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Abstract

Probabilistic index models may be used to generate classical and new rank tests, with the additional advantage of
supplementing them with interpretable effect size measures. The popularity of rank tests for small sample inference
makes probabilistic index models also natural candidates for small sample studies. However, at present, inference
for such models relies on asymptotic theory that can deliver poor approximations of the sampling distribution if the
sample size is rather small. A bias-reduced version of the bootstrap and adjusted jackknife empirical likelihood are
explored. It is shown that their application leads to drastic improvements in small sample inference for probabilistic
index models, justifying the use of such models for reliable and informative statistical inference in small sample
studies.
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1. Introduction

Probabilistic index models were introduced by Thas et al. (2012) as a class of semiparametric models that can
be used to complement rank tests with interpretable effect size measures, without the need to assume a location-shift
model. Bergsma et al. (2009) described similar models, which they referred to as Bradley-Terry type models. For
more details on the connection between probabilistic index models and their Bradley-Terry type models, we refer to
Bergsma et al. (2012). Probabilistic index models can also be used to generate and extend many of the well-known
rank tests such as, for example, the Wilcoxon–Mann–Whitney test, Kruskal-Wallis and Friedman tests (De Neve and
Thas, 2015).

A probabilistic index model parameterises the conditional probabilistic index

pr (Y 4 Y ∗ |X,X∗) = pr (Y < Y ∗ |X,X∗) + 0.5pr (Y = Y ∗ |X,X∗) ,

in which Y and Y ∗ are outcomes associated with the covariates X and X∗, respectively, with (Y,X) and (Y ∗,X∗)
identically and independently distributed random vectors. The covariate may be vector-valued. The probabilistic
index model is defined as

pr (Y 4 Y ∗ |X,X∗) = m(X,X∗;β) = g−1(ZTβ) (X,X∗) ∈ X , (1)

whereβ is a p-dimensional parameter vector andm(X,X∗;β) is a known function that satisfies 0 ≤ m(X,X∗;β) ≤
1, m(X,X;β) = 0.5 and m(X,X∗;β) + m(X∗,X;β) = 1 for all (X,X∗) ∈ X . The vector Z depends on the
regressors, e.g. Z = X∗ −X . The model thus takes the form of a generalized linear model by relating ZTβ to the
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conditional probabilistic index through a known link function g(·). The set X is the subset of covariate pairs (X,X∗)
for which the probabilistic index model is defined.

Estimation of β in (1) was discussed in detail in Thas et al. (2012). Given a random sample of identically and
independently distributed (Yi,Xi), i = 1, . . . , n, the outcomes are first transformed to so-called pseudo-observations
Iij defined as 1 if Yi < Yj , 1/2 if Yi = Yj and 0 otherwise (i, j = 1, . . . , n). For each pair (Xi,Xj) the vector Zij
is constructed. An estimator of β, say β̂, is then obtained by solving Un(β) = 0, with

Un(β) = 1
| In |

∑
(i,j)∈In

Uij(β) = 1
| In |

∑
(i,j)∈In

A (Zij ;β)
{
Iij − g−1 (ZTijβ)} , (2)

where A (Zij ;β) is a p-dimensional vector function of the regressors Zij and the parameter vector β, and the sum
is limited to all pairs (i, j) for which (Xi,Xj) are in X (the set of such index pairs is denoted by In and has | In |
elements). Under mild regularity conditions, the solution β̂ is consistent and asymptotically normal (Thas et al., 2012;
De Neve, 2013), with covariance matrix that can be consistently estimated by a sandwich estimator, which is given by

Σ̂β̂ =

 ∑
(i,j)∈In

∂Uij(β̂)
∂βT


−1 ∑

(i,j)∈In

∑
(k,l)∈In

φijklUij(β̂)UT
kl(β̂)


 ∑

(i,j)∈In

∂Uij(β̂)
∂βT


−1

,

where φijkl is an indicator variable taking value 1 if the pseudo-outcomes Iij and Ikl share an index, and 0 otherwise.
Simulation studies in Thas et al. (2012) and De Neve (2013) confirm the asymptotic distribution theory. However,

even with only two regressors, their results also indicate that β̂, the sandwich estimator and the coverages of asymp-
totic Wald-based confidence intervals are only reliable for sample sizes of 50 or more. This is an important limitation,
particularly because the above methods provide natural extensions of rank tests by, for example, allowing inference
for treatment effects while controlling for covariates (De Neve and Thas, 2015; Vermeulen et al., 2015). Only for the
special case of a Wilcoxon-rank sum test in randomized experiments, a covariate adjustment, based on a probabilistic
index model, has been proposed for which permutation p-values are available (Vermeulen et al., 2015).

To overcome the aforementioned limitations, we explore methods that are designed to give better small sample re-
sults. Resampling techniques, such as the bootstrap and jackknife, are often used as alternative approaches to increase
accuracy in many statistical applications (Basu, 2001). However, they sometimes require strong computational power.
For instance, direct application of the traditional non-parametric bootstrap to probabilistic index models requires solv-
ing B times (number of bootstrap samples) the nonlinear estimating equation Un(β) = 0 for β. Even solving the
equation only once may already be computationally demanding because fitting a probabilistic index model requires
modelling the pseudo-observations, resulting in an inflated number of estimating functions. We solve this issue by
applying the bootstrapping U -statistics method of Jiang and Kalbfleisch (2012). This method simplifies the com-
putational demands by resampling properly studentized terms from an asymptotic approximation of the estimating
function that is a U -statistic of degree 1 or 2. It hence avoids the need to repeatedly solve nonlinear equations and our
simulation results show that the resulting coverages are often close to the nominal values.

In addition to bootstrap, we also use methods based on empirical likelihood to improve small sample inference for
probabilistic index models. The empirical likelihood method (Owen, 1988, 1990) maximizes a non-parametric likeli-
hood subject to restrictions given by the estimating equations. The ratio of the maximized empirical likelihood over
the maximized nonparametric likelihood, which corresponds to an unconstrained model, is known as the empirical
likelihood ratio statistic for which a Wilks’ theorem needs to be proven. Just as for the parametric likelihood ratio
statistic, this Wilks’ theorem gives the asymptotic distribution under the hypothesis that the constrained model holds
true. Confidence intervals of the parameters are subsequently found by inverting the empirical likelihood ratio test.
For U -statistics, the model restrictions are non-linear, leading to a computationally expensive estimation process. The
jackknife empirical likelihood method (Jing et al., 2009) reduces this computational cost by rewriting the U -statistic
as a sum of asymptotically linear independent terms, making the constraints linear. Its use for probabilistic index
models was also suggested by Zhou (2012). However, this method, as any empirical likelihood method, requires
that the constraints always have a solution, which is not necessarily true. Chen et al. (2008) proposed to adjust the
empirical likelihood by including an artificial “pseudo-observation” so that a solution can always be obtained and
Zhao et al. (2015) later adapted this approach to the jackknife empirical likelihood setting. In this paper we further
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adapt the adjusted jackknife empirical likelihood to the probabilistic index model setting and evaluate its performance
in simulation studies. This method performs generally well, but may be strongly affected by finite-sample bias. To
alleviate this problem, we propose a bias-reduced adjusted jackknife empirical likelihood approach that shows good
empirical results for samples as small as 20 and with coverages close to the nominal values.

