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Abstract

Land use regression (LUR) modelling is increasingly used in epidemiological studies to predict air pollution exposure. The use
of stationary measurements at a limited number of locations to build a LUR model, however, can lead to an overestimation of its
predictive abilities. We use opportunistic mobile monitoring to gather data at a high spatial resolution to build LUR models to predict
annual average concentrations of black carbon (BC). The models explain a significant part of the variance in BC concentrations.
However, the overall predictive performance remains low, due to input uncertainty and lack of predictive variables that can properly
capture the complex characteristics of local concentrations. We stress the importance of using an appropriate cross-validation
scheme to estimate the predictive performance of the model. By using independent data for the validation and excluding those data
also during variable selection in the model building procedure, overly optimistic performance estimates are avoided.
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1. Introduction

The urban air quality shows a large spatial variability on
a small scale, especially for traffic-related pollutants such as
NOx, ultrafine particles (UFP) and black carbon (BC) (Var-
doulakis et al., 2011; Peters et al., 2014; Wu et al., 2015). As
the variation within a city may exceed the variation between
cities (Jerrett et al., 2005; Cyrys et al., 2012), it is important to
take this within-city variability into account for accurate expo-
sure estimation in epidemiological studies (Hoek et al., 2008;
Fruin et al., 2014). Land use regression (LUR) models in-
tend to model this small-scale within-city variation by relating
the air pollution concentration at certain locations with predic-
tor variables, usually obtained through geographic information
systems (GIS), holding information on surrounding land use
and traffic characteristics (Jerrett et al., 2005; Hoek et al., 2008;
Beelen et al., 2013). LUR models are increasingly used in epi-
demiological studies (Eeftens et al., 2012; Beelen et al., 2014;
Dons et al., 2014; de Hoogh et al., 2014).

LUR modelling requires air quality measurements at multi-
ple locations across the study area. Typically, stationary moni-
toring is used at 20 – 100 locations (Hoek et al., 2008). How-
ever, Basagaña et al. (2012) argue that LUR models for com-
plex urban settings should be based on a large number of mea-
surement sites (> 80 in their study). Mobile monitoring can
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provide an alternative way to gather data at a high spatial res-
olution (Van den Bossche et al., 2015). Some studies use a
mobile platform to perform short-term measurements at many
locations (e.g. Larson et al., 2009; Merbitz et al., 2012; Ghas-
soun et al., 2015; Montagne et al., 2015). Only few studies use
mobile measurements as a basis for LUR modelling. For exam-
ple, Hasenfratz et al. (2015) and Mueller et al. (2016) present
a study on the modelling of particle number concentrations in
Zurich using data from a tram-based mobile sensor network.
Hankey and Marshall (2015) use bicycle-based, mobile mea-
surements to build LUR models, and in studies of Kanaroglou
et al. (2013), Patton et al. (2014) and Weichenthal et al. (2016b),
van-based measurements are used. Mobile measurements can
also be collected in participatory and community-based cam-
paigns. Volunteers can systematically collect targeted data sets,
or data are collected opportunistically during (repeated) daily
activities or trips, to provide improved estimates of spatial vari-
ability (Snyder et al., 2013; Van den Bossche et al., 2016).

In this study, we will investigate the development of LUR
models based on opportunistic mobile measurements to predict
annual average concentrations at a high spatial resolution in the
urban environment. This case study is based on measurements
gathered by city wardens during their surveillance tasks, which
were presented in Van den Bossche et al. (2016). The measure-
ment campaign resulted in a higher spatial density of measure-
ment locations compared to most LUR studies (sampling points
at an approximate resolution of 50 m along the roads). Different
techniques to build the LUR models, both linear and non-linear,
and different methods to select the relevant predictor variables,
will be evaluated. For the evaluation, a custom spatial cross-
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validation scheme will be used to ensure a proper assessment
of the predictive ability of the model.

2. Materials and methods

2.1. Study location and description

The study site is the city of Antwerp, Belgium, a medium-
sized city of 480,000 inhabitants (51°12’ N, 4°26’ E, 985 in-
habitants km−2). The inner city (within the ring road) has an
area of approximately 16 km2. The study area where measure-
ments were gathered comprises a quarter of this region (ap-
proximately 3.7 km2), and is shown in Figure 1. This region
consists mainly of residential and commercial areas, including
main traffic roads and green areas. A highway (the ring road) is
located at the border of the study area. There is no heavy indus-
try located within the study area itself, but the port of Antwerp
borders the city at the north. There are no significant differences
in elevation throughout the study area.

2.2. Mobile air quality monitoring

The opportunistic mobile measurement campaign1 was car-
ried out with the collaboration of city wardens from July 2012
until June 2013. The Antwerp city wardens are city employ-
ees who are outdoors for a large part of the day carrying out
surveillance tours by bicycle or on foot. These surveillance
tours do not follow fixed routes or times. Black carbon was
measured using the VITO airQmap platform2. The measure-
ment unit consisted of a micro-aethalometer (MicroAeth Model
AE51, AethLabs), a lightweight sensor that allows to mea-
sure BC at a high (1 s) frequency, and a GPS (Locosys Ge-
nie GT-31 GPS). The micro-aethalometer measures the con-
centration of optically absorbing aerosol particles (equivalent
black carbon (EBC, in µg m−3) using a mass-specific absorp-
tion cross-section (MAC) of 12.47 m2g−1 at 880 nm (Petzold
et al., 2013)).Three teams of two city wardens each were
equipped with a measurement unit, and 393 hours of raw
1 second measurements were recorded for the three teams com-
bined (459 hours of measurements before filtering for GPS
quality), spread over 110 days. Most of the measurements were
done between 10 am and 16 pm during working days and per-
formed both on foot and by bike. The micro-aethalometers have
been compared several times during the campaign to a reference
monitoring station. More details on data collection, process-
ing and quality control can be found in Van den Bossche et al.
(2016).

2.3. Aggregated BC concentrations

As described in Van den Bossche et al. (2016), the data at
1 s resolution were aggregated over segments of approximately
50 m resolution along the roads (assigned to the midpoint of
the corresponding segment). This resulted in different passages
for each segment, where one passage is a continuous period

1The dataset is available upon request.
2http://www.airqmap.com

of time during which measurements are performed in that seg-
ment. For each segment, an aggregated concentration level was
calculated based on all passages using a trimmed mean and tem-
porally adjusted to an annual average concentration. The tem-
poral adjustment was performed through a combination of the
additive and multiplicative method. More details can be found
in Van den Bossche et al. (2016). The trimmed mean used in
this study was calculated as the arithmetic mean after removing
the 0.5 % largest and 0.5 % smallest values (Van den Bossche
et al., 2015). The aggregated and adjusted values are the data
points that will be used as the dependent variable in the LUR
models. Because no fixed routes were followed, the number of
passages was not identical for all segments. Only those seg-
ments with at least 5 passages were used for the models, result-
ing in 1457 sampling locations. Most segments were measured
9 to 27 times (interquartile range).

