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Introduction 

The law of causality, I believe, like much that passes 
muster among philosophers, is a relic of a bygone 
age, surviving, like the monarchy, only because it is 
erroneously supposed to do no harm. (Russell 1912, 
p.1) 

Philosophy of science aims to critically engage with scientific inquiry, to gain a better 

understanding of what science is, how science works and what conclusions can be drawn 

from scientific studies. If we look at the historical development of philosophy, it is 

obvious that science has been an object of philosophical investigation from the very 

beginning. Aristotle, for example, already reflected on scientific inquiry, the inductive-

deductive method, and causation (Losee 2001, pp.5-11).  

On closer inspection though, it becomes clear that the field now bears little 

resemblance to how it started. This is not surprising given the continuous development 

of science and the long history of the field. At the moment, “philosophy of science” 

captures a broad array of topics, including attempts to characterise and understand a 

(universal) scientific method, the quest for a demarcation criterion of science, insight in 

how scientific discovery works, accounts of justification and many more:  

The central target of philosophy of science is to understand science as a cognitive 

activity. Some of the central questions that have arisen and thoroughly been 

discussed are the following. What is the aim and method of science? What rules, if 

any, govern theory-change in science? How does evidence relate to theory? How 

do scientific theories relate to the world? How are concepts formed and how are 

they related to observation? What is the structure and content of major scientific 

concepts, such as causation, explanation, laws of nature, confirmation, theory, 

experiment, model, reduction and so on? (Psillos 2007, p.x) 
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Most of these topics are epistemological; they focus on how science provides us with 

knowledge and what the properties of this knowledge are. Other questions arise from a 

more metaphysical corner: 

The question on which this book will focus is, ‘ought we to believe in the 

unobservable entities postulated by our best scientific theories?’ […]. (Ladyman 

2002, p.8) 

This dissertation cannot engage with all these topics. It will deal with epistemological 

questions regarding causation, evidence and laws. These topics are interrelated, as will 

become clear, but if one of them is central for my purposes, it is causation.  

Though this is not a novel topic (as mentioned, Aristotle already wrote on it), the last 

few decades have meant a boost in the diversity of approaches and scientific disciplines 

that have been investigated with regard to the causal claims they make, what these 

claims mean and what evidence is needed to support them. An exception is physics, 

where the main focus of reflection has been whether the laws express causal 

information at all. This question is often tackled from a very mathematical perspective 

and many philosophers (Bertrand Russell, John Norton, Huw Price, Donald Gillies,…) have 

concluded that the laws of physics are void of causal information – witness the quote in 

the beginning of this introduction. On closer inspection however, the debate is guided by 

some hidden assumptions that may be debatable. By challenging these assumptions, I 

will create room for a different analysis and correspondingly, a place for physical causal 

knowledge. 

The debate assumes that the mathematical expressions of the laws of physics carry all 

their information, and that the laws exhaust the content of physics. Correspondingly, if 

there is no reference to causality there, there is no causal information in physics. In this 

dissertation, I expand the debate in a substantial way. Instead of looking at 

mathematically expressed laws, I will look at the ways we use physical causal knowledge. 

A focus on applications is notoriously absent from philosophy of physics, yet there is a 

very common-sense reason for including them in philosophical analysis: 

the emphasis on ‘use’ reminds us that we study the natural and social world for a 

reason, and we also conceptualize causal relations for a reason. (Illari and Russo 

2014, p.238) 
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Regarding physics, philosophers tend to assume that applications follow rather 

straightforwardly from the laws.1 In this dissertation, I build on existing philosophical 

analyses developed in light of the special sciences (viz. the social and biomedical 

sciences), to show that this view is mistaken. Moreover, when we thoroughly look at 

applications, the claim that physics contains no causal information turns out to be 

untenable, and a whole array of assumptions with it.  

I will pay attention to three topics: the meaning of physical causal claims, the evidence 

we need to warrant these uses and the relation these claims have to the laws of physics. 

This is also the order reflected in the dissertation: chapter 2 deals with meaning, 

chapters 3 and 4 deal with evidence and chapter 5 directly deals with the relation to 

laws. My dissertation has four specific aims which fit into the three topics above, and 

two more generic, programmatic aims. As to the specific aims, I want to provide 

arguments for the following claims: 

(I) To account for our successful creating, explaining, repairing, and 

maintaining of artefacts, we need a lot of specific physical causal 

information of the right kind, both of the artefact and of the physical and 

social context it functions in. 

(II) The evidence needed to argue for physical causal claims extends beyond 

the laws of physics. We also use mechanistic evidence. 

(III)  The laws of physics are not the only source of general knowledge that is 

used to reach epistemic goals. Another important source is generalising 

local causal knowledge. 

(IV) When looking at use, the importance of the distinction between laws and 

non-laws becomes significantly less prominent and the focus shifts to 

contextual goals. As such, the focus that philosophy of physics puts on 

theory and fundamental laws does not aid us in understanding how we use 

physical causal knowledge to achieve epistemic goals. 

The more generic aims are the following: 

(A) To show that using and producing physical causal knowledge is not a trivial 

affair. 

 

                                                     
1 The work of Nancy Cartwright is a notable exception. She stressed the importance of a use-perspective even 

in her early work like (1979).  
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(B) To show there a several serious philosophical issues connected to useful 

physical causal knowledge.  

The relation between these groups of aims is as follows: (I) till (IV) are positions with 

respects to some of the issues mentioned in (B). The way in which these aims are 

reached differs: (I) till (IV) each have a dedicated chapter (as mentioned above), while (A) 

and (B) are realised by the dissertation as a whole. In the conclusions of each chapter, I 

will systematically address how the chapter contributed to arguing for the specific and 

the generic aims. My conclusions will contradict several traditional views and 

assumptions of philosophy of physics.  

The conclusion is not the only non-conformist aspect of this dissertation: I also use an 

uncommon methodology and uncommon cases. Regarding the methodology, I will use 

philosophical tools from the special sciences to analyse physical cases. Because of the 

prestige that physics has as a science (and correspondingly, the prestige that philosophy 

of physics has), it is often used as an example for the special sciences. So using 

philosophy of the special sciences as a guidance for analysing physical cases is not that 

common. But as will become clear throughout this dissertation, doing so opens a lot of 

perspectives. 

Regarding cases, I will mainly focus on contexts associated with creating, explaining, 

repairing and maintaining artefacts. This is a practice that pertains to the engineering 

sciences and technology. In general, reflections on engineering and on technology are 

not seen as part of philosophy of physics; they make up their own domain. Moreover, 

there is some controversy whether engineering, or design, constitute sciences. 

Philosophers of technology have attempted to demarcate their field by arguing that it 

has different features than science (e.g. (Galle and Kroes 2014)).  

The cases will also increase in complexity throughout the chapters. This allows me to 

reflect on the different aspects of using causal knowledge (viz. meaning, evidence and 

relation to laws) in a methodical way, and to show that each of these aspects involves 

specific challenges worthy of philosophical attention. 

Because of these somewhat controversial choices, I will first spend some time framing 

them in the next chapter. I will first present more background information needed to 

understand my dissertation properly. This information will also allow me to motivate my 

choices of research topics. I will scrutinise the theory-centeredness of philosophy of 

physics and its emphasis on laws. By comparing this with the debates in philosophy of 

the social and of the biomedical sciences, I will argue in favour of a more practice-

engaged philosophy of physics and physical knowledge. I will also spend some time 

sketching the status of the debate on causality in theoretical physics, by comparing John 

Norton’s position with that of Mathias Frisch. I will also situate my dissertation in the 
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literature on causality and on artefacts. Finally, I will reflect on the case-studies that I use 

throughout this dissertation. The chapter ends with a more specific formulation of my 

research questions and a more elaborate overview of what can be expected of the next 

chapters. 

As a final remark, I would like to note that this dissertation may contain errors and 

typos. I wanted to have a final read to correct some of those. Unfortunately, as it goes, 

time did not agree.  

References 

Cartwright, Nancy. 1979. Causal laws and effective strategies. Nous:419-437. 
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Losee, John. 2001. A Historical Introduction to the Philosophy of Science. Fourth Edition ed. 

Oxford, New York: Oxford University Press. 
Psillos, Stathis. 2007. Philosophy of science AZ: Edinburgh University Press. 
Russell, Bertrand. 1912. On the notion of cause. Proceedings of the Aristotelian society 13:1-

26. 
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Chapter 1 Why, how, and what? Framing this 

dissertation 

This dissertation engages with topics from philosophy of science, philosophy of physics, 

philosophy of engineering, philosophy of technology and philosophy of causation. To see 

how my dissertation relates to these disciplines and how it might contribute to them, I 

will first identify some tendencies in philosophy of science and philosophy of physics 

specifically that make interaction with philosophy of engineering and of technology 

particularly difficult, namely a focus on theory and taking physics as a paradigm science. I 

will then sketch how a Philosophy of Science in Practice (PSP) approach can make a 

difference. This will set up the general framework in which my dissertation should be 

understood and will allow me to specify my central questions further: questions 

regarding our use of physical causal knowledge. To relate my questions and the thesis in 

general to the literature, I will then pay some attention to what a focus on use can do, to 

the variety of theories of causality, and to artefacts and the engineering sciences. This 

discussion should give the reader enough background information to understand what I 

want to achieve with this work, and equally, what I do not want to do. Let’s start with 

the theory-focus of philosophy of science.  

1.1 The focus of philosophy of science 

1.1.1 What is science? 

The brief characterisation in the introduction showed that the field of philosophy of 

science is vast and diverse. But like every study of a specific field, doing philosophy of 

science hinges on some (implicit) conception of the domain of study and of the reason 
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why it is interesting or worthwhile to investigate. Philosophers have argued that before a 

thorough study of science can begin, we need a definition of what science is and which 

practices are mistakenly seen as scientific. 

If we want to understand how science works, it seems that the first thing we need 

to do is work out what exactly we are trying to explain. Where does science begin 

and end? Which kinds of activity count as “science”? […] There is a lot of 

disagreement about what counts as science. (Godfrey-Smith 2009, p.2) 

Schurz connects this to the difference in societal status between science and non-

science: 

The demarcation problem is highly significant in society. In this context, this 

question consists of which of our ideas have a claim to the status of objective 

knowledge that should be taught in public educational institutions, as opposed to 

subjective opinion, political values, ideologies or religious convictions. (2013, p.2) 

Unfortunately, what society sees as science, is not straightforward either. Nor is it 

constant: what disciplines are seen as scientific changes throughout history. For 

example, it used to be quite controversial to call disciplines like economics and 

psychology “science”. Currently, there is some consensus about their scientific status 

(Godfrey-Smith 2009, p.3). But many other fields are still contested. Godfrey-Smith 

mentions archaeology and anthropology (Godfrey-Smith 2009, pp.2-3), but in light of my 

dissertation, engineering and design definitely deserve some mentioning. So the societal 

view of science does not seem to provide much guidance to decide what to study. 

Moreover, for many philosophers of science, there is a normative dimension to the 

definition of science. Not everything that society sees as science deserves the title.  

1.1.2 The changing domain of philosophy of science 

The development of philosophy of science in the last 50 years or so shows that the 

disagreement Godfrey-Smith refers to is very real and in flux. What philosophers of 

science consider to be interesting (scientific) questions can change through time. The 

philosophy of biology for example, only really took off half a century ago (Godfrey-Smith 

2009, p.3).  

However, some disciplines enjoy a high degree of consensus and have enjoyed it for 

some time. In particular, philosophers of science seem to agree that physics is a science 

worth studying: 



 

 9 

People often think of physics as the purest example of science. Certainly physics 

has a heroic history and a central role in the development of modern science. 

(Godfrey-Smith 2009, p.2) 

Other than the agreement about physics, what makes up the domain of philosophy of 

science is not agreed upon and in constant evolution. Because of this, physics took up a 

central role for some time. But this has been changing, and other disciplines are 

receiving more attention from philosophers of science, like economics and biology. 

This is related to another trend in the philosophy of science, namely specialisation. 

More and more philosophical questions and debates are tackled from and tailored to 

one specific branch of science. This has been noticed by many philosophers of science. 

The questions above [What is the aim and method of science? What makes science 

a rational activity? What rules, if any, govern theory-change in science? How does 

evidence relate to theory? How do scientific theories relate to the world?] did not 

change. But the answers that were considered to be legitimate did - the findings of 

the empirical sciences, as well as the history and practice of science, were allowed 

to have bearing on, perhaps even to determine, the answers to standard 

philosophical questions about science. In the 1980’s, philosophers of science 

started to look more systematically into the micro-structure of individual sciences. 

The philosophies of the individual sciences have recently acquired a kind of 

unprecedented maturity and independence. (Psillos 2007, p.x) 

 

One distinguished between general philosophy of science, and philosophies of the 

particular sciences. The latter ones are concerned with special kinds of disciplines 

such as philosophy of physics, biology, psychology, the social sciences, of the 

humanities. The general philosophy of sciences discovers those components of 

knowledge that are more or less common to all scientific disciplines. (Schurz 2013, 

p.2) 

Psillos stated this a decade ago, but Schurz shows that philosophers are still thinking 

about the impact of specialisation.  

This specialisation also affects the philosophy of causality (a subdomain in the 

philosophy of science). While, as I mentioned, questions into the nature of causality have 

occupied philosophers of science from the very beginning, during the last decades 

philosophy of causality diverged in the study of causalities in different scientific 

disciplines. In “Causality in the Sciences” (Causality in the Sciences  2011), for example, 

the topics range from causes of evolution (biology) over causality in medicine (health 

sciences), to the error term in econometrics (economics). All of these questions are 

raised within the context of the specific disciplines. As a result, the debates no longer 

necessarily aim for one all-encompassing notion of causality. More and more 
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philosophers now allow for different complementary notions that are appropriate for a 

specific scientific field, like biology or the health sciences. I will get back to this below. 

1.1.3 Physics as the paradigm of science 

While the specialisation resulted in more profound attention to some neglected 

sciences, it initially entailed a lot of comparison between physics and the so-called 

special sciences.  

The original idea was to do “philosophies of the special sciences” which, roughly, 

includes all the sciences except for physics. (Allhoff 2015, p.5) 

This comparison was not always in favour of the new fields. Other (and often newer) 

fields of science were expected to mimic physics, with the danger of losing their scientific 

status if they failed. 

[…] there has traditionally been a strong tendency to think of physics, which 

appears to be strongly focused on discovering laws of nature, as the very paradigm 

of a science. Other fields of science get to count as sciences only to the extent that 

they emulate the methods, theory forms, and successes of physics. (Roberts 2004, 

p.152) 

This is a testimony to the central position that physics still played and plays in the 

philosophy of science, even after specialisation. So even though disciplines like biology 

and the health sciences received more attention and were considered to be legitimate 

topics of research, the historical dominance of physics lingered. The focus on 

mathemisation and laws, for example, was one way in which the debate about which 

disciplines were truly scientific, was influenced: 

Many philosophers of science have viewed physics as the science par excellence. It 

is certainly true that physics, and astronomy in particular, was the first empirical 

science to be rendered in a mathematically precise form. […] It would not have 

been unreasonable, then, for philosophers to predict that all genuine branches of 

science would ultimately come to look like physics: a few simple laws of vast scope 

and power. […] In the twenty-first century, we have come to learn better. 

Chemistry and biology have certainly advanced to the stage of scientific maturity, 

and they look nothing like the model of a scientific system built upon a few simple 

laws. In fact, much of physics does not even look like this. (Hitchcock 2004b, p.10) 

Some philosophers went further than merely seeing physics as the paradigm of science. 

They believed physics would eventually replace all other science. The following quote is 
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from an article from 1974, which was reprinted in 2007 as part of an anthology of the 

philosophy of science: 

A typical thesis of positivistic philosophy of science is that all true theories in the 

special sciences should reduce to physical theories in the long run. […] I think that 

many philosophers who accept reductivism do so primarily because they wish to 

endorse the generality of physics vis à vis the special sciences: roughly, the view 

that all events which fall under the laws of any science are physical events and 

hence fall under the laws of physics. (Fodor 2007, p.445) 

Reducibility of other sciences to physics is another topic where philosophy of physics set 

the terms. Though reduction is not something that philosophers of the special sciences 

necessarily worry about, it still remains a point of debate:  

In the 1960s and 1970s, philosophical attention began to be afforded to individual 

sciences in a new way. Again, this is not to imply that no philosophical attention 

had been given to those sciences before these decades, but rather that new 

emphases were born. While being careful not to overstate the case, the 

emergence of philosophy of biology played a large role in this transition. It is 

probably safe to say that those interested in biology had begun to tire of attempts 

to subsume biology under physics and were highly motivated to show that they 

had their own (irreducible) research program. (Allhoff 2015, p.4) 

The specialisation was accompanied by attempts of the individual sciences to free 

themselves from the physics-centred philosophical focus. I want to draw specific 

attention to attempts to overturn the emphasis on theory and laws that the dominance 

of philosophy of physics carried over to the debate on the special sciences. 

In philosophy of physics, a major object of research is the laws of physics. Physical 

theory is seen as a set of those laws, and studying them is believed to answer our 

questions with regard to science. 

The field of physics includes many principles referred to as “laws”: Newton’s laws 

of motion, Snell’s law, the law of thermodynamics, and so on. It also includes many 

“equations” - the most important being named after Maxwell, Einstein and 

Schrödinger - that function in exactly the same way that the so-called laws do. 

While none of these laws are universally true - they all fail within one domain or 

other - physics is clearly in the business of looking for universal laws, and most 

physicists believe that there are laws “out there” to be discovered. (Hitchcock 

2004a, p.149) 

Because physics was seen as the paradigm science, the same focus was taken in studying 

the special sciences like biology and sociology. From about the 1970s to well in the 
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2000s, this was a particularly influential topic: whether the regularities of biology and of 

social science are laws.  

A related challenge to the scientific status of the social sciences claims that science 

aims at the discovery of laws, and that there can be no genuine laws of social 

science. In the third quarter of the twentieth century, especially, it was believed 

that laws were essential for both explanation and confirmation by evidence. 

(Hitchcock 2004b, p.16) 

Both debates looked similar: philosophers analysed the regularities of biology and 

sociology respectively, investigated their properties and compared them to the 

properties that the laws of physics were supposed to have. In biology, the main contrast 

was drawn between the contingent regularities of biology, that could have been 

different if the evolutionary tape had been played again (Beatty, 1995), and the 

necessary laws of physics.1 I will introduce the debate on laws in the social sciences via 

two papers, one by Kincaid (2004) and one by Roberts (2004), where they argue 

respectively for and against laws in the social sciences. 

According to Roberts,  

[l]aws of nature are regularities that have certain features: they are global or 

universal, and robust, in the sense that they do not depend on contingent details 

of particular systems of objects, and they would not be upset by changes in the 

actual circumstances that are physically possible. (2004, p.166) 

He sees physics as committed to discovering laws of nature (Roberts 2004, p.153). In his 

article, he argues that any laws of the social sciences would always need to be hedged 

laws, because they are never without exception and cannot be reformulated in strict 

probabilistic dependencies (Roberts 2004, p.159). But, he argues, there are no hedged 

laws since they would “be or entail hedged regularities, and there is no coherent concept 

of a hedged regularity”. (Roberts 2004, pp.162-163) However, this need not be a 

problem. The social sciences do not need laws to allow for predictions and explanations.  

[…] projectibility would amount to it being rationally justified to expect similar 

statistic patterns to prevail elsewhere. This would be useful for predictive 

purposes, and on many models of explanation, it would be explanatory as well. 

None of this requires anything be considered a law […]. (Roberts 2004, p.165) 

 

                                                     
1 I will return to this debate in chapter 5. There, I also reflect on different philosophical definitions of “laws”. 
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Not everyone agrees with this analysis. Kincaid, in the same book, defends the opposite 

thesis: the social sciences do have laws. He also refers to physics for a “quintessential 

example of a law of nature”, namely Newton’s law (Kincaid 2004, p.170). Kincaid draws 

different conclusions from studying the examples of physics. He argues that Newton’s 

law of motion identifies a causal factor and that there are regularities in the social 

sciences that do something similar. (Kincaid 2004, p.170) 

Finding a definition that fit [sic] philosopher’s or even scientist’s intuitions about 

what we call laws need not tell us much about the practice of science. […] The 

point of a philosophical account should instead be to shed light on the practice of 

science - in this case, what role laws play in science. […] Rather, our project should 

be to get clear enough on how laws function in science to ask the question as to 

whether the social sciences can function that way as well. Then what role do laws 

play in science? Perhaps many, but above all, science produces laws to explain and 

reliably predict the phenomena. That is precisely what identifying causal factors 

allows us to do. (Kincaid 2004, p.172) 

Kincaid clearly works in a different tradition than Roberts, has different goals and even 

draws different conclusions about the nature of laws from the same example. This tells 

us several things. For one, taking physics as an example is a widespread practice. And 

second, the comparison is not as informative or conclusive as often thought. Depending 

on which reflections on physics the authors use as their guide, the conclusions differ. 

Kincaid identifies Newton’s law of motion as pointing to a causal factor. Yet the idea that 

the laws of physics express causal information is highly debated - I will get back to this in 

the next section. Kincaid also refers to Cartwright to argue that failure to be universal is 

not a convincing argument against laws in the social sciences (Kincaid 2004, p.171). 

Roberts sees this failure as part of his main argument, because in his view, laws are 

universal. At the very least, physics is not the unambiguous, enlightening example that it 

is often considered to be, and neither is philosophy of physics. This insight is part of the 

way the special sciences are freeing themselves from the longstanding focus on physics.  

1.1.4 Theory versus practice 

What the debate in the social sciences also illustrates is the central position that 

scientific theory (and with that, the concept of law) has received in the philosophy of 

science. For a long time, whether a discipline had laws, had impact on the status it was 
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ascribed, on whether it counted as a science and to what extent, on the way we should 

treat the claims provided by this discipline. Yet several philosophers have begun to argue 

that laws - and more generally, theory2 - are not all there is to science. Some of these 

criticisms were formulated in the context of debates on laws. In the debate regarding 

laws of biology, Craver and Kaiser argue that we should stop investigating whether the 

biological regularities are laws, and instead focus on how they succeed in helping us with 

prediction and explanation (2013, p.127)3. Roberts’s reframing of regularities in the 

social sciences in terms of prediction and explanation involves a similar shift in focus, as 

well as Kincaid’s plea for refocusing the question in terms of the roles of laws. But also 

on a more general level, philosophers have argued for a move away from merely 

studying theory towards a practice-based view of science. The Society of the Philosophy 

of Science in Practice (hereafter SPSP) makes this one of its main aims. Here are some 

extracts from its Mission Statement4: 

Philosophy of science has traditionally focused on the relation between scientific 

theories and the world, at the risk of disregarding scientific practice. […] We 

advocate a philosophy of scientific practice, based on an analytic framework that 

takes into consideration theory, practice and the world simultaneously.  

The SPSP actively encourages reflections on knowledge that show awareness for and 

attention to the way knowledge is shaped by its intended use: 

Practice consists of organized or regulated activities aimed at the achievement of 

certain goals. Therefore, the epistemology of practice must elucidate what kinds of 

activities are required in generating knowledge. Traditional debates in 

epistemology (concerning truth, fact, belief, certainty, observation, explanation, 

justification, evidence, etc.) may be re-framed with benefit in terms of activities.  

One of the consequences of a practice-engaged approach to science is a focus on 

disciplines that used to be seen as mere ‘application’ of theoretical knowledge, like 

engineering, pharmacology, and design. They list some of their specific points of 

attention: 

 

                                                     
2 I will treat “theory” as roughly a set of connected laws. 
3 Note that Craver and Kaiser are not the first philosophers of biomedical sciences to draw the attention away 

from laws. Bechtel and Abrahamsen, for example, argue that it is mechanisms and not laws that are crucial for 

explanations in biomedical sciences (2005).  
4 See http://www.philosophy-science-practice.org/en/mission-statement. 
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1. We are concerned with not only the acquisition and validation of 

knowledge, but its use. Our concern is not only about how pre-existing 

knowledge gets applied to practical ends, but also about how knowledge 

itself is fundamentally shaped by its intended use. We aim to build 

meaningful bridges between the philosophy of science and the newer fields 

of philosophy of technology and philosophy of medicine; we also hope to 

provide fresh perspectives for the latter fields. 

2. We emphasize how human artifacts, such as conceptual models and 

laboratory instruments, mediate between theories and the world. We seek 

to elucidate the role that these artifacts play in the shaping of scientific 

practice. 

3. Our view of scientific practice must not be distorted by lopsided attention 

to certain areas of science. The traditional focus on fundamental physics, as 

well as the more recent focus on certain areas of biology, will be 

supplemented by attention to other fields such as economics and other 

social/human sciences, the engineering sciences, and the medical sciences, 

as well as relatively neglected areas within biology, physics, and other 

physical sciences. 

4. In our methodology, it is crucial to have a productive interaction between 

philosophical reasoning and a study of actual scientific practices, past and 

present. This provides a strong rationale for history-and-philosophy of 

science as an integrated discipline, and also for inviting the participation of 

practicing scientists, engineers and policymakers. 

A PSP approach not only involves studying more than what is written in scientific 

textbooks, but also studying other places and practices where knowledge gathering or 

knowledge construction takes place or is influenced. For example, research and 

development labs, where the research into new phenomena and the technical 

implementation of those phenomena go hand in hand (Freeman and Soete 2009, p.586); 

databases that are used to store and rank data; or even as Shapin (2016) noticed, the 

“food laboratories” of McDonalds, where the taste and ingredients of the Royal Cheese 

are constantly improved. These new contexts and practices give rise to new questions, 

and new answers. My dissertation will specifically connect with the first point of 

attention, namely the connection between knowledge and use. 

Despite the noticeable growth in attention to more practice-engaged questions, not 

everyone is ready to ‘jump aboard the practice train’. The focus on theory has a long 

history, and reframing philosophical debates towards scientific practice has led to a 

different conception of science. This is not an easy thing to do, and has significant 

consequences for the methodology of philosophy of science.  
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This is especially the case in philosophy of physics. I will sketch an episode in the 

discussion whether the laws of physics express causal information or are causal. This will 

show how a focus on scientific theory (and laws specifically) versus a focus on scientific 

practice can lead to different results and shape a debate. Specifically, I will compare John 

Norton’s arguments with Mathias Frisch’s and show how the latter attempts to broaden 

the philosophy of physics to include more practice.  

1.2 Expanding philosophy of physics 

1.2.1 Norton and Frisch on causality in physics 

Whether the laws of physics express causal information is a longstanding topic in 

philosophy of science. Starting in the last decades of the nineteenth century, 

philosophers like Ernst Mach (1901), Bertrand Russell (1912) and John Norton (2007) 

have questioned whether causality has a place in physics. Their arguments are based on 

the mathematical formulation of the majority of the laws of physics, namely 

equivalencies.  

Norton (2007) argues that mature sciences, “are adequate to account for their realms 

without need of supplement by causal notions and principles” (p.12). Causal notions 

belong to “earlier efforts to understand our natural world”, or are helpful tools to explain 

science to laymen (ibid). According to Norton, if conforming a science to cause and effect 

makes no difference for the factual content of the science, then a notion of cause is 

empty and adds unnecessary baggage (2007, pp.3-4). So for “cause” to be relevant for 

science, it needs to influence the factual content of science in a significant and 

irreplaceable way. One common way that causation was thought to restrict the contents 

of our scientific theories, was via determinism:  

fix the present conditions sufficiently expansively and the future course is thereby 

fixed. (Norton 2007, p.4) 

If that were the case, if the laws of physics allowed us to fix the future based on the 

present, then this would imply that some notion of cause was inherent in the laws. 

Norton argues that this is not the case. A deterministic notion fails altogether, since 
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quantum physics shows a failure of determinism, and Norton’s famous thought-

experiment about a frictionless dome shows that Newtonian systems can be 

indeterministic5. Moreover, a probabilistic notion of cause fails as well, since the 

quantum theories do not give us any specific probabilities regarding which future is more 

likely. Neither a deterministic view, nor even a probabilistic one hold up in light of our 

current mature theories. This is only one of the specific arguments Norton presents 

against a notion of cause in physics; he also developed more specific arguments tailored 

to e.g. modern physics (Norton 2006) and classical electrodynamics (Norton 2009). 

I do not wish to go into these specific discussions, but I want to reflect on Norton’s 

method for arguing against causes in physics. His method is based on the theory of 

physics: he analyses the laws and equations in physics without taking broader practices 

(modelling of actual phenomena, evidential practices,…) into account. This is especially 

clear from his account of folk causation. This notion is meant to capture the causal talk in 

scientific practice (Norton 2007, p.21). Yet this is not considered part of the mature 

sciences: the causal talk is merely the result of ‘labelling’ a specific property as causal 

because “we perceive some sort of commonality with a broader, vague notion of 

causality” (Norton 2006, p.231). Norton mainly contrasts this causal talk with a 

fundamental robust causal principle underlying all our sciences (2006, p.232). But what is 

also clear from his writings, is that this causal talk is not to be seen as a fundamental or 

sensible part of physics. Whether there is some causal principle or notion in physics can 

be determined by investigating the interplay of the mathematical equations that 

constitute the laws of physics. For example, when discussing the problems quantum 

mechanics raised for causality, he refers to what is allowed by the theory: 

Quantum theory brought other, profound difficulties for causation. Through its 

non-separability, quantum theory allows that two particles that once interacted 

may remain entangled, even though they might travel light years away from each 

other, so that the behavior of one might still be affected instantly by that of the 

other. (Norton 2007, p.5) 

 

                                                     
5 In (2007) and (2008), Norton describes a mass placed on the top of a frictionless dome, in a gravitational field. 

“After remaining motionless for an arbitrary time, it spontaneously moves in an arbitrary direction, with these 

indeterministic motions compatible with Newtonian mechanics” (Norton 2008, pp. 786-787). Norton argues for 

this compatibility via the equation of movement of the mass, which has several solutions: one where the mass 

remains at the top forever, and one family of solutions that represents “spontaneous motion at an arbitrary 

time T in an arbitrary radial direction” (2008, p. 788). According to Norton “[t]he dome manifests 

indeterminism in the standard sense that a single past can be followed by many futures” (2008, p. 788).  
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Similarly, when discussing the indeterminacy of Newtonian mechanics: 

An important feature of Newtonian mechanics is that it is time reversible, or at 

least that the dynamics of gravitational systems invoked here are time reversible. 

This means that we can take any motion allowed by Newton's theory and generate 

another just by imagining that motion run in reverse in time. (Norton 2007, p.11) 

This again shows that Norton bases his conclusions on the theory of physics.  

As it goes in philosophical debates, not everyone agrees with Norton’s analysis or 

conclusions. One of the contemporary defenders of a more substantial role for causes in 

physics, is Mathias Frisch. Frisch is not arguing in favour of the fundamental robust 

causal principle that Norton rejects; his focus is on revaluing the causal reasoning in 

physics: 

Thus, instead of asking for the metaphysical underpinnings of causal notions, the 

functional project asks what role, if any, causal notions play as part of our 

epistemic toolkit and as part of the representational resources. The legitimacy of 

causal notions or causal thinking is evaluated with respect to whether they serve a 

useful function, and any account of causation has to be defended with reference to 

the functional role of causal concepts. (Frisch 2014, p.9)6 

While Norton dismisses causal talk, even by scientists, Frisch argues that positing causal 

structures is a fundamental part of physical scientific practice, without which “many of 

the inferences we routinely make in physics would simply be impossible” (Frisch p.21). 

To defend the importance of causal reasoning, Frisch first expands what philosophers 

like Norton implicitly consider to be the content of physics. Frisch starts from one of the 

basic epistemic goals of science: representing the world (2014, p.21). These 

representations can then be used for other epistemic goals, like prediction and 

explanation. When trying to understand how physics represents the world, Frisch posits 

that arguments7 like Norton’s offer little help. Because of their theory-focus, they are 

based on a faulty view of what science and specifically physics entails. Frisch frames it in 

terms of Cartwright’s “vending machine view of science” (1999). The vending machine 

view is Cartwright’s label for the idea that all you need to do in physics is give some input 

to the theory (specifically initial values) and after a bit of beeping, a representation or a 

 

                                                     
6 Chapter 3 will show that it is not always clear what the boundaries between a metaphysical and a functional 

project are. 
7 To be precise, Frisch argues that many philosophers in this debate have used similar instances of the faulty 

argument scheme. 
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model will pop out, like a soda-can from a vending machine (Cartwright 1999, p.184). 

According to Cartwright this view is not compatible with how science works, and Frisch 

agrees.  

Contrary to what philosophers who hold a vending-machine view think, fundamental 

equations and their mathematical consequences can never give us a complete 

understanding of how the world is represented via (physical) theory or laws. To 

supplement this view of science, Frisch argues that we need to take into account the 

user and the context, even for physical theories. His alternative account of scientific 

practice in physics starts from a “pragmatic and structural account of representation” 

(2014, p.37). The structural part is the claim that 

Representation is purely structural, since the models or representations employed, 

at least in the physical sciences, are mathematical structures and the only relevant 

resemblance between mathematical structures and physical systems is structural 

resemblance. (Frisch 2014, pp.27-28) 

The similarity between mathematical structures and physical systems is structural in 

nature. The pragmatic part builds on Van Fraassen and is the claim that 

there is no representation except in the sense that some things are used, made, or 

taken, to represent things as thus and so. (Van Fraassen 2008, p.23) 

Frisch argues that this pragmatic part solves certain problems associated with a purely 

structuralist account, such as the problem of explanatory asymmetry. In a pragmatic 

account of representation, there can be 

no “natural representations” – no naturally produced objects or phenomena that 

represent other phenomena without being used by someone to represent. (Frisch 

2014, p.37) 

In other words, we cannot simply let mathematical equations ‘talk for themselves’ in 

representing phenomena: the user and the context matter and cannot be ignored. 

Especially this latter part is fairly controversial, even though it explicitly builds on work in 

general philosophy of science by among others Cartwright (1983, 1999) and Van 

Fraassen (2008). Cartwright’s books were published over fifteen years ago, but thinkers 

like Norton still mainly study the fundamental equations in isolation, which are seen as 

covering the entire content of a theory.  

Following Frisch, once you take representations to be a serious part of physics, then 

you cannot ignore the role of causal reasoning anymore. For example, much physical 

modelling is supposedly done by solving a so-called initial value problem: 
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Reasoning and inferences in physics can be exhaustively characterized in terms of a 

theory’s dynamical models together with choices of particular initial and boundary 

conditions. (Frisch 2014, p.125) 

The claim expressed here is a core-assumption of Norton (2007), but also of Huw Price 

and Brad Weslake (2009). The basic idea behind this assumption is that to model a 

specific system, the theory gives you the dynamical equations that apply to the system 

and you combine these equations with the initial values (e.g. the current state) of the 

system, to attain a model of the (future) states of the system (Frisch 2014, p.21). These 

dynamical models provide all the information we need and are attained in a 

mathematical way. Causal considerations are absent and irrelevant. Frisch counters this 

argument by showing that the choice between different possible dynamical models is in 

practice underdetermined and we can only choose between them by means of causal 

assumptions (Frisch 2014, p.125). I will get back to this in chapter 3. So while in theory, 

the equations might be all we need, in practice, we cannot get rid of causal reasoning 

without losing a significant part of scientific strength. 

This comparison between Norton’s and Frisch’s methodologies for investigating the 

role of causes in physics, shows how much can change depending on how the boundaries 

of “science” are drawn. Specifically, taking the researcher, the modelling practices and 

the context into account, can determine whether there is a place for causes in physics, or 

there is not. Building on Frisch, I will also attempt to expand the subject of philosophy of 

physics by focusing on how we use physical knowledge in a causal way. 

1.2.2 Using physical causal knowledge: explanation and intervention 

Physics is the science par excellence when it comes to idealisation. In his analysis, Frisch 

explicitly moves away from looking at the equations in a conceptual vacuum. This is an 

enormous step towards a more practice-based philosophy of physics. By looking at 

modelling practices, he is focusing not only on the equations, but also on the way these 

equations are used to fulfil the epistemic goals we want to achieve with science. If we 

follow through on this broadening of physics, on this attention for the scientific practice 

and for how we succeed in reaching epistemic goals via science, a whole new array of 

interesting questions and contexts arises. Frisch focuses on representation. But science, 

including physics, also allows us to explain and predict phenomena, to intervene in the 

world and to manipulate it. One of the goals of science is to produce knowledge that we 

can use. Causal knowledge is used constantly throughout our lives, both in scientific 

contexts and everyday situations. In this dissertation, I will show that studying these 
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applications and the knowledge that is required to achieve them, sheds new light on the 

topic of physical causation, and on the role of laws for that matter. 

First, I discuss some very general ways in which physical causal knowledge is used: 

explanation and intervention. To understand that physical causal knowledge allows us to 

explain physical phenomena, let’s look at the well-known example of the flagpole. 

Suppose we have a flagpole that casts a shadow. The laws of geometrical optics (more 

precisely the law that ℎ 𝑙⁄ = tan 𝛼, where ℎ refers to the height of the flagpole, 𝑙 refers 

to the length of the shadow and 𝛼 is the angle of elevation of the sun above the horizon) 

allow derivations in many directions. If we know the length of the shadow and the angle 

of the sun, we can calculate the height of the flagpole. But in the same way, we can 

calculate the length of the shadow by means of the height of the flagpole and the 

position of the sun. We can even determine the position of the sun by means of the 

height of the flagpole and the length of shadow. This is the symmetry mentioned above. 

These three derivations are not necessarily equally good as explanations, though. I 

assume that most readers will share the following judgements: 

(Exp1): Explaining the length of the shadow by means of the height of the pole and 

the position of the sun is a good causal explanation. 

(Exp2): Explaining the height of the pole by means of the length of the shadow and 

the position of the sun is a bad causal explanation. 

(Exp3): Explaining the position of the sun by means of the height of the pole and the 

length of the shadow is a bad causal explanation. 

These judgements are based on the following causal belief: 

(C1): The position of the sun and height of the pole are causally relevant for the 

length of the shadow, but not the other way around. 

If you believe instead that the position of the sun and the length of the shadow are 

causally relevant for the height of the flagpole (which might seem weird, but in some 

cases might be justified, I will get back to this in chapter 3), you have a different causal 

belief and correspondingly, a possibly different judgement about which explanation to 

prefer. Causal beliefs and knowledge are used to decide between different explanations.  

Physical causal knowledge is also relevant to guide our actions and interventions; 

another way of using causal knowledge. We do things to arrive at certain effects: we use 

a pump to put more air in our tires and increase their internal pressure; we flip a switch 

to turn on a light; we use a crowbar to exercise greater force and open a crate. The 

knowledge on which we base these interventions is physical, and whether we believe 

these actions are useful or justified, depends on what beliefs we have. Consider the 
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example of pumping air into your tires. This is a goal-directed action: you want to 

increase the internal pressure of the tires. This aim or goal in itself does not guarantee a 

successful action. There is also a causal belief involved: 

(C2): Pumping air into my tires increases their internal pressure. 

If you do not believe this, your action does not make sense. And correspondingly, if your 

belief turns out to be false, you will not pump air into your tires next time you have a flat 

one. You will perform another action that corresponds to the causal belief that you have 

at that point in time.  

1.2.3 First characterisation of my research topics 

So a very common sense look at the world around us shows the importance of physical 

causal knowledge. Physical causal knowledge is everywhere and more importantly, it is 

used everywhere. It is used for explanations of physical phenomena, it is used for 

interventions in the natural world, and it is used when engaging with artefacts. This is 

already clear from my tire example: we use a pump in order to inflate our tires. The 

pump (viz. an artefact) is used to achieve a certain effect (viz. the repair of another 

artefact). This is an everyday example and may not look very interesting. But engineers 

and technicians do exactly that: they use physical causal knowledge to research, design, 

maintain and repair artefacts. 

Regardless of the omnipresence of physical causal applications in the world, 

philosophers like Norton have explicitly argued against the need for causal notions in 

science. Norton did allow causal notions to play a role in certain contexts, but these 

causal notions are part of what he calls “folk science”: 

a crude and poorly grounded imitation of more developed sciences. (Norton 2007, 

p.2) 

He compares this to specific situations where we still use Newton’s theory of gravitation, 

instead of Einstein’s theory of general relativity: it can be useful in certain situations. 

According to Norton, in many familiar contexts it is just “conceptually easier and quite 

adequate to imagine that gravity is a force or heat a fluid” (Norton 2007, p.13). Similarly, 

there are many familiar contexts in which we can describe physical processes in a causal 

way, using this folk science. So Norton seems to grant this folk science some authority. 

In general, however, it seems that Norton does not believe the folk science to be 

worthy of much philosophical reflection. For instance, ascribing causal relations to 

phenomena is apparently straightforward: 
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How do we know which terms in the science to associate with the cause and 

effect? There is no general principle. In practice, however, we have little trouble 

identifying when some process in science has the relevant productive character 

that warrants the association. Forces cause the effect of acceleration; or heat 

causes the effect of thermal expansion; or temperature differences cause the 

motion of heat by conduction; […]. The terms in the causal relation may be states 

at a moment of time; or entities; or properties of entities. (Norton 2007, p.16) 

For the examples he mentions, it might be easy to determine the causal relation and 

correspondingly, to successfully ascribe8 a causal relation to the phenomenon. However, 

in this dissertation, I will argue that when we study real circumstances where we use and 

produce physical causal knowledge (be it in relatively easy and day-to-day circumstances 

or more uncommon complex ones) the situation is way less clear. 

Norton is not the only philosophers that takes this position. Because of the traditional 

focus on laws and theory, disciplines like engineering have been ignored in philosophy of 

science, since there is no ‘fundamental theory of engineering’. After all, engineering was 

long considered to be nothing but an application of the all-encompassing laws of more 

fundamental sciences, like physics. As a consequence, it was believed that studying 

engineering practice would not teach us anything we couldn’t get from the laws of 

physics. Philosophers like Cartwright, Van Fraassen and Frisch have started to break 

down the idea that (fundamental) laws are the only things worth studying in physics. 

Philosophers in the SPSP have argued the same in a more general way. In this 

dissertation, I contribute to their project.  

To do so, I will study this causal knowledge from the use-perspective and show that, 

pace Norton, it is worthy of philosophical reflection. With the “use-perspective’, I refer 

to my focus on the way we use and produce physical causal knowledge. Specifically, I will 

investigate the physical (causal) knowledge necessary for and acquired in researching, 

building, using and maintaining artefacts9, with regard to 

(1) the meaning of causal claims about artefacts,  

(2) the evidence needed for using this physical causal knowledge, and 

(3) the relation of this physical causal knowledge to the laws of physics. 

 

                                                     
8 I will use “ascriptions of causal relations” as synonymous with “making causal claims”. 
9 Though I mainly limit the use-contexts to artefacts, my analysis also holds for natural contexts. I will therefore 

on occasion explain how it can be adapted. 
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I will show that all these topics related to using physical causal knowledge raise 

interesting philosophical issues, which will constitute an argument for my two more 

generic aims described in the Introduction (viz. (A) and (B)). With regards to the first 

topic, I will for instance investigate what we mean when we say that X is a cause of Y in 

the case of artefacts. Problems regarding evidence, the second topic, are for instance 

related to the specific evidence that we need to use physical causal knowledge for 

explanations of or interventions in artefacts. The third topic is pretty straightforward and 

deals with the debate I discussed in 1.2.1. One question to answer is for instance: If the 

laws of physics do not contain causal information, then how is our physical causal 

knowledge related to them? These topics are related to my four specific claims that I 

described in the Introduction. I already presented the background information to 

understand the third topic. However, to ensure that my first two questions are clear, I 

will discuss relevant parts of the literature on causality (1.3) and on evidence for use 

(1.4). 

1.3 Causality - what I am and am not talking about 

Focusing on explanation and intervention intuitively opens the conceptual space for 

studying physical causal knowledge. Besides Norton and Frisch, many other philosophers 

have made some contribution to the literature on causation in science. I mentioned in 

the Introduction that Aristotle already wrote about causality, and it has remained a 

popular topic since. The specialisation I mentioned in the introduction sparked a 

diversification of accounts. Because so much has been written, it would be ridiculous to 

attempt a full overview of the literature. Moreover, plenty of other philosophers have 

written excellent works on the topic (for example (Psillos 2002), (The Oxford handbook of 

causation  2009), (Causality in the Sciences  2011), (Illari and Russo 2014)). What I mainly 

want to do is explain how my dissertation relates to other contributions and projects 

relating to causality.  

First, it used to be quite common to present accounts or theories of causation: 

characterisations of what causation is. For example, Cartwright presents this list of 

theories of causality: 

 the probabilistic theory of causality (Patrick Suppes) and its descendants 

◦ Bayes-nets theories (Wolfgang Spohn, Judea Pearl, Clark Glymour); 

◦ Granger causality (economist Clive Granger); 
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 modularity accounts (Pearl, James Woodward, economist Stephen LeRoy); 

 manipulation accounts (Peter Menzies, Huw Price); 

 invariance accounts (Woodward, economist/philosopher Kevin Hoover, 

economist David Hendry); 

 natural experiments (Herbert Simon, economist James Hamilton); 

 causal process theories (Wesley Salmon, Philip Dowe); 

 the efficacy account (Kevin Hoover); 

 counterfactual accounts (David Lewis, Hendry, social scientists Paul Holland and 

Donald Rubin). (2007, p.43) 

In the context of physics, Phil Dowe’s conserved quantity theory is probably most 

famous. In Dowe’s theory, causes are processes, and specifically those processes in 

which a conserved quantity is exchanged (Dowe 2000, p.89).10 In the biomedical sciences 

on the other hand, Woodward’s interventionist theory (2003) is currently very popular. 

This reflects the specialisation I talked about above. Different theories have been 

developed in the context of different sciences (especially biomedical and social sciences), 

to accommodate the different methods and claims. 

1.3.1 Epistemology vs. metaphysics 

A first very general way of distinguishing between these accounts of causation is 

between epistemological projects and metaphysical ones. Metaphysical projects study 

causation from an ontological perspective, such as what Russell (1912) called “the law of 

causality”. Norton summarised the law of causality as follows: 

that every effect is produced through lawful necessity by a cause (2007, p.11).  

