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Abstract

Reservoir Computing Networks (RCNs) are a special type of single layer recurrent neural networks, in which the in-
put and the recurrent connections are randomly generated and only the output weights are trained. Besides the ability
to process temporal information, the key points of RCN are easy training and robustness against noise. Recently,
we introduced a simple strategy to tune the parameters of RCNs. Evaluation in the domain of noise robust speech
recognition proved that this method was effective. The aim of this work is to extend that study to the field of image
processing, by showing that the proposed parameter tuning procedure is equally valid in the field of image processing
and conforming that RCNs are apt at temporal modeling and are robust with respect to noise. In particular, we inves-
tigate the potential of RCNs in achieving competitive performance on the well-known MNIST dataset by following
the aforementioned parameter optimizing strategy. Moreover, we achieve good noise robust recognition by utilizing
such a network to denoise images and supplying them to a recognizer that is solely trained on clean images. The
experiments demonstrate that the proposed RCN-based handwritten digit recognizer achieves an error rate of 0.81
percent on the clean test data of the MNIST benchmark and that the proposed RCN-based denoiser can effectively
reduce the error rate on the various types of noise.

Keywords:
Reservoir computing networks, recurrent neural networks, text recognition, image classification, image denoising

1. Introduction

Thanks to the advances in the structure of the neural
networks since the early 80’s, such as introducing the
concept of Deep Neural Networks (DNNs) [1, 2] and
Convolutional Neural Network (CNN) [3] along with
the more powerful computational hardware, image pro-
cessing have become more elegant than ever. For in-
stance, in recent devices the traditional keyboards are
being replaced with modern interfaces such as touch-
screens that input text via handwriting (e.g., TV touch-
pad remotes). Due to the different handwriting styles,
there is a lot of variability in the images of the same
character, making automatic handwriting recognition
(HWR) a challenging task.

The presence of background noise is another source
of variability the HWR system may have to deal with.
In fact, in applications such as address recognition on
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parcels or full text recognition from digital scans of old
manuscripts or typed documents, noise corrupted im-
ages such as the one depicted in Figure 1 are the norm.

Figure 1: Part of the military newspaper “The Stars and Stripes” pub-
lished in 1944.

In this paper, we show that reservoir computing net-
works (RCNs) have great potential for achieving good
performance in HWR from noise corrupted images. We
demonstrate this on the MNIST [3] dataset, a handwrit-
ten digit recognition task (HDR) used by many research
groups to benchmark their technologies.

More than two decades ago, Multilayer Perceptrons
(MLPs) [4] were among the first classifiers that were
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tested on MNIST. In [3], an MLP with two computa-
tional layers of neurons was reported to reach a digit er-
ror rate (DER) of 2.95%, and a later study [5] reported a
DER of 1.60%. Employing MLPs with more layers was
long time believed to yield no significant improvement.
However, new training methods, permitting a better ex-
ploitation of multiple hidden layers, were recently dis-
covered and gave rise to the emergence of Deep Neural
Networks [6]. Differences in the details lead to DNNs
of various types. Two of them, Deep Belief Networks
(DBNs) and Deep Boltzmann Machines (DBMs) have
also been tested on MNIST (see Table 1). Roughly
speaking, they achieve a DER of about 1%.

It is, however, generally acknowledged that conven-
tional and modern neural networks such as DNNs per-
form well, but that they are still hard to train: it takes a
lot of time and the hyperparameters of the training pro-
cess must be set properly. More recent approaches such
as dropout [7] and maxout [8] are examples of efforts
to both facilitate improved training and improved effec-
tiveness of the models.

Nonetheless, long before deep neural networks be-
came successful, significant improvement over a stan-
dard 2-layer MLP was achieved by means of a Convolu-
tional Neural Network (CNN) [3] that acts like a feature
extractor. In fact, one of the main points of criticism
raised against an MLP was that its hidden neurons see
the whole image and are therefore bound to overlook
the local topological relations between adjacent pixels
undoubtedly present in sub-regions of the image [3].
Hence, the idea was to scan the image, to filter the pix-
els appearing in the emerging sub-regions by means of
trainable filters and to down-sample the filtered outputs
so as to create a rich and compact feature representation
that constitutes a more suitable input to the MLP-based
classifier. The first results obtained with the CNN ap-
proach were already mentioned in [3]. With a DER of
0.95%, CNN-based systems can still be considered as
state-of-the-art for HDR and the CNN-based features
are being used in many complex visual understanding
models [19].

Obviously, there is no reason why the concepts of a
CNN and a DNN could not be combined. Deep Convo-
lutional Neural Networks are the exponent of that idea,
leading to a DER of 0.83%.

Another idea that induced a significant boost in HDR,
was to enrich the original training dataset with new
images, obtained by deforming the raw training im-
ages. In [5], for instance, elastic deformations were
applied to the raw images achieving a convincing drop
in DER from 1.6% to 0.7%. Since then, basically all
novel methods have shown to benefit from such an en-

richment of the training set (see right column of Ta-
ble 1). By also introducing separate DNNs for different
digit widths (6 classes), it was even possible to achieve
human-competitive performance (0.23%) [18].

In spite of the spectacular performances achieved
in clean conditions, all aforementioned approaches fail
dramatically when recognizing digits from noisy sam-
ples. In [12], for instance, it was shown that a DBN
trained on clean samples, fails completely when recog-
nizing noisy samples. The DER raises to 33.8% when
the digits are partially masked by square blocks and to
66.1% when the digits are surrounded by a black bor-
der (see Figure 2). Consequently, new research has
been directed towards improving the robustness of HDR
against the presence of noise.

In general, one can roughly distinguish three ap-
proaches: (1) add noise to the training examples and
perform a so-called multi-conditional training of the
neural network, (2) make the classifier intrinsically
more robust against the effects induced by noise, for ex-
ample, by using a sparsely connected DBN rather than a
conventional fully connected one [12], and (3) remove a
large part of the noise from the input image before pre-
senting it to the classifier. In [12], it was argued that
due to the noise, a lot of neurons are driven into satura-
tion and are therefore not contributing to the recognition
anymore. By training it on noisy images, the standard
DBN could be made much more effective. The DER
could be reduced from 33.8% to 8.7% for the case of
block noise and from 66.1% to 1.9% for the case of bor-
der noise.