2. Bias-reduced estimator for probabilistic index models

Consider the estimating function (2) with

A (Zij ;β) = ∂

∂β
m
(
ZTijβ

)
V −1 {m (ZTijβ)} , (3)

in which V {m(ZTijβ)} = m(ZTijβ){1 − m(ZTijβ)} is equal to the variance of Iij , under the assumption that the
probabilistic index model (1) holds. Note that we treat the pseudo-observations as independent, although this does
not hold true for all pseudo-observations, e.g., Iij and Iik, k = i + 1, . . . , n, are correlated because they share the
outcome Yi. This simplification, however, does not affect the consistency nor asymptotic normality of the resulting
estimator of β.

The presence of β in A(Zij ;β) implies that V −1{m(ZTijβ)} has to be recalculated in each iteration of the opti-
mization procedure when solvingUn(β) = 0. One particular choice that will be used in this paper is V {m(ZTijβc)} =
m(ZTijβc){1 −m(ZTijβc)}, which is further denoted by Vc, and where βc is a constant vector that does not change
from one iteration to another. Apart from a reduction in computation time, the choice βc = 0 is of particular interest
as it leads to a bias-reduced estimator for β, as given in the proposition below. Importantly, note that the bias-reduced
estimator is consistent, because the consistency holds for every A(Zij ;β) for which the regularity conditions hold
(Thas et al., 2012).

Proposition 1. Let U (c)
n (β) be the estimating function (2) withA (Zij ;β) as in (3), but with V {m(ZTijβ)} replaced

by Vc. Let β̂c be the solution ofU (c)
n (β) = 0. If the link functionm(·) is such thatm(0) = 1/2, then the second-order

bias of β̂c is minimized at βc = 0.

Proof. Let U (c)
n (β,βc) be the estimating function (2) with A (Zij ;β) as in (3), but with V (β) = V {m(Zβ)}

replaced by Vc(βc) = V {m(Zβc)}. Recall that Vc(βc), which depends on the constant βc, is a scalar, as the pseudo-
observations are assumed to be uncorrelated. Our goal is to find the value of βc that minimizes the asymptotic variance
of the estimator that solves U (c)

n (β,βc) = 0.
LetU (c)(β,βc) be partitioned into (U (c)

1 (β,βc), . . . , U (c)
p (β,βc)), where p is the dimension of β, κrk(β,βc) =

E(∂U (c)
r (β,βc)/∂βk | X1, . . . ,Xn), κrkl(β,βc) = E(∂2U

(c)
r (β,βc)/∂βk∂βl | X1, . . . ,Xn) and κ(l)

rk(β,βc) =
∂κrk(β,βc)/∂βl, for r, k, l = 1, . . . , p. If we further denote by K(β,βc) the Jacobian of the estimating func-
tion, −{κrk(β,βc)} stands for its (r, k)th element and we denote by κrk(β,βc) the corresponding element of
K−1(β,βc). Following Paul and Zhang (2014), we treat U (c)(β,βc) as a score function so that the second-order
bias bs(β,βc) for maximum likelihood estimates derived in Cordeiro and McCullagh (1991) can be directly applied.
The bias of β̂c can then be written as

bs(β,βc) =
p∑
r=1

κrs(β,βc)
p∑

k,l=1

[
κ

(l)
rk(β,βc)−

1
2κrkl(β,βc)

]
κkl(β,βc), (s = 1, . . . , p) (4)

and so bs(β,βc)2 can be minimized with respect to βc,s, where βc,s is the sth component of βc. Note that all
components of bs(β,βc), namely κrk(β,βc), κrkl(β,βc) and κ(l)

rk(β,βc), depend on βc only through Vc(βc). For
example, as

κrk(β,βc) = −
n−1∑
i=1

n∑
j=i+1

∂mr(ZTijβ)
∂β

V −1{m(ZTijβc)}
∂mr(ZTijβ)

∂βk
,
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we have that
∂κrk(β,βc)

∂βc,s
= −

n−1∑
i=1

n∑
j=i+1

∂mr(ZTijβ)
∂β

∂V −1{m(ZTijβc)}
∂βc,s

∂mr(ZTijβ)
∂βk

.

Thus, if we set ∂V −1{m(ZTijβc)}/∂βc,s to zero, ∂κrkl(β,βc)/∂βc,s will also be equal to zero. The same argument

holds for ∂κrkl(β,βc)/∂βc,s and ∂κ
(l)
rk(β,βc)/∂βc,s. A trivial solution for ∂b2

s(β,βc)/∂βc,s = 0, that is, for
∂bs(β,βc)/∂βc,s = 0, is obtained by setting ∂V −1{m(ZTijβc)}/∂βc,s to zero, for i = 1, . . . , n−1, j = i+1, . . . , n
and s = 1, . . . , p. As V {m(ZTijβc)} = m(ZTijβc){1 −m(ZTijβc)}, setting ∂V −1{m(ZTijβc)}/∂βc,s = 0 implies
that

∂m(ZTijβc)
∂βc,s

{
1− 2m(ZTijβc)

}
= 0.

If m(0) = 1/2, e.g., m(·) is the probit or logit function, the minimum is reached at βc = 0.
�

Due to its bias-reduced property, we denote by β̂br the estimator that solvesU (c)
n (β) = 0, with βc = 0. We expect

that β̂br, due to its smaller bias, will have better small sample properties than β̂. This will be empirically evaluated
later in Section 4, when Wald confidence intervals based on both estimators will be considered.

3. Bootstrapping U -Statistics and Jackknife Empirical Likelihood

3.1. Bootstrapping U -statistics
The bootstrap is known to often give better small sample inference as compared to methods relying on the asymp-

totic distribution of the parameter estimator and its consistent variance estimator. However, it has the drawback of
being computationally intensive, especially when parameters are estimated by solving estimating equations. This is
even more problematic for probabilistic index models, as they require modelling the pseudo-outcomes, leading to an
inflated number of estimating functions.