More generally, metaphysics of causation answers questions like ‘What are the causal 

relata?’, ‘What characterises them?’, ‘How many relata are there?’ (Schaffer 2016).  

Epistemological projects on the other hand, attempt to get insight into causal 

knowledge, how we get it, what properties it has etc. My dissertation clearly belongs to 

the epistemological project, since I am explicitly studying causal knowledge.  

Note that it is not always clear to which project a causality account belongs. Though 

epistemological and metaphysical projects attempt to answer different questions, they 

 

                                                     
10 Conserved quantities are quantities that follow a conservation law, described by physics. Examples are mass-

energy, linear momentum and charge. 
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do not have to be completely distinct enterprises. On the contrary, philosophers like 

Cartwright (2007) or Illari and Russo (2014), have argued that they should go hand in 

hand. Regarding causality, a methodological approach that allows both metaphysical and 

epistemological questions is the Causality in the Sciences (CitS) Approach11, as found in 

(Causality in the Sciences  2011) and described by (Illari and Russo 2014, pp.201-210). It 

is characterised by a close and often simultaneous engagement with both philosophical 

and scientific literature, in the hope of contributing to scientific practice and policy. 

We suggest instead successful philosophy of causality is iterative, moving freely 

between science and philosophy, neither first, often simultaneously studying both 

literatures. It proceeds, ideally, in a dialogue between philosophy and science—

which is sometimes, but not always, a dialogue between scientists and 

philosophers! (Illari and Russo 2014, p.207) 

Science and scientific literature are used to generate new ideas, select problems and test 

accounts (Illari and Russo 2014, pp.208-209). My dissertation explicitly engages with 

scientific practice and literature. Because of this, it fits in the CitS approach. This attitude 

has been present during my research and will resonate throughout this dissertation. The 

focus will be epistemological questions, but where relevant I will draw related 

metaphysical conclusions. 12 

1.3.2 Token versus type 

Another distinction is between token- and type-level theories. Token-level theories 

capture causation between events, while type-level theories capture causation between 

populations or between types. In token-level theories, we distinguish between process 

theories (e.g. (Dowe 2000), (Salmon 1998)) and difference-making theories. Difference-

making theories come in three varieties: regularity theories (e.g. the INUS account of 

(Mackie 1980)), probabilistic theories (e.g. (Suppes 1970), (Glymour 2001)) and 

counterfactual theories (e.g. (Lewis 1973)). All of these theories have their merits and 

problems. Process theories have a notorious difficulty dealing with negative causation 

(prevention and causation by absence). Processes cannot involve absent objects. So they 

 

                                                     
11 As a testimony to the diversity of questions that can be tackled from the CitS-perspective, see the range of 

topics in (Causality in the Sciences  2011). The contributions of Stuart Glennan (2011), Phil Dowe (2011) and 

Illari & Williamson’s (2011) are for instance more focused on metaphysical questions. The contributions by e.g. 

Gillies (2011), Harold Kincaid (2011) or Bert Leuridan & Erik Weber (2011) tackle epistemological questions. 
12 Chapter 5, for example, will deal with the consequences of my project for the metaphysics of laws. 
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cannot account for the lack of water causing my plants to die. Difference making theories 

do not have this problem. They basically focus on statements of the form 

“Occurrence/absence of event c causes occurrence/absence of event e”. However, they 

cannot express the quantitative side of causal relations (e.g. how much pressure increase 

due to how much temperature increase).  

Type-level theories include the interventionist account of Woodward (2003), Bayes-

net theories like (Pearl 2009), the independent alterability account (Hausman 1998), the 

comparative model (Giere 1997) and the probabilistic model (Eells 1991). All these 

theories come with a specific set of assumptions: Giere requires the acceptance of 

hypothetical populations, Pearl requires a lot of mathematical modelling, Woodward has 

been criticised for needing a causal concept (namely intervention) to define causation. 

So far, no one theory has been able to win over everyone else. In 1.3.3., I will reflect on 

the possibility of finding such one theory.  

What has also puzzled philosophers is the relation between the two. Some 

philosophers have argued that we need two concepts of causation, like Elliott Sober 

(1984), one token level and one type. Elsewhere, Sober (1986) argued that the two are 

connected with regard to evidence as well:  

[…] the more evidence we have about the effects of smoking on lung cancer in 

general, that is, the more evidence for the generic claim, the more likely (ceteris 

paribus) the single-case relation will be, that is, that smoking causes lung cancer in 

individual patients. (Illari and Russo 2014, p.42) 

Moreover, there is the metaphysical question of which level is ontologically primary to 

the other. Mackie and Cartwright argued that the single-case is primary, but there is no 

clear agreement in the literature (Illari and Russo 2014, p.44). 

The majority of this dissertation engages with type level causal claims, but this does 

not reflect the conviction that type level is primary or more important. Most of my cases 

happen to deal with type level claims. But, as will become clear throughout the chapters, 

I also engage with token level claims and the relation between token and type level.  

1.3.3 Monism vs. pluralism 

A third separation in the literature is the one between causal monists and causal 

pluralists. Monists hold that one theory suffices to capture causality. This can be 

combined with the metaphysical view that there is only one type of causal relation in the 

world. As Illari and Russo argue, most theories that Cartwright summarises were 

intended monistically, but are not considered successful in that respect (Illari and Russo 

2014, p.249). As they argue, pluralism offers an alternative. But pluralism, like cause for 
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that matter, can mean many things. Illari and Russo argue that one can be a pluralist 

regarding (1) different types of causing in the world (e.g. pushing and pulling convey 

different information about how the cause affects the effect); (2) different concepts of 

causation (e.g. depending on scientific discipline); (3) different types of inferences (e.g. 

those related to prediction can differ from those related to explanation) ; (4) different 

sources of evidence for causal relations (e.g. mechanistic and correlational); (5) different 

causal methods (e.g. Bayesian nets and structural models) (Illari and Russo 2014, pp.250-

254). The pluralism they advocate combines all of these, in the sense that “the full array 

of concepts of causality developed within philosophy could very well be of interest to 

practising scientists, if explained in terms of the scientific problems most familiar to 

them” (Illari and Russo 2014, p.256). With “the full array of concepts”, they refer to 

concepts developed regarding all five points that can be looked at pluralistically, viz. 

causal relation, causal concepts, causal inferences, causal evidence, causal methods. 

My dissertation fits in this broad pluralism. I do not claim that my analyses hold for all 

causal relations, not even for all causal relations or inferences in engineering sciences. I 

do claim that they can be useful for scientists, when aptly reformulated when necessary. 

As such, I believe that this dissertation can be a useful part of what Illari and Russo refer 

to as “the library of concepts” that can aid scientists in their actions (Illari and Russo 

2014, p.256). 

1.3.4 Combining the three choices 

So my take on causality can be situated in a pluralistic epistemological project. 

Correspondingly, I do not take stance in the debate whether token-level is primary to 

type-level. I take causal theories to be tools to build models, and depending on the 

context, a token or type-level notion of causality may be necessary. I also do not believe 

one level is “more correct” than another in the absence of specific cases. On the 

contrary, in chapter 2, I will use a combination of different theories to elucidate my 

cases. Since I am trying to understand and represent physical causal knowledge and am 

committed to a pluralistic notion of causality, this is not a problem. 
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1.4 Evidence for use in the biomedical and social sciences 

Philosophy of the social and biomedical sciences already focuses a lot on evidence for 

use and the applicability of causal knowledge. Looking at the sciences they study, there 

are good reasons for doing so. That a policy action or a medicine works in one context, 

does not mean it will certainly work in another. Consider an example by Cartwright and 

Hardie (2012, pp.80-84) about policy actions directed at improving the nutritional status 

of pregnant women and their children in Bangladesh. The actions consisted of providing 

counselling for pregnant women and giving supplementary feeding for new-borns. It was 

modelled after a successful policy action in Tamil Nadu. However, in Bangladesh, the 

actions had no noticeable impact on nutritional standards. The reason was that in 

Bangladesh the mothers were not responsible for the shopping (so the counselling did 

not lead to better choices in food purchasing) and the supplementary food was often 

passed down to other members of the family and used as substitute (so the children did 

not actually eat the supplementary foods) (Cartwright and Hardie 2012, p.82). This is 

often referred to as the problem of extrapolation or external validity:13  

Evidence is always collected in some population in some circumstances. With most 

methods the inferences that are licensed from that method are tied to the 

populations and situations in which the evidence is obtained and licence to go 

beyond those must come from somewhere outside that method. (Cartwright and 

Hardie 2012, pp.38-39) 

Nancy Cartwright was one of the first philosophers to draw attention to the connection 

between knowledge and use. It was already present in her first paper on causation (viz. 

(Cartwright 1979)) and remained important in the rest of her work. In Hunting Causes 

and Using Them (2007), she argues that a theory of causation should both tell us how to 

hunt causes and how to use them. If we do not take use into account, we get our analysis 

of causation wrong because we miss the essential feature. According to her, many 

theories of causation fail on this criterion: 

They provide an elaborate procedure for deciding when we can attach the label 

‘cause’. But then what? There is nothing more in the account that allows us to 

move anywhere from that, nothing that licenses any inferences for use. 

(Cartwright 2007, p.49) 

 

                                                     
13 I will return to the debate on extrapolation in chapter 3. 
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Cartwright’s initial focus was on physics, but she went on to mainly study the social 

sciences, and in particular, policy. She remained to name policy and technology in the 

same breath, for example when discussing the gap between Woodward’s account of 

causation and contexts of use: 

Woodward’s theory of causality licenses counterfactuals about what would happen 

if the cause were to vary in a very special way, a way that is not what we would 

normally be envisaging for either policy or technology. The variation is just the kind 

we need if we want to test a causal claim – to hunt for causes – but not the kind 

we expect to implement when we try to use them. (Cartwright 2007, p.48) 

This is not surprising. Policy and technology are similar in the sense that these topics 

focus our philosophical attention to use.  

As I argued above, in the philosophy of physics, the use-perspective is almost 

completely absent. Nevertheless, the examples I gave in 1.2.2 suggest that finding 

evidence for using causal claims is an endeavour worthy of attention in this area too. In 

this dissertation, I take this suggestion seriously, and take up the use-perspective to 

study physical causal claims. When we see technology on par with policy, physical causal 

knowledge that we use to design, use, maintain, repair, and improve artefacts becomes 

important. 

1.5 Philosophy of technology on artefacts 

Finally, I want to reflect a bit on a philosophical domain that shares a focus on artefacts 

with my dissertation, viz. philosophy of technology. Because of the focus that philosophy 

of technology lays on the study of artefacts, it might seem that my dissertation fits better 

in the philosophy of technology than in philosophy of science. Philosophers in the SPS 

have of course argued that this distinction is not as rigid as often thought. But regardless 

of that, while the focus on artefacts might be similar, the questions that I address differ 

significantly from those traditionally asked by philosophy of technology. Below, I present 

a brief review of important topics and points of discussion of the philosophy of 

technology. This provides a setup for the chapters and case studies to come. At the same 

time, it will help show how my dissertation differs from what is traditionally done in 

philosophy of technology. To make a study of artefacts useful, I first need to go into 

some important topics of what artefacts are and how to characterise them and the 

disciplines related to artefacts. 
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1.5.1 Artefacts are man-made 

The first and most important point about artefacts in the context of this dissertation, is 

that they are man-made (Bucciarelli 2003, p.1). In this way, they are distinct from natural 

objects (Kroes 2012, p.3). Artefacts are the result of human interventions, while natural 

objects are not. However, a quick look around shows that it is not clear where to draw 

the line between “natural” and “artificial”. Peter Kroes gives the example following 

example: “what kind of human work and how much of it” is needed to turn a stone into 

an axe (2012, p.14)? Kroes himself argues that such a distinction might be impossible. 

Fortunately, the specific boundaries between the two do not matter for my dissertation. 

What matters is the ways in which we use causal knowledge, which is something we do 

in relation to artefacts, but also in relation to natural objects and even in relation to 

possible hybrids. I will focus on the fact that artefacts are created: they are assembled in 

a specific way, with a specific goal. In philosophy of technology, this ‘goal’ is often 

related to the artefact’s function.  

1.5.2 Artefacts have a function & can malfunction 

Philosophers of technology generally agree that having a function distinguishes artefacts 

from mere physical objects14 (Kroes 2012, p.5). They also consider that the function is 

central to an artefact (Houkes and Vermaas 2010, p.2). Yet what this function is, or how 

to characterise it, is not agreed upon (Houkes and Vermaas 2010, p.2). Wybo Houkes and 

Pieter Vermaas distinguish three more or less traditional answers to the question who or 

what determines the technical function of an artefact: intentional theories, Robert 

Cummins’ causal-role theory and evolutionary theories. On the first, human intentions 

“fix the functions of technical artefacts” (Houkes and Vermaas 2010, p.2). Functions are 

equated with intended effects. This is related to the ‘goal’ I mentioned above. One 

example of intentional theories is Kroes’ account which sees functions as the “for-ness” 

of artefacts. A common problem with these theories is that it is unclear whose intentions 

count. If design-engineers intend for an artefact to be used in a specific way, but users 

 

                                                     
14 Philosophers of technology do not really make explicit this contrast class of “physical objects” consists of. If 

they take it to include living organisms, that would construct a problem, since philosophers of biology are also 

rather concerned with functions and function ascriptions (see for instance (Sober 1993, section 3-7), (Godfrey-

Smith 2013, p.2), (Garvey 2007, chapter 7)). However, works like (Krohs and Kroes 2009) give us good reasons 

to assume that philosophers of technology are aware of the debate in biology. So “physical object” seems to 

exclude living organisms. 
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have other intentions, which of these determine the function of the artefact? On the 

causal-role theory, functions roughly correspond to “the causal contribution the item 

makes to the system containing it” (Houkes and Vermaas 2010, p.2). Houkes and 

Vermaas argue that items can make many contributions to many different systems, and 

that those contributions do not necessarily contribute to their functions. On their view, 

this constitutes a problem for causal-role theories. Moreover, choosing a specific system 

or a specific contribution to focus on looks like a process related to human intentions, 

which brings us back to the problems associated with the intentional theories. The final 

set of theories Houkes and Vermaas discuss are evolutionary theories. Evolutionary 

theories disconnect function from human intentions, and see them as the result of 

“evolutionary forces like variation and selection” (Houkes and Vermaas 2010, p.2). Here, 

questions rise regarding which processes are relevant and what the role of directed and 

purposeful design can still be (Houkes and Vermaas 2010, pp.2-3). 

As an alternative, Houkes and Vermaas formulate an account of functions that 

combines insights from all three traditional answers, while giving some priority to the 

intentionalist part (Houkes and Vermaas 2010, pp.2-3). It is aptly called the ICE-theory. It 

states that  

An agent a justifiably ascribes the physicochemical capacity to ϕ as a function to 

an item x, relative to a use plan up for x and relative to an account A, if: 

I. a believes that x has the capacity to ϕ; 

 a believes that up leads to its goals due to, in part, x’s capacity to ϕ; 

C.  can on the basis of A justify these beliefs; and 

E .a communicated up and testified these beliefs to other agents, or a received 

up and testimony that the designer d has these beliefs.  

(van Eck 2016, p.4) 

Houkes and Vermaas avoid problems associated with the aforementioned accounts by 

adopting a very liberal notion of design: both engineers, redesigners and creative users 

count as designers.  

The specific notion of function that one adopts does not really matter for my 

dissertation. I mainly discuss this because it is an important topic in philosophy of 

technology, and because it is crucial to the notion of design, which is important for the 

chapters to come. I will go into the notion of design in the next subsection. First, let me 

discuss the importance of malfunction.  

Malfunction refers to the situation where an artefact fails to perform its function 

(whatever it was). Several philosophers of technology have stressed that a definition of 

function should account for the possibility of malfunction (e.g. (Houkes and Vermaas 

2010, p.3), (Floridi, Fresco, and Primiero 2015, pp.1200-1201), (van Eck 2016, p.9)). It 
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should also be distinguished from what Behrooz Parhami calls a defect, for example, 

which refers to something that is physically damaged but still functioning (1997, p.450). 

Parhami presents a multi-level model of reliability in which defect and malfunction are 

two stages, failure being the final one describing the malfunctioning of the entire system 

(1997, p.451). I am not concerned with the differences between failure and malfunction 

per se. I mainly want to draw attention to the idea that both are connected to the 

function of the artefact, more than to its physical state. Malfunction and failure are 

related of course, since the physical state of an artefact can give rise to malfunctioning, 

and often repairing the artefact will imply interventions onto the physical state. I will get 

into this in 1.5.4. 

1.5.3 Artefacts are designed 

Design is closely related to artefacts and to functions. On an intuitive level, design is the 

process with which we make sure that the artefact can perform its function. But, as was 

the case with functions, there is no consensus about the definition of design (Buchanan 

2009). Kroes defines it as “processes in which functions are translated into structures” 

(Kroes 2012, p.27). He connects this to functional decomposition15, an assessment where 

an artefact is represented in terms of the components’ functions only, in a way that is 

relevant for the current purpose such as malfunction analysis (van Eck 2016, pp.12-13). 

Most philosophers connect design more with the making of plans, like Kees Dorst and 

Kees van Overveld: 

Design is a human activity in which we create plans for the creation of artifacts that 

aim to have value for a prospective user of the artifact, to assist the user in his/her 

effort to attain certain goals. (2009, p.4556) 

According to Per Galle and Peter Kroes, design is the action of producing an idea for a 

new artefact, in such a way that it allows others to make artefacts according to that idea 

(Galle and Kroes 2014, p.216). This is also the way Houkes and Vermaas define designing, 

though in their view, plans are significantly more liberal. They view plans as “mental 

items that consist of considered actions”, regardless whether these actions are actually 

carried out. In this way, they also accommodate amateur designing and common sense 

designing as proper design activities, though these are respectively not done by trained 

 

                                                     
15William Bechtel and Robert Richardson also discussed functional decomposition as a strategy for discovering 

mechanisms in the biomedical sciences (Bechtel and Richardson 1993, p.xxx). 
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and licensed professionals, or not based on specialised knowledge (Houkes and Vermaas 

2010, p.27). 

But regardless of the specific definition, the act of designing is still aimed at creating 

artefacts, objects with a certain function. In attempts to understand design practice, 

philosophers have studied whether the activity is best characterised as problem-solving 

(Buchanan (2009)), whether it is rational (Kroes (2009a), Franssen (2015) and Bucciarelli 

(2003)), how to reconcile different goals (de Vries (2009)),… I cannot go into these 

questions here. What I do want to stress is that several philosophers have drawn 

attention to the synthetic nature of design. Kroes, for example, links this to specific skills:  

[… ] engineers need to have synthetic design skills: when designing new technical 

artefacts, they must be able to combine elements (components or processes) in 

inventive, creative ways so that they can satisfy practical means-end or functional 

requirements. The designing of technical artifacts is considered to be primarily a 

synthetic rather than an analytic activity. […] For these purposes they also need to 

have synthetic skills; theories, experiments as well as experimental equipment are 

composed of different elements (like, for instance, laws, actions and physical 

components) and they result from researchers putting these elements together in 

specific ways to satisfy requirements, cognitive and otherwise. (2009b)16 

According to Richard Buchanan, the characterisation of design as synthetic activity can 

be traced back to Herbert Simon and refers to the idea that in designing, engineers put 

things together to create a functioning whole: 

He designs by organizing known principles and devices into larger systems. 

(Buchanan 2009, p.425) 

Although it is an intuitive notion, ‘synthetic’ can have many different meanings. Yet 

design is a synthetic activity in a very specific sense: it  

[…] involves the synthesis of functional components that together realize the 

overall function of a technical artifact. (Kroes 2009b, p.406) 

In the context of this dissertation, the most important questions are: How do we achieve 

this? How do we create a complex whole that (most of the time)17 successfully performs 

the function we want it to? This brings us to the material realisation of artefacts.  

 

                                                     
16 This does not mean that designing is solely a synthetic activity.  
17 Following (Floridi, Fresco, and Primiero 2015), if artefacts are incapable of ever performing their function, 

they are not failing but rather are badly designed. 
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1.5.4 Artefacts need to be realised materially  

To create actual artefacts, our design plans need to be carried out physically: the 

artefacts need to be constructed and built. Kroes expresses this as the dual nature of 

artefacts: they cannot be captured by mere intentional conceptualisations since they 

need to be designed and physically made, but neither can they be conceptualised in 

mere physical terms, since artefacts have an intended function. (Kroes 2012, p.5) This 

making, or physical realisation of artefacts is not a straightforward thing: 

Matter has to be transformed so that the resulting physical construction has 

certain capacities or shows a particular kind of behavior. Often that is an arduous 

process which may involve many problems, setbacks, failures. (Kroes 2012, p.3) 

Kroes is not the only one to stress the difficulty of actually creating artefacts. Hans 

Radder for example also reflects on the difficulty of building artefacts: 

First, we need the capability for, literally, putting together a technological system 

that has the potential of performing the required function. This means that we 

need to have available the materials, resources, skills and knowledge that are 

required for designing, constructing and using the technological system in the first 

place. (2008, p.54) 

Because of this, Kroes argues that this putting together of components to realise an 

overall function of an artefact, is something that makes the designing of technical 

artefacts “a synthetic activity with distinctive features of its own” (Kroes 2009b, p.406).  

1.5.5 Artefacts need to be stable and reproducible 

The material realisation of artefacts needs to be such that the artefact can perform the 

intended function. Yet this is not all. Radder argues that, to be successful, the realisation 

needs to be reproducible, and have a certain degree of stability. It needs to be 

reproducible in the sense that “different systems of the same type should be able to 

exhibit the same function” (Radder 2008, p.53). So it should not be the case that we 

cannot build another instance of a design plan – we should be able to create more than 

one functioning copy18. Secondly, the artefact should be able to perform its function 

 

                                                     
18 This mainly applied to artefacts in the area of mass production, and less to artefacts like custom made 

jewellery or art.  
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“across a variety of situations and during a substantial period of time” (Radder 2008, 

p.52). So a successful artefact should not break down every ten minutes or only work 

when it is exactly 25 degrees outside. The demands for reproducibility and stability are 

actually part of the reason why it is so daunting to successfully create a functioning 

artefact, and why design is so central. They are also part of the reason why my cases 

from failure analysis are so interesting. As will turn out, the knowledge from analysing 

failed artefacts can help improve future designs with regard to stability. 

1.5.6  Maintenance  

One important way to keep artefacts stable, is by maintaining them. This is silently 

assumed by philosophers of technology, but not often stressed or discussed. An 

important exception is Radder (2008) (which should not be a surprise, since he stresses 

stability). For my dissertation, it is important to sketch the image of an artefact as a 

complex arrangement of components organised in such a way that the resulting 

arrangement behaves in a particular way. This is not an easy task and requires constant 

attention and interventions throughout its lifespan to keep it functioning. After all, 

[…] since the world may and often does change in substantial ways in the course of 

time, keeping a working technological system stable and reproducible also requires 

active and intentional human intervention. That is why technologies, if they are 

expected to keep functioning, cannot be left to themselves. (Radder 2008, p.54) 

Nevertheless, maintaining artefacts to ensure their stability is an activity similar to 

building artefacts: it requires specific knowledge and skills. As I already sketched above 

and will argue throughout this dissertation, deciding which knowledge is applicable and 

getting to that knowledge is not a straightforward thing. 

1.5.7 Artefacts are embedded in a physical and social environment 

This demand also brings us to the next feature of artefacts, namely their relation to their 

environment. Artefacts need to function in a specific environment (viz. those things not 

included in the artefact that are nevertheless relevant for its functioning, see (Radder 

2008, p.52)). This can be the physical environment (like the temperature mentioned 

above, but also surface, whether there is wind,…) but also the social environment. For 

my cases, the physical environment will be more important than the social, but 

nevertheless, social embedding is an important feature of artefacts and I want to spend 

some time on it. 
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As a first point, any material realisation is always part of a social context: there are 

always humans and human interactions, social structures etc. in which the artefact 

functions (Radder 2012, p.159).  

This embedding can have significant influence. A clear way in which the social 

environment plays a role is in the way artefacts are used. Artefacts can be used in very 

different ways: a chair can be used for sitting, for standing on, even to hit people with. 

The latter is an unusual way of using the artefact and most often also illegal - two 

possible social limitations to artefact use (Houkes and Vermaas 2010, p.6). The artefact 

itself cannot enforce any behaviour or use: there needs to be a social system in place 

that enforces sanctions on incorrect or unwanted uses or interactions, like a justice 

system with laws (Kroes 2012, p.16). Correct or proper ways of using artefacts are often 

placed in void clauses to cover the makers when things go wrong19 (Houkes and Vermaas 

2010, p.6). This is related to the demand for stability: clearly, social environment also 

determines whether the artefact is considered stable (Radder 2008, p.55). If a common 

practice is to bang chairs against the floor e.g. for a celebration, then for chairs to be 

stable, the chair-design needs to take these actions into account.  

A final important way in which society and artefacts are linked, is on a more ethical 

level. Producing artefacts is a costly business. Correspondingly, social agents with the 

most money (and connected to that, power) will determine which artefacts are made 

most frequently. They will also determine which artefacts are more researched than 

others. For the artefacts I will be talking about, this may not seem important: it’s just 

machines. But look for example at pharmaceutical products. Big pharmaceutical 

companies can influence the research that is done in biomedical sciences in a significant 

way (Radder 2012, p.59). This is an important topic of reflection. Maybe less 

straightforward, this is also an important topic of reflection about machines. For 

example, if most research is done into nuclear energy because the industry funds this 

more than e.g. windmills or solar panels, this can seriously influence the development of 

technology and correspondingly, the development of our society. 

Note that these are important topics of reflection, but that according to Radder, 

philosophers should not get sole say on the policy on this matter. According to him, 

democracy is central to philosophy of technology. I wholeheartedly agree. Because of 

the social embedding of technology and artefacts, people need to be correctly and 

 

                                                     
19 Liability is becoming increasingly important because of automation. With self-driving cars, for example, there 

is the question of who should be held responsible in case of an accident: the technology manufacturer or the 

driver (Malinas and Bigelow 2016). 



 

38 

sufficiently informed about technologies, safety issues, ethical concerns, impact on 

society etc. To achieve this, philosophical reflection is crucial. 

1.5.8 Engineering sciences: the science of (phenomena in) artefacts 

Besides the focus on design and how central it is for the function of artefacts, philosophy 

of technology tends to focus on reverse engineering and malfunction analysis as 

engineering disciplines. The first is a practice where engineers analyse how an artefact 

achieves its general function or behaviour, often to redesign it (in a more efficient way) 

afterwards (van Eck 2016, p.22). In malfunction analysis, on the other hand, engineers 

attempt to explain why an artefact failed to perform a certain expected function (van Eck 

2016, p.10). Mieke Boon and Tarja Knuuttila have argued that there is more to the 

engineering sciences. They define it as a practice that tries “through modelling to 

explain, predict or optimize the behaviour of devices, processes, or the properties of 

diverse materials, whether actual or possible” (Boon and Knuuttila 2009, p.687). As a 

matter of fact, they argue that design is part of engineering, and not of the engineering 

sciences. The distinction they press is best seen in terms of models: the models that 

engineering produces are significantly different from the models that the engineering 

sciences produce. A way to make it tangible, is to see that engineering mainly focuses on 

how artefacts perform their function – which was indeed a central concept for (1)design 

(let’s make the artefact perform the function), for (2) reverse engineering (how does the 

artefact perform its function?) and for (3) malfunction (why doesn’t the artefact perform 

its function?). The point that Boon and Knuuttila want to make, is that there is also 

modelling of phenomena that occur in artefacts with no or less focus on function. As a 

contrast, “the engineering sciences aim at both furthering the development of devices 

and materials meeting certain functions and optimizing them” (Boon and Knuuttila 2009, 

p.688). They do this by modelling the behaviour of artefacts and phenomena that occur 

in artefacts in terms of physical phenomena (Boon and Knuuttila 2009, p.687).  

Since this dissertation is written from a Philosophy of Science in Practice-perspective, I 

do not feel that it is necessary to hammer on a sharp distinction between engineering 

and the engineering sciences. The two are intertwined both conceptually and even 

practically, in research and development labs like the one associated with the Phillips 

company, or the AT&T Bell lab (Crow and Bozeman 2005). The demand for a specific 

artefact often drives the questions that engineering science asks and the research 

conducted. And conversely, in redesign for example, knowledge from engineering 

sciences (about properties of materials for instance) can be used to improve the 

engineering design of a specific type of artefacts. What is important, I think, is to see that 
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what Boon and Knuuttila call the engineering sciences, is a complex practice. This helps 

to debunk the idea that artefacts (and applications in general) are rather straightforward 

consequences of the laws of physics : 

[…] applying scientific laws for describing concrete phenomena usually requires 

idealizations, approximations, simplifications and ad-hoc extensions (e.g. 

Cartwright 1983, p.111). As a result, in technological applications predictions based 

on scientific theories are not at all straightforward since boundary conditions not 

accounted for in the theory may be involved. Scientific theories do not give rules 

on how to idealize, approximate, simplify and extend a scientific law in order to 

make it fit for concrete phenomena. Consequently, scientific approaches to 

understanding or predicting phenomena relevant to technological applications 

involves scientific modeling different from the way textbooks present the 

application of fundamental theories in the construction of mathematical models 

for concrete systems (e.g., by using Newtonian mechanics, thermodynamics, 

electricity and magnetism, or quantum mechanics). (Boon 2011, p.64) 

I discuss this in chapters 3 and 5. But for now, it’s important to see that the relation 

between artefacts and science is not at all straightforward.20 

1.6 Overview of this dissertation 

Now that I provided enough information, I can repeat my three main topics and explain 

how I will proceed to discuss them. In this dissertation, I study physical causal knowledge 

needed for and acquired in using, researching, building and maintaining artefacts21, with 

regard to 

(1) the meaning of causal claims about artefacts, 

(2) the evidence needed for using this physical causal knowledge, and 

(3) the relation of this physical causal knowledge to the laws of physics. 

 

                                                     
20 Maarten Franssen (2015, p.239) made a similar point. 
21 Though I mainly limit the use-contexts to artefacts, my analysis also holds for natural contexts. I will 

therefore on occasion explain how it can be adapted. 
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As will become clear throughout the dissertation, all three are interrelated. Causal 

relations with different meanings demand different types of evidence, for example. 

Moreover, the relation of physical causal knowledge to the laws of physics will in some 

sense be present in every chapter. To study these three aspects of physical causal 

knowledge, I will combine insights from philosophy of science and philosophy of physics; 

from philosophy of technology and of the engineering sciences; from philosophy of the 

biomedical sciences; and from philosophy of the social sciences. This is due to several 

reasons.  

For one, as my overview of the literature has shown, there are some gaps between 

philosophy of science and philosophy of technology and of the engineering sciences. 

Philosophy of physics does not look at applications of physical knowledge, or to the 

wider context of physics in general. When it comes to studying applications of 

knowledge, philosophy of biomedical sciences and of social sciences do a lot better. 

Nevertheless, physical knowledge is also applied to explain and intervene in the world, 

e.g. when building, using, maintaining and repairing artefacts. These artefacts form the 

main topic of philosophy of technology and of engineering (science). Yet discussions in 

this field do not really focus on more traditional philosophical questions, like how we 

gather knowledge to use in creating and maintaining artefacts or what evidence we need 

for this knowledge. I will attempt to bring these fields closer together. 

Second, the focus on use is more prominent in philosophy of biomedical and of social 

sciences than in philosophy of physics. I will use and where necessary, adapt, the 

relevant contributions in the literature to shed light on my cases. The combination of 

these different philosophical fields hopefully may improve the status of all the involved 

fields, and contribute to a philosophical understanding of science in the broad sense.  

I will not only use a great diversity of philosophical resources, but also a great diversity 

of case studies with increasing complexity. Specifically, I will look into technical repair 

manuals (see chapter 2), common artefacts (chapter 3) and failure analysis (chapters 4 

and 5).  

As I explained, each chapter will argue for one of the four specific claims that I 

formulated in the Introduction. In chapter 2, I will start with remedy instructions from 

technical repair manuals of bikes, cars and radios because they constitute a very day-to-

day context where we find use-related physical causal knowledge. The manuals prescribe 

interventions that if performed, fix malfunctioning artefacts. In order for the 

interventions to be warranted, they need to be based on appropriate causal relations. I 

will investigate what properties are required of the causal relation to warrant the 

instructions. This chapter will provide an argument for my first specific claim (I). 

In chapters 3 and 4, I will turn to evidence for physical causal claims. Chapter 3 will 

deal with causal claims in the context of explaining phenomena in artefacts. I will 
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investigate what evidence is needed, and will conclude that the laws of physics do not 

suffice as source of evidence. Mechanistic evidence, I will propose, is needed to 

supplement the evidence that laws provide. In this way, this chapter allows me to argue 

for my second specific claim, viz. (II). 

In chapter 4, I will discuss a more complex practice, viz. failure analysis – a specialised 

part of the engineering sciences. I will show that engineers generalise causal knowledge 

from one failure, in order to improve design and maintenance practices of other and 

future artefacts. I will investigate how the evidence they require for these 

generalisations can be characterised. Based on the cases, it will be shown that the 

evidence mainly consists of mechanistic information about the artefact and the context. 

This chapter provides support for my claim (III). 

In the fifth chapter, I will use a case from failure analysis to investigate the relation 

between applications and laws of physics. By analysing the regularities that failure 

analysts use, I will argue that the view that universal, necessary laws are more 

appropriate than other regularities to achieve our epistemic goals is untenable. In reality, 

a whole array of regularities is used to achieve goals, and which of those regularities is 

used depends on the context and the specific goals we have. This chapter argues for the 

final specific claim, viz. (IV). 

As announced, I will also realise two more generic aims (viz. (A) and (B)) throughout 

this dissertation. In the conclusion of each of the following chapters, I will explain how 

the chapter contributes to establishing these more generic aims. As such the case for (A) 

and (B) will gradually develop. In the Conclusion of this dissertation, I will summarize my 

arguments for the four specific claims and reflect on how a combination of these 

arguments helps me reach my two more generic goals. The Conclusion also contains a 

reflection on the fruitfulness of a more practice and use based philosophy of physics. 

Several of the following chapters are based on individual papers. However, I have 

made significant alterations and additions to improve the overall coherency and 

narrative of the dissertation. Some of the papers are co-authored. For the corresponding 

chapters, I have made related formal changes, such as writing from the “I” instead of 

“we”-perspective. Nevertheless, the material originated in cooperation, and I will 

therefore systematically specify co-authors where needed. 
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Chapter 2 Causation and Technical Problem 

Solving1 

In this chapter I will investigate a very day-to-day context where we find use-related 

physical causal knowledge: in repair manuals of artefacts such as bikes, cars and radios. 

The manuals prescribe interventions that if performed, fix malfunctioning artefacts. In 

order for the interventions to be warranted, they need to be based on appropriate 

causal relations. Because of our familiarity with the artefacts in question, it might seem 

that fixing them, or producing the appropriate causal knowledge to fix them, is not that 

hard. Recall from 1.2.3 that Norton also assumed that using physical causal knowledge is 

straightforward and that it does not raise interesting philosophical questions. Here, I will 

show that this is mistaken and that producing practically useful causal knowledge, even 

for such seemingly simple artefacts as bikes, cars and radios, is rather complicated.  

I will discuss three complicating factors: (1) causal knowledge is context- (and 

artefact-) dependent, (2) depending on the demands we place on our intervention we 

require different causal relations to hold, and (3) the artefacts on which we intervene are 

embedded in physical and social environments. My discussion of the first complicating 

factor will result in a tool to specify the domain of causal knowledge or claims. To 

investigate the second factor, I will first present some criteria for successful manuals. I 

take these criteria to be implicit in the practice of writing manuals, and I aim to make 

them explicit. These criteria will determine the meaning of the causal knowledge that is 

needed to underpin the instructions. I will then combine insights from Ronald Giere, 

Ellery Eells and John Mackie to capture the resulting meaning of the causal knowledge. 

 

                                                     
1 This chapter is based on a paper co-authored with Erik Weber. I am grateful to four anonymous referees for 

helpful comments and reflections. 
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The third complicating factor is inspired by the debates in philosophy of technology that I 

described in 1.5.3 and 1.5.7.  

Based on these three factors, I will argue that using and producing physical causal 

knowledge, even in such seemingly obvious cases, requires information about the 

context (both in a limited and in a broader sense), about the meaning of the causal 

knowledge and about how this relates to the way we want to use it. This chapter thus 

constitutes an argument for my first specific claim, viz. (I). At the same time, this chapter 

shows that focusing on useful physical causal knowledge does raise important 

philosophical questions, e.g; about the meaning of the physical causal claims to be made 

and how this meaning relates to how these claims are used. In this way, this chapter 

forms the first step in my exposition to reach my two generic aims (A) and (B). In the 

following chapters, I gradually introduce more complex cases and with that, more and 

more complications and interesting philosophical questions will arise.  

Introduction 

Three complicating factors  

In this chapter I will focus on one of the ways in which we use physical knowledge that I 

defined in 1.2.2, namely for interventions. Woodward (2003) gave a technical definition 

of an “intervention” that is the standard in the current literature. I use this in a more 

colloquial meaning. I will show that determining whether certain causal claims about 

phenomena are adequate to form a base for intervening on these phenomena, is not an 

easy matter. To study the causal knowledge required for interventions, I will look at 

examples from technical problem solving manuals, aimed at allowing non-experts to 

repair their cars, bikes or radios. As I will show, these manuals prescribe certain actions 

or interventions, which are supposed to solve the malfunctioning. By studying the 

physical causal knowledge needed to warrant the prescribed interventions, several 

complicating factors become evident. I will discuss three such factors that are present 

even when we discuss rather reliable causal knowledge2 about rather easy artefacts.  

 

                                                     
2 The causal knowledge is reliable because it is given to us in manuals written by experts, so we do not need to 

support it ourselves (see chapter 3). 
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One, the causal relation, among which the quantitative relata and even the causal 

direction, can differ depending on the context3. While I agree with Norton that heat 

causes thermal expansion and not vice versa4, for many other physical regularities, the 

causal direction can switch depending on the circumstances or the artefact. Causal 

knowledge can only guide our interventions if the domain of the causal knowledge 

corresponds to the situation you are intervening in. Correspondingly, evaluating causal 

claims in the context of interventions is a context-dependent activity. Of the three 

complicating factors, this one is the most discussed in the literature. 

Two, it is not clear what it means when we say that x causes y, and the meaning can 

differ depending on the circumstances. As I explained in 1.3.1, many definitions of 

“cause” have been presented throughout the literature. Yet, the specific properties that 

a causal relation has, determine which actions one can warrantedly perform based on it5. 

Correspondingly, when we want to apply or produce appropriate causal knowledge, it’s 

important to know what causal relations mean and which properties of the relation we 

need in order to warrantedly base our interventions on. To understand this general 

point, consider the difference between probabilistic causal relations and deterministic 

ones. If we want to be certain that our intervention always produces the wanted effect6, 

we need to base it on a deterministic causal relation. Probabilistic relations will not do. 

So to intervene in a warranted way, we need to know the meaning of the causal relation 

on which we base our intervention.  

Three, the (parts of the) artefacts we intervene on are embedded in broader physical 

and social contexts that also influence the effects of these interventions. This 

complication is related to the first one, but deserves separate attention. While the first 

complication focuses on the direct physical environment, this complication addresses the 

physical environments in a more broad way and emphasises social aspects. This 

complication is least discussed in the literature, and it is situated on a different 

conceptual level than the other complicating factors, so I will leave this for last.  

These three complications form the starting point of the argument that I develop 

throughout this dissertation, viz. that the use of physical causal knowledge is a 

complicated and intriguing topic, worthy of philosophical attention. 

 

                                                     
3 I will pay more attention to how the quantitative relata change in chapter 3. 
4 This is not that surprising, since thermal expansion is defined as expansion due to thermal energy (Considine 

and Kulik 2008, p.221). 
5 And, correspondingly, the evidence you need to support the causal relation. See also chapter 3 and 4. 
6 I will get back to this in 2.5. 
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In the next section, I will present the examples that I will use as cases throughout this 

chapter. In the rest of this introduction, I will present an overview of what is to come. 

Examples 

Everyone is in some sense familiar with what I call technical problem solving instructions 

(TPSI for short). Though you might not be familiar with the language, you probably are 

familiar with the practice of following instructions from a manual in order to fix an 

artefact. Here are some examples that are taken from car - and bicycle repair manuals: 

(E1)  Excessive fuel consumption: the air filter element is dirty or clogged. 

Remove the air filter, clean with compressed air and refit. (Mead and Legg 

1997, ref.15, 1.13) 

(E1’)  Excessive fuel consumption: the tyres are underinflated. Check and adjust 

pressures. (Mead and Legg 1997, ref.15, 0.14) 

(E2)  The major cause of slow engine cranking or a "no-start" condition is 

battery terminals which are loose, dirty, or corroded. […] disconnect the 

battery and clean the terminals of both the battery and the cables. 

(Chilton 1986, p.16) 

(E3) Difficulty engaging gears: worn or damaged gear linkage or gear cable. 

Replace the cable. (Mead and Legg 1997, ref.15) 

(E4)  Indication: Engine sputters, may fail to start. Condition: water in the fuel. 

Remedy: […] For a layer of water, the tank must be drained, and the fuel 

lines blown out with compressed air. (Chilton 1986, p.288) 

(E5) Starter motor turns engine slowly: partially discharged battery. Recharge. 

(Strasman 1988, p.23) 

(E6)  When pedaling forward, the cassette spins, but there is no drive to the 

bike: the freehub body is worn. Replace the freehub body. (Sidwells and 

Ballantine 2004, p.37) 

(E7)  The brakes are hard to apply, and/or sluggish to release: grit and dirt is 

inside the cable outers or the lubrication on the inner cables has dried. 

Strip down the cables, flush the outers, and clean the inner cables with 

degreaser, lubricate both, and reassemble. (Sidwells and Ballantine 2004, 

p.37) 
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To ensure that the analysis is not limited to ways of conveyance, I also include an 

example about radios: 

(E8) If the […] cone is badly torn or warped […] then the sound produced by 

the speaker will be distorted. Replace the loudspeaker with a new 

speaker, or recone the old one if a new model is not easily available. (Carr 

1990, p.203) 

The example about radios is in some sense outdated, since most contemporary radios 

are constructed in such a way that you cannot fix them yourself. However, they are 

paradigmatic in the history of (repairing) household electronics. At some point almost 

every household owned one, and when they malfunctioned, they needed to be repaired. 

Current versions of such an artefact are for instance printers or washing machines. 

Based on these examples, I argue that a paradigm form of a TPSI contains the 

following three elements: 

- a problem (e.g. excessive fuel consumption) 

- a diagnosis (e.g. dirty air filter element) 

- a remedy (e.g. remove, clean and refit the air filter). 

Note that in some cases (e.g. E7), there is more than one possible diagnosis.  

In this chapter I will mainly focus on the third element of TPSIs: I will investigate the 

causal underpinnings of remedy claims. These claims prescribe an intervention on the 

malfunctioning artefact. On occasion, a manual also prescribes diagnostic actions: it 

instructs you to perform a certain action and observe the result. It then tells you what 

the result means in terms of diagnosing the specific malfunction. Examples are “test the 

state of charge of the battery using an individual cell tester or hydrometer” (Chilton 

1986, p.279) and “when you apply the front brake and push the bike forwards, the 

headset moves forwards relative to the head tube” (Sidwells and Ballantine 2004, p.36). 

However, most of the time, these diagnostic actions are separated from the remedy 

instructions: they are in different sections, or in a different format etc. In this chapter, I 

will not focus on diagnostic actions, since they require a different framework of analysis 

than remedy instructions. In analysing the remedy instructions, I will take the relevant 

diagnostic actions to be performed and the outcome such that the diagnosis in the TPSI 

is established.  
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Structure of the chapter  

In this chapter I will use the examples above to discuss three complicating factors for 

Norton’s claim that ascribing causal relations to physical phenomena is straightforward. I 

will first spend time on showing that the causal relation that holds depends on the 

specific situations you are discussing. Hence, the validity of the corresponding causal 

claims differs too. Causal knowledge can only guide our interventions if the domain of 

the causal knowledge corresponds to the situation you are intervening in. In section 2.1 I 

will discuss this first complicating factor, and propose a way of dealing with it in our 

causal analysis.  

I will then move on to the second complicating factor. This makes up the main part of 

this chapter (viz. sections 2.2 till 2.6). In section 2.2, I will provide some methodological 

reflection and define three criteria for the prescribed interventions to be successful: an 

efficiency requirement, a no harm requirement and an ideal of maximal assistance. I take 

these criteria to be implicit in the practice of compiling manuals. The subsequent 

sections can be seen as a stepwise analysis of how the abovementioned criteria 

determine the properties of the causal knowledge needed to underpin the proposed 

interventions. This will reinforce my suggestion that what it means for x to cause y is not 

a straightforward (let alone a single thing) thing. In section 2.3, I will investigate what 

kind of causal knowledge is necessary to satisfy the efficiency requirement. This will turn 

out to be the minimal strength of causal knowledge needed to warrant the remedy 

instructions and corresponding interventions: if the kind of knowledge defined in this 

analysis is absent, the efficiency requirement is violated. In section 2.4, I will then 

analyse how the no harm criterion (combined with the efficiency requirement) may 

demand knowledge of the presence of a stronger type of causal relation. In section 2.5, I 

will analogously examine how incorporating the maximal assistance ideal affects the kind 

of causal relations that are desirable. In section 2.6 I present a summary of my analysis. 

Because they will be useful for other chapters of this dissertation as well, section 2.6 also 

contains an overview of my definitions. 

Finally, in section 2.7 I will pay some attention to the third complication: the physical 

and social embeddedness of interventions and artefacts can also influence the outcome 

of our interventions. When we intervene in in artefacts outside shielded, laboratory 

settings, these environments matter. However, they are often neglected or presumed to 

be of a certain kind. As I will argue, when intervening in real artefacts, they cannot be 

ignored: in order to find appropriate causal knowledge to base our actions on, we also 

need information about these environments. 

