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Abstract  

Bactrocera dorsalis fruit fly is the economically most significant tephritid pest species on Mango, 

Mangifera indica L., in Benin, and entomopathogenic nematodes (EPNs) represent good 

candidates for its control in the soil. In this study, the susceptibility of larvae and pupae of B. 

dorsalis to 12 EPN isolates originating from Benin was investigated. The effect of nematode 

concentrations (20, 50, 100, 200 and 300 Infective Juveniles (IJs)/ B. dorsalis larva) and of 

different substrate moisture content (10, 15, 20, 25 and 30% v/w) on B. dorsalis mortality at the 

larval stage was studied. Also, the reproduction potential inside B. dorsalis larvae was assessed. 

Our results revealed that the susceptibility of B. dorsalis larvae was significantly different among 

the 12 tested nematode isolates with H. taysearae isolate Azohoue2 causing the greatest insect 

mortality (96.09±1.44%). The lowest insect mortality (7.03±4.43%) was recorded with 

Steinernema sp. strain Bembereke. Significant differences in insect mortality were recorded 

when EPNs were applied at varying IJs concentrations. A concentration of 100 nematodes of 

either H. taysearae Azohoue2 or H. taysearae Hessa1 per B. dorsalis larva was enough to kill at 

least 90% of B. dorsalis larvae. Larvae were less susceptible to nematodes at higher moisture 

content (25% and 30%). In addition, pupae were less susceptible to nematodes than larvae. 

Furthermore, the tested nematode isolates were able to reproduce inside B. dorsalis third instar 

larva or pupa with the Heterorhabditis isolates giving the greatest multiplication rate (59577.2 

IJs ± 14307.41). 

Keywords: Biological control; tephritid; Heterorhabditis taysearae; Steinernema sp.; Mangifera 

indica L. 
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1. Introduction 

Mango (Mangifera indica L., Anacardiaceae) is one of the most important tropical fruits 

produced in West Africa, a region most favorable for fruit production and export (Vannière et al., 

2004; Gerbaud, 2007; Vayssières et al., 2009a). Mango fruit constitutes a very important source 

of nutrition for rural populations living in northern Benin (Vayssières et al., 2008).  In Africa and 

particularly in Benin, the production of this fruit is confronted with several problems including 

quality loss due to fruit flies (Tephritidae, Diptera), especially Ceratitis capitata, Ceratitis cosyra 

and B. dorsalis (Vayssières et al., 2009b). The latter, formerly known as Bactrocera invadens 

(Schutze et al., 2014), is the most important pest causing serious damage in orchards of mango 

as well as in other important tropical fruit crops including guava and citrus (Goergen et al., 2011; 

Vayssières et al., 2009b). Chemical applications have been used as traditional methods to 

control these fruit flies for many years. For example, Spinosad GF-120 (Spinosad + foodstuff 

attractant) and Proteus  170  O-TEQ (Thiaclopride + Deltamethrine) showed great performance 

for control of flies (Vayssière et al., 2009a; N’Depo et al., 2015). However, the environmental 

side- effects have led to interest in other, environmental friendly, cost effective and locally 

available control strategies to inhance mango production and export. In this respect, several 

control methods have recently been developped including the sterile insect technique (Clarke et 

al., 2011) and the biological control based on the use of weaver ants, Oecophylla smaragdina 

and Oecophylla longinoda, (Anato et al., 2015; Offenberg et al., 2013; Wargui et al., 2015). 

Unfortunatly, the latter method is associated with some constraints as the ants delay the labor 

during harvest and are responsible for small black spots left on the fruit (Sinzogan et al., 2008). 

EPNs of the genera Steinernema (Panagrolaimomorpha: Steinernematidae) and 

Heterorhabditis (Rhabditomorpha: Heterorhabditidae) are effective biocontrol agents (Grewal et 

al., 2005). They have been found in most countries and are successfully used to control many 

insect pests around the world (Ehlers, 2001). Several strains of Heterorhabditis taysearae, 

http://www.sciencedirect.com/science/article/pii/S1049964413002399#b0035
http://www.sciencedirect.com/science/article/pii/S1049964413002399#b0035
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Heterorhabditis indica and Steinernema sp. have been isolated from Benin and all 

demonstrated a cruiser type insect search strategy (Zadji et al. 2014b). H. taysearae 

Shamseldean, Abou El-Sooud, Abd-Elgawad and Saleh, 1996, has been recently considered as 

a senior synonym of Heterorhabditis sonorensis Stock, Rivera-Orduño and Flores-Lara, 2009 by 

Hunt and Subbotin, (2016). 

The Infective Juvenile (IJ) represents the only free-living developmental stage of EPNs that 

occurs naturally in the soil. They are symbiotically associated with bacteria of the family 

Enterobacteriaceae which belong to the genera Xenorhabdus (Steinernema) or Photorhabdus 

(Heterorhabditis) (Ciche et al., 2006). IJs of both genera Steinernema and Heterorhabditis can 

infect the insect larvae via body openings such as anus, mouth or spiracles (Campbell and 

Lewis, 2002). In addition to these ways of penetrating the insect host, Heterorhabditis species 

are able to actively enter the hemocoel through the host cuticle by the use of their additional 

dorsal tooth to perforate the inter-segmental membrane of the cuticle (Bedding and Molyneux, 

1982; Griffin et al. 2005). Inside the host they release intestinal bacteria into the insect 

hemocoel. These bacteria reproduce and produce metabolites that kill the insect within 1-2 days 

(Dowds and Peters, 2002) and serve at the same time as food source for the nematode. An 

effective sustainable B. dorsalis management approach could be the use of EPNs to control 

insect pests at soil-borne stages of the insect life cycle. Indeed, the late larval instar of B. 

dorsalis leaves the infested fruit and falls on the ground where it burrows in the top 4 cm of the 

soil prior to pupating after a short dispersal period (Hou et al., 2006). Adult flies emerge from 

pupae after 1-2 weeks (longer in cool conditions). This offers an opportunity to EPN IJs present 

in the soil to invade B. dorsalis larvae or pupae even if the exposure time to the larvae is 

relatively short. Many studies have been conducted on the Mediterranean fruit fly Ceratitis 

capitata (Gazit et al., 2000; Lindegren and Vail, 1986; Lindegren et al., 1990; Malan and 

Manrakhan, 2009; Minas et al., 2016; Poinar and Hislop, 1981), the Queensland fruit fly 

Bactrocera tryoni (Froggatt) (Langford et al., 2014), the cherry fruit fly Rhagoletis cerasi L. (Herz 



6 
 

et al., 2006), Bactrocera oleae (Sirjani et al., 2009), Bactrocera cucurbitae, B. dorsalis 

(Lindegren and Vail, 1986) and the Natal fruit fly Ceratitis rosa (Malan and Manrakhan, 2009) 

and have demonstrated that the flies were highly susceptible to Steinernema and 

Heterorhabditis nematodes. 

