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Abstract 

Evaluative feedback provided during performance monitoring (PM) elicits either a positive or negative 

deflection ~250-300 ms after its onset in the event-related potential (ERP) depending on whether the 

outcome is reward-related or not, as well as expected or not. However, it remains currently unclear 

whether these two deflections reflect a unitary process, or rather dissociable effects arising from non-

overlapping brain networks. To address this question, we recorded 64-channel EEG in healthy adult 

participants performing a standard gambling task where valence and expectancy were manipulated in 

a factorial design. We analyzed the feedback-locked ERP data using a conventional ERP analysis, as well 

as an advanced topographic ERP mapping analysis supplemented with distributed source localization. 

Results reveal two main topographies showing opposing valence effects, and being differently 

modulated by expectancy. The first one was short-lived and sensitive to no-reward irrespective of 

expectancy. Source-estimation associated with this topographic map comprised mainly regions of the 

dorsal anterior cingulate cortex. The  second one was primarily driven by reward, had a prolonged 

time-course and was monotonically influenced by expectancy. Moreover, this reward-related 

topographical map was best accounted for by intracranial generators estimated in the posterior 

cingulate cortex. These new findings suggest the existence of dissociable brain systems depending on 

feedback valence and expectancy. More generally, they inform about the added value of using 

topographic ERP mapping methods, besides conventional ERP measurements, to characterize 

qualitative changes occurring in the spatio-temporal dynamic of reward processing during PM. 

Keywords: performance monitoring, reward processing, FRN, reward positivity, ACC, PCC 

 

  



3 
 

Introduction 1 

Performance monitoring (PM) is crucial to foster goal adaptive behavior. According to most recent 2 

models (Ullsperger et al., 2014a) it is best conceived as a feedback loop whereby action values are 3 

learned and updated, especially when mismatches between goals and actions occur unexpectedly. 4 

Although these mismatches can sometimes be processed based on internal or motor cues (e.g., 5 

response errors), in many situations, external evaluative feedback provides the primary source of 6 

information to guide the course of PM. At the psychophysiological level, there has been a rich tradition 7 

of event-related brain potentials (ERP) research aimed at exploring the putative brain mechanisms 8 

underlying this loop during feedback-based PM.   9 

Traditionally, the feedback-related negativity (FRN, sometimes termed FN, fERN, or MFN) was 10 

put forward as the main electrophysiological correlate of evaluative feedback processing during PM 11 

(Holroyd and Coles, 2002; Miltner et al., 1997; Ullsperger et al., 2014b; Walsh and Anderson, 2012). 12 

The FRN corresponds to a phasic negative fronto-central ERP component (N200) peaking around 250 13 

ms after evaluative feedback (FB) onset, being typically larger for negative compared to positive 14 

outcome, as well as unexpected relative to expected one. This negative deflection is usually preceded 15 

by a positive ERP component (P200; Sallet et al., 2013), as well as followed by the P300, corresponding 16 

to a large positive deflection being maximal around 300-400 ms at central and posterior parietal scalp 17 

electrodes.  18 

Initially, amplitude changes of the FRN (very much like the ERN, error-related negativity, which 19 

is time-locked to response onset) have been interpreted against a dominant reinforcement learning 20 

theory (RL-ERN theory; Holroyd and Coles, 2002; Sambrook and Goslin, 2015; Walsh and Anderson, 21 

2012). In this framework, changes in the amplitude of the FRN capture indirectly dopaminergic-22 

dependent reward prediction error signals (RPE; i.e. outcome either better or worse than expected). 23 

Moreover, the (dorsal) anterior cingulate cortex (dACC, sometimes termed rostral cingulate zone - RCZ; 24 

Ullsperger et al., 2014a) is thought to be the main intracranial generator of this phasic ERP component 25 



4 
 

(Gehring and Willoughby, 2002; Miltner et al., 1997; Yeung et al., 2004; Yu et al., 2011). According to 26 

the RL theory, the FRN reflects the processing of the outcome along a good-bad (valence/outcome) 27 

dimension, in relation to its actual expectancy. In other words, the FRN is thought to provide an 28 

integrated neural signal during PM where both the salience (absolute prediction error) and the valence 29 

(signed prediction error) of the outcome are integrated (Holroyd and Coles, 2002; Ullsperger et al., 30 

2014). Consistent with this view, many ERP studies previously reported reliable changes of the FRN 31 

amplitude as a function of not only the valence of the feedback, but also its expectancy, usually 32 

manipulated by means of changes in reward probability across trials (for reviews, see San Martín, 2012; 33 

