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Abstract 

Poly(2-oxazoline)s (PAOx) are of increasing importance for a wide range of applications, 

mostly in the biomedical field. This review describes the synthesis of 2-oxazoline monomers, 

their cationic ring-opening polymerization (CROP) and gives a comprehensive overview of all 

reported PAOx homopolymers. In the second part of the review, the polymer properties of 

these PAOx homopolymers with varying side-chain structures are discussed. Altogether, this 

review intends to serve as encyclopedia for poly(2-oxazoline)s enabling the straightforward 

selection of a polymer structure with the desired properties for a certain application.  
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1. Introduction 

Over the years numerous 2-oxazolines have been used in the cationic ring-opening 

polymerization (CROP) to obtain the corresponding poly(2-oxazoline)s (PAOx, also referred to 

as POx, POz),  since 1966, when they were reported for the first time by four independent 

research groups.1-4 Besides their use as monomers, 2-oxazolines are also commonly used as 

ligands in asymmetric catalysis.5-7 In the last decade PAOx have received increasing interest, 

especially for biomedical applications. Several reviews on this topic have recently been 

published providing an excellent overview of the current state-of-the-art.8-14 Even though the 

application potential of PAOx is tremendous and has been the focus of many review articles, 

it is relatively difficult to get a complete overview of the different PAOx structures that have 

been reported as well as a systematic insight in the properties of the different PAOx. 

Therefore, the present review aims to provide a comprehensive overview of PAOx 

homopolymers. The review will start with a brief overview of the different methods to 

synthesize 2-oxazoline monomers and the CROP mechanism leading to PAOx. The second part 

of the review comprises an as complete as possible overview of all reported 2-oxazoline 

monomers that have been polymerized via CROP followed by sections discussing the thermal, 

mechanical, surface and solution properties of the resulting PAOx homopolymers. We hope 

that this review will serve as guide for the selection of a specific PAOx for various future 

applications.  

 

2. Synthesis of  2-oxazoline monomers  

Except for some 4- and 5-substituted 2-oxazolines, which are not always polymerizable,15-18  

2-substituted 4,5–dihydrooxazoles, i.e. 2-substituted-2-oxazolines, referred to as 2-oxazolines 

in the following paragraphs, are the most commonly used cyclic imino ether monomers in 
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CROP. Typically 2-oxazolines are synthesized via the direct synthesis from non-activated 

carboxylic acids,19 the Witte-Seeliger synthesis from nitriles20, 21 or the Wenker method22, i.e. 

a two-step synthesis via cyclization of β-halo amides (see scheme 1). Other less common 

synthesis routes, e.g. α-deprotonation of 2-methyl-2-oxazoline followed by alkylation towards 

more complex 2-oxazolines, are also reported.23, 24 For a more detailed overview and 

description of the synthesis of 2-oxazolines one can refer to the recent review by Verbraeken 

et al.25  

 

Scheme 1. Overview of the synthesis of 2-oxazolines monomers. 1. Direct synthesis via non-activated 

carboxylic acids, 2. The Witte-Seeliger method starting from nitriles and 3. The (modified) Wenker 

method. 

 

3. Cationic ring-opening polymerization of 2-oxazolines 

The first CROP of 2-oxazolines was reported 50 years ago by four independent research 

groups, resulting in a new class of polymers, i.e. the PAOx.1-4 The CROP mechanism consists of 

three steps, initiation, propagation and termination (scheme 2). 
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Scheme 2. The cationic ring-opening polymerization of 2-oxazolines, three-step mechanism with initiation, 

propagation and termination step. 

 

In the first step a nucleophilic attack of the nitrogen lone pair of the 2-oxazoline monomer 

onto an electrophilic initiator forms an oxazolinium cation, initiating the polymerization 

reaction. Different initiator systems can be used including alkyl sulfonates such as methyl 

p-toluenesulfonate (MeOTs), which is most frequently found in literature, 

p-nitrobenzenesulfonates (nosylates) and trifluoromethanesulfonates (triflates), alkyl, benzyl 

and acetyl halides, oxazolinium salts and lewis acids.26-34 Also functional initiators can be used 

as long as they don’t bear any nucleophilic character that could interfere with the CROP. An 

overview of various functional initiators that have been reported can be found in a review by 

