recently, we have reported26,27 results of
the v2RDM method under these P , Q, and G condi-
tions approximating the 2-RDM arising from zero se-
niority number wave functions. We have performed that
task formulating the optimization problem as a semidef-
inite program (SDP)28–31 specifically adapted towards
v2RDM21,32,33 in which one maximizes a linear function
on the intersection of a linear affine space and the con-
vex cone of block-diagonal positive semidefinite matri-
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ces. The aim of this work is to extend our previous
works26,27 and the recent work by Head-Marsden and
Mazziotti34 by including the T1 and T2 (T2′) three-
index conditions35–37 in the v2RDM-DOCI scheme, in
order to know the importance of these additional N -
representability conditions and to study the increase of
the computational cost due to the use of the three-index
constraints. We report numerical determinations for the
ground state potential energy curves obtained from our
procedure in selected molecular systems. These results
have been compared with those arising from full-DOCI
calculations, showing that the use of the three-index con-
ditions provides a significant improvement upon those
obtained using only two-index conditions, albeit still at
an affordable computational cost. Moreover, since the
DOCI results are not invariant under a unitary orbital
transformation, we have performed studies on the basis
set dependence of our results.

This work has been organized as follows. In the sec-
ond section we describe the equations which formulate
the two- and three-index N -representability conditions,
as well as the procedure we have used in this work to deal
with the SDP codes within the v2RDM-DOCI approxi-
mation. The third section reports the computational de-
tails and the results obtained for selected systems with
several orbital basis sets, which allows one to discuss the
influence of the three-index conditions and the basis set
dependence of these results. The computational scaling
of our algorithms is also studied in this section. Finally,
in the last section we summarize the main conclusions of
this work.

II. THEORETICAL ASPECTS

We will formulate the nonrelativistic Hamiltonian of a
pairwise-interacting N -electron system in the formalism
of second quantization as38

Ĥ =
∑
ij

hij a
†
iaj +

1

2

∑
ijkl

Rikjl a
†
ia
†
kalaj (1)

in which a†i and aj are the standard creation and an-
nihilation fermion operators, respectively, for a given or-
thonormal 2K spin-orbital basis set {i, j, k, l, . . .} (K spa-
tial orbitals), hij are the one-electron integrals (the sum
of electron kinetic energy and electron-nucleus potential
energy), and Rikjl = [ij|kl] stands for the two-electron

repulsion ones (in the [11|22] convention).
According to Eq. (1), the electronic energy corre-

sponding to an N -electron wave function Ψ of the system
is

E(Ψ) =
∑
ij

hij < Ψ|a†iaj |Ψ > +
∑
ijkl

Rikjl < Ψ|
a†ia
†
kalaj
2

|Ψ > =

tr(h 1D) + tr(R 2D) (2)

in which < Ψ|a†iaj |Ψ > and < Ψ|a
†
ia
†
kalaj
2 |Ψ > are the

1-RDM and 2-RDM elements, respectively, that will be
denoted as 1Di

j and 2Dik
jl .

The numerical determination of the 1Di
j and 2Dik

jl el-

ements, for N -electron ground (g) states, can be imple-
mented by means of the variational method minimizing
the energy E(Ψ) in Eq. (2)

Eg = min
{2D,1D}

∑
ij

hij
1Dj

i +
∑
ijkl

Rikjl
2Djl

ik

 (3)

In this formulation we have kept the 1-RDM (although
this matrix is known if the 2-RDM is known) since, ac-
cording to Zhao et al.39,40, it provides numerically more
stable SDP problems.

Although this procedure is the most intuitive method
for evaluating the energy Eg, its results are very often
meaningless, since such a procedure does not guarantee
that the obtained 1-RDM and 2-RDM arise from an N -
electron wave function. In order to solve this problem,
great efforts have been dedicated to search for conditions
that the 1-RDM, 2-RDM, and related matrices must sat-
isfy to provide reliable results; this challenge is known
as the N -representability problem17–22,35–37,41,42. Well-
known N -representability conditions, which are con-
straints imposed to the variational method, require that
the following matrix elements constitute positive semidef-
inite matrices

1Di
j =< Ψ|a†iaj |Ψ > (4)

1Qij =< Ψ|aja†i |Ψ > (5)

2P ikjl =< Ψ|a†ia
†
kalaj |Ψ > (6)

2Qikjl =< Ψ|ajala†ka
†
i |Ψ > (7)