A few of the segments close to the ring road were removed
from the target data set, in particular, the segments located at a
bridge over the ring road. These data are not representative for
the ring road itself and those high values for the traffic variables
were not well represented within the dataset.

2.4. GIS data

Data were gathered for four categories of predictor vari-
ables: traffic variables (traffic intensity, road length, distance
to roads), land use, population density and physical geogra-
phy (urban morphology). The elevation was not considered as
predictor variable. The different data sources were (i) Open-
StreetMap (OSM), (ii) Urban Atlas, (iii) Central Reference Ad-
dress Database (CRAB), (iv) a traffic model, (v) sky view fac-
tor data (open data Antwerp) and (vi) data on biking lanes from
the Province of Antwerp. These sources are described in more
detail in the Supplementary Material. Based on these data, pre-
dictor variables were calculated based on different buffer sizes
around the measurement locations or as a point estimate. An
overview of these variables is given in Table 1.

The relationship between the BC concentrations and a pre-
dictor variable, e.g. distance, is often not linear. Therefore,
some transformations of the variables were included as addi-
tional variables (inverse distance and squared inverse distance
for dist near, dist near major and distance to traffic). Further,
the following interactions between different predictor variables
were included: traffic variables (trafload 50, trafnear, trafn-
ear heavy) multiplied with inverse (squared) distance, and sky
view factor with traffic intensity. These interactions were in-
cluded because both the distance and the local geometry (sky
view factor) have an influence on the contribution of traffic to
the local concentration levels. The additional predictor vari-
ables are listed in the Supplementary Material.

In the basic scenario, all described predictor variables were
used for model building (described in more detail in the next
section). To investigate the impact of the availability of certain
predictor variables, additional models were built using differ-
ent initial sets of predictor variables: all predictor variables,
all predictor variables without manual transformations and in-
teractions, all predictor variables without the sky view factor
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Table 1: Overview of the predictor variables calculated from the GIS data. Additional predictor variables are transformations or combina-
tions of these variables and are listed in the Supplementary Material.

Name Description Source Buffer radii (m)

res hd xx High-density residential area in a buffer with size XX m (Urban Atlas code 11100
and 11210) [m2]

Urban Atlas [100, 300, 500, 1000, 3000, 5000]

res ld xx Low-density residential area in a buffer with size XX m (Urban Atlas code 11120,
11130 and 11240) [m2]

Urban Atlas [100, 300, 500, 1000, 3000, 5000]

industry xx Industrial or commercial area in a buffer with size XX m (Urban Atlas code 12100)
[m2]

Urban Atlas [1000, 3000, 5000]

port xx Port area in a buffer with size XX m (Urban Atlas code 12300) [m2] Urban Atlas [3000, 5000]
airport xx Airport area in a buffer with size XX m (Urban Atlas code 12400) [m2] Urban Atlas [1000, 3000, 5000]
urban green xx Urban green area in a buffer with size XX m (Urban Atlas code 14100) [m2] Urban Atlas [300, 500, 1000, 3000, 5000]
nature xx Natural land in a buffer with size XX m (Urban Atlas code 30000 and 40000) [m2] Urban Atlas [300, 500, 1000, 3000, 5000]
address xx Number of adresses in a buffer with size XX m CRAB [50, 100, 300, 500, 1000, 3000]
trafnear Traffic intensity on the nearest road [Veh day−1] Traffic model -
trafnear heavy Heavy traffic intensity on the nearest road [Veh day−1] Traffic model -
trafload xx Sum of (traffic intensity * road length) in a buffer with size XX m [Veh day−1 m] Traffic model [50, 100, 300, 500, 1000]
trafload heavy xx Sum of (traffic intensity (heavy traffic) * road length) in a buffer with size XX m

[Veh day−1 m]
Traffic model [50, 100, 300, 500, 1000]

trafloadhv fraction xx Fraction of heavy traffic in a buffer with size XX m Traffic model [50, 100, 300, 500, 1000]
roadlength xx Total road length in a buffer with size XX m [m] OpenStreetMap [50, 100, 300, 500, 1000]
roadlength major xx Total major road length in a buffer with size XX m [m] OpenStreetMap [50, 100, 300, 500, 1000]
dist near Distance to the nearest road [m] OpenStreetMap -
dist near major Distance to the nearest major road [m] (OpenStreetMap primary and secondary) OpenStreetMap -
dist highway Distance to the nearest highway [m] OpenStreetMap -
distance to traffic Distance between bike lane and traffic [cm] Province of Antwerp -
skyviewfactor Fraction of visible sky Open Data Antwerp -

(skyviewfactor) and the distance between bike lane and traf-
fic (distance to traffic) and all predictor variables without the
variables derived from the traffic intensity data (from the traffic
model).

2.5. Model building
Traditionally, most LUR studies use standard multiple linear

regression techniques to relate the pollutant concentration with
spatial predictor variables (Hoek et al., 2008). Some studies
use non-linear techniques such as Generalized Additive Models
(GAM) (e.g. Hasenfratz et al., 2015; Dekoninck et al., 2015). In
this study, both multiple linear regression and a non-linear re-
gression technique, support vector regression (SVR) using a ra-
dial basis function (RBF) kernel (Smola and Schölkopf, 2004),
were used.

In many papers, the methodology for building LUR mod-
els as described in Henderson et al. (2007) and Eeftens et al.
(2012) is used. We also used it in this study, and refer to it is as
the ‘classic’ method. It is a supervised stepwise forward search
of the best subset of predictor variables, based on an optimiza-
tion of the adjusted R2 and the significance of the coefficients
in the linear regression. The supervised step checks whether
the direction of the effect of each predictor variable (i.e. the
sign of the coefficient in the linear model) corresponds to the
predefined expected direction based on expert knowledge. The
predictor variable that gives the highest adjusted R2 in a uni-
variate regression is used as a starting point. Subsequently, the
predictor variable that yields the highest increase in adjusted R2

is added in a stepwise manner, provided the following criteria
are met: (i) the increase in adjusted R2 is greater than 1 %, (ii)
all variables have coefficients with a p-value < 0.05 and (iii) the
sign of the coefficient agrees with the predefined effect and the
sign of the other coefficients in the model does not change.