When parameters are estimated by solving estimating equations, Parzen et al. (1994) showed that inference can
be based on resampling the terms of the estimation function, provided that these terms are asymptotically indepen-
dently distributed and pivotal, that is, their asymptotic distribution does not depend on the parameter of interest. This
method is not applicable to probabilistic index models, because its estimation function is not a sum of independently
distributed pivots. The method of Parzen et al. (1994) was extended by Hu and Kalbfleisch (2000); they suggested
to studentize the terms to make them asymptotically pivotal. Jiang and Kalbfleisch (2012) further generalized the
method to estimating functions with a U -statistic structure. They showed that asymptotically correct inference can be
obtained by (i) approximating the estimating function by its empirical Hájek projection, (ii) studentizing the resulting
terms so as to obtain asymptotic pivots, and (iii) appropriately resampling these terms to obtain an estimate of the
sampling distribution of the pivots. From this distribution, approximate inference of the parameters can be derived.
They abbreviated their method, which is applied to a studentized estimating function, as EFt. Empirical evaluations
in Jiang and Kalbfleisch (2012) for least squares regression and Wilcoxon rank regression show very good results for
the coverage of confidence intervals for small sample sizes.

As in Thas et al. (2012), we set In = {i, j = 1, . . . , n : i < j}. Upon writing the estimating function (2) as

Un(β) =
(

2
n

)−1 ∑
1≤i<j≤n

h(Wi,Wj ;β) (5)

with W T
i = (Yi,XT

i ) and h(Wi,Wj ;β) = A(ZTij ;β){Iij − g−1(ZTijβ)}, Un(β) is recognized as a one-sample
U -statistic with kernel function h(·, ·;β) of degree 2. As in Jiang and Kalbfleisch (2012), we define Hi(β) =
(n − 1)−1∑

j:j 6=i h(Wi,Wj ;β), i = 1, . . . , n, which are asymptotically uncorrelated. It follows that Un(β) =
n−1∑n

i=1Hi(β) represents the estimating function as a sum of asymptotically independent terms (Hájek pro-
jection), hence allowing for straightforward variance estimation. Let Un,t(β) denote the studentized Un(β), i.e.,
Un,t(β) = {S(β)}−1/2Un(β) where S(β) = 4{n2(n− 1)}−1∑

1≤i<j≤n{Hi(β)−Hj(β)}{Hi(β)−Hj(β)}T
is the variance estimator of var{Un(β)} (Jiang and Kalbfleisch, 2012). A detailed description of the EFt-method
applied to probabilistic index models is as follows:
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1. Generate (M1, . . . ,Mn) from a multinomial distribution with parameters n and (1/n, . . . , 1/n).

2. Compute Ĥ∗i (β̂) = (n− 1)−1∑
j:j 6=iMjh(Wi,Wj ; β̂) and Û∗n(β̂) = n−1∑n

i=1 MiĤ
∗
i (β̂).

3. Compute S∗(β̂) = 4{n2(n − 1)}−1∑
1≤i<j≤nMiMj{Ĥ∗i (β̂) − Ĥ∗j (β̂)}{Ĥ∗i (β̂) − Ĥ∗j (β̂)}T , which is a

variance estimator of U∗n(β̂).

4. Compute the studentized statistic Û∗n,t(β̂) = {S∗(β̂)}−1/2Û∗n(β̂).

5. Repeat steps 1-4 a large number B times.

Theorem 2.3 in Jiang and Kalbfleisch (2012) states that Û∗n,t(β̂) converges weakly to a p-variate standard normal
distribution as n→∞.

For a scalar β, 1− α confidence intervals are defined as {β : Ûn,t,α/2 < Un,t(β) < Ûn,t,1−α/2}, where Ûn,t,α/2

and Ûn,t,1−α/2 are the estimated α/2 and 1−α/2 quantiles of Un,t(β), respectively. We can either take Ûn,t,α/2 equal
to the α/2 quantile of the standard normal distribution, relying thus on the asymptotic distribution of Un,t(β), or take
Ûn,t,α/2 to be the empirical α/2 quantile from the replications of the above procedure. If Un,t(β) is monotone non-
decreasing in β, a confidence interval for β is [β̂α/2, β̂1−α/2], where β̂α/2 and β̂1−α/2 are the solutions to Un,t(β) =
Ûn,t,1−α/2 and Un,t(β) = Ûn,t,α/2, respectively.

For a p-vector β, an approximate confidence interval for its ith component βi is defined as {βi : β∗i,α/2 < βi <

β∗i,1−α/2}, for i = 1, . . . , p. Here, β∗i,α/2 and β∗i,1−α/2 are the empirical α/2 and (1 − α/2) quantiles of the set

{β∗(b)i : Un,t(β∗(b)) = u(b), b = 1, . . . , B}, respectively. If the normal approximation of Un,t(β) is to be used, we
can implement this by repeatedly generating the p components of u(b) as independent standard normal variates a large
number B times. Otherwise, if the normal approximation is not used, we take u(b) = U∗n,t(β̂) with U∗n,t(β̂) being the
bth resampled value.

As for the probabilistic index model, using the constant Vc in (5), with βc = 0, can potentially improve the finite-
sample inference. Therefore, we denote as the bias-reduced bootstrapping U -statistics the method explained above
but with U (c)

n (β) and β̂br instead of Un(β) and β̂.

3.2. Adjusted Jackknife Empirical Likelihood

The empirical likelihood function is constructed by restricting the sample space to the support of the sample obser-
vations, and imposing a multinomial distribution on these n sample points. The probability vector of the multinomial
distribution is denoted by wT = (w1, w2, . . . , wn), whith

∑n
i=1 wi = 1. For a given w, the likelihood is simply

L =
∏n
i=1 wi. If no further restrictions are imposed, the wi’s that maximize L subject to the sum constraint are given

by wi = n−1, for all i = 1, . . . , n. The resulting likelihood L =
∏n
i=1 wi = n−n is known as the nonparametric

likelihood. A statistical model typically imposes constraints on the distribution of the sample observations which
we express here by using an estimating equation. This leads to the multinomial likelihood

∏n
i=1 wi maximized over

w subject to the sum and model constraints; this is the empirical likelihood function. The appeal of the empirical
likelihood method is that it delivers an empirical likelihood ratio statistic, for which often Wilks’ theorem holds so
that confidence intervals can be computed from quantiles of a chi-squared distribution. This method avoids the esti-
mation of the covariance matrix of the parameter estimators, and the resulting confidence intervals are not necessarily
symmetric about the parameter estimates (in contrast to Wald confidence intervals). We now explicitly work out the
empirical likelihood for the probabilistic index model.