Walsh and Anderson, 2012).  34 

More recently, researchers have begun to explore reward processing per se, as opposed to 35 

RPE. As a matter of fact, when the emphasis is put on reward processing at the feedback level 36 

(especially when monetary reward is used as main incentive), the amplitude difference seen at the 37 

FRN level (i.e. when reward is delivered vs. omitted) can be best explained by the generation of a 38 

positive activity associated with better than expected outcomes, rather than a negativity associated 39 

with worse than expected ones. In the existing ERP literature, this positivity has been named the 40 

“feedback correct-related positivity” (fCRP; Holroyd et al., 2008) or the “reward positivity” (RewP; 41 

Proudfit, 2015). It is elicited in the time range of the N200, and is thought to signal the achievement of 42 

the task goal (i.e. obtaining a reward) (Foti et al., 2011; Holroyd et al., 2008; Proudfit, 2015). In keeping 43 

with the RL-FRN theory, Holroyd et al. (2008) reinterpreted the N200 (Towey et al., 1980) giving rise 44 

to the FRN1 as the neural signal indicating that the task goal has not been achieved. The N200 is usually 45 

elicited by task-relevant events in general (i.e. unexpected outcome regardless of its outcome, see also 46 

Ferdinand et al., 2012) and might thus be overshadowed by the concurrent positive deflection that is 47 

elicited by positive FB. Accordingly, given that the positive (RewP) and negative (FRN) deflections 48 

                                                           
1 Here we refer to “FRN” as the negative deflection elicited by no-reward FB, and to “RewP” as the 

positive deflection (or lack of negative one) elicited by reward FB. For ease of reading, in Methods and Results 
sections we will refer solely to the scoring method adopted for quantifying both deflections. 
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overlap in time, it remains nowadays partly unclear which of them best captures systematic changes 49 

in reward processing at the feedback level as a function of reward expectancy (San Martín, 2012). 50 

Comparing ERP amplitudes at certain or pre-defined sites elicited by positive (reward) or negative (no-51 

reward) FB implicitly assumes a similar source of the EEG signal accounting for them. As a matter of 52 

fact, the question remains whether the N200 component giving rise to the FRN is actually reduced for 53 

positive FB due to direct inhibition of the RCZ for example (Hajihosseini and Holroyd, 2013; Holroyd et 54 

al., 2011, 2008), or alternatively, from the superposition of another (non-overlapping) component, 55 

being reward-related primarily and best expressed by the RewP. In agreement with this latter 56 

interpretation, Foti et al. (2011) provided evidence that such a positive component could result from 57 

the activation of the putamen within the basal ganglia (but see the methodological objections raised 58 

by Cohen et al., 2011; and the following reformulation in Proudfit, 2015). Further, the same authors 59 

(Foti et al., 2015) recently argued that the FRN may be a blend of loss- and gain-related neural 60 

activities, possibly reflecting the contribution of partly distinct networks. At variance with this 61 

interpretation, other authors contend that the dACC provides the main (and most plausible) source of 62 

both ERP components, and is actually the only cortical brain region whose activation pattern is 63 

consistent with the observed modulation of their amplitude at the scalp level by valence and 64 

expectancy concurrently (Martin et al., 2009). Thus, a consensus about the neural generators of this 65 

FB-based ERP signal is currently lacking, and other potential sources have been put forward as well 66 

(among others, the ventral rostral anterior and posterior cingulate cortex; Luu et al., 2003; 67 

Nieuwenhuis et al., 2005). 68 

Whereas the standard approach in ERP research consists of measuring the amplitude (and/or 69 

latency) of either the FRN or RewP at a few electrode positions, it usually falls short of confirming or 70 

disconfirming one of these competing assumptions, nonetheless. Using a standard ERP approach, it 71 

remains indeed impossible to confirm directly whether systematic changes in the amplitude of the FRN 72 

component occurs following local changes within the dACC with outcome valence and reward 73 

expectancy, or alternatively, another reward-related and non-overlapping component blurs this effect. 74 
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To address this question, the standard ERP analysis can be supplemented by an advanced topographic 75 

ERP mapping analysis informing about the actual expression of the scalp configuration in the time 76 

range of the FRN and RewP (Murray et al., 2008; Pourtois et al., 2008). Furthermore, possible neural 77 

generators giving rise to them can be estimated with appropriate source localization methods. 78 