Next to the aforementioned ‘classic’ method, we also
adopted different approaches of predictor variable selection

based on cross-validation to ensure that those predictor vari-
ables that have the best generalization power are selected. The
cross-validation approach is described in more detail in the next
section. We used LASSO, a linear modelling approach that
forces the estimated coefficient vector to be sparse using regu-
larization (Tibshirani, 1996). In addition, both a forward search
limiting the number of variables by requiring an increase in the
cross-validation R2 of 0.01 (forward CV), and a combined for-
ward and backward search of a subset of variables that max-
imizes the cross-validation R2 (optimal CV) were used. The
latter approach is similar to the one taken in Beckerman et al.
(2013). To summarize, the following model building proce-
dures were used:

• No selection: using all available predictor variables in the
model without selecting a subset.

• Classic (only for the linear models): using the ‘classic’
approach of a supervised stepwise forward variable selec-
tion.

• LASSO (only for the linear models): forcing the estimated
coefficient vector to be sparse using regularization (and in
this way selecting a subset of predictor variables). This
method uses the cross-validation R2 to optimize the regu-
larization parameter.

• Optimal CV: using a combined forward and backward
search for a subset of predictor variables that maximizes
the cross-validation R2.

• Forward CV: using a stepwise forward variable selection
based on the cross-validation R2, but with a stopping cri-
terion of an increase in R2 of 0.01.

In each of the model building procedures, we can distinguish
two steps. Firstly, suitable predictor variables are selected
and/or hyperparameters are optimized (hyperparameters are pa-
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rameters whose values are set before fitting and not derived dur-
ing fitting), which we will jointly refer to as model selection.
Secondly, given a certain subset of variables or values for hyper-
parameters, the model is fitted on the data and the parameters
are estimated (model fitting).

All but the classic and ‘no selection’ method used cross-
validation in the model selection phase for optimizing hyper-
parameters (in case of LASSO and SVR models) or selecting
predictor variables (in case of optimal and forward CV). In ad-
dition to model selection, cross-validation was also used for
model evaluation. This will be elaborated in Section 2.6.3.

Further, all predictor variables were scaled by subtracting the
mean and scaling to unit variance during model building (in
case of cross-validation the mean and variance were determined
based on the training dataset). For the SVR, a grid search was
performed for the optimization of the hyperparameters. All re-
gression analyses were performed using the Python packages
scikit-learn (Pedregosa et al., 2011) and Statsmodels (Seabold
and Perktold, 2010).

2.6. Model evaluation and spatial cross-validation
2.6.1. Performance metrics

The LUR models were evaluated using a set of different met-
rics. First, the R2 (coefficient of determination) was used. It
provides a measure of how well unseen samples will be pre-
dicted by the model. If ŷi is the predicted value and yi is the
corresponding observed value of the i-th sample (with a total of
n samples), then R2 is defined as:

R2 = 1 −
RSS
TSS

= 1 −
∑n

i=1(yi − ŷi)2∑n
i=1(yi − y)2 , (1)

where y = 1
n
∑n

i=1 yi is the mean observed value, RSS is the
residual sum of squares and TSS is the total sum of squares. In
addition to the R2, also the explained variance (EV) was calcu-
lated:

EV = 1 −
Var(y − ŷ)

Var(y)
= 1 −

∑n
i=1((yi − ŷi) − (yi − ŷi))2∑n

i=1(yi − y)2 , (2)

where Var denotes the variance. For a linear model with an
intercept (fitted without regularization), the R2 and explained
variance are the same (and identical to the squared Pearson cor-
relation), but once the model is applied to other data (e.g. dur-
ing cross-validation), the model is fitted using regularization or
when using non-linear models (e.g. SVR), these two metrics
are not necessarily the same. There can be a high correlation
between the measured and predicted values leading to a good
explained variance, but still a poor prediction of the absolute
values leading to a low or negative R2. Further, also the root
mean squared error (RMSE) between the model predictions and
measurements was calculated.

The air quality measurements at short distances are known
to be correlated. The spatial autocorrelation of the BC mea-
surements and of the model residuals was evaluated using an
empirical variogram and Moran’s I statistic. To calculate the
latter, appropriate spatial weights have to be defined. In this
study, the inverse squared distance was used for the full matrix
of all data points.

Figure 1: The different spatial zones for cross-validation. The zones are con-
structed as 1 x 1 km2 areas based on the UTM coordinates. Some of the zones
with fewer sampling locations are combined into one zone, resulting in six
zones as indicated with numbers in the figure.

2.6.2. Spatial cross-validation scheme
To provide an unbiased evaluation of how well the models

would predict the air quality for independent data (e.g. other lo-
cations within the same city), the metrics above were calculated
using cross-validation. Given the high spatial autocorrelation in
air quality data and given the high spatial density of sampling
locations in this study, we have chosen to use a cross-validation
scheme based on delineated areas instead of an n-fold cross-
validation with random folds. Different zones were constructed
within the study area (based on areas of 1 x 1 km2, Figure 1).
The samples within each zone were used as folds in the n-fold
cross-validation (n = 6 in this case).

This spatial cross-validation scheme was used both during
model building and for model evaluation. In each iteration of
the cross-validation, the data of one fold (zone) is held out as
test data to estimate the performance of the model that is built
and/or fitted on the data of all other folds.

2.6.3. Cross-validation with and without full rebuilding of the
model

When using the spatial cross-validation scheme for model
evaluation, the model can either be refitted only or fully rebuilt
(including model selection) for each fold. This distinction is
important, and is not always clearly made in the LUR literature.
To obtain an unbiased estimate of the predictive performance
of the model, it is important that the validation data are fully
independent, and thus not used at all in the full model building
procedure. When a fold that is used during model selection (e.g.
variable selection), but not for model fitting, is reused in the
validation phase, the performance estimate will still be overly
optimistic.

Therefore, we will report the performance metrics based on
two different cross-validation schemes (illustrated in Figure 2).

• Cross-validation with refitting only of the models (CVF):
in this scheme, the model is only refitted during cross-
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Figure 2: Illustration of the two cross-validation schemes CVF and CVS+F.

validation (parameter estimation). The model selection is
only done once using all data.

• Cross-validation with full rebuilding of the models
(CVS+F): in this scheme, both model selection and model
fitting are performed during cross-validation. This means
that in each iteration of the cross-validation, a different
model structure (in terms of selected variables and values
for hyperparameters) is obtained.

In both cases, six different models are obtained during cross-
validation (for the six iterations). When using CVF, only the
parameter values will differ between the models, whereas when
using CVS+F, also the model structure will vary, with each
model having its own subset of predictor variables or values for
hyperparameters. The variability between the models will also
give an indication of the stability of the model selection. When
reporting the performance metrics for the cross-validation, the
metrics are both given as the range of the metrics obtained in
all the iterations, as well as calculated using the pooled predic-
tions (meaning the combination of the predictions obtained in
all the iterations). For CVF, also the R2 of the model fitted and
evaluated on all data is given (the model R2).