In some other work [20, 21], a stacked sparse DBN-
based denoising auto-encoder (SSDA) is trained to de-
noise the images. In such a system, one SSDA per noise
type was trained and the denoised image is obtained as
a linear combination of the individual SSDA outputs.
Feeding these images to a DBN trained on clean sam-
ples induced a dramatic improvement. The average er-
ror rate was reduced from 34.3% (an average over five
noise types) to 2.4%. Examples of the noise types are
depicted in Figure 2 and Table 5 lists the improvements
per noise type. As the combination weights are deter-
mined by a weight prediction module, the latter sys-
tem was called an adaptive multi-column SSDA (AMC-
SSDA) system.

Besides the noise-robustness, the incapability of pro-
cessing temporal information is another challenge in
expanding the application of these techniques to pro-
cess sequential data such as continuous text and videos.
Long short-term memory systems (LSTM) and some
more complex CNNs have been proposed and used to
address this weakness with the purpose of motion pic-
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Table 1: Reference results on MNIST using the original training set and using an expanded version of the training set (for example, by applying
deformation). The presented DERs are accompanied by a reference to the paper introducing the technique that was used.

System DER% DER%
(Original training set) (Enriched training set)

LSTM[9, 10] 1.80 0.32
2-layer MLP [5] 1.60 0.70
MLP + dropout [11] 1.05 -
DBN [12] 1.03 -
DBM [13] 0.95 -
CNN [3] 0.95 0.80
MLP + maxout + dropout [8] 0.94 -
ELM [14] 0.86 -
DCN [15, 16] 0.83 0.35
DBM + dropout [7] 0.79 -
Large CNN [17] 0.60 0.39
CNN + maxout + dropout [8] 0.45 -
Multi-CNN [18] - 0.23

Figure 2: From left to right, a clean MNIST sample and its corre-
sponding noisy versions: salt & pepper, border, Gaussian, block, and
speckle, respectively.

ture classification [9, 10, 22].
In this paper, the focus is on reservoir computing net-

works (RCNs) [23], which are a special type of recur-
rent neural networks. As was shown in [24, 25], RCNs
in combination with the proposed simple but effective
training procedure, can provide adequate solutions in
the field of speech recognition and noise robust speech
processing. The aim of this paper is to investigate if
the same training procedure is applicable in the domain
of image recognition and if the strong points of RCNs
such as good temporal modeling and noise robustness
transfer to the new domain as well.

Although developed in parallel, on the conceptual
level, an RCN can be considered as an extension of the
Extreme Learning Machine (ELM) proposed in [26].
An ELM is a two-layer MLP with a randomly ini-
tialized and afterwards fixed (i.e. non-trained) hidden
layer of non-linear neurons followed by an output layer
of linear neurons whose weights are determined so
as to minimize the mean squared difference between
the computed and the desired outputs. Under these
constraints, there exists a closed-form solution for the
weights which can be obtained by inverting a squared
matrix and performing some additional matrix multipli-

cations.
ELMs have been proven to be effective, efficient and

robust algorithms for pattern classification. In the past
years, several versions of ELMs have been introduced
to tackle the different challenges in the field of ma-
chine learning. For instance, due to the difficulty in
obtaining the labeled data, Huang et, al. [27] proposed
a semi-supervised ELM for classification and an unsu-
pervised ELM for clustering. Other solutions to the
dilemma of insufficient labeled data are domain adap-
tation and transfer learning [28]. In this respect, Zhang
and Zhang [29] extended ELMs to handle domain adap-
tation problems for improving the transferring capabil-
ity of ELM between multiple domains with very few
labeled guide instances in target domain, and over-
come the generalization disadvantages of ELM in multi-
domains application.

An RCN differs from an ELM in the sense that its first
layer, called the reservoir, consists of recurrently con-
nected non-linear neurons with randomly initilialized
and fixed (non-trained) coefficients. Similar to ELMs,
the “andom and fixed” first layer feeds into an an output
layer of linear neurons with trained coefficients. Since
this layer reads from the reservoir to construct its output,
it is called the ‘read out’ layer.

In our previous study, we conceived a straight-
forward strategy to design an RCN [25]: one only needs
to specify the bandwidths of the RCN inputs and out-
puts, after which the method automatically produces
good values for all the hyperparameters of the reser-
voir component of the RCN. The size of the reservoir
remains a free parameter, and its optimal value depends
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on the number of available training examples and the
envisioned compromise between accuracy and compu-
tational cost. This method sped up the design of the
robust spoken digit recognizer significantly. The afore-
mentioned observations motivated us to experimentally
investigate whether the devised techniques could also be
successfully applied in a domain different from speech,
namely the visual domain, and in particular handwriting
recognition.

A summary of our results with RCNs on handwrit-
ing recognition appeared in [30]. This paper extends
that contribution by (1) providing an empirical anal-
ysis on how to setup RCN architectures for perform-
ing HDR, (2) introducing a multi-column RCN-based
model to process the noisy images, (3) comparing RCNs
and ELMs with regard to their robustness against over-
fitting, and (4) having a short look at the recognition of
connected digits. The remainder of this paper is orga-
nized as follows. Section 2 briefly recalls the general
principles underlying RCNs. Section 3 introduces the
various ways in which the two dimensional image can
be fed to a temporal model such as an RCN. Next, we
describe our experimental study of these architectures
for the recognition of clean handwritten digits (Sec-
tions 4 and 5). In the second part of the paper, we focus
on the noise-robustness of the proposed RCN architec-
tures (Section 6). The paper ends with a summary and
conclusions, as well as some ideas for future research.

2. Reservoir Computing Network (RCN)

In its simplest form, an RCN is a neural network with
two particular computational layers: (1) a hidden layer
(pool) of recurrently interconnected non-linear neurons,
called reservoir, driven by inputs and by delayed feed-
backs of its outputs and (2) an output layer of linear
neurons, called readouts, driven by the hidden neuron
outputs (Figure 3). A fundamental point is that the input
weights and the recurrent weights are initialized from
random distributions, and only the output weights are
optimized (trained) for solving the targeted problem.