2Gikjl =< Ψ|a†iaka
†
l aj |Ψ > (8)

(T1)ikmjln =< Ψ|a†ia
†
ka
†
manalaj + analaja

†
ia
†
ka
†
m|Ψ > (9)

(T2)ikmjln =< Ψ|a†ia
†
kama

†
nalaj+a

†
nalaja

†
ia
†
kam|Ψ > (10)

(T2′) =

(
T2 X
X† 1D

)
(11)
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Eqs. (4) and (5) describe the matrix elements of the
one-electron and one-electron hole reduced density ma-
trices, respectively. The matrix elements 1Qij can be cal-
culated by means of those of the 1-RDM ones, using the
anticommutation rules of fermion operators. The pos-
itive semidefiniteness of both matrices 1D and 1Q and
the tr(1D) value constitute the Coleman necessary and
sufficient ensemble N -representability conditions for the
1-RDM18,19. The matrices described in Eqs. (6), (7),
and (8) require the use of two indices (two creation and
two annihilation operators). They constitute the above
mentioned P , Q, and G conditions, respectively, requir-
ing that the corresponding matrix turns out to be pos-
itive semidefinite. Likewise, the T1 and T2 (T2′) con-
ditions mean that the three-index matrices shown in
Eqs. (9) and (10) or (9) and (11) must also be posi-
tive semidefinite. The matrix elements of all these ma-
trices can be expressed in terms of only the 1-RDM and
2-RDM; the anticommutation rules of the fermion op-
erators lead to 3-RDM elements that cancel in the T1
and T2 (T2′) expressions). The T2′ condition, in which
Xp
jln = 2 2Dpn

jl , is stronger than the T2 one and can re-

place it entirely43,44. Apart from these conditions, the
matrices 1D, 1Q, 2P , 2Q, 2G, T1 and T2 (T2′) must be
Hermitian and satisfy the antisymmetric conditions36

2Dik
jl = − 2Dki

jl = − 2Dik
lj (12)

Similarly, the matrices 2Q and T1 must be antisymmetric
with respect to all pair and triple indices, respectively,
and the matrix T2 (T2′) must be antisymmetric with
respect to the first 2 indices of each trio.

In this work the one- and two-electron reduced density
matrices have been normalized according to

tr(1D) = N (13)

tr(2D) =

(
N

2

)
(14)

and, consequently, the contraction relation between both
matrices is

1Di
j =

2

N − 1

∑
k

2Dik
jk (15)

As mentioned in the Introduction, we will only re-
fer to DOCI wave functions. These wave functions are
eigenstates of the Hamiltonian projected over the Hilbert
space restricted to Slater determinants where all spatial
orbitals are doubly occupied, or, equivalently, of the ef-
fective Hamiltonian

Ĥeff =
∑
σ

∑
iσ

hi
σ

iσ a
†
iσaiσ +

1

2

∑
σ

∑
iσ 6=jσ

Ri
σjσ

iσjσ a
†
iσa
†
jσajσaiσ

+
1

2

∑
σ

∑
iσ,jσ̄

Ri
σjσ̄

iσjσ̄ a
†
iσa
†
jσ̄ajσ̄aiσ

+
1

2

∑
σ

∑
iσ 6=jσ

Ri
σjσ

jσiσ a
†
iσa
†
jσaiσajσ

+
1

2

∑
σ

∑
iσ 6=jσ

Ri
σiσ̄

jσjσ̄ a
†
iσa
†
iσ̄ajσ̄ajσ (16)

in which we denote by σ the spin coordinate (α or β)
of the corresponding orbital and σ̄ means its spin conju-
gate. This effective Hamiltonian Ĥeff contains much less
terms than Ĥ in Eq. (1), although both of them provide
identical information for DOCI wave functions. Accord-
ing to Eq. (16) only the matrix elements 1Diσ

iσ , 2Diσjσ

iσjσ ,
2Diσjσ̄

iσjσ̄ , 2Diσjσ

jσiσ , and 2Diσiσ̄

jσjσ̄ need to be determined for
energy calculations; the remainder 1-RDM and 2-RDM
ones are zero within the DOCI framework.