This chapter will show that even for relatively easy artefacts, in relatively every day 

contexts, complications arise when we want to put causal knowledge to use. As I 
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mentioned, in the next chapters, I will show that as the situations become more complex 

or less familiar and the causal knowledge becomes less established, more and more 

complications arise. In this way, all the following chapters expand the argument that I 

will start here, viz. that using physical causal knowledge is complex and requires 

philosophical attention. 

2.1 The First Complicating Factor 

This section deals with the first complicating factor: causal relations are context-

dependent and therefore the validity of corresponding ascriptions or causal claims is as 

well. I will explain how this context-dependency creates a difficulty for Norton’s 

presumption that ascribing causal relations is straightforward. At the same time, I will 

argue why it is important to incorporate this context-dependency in an analysis of causal 

knowledge. I will therefore develop a tool to specify the domain of physical causal claims 

– an important aspect to analyse their meaning and validity. 

2.1.1 Causal relations are context-dependent 

Recall the problem of external validity I mentioned in 1.4 in relation to the biomedical 

and social sciences: that a causal claim holds in one context does not mean it will hold in 

another. Philosophers have therefore argued that both the validity and meaning of 

causal claims in the biomedical sciences are intrinsically linked with the population that 

the causal claim is about. I illustrate this with an example from Daniel Steel (2007, p.82). 

The following causal claims are true: 

Aflatoxin B1 causes liver cancer in rats. 

Aflatoxin B1 causes liver cancer in humans. 

However, the following claim is false: 

Aflatoxin B1 causes liver cancer in mice. 

Since the population we talk about makes a difference (not only in this case, but in many 

other cases as well), it is important that we always explicitly mention the intended 

population when making a causal claim. If we only say  

Aflatoxin B1 causes liver cancer 
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it is not clear which population we are talking about. And depending on which 

population we intend to talk about, the truth value of the claim differs.7 This is especially 

important when we are looking for causal knowledge to base interventions on. Giving 

Aflatoxin B1 to mice will not result in cancer, giving it to humans will.  

It is important to make the same kind of specification regarding physical causal claims. 

Without specifying what our causal claim is about, we cannot understand or evaluate it. 

Consider the following examples of general physical causal claims: 

(C3) Increasing the temperature of a gas causes an increase in volume occupied by 

the gas. 

(C4) Increasing the temperature of a gas causes an increase in volume occupied by 

the gas in rigid, closed containers. 

(C5) Increasing the temperature of a gas causes an increase in volume occupied by 

the gas in non-rigid or open containers. 

C4 is incorrect. Gas in a rigid, closed container cannot expand. So in rigid, closed 

containers, an increase in temperature of the gas will not lead to an increase in volume 

occupied by the gas. C5, on the other hand, is a correct causal claim. We therefore 

cannot evaluate C3 as such: it is underspecified. And if we are looking for causal 

knowledge to increase the volume of a gas, C3 will not suffice. Note that this example 

already shows that Norton’s treatment of causal ascriptions can be specified – and needs 

to be specified if we want to understand how causal knowledge can guide interventions. 

An important way in which we can specify is regarding contexts: determining what the 

causal relation is depends on the context. Moreover, temperature can also change due 

to volume changes when compressing a gas for example (see 3.1.4). So without knowing 

the context, we cannot determine what the causal relation is. Correspondingly, we 

cannot judge whether a causal claim provides an adequate base for interventions, 

without knowing which situations the claim refers to. Note that in the example above, 

not the entire context is specified. The colour of the container, its shape and the specific 

material it’s made of, are for example not mentioned. This is because only the relevant 

contextual factors need to be taken into account. Determining what the relevant factors 

are, is not easy. I will pay more attention to this in chapter 3 (see 3.1.2 and 3.1.4).  

 

                                                     
7 Peter Menzies (2007) and Christopher Hitchcock (1996) have also connected causation to contexts. I discuss 

them in 2.3.3.  
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So if we want to evaluate causal claims in a systematic way, we need a concept that 

can play the same role as ‘population’ does in causal analysis of the biomedical sciences, 

viz. specifying what the causal claim is about.  

2.1.2 Physical setups 

The concept I propose for this purpose is called ‘physical setup’. It is defined as follows: 

A physical setup is a whole comprising at least two physical objects, located 

in space and time, with each having at least one variable feature.8 

Consider an example of a physical setup based on example E4 above: 

(S1) (1) The engine (with as variable feature whether it sputters or not) and (2) the 

fuel-system (with as variable feature whether it contains water or not), with 

(1) and (2) organised such that fuel from the fuel tank is pumped into the 

engine via the fuel system and located in time. 

Physical causal claims can be seen as referring to physical setups in the following way: 

general (type level) physical causal claims are about collections (types) of physical 

setups; token physical causal claims (which I do not discuss in this chapter) are about 

individual setups.  

By means of the concept of physical setup I can formulate the causal information 

underlying the remedy claim from E4 as follows: 

(C6) For all physical setups of the type S1: the value of the variable W (whether it 

contains water) of the fuel-system immediately before t influences/has an 

effect on the value of the variable S (whether it sputters) of the engine 

immediately after t.  

Time t refers here to the moment at which the user of the car attempts to start it (i.e. 

turns the ignition key). The concept of physical setup now allows me to delineate what 

the causal claim is about. It is a tool to get a grip on the scope of causal claims. This 

concept therefore allows me to deal with the first complication. Whether a causal claim 

provides an adequate base for performing interventions depends on whether the 

domain of the causal claim corresponds with the situation you want to intervene in. 

 

                                                     
8 “Physical object” is to be interpreted in a pragmatic way. It bears no metaphysical implications. 
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I now turn to explaining and handling the second complication. To that end, I will 

analyse the meaning of the remedy claim from E4 and similar causal claims more 

thoroughly: how can “influences/has an effect on” be further characterised in light of the 

interventions that the claim intends to warrant? In Sections 2.3 – 2.5 I will gradually 

develop my answer and illustrate it with examples. To understand the upcoming analysis 

properly, I will first explain the general methodology of these sections in section 2.2. 

2.2 The Second Complicating Factor – Methodology 

In this section I will explain my methodology for the upcoming sections. They engage 

with the second complicating factor I mentioned in the introduction: the required 

properties of the causal relation we need to warrant interventions depend on what we 

want to achieve with the intervention. To study this, I will focus on the remedy claims of 

the TPSIs from the introduction. As should be clear from the examples, remedy claims 

are themselves not causal claims: grammatically they are imperative clauses (see the 

examples: “remove’, “recharge”, “adjust”, ….). However, they have to be based on 

knowledge of certain causal relations that hold in the world, in order for the prescribed 

instructions to be warranted. Hence, I will not analyse causation in remedy claims 

(because there is no such thing) but causal knowledge underlying remedy claims. 

2.2.1 Three criteria of success  

The question that I will be answering in the following sections is “Which causal 

knowledge do we need to warrant remedy interventions like the ones prescribed in 

TPSIs?”. The situation is often reversed: we want to intervene in a certain way, to reach a 

specific goal and we thus look for appropriate causal knowledge that can facilitate the 

intervention. In the case of the TPSIs, the interventions are prescribed, and I will analyse 

which causal knowledge is required to make this prescribing warranted. In general, 

repair manuals have a certain authority, since they are put together by experts. This 

gives us reason to trust that the knowledge needed to warrant the intervention is 

available. In chapter 3, I will discuss the complexities that arise when we do not have 

such a clear and trustworthy information source. So my point in this section is not to 

evaluate whether the writers of the manuals have the required knowledge. Rather, I will 

reflect on the demands that interventions and their goals put on the required causal 
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knowledge. To do so, we first need to have some idea of what the goal of these remedy 

interventions is. This might look straightforward: the goal is to fix the broken artefact. 

That is true, in a sense, but more needs to be said on the matter.  

To that end, I will first present three criteria regarding the prescribed interventions 

that, in my view, a repair manual must satisfy to be successful. These criteria are implicit 

in practice, and by making them explicit, I can reflect on their properties and 

consequences for the manuals. As I will argue, each criterion requires the causal relation 

to have different properties to underpin the instruction. These criteria should not be 

regarded as strict rules: there can be exceptions. 

The first criterion I propose is that repair manuals should avoid prescribing useless 

actions, i.e. actions whose result does not contribute to solving the problem. In order to 

clarify this criterion, it is useful to distinguish between the immediate result of an action 

and possible further consequences. Suppose I experience the temperature in my office 

as too high. I decide to open the window because I want a cooler room (that is my aim). 

The open state of the window is the immediate result of my action. Whether this 

immediate result leads in its turn to the desired state (a cooler room) after some period 

of time depends on an additional factor, viz. the outside temperature. If the room cools 

down, then I call this a consequence of my action. The useful distinction between results 

and consequences of actions has a history in the philosophy of action as well as in the 

literature on causation.9 With this terminology in place I now formulate the general 

efficiency requirement: 

Including a remedy “Do X” is suitable only if there is a causal relation 

between R (the immediate result of the doing X) and the problem stated. 

This general requirement has a specific instantiation for each TPSI. Let me give some 

examples. For E5 and E1’, the specific efficiency requirements are, respectively: 

Including the remedy “recharge the battery” is suitable only if there is a 

causal relation between battery charge and the speed at which starter 

motors can make the main engine run.  

Including the remedy “inflate the tyres” is suitable only if there is a causal 

relation between tyre pressure and fuel consumption. 

 

                                                     
9 The distinction between results and consequences as I use it here stems from the work of Georg Henrik von 

Wright (1971, pp.66-67). 
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If a remedy claim does not satisfy the general efficiency requirement, it prescribes a 

useless action. Surely, making users waste time in performing useless acts is not a good 

idea. 

The second criterion I propose is a no harm requirement: executing the instructions in 

repair manuals should not make the problem worse. Or, phrased in the terminology that 

I used above: the consequences of the actions should not be harmful. Exceptions are 

remedy instructions that function as a ‘last measure’: in cases where the artefact is in 

really bad shape, the manual might prescribe an action that if successful, fixes the 

artefact, but if unsuccessful, breaks beyond repair anyway, at least for the TPSI user – I 

will get back to this in 2.7. In such a case, a manual might prescribe an action that, either 

solves the problem, or further damages the artefact, within certain boundaries. 

However, since the artefact was not fixable by using the manual anyway, this action is 

not necessarily problematic. But on average, prescribed actions should not create new 

problems. 

Finally, I argue that repair manuals should help the users as much as possible – within 

the range of actions they are capable of performing easily – in solving the problem(s) 

that the users experience. I call this the maximal assistance ideal. 

These three criteria are a way of making explicit what we expect of the prescribed 

interventions. In that sense, they help decide which causal relations need to be in place 

(or by experts believed to be in place) to warrant the interventions.  

2.2.2 A note on methodology 

To analyse how these criteria influence the required properties of the causal relation 

that is needed to underpin the remedy claims, I will work with a series of definitions that 

capture different types of causation. The definitions are based on various existing 

theories of causation: the comparative model of Ronald Giere (1997), the context 

unanimity theory of Ellery Eells (1991) and the INUS theory of John Mackie (1980). I will 

extract interesting ideas from these theories and incorporate them into definitions that 

have a certain standard format. From Ronald Giere, I will extract the ideas of positive 

causal factor and negative causal factor to capture a very basic and very weak notion of 

causation. This will help me formulate the most basic requirement that I made explicit, 

viz. the efficiency requirement (section 2.3). This notion of causation is too weak to 

capture the no harm requirement. In order to capture this requirement, I will add the 

idea of context unanimity by Ellery Eells to the definitions from 2.3. The resulting 

definition specifies a causal relation that cannot be reversed in subcontexts – a stronger 

notion of causation. The ideal of maximal assistance also requires a stronger notion of 
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causation. To capture this, I will add the idea of INUS condition to the definitions of 2.3. 

This idea is inspired by John Mackie. 

Combining ideas from three different philosophical theories on causation is not an 

easy task. All of these philosophers intended their theory to capture causation, in a 

monist way. As such, their complete accounts are not directly applicable to my cases. But 

they are suited for my pragmatic project that combines the ideas without the rest of 

their theoretical framework. To combine these ideas, I will reformulate them as 

definitions in a standard format. A template form of definitions in my standard format is 

the following: 

C (as opposed to C*) is a [causal notion] for E in the collection of setups U if 

and only if [criterion]. 

The causal notion is for example positive causal factor, like D1 in 2.3, and the criterion 

captures the necessary and sufficient conditions that correspond to that causal notion. 

There is also mention of a contrast cause and of the domain (viz. the collection of setups, 

see 2.1.2). By formulating the ideas in this way, the relations between my definitions 

(how and why one is stronger than the other) become clear. My standard format also 

has several other advantages: 

(I) The relevant type of physical setup is explicitly mentioned (so the tools are in place to 

avoid underspecification in the aforementioned sense). 

(II) A definition in the standard format is “purely consequential”, i.e. it specifies what 

follows from causal beliefs without making any assumptions about how causal claims 

are confirmed. In this way the definitions are compatible with the different ways in 

which evidence for causal claims can be gathered.10 

(III)  A definition in the standard format makes clear why causal knowledge is – in 

principle – practically useful (in the case of TPSIs: for solving problems, evaluating the 

proposed procedures, …). This will become clear in section 2.3.3. 

(IV)  My standard format takes into account the fact that the truth of causal claims often 

depends on the alternative cause we have in mind. I illustrate this with an example 

from Peter Menzies (2007, pp.204-206).11 Consider three options for administering a 

drug to a patient: no dose, a moderate 100 mg dose, or a strong 200 mg dose. 

 

                                                     
10 See chapters 3 and 4 for more information about evidence for causal claims. 
11 The example is originally from Christopher Hitchcock (1996), but he uses it to argue that causation is a 

ternary relation. 
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Suppose we give the patient a moderate dose and he recovers. It is possible that both 

of the following claims are true:  

Taking the moderate dose (as opposed to no dose) was a cause of the 

patient’s recovery. 

Taking the moderate dose (as opposed to the strong dose) was not a cause 

of the patient’s recovery. 

This example is based on the idea that causes make a difference for their effects. Yet 

whether a cause is seen as making a difference, depends on the alternative that is 

considered. In the example, taking the moderate dose and the strong dose both 

cause the patient’s recovery. So in the second case, taking the moderate dose did 

not make a difference for the patient’s recovery. As such, it seems that taking the 

moderate dose was not a cause of the recovery. If we leave out the specification “as 

opposed to”, we get two claims that seem to contradict each other but maybe are 

compatible, since they refer to different considered alternatives. To rule out this 

kind of confusion, definitions should explicitly mention the alternative cause. The 

same holds for causal claims regarding TPSIs. Suppose that we experience difficulty 

braking when driving our bike. When we are referring to the type of physical setup 

S2: 

(S2)  (1) The brakes (with as variable feature whether they are sluggish to release) 

and (2) the cable (with as variable feature whether it is gritty, clean or 

lubricated), in all cable operated bicycle brake systems.12.  

both causal claims can be true: 

The cable being clean (as opposed to lubricated) is a cause of the braking 

difficulties. 

The cable being clean (as opposed to gritty) is not a cause of the braking 

difficulties. 

Again, if we do not specify what state we consider as the alternative, we get two claims 

that are contradictory.13 

 

                                                     
12 Cable operated brake systems encompass all brake systems where pulling the cable engages the brakes, viz. 

makes the bike brake. This includes e.g. rim brakes and roller brakes.  
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2.3 The Efficiency Requirement 

In this section I will investigate what kind of causal knowledge is necessary to satisfy the 

efficiency requirement. In section 2.3.1, I will first introduce Ronald Giere’s comparative 

model for causation. This inspired my first two definitions. In section 2.3.2, I will present 

these definitions: positive causal factors (PCF) and negative causal factors (NCF). I will 

also reflect on how my definitions relate to Giere’s comparative model of causation. In 

Section 2.3.3 I will show that my definitions have the properties specified in 2.2.2. I will 

also reflect on why I chose Giere’s model as a basis for my definitions. Finally, in 2.3.4 I 

will argue that, in order to satisfy the efficiency requirement, remedy claims must be 

based on either positive causal factors or negative causal factors as defined in 2.3.2. 

2.3.1 My use of Giere’s comparative model 

My first two definitions are based on the comparative model which Giere developed 

mainly to analyse the meaning of causal claims in the biomedical sciences. In order to 

explain how my definitions follow from Giere’s work, I first present the core of his 

comparative model. It consists of the following definitions: 

C is a positive causal factor for E in the population U whenever PX(E) is greater than 

PK(E). 

C is a negative causal factor for E in the population U whenever PX(E) is less than 

PK(E). 

C is causally irrelevant for E in the population U whenever PX(E) is equal to PK(E). 

(Giere 1997, p.204) 

Most of Giere’s examples come from the biomedical sciences. So the population U 

mostly is a subclass of human beings, e.g. all Americans or all women in Germany. Giere 

considers only binary variables: C is a variable with two values (C and not-C); the same 

for E (values E and not-E). This is an important difference with my definitions, to which I 

come back below. For Giere, X is the hypothetical population which is obtained by 

changing, for every member of U that exhibits the value not-C, the value into C. K is the 

 

                                                                                                                                                                  
13 Note that “clean” here is to be interpreted strictly, as the state in which there are no substances present on 

the surface of the cable inside the sleeve. A lubricated cable has greasy material on its surface and thus is not 

clean in this sense.  



 

62 

analogous hypothetical population in which all individuals that exhibit C are changed into 

not-C. PX(E) and PK(E) are the probability of E in respectively X and K. Probabilities are 

defined as relative frequencies (Giere takes U to be finite, i.e. causal claims are about 

finite populations). 

Let me give an example. If someone claims that smoking (C) is a positive causal factor 

for lung cancer (E) in the Belgian population (U), this amounts to claiming that if every 

inhabitant of Belgium were forced to smoke there would be more lung cancers in 

Belgium than if everyone were forbidden to smoke. Conversely for the claim that 

smoking is a negative causal factor. Causal irrelevance is a relation between variables 

(represented in bold) rather than a relation between values of a variable (like the first 

two relations). If we claim that “smoking behaviour” (C) is causally irrelevant for “the 

incidence of lung cancer” (E) this means that we believe that in the two hypothetical 

populations the incidence of lung cancer is equally high. 

In my definitions, I will preserve the idea of hypothetical populations but formulate it 

in terms of hypothetical sets of setups, to accommodate my examples. I will also 

preserve the notation Giere uses for the relevant probabilities that are compared in the 

definitions: PX(E) and PK(E). Note that PX(E) should not be confused with PU(E|C). The 

latter is the relative frequency of E in the subclass C of the actual population U, while the 

former is the relative frequency of E in the hypothetical population X (which is defined 

starting from U but certainly not identical to U or to U∩C). In the smoking example, 

PU(E|C) would be the relative frequency of lung cancer in the subclass of actual smokers 

in the real population of Belgium. PX(E) is the relative frequency of lung cancer in the 

hypothetical population in which every inhabitant of Belgium were forced to smoke. Put 

differently: a difference between PU(E|C) and PU(E|¬C) entails that the variables are 

correlated, but not that smoking is a cause of lung cancer. In order to have causation we 

need something else: a difference between PX(E) and PK(E). 

To avoid misunderstanding, I provide some further clarification regarding the 

hypothetical populations. The idea underlying X and K is that they differ only with 

respect to the value of C and the values of all variables causally downstream of C. This is 

related to the way we ‘change’ the value of C in order to obtain the hypothetical 

populations. Giere does not specify what this change entails, but it can be defined as a 

surgical change following Jim Woodward (2003). Bear in mind that my account is a 

pragmatic one, focused on using causal knowledge. So this notion is primarily useful 

because reasoning about hypothetical populations and hypothetical changes to these 

populations can help understand the cases I am talking about.  

Now that I have covered Giere’s comparative model, I can present my definitions for 

the TPSIs and explain how they are related to Giere’s. 
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2.3.2 Positive and negative causal factors 

The first definition I need for my analysis is of a Positive Causal Factor (PCF): 

(D1)  PCF (Positive Causal Factor): C (as opposed to C*) is a positive causal factor 

for E in the collection of setups U if and only if PX(E) is greater than PK(E). 

C and C* are mutually exclusive but not necessarily jointly exhaustive (for instance: a 

clean cable as opposed to a lubricated cable; there are other possibilities such as a gritty 

cable). The collection of setups (U) will consist of all individual setups that belong to a 

certain type (S). X is the hypothetical collection of setups which is obtained by changing, 

for every individual setup in U that does not exhibit the value C, the value into C. K is the 

analogous hypothetical collection of setups in which all individual setups that do not 

exhibit C* are changed into C*. PX(E) and PK(E) are the probability of E in X and K 

respectively.  

An example might clarify this. If we claim that water in the fuel system (C) as opposed 

to only fuel in the fuel system (C*) is a positive causal factor for a sputtering engine (E) in 

the physical setups of U (setups of type S1), this amounts to claiming that if we poured 

water into every fuel system that is part of a physical setup in collection U there would 

be more sputtering engines than if every fuel system of the setups in U was completely 

filled with fuel. 

The second definition (Negative Causal Factor) is the negative counterpart of the first: 

(D2) NCF (Negative Causal Factor): C (as opposed to C*) is a negative causal factor 

for E in the collection of setups U if an only if PX(E) is less than PK(E). 

These definitions, as mentioned, characterise a rather weak notion of causation. To 

capture the no harm requirement and the ideal of maximal assistance, I need stronger 

notions. So my four remaining definitions (section 2.4 and 2.5) are reinforcements of D1. 

It is possible to construct reinforcements of the above definition of negative causal 

factorhood. However, since I do not need these definitions for the current analysis, I 

leave this up to the reader. 

Though my definitions of PCF and NCF are inspired by Giere’s, there are some 

differences: 

(a) I use “if and only if” while Giere uses “whenever” which is a conditional in one 

direction only. Because of the complementarity of Giere’s three definitions (i.e. the fact 

that the three relations are jointly exhaustive and mutually exclusive) my biconditional 
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formulation is in fact equivalent to the original formulation. Because I will focus on 

positive causal factorhood, it is more convenient to use a biconditional formulation, 

since this avoids confusion when one definition is used in isolation from the other two.14 

(b) Giere refers to populations, which is due to his interest in biomedical sciences, while 

my definitions are phrased in terms of collections of setups. The latter is of course due to 

my interest in technical problem solving instructions. Note that manuals often tell you 

the relevant collection of setups, by specifying the model numbers etc. So where Giere 

presupposes some sense of homogeneity in a population, manuals often are specific 

about their domain.15 

(c) The third difference is philosophically the most important. While Giere only considers 

binary variables, my definitions allow for non-binary ones. So my take on variables is 

more general than Giere’s. Recall the example at the end of in Section 2.1, for which the 

following claims may be true: 

The cable being clean (as opposed to lubricated) is a positive causal factor of 

braking difficulties. 

The cable being clean (as opposed to gritty) is not a positive causal factor of 

braking difficulties. 

Here C refers to “clean”. Clearly, there are two substates of not-C: “lubricated” and 

“gritty”, and depending on which substate is seen as the alternative, the truth value of 

the causal claim differs.  

2.3.3 Properties of PCF and NCF 

It is immediately clear that the definitions of PCF and NCF have the characteristics I (the 

relevant type of physical setup is mentioned) , II (purely consequential definition) and IV 

(reference to the contrast cause) mentioned in Section 2.2.2. What about III (clarify why 

the causal knowledge is useful)? As we have seen, an important feature of Giere’s 

 

                                                     
14 If you believe that C is a positive causal factor for E in a population U, you cannot believe at the same time 

that C is a negative causal factor for E in U. Then (according to Giere’s one-sided definition of negative causal 

factorhood) you have also to reject that PX(E) < PK(E). A similar line of reasoning based on the definition of 

causal irrelevance leads to the rejection of PX(E) = PK(E). Hence, you are forced to accept that PX(E) > PK(E): this 

is the only option left. In this way it can be shown that Giere’s definitions that use “whenever” jointly entail 

that in each case the other direction is also valid. 
15 Determining the domain of causal claims, however, is not easy. I will discuss this complication in chapter 4. 
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original model is that he defines causation in terms of what would happen in two 

hypothetical populations. In this way the policy relevance of biomedical causal claims 

becomes clear. Why should policy makers want causal knowledge? The hypothetical 

populations X and K correspond to populations a policy maker may create by means of 

some direct intervention (e.g. a ban on smoking, a mandatory inoculation, ...).16 This 

feature is preserved in my definitions: they define causation in terms of what would 

happen in hypothetical sets of setups. Contrary to the policy maker, the TPSI user does 

not want to intervene on the entire set of setups. He is interested in the individual level: 

he wants to fix his specific setup, e.g. (a part of) his car. Knowledge about positive causal 

factors can still guide him in this quest. A person following the TPSI may create a 

member of the hypothetical set X, by means of some direct intervention (e.g. removing 

the water from the fuel tank). This is also why it is important to specify the considered 

alternative cause: it gives you more fine-grained information on which you can base your 

intervention. In the case of braking difficulties, the contrasts tell you that pouring dirty 

oil or dirty water in your cable will not solve the problem, since doing so will deposit grit 

in the cable. 

I can now also explain why I used Giere’s comparative model to base my definitions 

on, and no other, more discussed accounts of contextual causation like the one by 

Menzies (2007) or Hitchcock (1996). Giere’s model has precedence, it was published in 

1979. The definitions based on his model can also be a guide to interpret the biomedical 

and social examples in this dissertation (see chapters 3 and 4). But more importantly, 

Giere’s idea of hypothetical populations fits really well with my cases. In general, the 

manuals tell you the set of setups their instructions hold for, by specifying what models 

they work for (e.g. Corvettes between 1963 and 1983 (Chilton 1986)) or by having you 

perform a diagnostic action and then specifying remedy instructions depending on the 

outcome of the actions. And the hypothetical changing of features also fits with my 

cases, since they deal with interventions. The manuals specify which changes can be 

made by the interventions that they prescribe. In a sense, they also tell you which 

changes cannot be made, by not including these interventions. This latter point is 

connected to the social embeddedness of manuals (see 2.7.2). 

 

                                                     
16 Of course, there are often ethical and practical limitations here. 



 

66 

2.3.4 Implications of the efficiency requirement 

In example E4, the instruction is to drain the tank and blow out the fuel lines with 

compressed air. Suppose we find this instruction in a manual, while on the other hand 

we have good reasons to believe that the following claim is false: 

Containing only fuel in the fuel tank (C) as opposed to fuel and water (C*) is 

a positive causal factor for a normally running engine, in collections of 

setups of type S1. 

In such case, the manual proposes a useless intervention and thus the efficiency 

requirement is violated. In order for the instruction “drain the tank” to be suitable for 

inclusion (given the aims of the manual) this claim about positive causal factorhood must 

be true.  

Similarly, in E5 the instruction to recharge the battery is suitable for inclusion only if 

the following claim is true: 

(C7) The battery being fully charged (C) as opposed to only partially charged (C*) is 

a positive causal factor for a starter motor turning the engine at normal 

speed, in collections of setups of type S3. 

Where S3 refers to: 

(S3) (1) the battery (with as variable feature whether it is charged) and (2) the 

starter motor (with as variable feature the speed with which it turns), in all 

cars. 

Some remedy instructions rely on negative causal factorhood. Consider for example the 

instruction in E1 to clean the air filter. This is suitable for inclusion if the following is true: 

A clean air filter (C) as opposed to a dirty one (C*) is a negative causal factor 

for excessive fuel consumption, in collections of setups of some type Si. 

Another example is E1’. There, the instruction to adjust tyre pressure relies on the truth 

of the following claim: 

Properly pressured tyres (C) as opposed to underinflated tyres (C*) is a 

negative causal factor for excessive fuel consumption, in collections of 

setups of some type Sj. 

These four examples support the thesis that, in order to be suitable for inclusion in a 

manual that respects the efficiency requirement, remedy instructions need to be backed 
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up by a true positive causal factor claim (where “positive causal factor” is defined as in 

D1) or a true negative causal factor claim (where “negative causal factor” is defined as in 

D2). If these claims are false, the remedy instructions are inadequate. And clearly, 

manuals tend to respect this requirement – for good reasons. 

The constraint that is imposed here on remedy instructions is rather weak, because 

the definitions of PCF and NCF are not very demanding. If we are only looking to perform 

interventions that have some shot at working, this is enough. Yet, in the context of 

remedy instructions, there is a reason to look for stronger constraints, namely the no 

harm requirement. The truth of type level claims as defined by PCF and NCF is 

compatible with adverse effects in certain subsets of the population or the set of 

physical setups. Sticking to the engine examples: the truth of the positive or negative 

causal factorhood that backs up a remedy instruction is compatible with a situation in 

which you cause serious damage to your car’s engine by executing the instruction. If we 

want to ensure that our intervention does not cause more damage, we (also) need a 

different property to hold for the causal relation than merely PCF. This is the main topic 

of Section 2.4. 

2.4 The No Harm Requirement 

I started with definitions of PCF and NCF because they are rather weak. Stronger 

definitions (that correspond to crucial ideas of Eells and Mackie) can be obtained by 

adding constraints. In this section I will use an important idea of Eells, viz. context 

unanimity, to clarify how the no harm requirement can be satisfied. In 2.4.1 I will explain 

what context unanimity is and why it is not present in Giere’s model. In 2.4.2. I will 

incorporate the idea of context unanimity in my analysis by means of two definitions 

which are reinforcements of D1. In 2.4.3 and 2.4.4 I will relate these two definitions to 

the no harm requirement. 

2.4.1 Average effect versus context unanimity definitions of causation 

Giere’s original comparative model and my adaptation can be characterised as “average 

effect” definitions of causation in sets of physical setups and biological populations. Let 

me clarify what this means by looking at an example from the biomedical sciences. 

Consider a dangerous virus, which threatens a population of humans (𝐻). Some people 
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are immune to the disease (𝐼), but there is no way to find out who is and who is not. It is 

possible to vaccinate people before they become sick (𝑉). I assume the following 

probabilities in the hypothetical populations (𝑆 stands for survival): 

𝑷𝑉( 𝑆 ∣ 𝐼 ) = 0.9  

𝑷𝑉( 𝑆 ∣ ¬𝐼 ) = 0.8 

𝑷¬𝑉( 𝑆 ∣ 𝐼 ) = 1 

𝑷¬𝑉( 𝑆 ∣ ¬𝐼 ) = 0 

Furthermore, I assume that 50% of the population is immune, so we also have: 

𝑷𝑉(𝑆) = 0.85 (0.8×0.5 + 0.9×0.5) 

𝑷¬𝑉(𝑆) = 0.5 (1×0.5 + 0×0.5) 

Note that in the subpopulation of people that are immune (𝐼), vaccination is a negative 

causal factor: 10% of this subpopulation would not survive vaccination. In subpopulation 

¬𝐼 and in 𝐻 as a whole, vaccination is a positive causal factor.  

How is this possible? In 𝐼 there is a group of people (10% of 𝐼) whose residual state is 

such that they die if vaccinated. For the others, vaccination is causally irrelevant at the 

individual level. Combined, this gives a negative causal relevance at the level of 

subpopulation 𝐼. In subpopulation ¬𝐼 we have a large group (80%) whose residual state 

is such that vaccination is positively causally relevant at the individual level. For the 

others, it is irrelevant (their residual state is such that they die anyway). The combination 

of this gives positive causal relevance at the level of subpopulation ¬𝐼. The population 𝐻 

contains a group of 5% (10% of the 50% immune) for whom vaccination has negative 

causal relevance at the individual level. It also contains a group of 40% (80% of the 50% 

non-immune) for whom vaccination has positive causal relevance at the individual level. 

For the others, vaccination is causally irrelevant at the individual level (vaccination makes 

no difference for them: they survive anyway because they are immune, or they die 

anyway because the vaccination does not work for them). Because the group with 

positive relevance is larger (40% as compared to 5%) the result is a positive causal 

relevance at the level of population 𝐻. 

The vaccination example illustrates that, according to Giere’s definitions, causal 

relevance can be reversed or annihilated in subpopulations: if C is a positive causal factor 

for E in population U, it can be a negative causal factor or be causally irrelevant in 
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subpopulations of U17. The same holds for negative causal factors. Theories of causation 

which have this property are called “average effect theories”: whether there is a causal 

relation in a population depends – according to these theories – on the average effect in 

the population, no matter what happens in its subpopulations (Weber 2009, p.283). 

 An alternative to average effect theories are the so-called “context unanimity 

theories”. The first context unanimity theory can be found in (Cartwright 1979). A more 

recent version can be found in Eells (1991). In chapter 2 of his book, Eells gives the 

following example: 

To use an example of Cartwright’s (1979), ingesting an acid poison (X) is causally 

positive for death (Y) when no alkali poison has been ingested (~F), but when an 

alkali poison has been ingested (F), the ingestion of an acid poison is causally 

negative for death. I will argue that in a case like this it is best to deny that X is a 

positive causal factor for Y, even if, overall (for the population as a whole), the 

probability of death when an acid poison has been ingested is greater than the 

probability of death when no acid poison has been ingested (that is, even if Pr(Y/X) 

> Pr(Y/~X)). I will argue that it is best in this case to say that X is causally mixed for 

Y, and despite the overall or average probability increase, X is nevertheless not a 

positive causal factor for Y in the population as a whole. (Eells 1991, p.58) 

The characteristic property of causes in the sense of context unanimity theories is that 

the causal tendency cannot be reversed (from positive to negative) or annihilated (from 

positive or negative to causally neutral) in a subpopulation. Note that I only borrow the 

idea of context-unanimity from Eells and not the remainder of his theory. This is because 

Eells considers actual probability distributions in defining causation, instead of the 

hypothetical ones Giere uses. This is already clear from the quote above: he defines a 

causal factor and the property of being causally mixed in terms of the actual probability 

of the occurrence of the effect given the presence or absence of the cause (Pr(Y/X) and 

Pr(Y/~X) respectively). Because I want to preserve the advantages of Giere’s definitions 

in terms of hypothetical populations, I only borrow Eells’ idea of context-unanimity. 

 

                                                     
17 C can even be negative causal factor for E in every subpopulation of U. This is referred to as Simpson’s 

paradox” (Malinas and Bigelow 2016).  
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2.4.2 Two additional definitions 

The idea of context unanimity can give rise to two reinforcements of PCF: PCF-WU and 

PCF-SU (where WU stands for weak unanimity and SU for strong unanimity): 

(D3) PCF-WU (Positive Causal Factor – Weak Unanimity): C (as opposed to C*) is a 

weakly unanimous positive causal factor for E in the collection of setups U if 

and only if 

  (1) PX(E) is greater than PK(E); and 

  (2) there are no subgroups S of U for which PX’(E) is less than PK’(E). 

X’ and K’ are defined in the same way as X and K above, but starting from the subset of 

setups S instead of the whole set of setups of a certain type U. 

(D4) PCF-SU (Positive Causal Factor – Strong Unanimity): C (as opposed to C*) is a 

strongly unanimous positive causal factor for E in the collection of setups U if 

and only if 

  (1) PX(E) is greater than PK(E); and 

  (2) there is no subgroup S of U for which PX’(E) is less than or equal to PK’(E). 

The difference between the two definitions is that weak context unanimity allows that a 

causal tendency in the whole population is annihilated in a subpopulation. It only 

prohibits tendency reversal (viz. from a positive causal tendency to a negative one or vice 

versa). Strong context unanimity prohibits both tendency annihilation and tendency 

reversal. 

2.4.3 Remedy claims and weak context unanimity 

There is a connection between the no harm requirement and weak context unanimity. In 

order to argue for this, imagine a hypothetical sloppy manual that contains the following 

TPSI: 

Problem: engine sputters and then stops running. 

Diagnosis: empty fuel tank. 

Remedy: put gasoline in the fuel tank. 

The sloppiness consists in the fact that this instruction is given for different varieties of 

the specific car type (let me call that S4). Specifically, imagine that this instruction is 

included in the manuals of both the diesel versions of S4 and the gasoline ones. Let us 
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assume that 80% of the cars that belong to type S4 have a gasoline engine. Then the 

following causal claim is correct: 

The fuel tank containing gasoline (C) as opposed to diesel (C*) is a positive 

causal factor for a normally running engine, in collections of setups of type 

S4. 

Indeed, if all fuel tanks in S4 cars contain diesel, only 20% runs normally. If all fuel tanks 

contain gasoline, 80% runs normally. Let S5 be all the cars of type S4 with a diesel 

engine. Then the following claim is true: 

The fuel tank containing gasoline (C) as opposed to diesel (C*) is a negative 

causal factor for a normally running engine, in collections of setups of type 

S5. 

So S4 violates weak context unanimity. The following claim is false: 

The fuel tank containing gasoline (C) as opposed to diesel (C*) is a weakly 

unanimous positive causal factor for a normally running engine, in 

collections of setups of type S4. 

The fact that there is no weak context unanimity entails that there are contexts (or 

subgroups of setups - in casu: cars with diesel engines) where the action “put gasoline in 

the fuel tank” worsens the problem rather than helping to solve it. This is why the 

proposed remedy “put gasoline in the fuel tank” is not suitable for manuals that cover 

both diesel and gasoline versions. In reality, manuals are rather specific in mentioning 

the artefact types or models for which they hold, as I mentioned in 2.3.3. This allows 

them to ensure that sloppy TPSIs like the one above do not occur. Manuals tend to 

respect the no harm requirement. 

2.4.4 Remedy claims and strong context unanimity 

So weak unanimity is a desirable feature for causal claims underpinning remedy 

instructions. Should we go even further and expect strong unanimity? This would be a 

step too far. This can be seen from two examples in which there is no strong context 

unanimity. The first example is C7 from 2.3.4:  

(C7) The battery being fully charged (C) as opposed to only partially (C*) is a 

positive causal factor for a starter motor turning the engine at normal speed, 

in collections of setups of type S3. 
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There are subsets in which the positive difference is annihilated, e.g. in the set of cars 

with heavily corroded battery terminals. A fully charged battery makes no difference for 

the behaviour of the engine in setups of that type. So there is no strong context 

unanimity in this case. The following claim is false: 

The battery being fully charged (C) as opposed to only partially charged (C*) 

is a strongly unanimous positive causal factor for a starter motor turning the 

engine at normal speed, in collections of setups of type S3. 

 A similar observation can be made with respect to the following example (based on C6 

above): 

(C6’) Containing only fuel in the fuel tank (C) as opposed to fuel and water (C*) is a 

positive causal factor for a normally running engine, in collections of setups of 

type S1. 

Again there are subsets in which this positive difference is annihilated, e.g. in the set of 

cars with defective fuel pumps. A properly filled fuel tank makes no difference for the 

behaviour of the engine in setups of that type. This means that, again, there is no strong 

context unanimity. The following claim is false: 

Containing only fuel in the fuel tank (C) as opposed to fuel and water (C*) is 

a strongly unanimous positive causal factor for a normally running engine, in 

collections of setups of type S1. 

The crucial question now is: is this absence of strong unanimity a problem? No, because 

no harm can be done if there is weak context unanimity. Remember that the manuals 

often specify the artefacts they are suited for. So you can easily determine whether your 

artefact is part of the domain, and correspondingly, weak unanimity will hold. When 

there is weak context unanimity, there are no contexts in which the remedy instruction 

worsens the problem. Moreover, TPSIs are typically part of a larger set of instructions. If 

one instruction does not lead to a functioning artefact, there often is a follow-up 

instruction that prescribes another action aimed at solving the problem. In this way, a 

TPSI not need not be self-contained, but functions as part of a bigger whole. 

So depending on whether we want our interventions to (1) not be useless or (2) not 

be useless and do no harm, we need different causal knowledge to back up the 

intervention. This already shows that the meaning of a causal claim is not 

straightforward and neither is determining which properties are needed to warrant an 

intervention. Yet we still do not have any guarantee that our intervention will solve the 

problem. What causal knowledge do we need to ensure that it will? This is the topic of 

the next section. 
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2.5 The Maximal Assistance Ideal 

So far, I have specified how the efficiency requirement and the no harm requirement 

influence the causal knowledge needed to warrant remedy claims in repair manuals. In 

this section, I turn to the maximal assistance ideal. Remedy claims that are based on true 

causal claims in the sense of PCF-WU do not guarantee that the problem is solved. In 

order to guarantee a certain outcome, we need a cause that is sufficient to bring the 

outcome about. So maybe remedy claims should be based on knowledge about sufficient 

causes? In 2.5.1 I will argue that this is not a good idea. In 2.5.2 and 2.5.3 I will develop 

an alternative based on Mackie’s concept of INUS condition. 

2.5.1 Sufficient causation? 

In order to guarantee that the problem is solved if the prescribed action is performed, 

we need a stronger causal relation. A concept of causation that captures this stronger 

causal relation can easily be obtained by adding a sufficiency clause to definition D1 of 

PCF. This results in the following definition:  

(D5) SC (Sufficient Cause): C (as opposed to C*) is a sufficient cause for E in the set 

of physical setups U if and only if 

  (1) PX(E) is greater than PK(E); and 

  (2) PX(E)=1. 

Note that, according to this definition, a sufficient cause is always a positive causal 

factor. The sufficiency condition also implies that there is weak (and even strong) context 

unanimity. If PX(E)=1 as required by the second clause in D5, it will also be the case that 

PX’(E)=1 for all subsets of U. Put differently: if all objects in X have a property E, then it is 

also the case that, for all subsets of X, all their members have E.  

So does this mean that adequate repair manuals should include only remedy claims 

that are based on true sufficient cause claims? This would imply that most of the current 

manuals are significantly substandard. That seems highly unlikely. And indeed, expecting 

only sufficient causal claims is way too demanding. The reason is that there are hardly 

any true claims of this kind available. For instance, the following claims are all false: 

The battery being fully charged (C) as opposed to only partially charged (C*) 

is a sufficient cause for a starter motor turning the engine at normal speed, 

in collections of setups of type S3. 
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Containing only fuel in the fuel tank (C) as opposed to fuel and water (C*) is 

a sufficient cause for a normally running engine, in collections of setups of 

type S1. 

These claims are false because the problems that are to be solved may have multiple 

causes. In the first case, the battery terminal may be corroded. The second claim is false 

because the fuel pump may be defective. 

Because of this scarcity, the requirement that remedy claims are to be based on 

sufficient causation relations as defined by D5, is untenable: repair manuals would hardly 

contain any instructions. This would be at odds with the maximal assistance ideal. 

So it looks as if we have to allow remedy claims to be based on non-deterministic 

causal relations. But given the maximal assistance ideal it is useful to investigate whether 

some weaker alternative is possible. Inspired by John Mackie’s work, I think there is such 

an alternative, and I call it “sufficiency in maximally normal contexts”. In Section 2.5.2 I 

will clarify what I mean by this and why it is a desirable property of TPSIs. In section 2.5.3 

I will show that the idea can be captured by adding Mackie’s concept of INUS condition 

to the definition of PCF. 

2.5.2 Sufficiency in maximally normal contexts 

The issue I want to bring up here can be illustrated by means of the water-in-the-fuel-

system example. Let me compare two TPSIs. The first is: 

Problem: engine sputters and fails to start. 

Diagnosis: water in fuel supply system. 

Remedy: drain the fuel tank. 

The second is: 

Problem: engine sputters and fails to start. 

Diagnosis: water in fuel supply system. 

Remedy: drain the fuel tank and blow out the fuel lines with compressed air. 

Which instruction is the best one? In general, draining the fuel tank is not sufficient for 

solving the problem because there may also be water in the fuel lines. So the second 

TPSI is more adequate. This indicates that we want the remedies to be complete in some 

sense: they have to be sufficient for solving the problem provided that there is nothing 

wrong with the artefact on top of what is stated in the diagnosis. In other words, the 

remedies have to be complete relative to the diagnosis that is part of the TPSI. This is 

what I call the “maximally normal context”: the context where all components – except 
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the one addressed in the diagnostic claim – of the artefact function normally (i.e. as 

conceived by the designers, and as they can legitimately be expected to function in a 

newly produced artefact that has passed the manufacturer’s quality control).  

2.5.3 Mackie-causation and its application to TPSIs 

Mackie’s theory of causation is situated at the token level: it is about causal relations 

between particular events. I am dealing here with causal relations between variables, so 

I will adapt it a bit. I first give a brief presentation of Mackie’s account and then clarify 

how I propose to use the crucial INUS concept at the type level in combination with my 

definition of PCF. 

In The Cement of the Universe Mackie claims that a cause is always (at least)18 an INUS 

condition for its effect (1980, p.64). He defines INUS conditions as follows: 

[…] an insufficient but non-redundant part of an unnecessary but sufficient 

condition: it will be convenient to call this (using the first letters of the italicized 

words) an inus condition. (Mackie 1980, p.62) 

So in Mackie’s view, a cause in itself need not be not sufficient for its effect, but 

combined with a set of other factors, it is. Furthermore, a cause is typically not necessary 

for its effect, since multiple sets of factors can produce the same effect. Consider one of 

his examples: 

The short-circuit caused the fire. 

As Mackie points out, the short-circuit (c) in itself is not sufficient for a given fire (e): you 

also need oxygen and combustible material (A). The factors in (A) are themselves also 

not sufficient for the fire (e), so the short-circuit is a non-redundant part of the condition 

(A+c). Combined, the short-circuit and the factors in A are sufficient for the fire. Yet (A+c) 

is not necessary for a fire to happen, a fire can also occur because of (A+ lightning), (A+ a 

lit match), etc.  

By adding Mackie’s crucial INUS idea as a constraint to the definition of PCF and 

linking it to maximally normal contexts, it can be incorporated in my type level analysis. 

This results in my sixth definition: 

 

                                                     
18 For some more recent refinements of Mackie’s INUS account, see (Baumgartner 2008) and (Beirlaen, 

Leuridan, and Van De Putte 2016). 
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(D6) MC (Mackie Cause): C (as opposed to C*) is a Mackie cause for E in the 

collection of setups U if and only if 

  (1) PX(E) is greater than PK(E); and 

  (2) if A characterises the maximally normal context, it is the case that (a) all 

members of U that have A and C, also have E, and (b) not all A have E. 