If Ut, Rt and Yt represent the reservoir inputs, the
reservoir outputs and the readouts at time t, the RCN
equations can be written as follows [23]:

Rt = (1− λ)Rt−1 + λ fres(W
inUt + WrecRt−1) (1)

Yt = WoutRt (2)

with 0 < λ ≤ 1, with fres being the non-linear ac-
tivation function of the reservoir neurons (hyperbolic
tangent in this work) and with Win, Wrec and Wout

being the input, recurrent and output weight matrices,
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Figure 3: A basic RCN consists of a reservoir and a readout layer.
The reservoir is composed of interconnected non-linear neurons with
fixed random weights. The readout layer consists of linear neurons
with trained weights.

respectively. The constant λ is called the leak rate be-
cause (if one makes abstraction of fres) Equation (1)
represents a leaky integration of the neuron activation.

Each individual input is normalized so that it has a
zero mean and unit variance over the training examples.
The initialized input and recurrent weights to the reser-
voir nodes are assigned from a normal distribution and
they are characterized by four parameters [25]:

αU the largest singular value of Win,

ρ (known as spectral radius) the maximal absolute
eigenvalue of Wrec,

Kin the number of inputs driving each reservoir neuron,
and

Krec the number of delayed reservoir outputs driving
each reservoir neuron.

The first two parameters control the absolute and the rel-
ative importance of the inputs and the delayed reservoir
outputs in the reservoir neuron activation. The latter two
control the sparsity of the input and the recurrent weight
matrices.

The output weights are such that they minimize the
mean squared error (MSE) between the computed read-
outs Yt and the desired readouts Dt over the training
examples. If an RCN is trained for recognition, the de-
sired output Dt is a unit vector with one non-zero entry
encoding the desired class at time t. If it is trained for
feature denoising, Dt is the desired clean feature vector
at time t. In both cases, the output weights emerge as the
solution of an over-determined set of linear equations.

3. RCN-based architectures for image processing

In many neural network-based image processing sys-
tems, the input is a pixel array of the whole im-
age [21, 31]. However, in order to exploit the dynamical
system properties of an RCN, we need to create a se-
quential input stream. This can be achieved by scanning
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the image column-wise (horizontal scanning) or row-
wise (horizontal scanning).

The readouts of the RCN that will be encompassed
in the recognizer correspond to the ten digits and to the
white space which is present in each digit image. By in-
troducing this white space and by envisioning an image
as a digit surrounded by white space, we can achieve
that the digit readouts will mainly react to features that
are typical for the digit they represent.

3.1. Basic architecture

A trivial procedure leading to the desired input stream
is horizontal scanning: the image is scanned column-
wise from left to right and the subsequent columns
(called frames) form the input vector sequence (see Fig-
ure 4).

The digit scores are obtained by accumulating the
digit readouts across time (the Σ component) and a
winner-take-all algorithm returns the winner digit with
the highest readout activity.

One could also benefit from bi-directional process-
ing [25], which means that each RCN contains two
reservoirs: the forward reservoir that processes the in-
puts U1→T whereas the backward reservoir that pro-
cesses the inputs UT→1. The outputs of the latter reser-
voir are then time reversed before combining them with
the outputs of the forward reservoir. A deep (cascade)
RCN is obtained by stacking multiple RCNs, as de-
picted in Figure 4. Each layer of the deep RCN is a
basic bi-directional RCN.
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Figure 4: Architecture of a deep RCN-based digit recognizer leverag-
ing bi-directional processing in each layer.

The layers are trained one after the other using the
same desired outputs in every layer. The argument for
cascading layers is that the new layer can correct some
of the mistakes made by the preceding layers because it
offers additional temporal modeling capacity and a new
inner space in which to perform the classification.

3.2. More complex architectures

Given that it is also suitable for continuous HWR,
horizontal image scanning seems to be an obvious
choice. However, for isolated digit recognition, one can
also consider vertical scanning, as well as a combined
scanning approach. The ones we propose here are de-
picted in Figure 5.

Combination of input features
A simple combination strategy is to supply the RCN

with the concatenation of one row and one column at
each time step (see Figure 5(a)). Obviously, this ap-
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Figure 5: Different ways of combining horizontal (H) and vertical
scanning (V ) in a system: (a) supply the RCN with one row and one
column of the image, (b) compute a weighted sum of the digit scores
(accumulations over time) emerging from an H-RCN and a V-RCN
and (c) supply the H-RCN and V-RCN outputs to another RCN and
accumulate the scores of the readouts of this RCN.

proach presumes a square image, leading to an identical
number of frames per scanning direction.

Weighted sum of scores
Another strategy is to make two independent parallel

systems: one using horizontal (H-RCN) and one using
vertical scanning (V-RCN). The digit scores can then be
obtained as a linear combination of the scores emerging
from the two sub-systems (see Figure 5(b)). The ad-
vantage of this approach is that it can also be applied to
rectangular images.

Combination of readouts
The third option is to supply the combined readouts

of the V-RCN and the H-RCN to the final digit recog-
nition RCN (see Figure 5(c)). Obviously, this approach
again presumes a square image.

4. Experimental setup

In this section, we present the experimental frame-
work that was set-up in order to assess the potential of
the proposed system configurations.
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4.1. MNIST corpus

The MNIST corpus [3] consists of clean handwrit-
ten isolated digit samples, grouped into two datasets:
a training set consisting of 60K samples and a test set
consisting of 10K samples. Each sample is represented
by a 28×28 gray-scale encoded pixel array. The origi-
nal pixel codes (between 0 and 255) are interpreted as
real numbers between 0 and 1. Many studies sub-divide
the development set into a training set of 50,000 images
and a validation set of 10,000 images. We report the
digit error rate (DER%) on the validation or test set as
the recognition performance measure.

Some studies extend the training dataset by deform-
ing the original training images and by considering the
deformed images as extra training examples, but here
we refrain from doing so because our main objective
is to show that an RCN-based system has potential to
become an alternative to other state-of-the-art systems
and it is difficult to make a fair comparison of results
obtained with an extended training set without knowing
exactly which deformations were applied in the systems
one wants to compare with.