Based on these previous studies and their known biocontrol abilities, EPN of the families 

Heterorhabditidae and Steinernematidae in association with their symbiotic bacteria 

Photorhabdus and Xenorhabdus respectively, are considered to be promising biocontrol 

candidates against B. dorsalis on mango trees in Benin.  

Several studies have revealed that indigenous EPNs are well adapted to local environmental 

conditions and therefore considered as good biological agents to control insect pests (Bedding, 

1990; Grewal et al., 1990; Noujeim et al., 2015; Zadji et al., 2014b).  To our knowledge, the 

susceptibility of B. dorsalis to Beninese EPNs has not yet been investigated. The current study 

is one of a series anticipated for the implementation of cost-effective B. dorsalis management 

using EPNs in mango orchards in Benin. It aimed to: (i) investigate the occurrence of EPNs in 

mango orchards in northern Benin, (ii) identify the recovered EPN isolates, (iii) test their 

pathogenicity against mango fruit fly (B. dorsalis) under laboratory conditions. Specifically, 12 

EPN isolates from Benin were screened for their virulence against the third instar larvae of B. 

dorsalis and the most virulent isolates were selected to investigate the susceptibility of larvae 

and pupae of B. dorsalis under different abiotic laboratory conditions.  

2. Materials and methods 

2.1.  Source of insects 

B. dorsalis used in this study were obtained from laboratory rearing initiated from B. dorsalis 

pupae provided by IITA-Benin (International Institute of Tropical Agriculture-Benin). The original 

colony of B. dorsalis used at the IITA- Benin institute was established from naturally infested 

http://www.sciencedirect.com/science/article/pii/S1049964413002399#b0170
http://www.sciencedirect.com/science/article/pii/S1049964413002399#b0120
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mango fruits collected in Northern Benin. Flies were fed with a mixture of brown sugar and yeast 

extract at 3:1 proportion (Vayssières et al., 2015). Cages were supplied with water. Ripened 

papaya fruits were exposed to 10 day old female flies to allow them laying eggs into the ripened 

papaya used as host. The infested papaya was incubated at 28°C and 60–80% relative humidity 

(RH) during 7 days, after which the third instar of B. dorsalis larvae started to exit the fruit. We 

used in our assays the third instar larvae collected approximately 1 hour after they had jumped 

from infested papaya to pupate. Larvae that were not used in assays were left in sand with 10% 

humidity to pupate and become adults within approximately eight days.  

2.2.  Source of nematodes  

Most of the nematodes used in this study were provided by the Laboratoire de Phytotechnie, 

d’Amélioration et de Protection des Plantes (LaPAPP), Benin. They were collected from soil in 

several vegetations (Table 1) in Benin (Zadji et al., 2013). Other nematodes were newly 

collected from a local soil sampling (January- February 2015) exclusively in several mango 

orchards located in northern Benin. Seventy soil samples in total were collected from fourteen 

mango orchards (each at least 1 hectare of area) selected at random in eight villages of 

Parakou, Borgou department located in northern Benin. In each orchard, 5 samples of 

approximately 1.5 kg each were taken randomly at ≤ 15 cm depth. Each soil sample was 

individually processed for nematode extraction using the Galleria mellonella (Lepidoptera, 

Piralidae) baiting method (Bedding and Akhurst, 1975) and white trap (White, 1927). 

Pathogenicity of the isolated nematodes was confirmed by re-infesting fresh G. mellonella 

larvae as described above and newly emerged IJs collected from white trap were kept at 13°C 

for further study. 

The nematode species, sample number, origin, vegetation and accession numbers of all EPN 

isolates included in this study are presented in Table 1. Nematodes used for the assays were 
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acclimated for 2 hours at room temperature (25°C) after removal from incubator (13°C) to help 

them adjust to the new temperature and allow better performance.  Nematode viability (based 

on their movement) was checked under a stereomicroscope. The concentrations of nematodes 

were calculated by volumetric dilutions in tap water using the formula of Navon and Ascher 

(2000). 

2.3. Nematode identification 

 The identity of most of the nematode isolates provided by the LaPPAP laboratory was 

described by Zadji et al. (2013). However, new nematode isolates retrieved from soil samples 

collected in mango orchards were identified in this study (Table1). 

2.3.1. Molecular identification 

For each nematode isolate, DNA was extracted from a single specimen in an Eppendorf tube 

(250 µl) containing 1 µl of double distilled water. Ten µl of 0.05 N NaOH was added plus 1 µl of 

4.5% Tween 20 solution (Janssen et al., 2016). The tube was heated at 95°C for 15 min and 

cooled at room temperature prior to storage at 4°C for use within next month or at -20°C for later 

use. The ITS region was amplified and sequenced using the primers pair AB28 

(ATATGCTTAAGTTCAGCGGGT) and TW81 (GTTTCCGTAGGTGAACCTGC). ITS sequences 

were aligned with their closest BLAST search matches (obtained from GenBanck database) 

using ClustalW Multiple alignment. Afterwards, a phylogenetic tree was generated in Mega-6 

software using the Neighbor-Joining method (Saitou and Nei, 1987). Caenorhabditis elegans 

EU131007 was used as outgroup. 

2.3.2. Morphological/morphometric identification. 

Light microscopic pictures were taken using a Soft Imaging System GmbH (Cell^D software, 

Münster-Germany) connected to an Olympus BX51 microscope. The same system was used to 
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measure 20 IJs and, 20 F1 males of the studied nematode strains. Juveniles were heat killed 

and mounted on temporal slides while males were fixed and mounted on permanent slide for 

measurements. 