Lapinte et al.35 

Subsequently, in the propagation step the 2-oxazoline monomer attacks the cationic 

oxazolinium intermediate, forming the poly(2-oxazoline) backbone by ring-opening and the 

formation of an amide while remaining the living oxazolinium chain-end. In an ideal 

polymerization no chain coupling, transfer or termination reactions occur resulting in the 

living character of the CROP of 2-oxazolines. The livingness of the polymerization results in 

control over molecular weight and narrow molar mass distribution, i.e. dispersity (Đ), if the 

initiation is fast and quantitative. Unfortunately chain transfer reactions, such as 

β-elimination, and coupling reactions have been reported, which become especially important 

when aiming for high molar mass PAOx.36-40 A detailed overview of the CROP mechanism and 

chain transfer mechanism can be found in a recent review by Verbraeken et al.41  Furthermore, 
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the synthesis of well-defined PAOx with a narrow molar mass distribution requires thorough 

purification of the initiator, monomer and solvent used for the polymerization, to avoid the 

presence of nucleophilic impurities, including traces of moisture, that induce chain transfer 

and termination reactions. A recent patent, by Monnery et al., shows the ability of 

synthesizing defined high molar mass poly(2-oxazoline)s by excluding these side reactions 

under critical reaction conditions, including specialized vacuum techniques and low 

temperature polymerization.42 

Finally, termination of the CROP of 2-oxazolines occurs via nucleophilic attack of an added 

termination agent on the living cationic chain-end. Most strong nucleophiles, such as 

methanolic potassium hydroxide, carboxylates and amines, can be used to terminate the 

polymerization reaction onto the 5-position of the activated 2-oxazoline ring (scheme 3). 

Termination on the 2-position – where the side-chain is located – has also been reported for 

other, weaker nucleophiles, particularly water as most important example.43, 44 With the CROP 

being a living/controlled polymerization mechanism, functionalities can be easily introduced 

upon termination with high end-group fidelity.  

 

Scheme 3. Example of termination reaction respectively on the 2-position, e.g. with water, and on the 

5-position of the oxazolinium chain-end. 

 

 

Oxygen, nitrogen, sulfur and carbon centered nucleophiles, which exclusively terminate via 

reaction at the 5-position, can be used to introduce functional groups at the -chain-end as 

illustrated in table 1. 
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4. Poly(2-oxazoline) homopolymers 

In the last 50 years an enormous range of PAOx with varying side-chain structures has been 

reported in the literature. Tables 1-6 provide a comprehensive overview of all reported 2-

oxazoline monomers whose respective PAOx homopolymers have been prepared by CROP. 

The simplest and most widely studied PAOx are those with linear or branched alkyl side-chain 

(Tables 2 and 3). Table 4 shows reported 2-oxazolines with a phenyl or benzyl substituent. The 

propagation rate constants (kp; strictly speaking apparent kp’s are listed as on information is 

provided on percentage of cationic propagating species (close to 100% with methyl tosylate) 

nor initiation efficiency) of 2-alkyl-2-oxazolines decrease with an increase of the inductive 

electron donating character of the 2-substituent. Therefore kp decreases in the order MeOx > 

EtOx > i-PrOx. It is noteworthy that an increase of the side chain length for linear alkyl chains 

from ethyl to n-nonyl has a minimal influence on the kp.83 Amongst 2-oxazolines with a propyl 

side-chain kp decreases in the order c-PrOx > n-PrOx > i-PrOx.84 The CROP of 2-aryl-2-

oxazolines is generally slower compared to 2-alkyl-2-oxazolines. Electron withdrawing para-

substituents such as Cl or NO2 slightly increase the kp of 2-phenyl-2-oxazoline derivatives 

which can be explained by an increased reactivity of the cationic propagating species.85 An 

exception to this general trend are ortho-fluoro substituted PhOx, whereby 2,6-DFOx is the 

fastest 2-oxazoline monomer in the living CROP reported to date.86 This acceleration of the 

CROP of orthofluoro substituted PhOx is due to loss of the conjugation by out of plane twisting 

of the aryl substituent. 