Upon writing the estimating function as in (5), the model constraint can be written as
E{h(W ,W ∗;β)} = 0, for some β. This expectation can be defined with respect to the empirical likelihood, which
is a multinomial distribution with probability vector w, and thus

E {h(W ,W ∗;β)} =
n∑

i,j=1
wiwjh(Wi,Wj ;β) = 0. (6)
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Hence, the empirical likelihood function for the probabilistic index model becomes

L(β) = max
w


n∏
i=1

wi :
n∑
i=1

wi = 1,
n∑

i,j=1
wiwjh(Wi,Wj ;β) = 0

 . (7)

The constrained maximization involved in (7) is non-linear and computationally intensive. Wood et al. (1996) sug-
gested an approximation by sequentially linearizing the constraints. The method is ad-hoc and is computationally
intensive because it typically requires several iterations. A computationally more efficient method was proposed
by Jing et al. (2009). It essentially consists of rewriting Un(β) as a sum of asymptotically independent terms, say
Ĥi(β), for i = 1, . . . , n, and replacing the model constraint in (7) by

∑n
i=1 wiĤi(β) = 0, which is linear in the

wis, therefore making the maximization problem easier. Jing et al. (2009) constructed the Ĥi(β) as the jackknife
pseudo-values, defined as

Ĥi(β) = nUn(β)− (n− 1)U (−i)
n−1 (β), (8)

where U (−i)
n−1 (β) is the U -statistic of Equation (5) but with observation Wi removed from the sample, so that

H̄n(β) = n−1∑n
i=1 Ĥi(β) = Un(β). The method that results from this approach is known as the jackknife empir-

ical likelihood method. Jing et al. (2009) and Lin (2013) showed that Wilks’ theorem is still valid for the jackknife
empirical likelihood statistic.

As noticed by a referee, an alternative and possibly faster procedure exists in applying the modified Aitchi-
son/Silvey Lagrangian method of Bergsma et al. (2009), which is an adaptation of methods by Aitchison and Silvey
(1958); Lang and Agresti (1994) and Lang (1996) for maximizing a multinomial likelihood subject to constraints
(linear and non-linear). We may evaluate this method in future work.

A necessary condition for the maximum of the empirical likelihood or the jackknife empirical likelihood to exist
is that 0 is an interior point of the convex hull of the n points Ĥi(β). Because a maximum is often difficult to find,
Chen et al. (2008) proposed to add one extra pseudo-observation, say Ĥn+1(β), so that 0 is always included in the
resulting convex hull of n + 1 points. The extra point is given by Ĥn+1(β) = −anH̄n(β), for some an > 0.
The resulting empirical likelihood is known as the adjusted empirical likelihood. Chen et al. (2008) showed that if
an = op(n2/3), it retains the first order asymptotic properties of the classical empirical likelihood. They suggested
taking an = max{1, log(n)/2}, which worked well in a number of examples presented in their paper. Liu and
Chen (2010) later recommended using an = b/2, where b = τ4/2 − τ2

3 /3, with τr = E{h(Xi,Xj ;β)r}, is the
Bartlett correction factor for the original empirical likelihood, so that for a scalar estimating function the resulting
adjusted empirical likelihood achieves the higher-order precision of the Bartlett corrected empirical likelihood. If the
estimating function is of dimension q > 1, the authors propose adding an extra pseudo-observation an+1H̄n(β), with
an+1 − an = b.

The adjusted empirical likelihood was originally constructed from an empirical likelihood with a linear constraint.
The same procedure, however, is also valid when applied to the jackknife empirical likelihood. This has been demon-
strated by Zhao et al. (2015) and Wang et al. (2015) for building confidence regions for the mean absolute deviation of
random variables and for the Gini index, respectively. In the probabilistic index model setting, the adjusted jackknife
empirical likelihood can be written as

L(β) = max
w

{
n+1∏
i=1

wi :
n+1∑
i=1

wi = 1,
n+1∑
i=1

wiĤi(β) = 0
}
. (9)

The maximization in (9) has an analytical solution which is obtained by introducing Lagrange multipliers λT =
(λ1, . . . , λp) for dealing with the linear constraints. The maximum is reached at wi = {1 +λT Ĥi(β)}−1, where the
Lagrange multiplier is the solution to

1
(n+ 1)

n+1∑
i=1

Ĥi(β)
1 + λT Ĥi(β)

= 0. (10)
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After plugging the weights wi back into equation (9), the adjusted jackknife empirical likelihood ratio statistic be-
comes

R(β) = L(β)
(n+ 1)−(n+1) =

n+1∏
i=1
{1 + λT Ĥi(β)}−1. (11)

Zhao et al. (2015) and Wang et al. (2015) further showed that Wilks’ theorem is still valid for the adjusted jack-
knife empirical likelihood ratio statistic and their simulation results suggest that the confidence intervals obtained by
inverting the test lead to improvements in coverage when compared to the standard jackknife empirical likelihood
method. However, theory is available only for the p = 1 setting. Our Theorem 1 below, whose proof is given in the
Supplementary Material (section S.1), generalizes the results to p ≥ 1 dimensional parameters.

Theorem 1. Letβ0 be the true value ofβ and assume thath is a square-integrable kernel function, var[E{h(W1,W2;β) |
W1}] is finite and nonsingular, and an = op(n2/3). Then, with R(β) as defined in Equation (11),

−2 log {R(β0)} → χ2
p

in distribution, as n→∞.

All empirical likelihood methods discussed so far, come with their own Wilks’ theorem that provides the chi-
square distribution as an asymptotic approximation. Owen (1990) argued that the chi-square distribution may be
replaced by a scaled F -distribution to improve the small sample coverage of confidence intervals. In particular, for
the setting of Theorem 1, χ2

p can be replaced by (n − 1)p/(n − p)Fp,n−p (Owen, 1990). The simulation study of
Section 4 includes a comparison of empirical likelihood methods relying on both approximations.

The result of Theorem 1 relies on the convergence of H̄T
n (β0)Σ̂−1

H (β0)H̄n(β0) to a chi-square distribution with p
degrees of freedom, where Σ̂H(β) = n−1∑n

i=1 Ĥi(β)ĤT
i (β) is a consistent estimator of var{Un(β)} (Lee, 1990).

This approximation can be further improved by minimizing the finite-sample bias of Σ̂H(β), as suggested in the
proposition below whose proof is also given in the Supplementary Material (Section S.2).

Proposition 2. Let Σ̂(c)
H (β) = n−1∑n

i=1 Ĥ
(c)
i (β)[Ĥ(c)

i (β)]T , where Ĥ(c)
i (β), for i = 1, . . . , n, are the jack-

knife pseudo-values based on U (c)
n (β) with βc = 0. If the regularity conditions of Theorem 1 are satisfied, then

abs[bias{Σ̂(c)
H (β0)}] ≤ abs[bias{Σ̂H(β0)}], where abs{H(·)} stands for the absolute value of the components of

H(·) and the inequality holds component-wise.

Since the bias-reduced estimator β̂br is consistent, Theorem 1 also holds with this estimator. For completeness,
this result is stated in the following theorem (the proof follows the same steps as for Theorem 1 and is thus omitted).