 

2.3.3. Cross breeding 

To confirm the reproduction compatibility of the new Heterorhabditis isolates with described 

ones, cross hybridization tests were performed on lipid agar (Wouts, 1981) according to the 

method of Phan et al. (2003). Indeed, it was assumed that mating between male and female of 

the same species should produce fertile offspring (Nguyen, 2007). Crossings were restricted to 

the newly isolated Heterorhabditis nematode strains and H. taysearaeHessa1, described by 

Zadji et al. (2013). Twenty males and 20 virgin females of the appropriate nematode strains 

were crossed. Controls consisted of incubating 20 virgin females without males (virginity test) 

and 20 males x 20 females of the same isolate (self-cross test). Plates were incubated at 25°C 

for 2-4 days after which the presence of juveniles was examined. Results were considered valid 

only when the self-cross test was positive and the virginity test negative. 

2.4.  Pathogenicity tests 

2.4.1.  Screening of insect mortality induced by nematode isolates 

Twenty four well plates were used. Each well (3.14 cm2 surface area) was filled with 1 ml of 

heat-treated (80°C, 72 h) sand (grain size < 2 mm). One hundred IJs suspended in 200µl of tap 

water were transferred into each well in order to obtain 20% (v/w) moisture content. Controls 

received only 200 µl tap water (without nematodes). Thereafter, one third instar B. dorsalis larva 

was placed on top of the sand in each well to allow them to burrow in the sand naturally. Plates 

were arranged in a completely randomized block design with three replications (a plate with 24 

wells represented one replicate for each EPN isolate or the control), and kept in dark at 28°C. A 
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replicate (bloc) was consisted of 13 treatments (12 isolates plus one control). After 48 hours of 

incubation, insects were retrieved from the sand of individual wells. The number of dead larvae 

was recorded and pupae from the same twenty four well plate were transferred into a small 

plastic container (7 cm diameter x 5.5 cm height). The plastic container was covered with a 

perforated lid to allow aeration before being kept at 28°C. After 14 days, emerged flies as well 

as unemerged pupae were recorded. We hypothesized that after 14 days the pupae that had 

not developed into adult (flies) had been killed by nematodes. Therefore, at most five dead 

insects (larvae and unemerged pupae) were randomly selected and individually dissected after 

being kept at room temperature for 48 hours to ascertain their infection by nematodes.  

The number of dead larvae was added to that of unemerged pupae to determine insect mortality. 

The experiment was repeated twice with different batches of nematodes. All nematode isolates 

in Table 1 were involved in this study. 

2.4.2.  Effect of nematode concentrations on Bactrocera dorsalis mortality 

H. taysearae isolates Azohoue2 and Hessa1 and Steinernema sp. isolate Thui were selected to 

examine the effect of their concentration on B. dorsalis mortality because they induced higher 

insect mortality among isolates of their species in the screening experiment (2.4.1). The isolate 

H. indica Ayogbe1 which also induced a higher insect mortality was not included because it was 

contaminated by fungi during the experiment and has been discarded. The experiment arena 

consisted of a 24-well plate as described above. Different nematode concentrations of 20, 50, 

100, 200 and 300 IJs/ well corresponding to 6, 16, 32, 64 and 95 IJs/cm2 respectively, were 

tested at 20% (v/w) moisture content. Controls received only 200 µl tap water (without 

nematodes).  Three plates (replicates) were used per treatment (isolate x concentration). They 

were arranged in a completely randomized block design with all plates of the same replicate 

representing each bloc. The experiment was repeated twice with different batches of the three 
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nematode isolates. Insect mortality (larvae and pupae) was determined in the same conditions 

as described above. At most five dead insects were randomly selected and individually 

dissected to confirm death by nematodes.   

2.4.3. Effect of soil moisture on the pathogenicity of EPN to Bactrocera dorsalis 

Two isolates of H. taysearae (Azohoue2 and Hessa1) and one of Steinernema sp. (Thui) were 

used to examine the effect of soil moisture on insect mortality. Different soil moistures were 

tested to determine the optimal soil moisture content that is conducive to the nematode isolates 

to control B. dorsalis. Sandy loam soil was heat-treated as above mentioned and wetted to 

reach the final moisture content (v/w) of 10, 15, 20, 25 and 30% including the water added with 

the nematode suspension. Nematodes were applied at 100 IJs per B. dorsalis larva as 

described above and plates were incubated in dark at 28°C for 48 hours. The experiment was 

repeated twice with different batches of the three nematode isolates. Insect mortality (larvae and 

pupae) was determined in the same conditions as described above. At most five dead insects 

were randomly selected and individually dissected to confirm death by nematodes.   

2.4.4. Comparative susceptibility of larvae and pupae of Bactrocera dorsalis to 

entomopathogenic nematodes 

Two isolates of H. taysearae (Azohoue2 and Hessa1) and one of Steinernema sp. (Thui) were 

used to examine the susceptibility to EPNs of B. dorsalis pupae compared to that of the larvae. 

Third instar pupating B. dorsalis larvae were collected and put on sand adjusted to 10% 

moisture content (v/w). Pupae were collected after 24h, 48h and 72h from the same larvae 

batch, and pupae collected at each time were considered to be of the same age (less than one, 

two and three days, respectively) as we cannot know exactly when the larvae have pupated. 

The experiment arena consisted of a 24-well plate and nematodes were applied in the same 

conditions as described above at 10% moisture content with 100 IJs per pupa or larva of B. 
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dorsalis. Plates were arranged in a completely randomized block design and incubated in the 

dark at 28°C for 48 hours. Insect mortality (larvae and pupae) was determined in the same 

conditions as described above. 

2.4.5. Ability of nematodes to find larva/pupa of Bactrocera dorsalis 

H. taysearae (Azohoue2 and Hessa1) and Steinernema sp. (Thui) isolates were used to 

evaluate their ability to find B. dorsalis in sand substrate. Pieces of PVC tubing (diameter 4 cm) 

of different length (5 cm, 10 cm, 15 cm and 20 cm) were filled with sterile sand adjusted to 10% 

humidity. Third instar larvae of B. dorsalis were placed individually at one end of each piece of 

PVC tubing as described by Zadji et al. (2014b) and nematodes (100 IJs) were inoculated at the 

other end of the PVC tubing. Per combination PVC tube length × isolate, three replicates were 

performed, and ten PVC tubings were assigned for each replicate. 