In case the model selection itself also uses cross-validation,
CVS+F implies that a nested cross-validation will be performed.
One fold is held out as test dataset, and the model will be built
based on the other data using cross-validation with the remain-
ing 5 folds. For the classic approach, the variable selection is
not based on cross-validation, so for this method CVS+F does
not incur a nested cross-validation.

3. Results

3.1. Exploration of the target and predictor variables
A map of the measured concentrations is shown in Figure 3.

The concentrations range from 0.4 µg m−3 to 9.8 µg m−3 with
a mean of 3.3 µg m−3 (median of 3.0 µg m−3). The concentra-
tions are spatially correlated (Figure 4). The largest increase
in variance occurs up to 300 m, and after approximately 500 m
the BC concentrations are no longer autocorrelated. Moran’s I
statistic is equal to 0.33 for the measured concentration levels.

The study area only includes urban area, no nature or low
density residential areas. Therefore, predictor variables that
were only present in those missing areas were left out. Most
of the remaining predictor variables showed a large variability
throughout the study area. The distribution of the BC concen-
trations is similar in most of the spatial zones (Figure S1).

3.2. Model results
The evaluation results of the different LUR models are sum-

marized in Tables 2 and 3. The selected predictor variables for
a selection of the individual models are given in the Supple-
mentary Material. A large variability in selected variables can
be noted. The measured and predicted concentration values are
visualized in Figure 5 as scatter plots. A systematic underesti-
mation of the high concentrations and an overestimation of the
low concentrations is observed. Further, the predicted concen-
tration values are also mapped in Figure 6.

3.2.1. Spatial cross-validation schemes
For all methods, the CVS+F evaluation results in lower val-

ues for the metrics than the evaluation of the models based on
all data (CVF). For the classic linear model, for example, the
model R2 is 0.43 while the CVF R2 is 0.35. When fully re-
building the model during cross-validation, the score decreases
further: a CVS+F R2 of 0.24. A similar trend is observed for the
other methods. This decrease in performance between CVF and
CVS+F can be explained by overfitting and lack of validation on
fully independent data in CVF.

The importance of the spatially independent folds in the
cross-validation is illustrated by testing other schemes. Using
the custom spatial scheme, the CVF R2 is 0.30 for the SVR
model without variable selection (Table 2). When using a ran-
dom 10-fold cross-validation or leave-one-out cross-validation
(LOOCV), the R2 increases to 0.55 and 0.60, respectively.

3.2.2. Model-building methods
Based on the CVS+F results, the differences between the mod-

els are not large. Most of the models have a similar predictive
performance (R2 ranging between 0.24 and 0.26), with slightly
lower values for the forward and optimal CV linear models and
the optimal CV SVR model. For the CVF R2 values, a larger
difference between the different models is found.

The optimal CV models score better on CVF R2. For exam-
ple, the linear optimal CV model has a CVF R2 of 0.46, but an
R2 of only 0.22 for CVS+F. This large difference between CVF
and CVS+F performance indicates that there is overfitting dur-
ing the variable selection phase. The optimal CV models also
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Figure 3: Map of the measured BC concentrations.

Table 2: Overview of the evaluation results of the different LUR models. For the CVF scheme (model selection based on all data), the
model R2 and the cross-validation R2, explained variance (EV) and RMSE are given. Moran’s I statistic is calculated for the residuals of the
model fitted on all data. For the CVS+F scheme (cross-validation with full rebuilding), the R2, EV and RMSE of the different models are
given. The CV metrics are reported for the pooled predictions and as the minimum and maximum of the individual models as [min, max].

CVF (only refitting) CVS+F (fully rebuilding)
Model R2 R2 EV RMSE Moran’s I R2 EV RMSE

Linear regression
No selection 0.56 -0.08 [-1.24, 0.32] -0.07 [-1.07, 0.36] 1.4 [1.1, 2.2] 0.16 - - -
Classic 0.43 0.35 [-0.39, 0.54] 0.35 [0.26, 0.55] 1.0 [0.8, 1.2] 0.26 0.24 [-0.65, 0.52] 0.25 [0.28, 0.53] 1.1 [1.0, 1.3]
LASSO 0.35 0.28 [0.01, 0.48] 0.28 [0.24, 0.48] 1.1 [1.0, 1.3] 0.31 0.26 [-0.26, 0.44] 0.26 [0.26, 0.45] 1.1 [1.0, 1.3]
Optimal CV 0.52 0.46 [0.31, 0.57] 0.46 [0.36, 0.58] 1.0 [0.8, 1.1] 0.19 0.22 [-0.70, 0.50] 0.23 [-0.02, 0.52] 1.1 [1.0, 1.3]
Forward CV 0.38 0.34 [0.08, 0.49] 0.34 [0.29, 0.50] 1.1 [0.9, 1.3] 0.29 0.20 [-0.75, 0.36] 0.22 [0.22, 0.41] 1.2 [0.9, 1.3]

SVR
No selection 0.68 0.30 [0.07, 0.40] 0.30 [0.16, 0.42] 1.1 [1.0, 1.3] 0.13 0.26 [0.06, 0.36] 0.26 [0.16, 0.38] 1.1 [0.9, 1.3]
Optimal CV 0.60 0.46 [0.25, 0.57] 0.46 [0.30, 0.58] 1.0 [0.8, 1.1] 0.16 0.19 [-0.60, 0.40] 0.20 [0.04, 0.43] 1.2 [1.0, 1.3]
Forward CV 0.48 0.40 [0.24, 0.58] 0.41 [0.35, 0.58] 1.0 [0.8, 1.2] 0.23 0.24 [-0.03, 0.37] 0.26 [0.17, 0.41] 1.1 [0.9, 1.3]
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Figure 4: Variogram of BC measurements.

include a larger number of variables: for the linear models, the
optimal CV method selects on average 14 variables in CVS+F,
compared to six variables for the classic supervised method.

Using the forward CV method for the linear model results
in a lower CVS+F R2 compared to the classic method, although
both methods use the stopping criterion of a minimum of 1 %
increase in R2. In the case of SVR, the forward CV selection
method gives slightly worse results based on CVS+F compared
to using all variables (0.24 vs 0.26 for R2, respectively, and an
EV of 0.26 for both). However, the resulting forward CV model
only uses five to six predictor variables. Therefore, from a prac-
tical point of view (fewer variables are preferred when applying
the model), the forward CV method is used for the next para-
graph.