Theorem 2. Let Ĥ(c)
i (β) be defined as in Proposition 2, let β0 be the true value of β and assume that the regularity

conditions of Theorem 1 are satisfied. Then, with R(c)(β) =
∏n+1
i=1 {1 + λT Ĥ(c)

i (β)}−1,

−2 log
{
R(c)(β0)

}
→ χ2

p

in distribution, as n→∞.

Because of the reduced bias (Proposition 2), we expect that the empirical likelihood ratios may lead to a better
chi-square approximation in finite-sample when compared to the original jackknife and adjusted jackknife empirical
likelihood methods. Their finite sample properties will be empirically investigated in Section 4.

3.3. Profile Adjusted Jackknife Empirical Likelihood
In this section we introduce a more flexible adjusted jackknife empirical likelihood that allows us to make inference

on a subset of β only. To this end, let β be partitioned as βT = (ξT ,γT ), where ξ is a q1-dimensional vector and γ
a q2(= p− q1)-dimensional vector. We are only interested in inference on ξ, so that γ is of no interest in its own and
is treated as a nuisance parameter.

Qin and Lawless (1994) first showed that Wilks’ theorem is valid when using the profile empirical likelihood
L(ξ) = L{ξ, γ̂(ξ)}, where γ̂(ξ) maximizes L(β) = L((ξt,γt)t) with ξ held fixed. An alternative approach that
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reduces the computational burden of estimating γ̂(ξ) for each ξ was recently introduced by Li et al. (2011). The
authors proposed a two-step jackknife empirical likelihood procedure in which the nuisance parameter γ is first
estimated from q2-dimensional estimating equations and the jackknife empirical likelihood is subsequently applied to
the remaining q1 estimating equations, with γ̂(ξ) replaced by the estimate of γ, say γ̃(ξ). Wilks’ theorem was shown
to hold for this setting. Here we extend it to the adjusted jackknife empirical likelihood method.

First, consider the partition UT
n (β) = {UT

n,1(β),UT
n,2(β)} in which the two components correspond to the q1

and q2-dimensional parts of Un(β), relating to ξ and γ, respectively. Let the jackknife pseudo-values be defined
as Ĥi,1(ξ) = nUn,1{ξ, γ̃(ξ)} − (n − 1)U (−i)

n−1,1{ξ, γ̃(−i)(ξ)}, i = 1, . . . , n, where γ̃(ξ) and γ̃(−i)(ξ) are the

solutions ofUn,2(ξ,γ) = 0 andU (−i)
n,2 (ξ,γ) = 0, respectively, with ξ held fixed, and Ĥn+1,1(ξ) = −anH̄n,1(ξ) =

−ann−1∑n
i=1 Ĥi,1(ξ), for some an > 0. Note that as the probabilistic index model estimator β̂ satisfiesUn(β̂) = 0

and since n−1∑n
i=1 Ĥi,1(ξ) = Un,1{ξ, γ̃(ξ)}, we have that Un,1{ξ̂, γ̃(ξ̂)} = 0. This leads to the profile adjusted

jackknife empirical likelihood

L(ξ) = max
w

{
n+1∏
i=1

wi :
n+1∑
i=1

wi = 1,
n+1∑
i=1

wiĤi,1(ξ) = 0
}
.

The following theorem confirms the validity of the Wilks’ theorem.

Theorem 3. Let ξ0 be the true value of ξ and assume that the regularity conditions of Theorem 1 hold . Then,

−2 log {R(ξ0)} = −2 log
{
L(ξ0)/(n+ 1)−(n+1)

}
→ χ2

q1
,

in distribution, as n→∞.

This result can be proved by first observing that max1≤i≤n ‖Ĥi,1(ξ)‖ = oP (n1/2) (Li et al., 2011). The remainder
of the proof is similar to that of Theorem 1 and is thus omitted.

4. Simulation Study

4.1. Description

In this section we empirically evaluate the methods of Section 3 for small sample inference. We generate data
from the linear model

Y = XTα+ ε. (12)

Our goal is to make inference about β, the parameter of the probabilistic index model (1). Following Thas et al.
(2012) the parameters α and β are related. Specifically, if ε follows a standard normal distribution, one can show
that β = α/

√
2, Zij = Xj −Xi and g−1(·) is the probit link function. If ε follows a Gumbel distribution, β = α,

Zij = Xj −Xi and g−1(·) is the logit link function. This simple relationship allows us to simulate from (12) and
assess the performance of inference on the parameter β. In this section we present results when the error term follows
a standard normal distribution. Results for a Gumbel distributed error are available in section S.4 of the Supplementary
Material.

The focus of this simulation study is on the coverage of confidence intervals for β. Recall that for both β̂ and
β̂br, which are the solutions to Un(β) = 0 and U (c)

n (β) = 0, respectively, standard Wald intervals are available.
These intervals are compared with respect to length and coverage, to those obtained from the following methods: the
bootstrap and bias-reduced bootstrap method of Jiang and Kalbfleisch (2012), the jackknife and bias-reduced jackknife
empirical likelihood and the adjusted and bias-reduced adjusted jackknife empirical likelihood. For the latter, we
considered the empirical an = max{1, log(n)/2}, as well as an = b/2, which is related to the Bartlett correction for
the original empirical likelihood, as discussed in Section 3.2. The adjusted jackknife empirical likelihood methods
are implemented both with the χ2 and the scaled F distributions for calibration. For the bootstrap methods, we assign
the resampling weights as independent Gamma(1,1), as in Jiang and Kalbfleisch (2012), and use quantiles from the
bootstrap replications to generate the bootstrap confidence interval.
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Table 1: Empirical coverages (in %) for scalar β, based on 2, 500 Monte Carlo simulations for Model (12) with α = 0 and α = 2
√

2 and a normal
error distribution. Results are presented for nominal coverages of 95% and different sample sizes.