Water evaporation was controlled by closing both ends of the PVC tubings with plastic lids to 

maintain constant humidity during the experiment. PVC tubings were maintained vertically, with 

EPNs on top and the larvae at the bottom, at 28°c during 48 h after which insect mortality 

(larvae and pupae) was determined in the same conditions as described above. At most five 

dead insects were randomly selected and individually dissected to confirm death by nematodes. 

This assay was repeated twice with different batches of nematodes. 

2.4.6.  Nematode reproduction in Bactrocera dorsalis third instar larvae 

Five dead B. dorsalis larvae of approximately the same size were randomly selected from the 

previous experiment (2.4.5) for each nematode isolate (Heterorhabditis: Azohoue2, Hessa1; 

and Steinernema: Thui) and placed individually on white trap to evaluate nematode reproduction 

potential in B. dorsalis larvae. Traps were incubated at 28°c. After approximately seven or five 

days for Heterorhabtidis and Steinernema isolates respectively, IJs were collected daily until no 
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nematode was observed in the white trap. The total number of nematodes produced by a single 

B. dorsalis larva was evaluated as described by Navon and Ascher (2000). 

2.5. Data Analysis 

Insect mortality data were corrected for control mortality according to the formula of Abbott 

(1925). Data obtained for all experiments were analyzed using SAS (version 16). To stabilize 

the variance of means, mortality percentages were arcsine transformed and subjected to a 

General Linear Model analysis. Student-Newman Keul’s (SNK) test when P<0.05 was carried 

out to assess efficacy differences among nematode isolates. One-way analysis of variance 

(ANOVA) tests were conducted to determine if concentration, moisture content and migration 

distance had an effect on the mortality caused by EPN isolates, while two-way ANOVAs were 

conducted to determine whether mortality was influenced by nematode isolates, by the 

treatments (concentration of IJs, moisture content, host status and migration distance), or an 

interaction between the two. Probit regression analysis was performed in SPSS (16.0) software 

to calculate the LC50 of the tested nematode isolates. 

3. Results 

3.1. Nematode occurrence in mango orchards and identification 

Two nematode isolates (KorobororouC2 and KorobororouF4) were retrieved from the 70 soil 

samples taken in mango orchards. This means that 2.86% of soil samples were positive. The 

two nematode isolates were isolated from two different mango orchards (KorobororouC2: 

09°22.356'N/02°41.175'E; KorobororouF4: 09°22.287'N / 02°40.233'E) in the same village. They 

share 100% ITS sequence similarity with each other and with H. taysearaeFJ477730 and 99% 

similarity with H. taysearae EF043443. Molecular identification based on the ITS regions 

showed that the two new nematode strains grouped with H. taysearae with relatively high 
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bootstrap value and no difference in nucleotides could not be observed with H. taysearae 

FJ477730 (Fig. 1).  

Morphological (data not shown) as well as morphometrics (Supplementary material 1) 

information confirmed the identification of the two nematodes strains as H. taysearae. They 

share all morphological characters with H. taysearae previously described by Stock et al. (2009) 

and Zadji et al. (2013). Cross- hybridization test yielded in fertile progeny when the strains 

KorobororouC2 or KorobororouF4 and H. taysearae (KF723802, Hessa1) were crossed. 

3.2. Screening of insect mortality induced by nematode isolates 

All 12 tested nematode isolates infected B. dorsalis larvae. However, we recorded only some 

dead larvae (which died before pupating) and most B. dorsalis died as pupae (larvae which 

have pupated despite nematode infection). Susceptibility of B. dorsalis larvae was significantly 

different among the 12 tested nematode isolates (F= 62.03; df= 11, 60; P<0.001). The 

percentages of insect mortality varied between 7.03% and 96.09% (Table 1). The greatest 

insect mortality was recorded for the H. taysearae isolate Azohoue2 (96.09%) followed by H. 

taysearae Hessa1 (94.53%) and H. indica Ayogbe1 (93.75%) (Table 1). The two latter isolates 

were not significantly different in causing B. dorsalis mortality. Steinernema isolates Thui and 

Bembereke induced lower insect mortalities (69.53% and 7.03% respectively) with the latter 

causing the lowest mortality rate to B. dorsalis among all tested nematode isolates (Table 1). 

3.3. Effect of nematode concentrations on Bactrocera dorsalis mortality 

Difference in B. dorsalis insect mortality was significant among nematode isolates (F= 98.89; 

df= 2, 75; P < 0.0001) and among IJ concentrations (F=31.60; df=4, 75; P< 0.0001). However, 

the interaction insect mortality x IJ concentration was not significantly different (F= 1.49; df =8, 

75; P= 0.1736). Detailed analysis showed that the three EPN isolates induced different levels of 
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mortality for all tested IJ concentrations (Fig. 2). The isolate Steinernema sp. Thui was the least 

virulent compared to the H. taysearae isolates (Azohoue2 and Hessa1) (Fig. 2). 

A concentration of 100 IJs/B. dorsalis larva corresponding to 32 IJs / cm2 was enough to kill at 

least 90% of B. dorsalis larvae (Fig. 2) for the H. taysearae isolates Azohoue2 (96.09%) and 

Hessa1 (94.53%) while the Steinernema isolate Thui could not induce the same level of 

mortality even when applied at high concentration (300 IJs/B. dorsalis larva or 95 IJs/ cm2).  

Based on the 95% confidence limits of the LC50 (Table 2), significant differences were observed 

among isolates, the highest LC50 was recorded with Steinernema sp. Thui. No significant 

difference was observed between the H. taysearae isolates, Azohoue2 and Hessa1 (Table 2). 