3.2.3. Available predictor variables
To investigate the impact of the available predictor variables,

both linear and SVR models are built using the different ini-
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Figure 5: Scatter plots of the measured and predicted BC concentrations for the optimal (a) linear model (classic) and (b) SVR model (forward CV). The predicted
BC concentrations are the pooled predictions of the CVF models.

tial sets. The classic approach is used for the linear mod-
els and forward CV for SVR. An overview of the results is
given in Table 3. The best results are obtained when using
all predictor variables including the transformations and inter-
actions. In each of the models at least one interaction of a
traffic variable with the distance between bike lane and traffic
(trafnear/distance to traffic or trafload 50/distance to traffic)
is included (Table S1). Leaving out all variables using the sky
view factor (skyviewfactor) or the distance between bike lane
and traffic (distance to traffic) also leads to a lower R2. Leav-
ing out traffic intensity variables leads to a much lower perfor-
mance. The traffic variables are then mainly replaced by the
total length of major roads (roadlength major) in buffer zones
of 50 and 100 m. For the SVR models, similar trends can be
noted.

3.2.4. Model residuals
The model residuals are analysed by calculating Moran’s I

statistic for each of the models (based on the model fitted on all
data). For most models there is a small decrease in Moran’s I
statistic compared to the value of 0.33 for the measured concen-
trations. But, the values did not fall to zero, indicating that there
still is a considerable spatial autocorrelation in the model resid-
uals. For the classic linear model, Moran’s I statistic decreased
to 0.26. The variogram for this model (not shown) shows that
the influential distance has become smaller, confirming the de-
crease in Moran’s I statistic. The residuals for this model are
also visualized on a map (Figure 7).

4. Discussion

4.1. Different evaluation approaches

The performance of the LUR models was evaluated using a
custom spatial 6-fold cross-validation scheme to ensure spatial
independence between the training and the test set. Further,
the performance was assessed both by cross-validation of the
model based on all data (CVF) and by excluding one fold in

model building for evaluation during cross-validation (CVS+F).
Generally, there is a clear difference between the evaluation ap-
proaches resulting in lower R2 and EV values for CVS+F com-
pared to CVF. The CVS+F approach ensures an unbiased esti-
mate of the predictive performance by excluding the validation
data from the model building phase. This indicates that not only
the model R2, but also the CVF cross-validation R2, does not
necessarily reflect the predictive ability of the model. The re-
sults stress the importance of a proper evaluation method when
assessing the predictive performance of LUR models.

In literature, LUR models often use leave-one-out cross-
validation (LOOCV) to assess the model performance (e.g.
Hoek et al., 2008; Eeftens et al., 2012; Beelen et al., 2013),
but it is known that this may overestimate the predictive ability
on independent data sets (Wang et al., 2012; Basagaña et al.,
2012; Wang et al., 2013). Some other studies use hold-out vali-
dation (HV) or random n-fold cross-validation to get a more re-
liable estimate of the performance (e.g. Hasenfratz et al., 2015;
Kanaroglou et al., 2013; Montagne et al., 2015). For these ap-
proaches, sufficient sampling locations are required to be able
to split up the dataset. When using a random 10-fold cross-
validation or LOOCV instead of the spatial cross-validation
scheme in our case study, the R2 increases from 0.30 to 0.55 and
0.60, respectively (using the SVR model without variable selec-
tion). This stresses the importance of the spatial independence
of the validation data. The spatial cross-validation scheme tries
to ensure this independence. At the borders of the zones, there
will still be a spatial autocorrelation between samples in the
training and validation dataset, but in view of the spatial au-
tocorrelation this method is more appropriate than LOOCV or
random n-fold cross-validation. A possible improvement would
be not to work with fixed spatial zones, but to use a buffer of
certain size around each individual sampling location.

Recent studies show that LUR models can perform well in
the LOOCV setting, but perform worse in evaluation on an in-
dependent dataset (Wang et al., 2012; Basagaña et al., 2012;
Wang et al., 2013). However, we have shown here that also
cross-validation or hold-out approaches can still give an over-
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Table 3: Overview of the evaluation results of the LUR models starting from different initial subsets of predictor variables. The metrics are
the same as in Table 2.

CVF (only refitting) CVS+F (fully rebuilding)
Model R2 R2 EV RMSE Moran’s I R2 EV RMSE

Linear regression
All variables 0.42 0.30 [-0.23, 0.43] 0.31 [0.18, 0.46] 1.1 [0.9, 1.2] 0.25 0.19 [-0.78, 0.33] 0.20 [0.20, 0.44] 1.2 [0.9, 1.3]
All variables + interactions 0.43 0.35 [-0.39, 0.54] 0.35 [0.26, 0.55] 1.0 [0.8, 1.2] 0.26 0.24 [-0.65, 0.52] 0.25 [0.28, 0.53] 1.1 [1.0, 1.3]
Without skyview/distance to traffic 0.42 0.29 [-0.30, 0.41] 0.30 [0.23, 0.47] 1.1 [0.9, 1.3] 0.24 0.18 [-0.80, 0.33] 0.19 [0.22, 0.42] 1.2 [0.9, 1.3]
Without traffic 0.31 0.14 [-0.82, 0.44] 0.14 [-0.04, 0.46] 1.2 [0.9, 1.3] 0.28 0.04 [-1.15, 0.31] 0.05 [-0.08, 0.34] 1.3 [0.9, 1.4]

SVR
All variables 0.46 0.39 [0.18, 0.57] 0.39 [0.32, 0.58] 1.0 [0.8, 1.2] 0.24 0.20 [-0.53, 0.41] 0.20 [0.07, 0.44] 1.2 [1.0, 1.4]
All variables + interactions 0.48 0.40 [0.24, 0.58] 0.41 [0.35, 0.58] 1.0 [0.8, 1.2] 0.23 0.24 [-0.03, 0.37] 0.26 [0.17, 0.41] 1.1 [0.9, 1.3]
Without skyview/distance to traffic 0.56 0.41 [0.33, 0.52] 0.41 [0.37, 0.55] 1.0 [0.8, 1.2] 0.19 0.17 [-0.47, 0.37] 0.18 [-0.03, 0.39] 1.2 [1.0, 1.4]
Without traffic 0.50 0.30 [0.12, 0.41] 0.31 [0.20, 0.41] 1.1 [0.8, 1.2] 0.17 0.05 [-0.48, 0.20] 0.06 [-0.37, 0.21] 1.3 [1.1, 1.4]
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Figure 6: Map of the predicted BC concentrations for the classic linear model (at the same locations where measurements have been performed). The predicted
values are the pooled predictions of the CVF models.
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Figure 7: Map of the residuals (predicted concentrations minus measured concentrations) for the classic linear model. Negative values indicate an underestimation
of the LUR model. The predicted values are the pooled predictions of the CVF models.
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estimation if the model is not fully rebuilt. Often, the model
is not rebuilt but only refitted (parameter estimation), in both
LOOCV and HV settings (e.g. Eeftens et al., 2012; Beelen et al.,
2013; Kanaroglou et al., 2013). Our results show the impor-
tance of doing a full rebuild (i.e. redoing the variable selection,
the CVS+F approach) for each fold of the cross-validation to get
an estimate of the predictive ability of the model. The CVS+F
approach yields the best possible estimate of the predictive abil-
ity of the model when applied to actual unseen data.