The DOCI wave functions are linear combinations of
N -electron determinants which are eigenfunctions of the
N -electron Ŝ2 operator45 corresponding to a S = 0 spin
quantum number, and consequently these wave functions
are singlet states with expectation value equal to zero for
the seniority number operator Ω̂3,9

< Ω̂ >DOCI =
∑
σ

∑
iσ

1Diσ

iσ − 2
∑
σ

∑
iσ

2Diσiσ̄

iσiσ̄ = 0

(17)
This condition, or equivalently

∑
σ

∑
iσ

2Diσiσ̄

iσiσ̄ =
N

2
(18)

along with the traces of the spin blocks of the 1-RDM and
2-RDM, suffices to enforce the singlet and seniority-zero
(DOCI) character of the corresponding wave functions.
Alternatively to using the effective Hamiltonian (16), the
“full” Hamiltonian can be used along with DOCI specific
N -representability constraints. These have been formu-
lated previously by Weinhold and Wilson1,2 and extended
further more recently26,27,34 (see also the Appendix).

We have formulated the variational RDM method as a
standard dual SDP problem modifying the procedure de-
scribed by Zhao et al.36 to use the SDP codes so that our
algorithms satisfy Eq. (18). The determination of the 1-
RDM and 2-RDM elements corresponding to DOCI wave
functions has been performed only by using the one- and
two-electron integrals defining the effective Hamiltonian
described by Eq. (16), i.e. the diagonal elements of the
one-electron integrals and the one- and two-index repul-
sion integrals, respectively. The SDP codes employed46

solve semidefinite problems at several precision levels by
means of the Mehrotra-type predictor-corrector infeasible
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primal-dual interior-point method47, providing electronic
energies and 1-RDM and 2-RDM.

III. COMPUTATIONAL DETAILS, RESULTS, AND
DISCUSSION

We have chosen the set of isoelectronic systems N2,
CO, CN−, and NO+ to test the behavior of our proposals,
determining their ground-state potential energy curves.
All the reported results have been obtained from the
STO-3G atomic basis sets, in order to limit the computa-
tional cost. As is well known, the resulting DOCI energy
is not invariant with respect to a unitary transformation
of the orthonormal basis set used and the same applies to
v2RDM-DOCI26,27,34. To study the basis set dependence
of our results, we have performed calculations using the
following orthonormal basis sets i) the canonical molecu-
lar orbitals (CMO) ii) the natural orbitals (NO) iii) the
orbitals which minimize the seniority number of the FCI
expansions (Mmin)9, and iv) the orbitals which minimize
the DOCI energy (OPTE)12. The PSI3.4 package48 has
been used to obtain the one- and two-electron integrals
expressed in the CMO basis sets. We have used our own
codes to construct and to diagonalize either the stan-
dard Hamiltonian matrix, to obtain the NO and Mmin

basis sets, or its projection in the DOCI space to obtain
the OPTE ones. The full-DOCI treatment (energies and
RDMs) has been implemented using modified versions
of the algorithms reported in Refs.49 and50. We have
elaborated codes that allow to efficiently solve the SDP
algorithms identifying and exploiting the sparse matrix
data structure of the P , Q, G, T1 and T2 (T2′) matrices
induced by the structure of the seniority-zero wave func-
tions. The SDPA 7.3.8 code46 was used to provide the
corresponding v2RDM-DOCI energy values and 1-RDM
and 2-RDM elements.

In Table I we report the maximum absolute errors
(MaxAE) found between the energies obtained from the
use of different N -representability conditions in the vari-
ational method, and the full-DOCI energy, as a function
of the internuclear distance, using several orthonormal
orbital basis sets.

As can be seen, in all cases the imposition of the T1
and T2 (T2′) conditions on top of the P , Q, and G
ones significantly reduces these energy differences. Ta-
ble I also shows the nonparallelity errors (NPE) in that
interval, that is, the differences between the maximum
and minimum deviation from the full-DOCI energy val-
ues. Both MaxAE and NPE quantities predict similar
behavior, having very similar numerical values. Figures
1-4 show the potential energy curves obtained with the
CMO basis sets for the studied systems, as well as the en-
ergy errors, ∆E, relative to the corresponding reference
DOCI values.