In order to conduct experiments on noise robustness,
we construct a multi-condition dataset by dividing the
dataset into six equally large parts. One part is left un-
altered and serves as a clean dataset. The images of
the other five parts are corrupted with noise, one noise
type per part. The following noise types are chosen to
be representatives of the challenges in the common im-
age processing procedures [12, 21]. We consider Salt
& Pepper, for which a certain amount of the pixels in
the image are either black or white. This noise can, e.g.,
appear in charge coupled device (CCD) sensor outputs
or in the transmission of the image. Principal sources of
Gaussian noise in digital images arise during acquisi-
tion e.g. sensor noise caused by poor illumination, high
temperature, transmission e.g. electronic circuit noise,
etc. Speckle is a granular noise that inherently exists in
and degrades the quality of the active radar, synthetic
aperture radar (SAR), medical ultrasound and optical
coherence tomography images. Apart from these tech-
nical noise types, usually the objects in an image are
partially blocked by other elements or the objects are
bordered in a frame (e.g., house numbers).

4.2. Front-end

The front-end scans the image either horizontally (H)
or vertically (V) and per scanning step t, the column
vector (if H) or the row vector (if V) is a 28-dimensional
vector Xt. However, it is common in neural networks
to obtain Ut by extending Xt with its first and second

derivatives in the scanning direction, or by stacking the
vectors Xt−k, .., Xt+k. Both approaches have the ad-
vantage of providing the system with a glimpse of the
future. In our experiments, we use frame stacking with
k = 2.

4.3. RCN hyperparameters
The creation of a suitable RCN was studied in detail

in [25]. In summary, the theory presented there leads to
the following conclusions:

1. The input and recurrent weight matrices (Win and
Wrec) can be very sparse. In particular, 5 to 10
elements per node are enough, regardless of the
reservoir size and the input feature vector size.

2. The spectral radius, ρ, must be tuned to the band-
width (normalized frequency, F ) of the input acti-
vations of the reservoir (interpreted as time series):

ln(ρ) =
−F
0.35

(3)

3. The leak rate λ must be tuned to Tmin, the min-
imum time (in scan steps) the reservoir output is
expected to remain constant:

ln(1− λ) =
−1

Tmin
(4)

4. The square of αU follows from a function of the
other parameters. This function is proportional to
an auxiliary parameter Vopt, defined as the optimal
reservoir output variance.

In [25] we argue that Vopt may be independent of the
task, but since the objective of that work was only
speech recognition, we did not present any experimen-
tal evidence for this argument yet. Here, we will show
that Vopt = 0.035 which was found optimal for spo-
ken digit recognition, is also valid for handwritten digit
recognition.

4.4. Design of the reservoir in the first layer
The first step consists of determining the bandwidth

of the input activations. In order to do so, it suffices to
consider an arbitrary small reservoir (500 nodes) with
memory-less neurons (no leaky integration) and no re-
current connection, to record a few hundred input acti-
vation patterns of 28 samples long (which is the number
of scan steps), to determine the periodogram (the square
of the magnitude of the DFT) of each recorded pattern
and to calculate the envisioned power spectrum as the
mean of these periodograms. To facilitate our experi-
ment, we fed the reservoir with normalized pixels with
a unit variance.
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Figure 6 (left) shows the estimated power spectrum,
|B(f)|2, and its bandwidth, F = 0.15. For this value it
follows from Equation 3 that ρ = exp(−0.15/0.35) =
0.65. Note that there is little difference in bandwidth
between horizontal and vertical scanning.
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Figure 6: (left) Power spectrum of the input activation and (right)
DER as a function of the input scaling factor αU for a system encom-
passing a single layer RCN with 500 nodes.

Next, we have to identify the minimum number of
scan steps a readout is supposed to remain constant.
Given that white spaces are often not more than 4 pix-
els wide and that the core of a digit like ’1’ may be as
narrow as that as well, we select Tmin = 4 as a realistic
value. For this value, Equation 4 leads to λ = 0.22.

The third step consists of finding the proper input
scale factor αU . The equation for solving αU as a
function of the other reservoir parameters can be found
in [25].

Here we verify whether this function leads to a good
result in the simple case of a recognizer built with the
reservoir we used for measuring the power spectrum of
the input activation. For this reservoir, the function re-
duces to

α2
U K

in VU φb(F ) = Vopt = 0.035 (5)

with Kin = 5, VU = 1 and

φb(F ) =

∫ F

−F |B(f)|2 df∫ 0.5

−0.5 |B(f)|2 df
= 0.85 (6)

The result is αU = 0.28. In order to verify whether this
is a suitable value, we reused the same reservoir in com-
bination with a large number of input scaling factors.
Figure 6 (right) shows the DER of the digit recognizer
on a validation set as a function of this factor. It appears
that 0.28 is in the middle of the optimal range from 0.2
to 0.5.

We also verified whether (ρ, λ) = (0.65, 0.22) were
appropriate values. Again, we considered a reservoir
with 500 nodes. Since it was already shown in [25] that
λ and ρ can be optimized independently of each other,

we made two lines of search: one along ρ (while λ = 1)
and one along λ with the optimum ρ from the previous
sweep. According to Figure 7, the values originating
from the theory are close to the actual optimum points.

For the higher layers, the inputs are always close to
the desired outputs. Therefore, after measuring the av-
erage bandwidth of the outputs of the first layer, we set
ρ = 0.4 and αU = 0.6 for all further layers. Since the
desired outputs are the same as the first layer, the same
λ = 0.22 was set for the higher layers. A control ex-
periment with a two-layer system confirmed that these
settings are appropriate.
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Figure 7: Control experiments to optimize ρ (left) and λ (right).

5. Experimental results

In this section, we assess the performance of our sys-
tems as a function of the reservoir size (the number of
neurons in the reservoir), the depth of the RCN (the
number of layers) and the direction of scanning in the
front-end. Unless stated otherwise, all RCNs are bi-
directional and an RCN with a reservoir of size N ac-
tually encompasses two independent reservoirs of size
N/2 working in parallel. The number of trainable pa-
rameters of such an RCN is 11× (N + 1), in which the
extra 1 represents a bias for each readout node.

5.1. Deep versus wide
First, we compare single- and multi-layer RCNs with

horizontal image scanning. In multi-layer RCN, the
reservoir size is kept the same in each layer. The results
depicted in Figure 8 support the following conclusions:

• Any single-layer system can be improved by
adding extra layers and the relative reduction of the
DER that can be attributed to adding a second layer
is about 25%, irrespective of the reservoir size.