An important feature of PAOx is that functional groups can easily be incorporated in the 

polymer side-chains by employing functional monomers. The 2-oxazolines with a group 15 (N 

or P) or group 16 (O or S) heteroatom in the substituent that have been used for CROP are 

collected in Tables 5 and 6 respectively. It should be noted that for some of these monomers 
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the polymerization conditions have to be selected more carefully than for simple 2-alkyl-2-

oxazolines. The monomers with a Boc protected amino group (C4NHBocOx) could only be 

polymerized using an oxazolinium salt as initiator while the use of methyl triflate resulted in 

the formation of undefined low molar mass products.127 Monomers with cyclic amines can be 

polymerized via the CROP mechanism yielding the corresponding PAOx with initiators such as 

methyl tosylate or methyl triflate resulting in a cationic propagating species, with the risk of 

termination by attack of the living chain end on the tertiary amine group. However initiators 

such as benzyl chloride, or methyl iodide result in covalent propagation that gives rise to a 

double isomerization ring-opening polymerization yielding polymers with a completely 

different structure having a cyclic urea in the main chain.128, 129 The CROP of the diethyl 

phosphonate functional monomer PhosOx gives polymers with two distinct molar masses. The 

underlying mechanism for this is not yet understood.130 All the thioether containing 

monomers were found to show a limited polymerizability. Only well-defined polymers of 

relatively low molar mass could be obtained by keeping the conversion low, which could be 

due to attack of the sulfur on the propagating oxazolinium species resulting in termination 

and chain-transfer.99, 131 Similarly, the CROP of FuOx yielded a poorly defined polymer ascribed 

to unknown interfering side reactions.99 

The choice of monomers is only limited by the incompatibility of nucleophilic reactive groups, 

such as hydroxyls, amines, aldehydes, thiols and carboxylic acids, with the CROP process. 

However, PAOx with these functional groups can be prepared by the CROP of protected 

monomers followed by post-polymerization deprotection as shown in Scheme 4. 
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Scheme 4. Synthesis of PAOx with amino, carboxy, hydroxyl, aldehyde and thiol groups in the side-

chains by post-polymerization deprotection. For references see the respective entries in tables 4 and 

5. The synthesis of PAOx with thiol side-chains has only been reported for copolymers with EtOx. TFA 

= trifluoroacetic acid. 

 

Table 7 shows 2-oxazolines with perfluoroalkyl substituents which can be used for the 

preparation of very hydrophobic PAOx. 2-Perfluoroalkyl-2-oxazolines were found to be much 

less reactive than 2-alkyl-2-oxazolines and therefore difficult to polymerize. Well-defined 

polymers of relatively low molar mass could only be obtained by using methyl triflate as 

initiator and not with methyl tosylate or methyl p-nitrobenzene sulfonate.147 This limitation 

can be overcome by the introduction of an ethyl spacer between the 2-oxazoline ring and the 

perfluoroalkyl group to decouple the electron withdrawing effect of the perfluoralkyl chain 

from the 2-oxazoline ring.98 
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5. Thermal properties of poly(2-oxazoline) homopolymers 

PAOx with hydrocarbon side-chains are stable up to temperatures of (at least) 300 °C87, 117 

enabling applications over a broad temperature range. Poly(2-n-alkyl-2-oxazoline)s with 

varying length of the side-chains  are ideal to study structure-property relationships. Figure 1 

shows the glass transition temperatures (Tg) and melting temperatures (Tm) obtained from 

differential scanning calorimetry (DSC) of poly(2-n-alkyl-2-oxazoline)s with 1-17 carbon atoms 

in the side-chain. 

 
Figure 1. Glass transition and melting temperatures of poly(2-n-alkyl-2-oxazoline)s with varying side-

chain length obtained from DSC. Data are taken from refs. 19, 83, 89, 98, 99 

Polymers with 1-5 carbon atoms in the side-chain (PMeOx to Pn-PentOx) show a Tg that 

decreases linearly with increasing side-chain length which can be explained by increasing 

flexibility of the side-chains. For PMeOx, PEtOx and Pn-PrOx no melting peaks were observed 

by differential scanning calorimetry, while polymers with 4 or more carbon atoms in the side-

chain were found to be semi-crystalline with a Tm around 150 °C independent of the side-chain 

length indicating side-chain crystallization. In contrast, Litt and co-workers3 reported melting 

temperatures also for PMeOx and Pn-PrOx by differential temperature analysis (DTA) based 

on a difference in birefringence. This discrepancy might originate from different processing 

resulting in alignment of the main-chains if enough time is given.150, 151 The fatty-acid based 
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PSoyOx revealed a much lower Tm (88.4 °C) than PAOx with long linear saturated alkyl side-

chains due to the cis-double bonds in the side-chains that disturb the crystallization.103 Fully 

amorphous PAOx with a low Tg can be prepared using monomers with branched alkyl side-

chains as demonstrated for PEPox, P3EPOx and PEHOx (Scheme 5), the latter being the 

amorphous poly(2-oxazoline) with the lowest reported Tg to date, being -6 oC. 