4.2. Different model building techniques
Multiple models and model building techniques were tested

in this study. When using the CVS+F cross-validation scheme,
there was not much difference between the obtained models in
terms of predictive ability. For the linear models, it is clear
that variable selection is important given the negative cross-
validation R2 when using all variables.

The supervised stepwise regression is widely used (Hoek
et al., 2008; Eeftens et al., 2012). This approach focuses on
selecting models with a limited number of predictor variables
that have plausible (predefined) effects. The motivation of this
supervised approach is that it results in a more interpretable
model, that the model could be applied more easily in other
study areas and that it limits the risk of overfitting (Beelen et al.,
2013). In this approach, the variable selection in the model
building process is based on all data. Alternatively, the variable
selection can also be based on the CV performance, e.g. the
cross-validation R2 instead of the adjusted model R2, to select
those variables that give the best generalization and to minimize
the risk of overfitting. Basagaña et al. (2012) compared differ-
ent techniques: the classic approach with a forward selection
based on adjusted R2, the same algorithm but forward selec-
tion based on LOOCV R2 and the deletion/substitution/addition
(DSA, Su et al. 2015) algorithm that searches through the vari-
able space in order to minimize the squared prediction error
during cross-validation. They concluded that the techniques
performed similarly in terms of predictive ability on the vali-
dation dataset. Our results also do not show much difference
between the different techniques, and an even worse predic-
tive performance for the models based on an optimization of
the cross-validation R2 that do not limit the number of predic-
tor variables. Those models have a better cross-validation CVF
R2 compared to the classic approach, but the CVS+F R2 is lower.
This means that, despite the cross-validation during variable se-
lection, there is some overfitting. To have generalizable models,
it seems important to limit the number of predictor variables by
early stopping. The methods that do not use a custom variable
selection method but have regularization built in, i.e. LASSO
and SVR without manual variable selection, show less differ-
ence between the CVF and CVS+F performance metrics. For
these methods, less overfitting occurs

The regularized linear model, LASSO, performed similarly
to the classic linear model (CVS+F R2 of 0.26 vs 0.24), even
though LASSO does not make use of the additional informa-
tion on predefined effects as used in the classic method. The
non-linear SVR models (based on all variables and forward
CV) also performed similarly. Introducing non-linearities in the

model by transforming predictor variables seems to be enough
for the linear model to perform as well as the non-linear model.
The differences between the models are, however, very small
and therefore it is not possible to draw clear conclusions. We-
ichenthal et al. (2016a) also compared multiple linear regres-
sion and a non-linear approach. The non-linear model had a
higher model R2, but when evaluating the model with cross-
validation the difference was no longer significant. To con-
clude, using SVR as a non-linear technique did not yield com-
pelling improvements over linear regression for the data set in
this study.

4.3. Mobile monitoring as the basis for LUR models

A limited number of studies have used mobile monitoring
to build LUR models, and more research is needed to deter-
mine best practices (Hankey and Marshall, 2015). When using
mobile monitoring as the basis for LUR models, an important
aspect is how to aggregate the mobile measurements into a suit-
able form that can be fed into the model. Based on the analysis
in Van den Bossche et al. (2015), we adopted a 50 m resolu-
tion and a trimmed mean as the aggregation statistic. The mea-
surements were aggregated over segments of an approximately
equal length of 50 m along the road network. Other approaches
include assigning the collected data to the midpoints of the cor-
responding road segment (e.g. Weichenthal et al. (e.g. 2016b)
or regular grids (e.g. Hasenfratz et al., 2015).

Hankey and Marshall (2015) tested different metrics to ag-
gregate their data over different passages. They chose the me-
dian concentration in their best-case models because this gave
a lower error than for the mean concentration. In previous work
we showed that the trimmed mean used in this paper reduces
the impact of extreme values on the average concentration of a
segment and gives a better estimate of the true mean than the
arithmetic mean or the median (Van den Bossche et al., 2015).

The advantage of mobile measurements is the ability to mon-
itor many locations, leading to a high spatial density of sam-
pling locations in the study area. This yields a higher spa-
tial resolution than can be achieved with fixed site monitor-
ing. In this study, 1457 sampling locations were included, and
the study of Hankey and Marshall (2015) used 1101 locations.
Basagaña et al. (2012) showed that building LUR models to
characterize local air pollution levels in complex urban settings
should be based on a larger number of measurement sites than
the 20–100 sites that are typically used in LUR studies, and
thus the large number of sampling locations obtained by mo-
bile monitoring can yield a more adequate dataset for such LUR
models. But, mobile monitoring also holds some drawbacks
compared to stationary monitoring. Due to measuring at many
locations for only a short time period, an increased variation in
the measured concentrations can be expected (Van den Bossche
et al., 2015). This may result in a lower model fit, which is
further discussed in the next section. To cope with this, a suf-
ficient number of repeated measurements at the same location
is needed to get a reliable estimate of the average concentration
at each location (Van den Bossche et al., 2015). Further, mo-
bile measurements will more likely be limited to the day-time
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hours when people are active and to publicly accessible loca-
tions (streets, squares, urban green, etc.). Care should be taken
to avoid a sampling bias towards traffic environments. In the
present case study, the spatial spread was appropriate and also
non-traffic environments were included due to the nature of the
city wardens’ work, but the temporal coverage was limited to
working hours.

4.4. Evaluation of the performance

4.4.1. Comparison to other studies
It is difficult to compare the obtained performance with that

of other studies. Firstly, often different evaluation methods are
used (different metrics or cross-validation approaches) and it is
not always clear which method is exactly used. As explained
above, the choice of the method to evaluate the performance
can have a large impact on the obtained values. Secondly, the
number of sampling locations can vary greatly. Based on a re-
sampling exercise, Basagaña et al. (2012) concluded that higher
R2 values are found for LUR models based on a smaller num-
ber of measurement sites, but that this does not necessarily re-
flect the true predictive ability. Finally, depending on the data
quality, part of the unexplained variance can be attributed to
uncertainty in the data itself, which can result in a lower model
fit.

In this study, a CVF R2 of 0.35 and CVS+F R2 of 0.24 were
obtained for the classic model. In other studies using mobile
monitoring, similar performances were found. Hasenfratz et al.
(2015) obtained an R2 of 0.38 for a yearly map with 10-fold
cross-validation based on mobile tram measurements. In the
study of Kanaroglou et al. (2013), a LUR model for SO2 with a
resolution of 50 m was built using mobile van-based measure-
ments and they obtained an R2 of 0.30 for a 50 % hold-out cross-
validation data set (with a fixed set of selected variables during
cross-validation, thus without fully rebuilding the model). Han-
key and Marshall (2015) also used on-road bike measurements,
and the LUR model for BC showed an R2 of 0.20 to 0.35 using
a random 1/3 hold-out cross-validation. A higher R2 of 0.50
based on an independent validation dataset was found by We-
ichenthal et al. (2016b) for a UFP model. However, the valida-
tion data were scattered throughout the study area and therefore
possibly not spatially independent.