These curves point out that the PQGT1T2′ variational
method yields the closest values to the full-DOCI one,
in agreement with the results exhibited in Table I. It
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FIG. 1 Ground state potential energy curve of the N2

molecule calculated by the DOCI and v2RDM-DOCI
procedures imposing the PQG, PQGT1, PQGT1T2, and
PQGT1T2′ conditions. Energy errors, ∆E, relative to
reference DOCI values. Results were obtained using the
canonical molecular orbitals arising from the STO-3G
atomic basis set.
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FIG. 2 Ground state potential energy curve of the CO
molecule calculated by the DOCI and v2RDM-DOCI
procedures imposing the PQG, PQGT1, PQGT1T2, and
PQGT1T2′ conditions. Energy errors, ∆E, relative to
reference DOCI values. Results were obtained using the
canonical molecular orbitals arising from the STO-3G
atomic basis set.

is worth noting that the T1 and T2 (T2′) conditions
strongly reduce the PQG non-parallellity error near bond
dissociation. Moreover, the comparative analysis of the
counterpart values arising from the different molecular
orbital basis sets, reported in Table I, shows that the
OPTE one leads to the best results, the Mmin basis set
presents better behavior than the natural orbitals, while
the CMO basis set provides a poor approximation. Simi-
lar conclusions can be drawn from Figure 5, which shows
the errors for the NO+ ground state energies calculated
for all those orthonormal basis sets by the PQGT1T2′

variational method with respect to the reference DOCI
energy values.

We have gathered in Table II the values of the energy
differences Ev2RDM−DOCI - EDOCI corresponding to the
NO+ system obtained for each of the above mentioned
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TABLE I Maximum Absolute (MaxAE) and Nonparallelity (NPE) errors of the ground state potential energy curves of
molecules and ions calculated by the v2RDM-DOCI method imposing the PQG, PQGT1, PQGT1T2, and PQGT1T2′

conditions with respect to the DOCI results using the canonical molecular orbitals (CMO), natural orbitals (NO), minimizing
the FCI seniority number orbitals (Mmin), and optimizing the Energy orbitals (OPTE). Curves are computed in the interval
[1.4,4.0] Bohr. Results were obtained using the STO-3G atomic basis set.

MaxAE(Eh) NPE(Eh)

PQG PQGT1 PQGT1T2 PQGT1T2′ PQG PQGT1 PQGT1T2 PQGT1T2′

N2 CMO 0.0017 0.0007 < 0.0001 < 0.0001 0.0017 0.0007 < 0.0001 < 0.0001

NO 0.0011 0.0004 < 0.0001 < 0.0001 0.0010 0.0004 < 0.0001 < 0.0001

Mmin 0.0011 0.0005 < 0.0001 < 0.0001 0.0011 0.0004 < 0.0001 < 0.0001

OPTE 0.0012 0.0005 < 0.0001 < 0.0001 0.0011 0.0004 < 0.0001 < 0.0001

CO CMO 0.0344 0.0197 0.0034 0.0034 0.0343 0.0196 0.0034 0.0034

NO 0.1022 0.0815 0.0334 0.0334 0.1020 0.0814 0.0333 0.0333

Mmin 0.0360 0.0178 0.0042 0.0042 0.0358 0.0177 0.0042 0.0042

OPTE 0.0111 0.0031 0.0011 0.0011 0.0108 0.0030 0.0011 0.0011

CN− CMO 0.0940 0.0506 0.0114 0.0114 0.0939 0.0505 0.0114 0.0114

NO 0.0145 0.0127 0.0006 0.0006 0.0143 0.0126 0.0006 0.0006

Mmin 0.0097 0.0083 0.0003 0.0003 0.0096 0.0083 0.0003 0.0003

OPTE 0.0038 0.0028 0.0002 0.0002 0.0036 0.0028 0.0002 0.0002

NO+ CMO 0.1050 0.0523 0.0119 0.0119 0.1049 0.0523 0.0119 0.0119

NO 0.0207 0.0181 0.0009 0.0009 0.0205 0.0180 0.0008 0.0008

Mmin 0.0132 0.0115 0.0005 0.0005 0.0130 0.0115 0.0005 0.0005

OPTE 0.0042 0.0035 0.0003 0.0003 0.0040 0.0035 0.0003 0.0002
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FIG. 3 Ground state potential energy curve of the CN−

molecule calculated by the DOCI and v2RDM-DOCI
procedures imposing the PQG, PQGT1, PQGT1T2, and
PQGT1T2′ conditions. Energy errors, ∆E, relative to
reference DOCI values. Results were obtained using the
canonical molecular orbitals arising from the STO-3G
atomic basis set.

orthonormal basis sets by imposing the P , Q, G, T1, and
T2 (T2′) N -representability conditions. These values
have been obtained at both an internuclear distance
near the equilibrium (2.2 Bohr) and at a stretched
geometry (4.0 Bohr). These results again show a clear
improvement according to the basis set sequence CMO
< NO < Mmin < OPTE as well as with the imposed
conditions series PQG < PQGT1 < PQGT1T2; no
significant differences have been found between the
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FIG. 4 Ground state potential energy curve of the NO+

molecule calculated by the DOCI and v2RDM-DOCI
procedures imposing the PQG, PQGT1, PQGT1T2, and
PQGT1T2′ conditions. Energy errors, ∆E, relative to
reference DOCI values. Results were obtained using the
canonical molecular orbitals arising from the STO-3G
atomic basis set.