 

Scheme 5. Structures and Tgs of PEPOx, P3EPOx and PEHOx. 

PAOx with cycloalkyl side-chains are an interesting class of polymers. While Pc-PrOx is 

amorphous with a higher Tg (79 °C) than its linear analogue Pn-PrOx,115 Pc-BuOx, Pc-PentOx 

and Pc-HexOx are semi-crystalline high performance polymers with a Tm of 243, 251 and 

306 °C, respectively.117 Similarly high melting points have been reported for adamantyl-

containing PAOx.118  Poly(2-n-perfluoroalkylethyl)-2-oxazoline)s represent very hydrophobic 

PAOx. Interestingly, their melting temperatures are much higher compared to their 

hydrocarbon analogues and unlike them, the melting points increase as the side-chain length 

increases (Figure 2).98 
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Figure 2. Glass transition temperatures of poly(2-n-perfluoroalkylethyl)-2-oxazoline)s obtained from 

DSC. Data are taken from ref. 98 

 

The presence of the rigid aromatic phenyl ring in PPhOx leads to a higher Tg (103 – 107 °C)3, 19, 

87 compared to poly(2-n-alkyl-2-oxazoline)s such as PMeOx or PEtOx. Significantly higher Tg 

values were found for polymers with two ortho-fluoro substituents on the phenyl ring with 

the highest values for P2,4,6-TFOx (Tg = 133 °C) and P2,3,4,5,6-PFOx (Tg = 135 °C).123 All PAOx 

with functional groups in the side-chains whose thermal properties have been investigated 

were found to be amorphous and their glass transition temperatures are collected in table 8. 

6. Mechanical properties of poly(2-oxazoline) homopolymers 

There are only very few reports on the mechanical properties of PAOx as the majority of 

polymers have a rather low molar mass leading to very poor (brittle) mechanical properties, 

thereby obstructing mechanical testing. The mechanical properties of low molar mass poly(2-

n-alkyl-2-oxazoline)s (DP = 60) have been reported based on nano-indentation on spin-coated 

polymer films. These measurements revealed that the mechanical properties are closely 

related to the thermal properties. Upon increasing the length of the alkyl side-chain from 

methyl to butyl, the elastic modulus decreases almost linearly89, 151 (Figure 3) related to the 

decrease in Tg (Figure 3). 
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Figure 3. Indentation moduli of poly(2-n-alkyl-2-oxazoline)s with DP  60 at low and ambient 

humidity. The lines are added to guide the eye only. Reproduced from Ref. 151  with permission from 

The Royal Society of Chemistry. 

The polymers with more than 4 carbon atoms in the side-chain are semi-crystalline and have 

a Tg below ambient temperature and therefore the measurements were performed above 

their respective Tg resulting in moduli of ca. 0.8 GPa which is common for polymers tested 

between their glass transition and melting temperatures.152 It should be noted that the 

mechanical properties of PMeOx, PEtOx and Pn-PrOx strongly depend on the humidity due to 

the hygroscopic nature of these polymers. As can be seen from Figure 3, the plasticizing effect 

of incorporated water reduces the indentation moduli.151 It is expected that more in depth 

mechanical properties of PAOx will become available in the near future based on the fact that 

well-defined high molar mass PAOx have become synthetically accessible recently. 