3.4. Effect of soil moisture on the pathogenicity of EPN to Bactrocera dorsalis 

For each nematode isolate, significant differences of B. dorsalis mortality were observed (F= 

3.74; df= 2, 75; P= 0.0283). Also, at each soil moisture, IJs induced significantly different levels 

of B. dorsalis mortality (F=42.89; df=4, 75; P<0.0001). Furthermore, insect mortality was 

significantly influenced by the interactions between nematode isolates and levels of moisture 

content (F=7.37; df= 8, 75; P< 0.0001). Therefore, effect of soil moisture levels for each 

nematode isolate, and differences in mortality caused by nematode isolates at each soil 

moisture level were assessed. Significant differences in mortality caused to B. dorsalis by the 

three nematode isolates were observed only at 15% (F=5; df=2, 15; P< 0.0217) and 25% (F= 

16.66; df=2, 15; P < 0.0002) moisture levels. Lower insect mortalities were recorded at 25-30% 

moisture levels for all tested nematode isolates (Fig. 3). All the three tested nematode isolates 

induced similar insect mortality at 10% and 15% moisture levels for which higher mortality rates 

were recorded. H. taysearae Azohoue2 induced higher mortality rates at 10% (99.21%) and  15% 

(96.76%) than at 25% (52.7%) soil moisture, while H. taysearae Hessa 1 and Steinernema sp. 
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Thui caused lower mortalities at 30% (70.31% and 68.75% respectively) compared to 10% 

(95.24% and 91.27% respectively) and 15% (96.78% and 90.32% respectively) moisture levels. 

3.5. Comparative susceptibility of larvae and pupae of Bactrocera dorsalis to EPN 

Results showed that both larvae and pupae (up to three days old) were susceptible to 

nematodes. Insect mortality recorded with infected larvae and 1-3 day old infected pupae 

revealed significant differences (F= 400.13; df= 3, 60; P< 0.0001) and the greater mortality level 

(99.21%) was recorded for infected larvae. In addition, no significant differences in insect 

mortality were observed among tested nematode isolates (F=2.40; df= 2, 60; P= 0.0993). Fully 

formed B. dorsalis pupae were less susceptible to nematodes than the third instar larvae (Fig. 4). 

Furthermore, susceptibility of B. dorsalis pupae to EPN decreased with age (Fig. 4). We 

recorded up to 99.21% insect mortality when nematodes were applied on B. dorsalis third instar 

larvae while insect mortality induced on 1-3 day old pupae did not exceed 23% with any of the 3 

tested EPN isolates (Fig. 4). 

3.6.   Ability of nematodes to find larva/pupa of Bactrocera dorsalis 

The three tested nematode isolates were capable of causing B. dorsalis mortality at all tested 

migration distances up to 20 cm except H. taysearae Hessa1 which induced no mortality at 20 

cm. In addition, low levels of B. dorsalis mortality were recorded in general for all tested 

distances (Table 3). Results revealed that larvae/pupae mortality varied significantly with 

migration distance (F=10; df= 3, 228; P<0.0001), with greater mortality levels recorded at 5 cm 

(Table 3). However, no significant difference was found in B. dorsalis mortality according to 

nematode isolates used (F= 1.42; df= 2, 228; P= 0.2431).  

3.7. Nematodes reproduction in Bactrocera dorsalis third instar larvae 

The reproduction potential of EPNs inside third instar larvae of B. dorsalis varied significantly 

according to nematodes isolates (F=9.26; df= 2, 12; P=0.0037). It was possible to yield up to 
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59577.2 ±14307.41 IJs from larvae infested with the Heterorhabditis isolates (Fig. 5) which 

showed the greatest multiplication rate compared to the Steinernema one (4858.2 ±890.28 IJs 

per B. dorsalis third instars larva). 

4. Discussion 

In this study, we investigated the susceptibility of B. dorsalis, a serious mango pest in Benin, to 

indigenous EPNs isolates recovered from soil samples collected in mango orchards and other 

vegetations in Benin. EPNs are known to be more effective in their natural environment than 

exotic ones (Bedding, 1990). Therefore, exploring the natural occurrence of EPNs in mango 

orchards in northern Benin was a first step towards their application in biocontrol. Laboratory 

investigations to screen available isolates for effectiveness on B. dorsalis in variable abiotic 

conditions were then required before conducting field assays on a reduced number of isolates. 

This knowledge will help us to optimize their application in mango orchards and other 

environments they may be applied to. In this way, their possibilities to be introduced in the 

commercial market will be increased and economical losses due to B. dorsalis will be reduced 

(Gazit et al., 2000; Ma et al., 2013). 

4.1. Nematode occurrence in mango orchards and identification 

A prospection in several mango orchards in northern Benin revealed only 2.86% of positive 

samples. This percentage of positive samples is lower than reported (11.43%) in southern Benin 

during the rainy season by Zadji et al. (2013), but still fits the range (2% to 45%) of EPN 

occurrence specified by Hominick in 2002. However, the number of EPN isolates retrieved in 

our study from mango orchards might represent an underestimation since the prospection was 

done during dry season (when nematode activity is limited) over a reduced number of sites (14 

mango orchards).  
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The identification of the two nematode isolates as Heterorhabditis taysearae constitutes a 

confirmation of the wide occurrence of that species in Benin as was reported for the first time by 

Zadji et al. (2013). H. taysearae were originally reported by Shamseldean et al. (1996) and later 

isolated in Mexico (Stock et al. 2009) from the Sonoran desert which shares a tropical climate 

with Benin. 

The effective presence of EPNs in surveyed mango orchards is a promising result for any future 

application of EPN as this ensures that they can establish and persist in this ecological 

environment. Also an eventual EPN application could take into account their natural initial 

population in the orchard.  

4.2.  Screening of insect mortality induced by nematode isolates 

Our laboratory experiments demonstrated the susceptibility of B. dorsalis larvae to all twelve 

tested nematode isolates. Great larval mortality (up to 96.09%) was caused by the 

Heterorhabditis strains with H. taysearae isolates Azohoue2 and Hessa1 being highly 

pathogenic to B. dorsalis. These results confirm earlier findings of Zadji et al. (2014) who 

demonstrated the same EPN isolates causing the highest mortality (98.6%) to Macrotermes 

bellicosus in citrus orchards. Furthermore, low insect mortality rates were recorded with the two 

tested Steinernema isolates with Steinernema sp. strain Bembereke inducing the lowest insect 

mortality (7.03±4.43) among all tested EPN isolates. This could be explained by the fact that IJs 

of Steinernema species penetrate an insect host only via natural openings, while 

Heterorhabditis species are equipped with an additional dorsal tooth (Griffin et al., 2005) that 

they use to puncture the cuticle of the insect pest to penetrate their body. Heterorhabditis and 

Steinernema nematodes are known to live in close association with different symbiotic bacteria 

(Boemare, 2002). Even though other virulence factors are involved in the death of the insect 
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host induced by EPNs (Ensign and Ciche, 2000; Zadji et al. 2014b), the toxicity of the 

associated bacterial symbiont could also be a contributing factor.  