PQGT1T2 and PQGT1T2′ procedures. To complete
this study, we report in Table III values of the quantity√∑K

i=1 [
∑
σ

1Di
σ

iσ
(v2RDM−DOCI) −

∑
σ

1Di
σ

iσ
(DOCI)]

2

K , i.e.

the root-mean-square deviation of 1Dv2RDM−DOCI with
respect to 1DDOCI, in terms of the spin-free matrices,
for the NO+ system at two internuclear distances. The
deviation from zero of this quantity measures the mean
error of the results. As can be observed, these values
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FIG. 5 Errors for the NO+ ground state energies calculated
by the v2RDM-DOCI procedure imposing the PQGT1T2′

conditions, with respect to the corresponding DOCI values.
Results were obtained using the canonical molecular orbitals
(CMO), natural orbitals (NO), orbitals which minimize the
seniority number of the FCI wave functions (Mmin), and
orbitals which minimize the DOCI energy (OPTE) arising
from the STO-3G atomic basis set.

confirm, in terms of differences of 1-RDM elements, the
conclusions arising from the numerical values found in
terms of energy differences, showing similar behavior.

In order to test whether or not the atomic basis set
does not have a significant effect on the results, we re-
port in Tables IV and V the energy differences between
v2RDM-DOCI and DOCI for the imposed conditions se-
ries PQG, PQGT1 and PQGT1T2 and for different basis
sets. The results for the energies and their comparison
with those reported in Table II show that there is no dras-
tic influence when using the CMO orthonormal basis and
equilibrium geometry. At stretched geometry, the larger
basis sets give somewhat smaller energy differences. In
Table V, the differences in the 1-RDM and their compar-
ison with those reported in Table III also show that the
influence is limited although there the data suggest that
there is a small improvement for the larger basis sets.

To evaluate and to compare the computational cost
of all procedures used in this work, we have studied the
series of linear H2n chains composed of n = 5-25 equidis-
tant hydrogen atoms separated by a distance of 2.0 Bohr.
The STO-3G basis set has been used, so that there is
one orbital on each hydrogen atom. In Figure 6 we plot
the computing time against the number of basis func-
tions (or number of hydrogen atoms) both in logarithmic
scales. The results show linear behavior in all cases with
a similar slope β, which gives the computational scaling
Kβ . This scaling is due to the sparse structure of the
T1 and T2 (T2′) matrices within the DOCI framework
(see Appendix), which possess O(K3) blocks of O(1x1)
dimension and O(K) blocks of O(KxK) dimension27, in
contrast to the sparse structure of the P , Q, and G ma-
trices which present O(K2) blocks of O(1x1) dimension
and O(1) blocks of O(KxK) dimension26. Nevertheless,
the theoretical scaling of the v2RDM-DOCI is O(K3)
for the two-index conditions due to the diagonalisation
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FIG. 6 Scaling of the DOCI variational RDM method
(v2RDM-DOCI) imposing the PQG, PQGT1, PQGT1T2
and PQGT1T2′ conditions on growing linear chains of
equidistant hydrogen atoms (R(H-H)=2.0 Bohr) in the
STO-3G basis on a log-log plot. Data fitted with linear
function (y = α + βx).

of K × K blocks and O(K4) for the three-index ones,
which is three and five orders of magnitude lower than in
the regular v2RDM, method respectively. Consequently,
from a computational point of view, the addition of the
T1 and T2 (T2′) N -representability conditions to the P ,
Q and G ones in the DOCI framework entails an afford-
able increase of computational effort, providing a signif-
icant improvement of the results.