Let me give an example based on the following TPSI: 

Problem: starter motor turns engine slowly. 

Diagnosis: partially discharged battery. 

Remedy: recharge. 

Let C stand for “fully charged battery” and E for “starter motor turns engine rapidly”. C is 

not a sufficient cause for E, because there may be other malfunctioning components 

(e.g. corroded battery terminals, bad starter motor, …). But C in combination with A 

(where A is a description of the maximally normal context, including a.o. the proviso that 

the battery terminals are not corroded and that the starter motor is not broken) is 

sufficient for E.  

Or consider the radio example (E8). We can isolate the following TPSI: 

Problem: the sound produced by the speaker is distorted. 

Diagnosis: the cone of the loudspeaker is badly torn or warped. 

Remedy: replace the cone with an intact one or recone the old one. 

According to my analysis at the very minimum the following causal claim has to be true 

to make the remedy claim warranted:  

(C8)  An unwarped, untorn cone (C) instead of a warped or torn cone (C*) is a 

weakly unanimous positive causal factor for a loudspeaker that produces a 

clear sound (E) for the setups of type S4.  

where 

(S4)  (1) The cone (with as variable features whether it is (a) torn and (b) warped) 

and (2) the loudspeaker (with as variable feature whether it produces 

distorted sound), in all radios with conic loudspeakers. 

And ideally, MC is also satisfied. Applied to this example, MC comes down to requiring 

that if the radio is functioning properly on all fronts except the torn or warped cone, 

replacing the cone (without any further additional actions) will ensure that the sound is 

no longer distorted. So if the radio does not suffer from other problems (e.g. dirty tube 
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socket connections, open capacitors,…) that can hinder its functioning, the ideal 

outcome is that, after the prescribed intervention, the radio functions properly.  

So adding the maximal assistance ideal as a criterion requires an even stronger causal 

relation to underpin remedy claims, and it can be captured via the definition of Mackie 

Cause. 

2.6 Synthesis and further reflections 

Before I turn to the third complicating factor, I want to summarise how the analysis 

developed in sections 2.3 – 2.5 presents a second way in which, contrary to what Norton 

assumes, ascribing causal relations to phenomena is complicated. This will allow me to 

further develop my argument to show that the way we make physical causal claims, and 

use physical causal knowledge, is philosophically interesting and requires attention. I will 

also reflect a bit on some particularities of the presented definitions. Let me first 

summarise the content of the sections. 

In the three previous sections, I have performed a stepwise analysis of how the 

success criteria for instructions in manuals determine the nature of the causal knowledge 

that is required to underpin remedy claims. From manuals that want to satisfy the 

efficiency requirement and the no harm requirement, it is legitimate to expect 

underlying causal relations in the following sense: 

(D3) PCF-WU (Positive Causal Factor – Weak Unanimity): C (as opposed to C*) is a 

weakly unanimous positive causal factor for E in the collection of setups U if 

an only if 

  (1) PX(E) is greater than PK(E); and 

  (2) there are no subgroups S of U for which PX’(E) is smaller than PK’(E). 

I have discussed this in 2.3 and 2.4. In Section 2.5 I reflected on the maximal assistance 

ideal. I argued that it motivates a preference for sufficiency in maximally normal 

contexts: 

(D6) MC (Mackie Cause): C (as opposed to C*) is a Mackie cause for E in the 

collection of setups U if and only if 

  (1) PX(E) is greater than PK(E); and 

  (2) if A characterises the maximally normal context, it is the case that (a) all 

members of U that have A and C, also have E, and (b) not all A have E. 
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In other words: one who agrees with the three criteria I formulated in the introduction 

can legitimately expect positive causal factors that are weakly context-unanimous and 

legitimately prefer Mackie causes. Requiring only positive causal factorhood (PCF) as 

defined in D1 is not enough. In order to satisfy the criteria, knowledge that expresses a 

stronger causal relation is required. 

Note that both concepts are needed. It is easy to see that, if a purported cause 

satisfies PCF-WU, it may fail to satisfy MC. Though less obvious, the opposite may also be 

the case; a state (C) that is sufficient for solving a problem in the maximally normal 

context (A), may be harmful in other contexts (i.e. if there are other problems with the 

artefact besides the one mentioned in the diagnosis). 

In light of the maximal assistance ideal, stronger requirements or preferences are not 

optimal. As I argued in Section 2.5.1, including only remedy claims based on sufficient 

causation (as defined in D5) is not the most favourable strategy: the manuals would be 

almost empty. Artefacts are such complex systems that determining a sufficient cause 

for a problem is extremely hard, both to formulate and to diagnose. A similar argument 

can be made with respect to strong context-unanimity (as defined in D4). In Section 2.4.4 

I have argued already that strong context-unanimity it is not necessary in order to avoid 

harm. However, we can go one step further: if composers of repair manuals would 

restrict themselves to instructions based on strongly unanimous causal relations, they 

would have to leave out many adequate remedies. For instance, they would have to 

leave out remedies such as “recharge the battery” or “drain the fuel tank” referring to C7 

and C6 from 2.4.4. Yet, as I argued, performing the action is never harmful and it has a 

significant chance of fixing the problem. So it is not surprising that these remedies are in 

fact included in the manual. 

What this analysis shows regarding the difficulties for ascribing causal relations to 

physical phenomena is that, depending on the demands we have for our intervention 

(represented by the three criteria), we need different causal knowledge to warrant it. So 

when we are interested in interventions, ascribing a causal relation to a phenomenon 

requires, besides information from the context (viz. the first complicating factor), 

information about the specific demands for the intervention. Otherwise, the causal claim 

is not adequate to base our intervention on. I hope to have shown that determining 

when and if a causal claim is of the right kind to warrant our intervention, is not a 

straightforward matter. 

In the next section, I turn to the third complicating factor. So far, my analysis has been 

limited to the specific instructions and the specific malfunctioning they attempt to 

remedy. However, the situation is more complex. In the next section, I will discuss the 

broader physical and social embeddedness of artefacts – the third complicating factor. 



 

 79 

2.7 The Third Complicating Factor 

As I described in 1.5.3, artefacts are complex arrangements of interacting parts. So the 

malfunctioning parts are embedded in a bigger artefact. Those artefacts are also 

embedded in a broader physical and social environment. Though this is not necessarily 

reflected in the remedy claims, these environments can also influence the effects of our 

interventions. I will argue that these environments present the third complicating factor 

for ascribing causal relations to phenomena when we are interested in using that causal 

knowledge for intervening in the phenomenon. The reflections in this section are 

inspired by an important topic in the philosophy of technology that I discussed in 1.5.7: a 

comprehensible account of technology is aware of the social and physical embeddedness 

of artefacts. The broader physical and social environment are even less reflected upon in 

the philosophical literature on physics than the other complicating factors, but are 

nevertheless important and intriguing when we want to understand how physical causal 

knowledge is used. 

2.7.1 The physical environment 

In discussing the first and second complicating factor, I have focused on the specific TPSI 

in isolation. Philosophers of physics, like Norton, often do the same with examples: the 

phenomenon in question is analysed in isolation from anything else and therefore looks 

quite uncomplicated. This is related to the amount of control we have in laboratories: we 

can apply proper shielding to limit the influence of an on the broader environment as 

much as possible. However, in reality, these phenomena are embedded in bigger 

physical and even social environments that are not easily shielded.  

Something I have not reflected on so far is that interventions resulting from remedy 

instructions, if performed properly, should not create new problems in the artefact (the 

physical environment of the malfunctioning parts) either. For example, replacing the 

cone should not influence the display of the radio. If one wants to express this in relation 

to the definitions above, it would look something like this: 

An instruction that tells you to change C to C* is safe in the collection of 

setups U if and only if 

(1) PX(E’) is equal to or less than PU(E’); and 

(2) there are no subgroups S of U for which PX’(E’) is significantly greater 

than PU(E’). 
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Where E’ is an unwanted effect, U is now the collection of specific setups that are 

suffering from the diagnosis as stated in the TPSI, X and X’ are defined as before and 

PU(E’) is the chance of the unwanted effect occurring in the collection of setups that 

suffer from the diagnosis, without us performing any intervention. The idea behind this is 

that a prescribed action cannot significantly increase the chance of an unwanted effect 

occurring, compared to the chance it has of occurring in the malfunctioning artefact 

when you do not intervene. This unwanted effect could be another malfunction that was 

not yet present or even some kind of harm to the user. For example, if replacing the 

cone significantly raises the chance of the antenna failing, compared to the chance the 

antenna has of failing in the malfunctioning radio without performing the instruction, the 

instruction is not safe. This might look negligible, but given that artefacts often contain 

hazardous materials, like battery fluid, it is important to have some way of expressing 

that the prescribed interaction is safe, both for the other parts of the artefact and for the 

user. In a lot of contexts, there will be some kind of threshold to determine when the risk 

of failure is too great. This is especially a case of expert judgements. Summing up, the 

broader consequences of an intervention influence the outcome and are (rightfully) 

taken into account.  

This is also related to the degree in which the artefact was designed modularly. The 

topic of modularity has been around for a while, and is now mainly discussed in 

philosophy of the life sciences and of the sciences of mind and brain. It refers to the fact 

that in many complex systems, not all parts are fully integrated. Instead, 

[…] the parts of the system are grouped in such a way that strong interactions 

occur within each group or module, but parts belonging to different modules 

interact only weakly. (Krohs 2009, p.259) 

Moreover, not all artefacts are designed equally modularly. As Ulrich Krohs (2009, 

pp.267-268) discusses, there are costs to modular designing regarding time and 

resources that need to be weighed. In order to assure that interventions do not harm 

any other parts of the artefact, we need knowledge of the degree of modularity and the 

boundaries of the modules. This puts even more demands on the causal knowledge 

required for intervening. 

2.7.2 The social environment 

Ensuring that no other parts of the artefact suffer harm for my cases still mainly refers to 

very proximate and clearly physical factors. However, artefacts and interventions in 

general are also embedded in a social environment. One way in which artefacts are 
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socially embedded is via the users of the artefacts (and the repair manuals). Resources 

and skills that are needed to perform the interventions may not be available to 

everyone. Users may ignore the social authority of the manuals. All of this influences the 

way the interventions will turn out. So the causal knowledge needed to warrant 

interventions involves more than merely knowledge of the physical artefact. 

Repair manuals also function in a society where there are specified repair technicians. 

This influences what people expect of the manuals and what the manuals prescribe. 

Sometimes, the manuals tell you to take your malfunctioning artefact to a specialised 

technician. But for other problems, you would never use a manual and take them 

directly to a technician, or throw the artefact out. For example, if your bike was set on 

fire, you will take it to a technician. This is however not stated in manuals explicitly, but 

is part of how the manuals work in our society.  

Similarly, what is often not mentioned in the manuals (though on occasion, they do) is 

the requirement of regular maintenance. However, the remedy instructions presuppose 

that the artefact has been maintained on a regular basis. 

For the repair interventions to be successful, even when performed correctly, several 

other societal factors need to be in place. The radio, for example, needs electricity to 

work. If the user did not pay his bill, his electricity will be shut off. This too influences the 

functioning of the artefact. Similarly, radio pirates can jam the broadcast or an angry 

neighbour can sabotage the antenna.  

All of these factors can be causal influences on the artefact and correspondingly, 

knowledge of these factors can be needed to warrant our interventions. In practice, it is 

impossible to incorporate all these influences. My point is not that they need to be taken 

into account to warrant interventions. My point is that when assessing causal relations, 

the broader physical and social factors are often presumed to be in place. Yet in reality, 

they are not easily controlled and complicate the evaluation of causal claims needed for 

interventions significantly.  

Conclusion 

I started this chapter with a quote from Norton, which indicates that he does not 

consider ascribing causal relations to phenomena to be an important philosophical topic. 

This assumption seems to underlie many debates in philosophy of physics (see 1.2). This 

chapter forms the first step in my argument to show the complexity of using physical 

causal knowledge and the importance of philosophical reflection on the topic. I discussed 
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three complicating factors that arise even when we consider rather easy and day-to-day 

contexts of using physical causal knowledge 

The first complicating factor, I argued, is the fact that causal relations and more 

importantly, the validity of causal claims, depend on the context in the way I have 

specified, viz. on the (set of) physical setups you consider. In order to use causal 

knowledge for intervening, we need to ensure that the knowledge is applicable to the 

system we want to intervene in. I developed the tool of physical setup to capture this.  

The second complicating factor I diagnosed, is that the required properties of the causal 

relation we need to warrant interventions depend on what we expect of the 

intervention. I argued that, in order for remedy claims to be adequate, they have to be 

based on causal relations that (i) hold in the world and (ii) have certain properties: 

positive or negative causal factorhood (D1) with weak context unanimity (D3). That these 

properties are required follows from two success criteria: the efficiency requirement and 

the no harm requirement. Positive and negative causal factorhood are explicated in 

definitions of PCF and of NCF, which are inspired by Giere’s comparative model of 

causation. Weak context unanimity is explicated in a definition of PCF-WU and has its 

origins in the idea of context unanimity as put forward by Cartwright and Eells. Based on 

the maximal assistance ideal, I also argued that sufficiency in maximally normal contexts 

is desirable. I explicated it in the definition of MC (D6) which is the result of adding 

Mackie’s INUS idea to Giere’s comparative model. 

The third complicating factor is the social and physical embeddedness of the systems 

we intervene in. To ensure that our intervention does not harm other parts of the 

artefact, or even the users, we need causal information about the way the artefact or 

malfunctioning part is connected to the broader physical world. Moreover, the artefacts 

we intervene in are embedded in a social environment as well. These social 

environments can also influence the outcomes of our interventions. Therefore, 

knowledge of the way artefacts are socially embedded can also be relevant for 

warranting interventions. These broader environments are often neglected. However, 

while we can apply proper shielding in laboratory contexts, we cannot do this when 

intervening in reality. As announced, this chapter presented an argument for my first 

specific claim (I), viz. that we need a lot of specific physical causal information of the 

right kind, both of the artefact and of the physical and social context it functions in, to 

account for our successful creating, explaining, repairing, and maintaining of artefacts,  

What I have also shown throughout this chapter, is that ascribing causal relations to 

physical phenomena in a way that can guide interventions, is not straightforward at all. 

In the case of repair manuals, optimising the content of a manual in light of these 

complicating factors, requires expert judgement. As I have argued, Mackie causes are 

desirable but there are other factors that may influence the decisions about which 
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remedy claims are included and how precise they should be. Since repair manuals target 

a non-expert, non-professional audience, feasibility may be such a factor. Manuals 

typically prescribe actions which are relatively easy to perform (like recharging a battery, 

cleaning, draining, blowing,….). Another trade-off may be specificity versus intelligibility: 

if made more specific, the success rate of an instruction may rise, but at the same time, it 

might make the instruction harder to understand. My analysis can therefore also help 

make explicit some of the criteria used by writers of repair manuals.  

At the same time, I hope it shows some of the complexity of practices that we often 

take for granted. Repair manuals, bikes, cars, they are all very day-to-day and 

unprestigious topics. Yet they are riddled with reliable causal knowledge, and as I have 

shown, contain a lot of complexity below the surface. 

The conclusions of this chapter are broadly relevant. As I discussed in chapter 1, 

philosophers of physics often focus on theory and idealisations of phenomena. As such, 

the context and broader physical and social environment are often neglected. However, 

when attempting to use physical causal knowledge, we need information about these 

factors. I will return to this topic in Chapter 4.  

As I explained, this chapter forms the first step in my argument that shows the 

intriguing nature of using physical causal knowledge and the need for philosophical 

reflection on the topic (viz. aims (A) and (B)). The complexity of the cases I studied here 

was rather restricted: there is plenty of reason to trust the information contained in the 

manuals, since they are written by experts and have social authority. Moreover, the 

information is very connected to the interventions: manuals literally contain 

prescriptions regarding what you need to do, and they make explicit mention of their 

domain. This is not a situation we encounter a lot. We are often unsure whether our 

information is reliable, or whether it is applicable to the specific cases we are interested 

in, or we do not have the required knowledge to warrant the envisioned application. I 

started with the cases from this chapter, because they allowed me to discuss them in 

such a constrained way. In what follows, I investigate how using and producing causal 

knowledge becomes more and more complex as I focus on other contexts of application. 

In the next chapter, I investigate what happens when we do not have such a clear source 

of causal knowledge as the manuals provided. 
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Chapter 3 Mechanistic vs. Correlational 

evidence for physical causal explanations1 

In the first chapter, I argued that we need physical causal information to intervene in the 

world and explain physical phenomena. The second chapter showed that, pace 

philosophers like Norton, (producing) the causal knowledge we need for interventions is 

not uncomplicated. In this chapter, I will focus on where we get this physical causal 

knowledge from. So in chapter 2 I argued that there are philosophical issues about the 

meaning of useful physical causal knowledge, here I shift to evidence. Specifically, I will 

investigate how we argue for physical causal claims used in explanations – the second 

way we use physical causal knowledge as I argued in chapter 1. Because the laws of 

physics are often symmetric, they do not suffice to argue for a specific causal claim. I call 

this an evidential gap between the laws and causal claims. This is the main issue related 

to evidence that I will discuss in this chapter. I will show that this gap can be bridged by 

mechanistic evidence. This concept has recently been discussed a lot in the context of the 

biomedical sciences. I will draw inspiration from this literature. However, certain 

methods for gathering correlational data that are frequently used in the biomedical 

sciences, provide correlational evidence that has different properties than the laws of 

physics. Because of this, the evidential gap in the biomedical sciences often differs from 

the one we encounter when arguing for physical causal claims. To make this clear, I will 

look at a case from the social sciences where the correlational evidence is less 

informative, and the evidential gap is more similar to the one for physical causal claims. 

This will give me the framework to both argue that mechanistic evidence can bridge the 

evidential gap in physics, and at the same time, reflect on the different evidential gaps 

that exist in these different disciplines. Specifically, the way we arrive at the laws or 

 

                                                     
1 This chapter is based on a paper co-authored with Erik Weber. 
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regularities will determine the specific nature of the evidential gap and correspondingly, 

the role of mechanistic evidence.  

This is related to the difference between the regularities in the biomedical and social 

sciences on the one hand, and the laws of physics on the other. Regarding physics, the 

analysis in this chapter will show that even for causal claims about setups that clearly fall 

under highly established laws of physics, we still need a significant amount of 

mechanistic information about the setup if we want to make and use causal claims about 

that setup. In this way, this chapter provides an argument for my second specific claim 

(II). This conclusion also contributes to realising my generic aims (A) and (B), by showing 

that there are interesting philosophical issues related to evidence we develop when 

producing explanatorily useful physical causal knowledge. Finally, this conclusion also 

contributes to my argument to show that the focus of philosophy of physics on laws is 

too narrow (see 1.3.3 and 1.3.4).  

Introduction 

The evidential gap for physical causal claims  

A scientist, or someone in a day-to-day context, who wants to make or use a causal claim 

needs to provide evidence for this claim. In the previous chapter, the information about 

causal relations was provided by manuals which we could trust. However, in many 

contexts, we do not have such a specific causal information source. Yet ensuring that our 

causal information is warranted, is a prerequisite for using the information. So we often 

need to look for evidence to support our causal claims. The straightforward candidate 

source for evidence to support physical causal claims, would be the laws of physics. Yet 

according to Norton and Russell, the laws of physics do not contain causal information. 

One of their important arguments is that the laws of physics are time-symmetric:  

[T]he future ‘determines’ the past in exactly the same sense in which the past 

‘determines’ the future. (Russell 1912, p.15) 

Moreover, the laws of physics are symmetric in a more general sense: many are 

mathematical equivalencies. Causal relations, on the other hand, are frequently 

asymmetric in several ways: causes precede their effects, manipulating the cause 

changes the effect but not vice versa etc. Mathias Frisch has already shown that causal 

assumptions play a significant role in the reasoning of theoretical physicists (see 1.2.1). 
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But we also make them in day-to-day contexts. However, if the asymmetric physical 

causal knowledge does not come from the laws, where does it come from?  

There is an evidential gap between many physical causal claims and the laws of 

physics. Recall the first complication I identified in the previous chapter: ascribing a 

causal relation to a phenomenon requires information about the context, since the law 

allows derivations in both directions. It supports both the claim that A causes B and its 

converse equally well. However, when we want to use causal information to intervene in 

phenomena (like in the previous chapter) or explain them (the topic of this chapter), we 

need to be certain of the causal information. In this chapter, I study how we support 

physical causal claims in the context of explanations.2 My main question can be 

formulated as follows:  

How are the causal claims in physical causal explanations to be supported?  

I will argue that it is mechanistic evidence, in combination with the laws of physics, that 

allows us to make substantiated causal claims which can be used for explanations. More 

specifically, this chapter will serve to do two things: 

(1) Showing that mechanistic evidence (information about the underlying 

mechanism) plays a crucial role in filling the evidential gap between physical 

laws and physical causal claims that we encounter when trying to build 

explanations. 

(2) Explicating how the two kinds of evidence interact with each other so 

that they can provide good reasons for accepting physical causal claims. 

The reason I focus on physical causal claims that occur in explanations, is twofold. On the 

one hand, I have not discussed this type of using causal information yet. And second, this 

is a well-known topic in philosophy of the special sciences – especially in connection to 

evidence. So I have a lot of philosophical literature to guide me. At the same time, this 

will allow me to sketch the contrast between the discussion of evidence in the special 

sciences and the absence of this topic in philosophy of physics – which is less extreme 

than one may assume. This is related to the difference between regularities in the 

biomedical and social sciences on the one hand, and the laws of physics on the other. By 

reflecting on the different roles of mechanistic evidence, I also reflect on the differences 

 

                                                     
2 I will only be discussing causal explanations. However, not all explanations are causal. I get back to this in 

3.1.1. 
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between these regularities. Though the regularities from the special sciences are 

different from the laws of physics, I will show that this is more a matter of degree than a 

fundamental difference. This reflection will provide the setup for the next two chapters 

(chapter 4 and chapter 5) in which I study the relation between physical causal claims 

and the laws of physics more thoroughly. 

Two types of evidence 

Before I start my analysis, let me explain what I mean with ‘correlational evidence’ and 

‘mechanistic evidence’. By correlational evidence, I refer to information about the 

existence of a correlation in the world that can be used to argue for or against a causal 

claim. By mechanistic evidence, I refer to information about the existence of a 

mechanism in the world that can be used to argue for or against a causal claim. A 

correlation between variables A and B generally refers to a statistical connection 

between the two. This connection can be because of the following: 

- A causes B 

- B causes A 

- Some (possibly unknown) factor C causes B and A 

- Nonsense correlation 

The first two options are rather obvious. For instance, if A causes B, whether this be in a 

deterministic or probabilistic way, the occurrence of A will raise the probability of B. 

Hence, there is a statistical connection. The third option expresses that both A and B are 

consequences of some common cause C. In such a case, it is the occurrence of C that 

raises the probability of both A and B. However, this also results in a statistical 

connection between A and B. I use the last option, a nonsense correlation, to collect all 

non-causal ways in which A and B can be connected. As for instance Jon Williamson 

(2005) discussed, this is in fact a large group: 

In fact probabilistic dependencies arise not only via causal connections, but also 

accidentally or because the variables are related through meaning, through logical 

connections, through mathematical connections, because they are related by (non-

causal) physical laws, or because they are constrained by local laws or boundary 

conditions. (p.52) 

All of these options, however, involve that there is no causal relation between A and B 

(or some common cause C). So from the perspective of supporting causal claims that we 

want to use, all of these options fail. I will therefore refer to all of them as “nonsense 

correlations”. Note that from this quote, it is also clear that physical laws indeed carry 
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correlational evidence. This does not mean that the laws of physics are equal to 

correlations: they have many different properties. However, they are similar in at least 

one respect that is important for my point, viz. they express connections between 

variables. What I am mainly interested in here, is not how correlations and laws differ, 

but how mechanistic evidence interacts with laws. And this is analogous to how 

mechanistic evidence interacts with correlations. So I will treat laws as analogous to 

correlations in the sense that they both express connections between variables. In this 

way, laws can be seen as carrying correlational evidence.  

Mechanistic evidence, on the other hand, refers to knowledge of a mechanism. The 

concept of a mechanism has become more and more important in philosophy of science, 

starting with Bechtel and Richardson’s book on mechanisms in biomedical sciences in 

1993 (Bechtel and Richardson 1993) and Elster’s paper (1998) in the social sciences. 

Since then, the debate has kept on growing and the concept of mechanisms has been 

introduced to study almost all scientific disciplines. Like with almost all concepts I have 

discussed so far, many definitions have been suggested in the literature. Phyllis Illari and 

Jon Williamson have collected them and presented a pragmatic definition that can be 

used to study different disciplines: 

A mechanism for a phenomenon consists of entities and activities organized in 

such a way that they are responsible for the phenomenon. (2012, p.123)3 

This is a definition that can be adapted to fit more specific scientific contexts when 

needed. This is the one I will be using (and where necessary specifying) throughout the 

dissertation (see also chapter 4).  

Note that I distinguish between the evidence used to establish a correlation (like the 

results of randomised experiments, of prospective and retrospective studies, of 

correlational studies,…) and correlational evidence, in which the existence of a 

correlation is seen as established and used as evidence for or against a causal claim in an 

argument. In the same way, the evidence for or against the existence of a mechanism 

should be distinguished from mechanistic evidence as defined above. Illari discussed this 

difference aptly in (Illari 2011). In this chapter, I mainly focus on correlational and 

mechanistic evidence, but it goes without saying that the two other topics are extremely 

important and even a prerequisite for my analysis. Especially the evidence for a 

 

                                                     
3 This definition closely resembles the “minimal mechanism” definition used in (The Routledge Handbook of 

Mechanisms and Mechanical Philosophy  2017), taken from (Glennan forthcoming). Because of the 

resemblance, I believe Glennan’s definition could also be used here. 
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correlation will turn out to be crucial for deciding the informativeness of the 

correlational evidence. 

3.1 Physical explanations 

Let’s come back to the well-known example of the flagpole that I mentioned in chapter 1 

(see section 1.2.2). I suggested that  

Exp1: Explaining the length of the shadow by means of the height of the pole and 

the position of the sun is a good causal explanation. 

Exp2: Explaining the height of the pole by means of the length of the shadow and 

the position of the sun is a bad causal explanation. 

Exp3: Explaining the position of the sun by means of the height of the pole and the 

length of the shadow is a bad causal explanation. 

I also suggested that these judgements are based on the following causal belief: 

C1:  The position of the sun and height of the pole are causally relevant for the 

length of the shadow, but not the other way around. 

Following my discussion in the previous chapter, it is not straightforward what this causal 

claim means. However, the weakest definition I gave can serve as a starting point here: 

both the position of the sun and height of the pole are positive causal factors for the 

length of the shadow. Because this is not a qualitative claim, but a quantitative one, my 

definition needs to be adapted. Recall D1 from the previous chapter: 

PCF: C (as opposed to C*) is a positive causal factor for E in the collection of setups 

U if and only if PX(E) is greater than PK(E). 

To incorporate more quantitative claims, we can redefine C and E. They can refer to 

changing the value of the specific variables. In the case of C1, this implies that C is 

defined as an increase in height of the pole (as opposed to keeping the height constant) 

and E is an increase in length of the shadow. So X is the hypothetical set of setups where 

the heights of the pole are increased, and K is the hypothetical set of setups where all 

the heights are kept constant. Finally, U is the collection of setups of type S5: 

(S5) (1) The flagpole (with as variable feature its height), (2) the sun (with as 

variable feature its position), and (3) the shadow (with as variable feature its 
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length), with (1), (2) and (3) organised such that the flagpole is mounted in 

the ground and such that the sun shines on the flagpole.  

From the definition of a mechanism, it should be clear that it bears some resemblance to 

the concept of physical setup. And indeed, the relevant information contained in the 

setup is often the same information that is needed to characterise the mechanism. In the 

context of my dissertation, the goal we have in describing physical setups is different 

from the goal we have in describing mechanisms. Describing the physical setups helps to 

make the domain of causal claims explicit. Describing a mechanism in the context of 

mechanistic evidence helps to determine whether a claim holds. Chapter 4 will show that 

the two are related, since it contains a mechanistic procedure to extrapolate causal 

knowledge. But for now, it suffices to see that mechanisms and physical setups perform 

different functions in my argument. 

The judgement that C1 holds is mainly based on intuition. How should we warrant that 

Exp1 is a good explanation, and correspondingly, that causal claim C1 can be trusted? 

How do we bridge the evidential gap? The first thing that needs to be settled, is what a 

good explanation consists of.  

3.1.1 Pragmatic explanation 

What is an explanation? Like with causation, there are too many definitions and accounts 

to count or discuss. For my pragmatic project that is focused on causation, I will be 

looking at physical causal explanations in a pragmatic way.4  

The pragmatic toolbox for explanation developed by Erik Weber, Jeroen Van Bouwel 

and Leen De Vreese (2013) can be used to sketch how the explanations that I focus on 

can be understood. Following this framework, the explanations can be pragmatically 

characterised as answers to why-questions. In a pragmatic framework, the specificities of 

the why-questions also shape the answer. Weber, Van Bouwel and De Vreese distinguish 

between questions about facts and questions about regularities (2013, p.40). Here, I will 

only discuss questions about facts, but chapter 4 will show that these can be generalised 

to questions about regularities. Weber, Van Bouwel and De Vreese further distinguish 

three types of questions about facts: questions about plain facts, contrastive questions 

and resemblance questions (2013, pp.40-42). I will focus on questions about plain facts. 

In the case of the flagpole, this is the question 

 

                                                     
4 This is not to say that all (physical) explanations need to be causal. 
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Why is does the length of the shadow (𝑙) equal 𝐿?5 

The way we answer this, is by combining (causal) information relevant for the case we 

want to explain and using this information to build an argument. As will become clear 

from the examples, this argument is often not deductively valid (see 3.1.3). 

3.1.2 Modelling the phenomenon 

The second point I want to reflect on is the way we select the boundaries and relevant 

parts of the phenomenon we want to explain. In 2.1, I already argued that the validity 

and meaning of the causal claims I am concerned with depend on the domain they refer 

to. I presented a way of making this domain explicit, viz. the concept of physical setups. 

However, except for a small note about relevant properties, I did not reflect on how we 

choose the parts of the setup. The way I proceeded was by choosing the setup in such a 

way that the causal claim underpinning remedy instructions would be valid. This strategy 

worked because I was looking for ways to make explicit the causal knowledge underlying 

efficacious remedy claims. However, when we want look for evidence for causal claims 

(like the ones functioning in explanations), we have no certainty about whether the 

causal claim holds. 

So how do we select the objects that are part of the setup in the case of the flagpole, 

for instance? To characterise the interaction in the flagpole example, we need to see it as 

taking place in the setup composed of the sun, the flagpole and the ground. We abstract 

away from all the irrelevant factors and keep the relevant ones. At the same time, we 

abstract away from the irrelevant features of the elements in the setup. These decisions 

do not arise out of nowhere.  

A debate that is relevant for this question deals with the way we model phenomena. 

The role that models play in science has a “rich and varied history”, starting with people 

like James Clerk Maxwell and Lord Kelvin (Morrison and Morgan 1999a, p.1). An 

important contribution to the reflection on models is the book Models as mediators, 

edited by Margaret Morrison and Mary S. Morgan (1999c). They define models in the 

following way: 

 

                                                     
5 As I showed in the previous chapter, there are often good reasons to introduce contrasts when discussing 

causal claims. For clarity, I will omit them here, but they can be added without much trouble. 
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Models may be physical objects, mathematical structures, diagrams, computer 

programmes or whatever, but they all act as a form of instrument for investigating 

the world, our theories, or even other models. (Morrison and Morgan 1999b, p.32) 

The main topic of the book is the relation between models, theory and data: models 

mediate between theory and data. The contributors argue that models should be seen as 

in some sense independent of the other two (Morrison 1999, p.43). The book addresses 

many important questions, but what I mainly want to focus on is the need to construct a 

model in order to reason about a phenomenon (viz. make causal claims, explain and 

intervene in it). The discussion on how models are built can shed light on how a physical 

setup is delineated.  

Morrison and Morgan’s book shows that building a model is a practice fitting together 

relevant parts. So firstly, it’s a practice, the theory does not give you an algorithm to 

build a model (1999b, p.16). And second, the practice of modelling can be characterised 

as combining parts that we consider relevant for the task:  

[…] [M]odels are built by a process of choosing and integrating a set of items which 

are considered relevant for particular tasks. (Morrison and Morgan 1999b, p.13) 

In the pragmatic framework that I am working in, it is no surprise that one phenomenon 

can be modelled in different ways, depending on the goal we have. I will get back to this 

in chapter 5 (see 5.3.3). In the case of causal explanation, we include the elements (and 

relevant features) in the setup that we believe to be relevant for the explanation of the 

phenomenon. This also fits with Mieke Boon and Tarja Knuuttila’s discussion of models in 

the engineering sciences. On their view, models are epistemic tools to reach specific 

goals (Boon and Knuuttila 2009, p.689). In a sense, models are reasoning aids.  

What does all of this mean for the flagpole example? When we construct a physical 

setup, this is part of modelling the phenomenon and is based on what information we 

think is relevant for the explanation. Why are the sun and the flagpole included in the 

setup and not, say, some other object? Because we know that shadows are produced by 

light. So the choice to include the sun is based on background knowledge, more 

specifically, on judgements about which knowledge may be relevant for the explanation. 

I suggest that this is also why we include the information about the position of the sun: 

we know the relevant law of geometrical optics and believe that it might be useful for 

explaining the relevant phenomenon of the flagpole example. So we construct a physical 

setup in such a way that we believe we can explain the phenomenon. Correspondingly, 

during the process of explanation, we may change the setup to account for difficulties 

we encounter in our attempts to explain the phenomenon. Note that the modelling of 

the phenomenon we are explaining also includes decisions about the amount of detail 

we want to include. In chapter 5, I will pay more attention to how different demands 
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such as specificity or intelligibility can determine the regularities we use to explain 

phenomena.  

What I mainly want to argue is that the picture from the previous chapter, where the 

setup was seemingly clear and the validity of the causal claim depended on the physical 

setup is more complicated. The way we conceptualise the phenomenon is not 

independent of the way we explain it and nor, as I will show, of the way we look for 

evidence for causal claims in the explanation. Now that this is straightened out, I can 

move on to how we look for evidence for causal claims in the explanations.  

3.1.3 Explaining the flagpole 

If explanations are answers to why-questions, the relevant why-question in the flagpole 

example is the following: 

Why does the length of the shadow (𝑙) equal 𝐿 ? 

The answer is given by the following explanation (Exp4): 

(C9)  In setups of type S5, the height of the flagpole (ℎ) and the position of the sun 

(𝛼) determine the length (𝑙) of the shadow according to ℎ/𝑙 = tan 𝛼 

The phenomenon we want to explain pertains to a setup of type S5 

ℎ = 𝐻, 𝛼 = 𝛼1  

***** 

The length of the shadow 𝐿 = 𝐻
tan 𝛼1

⁄ . 

I use this starred line (*****) to separate the explanans from the explanandum because 

the explanation should not be seen as a deductively valid argument. In some cases, the 

explanation might have this strength, but since the causal relations need not be 

deterministic, it is often not the case. I will get back to this in 3.3.1. 

This explanation consists of a causal claim (C9) and information about the setup we 

are talking about. So how do we support the causal claim part of this explanation? As I 

said in the introduction, I conceptualise this as combining pieces of information. One 

piece of information is the law of geometrical optics that we thought was relevant for 

this phenomenon, viz.ℎ 𝑙⁄ = tan 𝛼.However, recall from 1.2.2 that the law itself is not 

enough to warrant C9, since the same law can also be used to warrant 

(C10) The length of the shadow and the position of the sun determine the height of 

the flagpole. 
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(C11) The height of the flagpole and the length of the shadow determine the 

position of the sun. 

Not only are all these claims compatible with the law, they are all equally well supported 

by it. Based on the law alone, we have no compelling reasons to prefer C9 over the other 

causal claims. Yet as I argued above, if C10 or C11 holds instead of C9, Exp4 is not a good 

explanation. The laws of physics give us correlational evidence in the sense I defined in 

the introduction. However, we need some information to determine which causal claim 

holds in this case. 

3.1.4 Explaining the pressure cooker 

The flagpole is an artefact in the sense I characterised in chapter 1. However, this is not 

crucial for the explanation in section 3.1.3; a similar explanation can be given for the 

shadow of a tree, for example. In this chapter, I present a more paradigmatic example of 

an artefact, viz. a pressure cooker. This common household artefact can be characterised 

as a rigid closed container. Note that this is already a modelling step: it is characterised in 

such a way in light of the gas laws that specify volume-change as a relevant factor.  

We want to answer for instance the following question: 

Why does the pressure (𝑝) exerted on the walls of the cooker equal 𝑃? 

To answer this question, we turn to the laws of physics. We characterised the pressure 

cooker as a rigid closed container because we believe we can explain it via the laws of 

thermodynamics. This is partly because modelling the cooker in terms of molecules is 

way too complicated. Frisch has argued for this: macro-phenomena cannot be modelled 

via micro-regularities (2014, p.38). I will get back to this in chapter 5 (see 5.3.2). In 

general, the next chapters will reflect more on the relation between artefact phenomena 

and (fundamental) laws of physics. For now, it suffices to treat the modelling of the 

pressure cooker in terms of laws of thermodynamics as a pragmatic choice.  

When the cooker is heated, we believe the following causal claim holds: 

In pressure cookers, the temperature of the gas influences the pressure it 

exerts on the walls of the container. 

How can we warrant this claim? We might try with the ideal gas law: 

(IGL) For equal quantities of gas in a container, the product of the pressure  

𝑝 and the volume 𝑣 is proportional to the temperature 𝑡, with a 

proportionality constant R (the ideal gas constant). 
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Or in its mathematical form: 

𝑝𝑣 = 𝑛𝑅𝑡 

With 𝑝 the pressure, 𝑣 the volume, 𝑛 the amount of substance of gas, 𝑅 the ideal gas 

constant and 𝑡 the temperature. However, to function as intended, a pressure cooker 

also needs to contain liquid. To describe a rigid container with liquid, a van der Waals 

equation is better: 

(𝑝 + 𝑎𝑛2

𝑣2⁄ ) (𝑣 − 𝑛𝑏) = 𝑛𝑅𝑡 

This is a modification of the ideal gas law. The factor 𝑏 expresses the volume per mole 

that is occupied by the molecules of the fluid. Factor 𝑎 is a constant whose value 

depends on the gas. This law can be used to argue for the following causal claims – as 

correlational evidence6: 

(C12) For pressure cookers, the temperature of the gas combined with the volume 

of the gas determines the pressure it exerts on the walls of the container. 

(C13)  For pressure cookers, the pressure exerted on the walls of the container 

combined with the volume of the gas determines the temperature of the gas. 

(C14) For pressure cookers, the temperature of the gas combined with the pressure 

exerted on the walls of the container determines the volume of the gas. 

We do not have enough information to decide what claims to accept. Yet to explain the 

amount of pressure the gas exerts on the walls of the cooker, we need C12 to hold: 

In pressure cookers, the temperature of the gas (𝑡) influences the pressure 

(𝑝) it exerts on the walls of the container according to (𝑝 + 𝑎𝑛2

𝑣2⁄ ) (𝑣 −

𝑛𝑏) = 𝑛𝑅𝑡 

𝑡 = 𝑇, 𝑣 = 𝑉 

***** 

The pressure exerted on the walls of the cooker is 𝑃 =
𝑛𝑅𝑇

(𝑉−𝑛𝑏)
−

𝑎𝑛2

𝑣2  

Otherwise, the explanation does not work. How do we bridge this evidential gap? What 

type of information do we need to add, so that we can present an argument that allows 

us to accept C12? To answer this question, I will take inspiration from the way similar 

 

                                                     
6 It is important to note that each of C12 till C14 is equally supported by the law. This again shows the tension 

between symmetric laws and asymmetric causal claims. 
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problems are handled in philosophy of the biomedical and the social sciences. In these 

domains, knowledge of mechanisms is invoked in combination with probabilistic 

evidence to argue in favour of a causal relation (see also 3.4.3). The literature on 

mechanistic evidence for causal claims in the biomedical sciences is quite extensive. I will 

use this to sketch the main strategy. In section 3.3, I will then explain a similar way this 

works in the social sciences. However, the two are not completely the same. By 

reflecting on the difference, I will be able to explain why the social sciences are a better 

guide for understanding the physical causal claims. Finally, in section 3.4, I will come back 

to the physical examples and reflect on the differences between the domains. 

3.2 Mechanistic evidence in the biomedical sciences 

Evidence for causal claims in biomedical sciences, especially the interplay between 

mechanistic and correlational evidence, has received a lot of attention from philosophers 

in the past years. I present an example of the biomedical sciences where correlational 

and mechanistic evidence are both used. I then discuss some of the philosophical 

literature on this topic to analyse the evidential situation in the biomedical sciences. 

3.2.1 A biomedical example 

Suppose that John has heart disease and we want to know why. In the biomedical 

sciences, the following explanation could be given: 

One of John’s legs was amputated. 

Limb amputation is a positive causal factor for heart disease. 

***** 

John has heart disease 

Contrary to physics, biomedical science explicitly looks for causal regularities: 

Biomedical science is a term used to describe the study of the causes, 

consequences, diagnosis, and treatment of human diseases. (Ahmed, Glencross, 

and Wang 2011, p.19) 
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However, establishing a causal claim in the biomedical sciences is not that easy. Many 

studies have been done in order to establish a causal connection between leg 

amputation and cardiac arrest or heart disease. See for example (Hrubec and Ryder 

1980) and (Modan et al. 1998). The way these studies go, is first by performing a 

prospective cohort study. In a cohort study, a group of individuals with a particular 

characteristic is followed over a period of time (Illari and Russo 2014, p.11). In this case, 

the ‘characteristic’ is that the participants’ limb was amputated. The researchers 

followed the participants in order to determine whether they suffer on average more 

from cardiovascular disease than people without amputated limbs. If this is the case, 

then a correlation is established. However, like I explained in the introduction, variables 

can be correlated for a number of reasons. To establish a causal claim, correlational 

evidence is often not enough. 

In the Hrubec and Ryder article, the authors explicitly say that they do not know the 

reason for the “statistically relevant relationship” between limb amputation and 

cardiovascular disorders (1980, p.247). Modan et al. also found a statistically relevant 

relation between limb amputation and cardiovascular disorders. They suggest several 

possible mechanisms for this and other related connections: 

To link these observations, it is conceivable that in amputees chronic mental and 

physical stress, with their attendant increased autonomic nervous system activity, 

could augment blood coagulability, either directly or indirectly, through 

hemodynamically enhanced shear stress forces. The latter play a role in the initial 

injury to the vascular endothelium preceding atheroma formation as well as in 

activation of plate sensitivity and blood viscosity, across a range of shear rates. 

(Modan et al. 1998, pp.1244-1245) 

Recall Illari and Williamson’s pragmatic definition of a mechanism that I quoted in the 

introduction. The description above is that of a mechanism: it contains entities (such as 

autonomic nervous system, blood, vascular endothelium) with activities (augmenting 

blood coagulability, coagulating, breaking down) in a specific organisation (blood in the 

veins, vascular endothelium lines the inside of blood vessels). With this description, the 

authors attempt to account for the statistical connection. Modan et al.’s article is not an 

exception in the biomedical sciences: mechanistic evidence is often invoked to account 

for the statistical results of experimental or observational studies. This has not gone 

unnoticed by philosophers of science, as I will show in the next section. 
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3.2.2 Mechanistic evidence in the biomedical sciences  

As I explained in the introduction, the concept of mechanism has been on a rise in 

philosophy of science since the nineties. Mechanistic evidence however, constitutes a 

topic on its own. In 2007, Russo and Williamson published a now famous paper on 

evidence in the biomedical sciences. The central thesis, or at least the most cited one, 

was dubbed the Russo-Williamson thesis and captured by this quote: 

To establish causal claims, scientists need the mutual support of mechanisms and 

dependencies. The idea is that probabilistic evidence needs to be accounted for by 

an underlying mechanism before the causal claim can be established. (Russo and 

Williamson 2007, p.159) 

So Russo and Williamson clearly plead for a significant role for mechanistic evidence in 

the biomedical sciences. The specificities and modalities of this plea, however, have been 

highly debated. Philosophers have interpreted the thesis in several ways and have 

thoroughly examined all of the interpretations (see for instance (Weber 2009), (Leuridan 

and Weber 2011), (Gillies 2011), (Broadbent 2011)). As Illari argues, some formulations 

in the paper did allow some ambiguous interpretations (2011). However, Russo and 

Williamson have, in a later article, clarified what they mean: 

According to the epistemic theory, causal claims need to be made on the basis of 

evidence of both difference-making and mechanisms, as well as evidence such as 

temporal information and information about the nature of the events in question 

(Russo and Williamson 2011, p.568) 

This is still a pretty strong claim, since both types of evidence are required to argue for 

causal claims. I do not commit to such a strong claim. What I want to take from this 

debate, is that in philosophy of the biomedical sciences, it is accepted that mechanistic 

information is often invoked in favour of a causal claim. There may exist disagreement on 

the necessity of this mechanistic evidence, but philosophers generally agree that 

mechanistic evidence is useful to support causal claims in the biomedical sciences. In the 

next section, I focus on what this mechanistic evidence specifically does. 

3.2.3 Which evidential gap? 

Like with the physical causal claims, the biomedical scientists start from correlational 

evidence. Most of the time, this is obtained from observational studies or experimental 

studies. Observational studies refers to methods of data-gathering where we passively 

record observations (Illari and Russo 2014, p.10). Examples of observational studies are 
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cohort-studies (like the example above) and case-control studies (where two individuals 

are compared) (Illari and Russo 2014, p.11). In experimental studies, on the other hand, 

data are produced “within the experimental setting by manipulating some factors while 

holding others fixed” (Illari and Russo 2014, p.10). RCT’s (Randomized Controlled Trials) 

are a well-known example of experimental studies.  