• The positive impact of adding layers decreases
quickly with the depth of the RCN. In general,
there is no point in creating systems with more than
three layers.
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• Even though a multi-layer system does not yield
a much lower DER than a single-layer system en-
compassing the same number of trainable parame-
ters, the former is easier and faster to design. In
fact, the memory load and the training time are
roughly proportional to the square of the reser-
voir size, meaning that for the training of one-layer
RCN with a 32K reservoir, one needs four times
more memory and two times more time than for
the training of a two-layer RCN with a 16K reser-
voir in each layer.
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Figure 8: DER (in %) on the validation set as a function of the reser-
voir size and the number of layers (top) and the same results, but as a
function of the number of trainable parameters (bottom).

5.2. Scanning directions

In a second experiment, we assess the impact of the
image scanning direction and the scanning combination
strategy on the system performance.
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Figure 9: Comparing the effect of horizontal image scanning (H) with
the vertical procedure (V) for three multi-layer RC-based systems
having 1K, 4K, and 8K nodes per layer.

Table 2: Comparing different input scanning options.

H V H-V-inp H-V-wscr H-V-res

DER% 1.52 1.39 1.48 1.30 1.18

Figure 9 clearly shows that in the case of a single-
layer system, horizontal scanning outperforms vertical
scanning; whereas for the deep systems, vertical scan-
ning tends to produce slightly better results. The differ-
ences may be due to the fact that most digits occupy a
smaller part of the image in horizontal than in vertical
direction, as illustrated in Figure 10. This means on the
one hand that a single column carries more information
about the digit on average than a single row, which is
beneficial for horizontal scanning. On the other hand,
this means that the digit score in vertical scanning sys-
tems is based on more frames; what should normally
favor this scanning direction. Apparently, the first phe-
nomenon is more dominant than the second one in a
one-layer system, whereas the second phenomenon is
more dominant in the multi-layer systems.

Figure 10: The readouts of reservoirs working with horizontal (top)
and vertical (bottom) scanning for a sample of digit 1. The strong
black line is the readout of digit 1, the dashed line is the readout of
white space class.

Table 2 lists the results of five systems: (1) H: one
2-layer system with 5K reservoirs and horizontal scan-
ning, (2) V: one 2-layer system with 5K reservoirs and
vertical scanning, (3) H-V-inp: one 2-layer system with
5K reservoirs driven by the concatenation of the two
scanning directions, (4) H-V-wscr: two 2-layer systems
with 2.5K reservoirs (one per scanning direction) whose
digit scores are linearly combined, and (5) H-V-res: two
2-layer systems with 2K reservoirs (one per scanning
direction) followed by a single-layer system with a 2K
reservoir.

As shown by our results, system H-V-res, clearly out-
performs both single scanning systems. This indicates
that the H and the V readouts for a frame together form
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Table 3: Reference results on MNIST using the original training set.
The presented DERs are accompanied by a reference to the paper in-
troducing the technique that was used.

Model DER%

MLP [5] 1.60
MLP + dropout [11] 1.05
DBN [12] 1.03
DBM [13] 0.95
CNN [3] 0.95
MLP + maxout + dropout [8] 0.94
ELM [14] 0.86
RCN (This work) 0.81
DBM + dropout [7] 0.79
CNN + maxout + dropout [8] 0.45

a richer feature space for the final classification of the
frames.

5.3. Final result

Based on the above findings, we designed a system
of type H-V-res that consists of two 2-layer systems
comprising a 16K reservoir in each layer, followed by
a single layer RCN encompassing a 16K reservoir. This
system has 880K trainable parameters and it achieves
a DER of 0.81% on the MNIST test set (see Table 3),
showing that it is competitive with formerly reported
systems working with the same inputs and being trained
on the same training samples. As depicted in Figure 11
the most errors occurs for digit ‘9’ being recognized as
‘4’ and ‘7’ being recognized as ‘2’.
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Figure 11: The confusion matrix for the performance of the RCN-
based classifier on the MNIST dataset. The most errors occurs for
digits ‘9’ and ‘7’, with ‘7’ being recognized as ‘2’.

6. Noise robustness

In this section, we study the noise robustness of our
RCN systems. First, we consider systems that recognize
digits from raw noisy images and later, we consider sys-
tems that recognize digits from denoised images.

6.1. Recognition of noisy images
According to [25, 26, 32], the non-trained random

weights, in combination with the MSE optimization cri-
terion, reduces the chance of overfitting the training data
in RCNs and ELMs and hence, let the system general-
ize better to noisy data than a system with fully trained
parameters. In what follows, we distinguish two ex-
perimental settings: one in which the system is trained
on clean images only (clean training) and one in which
the system is trained on a mix of clean samples and
samples corrupted by the five noise types that are also
present in the test set (multi-conditional training). We
present DERs for each of the six subsets of the multi-
conditional test set. Note that multi-conditional training
is bound to yield an optimistic result as all noise types
encountered in the test data were also present during
system training. Nevertheless, we followed this recipe
to have comparable results with other references.

Preliminary results
With regard to the effect of number of trainable pa-

rameters on the robustness of the RCN, we considered
the single layer reservoir that scans the image horizon-
tally (the H system) and the number of trainable pa-
rameters is controlled by changing the size of the reser-
voir. The experiments were conducted for both clean
and multi-conditional training. Figure 12 shows the per-
formance of RCNs of 500 to 16K nodes, that are tested
on clean and a mixture of noisy samples. From these ex-
periences one can conclude that a glimpse of overfitting
is visible only for very large RCNs that are trained on
clean and tested on noisy samples. This phenomenon
was evident in our previous study on speech recogni-
tion in [25] only in the extremely mismatched condi-
tions (i.e. clean training and testing on very noisy sam-
ples). According to multi-conditional training results,
as well as trained-tested on clean samples, no overfit-
ting occurs in case of matched conditions. A conclusion
that is inline with other studies on RCNs.