IV. CONCLUDING REMARKS

In this work, we have studied the influence of the three-
index T1 and T2 (T2′) conditions that, added to the two-
index P , Q and G ones, constitute necessary constraints
to ensure the N -representability in the variational de-
termination of the two-electron reduced density matrix
within the DOCI methodology (wave functions possess-
ing a zero seniority number). The results obtained prove
an important improvement, approaching those provided
by the reference method (full-DOCI method). Although
this achievement requires an increase of computational
cost, the quality of the numerical determinations found
promotes the usefulness of the three-index variational
constraints within the DOCI framework.
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TABLE II Energy errors in the ground state of the NO+ molecule at two bond lengths calculated in the canonical molecular
orbitals (CMO), natural orbitals (NO), orbitals which minimize the seniority number of the FCI wave functions (Mmin) and
orbitals which minimize the DOCI energy (OPTE). The errors calculated by the DOCI variational RDM method
(v2RDM-DOCI) are computed imposing the PQG, PQGT1, PQGT1T2, and PQGT1T2′ conditions. Results were obtained
using the STO-3G atomic basis set.

EDOCI(Eh) Ev2RDM−DOCI-EDOCI(Eh)

PQG PQGT1 PQGT1T2 PQGT1T2′

Req= 2.2 Bohr

CMO -127.316934 -2.12E-03 -1.09E-03 -2.57E-04 -2.57E-04

NO -127.320704 -1.99E-03 -7.30E-04 -1.71E-04 -1.71E-04

Mmin -127.324924 -3.91E-03 -1.02E-03 -2.70E-04 -2.69E-04

OPTE -127.326027 -2.80E-03 -7.96E-04 -2.13E-04 -2.01E-04

Rst= 4.0 Bohr

CMO -126.871538 -1.05E-01 -3.18E-02 -4.07E-03 -4.07E-03

NO -127.119269 -1.79E-02 -1.26E-02 -4.63E-04 -4.62E-04

Mmin -127.121756 -1.24E-02 -8.90E-03 -2.59E-04 -2.59E-04

OPTE -127.128085 -1.29E-03 -9.96E-04 -2.68E-05 -2.68E-05

TABLE III 1-RDM errors in the NO+ molecule at two bond lengths, calculated for the v2RDM-DOCI method in the
canonical molecular orbitals (CMO),natural orbitals (NO), orbitals which minimize the seniority number of the FCI wave
functions (Mmin) and orbitals which minimize the DOCI energy (OPTE). The errors are computed imposing the PQG,
PQGT1, PQGT1T2, and PQGT1T2′ conditions. Results were obtained using the STO-3G atomic basis set.√∑K

i=1 [
∑
σ

1Di
σ

iσ
(v2RDM−DOCI) −

∑
σ

1Di
σ

iσ
(DOCI)]2

K

PQG PQGT1 PQGT1T2 PQGT1T2′

Req = 2.2 Bohr

CMO 0.002 0.001 < 0.001 < 0.001

NO 0.002 0.001 < 0.001 < 0.001

Mmin 0.003 0.001 < 0.001 < 0.001

OPTE 0.002 0.001 < 0.001 < 0.001

Rst = 4.0 Bohr

CMO 0.239 0.191 0.017 0.017

NO 0.031 0.022 < 0.001 < 0.001

Mmin 0.021 0.016 < 0.001 < 0.001

OPTE 0.002 0.002 < 0.001 < 0.001

TABLE IV Energy errors in the ground state of the NO+ molecule at two bond lengths calculated in the canonical molecular
orbitals (CMO). The errors calculated by the DOCI variational RDM method (v2RDM-DOCI) are computed imposing the
PQG, PQGT1, PQGT1T2, and PQGT1T2′ conditions. Results were obtained using the 3-21G and DZ atomic basis sets.

EDOCI(Eh) Ev2RDM−DOCI-EDOCI(Eh)

PQG PQGT1 PQGT1T2 PQGT1T2′

Req= 2.2 Bohr

3-21G -128.210837 -3.55E-03 -2.00E-03 -3.48E-04 -3.46E-04

DZ -128.914169 -2.46E-03 -1.23E-03 -3.31E-04 -3.30E-04

Rst= 4.0 Bohr

3-21G -127.818809 -4.65E-02 -1.46E-02 -2.92E-03 -2.92E-03

DZ -128.518539 -3.11E-02 -9.97E-03 -2.02E-03 -2.02E-03
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TABLE V 1-RDM errors in the NO+ molecule at two bond lengths, calculated for the v2RDM-DOCI method in the
canonical molecular orbitals (CMO). The errors are computed imposing the PQG, PQGT1, PQGT1T2, and PQGT1T2′

conditions. Results were obtained using the 3-21G and DZ atomic basis sets.√∑K
i=1 [

∑
σ

1Di
σ

iσ
(v2RDM−DOCI) −

∑
σ

1Di
σ

iσ
(DOCI)]2

K

PQG PQGT1 PQGT1T2 PQGT1T2′

Req = 2.2 Bohr

3-21G 0.001 0.001 < 0.001 < 0.001

DZ 0.001 0.001 < 0.001 < 0.001

Rst = 4.0 Bohr

3-21G 0.149 0.056 0.005 0.005

DZ 0.113 0.030 0.003 0.003

(FWO Vlaanderen). The authors would also like to
thank Dr. B. Verstichel for useful discussions on the
DOCI three index conditions.