4.3. Effect of nematode concentration on Bactrocera dorsalis mortality 

The three selected nematode isolates caused different B. dorsalis mortality at varying nematode 

concentrations with Heterorhabditis strains causing the highest mortality level. These results 

confirm those obtained above with the initial screening test where H. taysearae strains 

Azohoue2 and Hessa1 were highly pathogenic to B. dorsalis larvae. The highest Lc50 (95% 

confidence limit) was recorded with Steinernema sp. Thui isolate which confirms its lower 

performance in killing B. dorsalis larvae compared to the two H. taysearae isolates. For all 

isolates, there was no significant increase in larval mortality as nematode concentration 

augmented beyond 100 IJs/ larvae (or 32 IJs /cm2) meaning that a concentration of 32 IJs /cm2 

was enough to obtain the optimal B. dorsalis mortality in our experimental conditions. This 

optimal EPN concentration is much lower than reported in the literature by Minas et al. (2016) 

and Gazit et al. (2000) who conducted similar work on other tephritid pests. For example, Minas 

et al. (2016) reported 87% mortality of C. capitata when a H. baujardi strain was applied at 

much higher concentration (237IJs/cm2). In addition, Gazit et al. (2000) demonstrated that 100 

IJs/cm2 of S. riobrave could induce 82.5% of C. capitata mortality.    

4.4.  Effect of soil moisture on the pathogenicity of EPN Bactrocera dorsalis 

We recorded significant differences in insect mortality when nematodes where applied at 

different moisture content (10%-30%). This means that sand moisture level influenced 

nematode activity in causing B. dorsalis mortality under our experimental conditions. Langford et 

al. (2014) reported significant differences in B. tryoni mortality when EPNs were applied at 10-

25% substrate moisture. However, Gazit et al. (2000) stated that soil moisture does not affect S. 

riobrave activity in controlling C. capitata at larval stages. More interestingly, we observed that 



20 
 

nematode performance in killing B. dorsalis at late larval stage is reduced at high levels (25% 

and 30%) of soil moisture while higher mortalities were recorded at 10-15% soil moistures. This 

is in contrast to Langford et al. (2014) who reported low insect mortality when nematode were 

applied at 10% substrate moisture while higher mortality rates were observed at 25% soil 

moisture. Basically, nematodes are aquatic animals that require water to maintain their activity. 

However, some nematode species including bacterial feeding nematodes like EPNs have the 

ability to be active in soil even when water films are thin (Gaugler and Bilgrami, 2004). In water 

saturated substrate, oxygen diffusion rate may be compromised (Kaya, 1990), thus inhibiting 

nematode locomotion and persistence (Kung et al., 1990; Patel et al., 1997). Moreover, under 

conditions of high substrate moisture, nematodes are more active (Kable and May, 1968) and 

quickly lose their stored energy. Therefore their pathogenicity potential is reduced (Kung et al., 

1991). The contrast between our results and those of Langford et al. (2014) may be due to the 

effect of soil moisture content on the pest itself which could die of suffocation (Hulthen and 

Clarke, 2006). In this respect, Shapiro et al. (2006) reported no nematode effect (though high 

mortality level >90%) on Cucurlio caryae (Pecan weevil) at 23.6% soil moisture because of the 

sensitivity of the latter to high moisture level. In our case, B. dorsalis larvae successfully 

complete their development at soil moisture ranging from 10 to 70% (Hou et al., 2006) which 

means that nematodes were the most responsible for insect mortality at that moisture level of 

soil.  

According to Vayssières et al. (2015), B. dorsalis occurred in mango orchard from April to May, 

corresponding to the beginning of the rainy season when soil moisture is still relatively low. We 

therefore hypothesize based on our results that in these relatively low humidity conditions of the 

soil, nematode are active and control of B. dorsalis soil-borne stages will be enhanced, reducing 

then future populations of the insects in the orchard. 



21 
 

4.5.  Comparative susceptibility of larvae and different developmental stages of 

Bactrocera dorsalis pupae to EPN. 

All three EPN isolates were able to induce B. dorsalis larvae and pupae mortality. Late instar 

larvae of B. dorsalis were more susceptible than pupae to all nematode isolates tested. 

Furthermore, older pupae were less susceptible to nematodes than younger ones. We could 

obtain 22.8 % mortality of 1 day old pupae treated with H. taysearae Azohoue2 using 32 IJs / 

cm2 while 5.56% mortality was recorded for 3 days old pupae treated with the same nematode 

isolate at the same concentration. These findings agree with earlier work of Gazit et al. (2000) 

who reported that S. riobrave could cause up to 20% mortality in young pupae of C. capitata. In 

addition, recent work of Minas et al. (2016) revealed that up 100% mortality of C. capitata 1 day 

old pupae could be achieved when applying H. baujardi LPP7 at higher concentration (1079 IJs/ 

cm2). However, this is in contrast to Langford et al. (2014), Malan and Manrakhan (2009), and 

Yee and Lacy (2003) who observed no pupae susceptibility of B. tryoni,  C. capitata/C. rosa  

and R. indifferens respectively to EPNs. It is known that the body of pupae is much harder (due 

to the sclerotization) than that of the larvae, making nematode penetration through the insect 

cuticle (for Heterorhabditis species) much easier in larvae compared to pupae.  

This result of positive (though sometimes low) susceptibility of B. dorsalis pupae to both EPN 

genera constitutes an opportunity for future control of this pest in field conditions as larvae 

which will escape parasitism by nematodes in soil could still be caught at pupal stage. We 

recommend further tests on older pupae (above 3 day- old pupae) to assess their susceptibility 

to nematodes. In addition, timing of EPNs application should be considered so as to prioritize 

targeting of third instar larvae. 