What is inherently present in the data gathered by those studies, is the temporal 

direction. In prospective studies, we follow people with a certain condition to see 

whether they develop a certain other (previously absent) condition. This often allows us 

to conclude that the latter is not the cause of the first. In experimental studies, one 

variable is actively manipulated and the value of the other variable is measured. Here 

too, the temporal direction is clear. Because we believe that causes precede their 

effects, there is no question of which variable caused the other. In the introduction, I 

mentioned four possible reasons for a correlation between A and B: a causal direction 

from A to B, a causal relation from B to A, some unknown common cause for both A and 

B, and a nonsense correlation. In relation to these four options, in the biomedical 

sciences, we can often exclude one of the causal relations because of temporal 

considerations regarding how the correlational evidence was gathered. So the 

mechanistic evidence is, in this context7, often invoked to decide between the remaining 

causal direction and a common cause or nonsense correlation.  

So the biomedical sciences is not the best role model to understand the role of 

mechanistic evidence for physical causal claims, since the distinction between two 

possible causal directions (A causes B or B causes A) was very central for the latter (I will 

reflect on the possibility of common causes and nonsense connections in 3.4.3). In the 

next section, I will reflect on mechanistic evidence in a case from the social sciences. The 

role that mechanistic evidence plays there, is more related to what we need for the 

physical causal claims. This case will allow me to pinpoint what this role consists of. 

 

                                                     
7 It’s important to note that mechanistic evidence can also be used for other goals, like extrapolation (see 

chapter 4). 
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3.3 Mechanistic evidence in the social sciences 

For the social sciences, I will look at Duverger’s laws. I first explain what these laws are 

and then analyse how Duverger argued for them. I will argue that this too is an example 

of mechanistic reasoning. Moreover, this reasoning can help us understand what 

mechanistic evidence can do for physical causal claims, since the direction of causation is 

a problem here as well. 

3.3.1 Background 

The French political scientist Maurice Duverger became famous in the 1950s for his work 

on the relation between electoral systems and the number of political parties. The key 

propositions are the following ((Benoit 2006, p.70), (Duverger 1959, pp.217 and 239)): 

(P1) The simple-majority single-ballot system favours the two-party system. 

(P2) The majority system with a second-round runoff favours multi-partism. 

(P3) Proportional representation favours multi-partism. 

In a simple-majority single-ballot system there is one member of parliament to be 

elected in each voting district. The candidate who gets more votes than any other 

candidate is elected (even if there is no majority, i.e. even if the winner’s score is less 

than 50%). Duverger considers two other systems: the majority system with a second-

round runoff (if no candidate receives more than 50% of the initial votes, there is a 

second round with the top-two candidates) and proportional representation (multiple 

members of parliament for each district; seats allocated based on percentage of votes 

for each political party). 

How should we understand the causal claims? I argued that the physical causal claims 

I am concerned with are implicitly or explicitly about a domain. The same holds for 

Duverger’s claims. In the case of Duverger, the domain that he and his fellow political 

scientists are talking about is the set of all democratic countries. 

To make the meaning of the causal claim explicit, the definitions from the previous 

chapter come in handy. Recall the idea of hypothetical populations used in the definition 

of a positive causal factor (D1). To recapitulate, C as opposed to C* is a positive causal 

factor for E if, in the hypothetical population obtained by changing all C* into C, we have 

more E than in the hypothetical population where we changed all C to C*. Taking this 

into account, the meaning of proposition P3 can be explicated as follows: 
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If all democratic countries were to have proportional representation, there 

would be more countries with a multi-party system than if all democratic 

countries were to have a simple-majority single-ballot system. 

This is a non-deterministic or probabilistic causal relation. Not every democratic country 

with a simple-majority single-ballot system has a two party system (Canada and India are 

exceptions); nor is it the case that all countries with proportional representation have a 

multi-party system (Austria is an exception). This is not a problem, many causal claims 

throughout the sciences are probabilistic, like the causal relation between smoking and 

lung cancer. Wanting to base all causal explanations on deterministic causal relations is 

not realistic. Recall from the first chapter that finding sufficient causes is not an easy task 

even in artefacts that we designed. In social and biomedical sciences, it is even more 

difficult, since we have less control. So explanations are often based on probabilistic 

causal claims. This is also why, as I said in 3.1.3, the explanation is not necessarily a 

deductively valid argument.  

Now that this is settled, let’s turn to the explanations. Belgium has a multi-party 

system. To explain this, we need to answer the question: 

Why does Belgium have a multi-party system? 

By means of P3, we can answer this question as follows: 

Belgium has a proportional representation system. 

Proportional representation favours multi-partism. 

***** 

Belgium has a multi-party system. 

How did Duverger argue for P3? 

3.3.2 Correlational and mechanistic evidence 

Duverger performed an extensive comparative study of the relation between electoral 

systems and number of parties. A comparative study consists of comparing certain 

properties across different countries or cultures. Duverger’s comparative study provided 

evidence for several correlation claims, like: 

(P4)  Proportional representation is positively correlated with multi-partism. 

(P5) The simple-majority single-ballot is positively correlated with a two-party 

system. 
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The results of a comparative study do not fix the temporal order in the same way as 

certain ways of collecting correlational evidence in the biomedical sciences did. The 

correlational data is less informative. In order to be able to give causal explanations, we 

need evidence that suffices to accept the causal claims P1 – P3. The correlational 

evidence is not enough, we need to exclude the three alternative options: the reverse 

causal direction, an unknown common cause, and nonsense correlations.  

The way Duverger argues for a specific causal direction is by invoking what he calls 

‘the mechanical effect’ and ‘the psychological factor’: 

The mechanical effect of electoral systems describes how the electoral rules 

constrain the manner in which votes are converted into seats, while the 

psychological factor deals with the shaping of voter (and party) responses in 

anticipation of the electoral law’s mechanical constraints. (Benoit 2006, p.72) 

The mechanisms Duverger points at are social mechanisms. Steel characterises these as 

follows: 

Social mechanisms are complexes of interacting individuals, usually classified into 

specific social categories, that generate causal relationships between aggregate-

level variables. (2004, p.59) 

Steel’s definition can be seen as a specification of Illari and Williamson’s definition (see 

the introduction), tailored for the social sciences. 

3.3.3 Which evidential gap? 

Let me look at the first mechanism in more detail. When polling stations are closed, 

votes are counted. This is done by people (with all kinds of technological assistance) who 

perform certain roles in the electoral system. These roles are the “social categories” 

which Steel refers to, for instance “chairman of totalisation office” or “secretary” or 

“assessor” in such offices. The interaction between all these people who count and 

process votes in a predetermined, highly structured way leads to the proclamation of a 

result (again by an individual with a specific social role) in terms of seats in the 

parliament. 

 This whole process can be seen as an input-output-system in which votes are 

processed according to certain electoral rules and result in a distribution of seats. There 

is always a certain mismatch between share of votes and share of seats:  

The mechanical effect of electoral systems operates on parties through the direct 

application of electoral rules to convert votes into seats. In the mapping of vote 
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shares to seat shares, some parties — almost always the largest ones — will be 

‘over-represented,’ receiving a greater proportion of seats than votes. Because this 

mapping is a zero-sum process, over-representation of large parties must create 

‘under-representation’ of the smaller parties. (Benoit 2006, p.73) 

However, in simple majority single-ballot electoral systems, application of the electoral 

rules leads, on average to higher over-representation of large parties. 

 An important aspect of this mechanism is that it is causally directed. The people 

involved do not count seats and convert them into votes. They count votes and convert 

them into seats. And electoral rules are also an input of the process, not an output. The 

rules are in the heads of the individual (and implemented in the computer programmes 

they use). They are in no way an output of the vote processing system.  

 About the second mechanism, Benoit writes: 

Duverger’s psychological effect comes from the reactions of political actors to the 

expected consequences of the operation of electoral rules. The psychological 

effect is driven by the anticipations, both by elites and voters, of the workings of 

the mechanical factor, anticipations which then shape both groups’ consequent 

behavior (Blais and Carty, 1991, 92). Under electoral rule arrangements that give 

small or even third-place parties little chance of winning seats, voters will eschew 

supporting these parties for fear of wasting their votes on sure losers. Political 

elites and party leaders will also recognize the futility of competing under certain 

arrangements, and will hence be deterred from entry, or motivated to form 

coalitions with more viable prospects. (2006, p.74) 

This represents another social mechanism in the sense of Steel: there are individuals 

with certain roles (“party leader”, “voter”) behaving and interacting in certain ways. The 

mechanism rests on two assumptions about how relevant behaviour is determined: 

- What voters do in the polling station is influenced by their knowledge of 

the electoral system and the degree to which it favours large parties. 

- What party leaders do in terms of pre-election coalitions is influenced by 

their knowledge of the electoral system and the degree to which it favours 

large parties. 

The mechanistic information brings in a specific temporal and with that causal order: the 

electoral rules exist, they influence what is in the mind of voters and party leaders. And 

the opinions of voters and party leaders determine their behaviour. So in the case of 

Duverger, the temporal inference is quite convincing. Note that comparative studies can 

also be used in the biomedical sciences, and social scientists often perform prospective 

and retrospective studies as well. The role that mechanistic evidence plays, is less related 
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to the scientific disciplines than to the ways the correlational evidence was gathered. 

However, in the biomedical sciences, it is more likely that the way we collected the 

correlational evidence allows us to exclude a possible causal direction. Cases like the one 

described by Duverger are more common in the social sciences. 

The mechanistic evidence is also used to strengthen our belief in the causal relation, 

like it does in the biomedical sciences (see 3.2.2). But more importantly for my purposes, 

it also helped decide the direction of the causal relation. In the next section, I will show 

that mechanistic evidence can do the same for physical causal claims and in this way, 

bridge the evidential gap. 

3.4 Mechanistic evidence for physical causal claims 

I can now revisit the physical examples from 3.1: the flagpole and the pressure cooker. In 

3.1, I explained that we model the phenomenon in such a way that it can be captured by 

a law of which we believe it can help to explain the phenomenon. Most of the physical 

laws, however, were not enough to argue for the causal claims on which the 

explanations were based. They only provide what I called correlational evidence: they 

tell us of a connection between A and B, but are not informative enough to exclude all 

the possible alternatives to one specific causal relation (see the introduction). 

Mechanistic evidence can be invoked to choose the right alternative, like it was in 

Duverger’s case.  

3.4.1 Revisiting the flagpole 

For the flagpole we needed to decide between the following causal claims: 

(C9) The height of the flagpole and the position of the sun determine the length of 

the shadow. 

(C10) The length of the shadow and the position of the sun determine the height of 

the flagpole. 

(C11) The height of the flagpole and the length of the shadow determine the 

position of the sun. 

Information regarding how the shadow comes to be in that system, can help us decide: 
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The sun emits light rays. They travel to earth and are blocked by the 

flagpole. This results in the dark area called the shadow.  

To see that this is mechanistic evidence, recall the pragmatic definition of a mechanism 

by Illari and Williamson that I mentioned in the introduction: 

A mechanism for a phenomenon consists of entities and activities organized in 

such a way that they are responsible for the phenomenon. (2012, p.123) 

In this example, the entities are the sun, the pole and the ground. The activities are 

emitting light (by the sun) and blocking light (by the pole). They are organised such that 

the sun makes an angle α with the ground. Information about these entities and 

activities that are responsible for the shadow in the system described S3, combined with 

the law of geometrical optics, does give us a compelling reason to accept C9 instead of 

C10 or C11. If the mechanism were different, we could accept a different causal claim, and 

correspondingly, give a different explanation for the phenomenon. 

This bears a lot of resemblance to the role mechanistic evidence played in the case of 

Duverger: the mechanism is causally directed and allows us to decide which variable 

influences the other. 

3.4.2 Revisiting the pressure cooker 

In the case of the pressure cooker, we needed a way to argue for C12, instead of C13 and 

C14. 

(C12) The temperature of the gas combined with the volume of the gas determines 

the pressure it exerts on the walls of the container. 

(C13)  The pressure exerted on the walls of the container combined with the volume 

of the gas determines the temperature of the gas. 

(C14) The temperature of the gas combined with the pressure exerted on the walls 

of the container determines the volume of the gas. 

Mechanistic evidence can help here as well. Specifically, we can use the following 

information: 

We fill and seal the pressure cooker. We heat the pressure cooker by means 

of a stovetop. This heating results in an increase in temperature of the 

liquid. The water comes to boil and turns into gas, until the water and gas 

are in equilibrium. The heat increases the energy of the gas, resulting in a 

rise in pressure the gas exerts on the walls of the container. 
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This is again a mechanism: the entities are the stovetop, the liquid, the gas and the 

container. The activities are for instance heating, turning into gas, increasing in energy. 

The organisation is such that the liquid is in the cooker, the cooker is on the stovetop, 

etc. The pressure cooker is a typical example of a man-made physical setup. For artefacts 

that function properly, it is easier to decide how the mechanism works than in the case 

of natural examples, since we have more control over artefacts: we designed them (see 

also 4.1.2).  

So mechanistic information is needed to determine the causal direction in specific 

setups and correspondingly, to help us decide which of the causal claims that are 

compatible with the law, to accept.  

3.4.3 The different evidential gaps 

I can now reflect on the difference between the role of mechanistic evidence for the 

physical claims compared to the social and biomedical claims. This is related to what I 

mentioned about the laws being analogous to correlations, but not equal. The main 

purpose of the mechanistic evidence in case of the physical causal claims, was to decide 

whether A caused B rather than B caused A. This is significantly different from the role of 

mechanistic evidence in the other examples. That is because of the nature of the laws of 

physics: many are mathematical equivalencies. As such, the laws allow us to determine 

the value of every variable based on the value of the other variables in the law.8 

Moreover, I will show that this also has the consequence that we can often exclude the 

possibility of unknown common causes and nonsense correlations. Let me begin with the 

latter. For the laws I discussed (paradigmatic laws of physics, that are thought to hold for 

the rather idealised systems I discuss), if we believe that the physical law holds, then the 

option of a nonsense correlation is excluded from the start. A physical regularity is given 

the status of law exactly because the connection between the variables it expresses, is 

sensible.  

Moreover, for many physical laws unknown common causes are also excluded. If you 

believe that a physical regularity expressed as an equivalency is applicable to the system 

and phenomenon in question9, for many laws, we can exclude common causes that are 

not variables in that regularity. Many laws attempt to include all factors that influence 

 

                                                     
8 Some laws also contain constants. We can also calculate the value of those based on the values of the other 

members of the equations. 
9 Recall that we modelled the phenomenon in such a way that the law would be applicable. See 3.1.2. 
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the outcome, so we can often use this information to refute the possibility of unknown 

common causes. If a factor that influenced the outcome was not included in the 

regularity, there would be no equivalency. So if you believe a physical law expressed as 

an equivalency is applicable to your setup, this law also determines which variables can 

potentially occur as cause variables in true causal claims. The variables that mattered are 

all given by the law and the phenomenon was modelled in such a way that it could be 

captured by the law.10 Other physical laws are probabilistic. In this way, they take 

disturbing factors into account. So they do not exclude that other factors can influence 

the result. On the contrary, they take them into account by only expressing a probability. 

Yet there is some implicit distinction between proper causes and disturbing background 

or shock factors. The proper causes are mentioned in the law, the disturbing factors are 

omitted. This marks a difference with the probabilistic regularities from the special 

sciences. 

However, because the mechanistic evidence that is needed for the physical causal 

claims requires information about the setup, this mechanistic evidence only allows us to 

argue for a very local causal claim. Physical setups are highly specific. Compared to 

Duverger’s claims (whose domain was all democratic countries), or the biomedical 

example from 3.1.2 (that held for all humans), the physical setups are less widespread, 

and there are more alternatives to the setups. So mechanistic evidence is used to argue 

for physical causal claims as well, but the claims that are argued for are significantly less 

general than the ones in the biomedical or social sciences. The claims are less stable 

across varying background conditions. I will get back to this in chapter 5. 

Regardless of these differences, there are a lot of similarities between the examples 

from the special sciences and my physical cases. However, in the philosophy of the 

special sciences, invoking mechanistic evidence to support causal claims is significantly 

more accepted than it is in the philosophy of physics. Reasoning in terms of mechanistic 

evidence is not encountered a lot. Instead, problems are expressed in terms of 

mathematics, like initial-value problems. Qualitative reasoning does not receive a lot of 

attention. I hope my chapter has shown that there is something to be gained from 

reasoning in terms of mechanistic evidence for physical cases as well. 

 

                                                     
10 This of course presupposes that there is enough evidence for the law itself. See also the introduction. 
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Conclusion 

In this chapter, I discussed how we argue for physical causal claims in the context of 

physical explanations. Specifically, I argued that the laws of physics by themselves do not 

suffice to argue for physical causal claims. Because many are mathematical 

equivalencies, they can be used to determine the value of each variable based on the 

value of the other variables in the equivalency. They are symmetric. However, I showed 

that mechanistic evidence, in combination with the laws, does suffice to argue for 

physical causal claims. In this way, this chapter constituted an argument for my second 

specific claim (II). I used two examples: a flagpole and a pressure cooker. For the 

flagpole, we explain the length of the shadow as follows: 

(C9)  In setups of type S5, the height of the flagpole (ℎ) and the position of the sun 

(𝛼) determine the length (𝑙) of the shadow according to ℎ/𝑙 = tan 𝛼 

The phenomenon we want to explain pertains to a setup of type S9 

ℎ = 𝐻, 𝛼 = 𝛼1  

***** 

The length of the shadow 𝐿 = 𝐻
tan 𝛼1

⁄ . 

To argue for the causal claim in the explanation, I argued we can rely on a combination 

of (1) correlational evidence captured by the relevant law of geometrical optics, viz. 

h/l=tan α1 and (2) mechanistic evidence provided by information about how the shadow 

comes to be, viz.: 

The sun emits light rays. They travel to earth and are blocked by the 

flagpole. This results in the dark area called the shadow.  

In the pressure cooker example, on the other hand, we were interested in the value of 

the pressure. We explained it as follows: 

In pressure cookers, the temperature of the gas (𝑡) influences the pressure 

(𝑝) it exerts on the walls of the container according to (𝑝 + 𝑎𝑛2

𝑣2⁄ ) (𝑣 −

𝑛𝑏) = 𝑛𝑅𝑡 

𝑡 = 𝑇, 𝑣 = 𝑉 

***** 
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The pressure exerted on the walls of the cooker is 𝑃 =
𝑛𝑅𝑇

(𝑉−𝑛𝑏)
−

𝑎𝑛2

𝑣2  

In combination with the Van der Waals equation mentioned in the causal claim, I argued 

that we needed the following mechanistic information: 

We fill and seal the pressure cooker. We heat the pressure cooker by means 

of a stovetop. This heating results in an increase in temperature of the 

liquid. The water comes to boil and turns into gas, until the water and gas 

are in equilibrium. The heat increases the energy of the gas, resulting in a 

rise in pressure the gas exerts on the walls of the container. 

To argue that mechanistic evidence can fill the evidential gap for physical causal claims, I 

took inspiration from the philosophy of the biomedical and of the social sciences. 

Philosophers in the biomedical sciences have stressed the importance of mechanistic 

evidence to increase confidence in a causal relation. However, as I showed, in the 

biomedical sciences the mechanistic evidence is mostly relied on to exclude potential 

common causes and nonsense correlations. This is because most observational and 

experimental studies used in the biomedical sciences already give you temporal 

information. In the political sciences, on the other hand, comparative studies are 

omnipresent and the results of such studies do not contain temporal information. There, 

scientists use mechanistic evidence to argue for one specific causal claim instead of 

another (while also attempting to exclude common causes and nonsense correlations). 

But regardless of these differences, these literatures helped me show that mechanistic 

evidence brings the causal asymmetry to correlational evidence that is needed to 

warrant physical causal claims. 

Mathias Frisch has made a similar point with regard to the reasoning of theoretical 

physicists. He argued that causal assumptions help to draw conclusions when dynamical 

models are underdetermined. Among other things, they bring in temporal asymmetry 

(Frisch 2014, p.127). He defined these causal assumptions in terms of Pearl’s structural 

account of causation (Frisch 2014, p.235). While I pay particular attention to artefacts, 

Frisch focuses on theoretical physics. Nevertheless Frisch’s and my projects line up: we 

both want to pay genuine philosophical attention to causal claims and reasoning about 

physical systems. And more specifically, we both show that temporal asymmetry can be 

brought in by means of certain assumptions regarding causal structures.  

In general, evidence for physical causal claims is not often discussed in philosophy of 

physics. However, I have shown that finding evidence for causal claims is not easy. For 

one, the laws of physics do not suffice. So all the reflection on the laws of physics by 

philosophers of physics does not really help us in trying to understand how we provide 

evidence for physical causal claims. At the same time, my analysis in this chapter showed 
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that there are interesting philosophical issues related to evidence that arise when we 

look at using physical causal knowledge. In this way, it contributed to establishing my 

two generic aims, viz. (A) and (B). 

The interesting issue I focused on, was what I called the evidential gap. But there are 

other aspects that make it even more difficult to find evidence for causal claims, aspects 

that I have only briefly reflected upon and taken for granted. One such aspect is the way 

we model a phenomenon. I discussed this in 3.1.2, by arguing that we model a 

phenomenon in a specific way so that it can be covered by a law that we think is relevant 

for the phenomenon. For the flagpole and the pressure cooker, this might look 

straightforward. However, in new phenomena, this is way less clear. If a phenomenon 

occurs for the first time, or is studied for the first time, or is studied in a more detailed 

way or with a different goal (recall that this can influence the meaning of the causal 

relation), it is not at all clear which laws might be relevant for explaining them. Yet this is 

important for modelling. Relatedly, in such contexts, getting the mechanistic evidence, is 

also not that easy. This is widely acknowledged in the philosophy of the biomedical 

sciences. In the case of artefacts like the pressure cooker, we know the mechanism, since 

we built it. This gives us more knowledge of the mechanism than in biomedical cases. 

However, when artefacts malfunction, we need different knowledge, since the 

functioning of the artefact is disturbed. As such, discovering which mechanism is active 

becomes more daunting. A final complicating factor is areas where the theory of physics 

is not as established as thermodynamics or geometrical optics. You might think of 

quantum physics, but one need not go as far. There are many domains in the engineering 

sciences that do not have laws as established as classical physics.  

However, engineers use physical causal knowledge on a daily basis. So clearly, they 

succeed in modelling phenomena in such a way that they can make relevant causal 

claims about them, argue for these claims and use the causal information in a goal-

directed way. How do they handle all these difficulties? In the next chapter, I will look at 

failure analysis, a specialisation in the engineering sciences, to investigate how less 

straightforward causal claims are argued for. Specifically, I will study the way they 

extrapolate physical causal knowledge from one context to another and the evidence 

they need for those extrapolations. This will help to understand how more complex 

physical causal claims are argued for, and simultaneously, further scrutinise the assumed 

central position of laws in philosophy of physics. As I announced, the following chapter 

will generate even more interesting philosophical issues. In this way, it will also 

contribute to further realising my two generic aims. 
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Chapter 4 From one to many: generalisation and 

evidence in failure analysis 

In this chapter, I turn my attention to how engineers generalise physical causal 

knowledge in a way that they can use it. This requires them to provide evidence1 for 

generalising the claims, and for determining the domain of their generalised claims. I will 

investigate how this evidence can be characterised. This is connected to claim (III). 

Many scientific disciplines start from causal knowledge about a limited number of 

cases and attempt to draw conclusions about different or more cases. Recall Cartwright 

and Hardie’s example of the nutritional project for pregnant women in Bangladesh that 

failed in Tamil Nadu that I discussed in section 1.4. This is a case from the social sciences. 

A similar method is used in biomedical sciences. In the context of these sciences, 

philosophers have attempted to understand how and when (causal) knowledge of one 

case or population can be extrapolated to other cases or populations. In this chapter, I 

will analyse cases from engineering science (specifically failure analysis) to argue that a 

similar problem holds for physical causal knowledge. However, as I will show, the 

problem is not entirely the same. Because artefacts are frequently analysed from what I 

call a design-perspective, the generalisations that take place are different than those in 

social sciences or biomedical sciences. I will therefore adapt philosophical tools given by 

Daniel Steel and Nancy Cartwright, to gain more insight in the inferences leading to these 

generalisations. This will result in a two-fold mechanism based heuristic for such 

inferences. Correspondingly, my account provides insight in the evidence needed for 

those inferences. 

 

                                                     
1 Like in the previous chapter, I use evidence to refer to information that can be used to argue for (the domain 

of) causal claims. In this chapter, different kinds of scientific data are considered, such as measurements. 
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The causal knowledge that is produced in the cases that I study in this chapter differs 

in two respects from the knowledge I discussed in chapter 3. For one, in the current 

chapter, general causal knowledge is produced, while the cases in chapter 3 looked for 

particular causal knowledge. Second, this general knowledge is based in local knowledge, 

instead of laws, as was the case in chapter 3. What this chapter has in common with 

chapter 3 is its focus on evidence. As announced, the analysis of these more complex 

cases will introduce another set of complexities related to how physical causal 

knowledge is found and used in actual scientific practice. The generalisation of causal 

knowledge in light of applications involves a lot of reasoning and evidence – and the 

same holds for determining the domain of this generalised knowledge. By reflecting on 

how analysts succeed in this, the challenges become clear. Hence, this chapter will 

address yet another interesting philosophical issue related to using physical causal 

knowledge. In this way, my argument for (A) and (B) is gradually developing.  

Introduction 

When an artefact breaks down2, specialised engineers called failure analysts study the 

specific circumstances that led to this failure. For instance, in “Creep failure of a spray 

drier”, Paul Carter investigates the collapse of a specific spray drier3 which had been in 

service for nearly 20 years (2001, p.73). This article was reprinted in Failure Analysis Case 

Studies II, a collection of “40 case studies describing the analysis of real engineering 

failures which have been selected from volumes 4, 5 and 6 of Engineering Failure 

Analysis” (Failure Analysis Case Studies II  2001, p.v).4 In the preface, the editor 

comments on the previous edition: 

The book has proved to be a sought-after and widely used source of reference 

material to help people avoid or analyse engineering failures, design and 

manufacture for greater safety and economy, and assess operating, maintenance 

and fitness-for-purpose procedures. (Failure Analysis Case Studies II  2001, p.v) 

 

                                                     
2 This can be either due to malfunction or failure, since both imply that the artefact stopped performing its 

function (see 1.5.2). 
3 A spray drier is an artefact often used in mines to dry liquid or slurry fast by means of hot gas. 
4 Engineering Failure Analysis is a journal which “publishes research papers describing the analysis of 

engineering failures and related studies” (Elsevier 2016). 
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Although failure analysts start from specific case studies, they do not simply want to 

explain what happened in this one situation. They also seek knowledge to prevent similar 

problems in the future. This is expressed in the quote above and also aptly stated by 

Henry Petroski: 

When failures do occur, engineers necessarily want to learn the causes. 

Understanding of the reason for repeated failures […] typically leads to a 

redesigned product. (2001, p.13) 

In other words, failure analysts look for ways to use the knowledge about physical causal 

relations in one specific situation, to draw conclusions regarding causal relations in other 

situations. These situations range from other instances of the same artefact, over similar 

artefacts, and even to very different artefacts. One of their goals is furthermore to find 

ways to alter designs. Their analysis is thus thought to be useful for  

(1) understanding (failure of) existing artefacts 

(2) altering practices of use of these existing artefacts 

(3) designing new artefacts not yet in existence. 

Collecting causal knowledge that can be used for these purposes, is not effortless (see 

also chapter 2). Because their practice deals with malfunctioning artefacts, analysists first 

need to explain or diagnose what happened. Because this often involves new or unseen 

versions of phenomena, it is often not clear which physical laws or regularities are 

relevant for this diagnosis. So modelling the failure phenomenon is significantly more 

difficult than for the cases in the previous chapter. And because the engineers want to 

use information from one failure to intervene on other artefacts, they need some way of 

deciding for which artefacts and contexts their knowledge can be useful. This is related 

to determining the domain of causal knowledge (in contrast to chapter 2, where the 

domain was stipulated explicitly). In comparison with the previous chapters, failure 

analysts are confronted with more complex situations of which it is even less clear how 

they are to be connected to physical theory. I will discuss the relationship between the 

failure analysis cases and physical theory in chapter 5. Here, I will focus on how failure 

analysts generalise knowledge about one failure in such a way that it can be used to 

achieve the three aforementioned goals. 

This seems to be an instance of a longstanding philosophical problem regarding 

generalisation of knowledge from one particular instance or local domain, to other 

instances or domains. This problem has occurred under many different names and in 

slightly different forms, including ‘induction’, ‘extrapolation’ and ‘external validity’. 

Arguably, these problems and debates are similar in the sense that they deal with the 

question of how to generalise knowledge. I will investigate different types of 
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generalisation as they occur in failure analysis and what evidence is given/needed for 

them. Because of the focus on design, the generalisations in failure analysis differ from 

the more classic examples. What I will call the design-perspective sets them apart. 

Understanding these generalisations can deepen our philosophical understanding of 

different ways generalisation problems occur and how to solve them. At the same time, 

it gives us more insight in the complexities of using physical causal knowledge. In section 

4.1, I will first discuss induction and extrapolation in more detail. I then pay some 

attention to the notion of design and clarify what I mean with ‘design-perspective’. In 

section 4.2, I will present three examples from failure analysis practice. They will serve as 

case studies throughout the chapter.  

I will flesh out three distinct types of inference: one that looks like induction, one that 

looks like extrapolation and one that is still different. I will argue that none of the 

examples are ‘pure’ instances of classical generalisations, because they involve artefacts-

to-be-designed. They will further specify what is meant with the design-perspective of 

generalisations. Throughout the chapter I will develop a framework to analyse these 

inferences. It builds on existing philosophical literature, but I will make suitable 

adaptations to capture the implications for non-existing artefacts.  

In order to analyse the aforementioned inferences, I will first use Cartwright’s notion 

of capacities to present the underlying causal claims and their domains in a standard 

format. They will allow me to capture the probabilistic nature and locality of the causal 

claims, while accounting for the stability required for generalisations. Using this standard 

format, I will clarify the (implicit) inference steps analysts make in their causal 

generalising reasoning. This will shed light on the evidence required to warrant these 

steps. Because of the focus on design, we will need a lot of specific information to ensure 

that recommendations prescribe warranted changes to designs. This is the topic of 

sections 4.4 and 4.5. There, I will develop my mechanism-based account of the evidence 

needed to warrant the aforementioned inference steps. It builds on Steel’s framework 

regarding extrapolation in the biomedical sciences. Because the inferences I am 

concerned with are not strict extrapolations, I will adapt Steel’s account, building on 

sections 4.2 and 4.3. I first determine a mechanism-based criterion of similarity for 

artefacts. Then, I will define a mechanism-based heuristic to determine when 

generalisations are warranted in failure analysis. This will also create a clear picture of 

the required evidence for such generalisations. To finish, I will look back on the tools I 

used and elaborate why they needed adjusting and developing to guide us in building 

new artefacts. I will also reflect on the nature of these additions to understand what was 

missing and how this can be of help in other domains. 

Most of the philosophical tools and literature I will use in this chapter originated from 

philosophical interest in the biomedical and social sciences. In section 1.4, I already 
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explained why this is not that strange: policy, medicine and technology all direct our 

focus to use. Technology is furthermore used as a metaphor in many debates in the 

philosophy of biology and biomedical sciences (e.g. the concept of a function, the idea of 

a mechanism,…). Clearly, the machine metaphor is illuminating – it has been around for 

many centuries in some form5. But we must be careful not to idealise technology too 

much. Cartwright and Hardie also write: 

It would be nice if social policy were like a battery. Everything necessary for it to 

create a current is locked inside the casing; the environment it is to be put to work 

in is both structured and delimited, like a flashlight or a radio; and there are clear 

instructions for how it is to be implemented—“Put the end marked + here.” But for 

social policies, the requisite scientific and technological knowledge and know –  

how is often missing. (2012, pp.91-92) 

There is a lot of truth to this quote. Yet as will become clear from the examples in section 

4.2, making an artefact like a battery work is not as easy as Cartwright and Hardie 

suggest – let alone adapting it in a successful way. 

4.1 Generalisation in failure analysis 

4.1.1 Generalisation problems 

The previous chapter considered physical laws to be the main source of general 

knowledge. However, in contexts like failure analysis, engineers are explicitly looking for 

causal knowledge that they can use for specific goals. For this reason, they often resort 

to other sources of collecting general knowledge, viz. knowledge generalisation 

techniques like induction or extrapolation. In order to frame the current chapter, I will 

briefly present an overview of several generalisation problems and related philosophical 

concepts. Taking a closer look at these debates will show that they all share a common 

concern: the question of knowledge generalisation. More importantly, these debates 

show that there is no clear consensus about what this question entails or how to solve it. 

 

                                                     
5 See part 1 of (The Routledge Handbook of Mechanisms and Mechanical Philosophy  2017). 
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This overview will allow me to develop the discussion of failure analysis more efficiently 

and show exactly what studying failure cases can teach us.  

I will start with induction. The problem of induction has a long-standing history in 

philosophy. Hume is generally considered the first to draw attention to it:  

As to past Experience, it can be allowed to give direct and certain information of 

those precise objects only […] which fell under its cognizance: but why this 

experience should be extended to future times, and to other objects, which for 

aught we know, may be only in appearance similar; this is the main question. 

(2007, part 4, §29) 

Russell names it as one of the major problems in philosophy: 

It must be known to us that the existence of some one sort of thing, A, is a sign of 

the existence of some other sort of thing, B, either at the same time as A or at 

some earlier or later time […]. The question we have now to consider is whether 

such an extension is possible, and if so, how it is effected. (1912, p.39) 

These concerns have not gone unstudied. Philosophers like John Stuart Mill (1843), 

Charles Peirce (1883) and Rudolf Carnap (1950) paid significant philosophical attention to 

the problem of induction. Gradually, the problem took on different forms, like the 

paradox of the ravens (Hempel 1945) and Nelson Goodman’s new riddle of induction 

(1983). The main question, however, still underlies all these on-going debates: the 

definition of induction is not agreed upon (Vickers 2016), nor has the problem been 

solved to everyone’s satisfaction (Norton 2003). But regardless of the specific definition 

of (the problem of) induction, these enquiries all engage with the question of how we 

can justifiably generalise knowledge of observed events to unobserved ones. 

Another generalisation problem can be found in philosophy of the biomedical and 

social sciences, specifically in debates regarding extrapolation. Steel (2007) introduces 

the problem of extrapolation as follows: 

Imagine that a chemical […] has been found to be carcinogenic if administered […] 

in rats, and the question is whether it is also a carcinogen in humans. This is an 

example of extrapolation: given some knowledge of the causal relationship 

between X and Y in a base population, we want to infer something about the […] 

target population. (p.78) 

Where the problem of induction posed the question in terms of observed and 

unobserved events, the extrapolation problem focuses on how to generalise knowledge 
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between different populations. Illari and Russo (2014, p.48) argue that the widely 

discussed extrapolation6 problem is important for both observational and experimental 

studies, two common methods of gathering data in the biomedical sciences. I introduced 

these methods in chapter 3 (see section 3.2.3). Recall that observational studies refers to 

methods where we record observations (Illari and Russo 2014, p.10), while in 

experimental studies, data are produced “within the experimental setting by 

manipulating some factors while holding others fixed” (Illari and Russo 2014, p.10).  

I do not claim to have presented a complete overview of philosophical literature 

regarding induction and extrapolation. Yet I hope to have shown that generalisation of 

knowledge is a significant problem that underlies multiple debates, including debates on 

induction and extrapolation. 

4.1.2 The design-perspective 

In this chapter, I will use cases and reasoning from failure analysis to draw attention to 

another way in which the generalisation problem arises: when we are focusing on 

creating new things, like artefacts. Both induction and extrapolation deal with events or 

populations that already exist. To be more precise, induction and extrapolation focus on 

whether our current knowledge generalises to already existing things that we have not 

studied7. These are different questions than whether our current knowledge can help us 

to create something new. As Von Karman famously pointed out, creating new things is 

central to engineering: 

Scientists discover the world that exists; engineers create the world that never 

was. (Bucciarelli 2003, p.1)8 

 

                                                     
6 Illari and Russo also connect it to another topic, namely the problem of external validity (2014, p.18). External 

validity has been discussed by many philosophers, both formally and informally see e.g. Judea Pearl and Elias 

Bareinboim (2014), Maria Jimenez-Buedo and Luis Miller (2009), Francesco Guala (2005). It bears striking 

resemblance to the problem of extrapolation, yet some authors claim it is distinctive (Illari and Russo 2014, 

p.18). However, this does not matter for the current point.  
7 Naturally, these already existing things can evolve, which gives rise to change. Yet this is not the focus of the 

matter. This evolution is outside our control. I wish to focus on our creation of new things.  
8 This quote focuses on the distinction between science and engineering. Recall that Mieke Boon has on several 

occasions (2011a, 2011b) stressed that we also need to acknowledge engineering science as a scientific 

practice (see 1.5.8). She contrasts this with engineering practice, which is arguably also the practice Von 

Karman had in mind. 
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As I explained in 1.5.3, this is done by designing. It should be clear from that section that 

there is no agreement about the definition of designing. However, what I want to draw 

focus to here, is the synthetic nature, which underlies most definitions. As a 

characterisation, recall the characterisation given by Dorst and Van Overveld:  

Design is a human activity in which we create plans for the creation of artifacts that 

aim to have value for a prospective user of the artifact, to assist the user in his/her 

effort to attain certain goals. (2009, p. 456) 

In order to create a functioning artefact that performs a certain function, engineers need 

to combine components in a specific way. As I explained, this is not an easy task and 

often involves failures and setbacks (see 1.5.3 – 1.5.5). In the context of failure analysis, 

engineers aim to incorporate the knowledge gained from analysing failed artefacts, into 

the synthetic activity of designing new artefacts or redesigning old ones. This synthetic 

activity arguably has “distinctive features of its own” (Kroes 2009, p.406). 

The scientific questions that form the core of literature on induction and 

extrapolation, do not straightforwardly have this distinctive synthetic side. This results in 

differences: because we synthesise artefacts, we know the designs – we built them – and 

therefore have more control. Because of their artificial nature, we are faced with less 

ethical concerns than when we are dealing with organisms. Literature on induction and 

extrapolation mainly surround scientific questions in fields where we hit more cognitive 

(we do not have as much knowledge of the organisation of an organism as we have of a 

human-designed artefact) and ethical limitations (witness the ethical discussions on 

genetic manipulation or genetic choice). So when focusing on (designing) artefacts, new 

questions can rise. One of them is how knowledge from known objects guides us in 

synthesising new ones. Though the traditional problems of induction and extrapolation 

hold in failure analysis as well, I want to focus on design: on how we create something 

new using knowledge of current things. This is what I will refer to as the design-

perspective. 

My focus on design is informed by the philosophy of technology, but what I want to 

achieve with this focus is different. In general, philosophy of technology does not deal 

with questions regarding knowledge generalisation or what knowledge is needed to 

make designs possible. As I explained in 1.5.3, philosophers of technology are mainly 

interested in the practice of designing, whether it is rational, how goals are reconciled 

etc. Regardless, since I use insights of both disciplines, I hope my analysis can bring the 

philosophy of technology and the philosophy of science closer together.  
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4.1.3 Failure analysis as a generalisation problem 

Failure analysts proceed from causal claims regarding a specific failed artefact to causal 

claims regarding other types of artefacts and artefacts-to-be-developed. For their 

investigation, they benefit from the knowledge provided by designs of the artefact that 

failed and arrays of lab tests. The resulting causal claims have the form of 

recommendations and are aimed at altering the processes of use of existing artefacts, or 

designing new, non-existing artefacts. Unfortunately, contrary to the manuals I described 

in chapter 2, analysts are often unspecific regarding the domain of their claims – viz. for 

which artefacts their recommendations hold. Yet, the objects that form the domain of 

their conclusion, determine what evidence the analysts need to put forward to warrant 

their conclusion. Whether they know the designs of the intended artefacts, whether they 

know the context they will be placed in etc. determines what evidence is required. For 

example, if analysts use one artefact failure to formulate conclusions or 

recommendations regarding all artefacts of a certain class (e.g. all spray driers), they will 

need other evidence to warrant their claims than if their conclusion only applies to other 

artefacts of the same type (e.g. other spray driers constructed according to the same 

design). Given the differences that can pertain within a certain class of artefacts (they 

can have different designs, other materials, different functioning, etc.), warranting a 

claim regarding the entire class is not an easy task. This is not merely a theoretical 

concern. As will become clear in section 4.2, we can isolate inferences from failure 

analysts that differ with regard to base and target and therefore require different types 

of evidence. Yet all the recommendations give us guidance regarding what to do, what to 

change. Taking the design-perspective, I focus on what recommendations tell us 

regarding how to combine specific components to create a larger whole with an 

envisioned function.9 Given that one of the analyst’s aims is to specify design 

recommendations, failure cases prove significantly insightful to study the way in which 

current knowledge guides the design of new artefacts.  

 

                                                     
9 Recommendations are formulated as normative claims. Nevertheless, like was the case in chapter 2, for these 

normative claims to be warranted, they need to be based on the right kind of knowledge.  
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4.2 Three examples of failure analysis as knowledge 

generalisation 

In this section, I will present three examples of failure analysis and flesh out three 

distinct types of inferences. This will help illustrate what studying these generalisations 

can teach us regarding the way physical causal knowledge is generalised to help achieve 

epistemic goals. 

4.2.1 The pipe 

Talesnick and Baker in “Failure of a flexible pipe with a concrete liner” (2001) present an 

analysis of a steel sewage pipe with a concrete liner, buried in a clay soil profile, located 

in Israel. The pipeline never got used because of severe cracking of the inner concrete 

liner. In their paper the authors want to 

[…] determine the cause(s) of damage and the areas responsible. […]. (Talesnick 

and Baker 2001, p.33) 

Talesnick and Baker describe two types of tests: laboratory tests and field tests. In the 

laboratory test conducted on parts of the pipe, they determined the stiffness, and the 

vertical deflection or strain, which “induces cracking in the inner pipe line and collapse 

loads” (Talesnick and Baker 2001, p.34). It was found that  

Severe cracking of the inner liner wall (defined as a crack opening of 0.3 mm […]) 

occurred at a vertical diametric strain of approximately 1.2%. (Talesnick and Baker 

2001, p.34) 

This was compared with the measurements made in the field: 

The vast majority of field measured pipe deflections […] exceed the 1.2% limit 

found to induce severe liner cracking of pipe sections in the laboratory. As a result 

the extensive damage observed in the internal pipe liner in the field […] is not 

surprising. (Talesnick and Baker 2001, p.37) 

They furthermore argue that  

1. Most steel pipes are considered to be flexible and designed accordingly 

2. A pragmatic literature based criterion for flexible pipes is a pipe that can 

withstand a vertical deflection of 2% without damage 
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3. Though the pipe in question was able to withstand this, the inner liner was 

not, since it showed cracks at a lower vertical deflection. (Talesnick and 

Baker 2001, p.37) 

One of their conclusions reads: 

‘‘Flexible” pipes with rigid liners must be designed with care. Flexible pipe design 

methodologies may be applicable, [provided that] […], the deformation limitations 

of the liner [are] […] carefully considered. (Talesnick and Baker 2001, pp.42-43) 

This is how the reasoning process was laid out in the paper. Let me first attempt to 

present it in a more logical sequence that draws focus to the different research stages. 

They say that most steel pipes are considered to be flexible. This entails that they should 

be able to withstand a vertical strain of 2%10. This seems based on engineering 

knowledge of the authors regarding the properties of steel pipes. They also state that the 

pipe in question is a borderline case, since it failed under circumstances that would not 

cause damage to a flexible pipe (2001, p.33). So their reasoning can be presented as 

follows: 

- We assume that flexible pipes have characteristics such that they do not 

experience damage (viz. retain functional and structural integrity) from 

strain less than 2%. [assumption] 

- Bending tests on pipe segments in the lab show that the inner liner cracked 

at a vertical strain of 1,2%. Higher deformation can cause cracking. [tests in 

the lab] 

- We measured deformation of more than 1,2% in pipe segments in the field. 

This deformation is significant when analysing the cracking. [measurement 

in the field] 

- The cracking happened with deformation within the norm for flexible pipes. 

So even if the pipe itself was correctly designed according to flexible pipe 

criteria, the inner liner did not perform adequately under the specific 

circumstances. [inference] 

- If we want to use flexible pipe design methodologies in pipes with inner 

liners, we have to take the strain limitations of the liner into consideration 

(see quote above). [recommendation/conclusion] 

 

                                                     
10 For more information regarding stress and strain, see the appendix. 
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I represent the base (the artefact which was the subject of the failure analysis) and 

target (the artefacts they mention in their recommendations) of the inference: 

Base: one pipe 

Target: flexible pipes with rigid liners 

4.2.2 The spray drier 

In “Creep11 failure of a spray drier”, Carter (2001) presents a failure analysis of a spray 

drier at the Western Platinum Mine, in Rustenburg, South Africa. A spray drier is an 

artefact which “dries a finely divided droplet by direct contact with the drying medium 

(usually air)” in a short retention time (Considine and Kulik 2008, p.5130). The failed 

spray drier consisted of a cylindrical shell, with an annular gas chamber encircling the 

base of the shell. Four columns supported the shell. The spray drier suddenly collapsed 

after 20 years of service while operating normally12 (Carter 2001, p.73). The aim of 

Carter’s investigation 

[…] was to explain the failure and to make recommendations to ensure that it was 

not repeated on the two remaining driers […]. (Carter 2001, p.73) 

The investigation found no significant corrosion, the material was found to be accurately 

chosen without deterioration (Carter 2001, p.73). Neither were there signs of fatigue, 

fracture or creep damage. However, there was 

[…] clear evidence of a localised buckling deformation in columns and shells in the 

region of the welded column-shell joint. (Carter 2001, p.74) 

Carter’s failure analysis methodology consists of comparing “stresses at critical points in 

the structure with allowable and failure stresses” (Carter 2001, p.75). Carter inferred the 

allowable and failure stresses from the design code for pressure vessels. He determines 

the influence of creep conditions on the maximum stress in the structure, both of the 

column-shell connection and the gas duct. Carter specifies that these calculations are 

estimates, yet that they “clearly indicate the nature of the failure” (2001, p.77). He 

calculates that the maximum stress of the structure under creep conditions is 

 

                                                     
11 See the appendix for information regarding creep damage. 
12 It is not clear what the author means with “operating normally”. Arguably, this is a judgement based on his 

background engineering knowledge. 
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significantly above the allowable stress and the failure stress. Based on these findings, he 

concludes that  

The collapse of the spray drier after 20 years in service is an unusual example of a 

low stress, high temperature compression creep failure. (Carter 2001, p.77) 

Carter measured temperatures in the structure around 300°C, but argues that these are 

not correct by referring to the design of the spray drier. So Carter argued that the 

estimated temperature should be considered above 480°C. Even though creep actually 

redistributes stresses (Carter 2001, p.76) and thus decreases the maximum stress on the 

structure (compared to the stress values under elastic conditions at 500°C), the resulting 

stresses were still significantly above the failure stress. According to Carter, this explains 

the absence of clear creep rupture, and the collapse of the spray drier.  