Apart from the aforementioned common character-
istics of RCNs and ELMs, RCNs benefit from the re-
current connections that add the ability of processing
temporal information in a non-linear way. In order to
study the effect of these connections to the robustness
of the RCNs, we repeated the same experiments with
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Figure 12: The effect of increasing the size of the hidden layer on the
performance of single layer RCN and ELM using clean training (left)
as well as multi-conditional training (right). The condition of the test
samples (Clean or Noisy) is determined in the legend.

Table 4: Comparing the performance of a single layer 16K-node RCN
with an equivalent ELM.

System Clean training Multi-cond. training

Clean Noisy Clean Noisy
RCN 2.18 33.78 3.80 8.65
ELM 2.54 31.08 4.52 9.58

an equivalent ELM. That is actually the same RCN but
without the recurrent connections. The performance of
this system is depicted in Figure 12. Also the exact er-
ror rates of the 16K-node systems are listed in Table 4.
These experiments show that both ELM and RCN fol-
low the same trend of behavior with two main excep-
tions: (1) trained on clean and tested on noisy samples,
the ELM suffers less from the overfitting and (2) RCN
outperforms ELM in the matched conditions. There-
fore, it can be confirmed that the robustness against
overfitting mainly is caused by the random weights and
the linear training approach, while the recurrent connec-
tions allows the RCN to focus on the less apparent rela-
tions between features and classes, and hence help more
for matched conditions where such fine differences are
more meaningful.

RCN-based noisy image recognizer
The results of our experiments using different RCN-

based architectures (explained in Section 3) are listed in
Table 5. For comparison with state-of-the-art, the table
also includes the results for DBN systems we could find
in the literature. In the clean training case, the presence
of noise induces a dramatic increase of the DER in all
systems. None of the systems stands out on all condi-
tions. The DBN system wins in three of the six condi-
tions, the RCN in the other three, be it that on average
the DBN system yields the lowest DER. It is fair to say

that RCNs degenerate at more or less the same pace as
DBNs when the mismatch between the training and the
test conditions increases. We interpret this as a positive
result because deep neural networks are acknowledged
for their good noise robustness and because the research
on RCNs is still in its initial phase.

In the multi-conditional training case, the effect of the
noise is much more moderate. The H-V-res system now
yields an average error rate of only 3.54% and it out-
performs the DBN systems in all conditions for which
a comparison is possible. Combining two scanning di-
rections seems to help significantly as long as there is
no big mismatch between the training and the test con-
ditions (that means clean test for clean training and all
tests for multi-conditional training).

None of the tested systems stands out on all noise
types, but on average, the H-V-inp architecture is the
winner because there is no noise type for which it com-
pletely breaks down. This system performs exception-
ally well for the Border noise. The DBN-based system
on the other hand is the winner for three of the five noise
types.

In order to further investigate the difference between
the performances of H-V-inp, H and V, we should take a
look at Figure 13 which shows the readouts of the three
systems for a noisy sample of digit 7 surrounded by a
border. This figure shows that in the case of H and V, the
winner is mainly determined by the digit readout that
reaches the highest value at the beginning and the end
of the scan, where only the black border is observed.
In the case of horizontal scanning, this seems to be ‘1’
which often comprise a more or less vertical line that
bares a lot of resemblance with the black border. For
the H-V-inp system, none of the digit readouts seems to
match the black border and the correct winner is more
likely to pop-up.

To confirm our hypothesis we investigated in more
detail the confusions between the recognized and the
correct digit in the case border noise is present. Ta-
ble 6 shows the digits that were recognized in case of
a wrong decision. For instance, it is indicated that with
the H-RCN system, 8501 of the validation samples have
been wrongly classified as digit 1.

Apparently, the H-system is strongly biased towards
the digits exhibiting a strong vertical line (‘1’ and ‘4’)
whilst system V is biased towards digits with horizon-
tal lines on top, bottom or center (‘2’, ‘4’,‘5’ and ‘7’).
A simple solution to reduce the effect of the false pos-
itive reaction to a border, without seriously degrading
the performance on the other noise types, is to bound
the readouts to an acceptable interval such as (-0.05,
0.25). By doing so, the DER for Border noise can be
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Table 5: DER (in %) per noise type for the cases of clean and multi-conditional training. The systems DBN-2010 and DBN-2013 refer to [12]
and [21], respectively. (V) and (H) respectively refer to the RCNs that are supplied with vertical and horizontal scanning of the image as the
input. Also see Section 3 for the combined approaches. The last row shows the DER of a multi-column RCN-based recognizer comprising twelve
sub-systems each trained on one noise condition and one direction.

System Clean Gaussian S & P Speckle Block Border Average

C
le

an

DBN-2010 1.03 - - - 33.78 66.14 -
DBN-2013 1.09 29.17 18.63 8.11 25.72 90.05 28.80
V 1.11 57.04 56.27 72.96 24.97 85.49 49.64
H 1.28 31.43 40.91 45.91 25.41 60.99 34.32
H-V-inp 1.18 29.46 40.94 30.70 22.12 16.97 23.56
H-V-wscr 0.89 32.12 38.47 48.50 21.79 64.94 34.45
H-V-res 0.81 32.10 38.91 49.32 21.85 79.34 37.06

M
ul

ti

DBN-2010 1.68 - - - 8.72 1.95 -
V 1.88 4.73 6.06 7.38 9.50 2.45 5.33
H 2.28 4.12 5.17 5.65 9.10 2.42 4.79
H-V-inp 2.28 4.20 5.22 5.23 8.96 2.63 4.75
H-V-wscr 1.65 3.12 3.90 4.47 7.20 1.93 3.71
H-V-res 1.50 3.08 3.75 4.32 6.82 1.75 3.54

MC-RCN 2.82 4.54 6.07 6.22 9.82 3.23 5.45

Table 6: Distribution of the wrong decisions in case of border noise.

0 1 2 3 4 5 6 7 8 9 Sum

H 0 8501 4 0 33 0 0 0 11 1 8549
V 0 0 5180 13 69 788 0 50 0 0 6099

H-V-inp 2 1533 2 1 98 17 0 41 2 1 1697
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Figure 13: The readouts of the H, V, and H-V-inp recognizers trained
on the clean dataset and fed with an image of digit 7 corrupted with
border noise. The solid black, dashed black, and dotted gray lines
belong to the readouts of digit 7, the winner digit and white space,
respectively.

decreased to 64.93%, 34.79%, and 15.42% for the V,

H, and H-V-inp systems, respectively. This, in its turn,
leads to average DERs of 44.26%, 27.61%, and 22.09%,
respectively.

