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Abstract

A novel Python framework for Bayesian optimization known as GPflowOpt is
introduced. The package is based on the popular GPflow library for Gaussian
processes, leveraging the benefits of TensorFlow including automatic differenti-
ation, parallelization and GPU computations for Bayesian optimization. Design
goals focus on a framework that is easy to extend with custom acquisition func-
tions and models. The framework is thoroughly tested and well documented, and
provides scalability. The current released version of GPflowOpt includes some
standard single-objective acquisition functions, the state-of-the-art max-value en-
tropy search, as well as a Bayesian multi-objective approach. Finally, it permits
easy use of custom modeling strategies implemented in GPflow.

1 Bayesian Optimization

Bayesian Optimization (BO) is a principled way to find a global optimum of an objective function
over a bounded domain, formally expressed as

argmax
x∈X

f(x). (1)

The standard configuration for BO applies the principle of dynamic programming and sequentially
generates a single candidate decision x? for evaluation. Given the expensive nature of f , the aim is
to keep the number of iterations required to identify optimal values small. All previous evaluations
are used to train a (Bayesian) model which supports the search for the next decision. BO frequently
applies the non-parametric Bayesian models known as Gaussian Processes (GPs) (Rasmussen and
Williams, 2006) to act as a surrogate of the objective function(s). To determine the next candidate an
acquisition function is maximized over the compact domain (Snoek et al., 2012). This acquisition
function usually maps the predictive distribution of the underlying model to a scalar value.

Several extensions have been proposed to this standard setting. Batch BO evaluates batches sequen-
tially (Ginsbourger et al., 2010; González et al., 2016) to make use of parallel evaluation of the ob-
jective. The objective itself may be multi-dimensional for which multiple equally optimal solutions
exist involving a trade-off (the Pareto front), this setting can be approached with multi-objective BO
(Couckuyt et al., 2014).
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Single-objective Expected Improvement (EI) (Močkus, 1975)
Lower Confidence Bound (LCB)(Srinivas et al., 2010)
Max-Value Entropy Search (MES) (Wang and Jegelka, 2017)
Probability of Improvement (PoI) (Kushner, 1964)

Multi-objective Hypervolume-based PoI (HvPoI) (Couckuyt et al., 2014)
Constraint Probability of Feasibility (PoF) (Schonlau, 1997)

Table 1: Implemented acquisition functions

2 Motivation

There are many libraries for BO available, whether it be commercial or open-source. Of the latter
category Spearmint (Snoek et al., 2012) and GPyOpt (The GPyOpt authors, 2016) are well-known:
both packages are written in Python and rely on NumPy for numerical operations. Alternatives
include BayesOpt (Martinez-Cantin, 2014), implemented in C++, and RoBO (The RoBO authors,
2016).

These available packages are written in a modular way and are relatively easy to use, but may lack
extensive documentation or rigorous testing. Furthermore, adding new acquisition functions is usu-
ally quite easy but introducing a different modeling strategy requires serious effort. Confronted
with the current research challenges and novel application domains for BO this motivated the de-
velopment of a new framework: we intended to create an interface that is straightforward to use,
such that it becomes easy to extend the code and develop new techniques with a minimum of over-
head. Finally, the recent development of computing libraries supporting automated differentiation
and providing scalability provide a natural base for a Bayesian optimization package.

3 Design choices

As the choice of modeling framework has a significant impact on the design of the resulting BO
framework, several alternatives were evaluated. Ultimately we chose GPflow (Matthews et al.,
2017) as framework for modeling: GPs are the most common surrogate model used in BO, and
GPflow makes development and implementation of custom GP models for BO considerably eas-
ier. The package is written in Python and provides a powerful framework for implementing (GP)
models, including Sparse GPs and GP-Latent Variable Models, using variational inference as the
standard approximate inference technique. As GPflow is built on TensorFlow, it enables use of GPU
computations, parallelization and automatic differentiation.

The development resulted in the release of the open-source GPflowOpt project featuring following
properties:

1. Simple application of different models (using the GPflow framework) as a surrogate in
Bayesian Optimization,

2. Automated differentiation increasing ease of implementation,

3. Support for (multiple) GPU enabling fast computation,

4. Clean object-oriented Python front-end which is simple to extend,

5. Rigorous testing and extensive documentation.

The code is completely modular permitting simple implementation of different acquisition functions.
Acquisition functions that are included with the framework are summarized in Table 1. Both single-
and multi-objective acquisition functions are implemented as well as Probability of Feasibility (PoF)
to incorporate black-box constraints. GPflowOpt supports most models included in GPflow such as
the Variational Gaussian Process (VGP) or the Sparse Variational Gaussian Process (SVGP), and
allows the use of custom models. The next version of GPflow intends to further increase these
capabilities as integration of other TensorFlow modeling frameworks (such as Keras) with GPflow
will be possible.
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Figure 1: UML diagram of GPflowOpt