4.6. Ability of nematodes to find larva/pupa of Bactrocera dorsalis  
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The three tested EPN isolates were able to parasitize B. dorsalis larvae present at 15 cm 

distance. H. taysearae Azohoue2 and Steinernema sp. Thui could even induce B. dorsalis 

mortality at 20 cm distance. These results confirm the cruiser type insect search strategy of the 

Beninese EPNs isolates described by Zadji et al. (2014b). In addition, the overall low insect 

mortality recorded for all tested distances could be explained by the fact that third instar larvae 

spend relatively short time at that stage before they switch to pupal stage which is less 

susceptible to EPNs than larvae as documented above. Thus, before nematodes can migrate 

from the inoculation point to the insect host, the latter could have pupated explaining the low 

mortality levels registered. In nature, third instar larvae of B. dorsalis leave the host fruit and 

migrate in soil where they pupate in the top 4cm (Hou et al., 2006). This means that they could 

still be reached while pupating in soil in case of future nematode application under field 

conditions. 

4.7. Nematodes reproduction in Bactrocera dorsalis third instar larvae 

All three tested nematode isolates were able to reproduce in B. dorsalis larvae. This result has 

great importance for nematode establishment and persistence in mango orchards as nematode 

populations in the orchard could be increased upon the presence of B. dorsalis hosts. In 

addition, the higher reproduction potential of Heterorhabditis isolates in B. dorsalis host 

compared to the Steinernema could be explained by differences in multiplication rate of the 

associated bacterial symbiont and their number released inside the host by IJs (Grewal, et al., 

1997). We were able to obtain up to 59577.2 ±14307.41 IJs of H. taysearae produced per larval 

host. This value of Heterorhabditis isolates is considerably higher than reported by Malan and 

Manrakhan in 2009 when Ceratitis rosa larvae were infested with H. zealandica. A number of 

6171.43 ± 814.66 IJs were counted after 19- 21 days of incubation. This wide difference may be 

explained by the variability in host size which relates to food availability for nematode 

reproduction. Indeed, the third instar larvae or pupae of B. dorsalis are naturally larger than 
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larvae or pupae of Ceratitis rosa as reported by Ekesi and Mohamed (2011) when those two 

tephritids were fed with several diets. In reality, a bigger host represented by B. dorsalis infected 

with small size IJs like H. taysaerae (418 µm IJ body length) should yield more progeny than a 

smaller Host represented by C. rosa infected with bigger size IJs like H. zealendica (685 µm IJ body 

length). 

Overall, our results showed that the susceptibility of B. dorsalis to H. taysearae was persistent 

under different tested abiotic conditions which B. dorsalis could encounter in nature. H. 

taysearae isolates (Azohoue2 and Hessa1) therefore represent potential biological agents that 

may be used in the control of B. dorsalis in mango orchards. The concentration of 100 IJs / larva 

applied at 10-15% soil moisture showed optimal results in laboratory tests. Fields trials are now 

required to test the effectiveness of B. dorsalis to these Heterorhabditis isolates under natural 

environmental conditions. 
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Figure captions: 

 

Fig. 1. Phylogenetic relationships based on Neighbor Joining clustering of Heterorhabditis ITS 

sequences showing the position of both nematode strains retrieved from mango orchards in 

northern Benin (shown in bold). H: Heterorhabditis, C: Caenorhabditis, S: Steinernema. 

Numbers at the nodes indicate bootstrap value (1000 replicates) and numbers after species in 

parentheses represent nucleotide differences between ITS sequences of described species and 

the newly isolated Heterorhabditis strains from mango orchards. 

 

Fig. 2. Effect of different concentrations (20, 50, 100, 200, and 300 IJs/B. dorsalis larva) of two 

isolates of H. taysearae (Azohoue2 and Hessa1) and one of Steinernema sp. (Thui) on B. 

dorsalis mortality (% ±SEM). Vertical bars are standard error of the means. Bars with the same 

uppercase letter stand for non-significant differences existing among nematode isolates causing 

B. dorsalis mortality at the same concentration level. Bars with the same lowercase letter stand 

for non-significant differences existing among nematode concentrations causing B. dorsalis 

mortality for the same nematode isolate (SNK’s test at P<0.05). 

 

Fig. 3. Effect of moisture content (10%; 15%; 20%; 25% and 30%) of the substrate (sterile sand) 

on B. dorsalis mortality (% ±SEM) exposed to the three tested nematode isolates (Azohoue2; 

Hessa1 and Thui). Vertical bars are standard error of the means. Bars with the same uppercase 

letters stand for non-significant differences existing among levels of moisture content for the 

same nematode isolate. Bars with the same lowercase letters stand for non-significant 

differences among nematode isolates for the same level of moisture content (SNK’s test at 

P<0.05). 

 

Fig. 4. Comparison of susceptibility of B. dorsalis pupae and third instar larvae (% ± SEM) to 

three nematodes isolates. Vertical bars are standard error of the means. Bars with different 

letters stand for significant differences among insect developmental stages (SNK’s test at 

P<0.05). 

 

Fig. 5. Reproduction potential of three nematode isolates in third instar larvae of B. dorsalis. 

Vertical bars are standard errors of the means. Bars with the same letters stand for non-

significant differences of EPN reproduction among tested nematode isolates (SNK’s test at 

P<0.05). 
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Fig. 5 
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Table 1  

Characteristics of the 12 studied EPN isolates from Benin and mortality (%±SEM) caused to B. 

dorsalis  

Sampling 

number 

Nematode 

species 

ITS 

accession 

number 

Vegetation Origin in Benin 

 

References % Mortality of 

B. dorsalis 

(±SEM)* 

32b H. taysearae KF723809 Mandarin Azohoue2 Zadji et al., 2013 96.09±1.44 a 

9a   H. taysearae KF723802 Lemon Hessa1 Zadji et al., 2013 94.53±2.82 ab 

51a H. indica KF723816 Mango Ayogbe1 Zadji et al., 2013 93.75±2.32 ab 

83a H. taysearae KF723828 Palm Ze3 Zadji et al., 2013 90.62±3.42 abc 

59a H. taysearae KF723818 Teak Akohoun Zadji et al., 2013 85.93±1.71 abcd 

9d H. taysearae KF723803 Lemon Hessa2 Zadji et al., 2013 82.81±0.99 bdc 

44a H. taysearae KF723813 Orange Kemondji    Zadji et al., 2013 76.56±4.01 de 

F4** H. taysearae KY228993 Mango Korobororou F4 This study 79.69±4.47 dec 

168d               Steinernema sp. KY228996 Eucalyptus Thui Unpublished 69.53±2.00 ef 

118c H. taysearae KY228995 Cashew Gouka Unpublished 64.06±3.12 f 

C2** H. taysearae KY228994 Mango Korobororou C2 This study 51.56±4.63 g 

157c Steinernema sp. KY228997 Gallery forest Bembereke Unpublished 7.03±4.43 h 

SEM: Standard Error of the Mean. 