For multi-conditional training, only two results are
reported for the DBN system, but the figures in Table 6
do not contradict the conclusion that RCN-based sys-
tems are even more robust to noise than DBN systems
which are generally acknowledged for their good ro-
bustness in comparison to other techniques.

Multi-Column RCN
For completeness, we also trained a two-stage multi-

column RCN (MC-RCN) recognizer. The first stage en-
compasses twelve 2-layer RCNs with a 3K reservoir per
layer, one RCN per noise type (6 noise types) and per
scanning direction (2 directions). The outputs of these
twelve RCNs drive a 2-layer RCN with a 4K reservoir
per layer. The reservoir sizes were chosen such that the
system has the same number of trainable parameters as
the H-V-res system. Apparently, the MC-RCN does not
even outperform the much simpler H and V systems (see
Table 5). Our hypothesis is that the reservoirs in the
first stage are too small to permit an accurate classifica-
tion. This was confirmed by an experiment in which the
reservoir size was increased to 8K (leading to 2M train-
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able parameters) and in which the error rate dropped to
3.41%. Increasing the size of the H-V-res system on the
other hand did not cause any significant improvement
(error rate of 3.49%). This latter results proves that the
MC-RCN, in spite of its much larger complexity, will in
the end not significantly outperform the much simpler
H-V-res architecture.

6.2. Recognizing connected digits

As described in Section 3, the capability of process-
ing temporal information makes it possible to recognize
the digit by scanning the image. Consequently, one can
train an RCN by scanning the isolated digits horizon-
tally and operate this system on the connected samples
without any extra pre-processing (e.g., digit segmenta-
tion). This is a noticeable discrepancy between RCNs
and many other conventional neural networks. Fig-
ure 14 depicts the output of a multi-conditionally trained
RCN with horizontal scanning (the H system in Table 5)
which has been supplied with a concatenation of multi-
ple noisy digits.

Figure 14: The readouts of a multi-conditionally trained RCN with
horizontal scanning supplied with a concatenation of multiple noisy
digits.

6.3. Removing the noise in the front-end

Multi-condition training is an approach to reduce the
mismatch between training and testing. One could also
reduce the noise in the front-end. In this phase, we pro-
pose an RCN-based denoising Auto-Encoder (DAE) to
accomplish this.

For fixing the hyper-parameters of the DAE reser-
voirs, we follow the same strategy as before, but this
time under the assumption that the dynamics of the tar-
geted outputs are identical to the dynamics of the inputs.
Moreover, we established that bi-directional processing
is also helpful for this task but that it suffices to stack
three (instead of five) successive frames in the DAE in-
put. Since the output of the DAE is a denoised version
of the input feature vector, the number of trainable pa-
rameters of such an RCN-based DAE of the size N is

28 × (N + 1), with 28 being the number of pixels per
column/row.

We introduce two DAE architectures: (1) Mixed-
DAE: a single noise-independent DAE that is trained
to remove any kind of noise that appeared in the train-
ing data and (2) Combined-DAE: a committee of five
noise-specific DAEs (one for each noise type as shown
in Figure 15), followed by a noise-independent DAE
which is driven by the concatenation of the outputs of
the former five DAEs.

In order to quantify the amount of noise in the im-
age, we define Noise Fraction (NF) as a function of
the Pearson correlation coefficient (PCC), with NF =
1−PCC2. The values of NF are between 0 and 1, with
NF = 0 denoting a clean image.
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Figure 15: Architecture of the combined DAE: the outputs of a com-
mittee of noise-specific DAEs (M different noise types) drive a noise-
independent DAE.

Figure 16(a) shows the mean NF on the validation
set as a function of the reservoir size and the noise type
obtained after denoising the image by means of a single-
layer Mixed-DAE using horizontal scanning.

• With a reservoir of size 4K, the mean NF is already
smaller than 0.2 for all noise types. The mean NF
is in all cases significantly smaller than the mean
NF of the raw noisy images (this mean ranged be-
tween 0.4 and 0.83 depending on the noise type).

• The noise reduction improves very gradually as the
reservoir size increases. There is no clear bend in
the curve for any of the noise types.

• Border noise, the most problematic noise type in
the previous experiments, is easy to remove almost
completely. This follows from the fact that it is
very easy to establish where it occurs and which
clean pixel value the DAE has to predict there.
Therefore, it is not surprising to find that the NF
after denoising of an image corrupted by border
noise is even lower than that of a clean image after
denoising (there, the DAE output depends on the
location of the digit in the image).
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• Speckle noise is the only noise type for which the
NF is almost independent of the size of the DAE.

The effect of adding layers to the average NF of a
single-layer RCN with 32K reservoir is depicted in Fig-
ure 16(b). Adding a second layer clearly induces an
additional gain whilst further layers are not beneficial
anymore.
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Figure 16: Optimizing the reservoir size and the number of layers for
an RCN-based DAE.

Without reporting the results in detail, we mention
that neither changing the scanning direction nor com-
bining two scanning directions in an H-V-res like sys-
tem leads to any significant improvement. Because the
aim of denoising is to find and remove the noise pat-
terns and the noise types encountered in this work are
direction-independent.

Based on the above findings, we also considered a
2-layer Mixed-DAE with 32K reservoirs in each layer
as the reference (1.8M trainable parameters) against
which we will compare the Combined-DAE. To make
Combined-DAE equally complex as the Mixed-DAE (in
terms of trainable parameters), the former is composed
of five 2-layer noise-specific DAEs with 6K reservoirs
per layer and a single-layer noise-independent DAE
with a 4K reservoir.

In a control experiment, we also consider an ideal sit-
uation by having pre-knowledge about the noise type
of the input image. Therefore, we feed the image

only to one particular DAE from the first stage of the
Combined-DAE that has been trained for the same noise
type. This so-called ideal DAE is denoted as Ideal-
DAE.