The performance on spatially independent data during cross-
validation varies considerably between folds: a pooled CVS+F
R2 of 0.24 (and EV of 0.25) is found for the classic linear model
while the R2 values for the individual folds range between -0.65
and 0.52 (EV ranges between 0.28 and 0.53, Table 2). The neg-
ative R2 value means that for this specific zone (zone 1 in Fig-
ure 1) the absolute values are not predicted well. The variability
in the selected predictor variables (Tables S1 and S2 in the Sup-
plementary Material) and the variation in performance between
the different folds during CVS+F can be caused by differences in
land use between the different zones (Figure S1). Similar trends
of high variability between the folds are observed for the other
methods as well. This lower performance during CVS+F cross-
validation indicates that the model still has difficulty to gener-
alize to the full city and that the performance in predicting the

concentrations, especially absolute values, for areas where no
measurements took place (outside of the study area) is limited.

Hankey and Marshall (2015) also performed a systematic
validation using data from two routes to predict the third route,
leading to low R2 values (0.01 to 0.20 for BC). A possible rea-
son they gave was that the range spanning the predictor vari-
ables within each of the routes was not fully balanced. In the
study of Patton et al. (2015), measurements were performed
in four different neighbourhoods. When models built for one
of the neighbourhoods were transferred to the other neighbour-
hoods, the models performed poorly (R2 < 0.17, compared to R2

of 0.23 to 0.42 for the neighbourhood-specific models). These
two studies also have difficulties to generalize the model to
other parts of the same city. This evaluation of the transfer-
ability of the models is similar to the spatial cross-validation in
the present study, although the neighbourhoods in Patton et al.
(2015) are not contiguous but around 3 to 12 km apart, and the
routes in Hankey and Marshall (2015) also cover a larger area
(about 8 x 12 km2).

4.4.2. Selected predictor variables
The traffic intensity variables are the primary selected vari-

ables in all models. For example, the SVR model has a CVF
R2 of 0.29 when only the traffic load in a buffer of 50 m
(trafload 50) is used as predictor variable, and 0.39 when also
including a variable on heavy traffic and the sky view factor.
The problem with the traffic intensity variables is that they are
not always easily accessible. Hoek et al. (2008) reported that
several LUR studies have successfully explored the use of the
length of specific road types without traffic intensity data (e.g.
Henderson et al., 2007). In the present study, however, the mod-
els that were forced not to include traffic variables had a low
performance (Table 3) and the different road length and dis-
tance to road variables did not prove to be decent substitutes.
This could be attributed to the generally high road density in
the city centre. These results emphasize the importance of the
availability of traffic data when building LUR models.

We have also built models for a scenario without the avail-
ability of the sky view factor and the distance between bike lane
and traffic (distance to traffic) (Table 3) because these data are
rather specific and not generally available. However, given the
lower performance of the models, those predictor variables have
a clear added value in explaining the variability in BC concen-
trations in the urban environment. Eeftens et al. (2013) also
concluded that street canyon indicators such as the sky view
factor could be valuable to consider in air pollution models.
The results correspond with the findings in Peters et al. (2014)
that traffic intensity, distance to the traffic and street topology
are determinant for cyclist exposure.

4.4.3. Explaining low performance: quality of data and pre-
dictor variables

Generally low R2 and EV values are obtained for the final
models. In the previous paragraphs we discussed the impact
on the performance of the validation approach and the number
of sampling locations. Here, we will further discuss the low
performance.
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The opportunistic mobile monitoring methodology had an
impact on the quality of the data, as discussed in Van den Boss-
che et al. (2016). There is still a rather large uncertainty on the
average concentration levels at a spatial resolution of 50 m due
to a limited number of measurements for many of the locations,
limited temporal coverage and sampling bias. Insufficient data
were gathered to get an accurate estimate of the BC concen-
tration at all locations. Part of the unexplained variance can
therefore be attributed to uncertainty in the data itself. The data
quality could be improved by using more mobile platforms for
the data collection, a stronger follow-up of the participants, etc.
(see Van den Bossche et al. (2016) for more detailed discus-
sion).

However, there are also systematic errors indicating that part
of the unexplained variance is also due to missing to explana-
tory power of the model and predictor variables. The model
residuals show a clear relation with the BC concentrations:
there is a systematic underestimation of the high concentra-
tions and an overestimation of the low concentrations. The
model residuals also exhibit a considerable spatial autocorrela-
tion. This analysis of the model residuals indicates that not yet
all explanatory factors are captured in the predictor variables.

The unexplained variance can be explained by the insuffi-
cient quality of certain predictor variables. For example, the
traffic intensity is based on a traffic model and is known to be
rather coarse. The influence of congestion and frequent start-
stop behaviour of traffic in the urban environment is also not in-
cluded. The modelled traffic intensity may therefore be a poor
predictor of actual traffic emissions. Further, the complex inter-
play between local emissions, local street geometry and local
meteorology may not be adequately captured in the predictor
variables.

4.5. Limitations of this study

The applicability of the LUR models obtained in this study
is restricted by the characteristics of the input (pollution) data.
The measured concentrations are representing street-level (cy-
clist or pedestrian) daytime exposure values. Further, the LUR
models are applied in a relatively small study area. The ques-
tion how well the model would perform at a larger scale (e.g. in-
cluding the peripheries and not only the city centre of Antwerp)
remains unanswered. The goal of the present study was to
obtain an annual average map and we did not distinguish be-
tween different seasons. Further, as discussed above and in Van
den Bossche et al. (2016), the dataset of opportunistic measure-
ments used in this study has limitations with regard to the data
quality. Despite the uncertainty on the concentration levels,
large spatial patterns within the city are clearly captured with
the mobile campaign.

5. Conclusion

The goal of this paper was to develop and evaluate LUR mod-
els to predict annual average BC concentrations in an urban en-
vironment based on opportunistic mobile measurements. We
can conclude that mobile monitoring is suited for building LUR

models at a high spatial resolution. Mobile monitoring can pro-
vide the high spatial resolution data needed to characterize the
spatial variability in the complex urban environment.

We illustrated the importance of a careful evaluation ap-
proach for estimating the predictive performance of the model
using an appropriate cross-validation scheme. It is crucial to
use spatially independent data for the validation. These test
data should be excluded during variable selection in the model
building procedure. Many papers in literature do not use such
a rigorous evaluation approach, often because the limited data
available do not allow them to do so, and find overly opti-
mistic performance estimates. Different model building tech-
niques were tested. LASSO, a regularized linear model, per-
formed slightly better than the classic supervised approach, and
the non-linear SVR technique did not show much improvement
over a linear model. But, due to the generally low R2 and the
small differences, it is not possible to draw clear conclusions on
which model building technique is preferred.