Summarizing the reasoning that led him to this conclusion: 

- He assumes that the temperatures inside the shell are higher than 

measured, based on the working and design of the spray drier. So creep 

conditions might apply, contrary to what was expected based on the 

measurements. [assumption] 

- Creep distributes stresses, so that the actual stress is less than the 

calculated elastic stress. For a high creep exponent, the maximum value of 

stress is about 67% of the maximum elastic stress. [background engineering 

knowledge] 

- In the gas duct, the stress concentration factor under elastic circumstances 

is 8.9, so this will be redistributed by creep circumstances to 67% of 8.9: 5.9 

or, rounding up, 6. [measurement + calculation] 

- The stress concentration factor of 6 in creep conditions generates a stress 

value of 22 MPa. The allowed stress value is 13 MPa, failure arises at 17 

MPa. [calculation] 

- Since the generated stress value was significantly above the allowed values, 

this resulted in fractures and collapse of the spray drier. 

[inference/conclusion] 

Furthermore, he makes the recommendation of removing the “lagging and cladding in 

the region of the annular gas duct and the column-shell joints”, in order to “avoid a 

similar fate on other more recent (and stronger) spray driers” (Carter 2001, p.77). This 

refers to the drier, which was “lagged and clad from top to bottom to conserve energy” 

(Carter 2001, p.73). The established isolation of the drier provides support for his 

hypothesis regarding the temperature measurements. With this much isolation, he 

argues that the temperature was probably higher than the value he measured. Similar to 
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example 1, Carter does not regard the failure of this spray drier as an exception: he 

makes recommendations regarding other spray driers. He considers his knowledge about 

what led to the collapse of the analysed spray drier applicable to other spray driers. Yet 

Carter goes even further in his conclusions. He argues that the purported causal claim 

also holds for “more recent and stronger” spray driers. The finding that the other spray 

driers were also lagged and cladded from top to bottom, functions as evidence for this 

conclusion. The inference I want to draw attention to can be represented in the 

following way: 

 Base: 1 spray drier 

 Target: 2 newer and stronger spray driers with lagging in the same context 

4.2.3 The raise boring machine 

James describes the failure of a raise boring machine in his article entitled “Catastrophic 

failure of a raise boring machine during underground reaming operations” (2001). Raise 

boring is a technique found in underground mining operations, used to produce 

“interconnecting vertical […] channels (raises) between underground levels in mines” 

(James 2001, p.159). The process can be characterised by two operations: drilling a pilot 

hole and back reaming: 

During the pilot hole drilling cycle, drill rods connect the raise boring machine with 

a bottom-hole assembly consisting of ribbed stabilizers, roller reamer and pilot bit. 

[…] After the pilot hole has been completed, a raise boring head is used to back 

ream the required raise between the underground levels. (James 2001, p.159) 

Back reaming is a technique used to “increase the diameter from that initially drilled” 

(Slaughter, Cariveau, and Shotton 2006, p.12). So the raise boring machine first drills a 

smaller channel connecting the two underground levels, after which a reaming head is 

placed on the machine (on the lower level), which is then pulled back up. The reaming 

head has a broader diameter than the initial drilled channel and rock cutting abilities, so 

the pulling up of this head creates a hole of increased diameter compared to the original 

one. 

In his article, James describes the failure of such a machine after 119m of reaming, 

due to the breaking of all 32 bolts on the raise borer drive (2001, p.160). He describes 

the site visit, inspection of the fractured bolts and the metallurgic examination consisting 

of chemical analysis, scanning electron microscopy, optical microscopy and hardness 

testing. Based on these investigations, he argues that: 
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(1) The catastrophic failure of the raise boring machine is associated with the 

fracture of the 32 drive head bolts. Thirty of the bolts have failed as a result of 

corrosion-induced fatigue. 

(2) The bolts have failed due to a combination of high cyclic stressing induced by 

the operation of the equipment at 13% above maximum thrust and corrosion from 

the water in the flushing system. (James 2001, p.168) 

The two other bolts had failed by 100% tensile overload (James 2001, p.163). He 

furthermore makes several recommendations: 

(1) To prevent corrosion of the bolts the following measures are recommended: 

(a) An oil-based red lead primer should be used to create a barrier at the 

cover-body connection. 

(b) Mains water should be used at all times for flushing. 

(c) Equipment should not be stored underground for any length of time.  

(2) Excessive thrust pressures during operation should be avoided, i.e. the 

equipment should be used within the limits for which it was designed. (James 

2001, p.168) 

Contrary to the example above, there is no mention of the specific artefacts these 

recommendations apply for. His claims appear to include more than a machine nearby. 

To assess his recommendations further, we need other findings which he mentions 

throughout the paper: 

1. The “centre-bolt” torque was found to be well below the normal figure 

during dismantling. This could have had the effect of allowing more 

vertical movement of the drive head cover. (James 2001, p.166) 

2. Since the bolts show signs of pitting corrosion, the anti-seize compound 

with which they are coated “does not afford protection to the surface of 

the bolts”. (James 2001, p.167) 

I summarise his reasoning: 

- Tests show that the failure was due to fatigue. [tests + background 

engineering knowledge] 

- All fatigue areas of the 30 bolts showed signs of pitting – associated with 

corrosion. [tests] 

- The anti-seize compound with which the bolts were coated thus clearly did 

not prevent corrosion. [inference] 

- The thrust during operating was 13% above maximum, putting greater 

stress on the weakened bolts. [measurement + inference] 
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The inference can be represented in this way: 

 Base: one failure 

 Target: all (future) bolts in all possible circumstances 

Summarizing the three inferences I fleshed out: 

(1) this artefact (flexible pipe with rigid liner) to other artefacts of the same 

type 

(2) this artefact (spray drier) to other artefacts with known differences 

(newer and stronger) 

(3) this artefact (raise boring machine) to other artefacts not yet in 

existence 

All of these inferences are related to induction and extrapolation (and external validity), 

but as I mentioned, they differ in one important aspect: they prescribe, among others, 

alterations to the design and use of artefacts.  

More specifically, the first looks like induction specified above, because base and 

target are of the same type. Yet the result of the inductive step is a design 

recommendation (how to choose the liner), instead of a general claim about the entire 

pipe. This is a significant difference with induction as specified above. So this looks like 

induction, but the focus on redesign differentiates it from the generalisations discussed 

in section 4.1.1. The result is a prescribed action. The second inference is better 

characterised as a sort of extrapolation, because of the known differences between base 

and target. Yet the conclusion is again focused on redesign of the target, something that 

is not represented in the literature on extrapolation. Note that the differences concern 

properties of the target. They can also take the form of usage or context. This is not 

surprising given the importance of contexts for artefact behaviour I discussed in 1.5.7. In 

this case, the context is explicitly stable: the two newer spray driers are located on the 

same site as the failed one. This is an important part of information contained in the 

inference and needs to be represented in our analysis. A similar point holds for similar 

maintenance practices. The third inference is similar to the second, only this time, there 

is no context specified in the recommendations. The inference apparently does not 

depend on the context the artefacts are placed in. Moreover, it does not merely apply to 

artefacts that are at the time of the analysis in the vicinity of the analysed artefact, but 

also to artefacts-to-be-designed. This might seem significantly different from the other 

examples, but is arguably related.  

These inferences are thus arguably slightly different generalisations and all involve 

design recommendations. In the remainder of this chapter, I will attempt to get a more 
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profound understanding of whether, why and when they are warranted. These are 

important questions, since implementing changes in designs is not that straightforward: 

The complexity of many engineered artefacts, together with their interactions with 

a changing environment, make working out the effects of many design changes 

either analytically intractable or analytically very difficult [Pavitt, 1984; Nightingale, 

2004]. (Nightingale 2009, p.365)13 

The influence of rather ‘small’ changes, like whether the centre bolt is torqued to the 

normal figure (see example 3) can be enormous. Putting together different components 

in such a way that they combine to realise the envisioned behaviour, is a complex and 

open-ended process (Dorst and van Overveld 2009, p.456). Making sure that an artefact 

functions as envisioned therefore often involves “learning, experimentation, testing, and 

numerous modification and feed-back loops” (Nightingale 2009, p.365). One of the 

learning occasions is the failure of artefacts. Understanding how knowledge from other, 

failed artefacts can be implemented in the fickle balance that is created in designing new 

artefacts, will require different tools than understanding generalisation in scientific 

contexts that do not focus on this design-perspective. Note that the examples also show 

that the balance is indeed more fickle than suggested by Cartwright and Hardie. Not only 

can small changes have big consequences, artefacts can also fail after years of 

functioning normally, like the spray drier in example 2. So it can appear that everything is 

present for correct and stable functioning, yet after time, in certain contexts, it turns out 

that something was missed. Knowing how and why artefact failures occurred, when they 

can occur again and how to repair artefacts and alter designs to prevent failures, is 

therefore also not a straightforward matter.  

 

                                                     
13 In that sense, it is not surprising that the design-perspective has not been excessively studied in the 

generalisation literature. Many philosophers studying the generalisation problems mentioned in section 4.1.1, 

focus on the biomedical and social sciences. Because of ethical limitations and cognitive constraints I 

mentioned already, successfully changing the functioning of an organism is even more difficult than changing 

the functioning of an artefact. 
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4.3 Further reflections on the examples 

I have showed that these recommendations are not unproblematic. More specifically, 

they only hold if certain stable causal relations hold. For example, the recommendation  

An oil-based red lead primer should be used to create a barrier at the cover-

body connection for all artefacts of type X. 

only holds if there is some kind of stability in causal factors across different artefacts and 

contexts: 

For all artefacts of type X, an oil-based red lead primer is a negative causal 

factor for bolt breakage. 

Intuitively, this comes down to saying that oil-based red lead primers can (and 

sometimes do) prevent bolt breakage. The term ‘causal factor’ refers to Giere (see 

chapter 2). Because of the complexity of the examples in this chapter, and because of my 

focus on knowledge generalisation, I will need other philosophical tools than the ones 

from chapter 2 to represent the examples. I will explain the tools that I will use in section 

4.4. For now, it is important to see that these causal factors need to be stable in some 

sense, if they can ever be the base for generalisations. Otherwise, we can never safely 

assume that they will hold in other situations. This is crucial to understand my case 

studies, since formulating recommendations from one failure is, as mentioned in the 

introduction, a type of knowledge generalisation. From the overview in section 4.1.1, it is 

clear that knowledge generalisation is not without problems. This is also the case in 

failure analysis. The analysts need to provide reasons why their generalisation is 

warranted. They also need to provide arguments for the generality of their conclusion: 

the artefacts that they consider part of the domain of the claim determine its validity. To 

explain this, I adapt example 3. Suppose that James based his analysis on multiple 

failures of raise boring machines that have the same design, call this type T1. James then 

formulates the same recommendation as in the original article, namely  

 (a) An oil-based red lead primer should be used to create a barrier at the cover-

body connection. (James 2001, p.168) 

Suppose that there are raise boring machines with stainless steel bolts (type T2). These 

bolts are not susceptible to corrosion in the same contexts as other bolts, so the causal 

claim does not hold for these machines in similar contexts and correspondingly, the 

recommendation would be irrelevant. This also shows how we can intuitively understand 

the stability mentioned above: as related to capacities of (parts of) artefacts in certain 
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contexts. The stainless steel bolts (in the same context) do not have the increased 

capacity to corrode. The pipe in example 1 has an increased capacity to bend, while not 

all other pipes do. I will present elaborate and theoretical underpinnings of capacities in 

section 4.4. Here, I want to reflect on the need for justification for generalisations, and 

the required reference to the implied domain.  

 Steel’s discussion (2007) of extrapolation in the biomedical sciences can deepen our 

understanding of these challenges. According to him, a theory of extrapolation has to 

solve two basic challenges: the extrapolator’s circle and the problem of causally relevant 

differences between model and target population (2007, p.4). The first  

[…] arises from the fact that extrapolation is worthwhile only when there are 

important limitations on what one can learn about the target by studying it 

directly. The challenge, then, is to explain how the suitability of the model as a 

basis for extrapolation can be established given only limited, partial information 

about the target. (Steel 2007, p.4) 

The problem of causally relevant differences, on the other hand, 

[…] is a direct consequence of the heterogeneity of populations studied in biology 

and social science. Because of this heterogeneity, it is inevitable that there will be 

causally relevant differences between the model and the target population. Thus, 

an adequate account of extrapolation must explain how it can be possible to 

extrapolate from model to target even when some causally relevant differences 

are present. (Steel 2007, p.4) 

Based on the discussion of my cases, I argue that both challenges are also present in 

failure analysis. Analysts need to provide reasons why (1) base and target are similar and 

(2) account for relevant differences between base and target. Though Steel focuses on 

heterogeneity in the social and biomedical sciences, causally relevant differences 

between artefacts are as problematic – witness the spray drier with stainless steel bolts. 

Recall the previous chapter, where I discussed physical setups as ways to specify the 

domain of causal claims. So it is important to specify the domain of a causal claim in 

order to evaluate it. Especially when making design recommendations (see section 

4.1.2). To argue that one failure is relevant for other (instances of the same type of) 

artefacts, analysts thus need to provide evidence. Unfortunately, none of these articles 

straightforwardly do this. Yet, the recommendations are successful (or so the articles 

mention). It therefore seems that the inferences are warranted, but the justification is 

not made explicit or is not reflected upon. Bucciarelli mentions a related observation: 
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Epistemological questions about the source and status of engineering knowledge 

rarely draw [the engineers’] attention. […] If their productions function in accord 

with their designs, they consider their knowledge justified and true. (2003, p.1) 

In the following sections, I will attempt to make the analysts’ reasoning and 

presuppositions explicit. This will allow me to reflect more profoundly on the nature of 

evidence their generalisations need. For this, I will use Steel’s framework (2007) as a 

starting point. The first step towards this reflection is reframing the recommendations as 

causal claims. 

4.4 Philosophical tools for investigation: making things 

explicit 

4.4.1 Capacities, features and MOD 

To reframe the recommendations as causal claims, I first need a more precise definition 

of the notions ‘causal factor’ mentioned above. It is inspired by Giere’s comparative 

model of causation (see also chapter 2), but I will connect it to Cartwright’s notion of 

capacities, which is better suited to fit my focus on knowledge generalisation. As noted 

in section 4.3, causal factors need to be stable in some sense to allow for generalisation. 

I represent this stability via capacities: 

All bolts have the capacity to break in some contexts. 

Corroded bolts have an increased capacity to break. 

Therefore corrosion is a causal factor in bolt breaking. 

Pointing to causal factors gives engineers a way to indicate capacities, which in turn 

allow for generalisation. Cartwright illustrates what she means by ‘capacity’ via the claim 

that aspirins relieve headaches. According to her, this claim 

[…] says that aspirins have the capacity to relieve headaches, a relatively enduring 

and stable capacity that they carry with them from situation to situation; a capacity 

which may if circumstances are right reveal itself by producing a regularity, but 

which is just as surely seen in one good single case. The best sign that aspirins can 

relieve headaches is that on occasion some of them do. (1994, p.3) 
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I use Cartwright’s notion of capacities for several reasons. One, this notion is inherently 

connected to probabilistic causal relations (as is causal factor).  

The point is that, for each capacity the cause may have, there is a population in 

which this capacity will be revealed through the probabilities. (1994, p.121) 

Second, capacities are context-dependent; local (Illari and Williamson 2012, p.153). 

Whether and how a capacity actually manifests, depends on the situation:  

[…] capacities […] can be assembled and reassembled in different nomological 

machines, unending in their variety, to give rise to different laws. (Cartwright 1999, 

p.52) 

Third, the notion of capacity is central to Cartwright’s concept of nomological machine: 

[…] a fixed (enough) arrangement of components, or factors, with stable (enough) 

capacities that in the right sort of stable (enough) environment will, with repeated 

operation, give rise to the kind of regular behaviour that we represent in our 

scientific laws. (Cartwright 1999, p.50) 

On Cartwright’s account, nomological machines produce regular behaviour and 

correspondingly, laws (of nature) only hold “relative to the successful repeated 

operation of a nomological machine” (1999, p.50). Arguably, all technical artefacts are 

nomological machines in the sense that they give rise to regular behaviour when 

functioning properly. Using Cartwright’s framework of capacities thus allows for a 

probabilistic, local notion of causal connection. This is an elegant and useful way to 

reformulate the recommendations from the failure analysis, though I will make some 

adaptations. 

One adaptation that I need is to reframe them such that the domain of the causal claims 

is clearly represented (see chapter 2 and the introduction). For the current purposes, we 

can do this by referring to types of artefacts.14  

For all artefacts of type X, c is a positive/negative causal factor for e. 

 

                                                     
14 Because I limit my analysis to artefacts, I can refer to types of artefacts to limit the domain. To expand this 

analysis to natural contexts as well, the notion of physical setup that I defined in chapter 2 can replace artefact 

types. This does not make a difference for my analysis, but adding it would add to the complexity of this 

chapter. I therefore chose to leave it to the reader. 
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Where c and e express a specific value of a relevant variable feature of (part of) the 

artefact, viz. the value that is thought to be important for the causal claim. I will get back 

to parts of artefacts later.  

 Consider example 1. Since Talesnick and Baker analyse only one artefact, their causal 

claim can be represented as follows: 

(EF1) For this pipe, deflection is a positive causal factor for cracking of the liner. 

To allow generalisation, (EF1) needs to correspond to: 

(EF1*)  The deflected pipe has increased capacity for cracking the liner, and it 

probably manifested for the studied pipe system.  

According to Talesnick and Baker, the capacity manifested because the liner cracked and 

this was at least partly due to the deflection of the pipe. These claims are token level 

causal claims, referring to one specific artefact. The main causal claims from examples 2 

and 3 (and the corresponding capacity claims) can be represented in a similar way. 

(EF2) For the Rustenburg spray drier, the lagging and cladding of the annular gas 

duct is a positive causal factor for collapse of the spray drier. 

(EF2*) A lagged and cladded annular gas duct has an increased capacity for collapse 

of the spray drier and it probably manifested for the Rustenburg spray drier. 

(EF3) For this raise boring machine, the corrosiveness of the flushing liquid is a 

positive causal factor for bolt breaking. 

(EF3*) Corrosive flushing liquid has increased capacity for corrosion, which increases 

the capacity for breaking the bolts and it probably manifested for this raise 

boring machine. 

These are the claims the failure analysts implicitly start from: claims regarding the 

artefact they investigated. Their recommendations can be represented by referring to 

types of artefacts: 

(EF1’)  Deflection of a pipe is a positive causal factor for cracking of the liner for all 

artefacts of type X. 

(EF2’)  The lagging and cladding of a gas duct is a positive causal factor for collapse of 

the spray drier for all (?) artefacts of type Y. 

(EF3’)  The corrosiveness of flushing liquid is a positive causal factor for breaking of 

the bolts for all artefacts of type Z. 

Analysts go from evidence to causal factor claims. Doing so assumes that by identifying 

these factors they succeed in identifying some capacity that is stable under certain 
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circumstances. Clearly, not all pipe liners crack. In order to adequately apply the 

recommendations (viz. everywhere they might be useful, not where they are thought not 

to be) we need a clear representation of the circumstances under which the capacity can 

actually manifest. Cartwright’s notion of nomological machine is, as such, not very 

helpful here. I agree that whether capacities manifest depends on the contexts and the 

specific machine they are embedded in, which is a big step towards the design-

perspective. Cartwright’s work has undoubtedly been incredibly important in studying 

design. But from Cartwright’s definition, it is not clear how we can discover which 

environment and arrangement of components is necessary for specific capacities to 

manifest in a certain way. Her account does not fully embrace the design-perspective 

described in section 4.1.2: the actual scientific practice of synthesising components into 

a functioning whole. So I need to specify how we can discover what the ‘right sort of 

stable environment’ and ‘arrangement of components’ are when designing new 

artefacts. Based on the examples and the discussion of artefacts I presented in 1.5, I 

argue that this requires specifying  

1. the type of artefact,  

2. the relevant causal factor, and  

3. the context. 

With ‘relevant causal factor’, I mean the causal factor which corresponds to the 

increased or decreased capacity. The first two are already present in the current 

formulation, but the context is not yet represented. Yet, as explained in 1.5, this is an 

important piece of information. In (re)design literature, this is reflected in the distinction 

between mode of deployment (MOD) and mechanistic organisation of the artefact 

(Chandrasekaran and Josephson 2014). The former represents the ways in which the 

artefact is used, the latter the way the artefact is constructed. For the task at hand, MOD 

can be understood in a broader sense and also represent certain important aspects of 

the environment of use (e.g. underground, in high humidity) instead of merely mode of 

use (e.g. operating at high thrust): 

For all artefacts of type X and MOD Y, c is a positive/negative causal factor 

for e. 

The way the analysts formulate their recommendations in example 2, seems to imply 

that they only hold for artefacts in the same context (e.g. a warm climate). In example 3, 

there is mention of operating at high thrusts, but not of requirements for context. MOD 

can capture both.  
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4.4.2 Failure mechanisms 

So it is clear that failure analysts have certain (un)specified beliefs regarding what factors 

are relevant to warrant the causal claim. The tools I have presented help to make them 

explicit. I can now turn to the question of whether and when they are justified. This 

comes down to determining how to characterise “type X” in the definition above. For 

this, I will present a two-fold mechanism-based procedure. 

Representing failure analysis in terms of failure mechanisms allows me to provide a 

fruitful answer to the challenges raised in section 4.3: the extrapolator’s circle and 

relevant differences relating to the design-perspective. Moreover, a mechanism-based 

framework fits well with my characterisation of causal claims in terms of capacities. 

Cartwright recently connected her notion of nomological machines to the mechanism 

literature (2009, p.7). According to her, we can understand mechanisms as nomological 

machines. In this way, her work on nomological machines functions as a connective 

between capacities (that allow me to express required stability demand) and 

mechanisms (that can form the basis of the generalisation procedure). Furthermore, the 

term “mechanism” is often used by failure analysts themselves. For the characterisation, 

I again use the general definition of a mechanism from Illari and Williamson (2012) that I 

described in chapter 3 : 

A mechanism for a phenomenon consists of entities and activities organized in 

such a way that they are responsible for the phenomenon. (p.123) 

The examples above all constitute a mechanism in this sense: they refer to entities (e.g. 

the pipe) and activities (corrode, break), organised in a specific way (the liner covers the 

inside of the pipe, the bolts hold the driver head in place) such that they are responsible 

for a specific phenomenon (the failure of the pipe, the collapse of the drier). I find the 

definition of activities as “producers of change” by Machamer, Darden & Craver (2000, 

p.3) most appropriate to capture the activities at hand. They are “usually designated by a 

verb or verb form” and “are constitutive of the transformations that yield new states of 

affairs or new products” (Machamer, Darden, and Craver 2000, p.4). Clearly, corroding 

and breaking satisfy this definition. MDC furthermore talk about “bottoming-out”: 

Different types of entities and activities are where a given field stops when 

constructing mechanisms. The explanation comes to an end, and description of 

lower-level mechanisms would be irrelevant to their interests. (Machamer, 

Darden, and Craver 2000, p.13) 

This is also the case for the verbs I identified as activities in failure analysis: the 

mechanism of generating stress or corroding is not spelled out in the analyses. These 
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activities arguably constitute the bottom level in failure analysis. The same holds for the 

entities involved in their reasoning: analysts do not provide explanations in terms of e.g. 

atoms or molecules. Finally, because Steel (2007) formulates a mechanism-based 

strategy to the challenges raised in section 4, I can use his work as a starting point. 

Characterizing failure analysis in terms of failure mechanisms is thus a promising choice. 

In the next section, I present Steel’s framework before adapting it to fit the failure 

analysis examples. 

4.4.3 Steel on comparative process tracing  

The strategy Steel develops is called comparative process tracing (CPT):  

First, learn the mechanism in the model organism, by means of process tracing or 

other experimental means. Second, compare stages of the mechanism in the 

model organism with that of the target organism in which the two are most likely 

to differ significantly. (Steel 2007, p.89) 

Steel distinguishes two steps to CPT. The first (process tracing or other experimental 

means) deals with mechanism discovery.15 In failure analysis this often has to do with 

background engineering knowledge, such as the properties of flexible pipes. I will not 

discuss this further.  

The second step is relevant for the current purposes: look for significant differences 

between model and target. If significant differences pertain, we cannot be sure that the 

behaviour of the model will be replicated in the behaviour of the target: 

Significant differences are those that would make a difference to whether the 

causal generalization to be extrapolated is true in the target. (Steel 2007, p.89) 

To check for such differences, we need “generalisations asserting that objects of 

specified types resemble one another in certain ways though not necessarily in others” 

(ibid.). Knowledge of these generalisations allows us to (1) check in a directed way 

whether the specific differences occur and correspondingly (2) judge whether the 

extrapolation is warranted or not. Steel developed his framework for the biomedical and 

social sciences, so he is looking for generalisations like 

 

                                                     
15 Process tracing refers to two strategies for discovering mechanisms: schema instantiation and forward 

chaining/backtracking. For more strategies of mechanism discovery, see (Darden 2017).  
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Features A, B, and C of carcinogenic mechanisms in rodents usually resemble those 

in humans, while features X, Y, and Z often differ significantly. (Steel 2007, p.89) 

Because of my focus on to-be-designed artefacts and design recommendations, Steel’s 

generalisations will not do the job. The comparisons Steel suggests are apt to capture 

biomedical examples, but are too unspecific to reflect the amount of control we have 

over, and knowledge we possess of, artefacts. Since we have more knowledge of and 

control over many artefacts (specifically the ones I am talking about), we can compare 

existing to non-existing artefacts in a more specified and detailed way than Steel allows 

in his framework: we can compare designs on specific points for example. But more 

importantly, because of the difficulties of adapting designs (see section 4.2), we need to 

be specific and warrant the applicability of recommendations thoroughly. Uninformed or 

unspecific implementation of recommendations can have unforeseen consequences; 

small changes can result in grave problems. Moreover, though organisms evolve too, 

Steel’s account is not focused on the required knowledge to actively change organisms16 

– he does not take the design-perspective. Yet this is exactly what I am interested in 

regarding artefacts. So like with Cartwright, Steel’s CPT provides a good basis to model 

generalisations to non-existing artefacts, but needs some changes and additions.  

In the following sections I will show how Steel’s framework can be adapted to fit 

failure analysis. I will first elaborate on what it means for artefacts to be similar, and 

present a mechanism-based account for that. I then proceed to adapt and apply Steel’s 

CPT to fit the failure analysis examples. 

4.5 A mechanism-based generalisation framework 

4.5.1 Similarity 

CPT depends on knowledge of likely similarities and dissimilarities between base (e.g. 

mice) and target (e.g. humans). But before the actual CPT can begin, we need to ensure 

that there is enough similarity between base and target to allow the base to function as 

 

                                                     
16 There is the question of genetic modification which I mentioned in section 4.1.2. I am not focused on this 

scientific practice, but I believe my account (and the adapted version of CPT that I present) has the potential to 

be useful in this context as well. I get back to this in the conclusion. 
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a suitable model for the target. In biomedical sciences, this comes down to knowledge of 

some mechanism e.g. the metabolism in mice and humans. I argue that, in failure 

analysis, this comes down to knowledge of whether the failed submechanism of the 

artefact is present. It refers to a submechanism17 which helps sustain the artefact and its 

functioning. In the example of the raise boring machine, the submechanism (M) that 

failed is the mechanism attaching the cover of the boring head to the body. It can be 

characterised as follows: 

Entities: connecting parts, cover, body 

Activities: connecting parts immobilise cover, cover is immobilised 

Organisation: cover is fastened onto body via connecting parts 

Every artefact containing a submechanism of this type is a candidate for the domain of 

the recommendation. Note that this implies that different mechanisms containing 

submechanisms of the same type can be part of the domain. Remembering the 

characterisation of causal claims underlying recommendations I discussed in the previous 

section, the relevant question we need to ask is: 

For all artefacts containing a submechanism of type M and operating in 

MOD Y, is c a positive/ negative causal factor for e?  

In the following section, I answer this question by adapting CPT. 

4.5.2 CFPT – Comparative failure process tracing 

I already discussed mechanistic evidence in the previous chapter. As I signalled there, 

mechanistic evidence can also be invoked to extrapolate causal knowledge. By adapting 

Steel’s CPT to fit the generalisations from my examples, I will shed light on how 

information about the existence of a mechanism provides evidence for generalising 

physical causal knowledge. Recall that Steel (2007) developed his framework mainly to 

deal with organisms. Compared to organisms, there is a crucial difference to analysis of 

artefacts: we know the designs – we built them. This allows for greater manipulability. 

Where Steel, for the biomedical examples, has to refer to “knowledge of likely 

dissimilarities”, we can be more specific with regard to the nature of these dissimilarities 

 

                                                     
17 Lindley Darden describes a similar process in relation to mechanism discovery, viz. modular subassembly 

(2017, p.261). 
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in failure analysis. I argue that for the failure mechanism18, we need 3 comparison points 

and a check for counteracting mechanisms. I will first discuss the 3 comparison points. 

They are  

(1) the types of parts,  

(2) the organisation, and 

(3) the activities and corresponding properties. 

The connection between activities and properties fits my definition of activities in the 

MDC sense:  

[…] activities determine what types of entities (and what properties of those 

entities) are capable of being the basis for […] acts. Put another way, entities 

having certain kinds of properties are necessary for the possibility of acting in 

certain specific ways, and certain kinds of activities are only possible when there 

are entities having certain kinds of properties... (Machamer, Darden, and Craver 

2000, p.6) 

It furthermore ties in with the capacities that ensure the stability of the causal factors. So 

this is a fruitful connection. Call the combination of our 3 comparison points and 

counteractive mechanism checking ‘Comparative Failure Process Tracing’ (CFPT). I will 

now illustrate these comparison points via the examples in order to facilitate arguing for 

each of them.  

Revisiting the pipe 

This is an interaction between instances of two types of parts: a pipe and a liner. They 

are organised in a specific way: the liner covers the inside of the pipe. They furthermore 

interact such that the pipe deflects and the liner responds by cracking. This interaction is 

connected to specific properties of the pipe and the liner: the pipe is flexible, the liner is 

rigid.19 There is no MOD specified – Talesnick and Baker argue that the pipe-liner 

interaction is due to a design problem. Representing these aspects in a standard format: 

 

                                                     
18 The similarity criterion referred to a submechanism partly responsible for artefact functioning. The failure 

mechanism is responsible for the failure phenomenon. The functioning and the failure of the artefact are two 

different phenomena, and thus call for different mechanisms. So the (sub)mechanisms that was (partly) 

responsible for the functioning of the artefact, is not the same mechanism that is responsible for the specific 

artefact failure. However, the mechanisms can overlap. 
19 There are threshold values, but this does not matter here. There is no reference to threshold values in the 

recommendations of the failure analysts. 
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Types of parts involved: pipe, liner 

Properties: pipe is flexible, liner is rigid 

Organisation: liner covers inside of pipe 

MOD: no usage or context specified 

In a similar way, consider the spray drier. 

Revisiting the spray drier 

Types of parts: cladded and lagged shell of a spray drier, gas duct 

Properties: the shell has a mass, the gas duct can break 

Organisation: the shell leans on the gas duct 

MOD: no specified usage, creep temperatures 

And finally, I revisit the raise boring machine. 

Revisiting the raise boring machine 

Types of parts involved: parts that immobilise cover of the drive head, 

flushing liquid 

Properties: flushing liquid is corrosive, immobilisation parts are susceptible 

to corrosion 

Organisation: flushing liquid engulfs immobilisation parts 

MOD: high thrust, no specified context 

With this in mind, I can argue that these points can house significant differences.  

The aspects of CFPT 

Types of parts: Suppose we know that a specific raise boring machine does not use 

cooling liquid (T3). The type of part (cooling liquid) is not represented. Therefore we 

cannot say that the failure mechanism will also take place in T3 raise boring machines. 

There is no entity to partake in the activity that is crucial to the failure mechanism (viz. 

corroding the bolts). In this case, there are even reasons to believe the mechanism will 

not be active. 

Properties: As MDC stated, entities partake in activities because of some properties - 

they need to have the capacity associated with the causal factor specified in the causal 

claim underlying recommendation. Even if all entities are present in the target artefact, 

they need to have the required properties to take part in the relevant activities. I already 

mentioned one example in section 4.3, when talking about a raise boring machine with 
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stainless steel bolts rather than bolts that can corrode. Another example would be a 

spray drier with an unbendable and unbreakable gas duct. It will not be susceptible to 

the same failure mechanism as is present in example 2, since the gas duct cannot break. 

The shell of the spray drier still has the capacity to break gas ducts, but it will not 

manifest because the gas duct does not have the capacity to break. If the liner of the 

pipe is not made of concrete, but instead of some other flexible material, it will not 

crack.20 

Organisation: This is fairly straightforward. If the organisation of the entities differs 

significantly, the failure mechanism will not be active. If the shell does not rest on the gas 

duct, it will not generate stress on the duct and the same mechanism can therefore not 

be said to hold. Other mechanisms can of course be present that generate the same 

effect, but I would argue that they need other recommendations.  

Summing up: So these three points of comparison describe features where significant 

differences can pertain. Note that MOD also remains an important point of comparison, 

but is arguably distinct from the other points, since they deal with aspects of the failure 

mechanism. If no dissimilarities are found, the failure mechanism can be active. 

Combining CFPT with the information above, we arrive at the following characterisation 

of the recommendations’ domain: 

For all artefacts that (1) contain a submechanism of type M, (2) are used in 

MOD Y and (3) pass the CFPT, c is a positive/negative causal factor for e. 

Let me briefly discuss the required check for counteracting mechanisms. If, for example, 

the shell of the spray drier had ventilation holes while being lagged and cladded, the 

failure mechanism might also not be active. Determining what counts as a counteracting 

mechanism again depends on a lot of background knowledge and applications of 

multiple scientific regularities. To illustrate, consider a submechanism that is placed in a 

new artefact, but behaves completely different there; in an unforeseen way. Based on 

the discussion in section 4.2, this is a real possibility. This means that there are causal 

relations that we have not taken into account. Specific parts, properties, features of the 

organisation or specific counteracting mechanisms have not been considered in 

designing the new artefact. This ‘failure’ of the submechanism teaches us about new 

causal relations, about mechanisms that we did not consider to be counteracting, about 

 

                                                     
20 The phrasing of example 1 confirms this point: they make explicit reference to flexible pipes with rigid liners, 

implying correctly that their claim does not necessarily hold for non-flexible pipes and/or non-rigid liners. 
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connections that we considered negligible but weren’t. Designing an artefact is 

attempting to make a nomological machine, a complex system which behaves as we 

want it to and not differently (most of the time). If something does not behave the way 

we envisioned, we missed something in the description or shielding. My framework 

allows the engineers to specify what happened and why, instead of just acknowledging 

something somewhere went wrong – which is arguably important to make warranted 

decisions and act in warranted ways. Yet this is no plea for infallible designs. I agree with 

Bucciarelli that 

[…]there will always be a potentially problematic state of affairs not considered, 

overlooked, unimagined, unconstructed, no matter how many safety procedures 

one invokes or how imaginative and free wheeling your brainstorming session 

about possible contexts of use may be. (2003, p.30)  

There can always be aspects that haven’t been taken into account. So looking for a 

procedure to provide a definitive answer regarding whether a specific failure will occur, 

is a futile undertaking. I have therefore not described an algorithm for determining the 

domain of failure recommendations, but rather presented a heuristic to determine 

whether recommendations are relevant. As I mentioned already, we often have specific, 

reliable and direct ways to check the features mentioned in the heuristic for specific 

artefacts: designs. Information regarding types of parts, properties of these parts, 

organisation and possible counteracting mechanisms are often mentioned there. So by 

representing the mechanisms that failure analysts identify as responsible for the failure 

phenomenon in a way that highlights these comparison points, engineers can actually 

learn from past failures in an easy way and thoroughly check whether the 

recommendations are relevant for their specific situations. In biomedical sciences, CPT 

informs us which model population will succeed most in capturing the mechanism in the 

target: 

Thus, comparative process tracing yielded the conclusion that the rat was a better 

model than the mouse. (Steel 2007, p.91) 

The target population in biomedicine is often humans. In failure analysis, on the 

contrary, what the model teaches us determines the target; the domain of the analyst’s 

recommendations.  

4.5.3 Relation to Cartwright and Steel 

Now that my framework is completely spelled out, I can further specify why Steel’s and 

Cartwright’s notions did not suffice to capture how we generalise to non-existing 
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artefacts, and correspondingly, how we can use failure of existing artefacts to create new 

things. As I mentioned in section 4.4.1, Cartwright’s capacities allow for a local, 

probabilistic notion of causality. This was very useful to characterise the causal claims 

from the failure analysis examples. Yet Cartwright’s notion of capacities (and the related 

notion of nomological machines) as such cannot characterise when inferences to non-

existing artefacts are warranted. Capacities and nomological machines are not specific 

enough for this goal. Consider the example of the aspirins: 

The best sign that aspirins can relieve headaches is that on occasion some of them 

do. (Cartwright 1994, p.3) 

Yet when we want to design a new type of aspirin, we need to know the specific 

circumstances under which they relieve headaches, so that we can ensure that the newly 

designed aspirin will also manifest this capacity. Clearly, we need knowledge of 

capacities for this, but that is not all, we need more. Besides the capacities, we also need 

specific information of the environment and arrangement of components needed to 

make the capacities manifest. Only then can engineers (or chemists) attempt to 

successfully synthesise components into a larger system with a specific function – which 

is what it means to design an artefact (recall sections 1.5 and 4.1.2). Cartwright’s 

discussion of nomological machines touches on this (e.g. (Cartwright 1999, p.64)), yet 

does not give us specific guidance as to how we should collect or present this 

information. My framework, on the other hand, gives insight into the nature of the 

knowledge required by the design-perspective and facilitates its presentation via a 

mechanism-based procedure. It is not surprising that Cartwright’s account cannot 

answer the questions I am concerned with. Her main goal is to refocus the debate on 

laws to capacities by arguing for “a patchwork” of laws, instead of a pyramid. She 

developed ‘nomological machines’ for this goal. As such, it is not sufficiently specific to 

guide the specific question of how we can develop new artefacts from failed ones. 

A similar point holds for Steel. When focusing on how we succeed in designing new 

things, we need significantly more information than merely reference to likely similarities 

and differences in the operating mechanisms. As I argued in section 4.5.2, we need 

certain specific things to stay the same: the parts, their relevant properties, the 

organisation, the mode of operation. It is of utmost important to specify these 

comparison points if we want to understand why failure analysts can make 

recommendations regarding objects-to-be-designed. Above that, we need a way to 

specify the role background engineering knowledge plays. So all of this ‘messiness’ 

cannot be captured by referring to similar mechanisms and likely differences. In creating 

new things, our control is greater, but the amount of required evidence to warrant 

generalisations, is as well.  
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Conclusion 

In this chapter I focused on evidence for generalising physical causal knowledge 

regarding artefacts and on the difficulties determining the domain of such more 

generalised knowledge. I argued for my third specific claim (III): contrary to what was the 

case in the previous chapters (and is often assumed throughout philosophy of physics, 

see 1.1.4 and 1.2.1), universal or fundamental laws are not the only source of general 

knowledge. We do not just attempt to fit phenomena under laws. In many domains, like 

failure analysis, local knowledge is generalised to fit other contexts and help achieve 

other goals. Focusing on contexts where this happens brings my analysis another step 

closer to scientific practice and, unsurprisingly, adds more complexity as well. Let me 

recapitulate what I showed. 

I started with an overview of several problems and related on-going debates regarding 

knowledge generalisation. Reflecting on engineering practice and specifically failure 

analysis, I have argued that philosophical discussions of such problems need to be 

expanded to cope with creation of new artefacts. In general, discourse on knowledge 

generalisation focuses on targets already in existence. I argued that certain reasoning 

(specifically relating to the designing of new artefacts) in scientific practices, including 

failure analysis, is not adequately characterised in this way. Yet there are several 

‘benefits’ to studying artefacts: we often have greater knowledge of artefacts, since we 

designed them. This is especially the case for the artefacts I focus on. This greater 

knowledge, combined with less ethical restraints due to their artificial nature, results in 

greater control over them. Because of that, new questions arise.  

One of them, the question I focused on, asks how we can use knowledge from existing 

artefacts to design new ones. In other words, how can knowledge of (failed) artefacts 

guide us in combining functional components into a lager system with an envisioned 

overall function? I called this the design-perspective on generalisation. Such 

generalisations are present in, among others, failure analysis. I have provided a first 

attempt to characterise these inferences and reflect on when they are justified. I 

illustrated this with case studies from failure analysis. I fleshed out three different types 

of inferences to new artefacts: one that looks like induction, one that looks like 

extrapolation and one that is neither. I proceeded to analyse these inferences by 

representing them in a standard format based on Cartwright’s notion of capacities. This 

allowed for probabilistic, local causal claims, while accounting for the stability required 

for generalisations.  

Because of my focus on design, I adapted Cartwright’s discussions on capacities and 

nomological machines. In order to successfully build nomological machines (what 
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artefacts are), we need more information than a general reference to components with 

stable capacities and a right sort of stable environment; we need to know what the 

components are and what the ‘right sort’ of environment is. We need qualitative 

information and a way to represent it. Only then can we create an artefact with the 

envisioned functional behaviour. I also argued that we needed to specify the mode of 

operation, to account for different types of use and contexts the artefact can be placed 

in. Combining these insights, I argued that engineers implicitly look for claims of the 

following format: 

For all artefacts of type X and MOD Y, c is a positive/negative causal factor 

for e. 

Recall that the mode of operation (MOD) also included the context in which the artefact 

was placed (see also 1.5.7). I then presented a heuristic to determine which artefacts 

belong to ‘type X’ – the domain for which the inference is valid and what evidence we 

need to determine this. For this, I used and adapted Steel’s mechanistic framework of 

warranted extrapolation. It hooked nicely onto the mechanistic representation of 

artefacts I presented. It depends on “likely similarities and dissimilarities of base and 

target”. Like with Cartwright, my focus in artefacts and design demanded adapting 

Steel’s framework. Because of the specific synthetic nature of designing and the 

complexity of changing designs, I argued that we need more specific information to 

determine when recommendations are warranted for artefacts-to-de-designed. 

Fortunately, we also have more knowledge of artefacts, so we can provide this 

information. Starting from these insights and the examples from failure analysis, I argued 

that we can develop a more specific description of what it means for artefacts to be 

similar or different in ways relevant to the inference. Regarding similarity, I argued that 

(new) artefacts are candidates for the domain of the inference if they contain the 

submechanism which failed in the original artefact. I represented this in the following 

way:  

For all artefacts containing a submechanism of type M and operating in 

MOD Y, is c a positive/ negative causal factor for e?  

I then developed a mechanistic (heuristic) procedure to check for relevant differences 

and thus determine (non-deterministically) a justified answer to this question. As 

mentioned, the artificial nature of ‘artefacts’ allowed for greater specificity than the 

cases Steel deals with. I argued that to determine whether the study’s failure can also 

manifest for a certain artefact, we need to check three points of comparison, viz. 

whether relevant parts are present, whether these parts have the appropriate properties 

and whether they are organised in a way that is similar. Finally, we need to check for 
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counteracting mechanisms. I called comparing the three aforementioned points and 

checking for counteracting mechanisms “Comparative Failure Process Tracing”: 

For all artefacts that (1) contain a submechanism of type M, (2) are used in 

MOD Y and (3) pass the CFPT, c is a positive/negative causal factor for e. 

I stressed that all of these steps require a great deal of background engineering 

knowledge and that this procedure should therefore not be seen as an algorithm, but 

merely as a tool for making the inferences explicit. In this way, I hope to have provided a 

first attempt to reflect on generalisations that deal with artefacts not yet into existence.  

The account presented in this chapter is not only relevant for philosophical reflections 

on physical causal knowledge. Because it draws attention to an underinvestigated aspect 

of knowledge generalisation (viz. when and how can we generalise in order to design 

new objects), my analysis can possibly provide inspiration for similar inferences in other 

innovation contexts – such as genetic manipulation and pharmacology. If medical 

practitioners want to engineer new drugs or chemical compounds based on knowledge 

we possess today e.g., they also need strategies to determine when and whether our 

current knowledge provides a base to warrant new designs. Moreover, by understanding 

the differences between technical scientific practices and social and biomedical ones, we 

can gain a more profound understanding of these sciences and their relations. My 

analysis is also relevant for engineers. For one, it allows failure analysts to present 

stronger arguments for their recommendations by making the required evidence explicit. 

My framework can even provide ways to make the analyst’s recommendations more 

precise. By using my framework analysts can tie their formulations more clearly to the 

evidence that other engineers can use to evaluate the whether the recommendations 

are relevant for the machine and context the engineers are interested in. This is related 

to the importance of packaging knowledge in a way that allows travel.21 The same can be 

said about representing information from failure analysis cases in such a way that 

engineers can reuse them in other contexts, to avoid failure or make design adjustments. 