VI. APPENDIX: CONSTRAINTS ARISING FROM THE
THREE-INDEX N-REPRESENTABILITY CONDITIONS
FOR DOCI WAVE FUNCTIONS

(The appendix has been extensively enlarged as
suggested by the referee) The operators in identical
position of the creation and annihilation strings, which
define the reduced density matrices, possess the same
spin coordinate. According to this property one can
express the (T1)ikmjln matrix, in Eq. (9), as a direct sum

of spin blocks (T1)i
αkαmα

jαlαnα , (T1)i
αkαmβ

jαlαnβ , (T1)i
αkβmβ

jαlβnβ , and

(T1)i
βkβmβ

jβlβnβ .

The (T1)i
αkαmα

jαlαnα block has no repetition of indices in

the creation (or annihilation) string, otherwise the Pauli
principle would be violated. For the DOCI case, the sets
{i, k,m} and {j, l, n} must be constituted by identical
indices so that all nonzero matrix elements of that
block are equal (in absolute value) to the corresponding
diagonal elements, which are nonnegative. According to
Eq. (9) one straightforwardly finds

(T1)i
αkαmα

iαkαmα = 1− 1Diα

iα − 1Dkα

kα − 1Dmα

mα + 2 2Diαkα

iαkα

+ 2 2Dkαmα

kαmα + 2 2Diαmα

iαmα ≥ 0 (19)

This constraint2 leads to K(K − 1)(K − 2)/6 diagonal
conditions. A similar set of constraints can be obtained
for the (T1)i

βkβmβ

iβkβmβ block.

The matrix elements of the (T1)i
αkαmβ

jαlαnβ block for DOCI

wave functions and different i, k and m indices can also
be reduced to the diagonal ones. Consequently, one finds
new K(K − 1)(K − 2)/2 diagonal conditions.

(T1)i
αkαmβ

iαkαmβ = 1− 1Diα

iα − 1Dkα

kα − 1Dmβ

mβ

+ 2 2Diαkα

iαkα + 2 2Dkαmβ

kαmβ

+ 2 2Diαmβ

iαmβ ≥ 0 (20)

It is possible, however, that the index m may be equal
to the i or k index. Using the anticommutation rules for
the fermion operators it is sufficient to analyze the case
k = m. In this case, the DOCI conditions require that
the j or l indices are equal to i, but it is again sufficient
to consider the case i = j. Moreover, in this case we
have that l = n. Hence, we must analyze the blocks

(T1)i
αkαkβ

iαlαlβ ∀i, and therefore we find K blocks of size
(K − 1)× (K − 1), since k, l 6= i

(T1)i
αkαkβ

iαlαlβ = δkl (1− 2 1Dkα

kα − 1Diα

iα + 2 2Dkαiα

kαiα )

+ 2 2Dlαlβ

kαkβ (21)

where each of the terms in this expression defines a (K−
1)×(K−1) positive semidefinite matrix ∀i. This is a new
constraint which has no counterpart in Ref.2. A similar

set of constraints can be obtained for the (T1)i
αkβmβ

iαkβmβ

block. The T2 constraints are found as:

(T2)ikmjln =< ψ|a†ia
†
kama

†
nalaj + a†nalaja

†
ia
†
kam|ψ >

(22)

(X)pj ln = 2 2Dpn
jl =< ψ|a†pa†nalaj |ψ > (23)

1Dp
q =< ψ|a†paq|ψ > (24)

In a block matrix form, the T2′ condition can be
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expressed as

(T2′) =

(
T2 X

X† 1D

)
(25)

In the T2 case, and due to the antisymmetry in the
first and second indices of this matrix and the singlet

character of the DOCI wavefunctions, there are two
types of blocks to be considered. One of these types of
blocks corresponds for instance to the blocks generated

by the operators a†iαa
†
kαamβ , a†mαa

†
iαakβ and a†kαa

†
mαaiβ

for every ordered combination of different i, k and m.
In this case, it follows that