 

7. Surface properties of poly(2-oxazoline) homopolymers 

The surface properties of poly(2-n-alkyl-2-oxazoline)s are related to their thermal properties 

in a similar manner as their mechanical properties. Figure 4 shows the surface energies of 

poly(2-n-alkyl-2-oxazoline) thin films calculated from the surface angles using Neumann’s 

equation of state.89 

 
Figure 4. Surface energies of poly(2-n-alkyl-2-oxazoline)s with M/I = 100. The lines are sigmoidal fits to 

the data points. Reproduced from Ref. 89 with permission from WILEY-VCH. 
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Inspection of Figure 4 reveals a clear change in materials properties of the not annealed 

samples at Pn-BuOx which has a Tg close to ambient temperature. The polymers with 5 or 

more carbon atoms in the side-chain were measured above their respective Tg and show low 

surface energies, due to segregation of the longer side-chains to the surface, which is favored 

by the higher flexibility of the polymer chains. PMeOx, PEtOx and Pn-PrOx were measured 

below their respective Tg and cannot orient the side-chains to the surfaces, resulting in higher 

surface energies.89 The surface energy of Pn-PrOx can be reduced by thermal annealing while 

no change was found for PMeOx and PEtOx even after annealing at 90 °C indicating that the 

methyl and ethyl side-chains are too short to fully cover the surface.89 A similar surface energy 

as for poly(2-n-alkyl-2-oxazoline)s measured above their Tg was found for PPhOx (42.6 mNm-

1).123 PAOx based on fluorophenyl oxazolines exhibited lower surface energies than PPhOx.123 

However, the surface energy does not continuously decrease with increasing fluorine 

substitution. A detailed look at the effect of the substitution pattern on the surface energy 

(Figure 5) demonstrates the importance of especially the para-fluoro substituent in lowering 

the surface energy. 

 
Figure 5. Surface energies (SEs) of the polymers of fluorophenyl oxazolines and PhOx before and after 

annealing (16 h, 140 °C). Reproduced from ref.123 with permission from WILEY-VCH. 
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Rodriguez-Parada et al.98 investigated the behavior of PAOx with linear hydrocarbon and 

fluorocarbon side chains varying in length from 6 to 17 carbon atoms at the air-water interface 

in a Langmuir trough. Polymers with short hydrocarbon side chains (6-11 carbon atoms) were 

found to form fluid liquid like condensed monolayers in which the polymer backbone is at the 

water surface and the side chains are tilted toward the air. Polymers with longer side chains 

formed only rigid monolayers which tend to crystallize after the initial compression and 

Langmuir-Blodgett films of these materials could be prepared only with difficulty. Similar 

behavior was observed for polymers with fluorocarbon side chains, with the only difference 

that the same effects were observed at shorter side-chain lengths (usually 3 carbon atoms 

less), which can be explained by the higher hydrophobicity and rigidity of  the fluorocarbon 

chains.98 

 

8. Solution properties of poly(2-oxazoline) homopolymers 

The variation of the side-chain structure of PAOx enables the tuning of the properties from 

very hydrophilic (PMeOx) to very hydrophobic (long alkyl or perfluoro alkyl side-chains) 

polymers. Consequently, the solution behavior of PAOx strongly depends on the side-chain 

structure. Table 9 gives an overview of the solubility of various PAOx with hydrocarbon side-

chains in water and common organic solvents. 

In addition to the solvents listed in Table 9, sulfolane was found to be a good solvent for high 

molar mass PMeOx.153 The semi-crystalline polymers Pc-BuOx, Pc-PentOx and Pc-HexOx show 

poor solubility in many common organic solvents, but are soluble in 1,1,1,3,3,3-hexafluoro-2-

propanol (HFIP) and formic acid at ambient temperature that disrupt interchain 

interactions.117 The behavior of PAOx in aqueous solutions is influenced by the hydration of 

the polymer and the accompanied loss in entropy. With increasing temperature the entropy 
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loss increases and at the phase transition temperature it becomes more favorable to release 

the water molecules into the bulk water resulting in agglomeration of the polymers chains 

(Figure 6). Therefore many PAOx exhibit a lower critical solution temperature (LCST). Two 

comprehensive reviews about thermoresponsive PAOx by Weber et al154 and Hoogenboom 

and Schlaad155 give an excellent overview on these polymers and their solution behavior. 

 

Figure 6. Schematic representation of a polymer phase transition in aqueous solution. Adapted from 

ref. 156 with permission from Elsevier. 