sample size
20 25 35 50 75 100 20 25 35 50 75 100

α = 0 α = 2
√

2

PIMw 89.8 91.9 92.6 93.4 93.6 94.8 87.4 88.6 90.8 92.4 93.2 94.5
BR-PIMw 90.1 91.8 92.5 93.3 93.6 94.7 90.2 90.5 92.3 93.4 93.7 94.7
ATS1 89.8 91.9 92.6 93.4 93.6 94.8 87.4 88.6 90.8 92.4 93.2 94.5
BR-ATS1 90.1 91.8 92.5 93.3 93.6 94.7 90.2 90.5 92.3 93.4 93.7 94.7
ATS2 91.8 92.8 93.6 93.9 94.1 94.9 89.0 90.2 92.0 92.9 93.8 94.6
BR-ATS2 91.8 92.9 93.7 93.9 94.2 94.8 92.1 92.2 93.3 94.3 94.0 94.8
EFt 96.4 96.4 95.7 95.3 94.8 95.4 90.8 91.5 92.6 93.4 93.7 94.8
BR-EFt 95.9 96.5 95.6 95.2 95.0 95.2 92.6 93.0 93.7 94.5 94.6 95.0
JEL 93.2 94.3 94.6 94.9 94.8 95.3 90.1 91.6 92.7 93.8 94.2 95.1
BR-JEL 93.2 94.3 94.6 94.9 94.8 95.3 93.2 93.9 94.4 94.9 95.0 95.4
AJEL 95.2 96.0 95.7 95.8 95.4 95.8 91.4 92.7 93.8 94.5 94.8 95.4
BR-AJEL 95.2 96.0 95.7 95.8 95.4 95.8 94.7 95.2 95.5 96.1 95.8 95.6
AJELb 94.0 95.0 95.2 95.3 95.2 95.5 90.6 92.2 93.2 94.3 94.6 95.2
BR-AJELb 94.0 95.0 95.2 95.3 95.2 95.5 93.9 94.4 94.8 95.4 95.4 95.6
AJELF

b 95.7 96.2 95.7 95.7 95.4 95.7 92.1 93.0 94.0 94.7 94.9 95.4
BR-AJELF

b 95.7 96.2 95.7 95.7 95.4 95.7 94.9 95.5 95.6 96.2 95.9 95.6

NOTE: (BR-)PIMw , standard Wald intervals based on (β̂br) β̂; (BR-)ATS1, (bias-reduced) anova-type-statistic of type 1; (BR-)ATS2 anova-type-
statistic of type 2; (BR-)EFt, (bias-reduced) bootstrapping U -statistics; (BR-)JEL, (bias-reduced) jackknife empirical likelihood; (BR-)AJEL,
(bias-reduced) adjusted jackknife empirical likelihood with an = max{0, log(n)/2}; (BR-)AJELb, (bias-reduced) adjusted jackknife empirical
likelihood with an = b/2; (BR-)AJELF

b , (bias-reduced) AJELb with a scaled F -distribution.

Two more methods are included in the simulation study. Brunner et al. (1997) and Brunner et al. (2016) argued
that small sample performance of rank methods that rely on Wald-type statistics may suffer from problems related
to the inversion of a large covariance matrix. They proposed alternative statistics, which they refer to as ANOVA-
type statistics, that avoid such matrix inversions, and instead rely on asymptotic approximations by scaled chi-square
(ANOVA-type-statistic of type 1) or F distributions (ANOVA-type-statistic of type 2) with estimated degrees of
freedom. Their ANOVA-type statistics are easy to construct for probabilistic index models and are based on the test
statistic β̂TT β̂, where T is the identity matrix with dimensions p×p; details are provided in Supplementary Material
(section S.3). These statistics are test statistics, and confidence intervals are obtained by inverting the tests.

4.2. Results for scalar α

The empirical evaluation is based on 2.500 Monte Carlo simulation runs, with 999 bootstrap samples. Several
sample sizes n and two values for α (and hence β) are considered. We generate data from (12), with X taking equally
spaced values between 0.1 and 1. The error term is simulated from a standard normal distribution. The empirical
coverages of the confidence intervals are presented in Table 1 and their respective average lengths are displayed in
Table 2. Figure 1 summarizes Tables 1 and Table 2 by comparing only 3 methods: the Wald-type, the ANOVA-type 2
statistics and the bias-reduced adjusted jackknife empirical likelihood with the scaled F -distribution approximation.

Wald-based confidence intervals show poor coverage in most cases and especially when the sample size n is equal
to 25 or lower. The large finite-sample bias of β̂ (Thas et al., 2012) partly explains the poor coverages when the
parameter β (and thus α) deviates from zero. The bias-reduced estimator β̂br reduces bias and the associated Wald
confidence intervals show better results, but this improvement is limited. This may be to some extent explained by
both confidence intervals relying on the asymptotic normality of β̂ and β̂br. Figure S.1 in the Supplementary Material
shows normal quantile-quantile plots of 2, 500 estimates β̂ from a simulation study. The coverages of the confidence
intervals based on the ANOVA-type statistics are only slightly better than the Wald-based intervals and substantially
worse than that obtained by the bias-reduced Bartlett-corrected jackknife empirical likelihood method with the scaled
F -distribution approximation. This is clearly seen on Figure 1.
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Table 2: Average lengths of confidence intervals for scalar β, based on 2, 500 Monte Carlo simulations for Model (12) with α = 0 and α = 2
√

2
and a normal error distribution. The associated empirical coverages are displayed in Table 1.

sample size
20 25 35 50 75 100 20 25 35 50 75 100

α = 0 α = 2
√

2

PIMw 2.22 2.03 1.75 1.49 1.23 1.07 2.40 2.21 1.93 1.65 1.37 1.20
BR-PIMw 2.22 2.03 1.75 1.49 1.23 1.07 2.51 2.27 1.96 1.66 1.37 1.20
ATS1 2.20 2.01 1.74 1.47 1.21 1.06 2.38 2.19 1.91 1.63 1.36 1.18
BR-ATS1 2.21 2.02 1.74 1.48 1.22 1.06 2.49 2.26 1.95 1.65 1.36 1.19
ATS2 2.36 2.13 1.81 1.51 1.24 1.07 2.55 2.32 1.99 1.68 1.39 1.20
BR-ATS2 2.36 2.13 1.81 1.52 1.24 1.08 2.66 2.38 2.02 1.69 1.39 1.21
EFt 3.13 2.60 2.05 1.65 1.31 1.12 3.50 2.87 2.25 1.82 1.45 1.25
BR-EFt 3.17 2.60 2.05 1.65 1.31 1.12 3.67 2.96 2.29 1.82 1.46 1.25
JEL 2.65 2.28 1.86 1.54 1.22 1.06 3.64 2.88 2.27 1.83 1.47 1.26
BR-JEL 2.62 2.27 1.86 1.54 1.22 1.06 3.89 2.91 2.27 1.82 1.46 1.26
AJEL 3.13 2.57 2.01 1.63 1.26 1.09 4.81 2.98 2.46 1.93 1.52 1.29
BR-AJEL 3.07 2.54 2.01 1.63 1.26 1.09 4.84 3.26 2.43 1.91 1.50 1.29
AJELb 2.84 2.39 1.93 1.57 1.23 1.07 4.94 3.33 2.38 1.89 1.50 1.28
BR-AJELb 2.77 2.37 1.92 1.57 1.23 1.07 4.15 3.02 2.33 1.86 1.48 1.27
AJELF

b 3.18 2.58 2.01 1.62 1.26 1.09 5.11 3.44 2.49 1.94 1.52 1.30
BR-AJELF

b 3.11 2.55 2.00 1.62 1.26 1.09 4.93 3.25 2.43 1.91 1.50 1.28

NOTE: (BR-)PIMw , standard Wald intervals based on (β̂br) β̂; (BR-)ATS1, (bias-reduced) anova-type-statistic of type 1; (BR-)ATS2 anova-type-
statistic of type 2; (BR-)EFt, (bias-reduced) bootstrapping U -statistics; (BR-)JEL, (bias-reduced) jackknife empirical likelihood; (BR-)AJEL,
(bias-reduced) adjusted jackknife empirical likelihood with an = max{0, log(n)/2}; (BR-)AJELb, (bias-reduced) adjusted jackknife empirical
likelihood with an = b/2; (BR-)AJELF

b , (bias-reduced) AJELb with a scaled F -distribution.