(T2)i

αkαmβ

iαkαmβ
(T2)m

αiαkβ

iαkαmβ
(T2)k

αmαiβ

iαkαmβ

(T2)i
αkαmβ

mαiαkβ
(T2)m

αiαkβ

mαiαkβ
(T2)k

αmαiβ

mαiαkβ

(T2)i
αkαmβ

kαmαiβ
(T2)m

αiαkβ

kαmαiβ
(T2)k

αmαiβ

kαmαiβ

 =


2 2Di

αkα

iαkα
− 2 2Di

αmβ

iαmβ
− 2 2Dk

αmβ

kαmβ
+ 1D mβ

mβ
2 2Dm

αmβ

kαkβ
2 2Dm

αmβ

iαiβ

2 2Dk
αkβ

mαmβ
−2 2Di

αkβ

iαkβ
+ 2 2Di

αmα

iαmα
− 2 2Dm

αkβ

mαkβ
+ 1Dk

β

kβ
2 2Dk

αkβ

iαiβ

2 2Di
αiβ

mαmβ
2 2Di

αiβ

kαkβ
−2 2Dk

αiβ

kαiβ
+ 2 2Dk

αmα

kαmα
− 2 2Dm

αiβ

mαiβ
+ 1Di

β

iβ



It is possible to carry out similar calculations for the
blocks corresponding to other spin combinations. These
blocks have similar expressions and the same numerical
values, except for the signs that are due to the basis
selection and are not relevant to the positivity of these
blocks. Hence, we find 2K(K − 1)(K − 2)/3 blocks of
size 3× 3.
The second type of blocks corresponds for instance to the

blocks generated by the operators a†iαa
†
kαakα , a†iαa

†
kβ
akβ ,

a†kαa
†
kβ
aiβ and a†iαa

†
iβ
aiβ for each index i. The selection

of the operators avoids those that can be skipped due
to the antisymmetric properties of T2. Also, in this
list k represents all indices different from i, so there
are 3(K−1)+1 combinations. In this case, it follows that



(T2)i
αkαkα

iαlαlα
(T2)i

αkβkβ

iαlαlα
(T2)k

αkβiβ

iαlαlα
(T2)i

αiβiβ

iαlαlα

(T2)i
αkαkα

iαlβlβ
(T2)i

αkβkβ

iαlβlβ
(T2)k

αkβiβ

iαlβlβ
(T2)i

αiβiβ

iαlβlβ

(T2)i
αkαkα

lαlβiβ
(T2)i

αkβkβ

lαlβiβ
(T2)k

αkβiβ

lαlβiβ
(T2)i

αiβiβ

lαlβiβ

(T2)i
αkαkα

iαiβiβ
(T2)i

αkβkβ

iαiβiβ
(T2)k

αkβiβ

iαiβiβ
(T2)i

αiβiβ

iαiβiβ


=



2(2D)k
αlα

kαlα
+ ( 1Dk

α

kα
)δkl 2 2Dl

αkβ

lαkβ
(−2 2Dk

αkβ

iαiβ
)δkl 2 2Dl

αiβ

lαiβ

2 2Dk
αlβ

kαlβ
2 2Dk

βlβ

kβlβ
+ ( 1Dk

β

kβ
)δkl (−2 2Dk

αkβ

iαiβ
)δkl 2 2Di

βlβ

iβlβ

(−2 2Di
αiβ

kαkβ
)δkl (−2 2Di

αiβ

kαkβ
)δkl 2 2Dk

αkβ

lαlβ
+ (−2 2Di

βkβ

iβkβ
− 2 2Dk

αiβ

kαiβ
+ 1Di

β

iβ
)δkl 2 2Di

αiβ

lαlβ

2 2Dk
αiβ

kαiβ
2 2Di

βkβ

iβkβ
2 2Dk

αkβ

iαiβ
1Di

β

iβ



Taking into account those blocks corresponding to other
spin combinations, we find 2K blocks of size (3(K− 1) +
1)×(3(K − 1) + 1).
Similar analysis can be carried out for the T2′ condition.
In this case one finds 2K(K − 1)(K − 2)/3 blocks of size
3×3 and 2K blocks of size (3(K−1)+2)×(3(K−1)+2).
] These constraints and those arising from the T2 (T2′)
conditions have been reported by Poelmans27.
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