Figure 17 summarizes the results obtained with these
three DAEs and supports the following conclusions: (1)
For Gaussian and S&P noise types, the Combined-DAE
achieves a noise reduction that is nearly identical to that
of the Ideal-DAE, but on three other types, the Mixed-
DAE is better than the Combined-DAE. (2) On aver-
age, there is little difference between the simple Mixed-
DAE and the much more complex Combined-DAE. Fig-
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Figure 17: The noise fraction (NF) for the output of the mixed, the
combined and an ‘ideal’ DAE that has prior knowledge of the noise
type. The NF of the raw noisy images are mentioned between brack-
ets.

ure 18 shows the performance of Mixed-DAE on de-
noising some examples.

Figure 18: One clean and five noise corrupted samples of digit 9 (top)
and the corresponding outputs of the Mixed-DAE.

6.4. Recognition for denoised images

In order to evaluate the influence of the RCN-
based DAE on the recognition, we test the cascade of
the Mixed-DAE and the H-V-res system we formerly
trained on clean images. The results obtained with this
cascade are listed in Table 7. The table also includes
the performance of the adaptive multi-column stacked
sparse denoising auto-encoder (AMC-SSDA) reported
in [21] and the RBM-based denoiser reported in [12]. It
is clear that the Mixed-DAE introduces a dramatic gain
in noise robustness of the H-V-res system at the cost
of only a minor loss of accuracy in the case of clean
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Table 7: The influence of adding an RCN-based DAE in front of the classifier on the performance of the RCN-based recognizer (as DER%) on the
noisy version of the MNIST dataset. The systems DBN-2010 and DBN-2013 refer to [12] and [21], respectively.

DAE RBM-based AMC-SSDA - Mixed-DAE Mixed-DAE

Classifier DBN-2010 DBN-2013 H-V-res H-V-res H-V-res (RT)

Clean 1.24 1.5 0.81 1.03 1.22
Gaussian - 1.47 32.1 1.33 1.57
S & P - 2.22 38.91 1.86 2.17
Speckle - 2.09 49.32 2.41 2.19
Block 19.09 5.18 21.85 4.95 3.94
Border 1.29 1.15 79.34 0.89 1.25

Average - 2.27 37.06 2.08 2.06

images. Furthermore, the H-V-res system with Mixed-
DAE outperforms the AMC-SSDA system in five of the
six conditions.

In theory, the just tested configuration is sub-optimal
because it implies a mismatch between training and test-
ing. Therefore, we also trained an H-V-res system on
denoised training images (called H-V-res (RT)). How-
ever, to our surprise, the figures in Table 7 show no sig-
nificant improvement over the sub-optimal system. Ap-
parently, there is no need to retrain the recognizer every
time the DAE is improved (e.g., by taking a new noise
type into account).

The results obtained for the H-V-res system embed-
ding a mixed DAE show that image denoising in combi-
nation with clean training is more effective than multi-
condition training, even though the latter is over op-
timistic because it is tested on noise types that were
present during training. This is a remarkable result since
a limited study in [12] involving border noise and block
noise came to the opposite conclusion for a system en-
compassing sparse DBNs. In that study, a clean trained
DBN, a multi-conditionally trained DBN, and a clean
trained DBN supplied with the denoised images led to
the DERs of 22.7%, 4.6% and 6.4%, respectively.

7. Conclusions, discussion and future work

The aim of this work was to investigate the poten-
tial of reservoir computing networks (RCNs) in the
context of image processing, with a particular focus
on handwritten digit recognition and image denoising.
Key properties of RCNs that were observed on other
task such as (noisy) speech recognition and that were
validated in this paper on the (noisy) MNIST image
dataset are: RNCs generalize well to unseen conditions
and they are easy to train, especially so in combina-
tion with our training procedure [25] which provides

near-optimal values for almost all hyperparamters with
very little effort. The temporal processing capabilities
of RCNs could also be readily used to coax the sys-
tem in recognizing digits strings instead of single dig-
its. The results obtained on the MNIST dataset do show
that a large enough RCN recognizer can surpass con-
ventional neural network-based recognizers in matched
conditions. Moreover, we established that an RCN can
be highly effective in denoising an image and that the
combination of a denoiser and a recognizer outperforms
a similar combination created by means of conventional
deep neural network technology.

However, results on MNIST should not be general-
ized to image processing in general. As can be seen
in Table 1, having intermediate representations of var-
ious complexity as obtained with deep convolutional
nets, only provides small gains on MNIST. On other im-
age recognition task such as CIFAR-10 [33], intermedi-
ate representations obtained/learned via 2-dimensional
(2D) convolution seem to be crucial in obtaining state-
of-the-art results [34]. Hence, we do expect that on
tasks such as CIFAR-10, RCNs will need good inter-
mediate representations based on some form of con-
volution as well in order to obtain competitive results.
A straightforward approach would be to plug in fea-
tures obtained with CNNs. However, this would re-
quire training a CNN before training the RCN, loos-
ing one of the key benefits of RCNs, namely the abil-
ity for quick experimentation without needing to fine-
tune a lot of hyperparameters. Alternative approaches
that use bottom-up generated convolutional features ob-
tained via Restricted Boltzmann Machines or k-means
clustering [35], or via other unsupervised learning ap-
proaches, are in this aspect more appealing. A ma-
jor, and as of yet unanswered question in this regard
is if supervised learning is a pre-requisite for obtain-
ing good intermediate representations. Yet another ap-
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proach would be to make 2-dimensional convolution an
inherent property of the RCN. In its current form, RCNs
perform a form of 1-dimensional convolution by means
of their recurrent nodes. Extending this to 2 dimensions
would make RCNs more suitable for processing images,
and 3 dimensions could enable fast learning for video
processing. Combining bi-directional (horizontal and
vertical) scanning as done in this paper and in [36] does
provide some of the benefits of 2D convolution, but we
expect that such setup will prove to be sub-optimal for
larger image sizes. Extensions that better mimic the lo-
cal properties of 2D convolution are however non-trivial
and, to our best knowledge, no such extensions have
been proposed yet.

Nevertheless, considering the strong points and the
performance of RCN, we believe that, even in their
current form, RCNs are good candidates to be merged
to the conventional DNN-based image and video pro-
cessing systems. For the more challenging image and
video task, some feature engineering will be needed, but
we expect that their fast and robust training combined
with the easily pre-computed hyperparameters will still
makes RCNs good candidates for quick prototyping and
even for final systems.
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