* Means with the same letter are not significantly different. ** EPN isolates retrieved from soil 

sampled in mango orchards during January-February 2015 survey.  
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Table 2 

Comparison of lethal concentrations (LC50) of two Heterorhabditis isolates (Azohoue2 and 

Hessa1) and one Steinernema isolate (Thui) against B. dorsalis larvae. 

Nematode 

Isolates 

Origin of 

Nematode 

isolates 

Probit equationa χ² LC50
b 95% CLc 

H. taysearae Azohoue2 Y= - 0.710+1.071C 8.113 4.603 b 0-18.785 

H. taysearae Hessa1 Y= - 0.803+1.097C 1.642 5.396 b 1.488-10.511 

Steinernema sp. Thui Y= - 1.253+0.810C 2.973 35.205a 19.503-50.820 

a General responses of insect mortality (Y) as a function of nematode concentration (C). 

b Nematode concentration (number of IJs per B. dorsalis larva) required for killing 50% of 

treated larvae; LC50 values followed by the same letter are not significantly different, based on 

non-overlapping 95% CL. 

c 95% confidence limits (CL) for the LC50. 
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Table 3 

Mortality of B. dorsalis (Means ± SEM) caused by different nematodes isolates at 5, 10, 15 and 

20 cm depth (distance between insect and nematode inoculation point). 

                                                                                   Mortality (% ± SEM)                                             
Nematode isolates 
                                   5 cm distance      10 cm distance       15 cm distance       20 cm distance 

 
H. taysearae 
Azohoue2 
 
H. taysearae 
Hessa1 
 
Steinernema 
sp. Thui 

 
 
45 ± 11.41 Aa 
 
 
40 ± 11.24 Aa 
 
 
15 ± 8.19 Aa 

       
     20 ± 9.17 Ba 
 
 
     10 ± 6.88 Ba 
 
 
     10 ± 6.88 Aa 

 
  
 
 
 

 
  5 ±5.00 Ba 
 
 
  5 ±5.00 Ba 
 
 
  10 ± 6.88 Aa 

 
   5± 5.00 Ba 
 
 
   0.00 Ba 
 
 
   5 ± 5.00 Aa 

SEM: Standard Error of the Mean. 

Means (% ± SEM) with the same uppercase letter are not significantly different for the same 

nematode isolate. Means with the same lowercase letters stand for non-significant differences 

among nematode isolates for the same migration distance (SNK’s test; P< 0.05). 
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Supplementary material 1  

Comparative table of morphometrics of infective juveniles of H. taysearae isolates KorobororouC2 and 

KorobororouF4 from Benin and described H. taysearae species (in µm, ± standard error and range in 

parenthesis). 

Characters 

H. taysearae 
 (this study) 

Korobororou C2 
isolate 

H. taysearae  
(this study) 

Korobororou F4 
isolate 

H. taysearae  
(Stock et al., 2009) 

Caborca isolate 

H. taysearae 
(Shamseldean et 

al., 1996) 

n 20 20 20 30 

L 
570.39 ± 38.36 

(512-615) 
501.67 ± 35 
(459-580) 

557 ±  28 
(495-570) 

418 ± 38 
(332-499) 

a 
24,76 ± 2.35 

(19-28) 
21.60 ± 2.43 

(17-27) 
23 ± 1.5 
(19-26) 

21 ± 2.2 
(18-27) 

b 
4.59 ± 0.31 

(4-5) 
4.30 ± 0.33 

(3-5) 
4.8 ± 0.4 
(4.4-5.4) 

3.8 ± 0.2 
(3.4-4.2) 

c 
9.48 ± 1.07 

( 7-10) 
8.66 ± 0.7 

(7-9) 
5.5 ± 1.0 
(4.0-6.5) 

7.7 ± 0.7 
(6.5-8.7) 

MBD 
23.18 ± 2.25 

(20-27) 
23.41 ± 2.4 

(20-29) 
25.5 ± 4 
(19-32) 

20 ± 1.9 
(17-23) 

EP 
102.95 ± 7 
(91-114) 

102.1 ± 8.96 
(82-115) 

99 ± 4.5 
(97-116) 

90 ± 9.1 
(74-113) 

NR 
93.24 ± 5.19 

(87-108) 
91.35 ± 7.74 

(79-105) 
93 ±  4 
(87-98) 

64 ± 6.8 
(58-87) 

ES 
124.33 ± 6.63 

(111-144) 
117.13 ± 11.59 

(95-136) 
119 ± 7 

(110-131) 
110 ± 8.4 
(96-130) 

T 
60.69 ± 6.5 

(49-77) 
58.42 ± 7.52 

(48-70) 
105 ±  7 
(91-125) 

55 ± 6.6 
(44-70) 

ABD 
11.77 ± 1.47 

(9-16) 
12.89 ± 1.7 

(10-16) 
16 ±  2 
(13-16) 

- 

D% 
82.85 ± 4.73 

(73 - 89) 
87.32 ± 3.87 

(81-97) 
90 ±  8.5 
(78-110) 

82 ± 6 
(71-96) 

E% 
171.51 ± 22.07 

(135-212) 
174.75  ± 17.05 

(137-205) 
99 ± 8 

(81-111) 
180 ± 27 

(110-230) 

L= Body length, MBD= Maximum Body Diameter, EP= distance from anterior end to secretory-excretory 

pore, ES= pharynx length, NR = Nerve Ring, T=tail length, ABD= Anal Body Diameter, a= L/MBD, b= L/T, 

c= L/T, D%= (EP/ES) x 100, E%= (EP/T) x 100 

 

 



41 
 

Highlights 

 Entomopathogenic nematodes (EPNs) from Benin cause mortality in Bactrocera dorsalis 

late instar larvae and pupae. 

 Nematode concentrations as well as substrate humidity influence the susceptibility of 

Bactrocera dorsalis to EPNs. 

 EPNs from Benin are able to reproduce in B. dorsalis larvae and pupae 

 