Figure 1: Empirical coverages of the confidence interval based on β̂br, the ANOVA-type-test ATS2 and finally on the bias-reduced adjusted
jackknife empirical likelihood with the scaled F -distribution approximation BR-AJELF

b . Results are based on 2, 500 Monte Carlo runs and on
Model (12) with normal error distribution and for different sample sizes. The left panel corresponds to α = 0 and the right to α = 2

√
2 in model

(12).
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Table 3: Empirical coverages (in %) for β1, based on 2, 500 Monte Carlo simulations for Model (12) with αT = (0, 0), (
√

2, 0) and a normal
error distribution. Results are presented for a nominal coverage (NC) of 95% and sample sizes of n = 20, 40, 60 and 80.

sample size
20 40 60 80 20 40 60 80

α = (0, 0) α = (
√

2, 0)

JEL 92.4 94.4 94.4 94.9 92.0 92.1 92.8 93.5
BR-JEL 91.8 94.1 94.2 94.7 94.6 95.1 95.4 95.8
AJEL 94.7 95.4 95.0 95.5 93.0 92.9 93.6 94.4
BR-AJEL 94.1 95.1 95.0 95.4 96.0 96.0 95.9 96.1
AJELb 93.5 94.9 94.8 95.4 92.4 92.4 93.3 94.0
BR-AJELb 93.1 94.7 94.6 95.2 95.4 95.4 95.6 95.8
AJELF

b 95.2 95.6 95.1 95.6 93.1 92.9 93.8 94.5
BR-AJELF

b 94.4 95.3 95.0 95.4 96.2 96.1 95.8 96.1
NOTE: (BR-)JEL, (bias-reduced) jackknife empirical likelihood; (BR-)AJEL, (bias-reduced) adjusted jackknife empirical likelihood with an =
max{0, log(n)/2}; (BR-)AJELb, (bias-reduced) adjusted jackknife empirical likelihood with an = b/2; (BR-)AJELF

b , (bias-reduced) AJELb
with a scaled F -distribution.

The other methods based on bootstrapping and empirical likelihood do not rely on the symmetry of the asymptotic
normal distribution of β̂ or β̂br and perform substantially better. They are, however, still affected by finite-sample
bias. Their bias-reduced versions, i.e. those that use the variance Vc evaluated at βc = 0, on the other hand, perform
markedly better for the smaller sample sizes, resulting in coverages that are close to the nominal values. In particular,
the bias-reduced Bartlett-corrected adjusted jackknife empirical likelihood method performs overall better than all
other empirical likelihood methods. Both the adjusted Bartlett-corrected and the bias-reduced jackknife empirical
likelihood methods perform well, but the latter is more computationally intensive than the former.

For three methods, Figure 1 summarizes the results on coverage and length of confidence intervals for several sam-
ple sizes. We conclude that lengths of intervals generally reduce with increasing sample size, and that the bias-reduced
adjusted jackknife empirical likelihood intervals show overall better coverage (slightly conservative). Particularly for
small sample sizes this comes at a price of larger lengths as compared to the other methods, which, however, are
overoptimistic in terms of coverage.

4.3. Results for vector α
We now extend the simulation study to a bivariate vector β and compute the empirical coverages after 2,500 Monte

Carlo runs. We generate data from (12) with XT = (X1, X2) and X1 and X2 independent from each other, with
X1 taking equally spaced values between 0.1 and 1 and X2i ∼ U(0, 0.8), for i = 1, . . . n/2 and X2i ∼ U(0.2, 1),
for i = n/2 + 1, . . . n. The error term is simulated from a standard normal distribution. The relationship between
αT = (α1, α2) and the βT = (β1, β2) parameters of the probabilistic index model (1) still holds. Table 3 shows
results for the coverage of β1 when β2 is of no interest in its own and is treated as a nuisance parameter. Here we use
the profile likelihood discussed in Section 3.3 for inference.

The results are similar to the univariate case. The bias-reduced adjusted jackknife and bias-reduced Bartlett-
corrected adjusted jackknife empirical likelihood methods perform generally well. Hence both methods form an
attractive and viable approach for making small sample inferences from estimates obtained via the probabilistic index
models. However, since the Bartlett-corrected approach makes use of a better motivated choice for the an factor in
the pseudo-observation, we recommend it for inference for probabilistic index models.

Next we extend our simulation scenario to a vector α of length p ≥ 2. We take α = 0p (and thus β = 0p), where
0p is a vector of zeros of length p, and we are now interested in constructing confidence regions for β. To this end,
we generate data from the linear model (12), with X following a multivariate normal distribution with mean 0 and
covariance matrix equal to the [p × p] identity matrix. The error term follows a standard normal distribution; results
for a Gumbel distributed error are available in the Supplementary Material (Table S.4). The empirical coverage based
on 2,500 Monte Carlo runs for Wald-based, ANOVA-type and all empirical likelihood methods are displayed in Table
4. Figure 2 summarizes the information from Table 4 by comparing the best Wald-based, ANOVA-type and empirical
likelihood based method.
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Table 4: Empirical coverages (in %) for β, based on 2, 500 Monte Carlo simulations for Model (12) with α = 0p and a normal error distribution.
Results are presented for nominal coverages of 95% and different sample sizes.