GPflowOpt GPyOpt Spearmint BayesOpt RoBO
Language Python Python Python C++ Python
Auto differentiation 3 7 7 7 7
Multi-objective 3 7 7 7 7
Code coverage 99% 56% – – 46%
Batch BO 7 3 7 7 7
GPU support 3 7 7 7 7

Table 2: Comparison of Bayesian optimization frameworks. The information are taken from the
respective web pages or papers (The GPyOpt authors, 2016; Snoek et al., 2012; Martinez-Cantin,
2014; The RoBO authors, 2016)

4 Implementation

Following the modular structure of GPflow, the main building blocks of GPflowOpt are Domain,
Acquisition and Optimizer. The class relationships are summarized in Figure 1.

The expensive objective function f is defined by the user. The domain is a GPflowOpt class con-
taining the bounds of the optimization domain, which is used for scaling purposes and configuration
of optimizer objects. The acquisition function (Acquisition) holds one or more GPflow models
and maps their predictions to a score. By default a transparent model wrapper is used for automated
data scaling to and from the underlying model to increase the success rate of the hyperparameter
optimization. The BayesianOptimizer class handles the classic BO process and includes model
optimization, optimization of the acquisition function, evaluation of the objective and optionally
marginalization of hyperparameters using Hamiltonian Monte-Carlo sampling.

5 Comparison

In Table 2, a comparison is made to the popular BO frameworks summarized in Section 2. Most
frameworks are written in Python. Key features of GPflowOpt over other frameworks include the
support for multi-objective objective functions along with an implementation of an acquisition func-
tion specifically for this type of applications, the rigorous testing suite resulting in a code coverage
of 99% and extensive documentation. Additionally, a fast algorithm for generating maximin Latin
hypercubes Viana et al. (2010) is included. Latin hypercubes are a popular method for generating
space-filling Design of Experiments (DoE) to start the Bayesian optimization process.

On the other hand GPyOpt supports batch BO, which is currently still in development for GPflowOpt
and was not part of the first release. In terms of efficient hardware usage a native implementation in
C++ as offered by BayesOpt is preferable, however the computations in GPflowOpt are carried out
by TensorFlow graphs which benefit of a native computational back-end. The additional scalability
and automated differentiation compensate for the overhead of the framework. Another powerful
feature of GPflowOpt is the option to implement models in the GPflow framework, allowing their
use without the need of implementing wrapper classes due to the modular structure.
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Figure 2: Multi-objective optimization of a cyclone separator (shown on the left). The Pareto front
only depicts the feasible samples in the objective space. The bottom-left corner represents the opti-
mal position, and the colors indicate its dominance.

6 Illustration

The following example presents the optimization of a gas cyclone separator (depicted in Figure 2a),
a real-world device that is able to separate dust particles from gases through a complex swirling
motion. Finding an optimal solution involves a trade-off between two conflicting objectives which
will be solved with multi-objective BO. The device is characterized by 7 geometric parameters,
which are the input of the expensive objective function which results in two objectives: the pressure
loss (represented by the Euler number) and the cut-off diameter (represented by the Stokes num-
ber). The multi-objective BO approach used here is the Hypervolume Probability of Improvement
(HvPoI) (Couckuyt et al., 2014), which indicates the probability of a candidate evaluation improving
the volume between the Pareto front and a reference point (e.g., the anti-ideal point) in the objective
space. At the same time four production inequality constraints based on the same inputs have to
be taken into account. These constraints are black-box themselves and are modeled as well. By
incorporating the Probability of Feasibility (PoF) (Schonlau, 1997) into a joint acquisition function
this aspect can be included, as the feasibility is learnt jointly with the objectives.

A maximin Latin hypercube consisting of 50 points was used as an initial design and is implemented
by using the Translational Propagation algorithm (Viana et al., 2010). A total of 120 evaluations of
the objective function were performed, each evaluation yields both the Euler and Stokes numbers,
as well as the constraint values. The resulting Pareto front of the feasible samples is shown in
Figure 2b.

7 Conclusion and future work

A new, versatile Python package for Bayesian optimization was introduced. It allows for straightfor-
ward TensorFlow model integration by building on GPflow. This offers significant benefits such as
automatic differentiation, multi-core calculations and GPU support. A comparison was made with
other open-source packages indicating the package offers significant advantages including rigorous
testing and extensive documentation. Currently, the framework still lacks advanced sampling tech-
niques such as batch BO. The current short-term roadmap of GPflowOpt is batch BO as well as
support for discrete and categorical variables.

The development of GPflowOpt is open-source and fully transparent. Hence, the scientific commu-
nity is encouraged to make contributions to the framework and test out their own Bayesian optimiza-
tion algorithms.
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