 

While PMeOx, which has been claimed to be even more hydrophilic than PEG based on HPLC 

analysis79 as well as based on the poor solubility of higher molar mass PMeOx in organic 

solvents like acetonitrile in which higher molar mass PEG is well soluble,153 is fully water 

soluble from 0-100 °C, PAOx with longer alkyl side chains exhibit LCST behavior. Figure 7 shows 

the cloud point temperatures (TCP, the temperature where the transmittance rapidly 

decreases due to agglomeration of the polymer chains) of PAOx with increasing 

hydrophobicity. It should be noted that the TCP depends on the molar mass, the concentration, 

the polymer end-groups and the conditions of the measurement157 and therefore 

comparisons of TCP's reported in the literature should be handled with care. 
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Figure 7. PAOx with hydrocarbon side-chains with increasing hydrophobicity (from left to right) and 

consequently decreasing cloud point temperature. 

 

The LCST behavior of high molar mass PEtOx was first reported in 1988 by Lin et. al. with TCP's 

from 61-69 °C dependent on the concentration.91 Lowering the molar mass of PEtOx 

homopolymers results in a significant increase of the TCP in aqueous solution.92, 93 Amongst 

thermoresponsive polymers those with a LCST close to body temperature are of special 

interest for applications in drug delivery or bioengineering.158, 159 Interestingly, PAOx with 

propyl side-chains namely Pn-PrOx, Pc-PrOx and Pi-PrOx belong to this class of polymers. It 

was first reported in 1992 that Pi-PrOx exhibits LCST behavior with the TCP decreasing from 39 

to 35 °C with increasing polymer concentration (0.1 – 1 wt%).108 More detailed investigations 

of Pi-PrOx with varying molar mass revealed that the TCP decreases with increasing molar mass 

and that the concentration dependence becomes less pronounced with increasing molar 

mass.107, 110, 160 All of these studies found the phase transition to be reversible with a small 

heating-cooling hysteresis. However, it was later discovered that the transition becomes 

irreversible after keeping the dispersion longer above the cloud point due to isothermal 

crystallization of the (partially) dehydrated polymer chains.106, 109 It was recently shown that 

cyclic Pi-PrOx exhibits a much higher TCP compared to linear Pi-PrOx with the same molar 

mass.161 As much as 15 years after the LCST behavior of Pi-PrOx was discovered, it was 
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reported that Pn-PrOx also exhibits LCST behavior in aqueous solutions.95 The TCP was found 

to be more than 10 °C lower compared to Pi-PrOx with a similar molar mass which is in 

accordance with the higher hydrophobicity. As previously observed for Pi-PrOx, the TCP of Pn-

PrOx also decreases with increasing molar mass.93 The cyclic side-chain structure of Pc-PrOx 

results in an intermediate hydrophobicity compared to Pi-PrOx and Pn-PrOx and consequently 

its TCP in aqueous solution was found to be in between the TCP’s observed for Pi-PrOx and Pn-

PrOx.115, 116 In contrast to Pi-PrOx the phase transitions of the amorphous Pn-PrOx and Pc-

PrOx are fully reversible, even when kept above TCP for a prolonged time. PAOx with methyl 

ester side-chains were first reported 1968,38 but it was only recently reported that these 

polymers exhibit thermoresponsive LCST behavior in aqueous solution.142 Their TCP’s strongly 

depend on the length of the alkyl spacer. PC2MestOx shows a very similar solution behavior 

as PEtOx with a TCP around 100 °C for a polymer with DP 100 while PC3MestOx exhibits a TCP 

around 25 °C similar to Pn-PrOx. In contrast to the LCST behavior, there are no poly(2-

oxazoline)s reported that show an upper critical solution temperature (UCST) in water. 

However, UCST behavior was observed for PAOx with phenyl, benzyl or alkyl side-chains 

longer than propyl in ethanol-water mixtures,112 which results from the change in polarity of 

these non-ideal solvent mixtures upon heating.162 Figure 8 shows an overview of the solubility 

of various PAOx in ethanol-water mixtures. 
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Figure 8. Solubility overview for poly(2-oxazoline)s with hydrocarbon side-chains in water-ethanol 

mixtures (5 mg/mL). Reproduced from ref. 112 with permission from MDPI AG. 