Moreover, other engineers that wish to use the knowledge from failure case studies 

need lots of background knowledge of a specific artefact or failure sub-discipline to 

evaluate whether a case study is relevant for their situation. Above that, many sub-

disciplines in (design) engineering have their own methodologies and criteria (Dorst and 

van Overveld 2009, p.456). The procedure specified in this chapter, combined with the 

 

                                                     
21 See Sabina Leonelli’s work (for instance (2010)) for detailed discussions on the importance of packaging in 

the biomedical sciences. 
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tools to make the level of generality explicit, can aid analysts and designers in 

determining whether failure scenarios are applicable to their specific cases. 

However, the main merit of this chapter is the role it plays in this dissertation. The 

cases I discussed in this chapter come from the actual practice of failure analysis, and the 

difference in complexity with the cases from chapter 2 and 3 is noticeable. For one, the 

failure analysis cases involve causal knowledge regarding both explanation (the 

diagnosing of what happened in the analysed artefact) and intervention (formulating 

recommendations to prevent similar failures). This is due to their focus on applying 

causal knowledge to benefit technological development. So while I conceptually 

separated these two contexts of use in chapter 2 and 3, in reality explanation and 

intervention are often intertwined. A second important point is the added complexity 

that these cases show regarding generalising knowledge and determining the domain of 

this knowledge. Failure analysts actively look for causal knowledge that can be 

generalised to a certain broader group of artefacts. This shows that universal laws are 

not the only source of general knowledge, far from it. Correspondingly, this more general 

causal knowledge that analysts produce is often still rather local. And gathering this 

knowledge is all but easy, let alone determining the domain of this knowledge. While in 

the previous chapters, I took these aspects as rather stable and unproblematic, looking 

at scientific practice that collects and uses physical causal knowledge shows that they are 

very wonky and precarious. As such, the analysis in this chapter reinforces my main point 

that using physical causal knowledge is a topic worthy of philosophical investigation. And 

the more we study actual scientific practice, the more complicating factors arise and the 

more important it becomes to reflect on these practices. In this way, this chapter 

contributes to realising my two generic aims (A) and (B), by identifying yet another 

interesting philosophical topic related to using physical causal knowledge. 

Because of their precarious, the generalisations of failure analysis would be hard to 

capture by a framework in terms of laws. My framework in terms of capacities works 

better for this purpose, since the causal knowledge remains local and we can reflect on 

the appropriate circumstances of the capacity to manifest. In the special sciences, similar 

problems lead to the rising prominence of reasoning in terms of mechanisms.  

Something I mentioned in this chapter (see 4.1.1) but did not really pay attention to, is 

the fact that these cases from failure analysis do not line up with physical theory that 

easy. As you may have noticed, the analysts did not use fundamental laws of physics to 

model the failure phenomenon. In the next chapter, I will show that this can be related 

to the enormous amount of more local physical regularities that are being used and 

developed in the engineering sciences. However, this invites the question of how they 

relate to the laws of physics, and how to choose between all these regularities. In the 

next chapter, I will present a pragmatic answer, focusing on use. 
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Appendix 

Here I present extra information regarding certain engineering terms relevant for my 

cases in chapter 4. The information will also be useful for chapter 5. I focus on stress, 

strain and creep.  

Stress is applied force per unit area: 

The force per unit area is called the stress. (Feynman, Leighton, and Sands 2011, II-

38-2) 

Amount of stress is often expressed in terms of the Stress Concentration Factor: 

Any abrupt change in the cross section of a loaded component causes the local 

stress to increase above that of the background stress. The ratio of the maximum 

local stress to the background stress is called the stress concentration factor, or 

SCF for short. (Ashby and Jones 2012, p.266) 

Strain is deformation that happens as a result of stress (Ashby and Jones 2012, p.34). 

More specifically, it is “stretch per unit of length” (Feynman, Leighton, and Sands 2011, 

II-38-2). It represents change in dimensions (Mitchell 2004, p.380). 

Two types of strain are distinguished, depending on whether deformation is 

reversible: elastic (temporary) strain and plastic (permanent) strain (Ashby and Jones 

2012, p.117): 

almost all materials, when strained by more than about 0.001 (0.1%), do 

something irreversible: and most engineering materials deform plastically to 

change their shape permanently. (ibid) 

The region in which deformation is reversible, depends on the material: 

To this point, we have limited the discussion to small strains—that is, small 

deviations from the equilibrium bond distance, such that all imposed deformations 

are completely recoverable. This is the elastic response region, one that virtually all 

materials possess […]. What happens at larger deformations, however, is 

dependent to some extent on the type of material under consideration. Beyond 

the elastic region, we enter a realm of nonrecoverable mechanical response 

termed permanent deformation. There are two primary forms of permanent 

deformation: viscous flow and plastic flow. [… ] Other types of nonelastic 
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responses to applied forces, [include] fracture and creep, […]. (Mitchell 2004, 

pp.380-390) 

To understand what creep entails, we need to know that the nature of deformation 

changes with temperature: 

At room temperature, most metals and ceramics deform in a way that depends on 

stress but which, for practical purposes, is independent of time:  

𝜀 = 𝑓(𝜎) elastic/plastic solid 

(Ashby and Jones 2012, p.311) 

When temperatures rise, deformation becomes dependent of time. This process is 

referred to as “creep” or viscoplasticity. It is defined as time-dependent deformation 

under constant stress, usually at elevated temperatures.  

As the temperature is raised, loads that give no permanent deformation at room 

temperature cause materials to creep. Creep is slow, continuous deformation with 

time: the strain, instead of depending only on the stress, now depends on 

temperature and time as well: 

𝜀 = 𝑓(𝜎, 𝑡, 𝑇) creeping solid 

(Ashby and Jones 2012, p.311) 

Creep gives rise to creep strain: 

A typical creep experiment involves measuring the extent of deformation, called 

the creep strain, ε, over extended periods of time, on the order of thousands of 

hours, under constant tensile loads and temperature. (Mitchell 2004, p. 432) 

Finally, the creep exponent: 

By plotting the log of the steady creep rate, 𝜀𝑠𝑠 against log s at constant T, […] we 

can establish that  

𝜀𝑠𝑠 = 𝐵𝜎𝑛 

where n, the creep exponent, usually lies between 3 and 8. This sort of creep is 

called “power-law” creep. (Ashby and Jones 2012, p.315) 
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Chapter 5 Epistemic authority: a pragmatic 

approach 

In this fifth chapter, I shift my attention to my final topic, viz. the relation between laws 

and useful physical causal claims. I do this by examining why a certain physical causal 

claim or a piece of physical causal information is given what I call epistemic authority. 

With epistemic authority, I mean that the piece of information is trusted to base 

interventions or explanations on; that it is trusted to reach epistemic goals. Traditionally, 

this authority has been linked to lawhood: fundamental laws deserve this authority. In 

this chapter, I will show that when we focus on using physical causal knowledge, this 

view is untenable. In this way, this chapter constitutes an argument for my final specific 

claim, viz. (IV). I will show that from a use-perspective, the focus on fundamental laws 

does not aid our understanding of scientific practice. Correspondingly, this chapter 

identifies a final  interesting philosophical issue related to useful physical causal 

knowledge and concludes my exposition in favour of my two generic aims (A) and (B).  

I will first discuss two traditional ways in which philosophers have attempted to define 

laws: one in terms of necessity and one in terms of an epistemic mark. I will then reflect 

on a case from the previous chapter (viz. the collapsed spray drier) with regards to the 

regularities that the engineer used to diagnose the failure. I will specifically focus on one 

regularity, called “the Neuber rule” and attempt to explain why it has what I will call 

epistemic authority. I will argue that a necessity approach to laws cannot explain why the 

Neuber rule has epistemic authority. For this part, I will build on arguments by Mathias 

Frisch. I will then show that by expanding the idea of epistemic mark as criterion for laws 

with insight from Sandra Mitchell, I can explain why the Neuber rule has epistemic 

authority. This will result in an approach to laws that is more in tune with scientific 

practice. At the same time, it explains how engineers work successfully with so many 

different regularities with different degrees of generality and necessity.  

This chapter will also scrutinize the central position of laws in the philosophy of 

physics. I will show that not only are physical regularities not enough to reach epistemic 
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goals, the physical regularities we need are often not the laws of physics. This is related 

to the idea that the (fundamental) laws exhaust the content of physics. These ideas were 

not actively present in the cases I discussed (except in chapter 3), but they are present in 

philosophy of science and philosophy of physics in particular (see chapter 1). My cases so 

far have been compatible with the assumptions: we might have other ways of getting 

general knowledge, like the generalisation in chapter 4, but one can still consider the 

(fundamental) laws of physics as main sources. Because of the central position that laws 

have taken in philosophy of physics and in philosophy of science (see 1.1.3), these 

assumptions are quite tough and deserve separate attention. In this chapter, I scrutinise 

and argue against them. As such, I will show that the assumption that studying the laws 

of physics suffices to provide philosophical insight in all domains of physical scientific 

practice, including how we use physical causal knowledge, is untenable. I will reflect on 

my main argument in the conclusion of this dissertation. 

Introduction 

In chapter 1, I mentioned the focus on laws in the philosophy of science (see 1.1.3). I 

connected this to the central position that laws take in philosophy of physics, and to the 

view that physics is an exemplary science. Yet the focus on laws is undermined in the 

special sciences, since the generalisations of the special sciences are thought not to be 

lawlike. Here, I will reflect in more detail on the philosophical discussion on lawhood in 

general and I will connect this to the debates on laws in the specific sciences.  

Consider the following question: 

Why does this metal rod lengthen when heated? 

According to physics, this is due to the laws of thermal expansion. When a question can 

be answered by invoking “a law of nature”, in many contexts, there can be no discussion. 

Laws of nature are seen as irrefutable, as the way things are. Laws are also considered 

special: not all regularities are laws. Bas Van Fraassen presented a much-cited example 

referring to the size of spheres: 

All gold spheres are less than a mile in diameter. 

All uranium spheres are less than a mile in diameter. (1989, p.27) 

The first universal sentence is not considered to be a law, the latter one is. This 

distinction is thought to be important, because laws are seen as capable of performing 
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functions that accidental generalisations are not. This is motivated by the observation 

that, throughout the sciences, laws are given what I will call epistemic authority: they are 

trusted as guides for epistemic activities such as prediction, explanation and 

manipulation. The latter two are the ones I have focused on throughout this dissertation. 

While I have attempted to show that using physical knowledge to achieve epistemic 

goals is not that easy, philosophers have generally agreed that laws allow us to achieve 

them. An example is given by Van Fraassen: 

The moon orbits the earth. Why does it do so? What reason can there be for 

expecting it to continue to do so? (1989, p.183) 

The reason is the law of gravitation (Van Fraassen 1989, p.32). Many philosophers 

(though not Van Fraassen himself) think that it is precisely laws that allow us to explain 

e.g. why the moon orbits the earth and make us successful in our prediction that it will 

do the same tomorrow. 

Especially explanation has often been connected to laws. Cartwright discusses this via 

the distinction between phenomenological and theoretical laws (1983, p.1). 

Phenomenological laws describe what happens. But theoretical laws explain: they are 

not merely about appearances, but about the reality behind them (Cartwright 1983, 

p.1).1 The idea that there is a special connection between laws and explanation has also 

influenced the philosophical analysis of scientific explanation. Think for instance of 

Hempel’s covering-law approaches, such as the deductive-nomological model (or DN-

model). In this model, a potential explanans2 is characterised as follows: 

(DN) The ordered couple (L, C) constitutes a potential explanans for the singular 

sentence E if and only if  

(1) L is a purely universal sentence and C is a singular sentence, 

(2) E is deductively derivable from the conjunction L&C, and  

(3) E is not deductively derivable from C alone. 

(Weber, Van Bouwel, and De Vreese 2013, p.2) 

In the formulation above, ‘L’ refers to a law3. By deductively subsuming the phenomenon 

to be explained under a law, an explanation is given. As Cartwright argues, this is not 

 

                                                     
1 Cartwright herself does not agree and argues that it is the causes that explain, not the laws. 
2 . In general, an explanation is considered to consist “of an explanandum E (a description of the phenomenon 

to be explained) and an explanans (the statements that do the explaining)” (Weber, Van Bouwel, and De 

Vreese 2013, p.2). 
3 In some explanations, more than one law may play a role. 
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limited to Hempel’s account. Patrick Suppes's probabilistic model of causation, Wesley 

Salmon's statistical relevance model, and even Bengt Hanson's contextualistic model, all 

rely on the laws of nature (Cartwright 1983, pp.44-45). The pragmatic account of 

explanation that I used in chapter 3 also relied on laws – but recall that laws were 

everything but sufficient. However, in the literature, the emphasis has been put on laws. 

So for many philosophers, if we can show that a phenomenon can be derived from a law 

(together with other information), it is explained. Laws and explanation are intimately 

connected.4  

A similar story can be told for other epistemic goals, such as manipulation and 

prediction. In the quote above for example, Van Fraassen asked what reason we have to 

expect that the moon will orbit the earth again tomorrow. The answer was “the law of 

gravitation”. This reason behind the uniformity in nature ensures that we can make 

predictions regarding the behaviour of the moon: 

That there is a law of gravity is the reason why the moon continues to circle the 

earth. […] and if we deny there is such a reason, then we can also have no reason 

for making that prediction. We shall have no reason to expect the phenomenon to 

continue, and so be in no position to predict. (Van Fraassen 1989, p.32) 

So according to many philosophical views, we can a.o. explain and predict phenomena in 

a successful and warranted way by referring to laws. Laws ensure that our epistemic 

undertakings are trustworthy. This is what I mean when I say that laws receive epistemic 

authority in scientific practice and philosophical analysis. This is not a novel point. Nelson 

Goodman already said it wasn’t a novel point back in the 80’s (1983, pp.20-21). So laws 

are used predictively. Note that it should be clear from the previous chapters that the 

story is not that simple. However, what I want to focus on here, is why exactly laws are 

granted (and should be granted) this epistemic authority, unlike accidental 

generalisations. Philosophers have attempted to legitimate this in several ways, often by 

defining what makes a law a law. I will discuss two strategies: necessity and epistemic 

mark. I start with necessity. 

 

                                                     
4 As Holly Andersen notes, many philosophers have argued that laws fail in fulfilling these roles and started 

focusing on mechanisms (2017, p. 158). I already discussed this in chapter 3. I agree with her point, but as I 

argued in 1.1.4, laws still take up a central position in philosophy of physics. See also Meinard Kuhlmann’s 

contribution to the same handbook (2017). 



 

 161 

5.1 Legitimating epistemic authority 

5.1.1 Necessity 

A first traditional way of distinguishing between laws and accidental generalisations has 

to do with modal power: something in nature is thought to necessitate the truth of laws, 

while this is not the case with other regularities (Carroll 2016, §3). This is often expressed 

in terms of necessity (Van Fraassen 1989, p.28) and connected to the ability of laws (in 

contrast to accidental generalisations) to support counterfactuals (Psillos 2002, pp.145-

146). The main idea behind this way of legitimating the epistemic authority of laws, is 

that what follows from the laws is, in some sense, necessary.  

There has been a lot of debate regarding how to understand this necessity5, yet the 

specific strength does not really matter here6. So I will adopt the weakest form of 

necessity as described by Van Fraassen: the intensionality of the laws. Intensionality of 

laws expresses that if “it is a law that A” is true, then “A” is necessarily also true7 (Van 

Fraassen 1989, p.29). So even philosophers who admit that laws can be contingent 

generalisations, often still see them as necessitating the truth of their consequences. 

Note that this is not an epistemological criterion, but a metaphysical one: it is not what 

we know of the laws, their functioning etc. that warrants a belief in A, but the fact that 

the law is there. This switch from epistemological activities to legitimation in terms of 

metaphysical modality is subtle, but it is there and it seems to simply happen.  

There is of course a rationale behind this. If the laws express what is “precluded or 

allowed by nature” (Beatty 1995, p.239), they are sensible guides in the sense that they 

discourage us from trying something that is precluded by nature. The laws tell us the 

rules of nature’s game. If we know these rules (or ‘reasons’, as Van Fraassen says), we 

can exploit them to arrive at specific goals. In this way, there seems to be a strong 

connection between the regularities expressing necessities and their being trustworthy 

 

                                                     
5 David Armstrong, Frank Dretske and Michael Tooley (hereafter ADT) are notable defenders of laws as 

necessity relations between universals (Psillos 2002, p.163). See also Armstrong (1985), Dretske (1977), Tooley 

(1977). 
6 One topic of discussion is for example whether the laws themselves are necessary. In the weakest 

interpretation I am taking here, the laws themselves need not be necessary. They could have been different, 

but given that they are what they are, they necessitate their consequences. 
7 Many philosophers argue that this notion is far too weak to capture our intuitions regarding what it is to be a 

law. I am interested in scientific practice and not in intuitions, therefore I will not discuss this.  
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guides in epistemic activities. Yet, like I described in chapter 1, this idea has been 

undermined in some of the special sciences, for instance in biology (see 1.1.3). Thinkers 

like John Beatty (1995),Stephen Gould (1990) and Martin Carrier (1995) have argued that 

evolution could have given rise to other regularities in biology than the current ones. 

Because of this, they claim, many regularities in biology “do not express any natural 

necessity” (Beatty 1995, p.239) and should not be called laws. Not everyone agrees with 

a definition of lawhood in terms of necessity. For instance, philosophers who are 

interested in epistemic questions regarding laws, like myself, are not keen to accept a 

very metaphysical characterisation of laws. In the next section, I will discuss an 

alternative, which focuses on epistemic authority. 

5.1.2 Epistemic mark 

Another attitude towards this epistemic authority of laws has been to equate lawhood 

with epistemic authority. This strategy, which Psillos called “the epistemic mark” (2002, 

p.141), can be captured as follows: 

It is a law that all Fs are Gs if and only if (i) all Fs are Gs, and (ii) that all Fs are Gs 

has a privileged epistemic status in our cognitive inquiry. (Psillos 2002, p.142) 

This view was defended by among others, Nelson Goodman (1983), Richard Braithwaite 

(1953) and Alfred Ayer (1963). Their accounts do not make reference to metaphysical 

properties of laws, but they also do not give us any understanding of why specific 

regularities are used in cognitive inquiry. Moreover, this strategy has been criticised for 

being too subjective and anthropomorphic (Psillos 2002, p.142). Mill (1911), Ramsey 

(1928) and Lewis (1973) (hereafter MRL) are often put in the same boat. They defend an 

approach dubbed “web-of-laws approach” (Psillos 2002, p.148), where laws are the 

axioms in the systematic organisation of our knowledge. According to Lewis, a regularity 

is a law 

if and only if it appears as a theorem (or axiom) in each of the deductive systems 

that achieves a best combination of simplicity and strength” (73, 1973 in Psillos 

2002, p.149) 

Though this approach made lawhood more objective than other epistemic mark 

accounts, many philosophers still hold that it is too subjective or anthropomorphic 

(Psillos 2002, pp.155-157). 
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This is not meant as an in-depth overview of the debates surrounding laws, and many 

excellent works on this topic are readily available8. For my current point, this brief 

summary is enough to frame the problem of epistemic authority and the ways it has 

been handled in the past. The debate regarding laws has still not reached a consensus. In 

the philosophy of biology, the topic is even mostly abandoned. Craver and Kaiser even 

see it as outlived and suggest we should instead focus on how generalisations in biology 

can play the role they do: 

Nobody anymore denies that there are stable regularities that afford prediction, 

explanation, and control of biological phenomena. Whether such stable 

regularities count as laws depends on what one requires of laws, but it is 

undeniable that generalizations of this sort do many kinds of work in biology. What 

remains is the admittedly difficult work of showing how this is possible. (Craver 

and Kaiser 2013, p.127) 

I agree with the suggested shift of focus, but there is more to be said. For one, which 

specific regularities provide a secure basis for explanation, prediction,… is not agreed 

upon by philosophers of science. And second, one of the reasons philosophers have 

sought a definition of laws, is to explain why certain regularities (viz. laws) can be used 

for prediction and explanation, and certain other regularities (viz. accidental regularities) 

cannot. So shifting the focus of the debate is not as easily done as Craver and Kaiser 

suggest. Yet in this chapter, I will make an attempt.  

I will investigate how regularities can play the roles they do in scientific practice, 

without posing the question in terms of what defines laws. This involves arguing that 

neither of the approaches mentioned (viz. necessity and epistemic mark) can successfully 

account for why certain regularities get epistemic authority in science. For one, focusing 

on metaphysical criteria for lawhood does not increase our understanding of scientific 

practice. Consequently, if scientific practice is what we are interested in, as I am, 

focusing on metaphysical markers for lawhood will not be useful. Especially because the 

regularities that are the best candidates for having this mark, are not often used in 

scientific practice. I will get back to this in 5.2. Second, merely referring to our epistemic 

attitude towards certain regularities is not very insightful. I will get back to this in 5.3. I 

instead propose a shift in focus away from attempting to provide a definition of laws. I 

will focus on what we successfully do with regularities and what this can tell us about 

those regularities. So contrary to many philosophers, I start from the observation that 

 

                                                     
8 See for instance Van Fraassen (1989), John Carroll (1994), Marc Lange (2000), Carroll (Readings on laws of 

nature  2004), Psillos (2002). 
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certain regularities have epistemic authority and attempt to understand what this tells us 

about why regularities are used in science. In that sense, I am following the approach of 

Goodman, Ayer and Braithwaite, but I am developing it. To show what this other 

perspective can teach us, I will take a closer look at the engineering sciences. I will first 

present a case study from this domain. This will help to get a better understanding of 

what the engineering sciences are and how they successfully use regularities. These 

cases will be the guiding sources of information for understanding the epistemic 

authority that regularities get in scientific practice. 

5.2 Epistemic activities in the engineering sciences 

5.2.1 What are the engineering sciences 

In 1.5.8 I already introduced Boon and Knuuttila’s definition of the engineering sciences 

as striving “through modelling to explain, predict or optimise the behaviour of devices, 

processes, or the properties of diverse materials, whether actual or possible.” Recall that 

Boon also argued that the engineering sciences have a very distinctive modelling 

practice, which is not reducible to physics (2011, p.64), nor to technology or design 

(Boon and Knuuttila 2009, p.1). 

Technology and engineering are related however, since “much research in the 

engineering sciences is aimed at creating and understanding physical phenomena that 

may be put to technological use” (Boon 2011, p.66). Yet as I already explained, the 

relationship between these domains (fundamental physics, the engineering sciences and 

technology) is underinvestigated and does not benefit from the traditional debate 

regarding laws. If laws are considered to receive their epistemic status from the 

metaphysical necessity they express, only research regarding regularities that express 

necessity seems legitimate. So I believe the alternative, practice-engaged understanding 

of why certain regularities are trustworthy guides for predictions, explanations, etc., will 

benefit philosophical reflections on the engineering sciences. 

To get a better grip on what it is that engineering scientists do, I will revisit the case of 

the failed spray drier from the previous chapter (see 4.2.2). Contrary to what I did in that 

chapter, I will now focus on one of the regularities that Carter used to explain the failure 

of the spray drier, and on not the recommendations that he made. I will argue that a 

specific rule Carter uses for his analysis, namely the Neuber rule, gets epistemic 
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authority, though it is not straightforwardly a law according to the two defining 

approaches I described in 5.1. 

5.2.2 A creepy case 

Recall that Carter diagnosed that the failure of the spray drier was a result of creep, 

which referred to non-elastic (viz. irreversible) deformation due to stress at high 

temperatures. Based on his investigation, he recommended removing the “lagging and 

cladding in the region of the annular gas duct and the column-shell joints”, in order to 

“avoid a similar fate on other more recent (and stronger) spray driers” (Carter 2001, 

p.77). To understand Carter’s analysis, I repeat some information about creep that I also 

mentioned in the appendix of the previous chapter. Under normal temperatures 

most metals and ceramics deform in a way that depends on stress but which, for 

practical purposes, is independent of time:  

𝜀 = 𝑓(𝜎) elastic/plastic solid9 

(Ashby and Jones 2012, p.311) 

When temperatures rise, deformation becomes dependent of time. This process is 

referred to as “creep” or viscoplasticity 

As the temperature is raised, loads that give no permanent deformation at room 

temperature cause materials to creep. Creep is slow, continuous deformation with 

time: the strain, instead of depending only on the stress, now depends on 

temperature and time as well: 

𝜀 = 𝑓(𝜎, 𝑡, 𝑇) creeping solid 

 (Ashby and Jones 2012, p.311) 

Creep gives rise to creep strain; deformation of the material: 

A typical creep experiment involves measuring the extent of deformation, called 

the creep strain, ε, over extended periods of time, on the order of thousands of 

hours, under constant tensile loads and temperature. (Mitchell 2004, p.432)10 

 

                                                     
9 Stress (σ) is applied force per unit area (Feynman et al. 2011, II 38-2). Strain (ε) is deformation that happens 

as a result of stress (Ashby & Jones 2012, p.34). More specifically, it is “stretch per unit of length” (Feynman et 

al. 2011, II 38-2). Two types of strain are distinguished, depending on whether deformation is reversible: elastic 

(temporary) strain and plastic (permanent) strain (Ashby & Jones 2012, p.117). 
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A final important concept is the creep exponent. 

By plotting the log of the steady creep rate, 𝜀𝑠𝑠 against log s at constant T, […] we 

can establish that  

𝜀𝑠𝑠 = 𝐵𝜎𝑛 

where n, the creep exponent, usually lies between 3 and 8. This sort of creep is 

called “power-law” creep. (Ashby and Jones 2012, p.311) 

Carter specifically makes use of a Neuber calculation to determine the creep stress 

concentration factor in notches, which states that 

the product of shear stress and shear strain concentration factors of a notched 

body of nonlinear material was independent of the external load level. (Härkegård 

and Sørbø 1998, p.224) 

The Neuber calculation is often mentioned in this form: 

𝐾𝑡
2 =  𝐾𝜎𝐾𝜀 

with 

𝐾𝑡 = theoretical stress concentration factor  

𝐾𝜀 =  
𝜀𝑒

𝜀𝑛𝑒
⁄ actual strain concentration factor  

𝐾𝜎 =  
𝜎𝑒

𝜎𝑛𝑒
⁄ actual stress concentration factor 

Another way of understanding the Neuber calculation is the following: 

In connection with low-cycle fatigue analysis, where inelastic strains are generally 

confined to the notch root area, Neuber's (generalized) rule implies that the 

product of equivalent stress and strain, 𝜎𝑒𝜀𝑒 is equal to the same product under 

linear elastic conditions. (Härkegård and Sørbø 1998, p.224) 

Carter uses the Neuber rule (together with design information of the spray drier) to 

determine the actual stress in the column-shell from the value of stress and strain under 

elastic (viz. reversible) conditions.  

Let’s focus on this Neuber calculation. Since Neuber presented his rule in 1961, it 

received a lot of attention. For one, people found that in certain conditions, the rule 

overstates the stress. It has also been used in different ways, attempting to model 

different circumstances and materials. This practice, as well as the article by Carter, 

shows that the Neuber rule has epistemic authority: it is used to explain phenomena 

 

                                                                                                                                                                  
10 Note that this is not a quote by the philosopher Sandra Mitchell, but Brian S. Mitchell, professor in the 

department of chemical and biomedical engineering at Tulane.  
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(e.g. the failure of the investigated spray drier) and predict phenomena (e.g. the 

behaviour of some more recent and stronger ones). Recall that Carter’s article was 

published in a specialised failure analysis journal, and reprinted as part of a reference set 

of real failure investigations” (Failure Analysis Case Studies II  2001, p.v). The goal is to 

communicate findings to other engineers and engineering students (Failure Analysis Case 

Studies II  2001, p.v). So the engineering sciences community accepts this kind of 

explanation and prediction, based on regularities like the Neuber rule. Moreover, the 

articles (like Carter’s) often mention that their recommendations (based on predictions) 

are successful.  

How can we legitimate the fact that engineers trust the Neuber rule to make 

explanations and predictions? Coming back to the debate I sketched in the introduction, 

one option is to show that it is a law – since laws are thought to rightly receive epistemic 

authority. In section 5.1, I discussed two criteria that have been proposed for lawhood: 

expressing necessity and having an epistemic mark. Let’s first consider necessity: does 

the Neuber rule express any? One straightforward difficulty is that the Neuber rule is not 

without exceptions, since it overstates stress in some situations. This is not compatible 

with the intensional view on laws sketched in the introduction. If we can find an 

exception (say an observation of ¬𝐴), then “it is a law that A” cannot be true, since we 

can derive “A” from this, which would yield a contradiction with our observed¬𝐴. This 

suggests that the Neuber rule is not a law in this sense and correspondingly, that we 

have no reason to believe that we can warrantedly extrapolate it to new contexts. Like 

Van Fraassen said, if there is no reason for the regularity, we cannot trust it to make 

predictions. Yet it is being trusted and used to make predictions. What does this entail 

for the validity and authority of the rule? It does not look good regarding necessity. Yet 

there are laws that are not universally valid, such as Ohm’s law, which is not valid for e.g. 

diodes. Maybe one could still save the Neuber rule by showing that it does express some 

necessity, yet has a limited domain. One might want to show that it is derivable from 

laws that we think certainly express necessity, specifically the laws of physics. This is the 

topic of section 5.3. 

After discussing necessity, I will get back to the epistemic mark in section 5.4. As I 

have shown, engineers have the epistemic attitude associated with laws towards the 

Neuber rule. So according to e.g. Goodman’s account, the Neuber rule counts as a law11, 

and laws can be trusted to make predictions and explanations. This can be seen as a step 

in the right direction, but what does this actually tell us? It tells us very little. We trust 

 

                                                     
11 Note that MRL might disagree. 
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the regularity, so we can trust it. Though this is a proper beginning for an epistemic 

account of why we trust regularities, it is not informative enough. I will expand this 

argument in section 5.4.  

5.3 The laws of physics: the real deal 

I will now turn to the option to ground the Neuber rule by showing that it is deducible 

from more fundamental regularities that are thought to be necessary. Someone 

advocating this strategy hopes that, since the Neuber rule is a deductive consequence of 

laws that do necessitate their consequences, the necessity will carry over to the Neuber 

rule. The most obvious candidates for such fundamental laws are the laws of physics. 

This might be seen as a solution for all the local generalisations that I described in the 

previous chapter as well. In this section, I will investigate the assumptions on which this 

line of reasoning rests and raise problems for two of them. In section 5.3.2, I will use 

arguments from Mathias Frisch to scrutinise the idea of fundamental laws. I will then 

expand his arguments regarding modelling to argue that, even if there are fundamental 

laws, there is no guarantee that their necessity will make any difference for the modal 

power of the Neuber rule. This is the topic of 5.3.3. 

5.3.1 Grounding the Neuber rule 

An important observation regarding the possibility of reducing the Neuber rule to more 

fundamental (and necessary) laws of physics, is that up until now, no attempt has been 

successful. From the engineering literature on creep, we can conclude that there is no 

model of creep in terms of fundamental laws – let alone of creep in notches which is 

crucial to this case. This is not for a lack of trying. Frank Nabarro (2004), for instance, 

attempted to build such a fundamental model . Nabarro was one of the pioneers of 

dislocations in solids (Brown 2010, p.275) and spent a significant part of his life studying 

various modes of creep and having one specific type of creep in crystals named after him 

(viz. Nabarro-Herring creep), only two years before he died. In his article from 2004, 

Nabarro discusses an overview of the different models of power law creep. Power law 

creep, or steady-state creep, refers to the third stage of creep (after initial rapid 

extension and primary creep) which occurs before rupture (Nabarro 2004, p.659). This is 

a particularly interesting stage for engineers (Nabarro 2004, p.659), and is also the type 
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of creep present in the spray drier case study. Throughout the decades, many models 

have been presented and three are often cited: two models by Weertman and one by 

Spingarn and Nix. These models attempt to explain why, for a wide range of stresses, 

“the creep rate is […] closely proportional to a power of the stress, with an exponent of 

about 4.5-5.0” (Nabarro 2004, p.661). Each model starts from a different idea regarding 

the mechanism of creep (viz. by glide of dislocations of a certain density until they are 

blocked by other dislocations, by glide of two dislocation configurations, or by 

dislocation glide on a single slip system in each grain (Nabarro 2004, p.660)), resulting in 

different predictions of the creep rate. Nabarro argues that every model  

either lacks physical probability or fails to predict a rate of creep of the order which 

is observed experimentally”. (2004, p.660) 

So a definitive or accepted theoretical model of creep has not been developed yet. The 

Neuber rule is not an exception in this matter. Many other regularities that are 

constantly used in the engineering sciences have not been theoretically grounded yet. 

But science is a gradual endeavour and we might at some point in the future succeed 

in deriving the Neuber rule from thermodynamical laws. Should we keep on using the 

Neuber rule counting on the fact that it will at some point be grounded? To answer this 

question, let me look more closely at what is happening here. The idea is that the laws of 

physics apply to all possible phenomena, and we just need to figure out how. This is 

related to the prestige physics, especially fundamental physics, has: it is seen as the most 

mature science, a role model for other sciences (see for instance (Norton 2003)). 

Correspondingly, the laws of physics are often considered as exemplars of laws of 

nature: universally valid, necessary, fundamental12. According to this view, the Neuber 

rule is, like all other regularities about the physical world, simply shorthand for a model 

in terms of more fundamental laws. As a result, on this view, all the rule’s properties 

(including any necessity it expresses) are due to its relation to the fundamental laws.  

This way of reasoning actually rests on many assumptions regarding the laws of 

physics and modelling practices. Specifically, it rests on the ideas that (1) the laws of 

physics express necessity and (2) are fundamental, which in some sense implies that they 

can capture all phenomena. And regarding modelling practices, there is the assumption 

that (3) necessity carries over through modelling practices. Though this final assumption 

 

                                                     
12 This is obvious from the debates surrounding whether biology has laws, mentioned in the introduction. In 

analysing the nature of regularities in biology and debating their law-likeness, laws of physics were often used 

as a contrast class or point of reference (see (Beatty 1995), (Brandon 1997), (Carrier 1995)). 
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is less easy to recognise, I will argue in section 5.3.3 that it is in fact there. I will not deal 

with the first assumption, but will show that (2) and (3) are not as unproblematic as 

often assumed. In the following section I will first scrutinise the purported fundamental 

nature of the laws of physics. For this part, I will build on Mathias Frisch’s arguments 

against foundationalism developed in the context of causal reasoning in physics.  

5.3.2 Frisch on the laws of physics 

I already explained Frisch’s plea for a broader approach to philosophy of physics in 

chapter 1. For clarity, I will briefly repeat the relevant aspects here. Recall that Frisch 

wants to broaden the debate on causation in physics with insights from scientific 

practice. He argues that, contrary to what many other philosophers of physics assume, 

the fundamental equations in isolation do not cover the entire representational content 

of a theory. Instead, we need to take into account the user and the context to fully 

understand the representational content of a theory, even for physical theories. His 

alternative account of scientific practice in physics starts from a “pragmatic and 

structural account of representation” (Frisch 2014, p.37). In chapter 1, I explained that 

this means that we need to take the user and the context into account to understand 

how physical representations of phenomena work. This is because we cannot reach all 

the epistemic goals we want to via laws or equations only. We need to build models. The 

[…] physical processes that interact with the production and annihilation of 

elementary particles are not, and in fact cannot be, modeled quantum field 

theoretically. Instead physicists use resources from theories such as classical 

electrodynamics, fluid dynamics, and solid-state physics to model the causal 

structure within which the quantum-field theoretic interaction is embedded. 

(Frisch 2014, pp.80-81) 

It is the modelling practices that really matter. This lines up well with my current 

purpose: understanding how regularities get epistemic authority. Part of the epistemic 

authority of the regularities is that they are being used to model phenomena (see also 

3.1.2).  

Frisch uses this pragmatic account of representation to formulate a convincing 

argument against what he calls scientific foundationalism. This is meant to capture the 

view that 

physics aims to discover fundamental micro theories that have a universal domain 

of application and in principle possess models of all phenomena. (Frisch 2014, 

p.37) 
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Frisch shows that scientific foundationalism is inherently incompatible with a pragmatic 

account of representation, like the one he defends. His argument draws from physical 

modelling practice and is pretty straightforward: 

[C]ontrary to what the foundationalists assumes [sic], we do not have fundamental 

models representing macroscopic phenomena. To actually construct a quantum-

mechanical model of a macroscopic body of water, we would have to solve the 

Schrödinger equation for on the order of 1025 variables – something that is simply 

impossible to do in practice. (Frisch 2014, p.38) 

Because Frisch defends a pragmatic account of representation, a hypothetical solution to 

the Schrödinger equation for a body of water, does not qualify as a model of the body of 

water. In order for something to count as a representation of a system, it needs to be 

used to represent that system or some other system sufficiently close to the one we 

want to represent. So if we successfully model a glass of lemonade with the Schrödinger 

equation, this is a pretty good indicator that the equation can also be used to represent a 

glass of water. Yet a hypothetical solution, or a model for a very different system cannot 

provide this indication. His point holds for all the so-called fundamental laws. Note that it 

is not clear which laws should be seen as fundamental. Sandra Mitchell gives us a 

pragmatic characterisation: 

It is not clear that anything that has been discovered in science meets the strictest 

requirements for being a law. However, if true, presumably Newton’s Laws of 

Motion, or The Laws of Thermodynamics, or the Law of the Conservation of 

Mass/Energy, would count. (2002a, p.330) 

Frisch’s argument goes through regardless of any specific set of ‘fundamental’ laws: 

looking at current physical modelling practices, no laws are effectively used to represent 

all phenomena, so no set of laws is really fundamental. Instead, macro phenomena need 

to be represented by macro theories. Our 

[…] putatively fundamental micro theories do not represent higher-level macro 

phenomena […] (Frisch 2014, pp.24-25) 

I have shown that Frisch lays out what is, in my opinion, a strong argument against the 

view that the fundamental equations of (theoretical) physics can (1) represent all the 

phenomena we are interested in and (2) are all we need to understand scientific 

practice, and I have supplemented his arguments with regard to epistemic authority. This 

strengthens the points I made in the previous chapter. In scientific practice, modelling is 

what matters, and not only are the laws not enough to build these models and use them, 

not all phenomena (especially not macro phenomena) can be modelled with the 
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fundamental equations. Simply because a steam engine is thought to behave according 

to the laws of thermodynamics, does not mean it can be represented by referring to the 

ideal gas law and the conservation of energy principle.  

Frisch’s conclusions do hinge on the acceptance of a pragmatic account of 

representation, and people may disagree with this – and they have. But Frisch does not 

merely posit this view, he defends it by showing how important the role of modelling is 

in physical practice. Moreover, since I am explicitly interested in scientific practice, I 

agree that focusing on modelling and actual representations is a legitimate choice. Only 

representations and models that are actually being used (or were used at some point) in 

science to represent certain phenomena, can be part of scientific practice. And only by 

studying these can we understand how we successfully use physical knowledge for 

reaching epistemic goals. So a pragmatic view of representation is actually quite suited 

for understanding scientific practice. And if we take scientific practice seriously and 

accept such a pragmatic account of representation, there can never be a set of laws that 

‘in principle’ represents all possible phenomena, not even laws that express necessity. 

Laws only capture phenomena via models, and only those phenomena for which models 

have actually been built and are used in epistemic practices (or phenomena close enough 

to those). Frisch specifically wants to draw attention to this neglected part of physics (viz. 

the modelling practices) and argues that they are an important part of the scientific 

practice. Because of this, a pragmatic account of representation fits best. 

So if Frisch’s arguments go through, attempting to show that the Neuber rule can be 

deduced from fundamental laws will not help us in warranting its epistemic authority, 

since there are no real fundamental laws that can actually be used to model everything.  

Because I am specifically focused on the engineering sciences, it is noteworthy that 

Frisch’s findings go against a tendency in philosophy of physics – a tendency that has 

negative influences on the understanding of the engineering sciences: 

[T]he picture of science that arises is that, in the end, a complete knowledge of the 

fundamental laws and/or building-blocks presents us with knowledge from which 

everything else can be deduced, and therefore makes any other epistemic practice 

intellectually empty. (Boon 2011, p.64) 

Boon has criticised this tendency in her defence of the engineering sciences. Though it 

might be useful in some contexts to try to reduce models of complex phenomena (like 

artefact behaviour) to more fundamental laws, Boon (2006) shows that this view ignores 

a big part of actual modelling. Her arguments cohere with those made by other 

philosophers in different contexts, such as Cartwright (1983). 
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5.3.3 The problem of modelling 

As I said above, Frisch’s arguments are convincing, but controversial. Yet even if his 

arguments do not go through and there are indeed some fundamental laws, there is 

another complication for trying to warrant the Neuber rule’s epistemic authority in the 

candidate fundamental laws. Here I will show that even if we hold that a set of purported 

fundamental laws is able to cover all phenomena, there still is no guarantee that the 

models that we build with them express the same necessity. 

The candidate fundamental laws, regardless of what they are, will be used to build 

models, and those models will guide us in epistemic activities like manipulation and 

prediction. This at least complicates the connection between necessity and epistemic 

authority of laws, since there is a ‘layer’ of modelling between the phenomenon and the 

law. If it is to be necessity which grants regularities their epistemic authority, the 

necessity needs to be something that is not damaged by the modelling practices. Yet 

there is nothing necessary about the way physicists model phenomena. I already 

introduced the philosophical debate on modelling in chapter 3. I emphasised that the 

way we construct a model for a phenomenon depends on what we believe is relevant for 

that phenomenon. Frisch’s arguments can be seen as expanding this view: depending on 

the interests of the user and depending on the context, different choices will be made, 

resulting in different models. The models do not follow from the laws in any necessary 

way.  

To the extent that resemblance plays a role in representation, it does so as a 

function of the representation’s use. For example, in certain contexts we identify a 

representation’s target with the help of selective resemblances between 

representation and target. Yet which aspects are important in assessing the 

likeness between representation and target is given by the context in which the 

representation is used. (Frisch 2014, p.28) 

Frisch makes this point as part of his pragmatic framework, but does not focus on it since 

he is mainly interested in causation.  

I use this point to develop another difficulty for grounding the epistemic authority of 

the Neuber rule in candidate fundamental laws. Once we acknowledge that we only use 

fundamental laws via models in our manipulations and predictions, and that those 

models do not follow necessarily from the laws, warranting regularities like the Neuber 

rule is not as unproblematic as it seems. Because in order to warrant the rule, scientists 

need to model the phenomenon described by the rule (viz. creep in notches) via more 

fundamental laws (a.o. laws of thermodynamics) and derive the Neuber rule from this 

model. Yet modelling a phenomenon is dependent on the user and the circumstances. In 
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order for necessity to warrant the epistemic authority of a regularity, the necessity has 

to be something that is undamaged by the modelling practices. But there is no necessity 

to the practices, so it is hard to see how this would work or why this would be the case. 

So even if there are fundamental laws, the chance that necessity will actually carry over 

through the modelling is really slim. Simply assuming that it will carry over is actually not 

taking modelling practices seriously and again would not be in spirit with the perspective 

of science in practice.  

To sum up, whether we consider a law as a tool for new discoveries or a guideline for 

manipulation, depends on whether we consider the law to represent the phenomenon 

we are interested in. This is not straightforwardly captured in the formulation of the 

theory, but depends on how the law is used in practice. So epistemic authority is not 

innately present in the laws. Even if we accept that the laws of thermodynamics express 

necessity, they only receive epistemic status in the practices where they are actually 

used to represent phenomena. It is worth mentioning that the importance of (contextual 

and pragmatic choices involved in) modelling practices is not commonly accepted among 

physicists:  

Thermodynamics is the much abused slave of many masters • physicists who love 

the totally impractical Carnot process, • mechanical engineers who design power 

stations and refrigerators, […] It is therefore natural that thermodynamics is prone 

to mutilation; different group-specific meta-thermodynamics’ have emerged which 

serve the interest of the groups under most circumstances and leave out aspects 

that are not often needed in their fields. To stay with the metaphor of the abused 

slave we might say that in some fields his legs and an arm are cut off, because only 

one arm is needed; in other circumstances the brain of the slave has atrophied, 

because only his arms and legs are needed. Students love this reduction, because it 

enables them to avoid “nonessential” aspects of thermodynamics. But the practice 

is dangerous; it may backfire when a brain is needed. (Müller and Müller 2009, 

preface) 

From the analysis presented here, I conclude that the necessity-approach to epistemic 

authority falls apart. Necessity, it seems, is not the way to understand why the Neuber 

rule is used and trusted in engineering practice. But then what is? In the following 

section, I will build on arguments by Sandra Mitchell to argue that engineers warrantedly 

use regularities like the Neuber rule, depending on the context. This will also enhance 

the alternative strategy to epistemic authority I mentioned in the introduction, namely 

the epistemic mark. 
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5.4 Contextual and pragmatic authority 

Recall that traditionally the debate on laws consisted of two strategies to explain the 

epistemic authority laws get in science: laws express necessity, or laws have some 

epistemic mark. I spent the previous sections arguing that the first strategy does not 

explain why regularities like the Neuber rule are used in engineering sciences. In the 

current section, I will present an alternative that I believe does explain why the Neuber 

rule is used. This alternative expands the second strategy, namely the epistemic mark, 

and uses arguments by Sandra Mitchell, to make it more informative. I will first present 

Mitchell’s contributions to the debate on laws in the life sciences and then adapt it to 

understand the Neuber rule and the engineering sciences more generally. 