The LUR models obtained in this study explain a significant
part of the variance in the BC concentrations. The relatively low
R2 values can be attributed partly to uncertainty in the data re-
lated to the set-up of the opportunistic mobile monitoring cam-
paign. However, there is a systematic underestimation of the
high concentrations and an overestimation of the low concentra-
tions, indicating that not all explanatory factors are captured in
the predictor variables. Further, the generalization of the LUR
model to areas where no measurements were made is limited,
especially in predicting absolute concentrations.
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Appendix A. Supplementary material

Appendix A.1. GIS data sources

The different data sources for the predictor variables are described below (the derived variables are
given in Table 1).

OpenStreetMap. OpenStreetMap is a collaborative and openly licensed map3. In particular, we used
the information on roads (the highway-key in the database), including the type of road (primary, sec-
ondary, motorway, etc.). The distance from the measurement location to the closest road was calcu-
lated, as well as the total road length in surrounding buffers.

Urban Atlas. The Urban Atlas4 is providing pan-European comparable land use and land cover data
for large urban zones based on satellite images. Land use classes including residential, industrial, port,
airport and green urban areas were used.

Address locations. The Central Reference Address Database (CRAB) is a freely available5 database
containing street names, house numbers and information about the geographical positioning of ad-
dresses for Flanders. The address positions were used to calculate the number of addresses in the
surrounding area, which could possibly link the air quality to domestic emissions (e.g. heating).

Traffic data. Traffic intensity data was obtained from a traffic model specifically developed for the
city of Antwerp (SGS, 2010) and previously applied in a study of Lefebvre et al. (2013). The model
provides average daytime traffic intensity for light, medium and heavy traffic, and for all streets in the
study area. Different variables were calculated: the total traffic load (sum of light, medium and heavy
traffic), the heavy traffic load and the fraction of heavy to total traffic load.

Sky view factor. The sky view factor (SVF) is a measure of the total fraction of visible sky from the
position of an observer on the ground. This measure can be used as a street canyon indicator (Eeftens
et al., 2013). The SVF can be calculated using 3-dimensional building data or a digital surface model,
but for the city of Antwerp the SVF data were made available as open data6.

Cycling-specific data. Thanks to the Province of Antwerp and the Fietsersbond (cyclists association),
there is an extensive dataset available describing several aspects of biking lanes, including the distance
to the traffic lane. This information was used to construct an extra variable (distance to traffic), which
describes the estimated distance of the measurement location (where the cyclist was positioned) to the
traffic. For those locations where no biking lane or no data were present, the distance to the nearest
road (dist near, calculated based on the OpenStreetMap data) was used to fill the missing locations.

All the derived variables are given in Table 1. Additionally, some transforma-
tions and combinations of the predictor variables were included as well: 1/dis-
tance to traffic, 1/distance to trafficˆ2, 1/dist near, 1/dist nearˆ2, 1/dist near major,
1/dist near majorˆ2, log(distance to traffic), log(dist near), trafload 50/distance to traffic,
trafload 50/distance to trafficˆ2, trafload 50/dist near, trafload 50/dist nearˆ2, trafn-
ear/distance to traffic, trafnear/dist near, trafnear/distance to trafficˆ2, trafnear/dist nearˆ2,
trafnear heavy/distance to traffic, trafnear heavy/dist near, trafnear heavy/distance to trafficˆ2,
trafnear heavy/dist nearˆ2, skyview*trafload 50, trafload 50/skyview.

Appendix A.2. Variation in variables between spatial cross-validation zones

Appendix A.3. Selected predictor variables

3https://www.openstreetmap.org/about
4http://www.eea.europa.eu/data-and-maps/data/urban-atlas
5https://www.agiv.be/international/en/products/crab-en
6http://opendata.antwerpen.be/datasets/skyviewfactor-hittekaart
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Figure S1: Violin plots to illustrate the variation between the different spatial cross-validation zones (see Figure 1 for the zones) for the measured BC concentrations
as well as a selection of predictor variables. Labels on the y-axis have been left out since the predictor variables are scaled when building the models.
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Table S1: Overview of the selected predictor variables and performance metrics for the classic linear model. Results are shown for the
CVF model based on all data and for the different models obtained in each iteration of the spatial CVS+F cross-validation.

CVF (model built CVS+F (cross-validation with rebuilding)
using all data) 1 2 3 4 5 6 pooled

Performance
R2 0.35 -0.65 0.06 0.30 0.25 0.40 0.52 0.24
EV 0.35 0.28 0.36 0.37 0.28 0.40 0.53 0.25
RMSE 1.05 1.26 1.07 0.95 1.28 1.07 1.03 1.13

Selected features
address 1000 - - - x - - -
airport 5000 x - x x - x x
industry 5000 - - - - x - -
port 3000 - - - - - x -
port 5000 - - x - - - x
res hd 100 - x - - - - -
res hd 1000 x x - - x x x
trafload 100 x - x x x - x
trafload 50 x x x x - x x
trafload 50/distance to traffic - - - - x - -
trafload heavy 300 - x - - - x -
trafnear - - - - x - -
trafnear/distance to traffic x x x x - x x
urban green 300 x - x - - x x

Table S2: Overview of the selected features and performance metrics for the forward CV SVR model. Results are shown for the CVF
model based on all data and for the different models obtained in each iteration of the spatial CVS+F cross-validation.

CVF (model built CVS+F (cross-validation with rebuilding)
using all data) 1 2 3 4 5 6 pooled

Performance
R2 0.40 0.19 0.24 -0.03 0.18 0.37 0.24 0.24
EV 0.41 0.26 0.31 0.17 0.23 0.41 0.35 0.26
RMSE 1.00 0.88 0.96 1.15 1.33 1.09 1.29 1.14

Selected features
address 100 - - - - - x -
airport 1000 - - x - - x -
airport 3000 - - - - - - x
industry 1000 - - - - x - -
port 3000 - - - x - - -
roadlength 300 - - - x - - -
skyviewfactor x x x - x x -
trafload 50 x - x x - x -
trafload 50/skyview - x - - x - x
trafload heavy 300 - x - - - - -
trafloadhv fraction 1000 - - - - - - x
trafloadhv fraction 300 x - x - x x -
trafnear - - - - x - -
trafnear/dist near - x - - - - -
trafnear/distance to traffic - - - - - - x
trafnear heavy/dist near x x x - - x -
trafnear heavy/distance to traffic - - - x - - x
urban green 500 - - x x - - -
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