p 2 3 4 5 2 3 4 5 2 3 4 5

n = 25 n = 50 n = 100

PIMw 85.5 79.2 70.6 61.2 90.8 89.2 86.3 81.8 92.8 91.7 91.1 90.0
BR-PIMw 86.2 80.8 73.6 64.6 91.2 89.3 87.0 83.4 93.0 91.8 91.6 90.4
ATS1 88.4 86.2 84.3 81.5 91.4 91.3 89.8 88.6 93.5 92.9 92.6 91.4
BR-ATS1 89.8 89.0 89.3 89.3 91.9 91.9 91.7 91.0 93.4 93.2 93.0 92.5
ATS2 89.4 87.4 85.5 82.7 91.7 91.8 90.5 89.0 93.6 93.2 92.7 91.7
BR-ATS2 90.8 90.6 90.4 90.0 92.4 92.3 92.3 91.3 93.8 93.6 93.1 92.7
JEL 90.6 87.0 81.8 73.0 93.2 91.6 89.8 86.8 94.1 94.0 92.9 92.4
BR-JEL 90.6 87.0 81.8 73.0 93.2 91.6 89.8 86.8 94.1 94.0 92.9 92.4
AJEL 92.6 89.6 86.0 79.6 93.8 92.9 91.5 88.6 94.5 94.7 93.4 93.1
BR-AJEL 92.6 89.6 86.0 79.6 93.8 92.9 91.5 88.6 94.5 94.7 93.4 93.1
AJELb 91.7 88.4 84.1 78.1 93.6 92.3 90.8 88.1 94.4 94.3 93.1 92.8
BR-AJELb 91.7 88.4 84.1 78.1 93.6 92.3 90.8 88.1 94.4 94.3 93.1 92.8
AJELF

b 94.7 93.2 92.1 91.3 95.0 95.0 93.6 92.8 95.0 95.2 94.4 94.3
BR-AJELF

b 94.7 93.2 92.1 91.3 95.0 95.0 93.6 92.8 95.0 95.2 94.4 94.3

NOTE: (BR-)PIMw , standard Wald intervals based on (β̂br) β̂; (BR-)ATS1, (bias-reduced) anova-type-statistic of type 1; (BR-)ATS2 anova-type-
statistic of type 2; (BR-)EFt, (bias-reduced) bootstrapping U -statistics; (BR-)JEL, (bias-reduced) jackknife empirical likelihood; (BR-)AJEL,
(bias-reduced) adjusted jackknife empirical likelihood with an = max{0, log(n)/2}; (BR-)AJELb, (bias-reduced) adjusted jackknife empirical
likelihood with an = b/2; (BR-)AJELF

b , (bias-reduced) AJELb with a scaled F -distribution.

Figure 2: Empirical coverages of the Wald-based confidence interval for β̂br, the two ANOVA-type-statistics ATS1 and ATS2 based on the bias-
reduced PIM estimate β̂br, and bias-reduced adjusted jackknife empirical likelihood with the scaled F -distribution approximation BR-AJELF

b .
Results are average values of 2, 500 Monte Carlo runs, for data generated from Model (12) with αp = 0p, normally distributed error and for
samples of sizes n = 25, 50 and 100 (left to right).

Wald-based confidence intervals show very poor performance, with empirical coverage close to 60% when β = 05
and n = 25. Its bias-reduced version leads to better empirical coverage, but it is still far below the nominal value. Both
ANOVA-type statistics show large improvements over Wald-based confidence regions and their bias-reduced versions,
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which use the bias-reduced estimate β̂br in the computation of the test statistic, show substantial improvements. For
example, when α = 05 and n = 25, the unadjusted ANOVA-type statistic of type 2 has an empirical coverage
of 82.7%, while its bias-reduced version lead to 90.0%. Their empirical coverages, however, are still below those
obtained from the Bartlett-corrected adjusted jackknife empirical likelihood with the F -distribution approximation.
This is clearly seen in Figure 2. Finally, as the ANOVA-type statistic is based on β̂TT β̂, where T , in this case, is the
identity matrix with dimensions p× p, it does not take into account the correlation between the estimated parameters
and will lead, in the special case when p = 2, to circular confidence regions. Empirical likelihood based methods,
on the other hand, lead to confidence regions that resemble an ellipse, as the correlation between the outcomes is
now taken into account. This, together with its better performance in our simulation studies, suggests that the bias-
reduced Bartlett-corrected adjusted jackknife empirical likelihood with the F -distribution approximation is to be
recommended for small sample inference in the probabilistic index model framework.

5. Illustration

The PASSAGE (Training Program of Efficient Self-Management Strategies, in French) program is a group inter-
vention study for the self-management of Fibromyalgia syndrome (FMS), which is a chronic disorder of uncertain
origin and causes widespread musculoskeletal pain in association with fatigue, poor sleep quality, cognitive dys-
function, mood disturbances, and many other variable somatic symptoms (Bourgault et al., 2015). The intervention
consists of providing psycho-educational tools and physical exercises with the purpose of reducing FMS symptoms
and improving quality of life (QOL).

The primary outcome was reduction in pain intensity (numerical rating scale, where 0 indicates “no pain” and 10
indicates “worst possible pain”) and secondary outcomes included whether the intervention improved pain (binary
outcome), quality of life (QOL) (“remained unchanged”, “considerably deteriorated” or “considerably improved”) or
pain relief (dichotomized variable, based on 0 − 100% perception of pain relief, with cut-off value at 50%), among
others. The study was performed in two centers located in Quebec, Canada, and the intervention was randomized
within study site. A total of 43 individuals (23 in the control group) with complete data measured at the beginning
and three months after the intervention had started were later used in the analysis.

As the nature of the outcomes is mostly ordinal, the probabilistic index model is a natural choice to make inference
regarding the efficacy of the intervention conditioned on study site. We analyzed the impact of the intervention on
improving pain, QOL and pain relief, while adjusting for study site with a probabilistic index model with logit link.
We also analyzed the primary outcome with a probit link, with average pain intensity at baseline, treatment and study
site as regressors. Confidence intervals, after 999 bootstrap replicates, for the estimated probabilistic index for two
randomly selected persons from the same study site, but from different treatment groups, are shown in Figure 3. Table
S.5 in Supplementary Material shows the results numerically. In all analyses, study site was not significant at the 5%
level, but it was kept in all models.

Our results agree with the original paper in their main conclusions. In particular, patients reported a significant
improvement in their pain levels and in their quality of life, while their pain relief and their average pain were not
significantly improved by the PASSAGE program, at a 5% significance level. For instance, the bias-reduced Bartlett-
corrected adjusted jackknife empirical likelihood method with the scaled F -distribution, which often performed better
than its competitors in the simulation studies, shows that for two randomly selected persons from the same study site,
the person that attended the PASSAGE program reported improvements in their pain levels with probability of 81.0%
and with a 95% confidence interval of [66.4%; 91.7%].
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Figure 3: 95% confidence intervals for the treatment effect, on the scale of the probabilistic index, on pain improvement, on improvement in
quality of life (QOL), on pain relief improvement and on average pain intensity. The horizontal dotted and dot-dashed lines denote the narrowest
and widest confidence intervals, respectively. The vertical long-dashed and solid lines correspond to a probabilistic index of 0.5 (no effect) and to
the estimate probabilistic index, respectively. All methods are abbreviated as in the footnote below Table 1.
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