 

9. Conclusions and outlook 

In the last years PAOx have emerged as materials for biomedical and pharmaceutical 

applications, such as polymer-drug and polymer-protein conjugates, self-assembled carriers 

for drug delivery, solid dispersions, hydrogels, antibiofouling and antimicrobial surfaces, and 

wound healing.9, 11-14, 163 In the 50 years since the first reports on PAOx the CROP of more than 

one hundred different 2-oxazolines has been reported. In combination with the 

straightforward introduction of functional groups at the chain-ends, this allows the synthesis 

of a wide range of PAOx homo and copolymers with fine-tuned physical properties and 

chemical structures that can be further extended by post-polymerization modifications. The 

properties of PAOx range from amorphous polymers with glass transition temperatures well 

below ambient temperature to semi-crystalline polymers with melting points well above 200 

°C. Some PAOx are very hydrophilic water-soluble polymers while others are very 
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hydrophobic. The toolbox for the construction of tailor-made PAOx that has been developed 

in the last decades should enable researchers to develop exciting new applications especially, 

but not exclusively, in the biomedical field. We hope that this review will serve as a reference 

guide for the selection of 2-oxazoline monomers for the preparation of PAOx with the desired 

physical properties and/or chemical functionality, by providing a comprehensive overview of 

the different monomers and corresponding polymer properties. 
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Table 1 Terminating agents for the CROP of 2-oxazolines and structures of the resulting end-

functionalized PAOx. The -chain-end is shown as methyl group for reasons of brevity. 

Terminating agent Resulting PAOx Refs. 

MOH (M = Na or K)/MeOH or 

Na2CO3/H2O/ or 
(CH3)4NOH/MeOH  

44-46 

  

47-51 

 
 

52 

 

 

53-56 

 
 

57-60 

 
 

X = CH2: 60-62 
X = O: 63 
X = NH: 64, 65 
X = NBoc: 66, 67 
X = NR1: 65, 68 

 
 

69, 70 

 
 

29, 43 

 
 

71 

  

72 

  

73 
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NaN3 

 

74-77 

  

78-80 

  

52, 81 

 

 

82 

 

Table 2 2-Oxazolines with linear alkyl substituents without heteroatoms. References refer to the 

preparation and properties of the respective homopolymers. For DiyneOx only copolymerization has 

been reported. 

Monomer Abbr. Ref. Monomer Abbr. Ref. 

 
MeOx 

3, 
83, 
87-
89 

 
EtOx 

3, 
83, 
87-
93 

 
n-PrOx 

83, 
84, 
89, 
93-
97 

 
n-BuOx 

83, 
89 

 

n-PentOx 
83, 
89 

 

n-HexOx 
89, 
98 

 

n-HeptOx 

19, 
83, 
89, 
99 

 

n-OctOx 
98, 
99 

 

n-NonOx 

19, 
83, 
88, 
89 

 

DecOx 98 

 

UndecOx 
19, 
98-
100  

DodecOx 98 

 

TridecOx 98 

 

TetradecOx 98 

 

PentadecOx 
19, 
98 

 

HeptadecOx 
19, 
98 

 
ButenOx 101 

 

DecenOx 102 
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SoyOxa 

19, 
103, 
104  

PentyneOx 66 

 

DiyneOx 105    

      
aSoyOx is based on soy-bean fatty acids and has on average 17 carbon atoms and 1.5 double bonds 

per monomer unit. 
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Table 3 2-Oxazolines with branched or cyclic alkyl substituents without heteroatoms. References 

refer to the preparation and properties of the respective homopolymers. 

Monomer Abbr. Ref. Monomer Abbr. Ref. 

 

i-PrOx 
45, 84, 
95, 106-
110  

i-BuOx 
99, 111, 
112 

 

EPOx 113 

 

3EPOx 113 

 

EHOx 114 

 

c-PrOx 
84, 115, 
116 

 

c-BuOx 117 

 

c-PentOx 117 

 

c-HexOx 117 

 

AdamOx 118 

 

MeAdamOx 118    
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Table 4 2-Oxazolines with phenyl or benzyl substituents. References refer to the preparation and 

properties of the respective homopolymers. For p-N3PhOx and CinamPhOx only copolymerizations 

have been reported. 
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Monomer Abbr. Ref. Monomer Abbr. Ref. 