5.4.1 Mitchell’s pragmatic account of laws  

Sandra Mitchell developed her pragmatic account of laws in the context of biology. I 

already mentioned this matter in the introduction and in chapter 1. Let me briefly 

recapitulate. From about the 1970s to well in the 2000s, philosophers debated the 

nature of biological regularities, and more specifically, whether they should be 

considered laws. Beatty, for example argues against calling them laws, based on their 

contingency: 

[…] all distinctively biological generalizations describe evolutionarily contingent 

states of nature— moreover, ‘‘highly’’ contingent states of nature in a sense that I 

will explain. This means that there are no laws of biology. For, whatever ‘‘laws’’ 

are, they are supposed to be more than just contingently true. (Beatty 1995, p.46) 

In 1997, Mitchell distinguished 3 strategies of characterising laws: a normative, a 

paradigmatic and a pragmatic. The normative strategy encompasses approaches that 

start with a “definition of lawfulness” and then compare all candidate laws to this 

definition. If the specified conditions are met, the candidate qualifies as a law (Mitchell 

1997, p.S469). Most of the accounts mentioned in section 5.1 are normative. Beatty’s 

account is also a normative one. His definition includes natural necessity: laws are only 

“those generalisations that could never […] fail[ed] to be true” (Mitchell 1997, p.S469). 

This corresponds to the traditional debate focusing on necessity which I sketched above 

and which Cartwright and Frisch criticise. The second strategy, the paradigmatic, “begins 

with a set of exemplars of laws (characteristically in physics) and compares these to 

generalisations in biology“ (Mitchell 1997, p.S469). I will not pay much attention to this 

strategy.  
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The final strategy, pragmatism, is the one Mitchell puts forward in her article (and 

goes on to develop throughout her later work). This is the one I will use to expand the 

epistemic mark account of laws. In Mitchell’s pragmatic view, reference to definitions 

and exemplars is replaced with “an account of use of scientific laws” (Mitchell 1997, 

p.S475). According to Mitchell, we should entirely abandon the “received view” of what 

is required to be a law, viz. 

1. logical contingency (having empirical content) 

2. universality (covering all space and time) 

3. truth (being exceptionless) 

4. natural necessity (not being accidental)  

(Mitchell 2002b, p.330) 

Instead, we should focus on how the generalisations in science are used. The specific 

contexts in and purposes for which generalisations are used can differ, naturally. Mitchell 

presents different parameters in virtue of which generalisations can be “evaluated for 

their usefulness”: 

 Degree of accuracy attuned to specified goals of intervention 

 Level of ontology (populations vs individuals) 

 Simplicity: we use generalizations ranging from rules of thumb like 

Ptolemaic astronomical "laws" to navigate, to ideal gas laws that yield 

approximations within engineering tolerances. 

 Cognitive manageability: prior to the development of high-speed 

computation, mathematical equations were restricted to solvable linear 

formulations.  

(Mitchell 1997, p.S477) 

The main point I want to take away from this for the current purposes is that, depending 

on the phenomenon we wish to study and the specific epistemic activity we are 

undertaking, different generalisations can prove more useful.13 

Mitchell’s project fits well with the focus of this chapter. Though Mitchell’s account 

was developed for biology, I can use her framework to expand the analysis from the 

previous section. By building on her insights, we can get a better understanding of why 

 

                                                     
13 I am not engaging with metaphysical questions, as this falls outside the scope of my thesis. But for those 

interested in a metaphysical companion story to my analysis, I recommend the work of Barry Ward (for 

instance (2002)). 
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the Neuber rule is successfully and warrantedly used in engineering sciences. This is the 

topic of the next section. 

5.4.2 Pragmatic laws and epistemic authority 

I believe that a pragmatic way of valuing regularities helps us understand the diversity of 

regularities that are used in the engineering sciences better than the necessity approach 

I discussed in section 5.3. On a pragmatic approach to laws, their epistemic authority 

does not result from any metaphysical necessity they express, but depends on the way 

they are used to model phenomena. Accordingly, different laws can gain more or less 

authority, depending on how successful they are with respect to the specific demands of 

the context.  

As it is formulated, merely stating that epistemic authority of laws depends on the 

context does not give a more informative account of epistemic authority than the 

epistemic mark mentioned in section 5.1.2. Yet this is where Mitchell’s account comes in. 

She has formulated several parameters by which we can understand and compare when 

regularities are best fit for the context and purposes at hand. Reflecting on different 

epistemic activities and goals that can be part of the engineering sciences provides a way 

of understanding why regularities like the Neuber rule are used in some contexts, and 

not in others.  

In her original article, Mitchell distinguishes accuracy, ontology, simplicity and 

cognitive manageability as possible factors that influence the choice of regularity. Yet 

this is not an exhaustive list. In light of failure analysis specifically, I want to stress 

feasibility and intelligibility as important factors. In Carter’s case of the collapsed spray 

drier, he needs to specify recommendations to modify the newer and stronger driers 

before they collapse as well. Because of this context, he is confronted with time-

limitations and restrictions regarding redesign options. Given the task he faces, it is not 

useful to come up with a completely new design for a spray drier, since this will not 

influence the faith of the existing driers. So modelling the spray drier in terms of the 

materials with which it was constructed e.g., will not be ideal. Moreover, Carter needs to 

move fast and cannot spend months modelling the collapse of the drier in terms of more 

fundamental or micro laws and calculating all the variables. So the regularities he uses 

need to be intelligible.  

Yet looking at the diversity of the engineering sciences, it’s important to see that 

these demands differ when we consider different domains of the discipline. Note that 

this fits well with my focus on the user and context, inspired by Frisch. A scientist who 

wants to create a new material, more resistant to creep than others, may need to model 
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creep in more fundamental or micro terms. To understand the gravity of choices 

regarding modelling, consider another creep model. Mishin et al. (2013) developed a 

“general and rigorous theory of creep deformation”. In their view, such a theory should 

contain 

(i) a thermodynamic model of a mechanically stressed crystalline solid with 

nonconserved lattice sites, (ii) a model of microstructure evolution that includes 

redistribution of vacancy sinks and sources and the motion of interfaces separating 

different phases and/or grains, and (iii) a set of kinetic equations derived from the 

entropy production rate and identification of the appropriate set of fluxes 

(including the creep deformation rate) and the conjugate driving forces. (Mishin et 

al. 2013, p.1) 

They arrive at a sort of master equation, which they combine with assumptions about 

the physical properties of materials (e.g. whether it is isotopic, whether thermodiffusion 

cross-effects can be neglected) to derive a set of “phenomenological relations between 

fluxes and forces” that are part of this equation (Mishin et al. 2013, p.12). They apply this 

to an example and arrive at three equations that, with appropriate initial and boundary 

conditions, describe the entire dynamics of their system in deformed configuration. The 

equations are: 

𝜕𝜑

𝜕𝑡
+ 𝑣𝐿∇𝑥𝜑 = − 

𝐵

𝑇
[𝑤′(𝜑) − 𝜖∇𝑥

2𝜑]  

𝜕𝑐𝑣

𝜕𝑡
+ 𝑣𝐿∇𝑥𝑐𝑣 − 𝐷𝑣∇𝑥

2𝑐𝑣 = ∇𝑥 𝑣𝐿  

 

∇𝑥𝑣𝐿 = − 𝐵𝑟𝑤(𝜑) [
𝑘𝑇

Ω0
ln

𝑐𝑣

𝑐𝑣
0

− σ11
∞ + 𝑤(𝜑) −

1

2
𝜖(∇𝑥𝜑)2]  

In these equations 𝑐𝑣 is the vacancy site fraction and 𝐷𝑣 = 𝑘Ω0𝐿
𝑐𝑣

⁄  the vacancy diffusion 

coefficient assumed to be constant, 𝐵𝑟 a constant, σ11
∞  the coordinate-independent 

normal stress inside the grains, 𝑐𝑣
0 the equilibrium vacancy concentration in the absence 

of normal stress, Ω0the stress-free value of the volume per site (Ω), 𝑘 Boltzmann’s 

factor, 𝑤(𝜑) a double-well function with an amplitude W creating a free-energy barrier 

between two lattice orientations, and 𝜖 is the gradient energy coefficient. These are the 

equations for a one-dimensional model. As they state,  

Due to the simplified geometry of this example, we will obviously not be able to 

model a real three-dimensional creep process taking place in polycrystalline 

materials. (Mishin et al. 2013, pp.15-16) 

While this model has the potential to provide insight in creep in specific materials and 

can aid in explaining why certain materials behave the way they do, they will not likely 
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be helpful for a failure analyst like Carter14. But they might be useful in other epistemic 

contexts e.g. developing new materials. A pragmatic view on laws thus gives us a positive 

reason for engineers to use the Neuber rule: in certain contexts, the Neuber rule best fits 

the demands of the engineer and discipline.  

The great diversity in approaches of creep-research seems to reflect this need for 

distinct regularities depending on the context. In some cases, the need for diversity is 

even explicitly acknowledged by engineering scientists. For example, Härkegård and 

Sørbø (1998) investigate the applicability of the Neuber rule because, regardless of the 

existing FEM techniques15 to calculate stresses, 

[…] it is still important for design engineers to have a qualitative notion of the key 

factors effecting stress and strain at notches. […] Therefore, validated and well-

documented simplified methods for the approximate analysis of notches may still 

prove valuable. (p.224) 

Correspondingly, the specific regularities that are used and trusted in various contexts 

will differ depending on the goal of the context and users. So whether and why a 

regularity receives epistemic authority is a question that can only be answered from 

within a specific context. This alternative, pragmatic view on laws thus presents a way to 

understand why engineers keep on using regularities like the Neuber rule. And while it 

builds on Goodman and others in the sense that the epistemic status of a regularity in a 

community is central for epistemic authority, the different parameters of usefulness help 

us get a better understanding of why certain regularities are trusted for certain 

purposes. In a sense, it is as Goodman said: laws are laws because they receive epistemic 

authority. This has been criticised as an anthropocentric and subjective criterion. And 

compared to the necessitarian view, it is. We could in principle have given epistemic 

authority to other regularities. But by formulating the parameters to evaluate whether a 

regularity is best fit, there is a less subjective way of giving regularities authority. At the 

very least, it is a mind-independent criterion. Moreover, the regularities also have to be 

based on evidence (which I have not spent time on here, but see chapter 4) and they 

need to be successful, they need to work. These criteria are all mind-independent. 

Moreover, which regularities receive epistemic authority in which contexts constantly 

 

                                                     
14 Note that because this model cannot be used to describe three-dimensional phenomena, it also does not 

fulfil Nabarro’s criteria mentioned in 4.1. 
15 FEM stands for Finite Element Methods, and refers to discretisation techniques in structural mechanics 

developed to solve mathematical equations by dividing them into non-overlapping components of simple 

geometry (Lin 2010, p.1). 
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changes. New regularities and applications are being developed (see above, the 

developments regarding creep) and they are being used and trusted. Understanding how 

and why this happens can best be done with a pragmatic story. 

A pragmatic approach to epistemic authority also helps to bypass the theory-focus of 

traditional philosophy of science that I described in chapter 1 and that for instance Boon 

(2011) criticises. If the laws of physics (and equivalent laws) were the only ones that we 

can trust to make predictions and warranted explanations, then the engineers who rely 

on regularities like the Neuber rule would behave quite unsystematically and 

unmethodically. After all, their actions would not be guided by anything reliable, but the 

resulting diagnoses and predictions are trusted to make changes to existing artefacts, or 

to design new ones, as was clear from chapter 4. Because of all the successful 

applications and the general merits of engineering (sciences), this is highly unlikely and 

somewhat undervalues the methodology of a profession with great influence on our 

daily lives. A pragmatic understanding of laws, in combination with arguments against 

foundationalism and a focus on modelling, allows for a proper validation of the 

engineering sciences and their scientific practice.  

The context-dependence of epistemic authority also helps to understand the 

distinction Boon and Knuuttila (2009) draw between engineering and the engineering 

sciences. They are different epistemic practices, with different goals and therefore 

different regularities. Looking back at the design recommendation Carter formulated for 

the spray drier (viz. to remove the lagging and cladding), it should be noted that this 

seems more straightforward than it might be. Actually designing a spray drier without 

the lagging and cladding might need some other adaptations in order for the resulting 

artefact to function in a stable way. Implementing the changes suggested in the design 

recommendations from failure analysts is a different epistemic practice than discovering 

what caused the failure. The first, I would say, is part of engineering design – a discipline 

with its own challenges and goals (see e.g. (Kroes 2009) and (Radder 2009)). The second 

is part of engineering sciences (since it aims at general knowledge). Correspondingly, the 

two practices might require different regularities to achieve their goals. Going from the 

recommendations to a new functioning artefact may require other regularities than the 

failure analysis, for instance regularities at another level, of a different specificity, 

knowledge of specific materials and threshold values, … This difference can also be 



 

 181 

explained in the pragmatic approach to lawhood and epistemic authority I presented 

here.16  

Finally, I want to reflect on the three strategies of defining laws that Mitchell 

distinguished. When we adopt a pragmatic view on regularities, this does not entail that 

in some contexts laws cannot be used normatively or paradigmatically by scientists. On 

the contrary, depending on the context, scientists can use the concept of law in a 

normative or paradigmatic way, because this is what the context of use requires. All of 

this is possible in a pragmatic account on laws and epistemic authority, while helping us 

understand why those regularities are used in that specific way. Because of this and all 

the other reasons above, I believe a pragmatic view on laws is remarkably well fit to 

reflect on scientific practice and specifically epistemic authority. If nothing else, it is 

better than the necessity approach. But hopefully, my analysis has shown that the 

pragmatic view can do more: it draws our attention to underinvestigated problems in 

philosophy of science and helps us understand the scientific practice of less visible 

disciplines such as the engineering sciences. 

Conclusion 

In this chapter, I investigated how we can legitimate why certain regularities receive 

epistemic authority in certain scientific practices. With “epistemic authority” I referred to 

the fact that regularities are trusted to achieve epistemic goals like prediction, 

explanation and manipulation. I tackled this question from the point of view of the 

engineering sciences, specifically failure analysis and used the Neuber rule from creep 

modelling as an exemplar.  

I showed that in the philosophical literature, epistemic authority is often connected to 

the distinction between laws and mere regularities: laws can be trusted for epistemic 

goals, mere regularities cannot. Yet what makes a law a law is not agreed upon by 

philosophers. I discussed two common strategies for defining laws and for legitimating 

their epistemic authority: a necessitarian approach and an epistemic mark approach. 

Throughout the chapter I argued that neither was, in its current form, sufficient to 

 

                                                     
16 For a detailed and informative discussion of the technology-engineering-science relation that corresponds 

with my analysis, see e.g. (Radder 2009), (Boon 2006) and (Boon 2011). 
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explain why the Neuber rule is trusted in engineering practice. Regarding necessity, I 

argued that the most obvious way to claim that the Neuber rule expresses necessity, was 

to derive it from more fundamental laws that are thought to express necessity. Building 

on Frisch’s work in philosophy of physics, I then showed that (1) the Neuber rule is 

currently not successfully derived from (more) fundamental laws, that (2) the idea that 

there are truly fundamental laws that can be used to represent any phenomenon is not 

unproblematic given the functioning of scientific practice, and that (3) even if there are 

such fundamental laws, there is no guarantee that their necessity is undamaged by the 

modelling practices of science. I concluded that a necessitarian approach to epistemic 

authority does not help us to understand why the Neuber rule is trusted and used 

successfully in failure analysis. 

As an alternative, I presented a pragmatic approach to epistemic authority, based on 

the work of Mitchell regarding laws of biology. I argued that whether a regularity 

receives epistemic authority depends on the specific demands and purposes of the 

scientific practice and undertaking. This entails that, even if we succeed in expressing the 

Neuber rule in more fundamental or micro terms, the resulting regularity might not 

receive epistemic authority in failure analysis, since it might be less apt to reach the 

specific goals of the discipline. I stressed that feasibility and intelligibility are important 

features for regularities in failure analysis. I argued that this pragmatic approach can 

explain the epistemic authority of the Neuber rule in failure analysis better than a 

necessitarian approach, while also accounting for the great diversity of regularities in 

different scientific disciplines. Moreover, I argued that this alternative account is more 

informative than the epistemic mark account of for instance Goodman. In this way, this 

chapter constituted an argument for my final specific claim (VI). 

For my analysis, I also combined and expanded on arguments from philosophers of 

physics and philosophers of biology. As I explained in chapter 1, physics is often still seen 

as the exemplar, as the most mature science. The debate on laws in biology started from 

a comparison with laws of physics. Precisely because of the prestige that is connected 

with various sciences, with laws and with fundamentality, it is important that we 

combine insights from different fields in the philosophy of science. Thanks to 

philosophers like Frisch, who provide us with a more nuanced and practice-engaged view 

of physics, we can redraw the comparison. And this has consequences for other scientific 

disciplines as well. By moving away from a theory-focus view of physics as point of 

comparison and example for other sciences, the field opens up for legitimate research 

into different domains, like the engineering sciences.  

As should be clear from the previous chapters in this dissertation, a whole range of 

philosophical debates are influenced by the definition and conception of law. As is clear 

from the way I conducted the analysis, the philosophical tools have long been in the 
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making. They are here, but need to be combined. I believe it is time we take the image 

that arises from combining them seriously: scientific practice does not differ as much 

across the domains as is often thought, and the way in which it differs is worth 

investigation. To give but one example: the relationship between philosophy of more 

traditional sciences (such as physics) and philosophy of engineering and technology. 

Similar points to Frisch’s against foundationalism and for the importance of models have 

been made from the perspective of philosophy of technology. I already mentioned 

Boon’s arguments. But Radder (2009) made a similar point in discussing the relation 

between science and technology: for fundamental theories to become empirically 

applicable, they have to be “developed and specified with a view to particular domains 

of empirical phenomena” (2009, p.72). He also defends the importance of modelling in 

science. Yet Frisch’s points are still considered controversial, and philosophy of 

engineering and technology is still not booming in the way that philosophy of biology e.g. 

is. Integrating work from different debates can help strengthen the legitimacy of all 

these not so traditional disciplines. And that can, in my opinion, really benefit our 

understanding of science in all its forms and applications. 

This chapter also presented the final complicating factor in my expose to show that 

using causal knowledge is a complex scientific practice, with its own problems, requiring 

philosophical attention (cfr. Generic aims (A) and (B)). Not only do we need to 

supplement information about regularities with excessive and detailed information 

about the physical setup or artefact and about the mechanism underlying the 

phenomenon, the regularities that we need are not exclusively the laws of physics. 

Because of all this, it is hard to maintain the view that we can understand all the aspects 

of physical causation by studying the laws of physics.  
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Conclusion 

In this dissertation I have investigated how we successfully use and produce appropriate 

physical causal knowledge to design, explain, maintain and repair artefacts. Causation in 

physics is traditionally discussed from a very theoretical point of view, focusing on the 

fundamental laws of physics. In this work, I have shown that when we focus instead on 

how we develop and use physical causal knowledge to achieve epistemic goals (i.e. when 

we take a use-perspective), many complexities that are not captured by the theoretical 

discussion become tangible. In chapter 1, I sketched the framework in which this 

dissertation is to be understood. I showed that laws take up a central position in the 

philosophy of physics, and that this influenced the philosophy of other sciences as well. 

Recently, philosophy of the special sciences (viz. the biomedical and the social sciences) 

has let go this focus on laws. In similar spirit, the Society for the Philosophy of Science in 

Practice (SPSP) has argued that we need to study science as a practice, and not limit 

ourselves to the theory or laws. However, philosophy of physics remains very focused on 

laws and theory. To supplement this, I analysed cases where we use physical causal 

knowledge with regards to the meaning of this knowledge, the evidence for this 

knowledge and its relation to laws. The cases were of different complexity levels and 

addressed different sources of complexities.  

Recall that in the introduction, I formulated 4 specific claims that I would argue for 

throughout the dissertation:  

(I) To account for our successful creating, explaining, repairing, and 

maintaining of artefacts, we need a lot of specific physical causal 

information of the right kind, both of the artefact and of the physical and 

social context it functions in. 

(II) The evidence needed to argue for physical causal claims extends beyond 

the laws of physics. We also use mechanistic evidence. 



 

188 

(III) The laws of physics are not the only source of general knowledge that is 

used to reach epistemic goals. Another important source is generalising 

local causal knowledge  

(IV) When looking at use, the importance of the distinction between laws and 

non-laws becomes significantly less prominent and the focus shifts to 

contextual goals. As such, the focus that philosophy of physics puts on 

theory and fundamental laws does not aid us in understanding how we use 

physical causal knowledge to achieve epistemic goals. 

In chapters 2 till 5, I argued for these claims. In chapter 2, I argued for the first claim. I 

studied causal knowledge that needs to underlie remedy instructions from bike, car and 

radio repair manuals. This chapter showed that even for day-to-day artefacts in rather 

easy contexts, we still need a lot of information in order to warrant causal claims that we 

can use to intervene in the world. It also showed that the validity and meaning of many 

physical causal claims depend on the context, both on the physical and the social. I 

furthermore argued that depending on the demands we put on our interventions, we 

require different properties of the causal relation. For the manuals, this included positive 

causal factorhood, weak context-unanimity and Mackie causation. This chapter dealt 

with the least complex cases of my dissertation, since they involved reliable knowledge 

that was very focused on the interventions.  

In chapter 3, I turned my attention to claim to and focused on evidence. I argued that 

in reality, we need to support causal claims. I discussed how we support causal claims 

occurring in causal explanations. The laws of physics do not suffice to support them. 

Physical laws only provide what I called correlational evidence. I argued that for 

phenomena that fall under the laws of physics, we need mechanistic evidence to 

supplement the evidence from physical laws. The interplay between the laws of physics 

and mechanistic evidence resembles the interplay between correlations in the special 

sciences and mechanistic evidence. I showed that the main difference is related to the 

mathematical equivalency that most laws express, which often makes it easier to exclude 

the possibility of common causes and nonsense correlations in physical cases, than it is in 

the biomedical or the social sciences. The chapter showed that supporting causal claims 

that we use in explanations, also requires a lot of information of the right kind. And, 

more importantly, this evidence is not just laws, we also need information about 

mechanisms. This constituted the argument for claim (II). 

In chapter 4, I investigated practices where the laws of physics do not function as 

source of general physical knowledge, but where causal knowledge from specific cases 

was generalised to other situations. This adds another layer of complexity to the cases 

compared to the ones from chapter 2 and 3. I discussed 3 examples from failure analysis. 
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I showed that to make the knowledge generalisations warranted, engineers need 

information about the mechanism of the artefact, both to determine the domain of the 

generalisation and to perform a comparative processing test. Because these cases deal 

with malfunction of rather complex machinery, the laws of physics are not the most 

straightforward source of general knowledge. I argued that this is the case for many 

contexts in which we want to use physical causal knowledge, and that finding this 

knowledge is not easy. In this way, I argued for claim (III). 

In chapter 5, I turned to the last claim (viz. (IV)). In a sense, the previous chapters 

provided groundwork for this final chapter. In it, I reflected on a regularity (viz. the 

Neuber rule) from failure analysis that receives epistemic authority and I argued that 

traditional views that connect this authority to lawhood cannot help us understand why 

this regularity is trusted for interventions and explanations. I used arguments from 

Mathias Frisch to show that regularities only get epistemic authority for phenomena that 

are actually modelled with the regularities or are sufficiently close to such phenomena. 

Relatedly, I showed that the view that there are fundamental laws that can be used to 

represent any phenomenon is not unproblematic. And because models do not follow 

from regularities in necessary way, attempting to explain the authority of the Neuber 

rule via the necessity of the laws of physics is not a successful strategy. I argued that a 

pragmatic view on epistemic regularity fits better. Based on Sandra Mitchell’s 

contributions to the philosophy of the life sciences, I presented different parameters 

according to which the usefulness of regularities can be determined, like feasibility and 

intelligibility. Correspondingly, the difference between laws and non-laws becomes less 

important than whether a regularities is suited for achieving the specific goals. In this 

way, I also refuted an assumption that is present in the philosophy of physics, viz. that 

the laws of physics are the main source of general knowledge we need to achieve our 

epistemic goals.  

The combination of all these chapters and conclusions allow me to reach the two 

generic aims that I specified in the Introduction: 

(A) To show that using and producing physical causal knowledge is not a trivial 

affair. 

(B) To show there a several serious philosophical issues connected to useful 

physical causal knowledge.  

As explained, these aims would be reached throughout the dissertation, rather than in 

one specific chapter. Now that all my arguments have been presented, it is clear that 

together, they fulfilled (A) and (B). All chapters identified reasons why using and 

producing physical causal knowledge is not trivial. For instance, we need to be certain 
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that the meaning of the knowledge is appropriate for our envisioned epistemic goals, we 

require a lot of evidence that is not easy to come by and determining which regularities 

are to be trusted for our specific situations is far from straightforward. By attempting to 

analyse and understand these difficulties, I have shown that, pace what philosophers like 

Norton assume, these difficulties are serious philosophical issues, worthy of reflection. 

Let me take stock of what these conclusions mean. The first important point I want to 

stress is that the focus on laws does not help us understand how we explain, and 

intervene in, the world based on physical causal knowledge. From the way I have put 

contributions from different literatures together, it should be clear that the philosophical 

tools to support this point are there. Philosophy of the special sciences is turning to 

practice and use, philosophy of the engineering sciences is dedicated to a more practice-

engaged part of science, and philosophy of technology provides a rich basis for analysing 

artefacts. Philosophers like Cartwright, Mitchell, Steel, Frisch and all the mechanists have 

been attempting to refocus philosophy of science more towards practice for some time. 

And yet, laws remain to be very central in philosophy of physics, and paying attention to 

physical applications, is still controversial. I have shown that this philosophical focus on 

laws rests on assumptions that are hard to maintain when we are prepared to focus on 

using physical causal knowledge. 

I have not just advocated a turn to scientific practice of physics. I have advocated a 

turn to practices surrounding all kinds of artefacts, including common household ones. 

The development and functioning of common artefacts is often taken for granted and 

simultaneously seen as a result of science. I have shown that developing, explaining, 

maintaining and repairing artefacts, even common household ones, is a complex 

practice. It cannot be understood by studying a select group of physical laws that often 

have rather little to do with this practice. Rather, a combination of insights from 

philosophy of physics, philosophy of technology and philosophy of engineering is needed 

for understanding practices related to artefacts. My dissertation is an example that 

shows what can be gained from combining these literatures. I hope it encourages others 

to do the same, and in this way bring these domains closer together. A related 

consequence of my analysis concerns the focus that philosophy of physics lies on 

theoretical physics. Again, it goes without saying that this is an important domain. But 

there is so much more out there. Fundamental physics differs significantly from the 

practices that I described in this dissertation, like bike repair and engineering. It is very 

conceivable that we may need different philosophical tools to study the different 

practices. Even when we study theoretical physics from a PSP-perspective, it will not give 

us answers to all the philosophical questions raised here, questions related to how 

physical knowledge influences our day-to-day lives. So I also plead for a more liberated 

view of which domains of physical causal knowledge are philosophically reflected upon – 
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a view that takes the materialisations of physical knowledge seriously. The practices I 

discussed are real, and all but easy. They require philosophical attention. I hope to have 

provided some starting point for doing so. 

Correspondingly, the picture that arises is one where physical practices are 

remarkably similar to practices from the special sciences. This is another point I want to 

emphasize. I used philosophical insights from the special sciences to elucidate the 

physical cases in every chapter. The reason why this methodology worked is because in 

many physical practices, the same problems or difficulties arise as in the special sciences. 

Think about the need for mechanistic evidence, the need for knowledge generalisation 

techniques, the contingency of regularities. There are of course differences between the 

physical practices I described and the special sciences, just like there are differences 

among the different special sciences. But from my analysis, it should be clear that those 

differences are significantly less prominent than is often assumed in philosophy of 

science. More importantly, the ways in which the practices differ is worth investigation. 

But all of these questions require that we relax the philosophical focus on the laws and 

theory of physics. In that sense, I hope that this dissertation can also contribute to the 

status and prestige of certain not so traditional disciplines. When we accept that 

epistemic practices related to the exemplar science (viz. physics) are in fact rather similar 

to practices in the special sciences, the ideal that sciences need to live up to changes, 

and correspondingly, the status of other (not so) scientific disciplines changes as well. 

And provided we believe that philosophy has some impact on society, this can have 

influences on funding, on how resources are spent and prioritised, on when scientific 

results are thought to be established.  

Because of all my points, let me conclude by suggesting that it is the focus on laws in 

philosophy of physics that “is a relic of a bygone age”, and not causation, as was said to 

be in the beginning of this dissertation (see the introduction).  

 





 

 193 

Summary 

In this dissertation I have investigated how we successfully use physical causal 

knowledge to intervene in and explain the physical world. By doing so, I have attempted 

to bring a more practice engaged voice to philosophy of physics in general, and to the 

characterisation of causation in physics in specific. The question of whether the laws of 

physics express causal information has drawn philosophical attention for some time, 

with most philosophers answering negatively. By and large, their arguments are based 

on the symmetry that most laws of physics express. For one, laws of physics are often 

mentioned as mathematical equations. Hence, the value of every variable in the 

equation can be calculated from the values of the other variables. This stands in contrast 

with causal relations: the value of the cause can be used to determine the value of the 

effect, but often not vice versa. Moreover, causal relations are thought to be time-

asymmetric: causes precede their effects. Laws of physics, on the other hand, are time-

symmetric: when you know the state of a physical system at a certain point in time, you 

can determine both the past and future states of the system. Because of these 

dissimilarities, philosophers have concluded that there is no causal information in the 

laws of physics. This conclusion does not seem compatible with day-to-day practice, 

since we use physical causal information to intervene in the natural world and to explain 

it. Sending spacecrafts to the moon and ensuring that they – and the astronauts flying 

them – come back for example, requires the use of mechanics and other physical 

knowledge. These are goal-directed activities, with an inherent asymmetry between 

cause (means) and effect (goal). In this dissertation, I attempted to resolve this contrast 

by studying how we use physical causal knowledge and what this can teach us about 

physics and the laws of physics.  

In chapter 1, I explained this proposed in shift in focus. It is clear that we use physical 

causal knowledge often, among other things for designing, building, maintaining, 

explaining and repairing artefacts. These are the contexts I focused on throughout this 

PhD. Such a focus on applications is notoriously absent from philosophy of physics, since 



 

194 

applications are thought to follow straightforwardly from the laws. I argued that this is 

connected with two assumptions: that the mathematical expression of the laws carry all 

their information and that the laws exhaust the content of physics.  

In this dissertation, I built on existing philosophical analyses developed in light of the 

special sciences (viz. the social and biomedical sciences), to show that using physical 

causal knowledge is not straightforward at all, and does raise interesting philosophical 

issues that cannot be resolved by focusing on the laws of physics. Moreover, when we 

thoroughly look at applications, the claim that physics contains no causal information 

turns out to be untenable as well. I have argued for this by discussing different contexts 

of use with increasing complexity, ranging from technical repair manuals, over common 

artefacts to failure analysis. Each of these contexts allowed me to draw focus to a 

different interesting philosophical problem related to using and producing physical 

causal knowledge. 

In chapter 2, I studied the meaning of causal claims on which we want to base 

interventions. For this chapter, I used examples from technical repair manuals for bikes, 

cars and radio’s as examples. I showed that depending on the demands we put on the 

results of our interventions, we need different causal knowledge. Moreover, causal 

relations depend on the context. While in the case of a heated pressure cooker, the 

temperature determines the pressure, the causal relation is reversed in other artefacts. 

This chapter showed that even for day-to-day artefacts in rather easy contexts, we still 

need a lot of information in order to warrant causal claims that we can use to intervene 

in the world. This constituted the first important issue related to using and producing 

physical causal knowledge. So if we are interested in using causal knowledge, we need a 

lot of information that is not straightforwardly contained in the laws. This is why repair 

manuals are so useful. They prescribe actions that fulfil our goals without us needing to 

find all the information needed to warrant the actions ourselves. They have authority. 

However, in many cases, there is no such manual and we need to support the causal 

claims we want to base interventions and explanations on ourselves. This was the topic 

of chapter 3, where I discussed explanations in the context of common artefacts. Based 

on those cases, I showed that supporting causal claims is not that straightforward either. 

Suppose we want to explain why a fire occurred. We may refer to the cause of the fire. 

For example, we might say that the shortcut caused the fire. For our explanation to be 

successful, we need to support this causal claim. I showed that the laws of physics do not 

suffice to support causal claims. They only provide what I called correlational evidence. I 

argued that for phenomena that fall under the laws of physics, we need mechanistic 

evidence to supplement the evidence from physical laws. This means we need 

information about the mechanism that connected the shortcut to the fire, and this 
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information is not given by the laws. This is the second important philosophical issue 

related to using and producing physical causal knowledge. 

In chapter 4, I studied engineering practices. Because of the artefacts that engineers 

handle and the contexts they deal with, these cases are more complicated than the day-

to-day contexts I discussed in previous chapters. I looked at failure analysis, an 

engineering practice where failures of artefacts are investigated to guide maintenance 

and design practices of other artefacts. Analysts generalise knowledge from one failure 

to other contexts. This is another source of general physical knowledge than the laws of 

physcs. I investigated how the engineers support their generalisations. I showed that to 

make the knowledge generalisations warranted, engineers need information about the 

mechanism of the artefact and about the broader context the artefact functions in. This 

information is not contained in the laws of physics either, so the way that this 

information is gathered and characterised, forms the third important issue related to 

using physical causal knowledge. 

In chapter 5, I turned to the relation between practices surrounding artefacts and the 

laws of physics. I focused on why regularities receive what I called epistemic authority in 

the context of artefacts. With epistemic authority, I referred to the fact that certain 

information is trusted to base interventions or explanations on. Traditionally, this 

authority has been linked to lawhood: fundamental laws deserve this authority. In 

engineering practices, other regularities are often used to guide interventions or 

explanations. Yet these regularities are often considered to be less than the laws of 

physics: they are not universally valid and they do not express any necessity. I argued 

that the view that universal, necessary laws are more appropriate to achieve our 

epistemic goals is mistaken. In reality, a whole array of regularities is used to achieve 

goals, and which regularities are used depends on the context and the specific goals we 

have. Correspondingly, I showed that the laws of physics are not straightforwardly the 

main source of information for reaching epistemic goals. Deciding and understanding 

which regularities are used and why, constituted the final important philosophical issue 

related to using physical causal knowledge that I identified in this dissertation.  

These arguments showed that the assumption that using and producing physical 

causal knowledge is straightforward and unproblematic, is mistaken. Correspondingly, 

the focus on laws in philosophy of physics is not unproblematic, and actually hinders 

philosophical reflection on the broader physical sciences. By looking at applications, the 

gap between physics and the special sciences turned out to be significantly smaller than 

often assumed. At the same time, it became clear that our understanding of science 

would benefit from an increased interplay between philosophy of physics on the one 

hand and philosophy of engineering and of technology on the other.  
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Correspondingly, when we accept that the exemplar science (viz. physics) has in fact 

more in common with the special sciences, the ideal that sciences need to live up to 

changes. This also influences the status of other scientific disciplines. And provided we 

believe that philosophy has some impact on society, a changed perception of physics can 

influence funding, how resources are spent and prioritised, and even change when 

scientific results are thought to be established. In general, a practice-based philosophy of 

physics can significantly alter how we characterise and value science as a whole. 

 



 

 197 

Samenvatting 

In dit doctoraat heb ik onderzocht hoe we op succesvolle wijze fysische causale kennis 

gebruiken om de fysische wereld te begrijpen, en deze te manipuleren. Met deze focus 

heb ik geprobeerd een meer praktijk geïnspireerde visie te introduceren in filosofie van 

de fysica en dan specifiek in het debat rond causaliteit in fysica. Filosofen buigen zich al 

lang over de vraag of de wetten van de fysica causale informatie bevatten. Volgens het 

merendeel van de hedendaagse filosofen van de fysica is het antwoord negatief. In het 

algemeen zijn hun argumenten gebaseerd op het feit dat de meeste wetten van de fysica 

symmetrisch zijn. Eerst en vooral worden de wetten vaak uitgedrukt als wiskundige 

vergelijkingen. Zodoende kan de waarde van elke variabele in de vergelijking berekend 

worden op basis van de waarden van de andere vermelde variabelen. Dit staat in 

contrast tot causale relaties: de waarde van de oorzaaksvariabele kan gebruikt worden 

om de waarde van de effectsvariabele te beïnvloeden, maar niet andersom. Bovendien 

wordt van causale relaties vaak gesteld dat ze een tijds-asymmetrie uitdrukken: 

oorzaken gaan vooraf aan effecten. De wetten van de fysica daarentegen, zijn tijds-

symmetrisch: ze laten je toe om op basis van de toestand van een fysisch systeem op één 

bepaald tijdstip, zowel de toekomstige als voorbije toestanden van dat systeem te 

bepalen. Omwille van deze verschillen met betrekking tot symmetrie hebben veel 

filosofen geconcludeerd dat de wetten van de fysica geen causale informatie bezitten. 

Deze conclusie lijkt echter niet compatibel met dagdagelijkse praktijk, gezien we fysische 

causale informatie constant gebruiken om de natuurlijke wereld te verklaren en erin in te 

grijpen. Denk bijvoorbeeld maar aan ruimtevaart. Shuttles naar de ruimte sturen en 

ervoor zorgen dat ze veilig terugkeren, vraagt veel kennis van mechanica en andere 

fysische domeinen. Dit zijn doelgerichte activiteiten, met een cruciale asymmetrie tussen 

de oorzaak (het middel) en het gevolg (het doel). In dit doctoraat heb ik geprobeerd dit 

contrast tussen dagdagelijkse en wetenschappelijke praktijk aan de ene kant en filosofie 

van de fysica aan de andere kant, op te lossen. Dit heb ik gedaan door te focussen op 
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hoe we fysische causale kennis gebruiken en produceren, en wat dit ons kan leren over 

(de wetten van de) fysica. 

In hoofdstuk 1 heb ik deze verandering van focus gekaderd. Uit een blik op de praktijk 

blijkt dat we fysische causale kennis onder meer gebruiken voor het ontwerpen, 

bouwen, onderhouden, verklaren en repareren van artefacten. Dit zijn de contexten 

waaraan ik aandacht besteed heb in dit doctoraat. Zo’n focus op toepassingen is notoir 

afwezig in filosofie van de fysica, omwille van de overtuiging dat toepassingen een direct 

en onproblematisch gevolg zijn van de wetten van de fysica. Ik heb geargumenteerd dat 

deze overtuiging verbonden is met twee vooronderstellingen, namelijk dat de 

wiskundige formuleringen van wetten de volledige inhoud van de wet weergeven en dat 

de wetten van de fysica de volledige inhoud van het wetenschappelijk domein vatten. 

In dit doctoraat heb ik filosofische analyses uit de speciale wetenschappen (viz. de 

sociale en biomedische wetenschappen) aangepast en uitgebreid om aan te tonen dat 

fysische causale kennis produceren en gebruiken absoluut niet evident is en weldegelijk 

belangrijke filosofische problemen genereert. Bovendien kunnen deze problemen niet 

opgelost worden door louter de wetten van de fysica te bestuderen. Daarnaast heb ik 

aangetoond dat een grondige focus op het gebruik van fysische causale kennis niet 

compatibel is met de idee dat fysica geen causale informatie bevat. Ik heb deze punten 

beargumenteerd door verschillende contexten waarin fysische causale kennis gebruikt 

wordt te bestuderen. Deze contexten werden gradueel complexer, gaande van 

technische handleidingen over alledaagse artefacten tot de wetenschappelijke analyse 

van gefaalde artefacten. Elk van deze contexten gaf aanleiding tot een nieuw interessant 

filosofisch probleem gerelateerd aan het gebruiken en produceren van fysische causale 

kennis. 

In hoofdstuk 2 heb ik de betekenis bestudeerd van causale beweringen waarop we 

interventies willen baseren. Voor dit hoofdstuk heb ik voorbeelden uit technische 

reparatie handleidingen van fietsen, auto’s en radio’s gebruikt als casestudies. Ik heb 

aangetoond dat het type causale kennis dat we nodig hebben voor onze interventies, 

afhangt van de specifieke eisen die we stellen aan het resultaat van die interventies. 

Bovendien zijn causale relaties context-afhankelijk. In een verhitte snelkookpan bepaalt 

de temperatuur de druk in de pan, maar voor andere artefacten is de causale relatie 

omgekeerd. Dit hoofdstuk toonde aan dat we zelfs voor zeer alledaagse artefacten in vrij 

simpele omstandigheden, veel informatie nodig hebben om causale beweringen waarop 

we interventies willen baseren te rechtvaardigen. Dit vormde het eerste belangrijke 

filosofische probleem met betrekking tot het gebruik van fysische causale kennis. De 

informatie die nodig is om fysische causale kennis te gebruiken op een nuttige manier zit 

niet overduidelijk in de wetten. Dit is waarom technische reparatie handleidingen zo 

nuttig zijn. Ze specifiëren handelingen die onze doelen vervullen zonder dat we zelf de 
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informatie moeten verzamelen die nodig is om de handelingen te rechtvaardigen. De 

handleidingen hebben autoriteit. 

In veel situaties zijn er echter geen handleidingen beschikbaar en moeten we zelf 

verantwoording geven voor de causale beweringen waarop we interventies en 

verklaringen willen baseren. Dit heb ik besproken in hoofdstuk 3. Daar heb ik 

aangetoond dat causale beweringen verantwoorden in de context van verklaringen ook 

niet evident is. Wanneer we bijvoorbeeld willen verklaren waarom er ergens brand 

uitbrak, kunnen we verwijzen naar de oorzaak van de brand. We kunnen bijvoorbeeld 

stellen dat er een kortsluiting had plaatsgevonden. Opdat onze verklaring succesvol zou 

zijn, moeten we deze bewering staven. Ik heb aangetoond dat de wetten van de fysica 

niet volstaan om zulke fysische causale beweringen te staven. We hebben ook informatie 

nodig over het mechanisme dat de kortsluiting met de brand verbond. Dit was het 

tweede belangrijke filosofische punt dat ik identificeerde met betrekking tot het gebruik 

van fysische causale kennis. 

In het vierde hoofdstuk heb ik ingenieurswetenschappen bestudeerd, en specifiek de 

analyse van gefaalde artefacten. Het soort artefacten waar ingenieurs mee in contact 

komen, en de contexten waarin de ingenieurs werken, zijn complexer dan de meer 

alledaagse contexten en artefacten uit de vorige hoofdstukken. Ik heb mij specifiek 

gefocust op ingenieurspraktijken waar gefaalde artefacten bestudeerd worden met als 

doel ontwerp- en onderhoudspraktijken van andere artefacten te verbeteren. 

Gespecialiseerde ingenieurs generaliseren kennis van één falen naar andere contexten. 

Dit is een andere bron van algemene fysische kennis dan de wetten van de fysica. Ik heb 

onderzocht hoe ingenieurs hun generalisaties verantwoorden. Ik heb aangetoond dat ze 

hiervoor informatie over het mechanisme van het artefact nodig hebben, alsook 

informatie over de bredere context waarin het artefact functioneert. Deze informatie zit 

ook niet rechtstreeks in de wetten van de fysica. De manier waarop deze informatie 

verzameld wordt en hoe ze te karakteriseren vormde het derde belangrijke filosofische 

probleem dat ik geïdentificeerd heb in verband met fysische causale kennis gebruiken en 

produceren. 

Hoofdstuk 5 handelde over de relatie tussen praktijken rond artefacten en de wetten 

van de fysica. Ik heb onderzocht waarom regulariteiten epistemische autoriteit 

ontvangen in de context van artefacten. Met epistemische autoriteit bedoelde ik het feit 

dat bepaalde informatie vertrouwd wordt om interventies en verklaringen op te baseren. 

Traditioneel werd deze autoriteit verbonden met wetmatigheid: fundamentele wetten 

verdienen de autoriteit. In ingenieurspraktijken worden echter andere regulariteiten dan 

fundamentele wetten gebruikt om interventies en verklaringen op te baseren. Deze 

regulariteiten worden vaak als minder informatief of betrouwbaar beschouwd dan de 

wetten van de fysica: de regulariteiten zijn niet universeel geldig en ze drukken geen 
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noodzakelijk verband uit. Ik heb geargumenteerd dat de idee dat universele, 

noodzakelijke wetten beter zijn om onze epistemische doelen te bereiken, onhoudbaar 

is. In realiteit wordt een hele waaier van regulariteiten gebruikt, afhankelijk van de 

context en de specifieke doelen die we willen bereiken. Overeenkomstig heb ik 

aangetoond dat de wetten van de fysica niet eenduidig de belangrijkste bron van 

informatie zijn die we nodig hebben voor interventies en verklaringen. Beslissen en 

begrijpen welke regulariteiten wanneer gebruikt worden en waarom, vormde het laatste 

belangrijke filosofische probleem dat ik geïdentificeerd heb in dit doctoraat. 

De combinatie van deze hoofdstukken en argumenten toont de onhoudbaarheid aan 

van de veronderstelling dat het gebruiken en produceren van fysische causale kennis 

evident is. Overeenkomstig is de eenzijdige focus op wetten in filosofie van de fysica ook 

niet onproblematisch en hindert deze focus filosofische reflectie op bredere fysische 

praktijk (viz. onder meer praktijken rond artefacten). Door de focus te verleggen naar 

toepassingen bleek dat de speciale wetenschappen en fysica meer gemeen hebben dan 

vaak wordt aangenomen in wetenschapsfilosofie. Tegelijkertijd werd duidelijk dat ons 

begrip van wetenschappelijke praktijk baat zou hebben bij een grotere kruisbestuiving 

tussen filosofie van de fysica en filosofie van de ingenieurswetenschappen en van de 

technologie.  

Wanneer we bovendien inzien dat de voorbeeldwetenschap bij uitstek (namelijk 

fysica) meer gemeen heeft met de speciale wetenschappen, dan wijzigt ook het 

ideaalbeeld dat we hebben van wetenschap. Deze wijziging heeft op zijn beurt gevolgen 

voor het wetenschappelijk statuut van bepaalde disciplines zoals bijvoorbeeld technisch 

ontwerp. En mits we geloven dat filosofie enige impact heeft op de samenleving, kan 

deze wijziging in perceptie van wat wetenschap is invloed hebben op 

fondsenverstrekking, op hoe budgetten gespendeerd worden en zelfs op wat telt als een 

vaststaand wetenschappelijk resultaat. Concluderend kan gesteld worden dat een meer 

praktijk- en toepassingsgerichte filosofie van fysica de maatschappelijke en filosofische 

visie op en valuatie van wetenschap significant kan beïnvloeden.  
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