 

PhOx 

3, 
19, 
85, 
87, 
88, 
119, 
120 

 

p-MePhOx 85 

 

p-
MeOPhOx 

85 

 

p-ClPhOx 85 

 

p-
NO2PhOx 

85 

 

p-tBuPhOx 99 

 

StyOx 121 

 

AcAniOx 122 

 

p-N3PhOx 105 

 

CinamPhOx 105 

 

o-FOx 
m-FOx 
p-FOx 

86, 
123 

 

2,3-DFOx 
2,4-DFOx 
2,5-DFOx 
2,6-DFOx 
3,4-DFOx 
3,5-DFOx 

86, 
123 

 

2,3,4-TFOx 
2,4,5-TFOx 
2,4,6-TFOx 
2,3,5-TFOx 
2,3,6-TFOx 
3,4,5-TFOx 

123 

 

2,3,4,5-TFOx 
2,3,4,6-TFOx 
2,3,5,6-TFOx 

123 

 

2,3,4,5,6-
PFOx 

123 

 

p-CF3SPhOx 99 

 

p-CF3BnOx 99 

 

CF3OMePhOx 99 
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c-Bup-
ClPhOx 

99 

 

nG1Ox 
124-
126 

 

Table 5 2-Oxazolines with a nitrogen or phosphorous heteroatom in the substituent. References 

refer to the preparation and properties of the respective homopolymers. 

Monomer Abbr. Ref. Monomer Abbr. Ref. 

 

C4NHBocO
x 

132 
 

C5NHBocO
x 

127 

 

DEAOx 129 
 

AzetOx 128 

 
PyrOx 

128, 
129 

 

PipOx 128 

 

MorphOx 128 

 

AzepOx 128 

 

AzocOx 128 

 

EDPAOx 133 

 

C2CarbOx 134 

 

C4CarbOx 134 

 

PyOx 135 

 

MePyOx 136 

 

PhosOx 130 

 

N3PentOx 
137, 
138 
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Table 6 2-Oxazolines with oxygen or sulfur heteroatoms in the substituent. References refer to the 

preparation and properties of the respective homopolymers. For HeptArIOx and MobsOx only 

copolymerizations have been reported. 

Monomer Abbr. Ref. Monomer Abbr. Ref. 

 
MEGOx 135 

 

TEGOx 135 

 

DecSiOx 
139
, 
140  

DPOx 23 

 

FuOx 99 

 

C1AcOx 38 

 

C5AcOx 38 

 

C2MestOx 

38, 
141
, 
142 

 

C3MestO
x 

142
, 
143 

 

HeptArIOx 144 

 

MeSMeO
x 

99 

 

MobsOx 145 

 

i-PrSPhOx 131 

 

i-
PrSMestOx 

131 

 

CysOx 131 

 

C2SGlycOx 
C10SGlycO
x 

146 

      

 

 

 

 

 

  

Table 7 2-Oxazolines with a perfluoroalkyl substituent. References refer to the preparation and 

properties of the respective homopolymers. 
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Monomer Abbr. Ref. Monomer Abbr. Ref. 

 

C2F5Ox 
147, 
148 

 

C3F7Ox 
147, 
148 

 

C7F15Ox 148 

 

C2CnF(2n+1)Ox 
98, 
149 

 

Table 8. Glass transition temperatures of miscellaneous PAOx homopolymers 
 

 

Table 9. Solubility of PAOx with hydrocarbon side-chains in water and various organic solvents. MeOH 

= methanol, CHCl3 = chloroform, MeCN = acetonitrile, DMF = N,N'-Dimethylformamide, PhCl = 

Chlorobenzene, DMAc = N,N'-Dimethylacetamide. + = soluble, - = insoluble, +/- = partially soluble, LCST 

= lower critical solution temperature 

 Water MeOH CHCl3 MeCN DMF PhCl DMAc 

PMeOx + + - +/-a  - + 
PEtOx LCST + + + + + + 
Pn-PrOx LCST + + +  + + 
Pn-NonOx -  + - -  + 
PPhOx -  + + +  + 
Pc-BuOx - -  +/-b  +/-b +/-b 
Pc-PentOx - -  -  - - 
Pc-HexOx - -  -  +/-c +/-c 

apoor solubility for molar mass >∼ 20kDa, bsoluble after heating, precipitated on cooling. csoluble after 
heating 
 

Polymer Tg / °C Ref. 

PButenOx 17 101 
PAcAniOx 35 122 
Pp-CF3SPhOx 100 99 
Pp-CF3BnOx 75 99 
PCF3OMePhOx 89 99 
Pc-Bu-p-ClPhOx 112 99 
PC4NHBocOx 47 132 
PC2CarbOx 130 134 
PC4CarbOx 99 134 
PC2MestOx 39 142 
PC3MestOx -1 142 
PMeSMeOx 39 99 