However, caution is needed when interpreting EEG source estimations. Converging evidence obtained 79 

when crossing different imaging techniques (such as EEG and fMRI for example) could eventually help 80 

validate and confirm localization results based on EEG only, as performed here.  81 

Following standard practice (Keil et al., 2014), an ERP component is usually defined not only by 82 

its polarity, amplitude and latency, but also by its actual topography and neural generators. 83 

Topography refers here to the actual spatial configuration of the electric field at the time where the 84 

ERP component of interest, here FRN and RewP, is best expressed at the scalp level, including all 85 

channels available concurrently. Noteworthy, changes in the topography necessarily denote changes 86 

in the underlying configuration of brain generators (Lehmann and Skrandies, 1980; Vaughan, 1982). 87 

Accordingly, characterizing ERP components accurately using complementing topographical evidence 88 

provides an important source of information regarding the actual (dis)similarity between conditions in 89 

terms of underlying brain networks; a level of analysis that cannot be reached directly when 90 

considering only the amplitude changes occurring at a limited number of electrode positions (usually 91 

Fz or FCz only in the case of the FRN). Further, some of these local amplitude changes can in principle 92 

be confounded or inflated by more global changes in the topography (and/or global strength) of the 93 

electric field across conditions, challenging the validity of some of the interpretations made when using 94 

a standard ERP analysis only. Moreover, local amplitude measurements at a few electrode positions 95 

strongly depend on the specific reference montage used. By comparison, the actual topography of an 96 

ERP component is reference-free (Murray et al., 2008). Additionally, a clear asset of recent 97 

topographical ERP mapping analyses (Michel and Murray, 2012) is that user/experimenter-related 98 

biases and priors can be strongly limited, including the selection of specific time-frames for further 99 

statistical analyses. In this framework, the main topographical components are revealed using a 100 
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stringent clustering method that allows to identify the specific time periods in the ERP signal where 101 

they are best expressed. As a result, there is no need to select a priori specific electrode locations or 102 

time-frames for statistical analyses, decreasing ultimately the likelihood of type I error (Luck and 103 

Gaspelin, 2017). 104 

Surprisingly, to the best of our knowledge, the topography of the FRN and RewP components 105 

have not been scrutinized yet in the existing ERP literature. For example, it remains currently unclear 106 

whether the FRN and RewP share common topographical variance, or instead, can clearly be 107 

dissociated from one another when considering this global level of analysis, especially when a high 108 

density montage (64 channels or more) is used. Further, possible modulatory effects of reward 109 

expectancy on the topography of the FRN and RewP remain also poorly understood. However, such an 110 

analysis has the potential to address one of the main theoretical questions raised in the current ERP 111 

literature about these two ERP components and as reviewed here above: is the negative component 112 

(N200) giving rise to the FRN clearly different (at the topographical level) relative to the RewP? 113 

Moreover, considering the topography as level of analysis can also shed new light on the actual 114 

interplay of feedback outcome with feedback expectancy. These questions lie at the basis of the 115 

current study.  116 

To address them and inform about reward processing during externally-driven PM, we 117 

recorded high-density (64 channels) EEG in 44 adult healthy participants while they performed a 118 

previously validated gambling task (Hajcak et al., 2005) where FB outcome (reward vs. no-reward) and 119 

expectancy (low, intermediate of high reward probability) were manipulated on a trial by trial basis 120 

using a factorial design. First, we carried out a standard ERP analysis and extracted the mean amplitude 121 

of the FRN and RewP, using and contrasting different scoring methods available in the literature: peak 122 

to peak vs. mean amplitude measurement. Second and crucially, we ran an advanced topographic ERP 123 

mapping analysis on the exact same average ERP data time-locked to FB onset, and isolated the 124 

dominant topographical components accounting for them, in an unbiased way. For the standard ERP 125 
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analysis, we surmised a larger FRN for no-reward compared to reward FB, with the opposite effect 126 

found for the RewP, as well as a possible modulation of each of these two ERP components by 127 

expectancy (i.e., larger amplitude for unexpected than expected outcome each time; Walsh and 128 

Anderson, 2012). At the topographical level, we tested the prediction that the FRN and RewP could 129 

lead to partly dissociable spatial configurations of the global electric field (i.e., topography), and hence 130 

non-overlapping intracranial generators, as has been suggested before. More specifically, given that 131 

the FRN is usually maximal at fronto-central scalp locations (for negative/no-reward FB) and was 132 

previously related to the dACC (among others, Gehring and Willoughby, 2002; Miltner et al., 1997; 133 

Yeung et al., 2004; Yu et al., 2011), we conjectured that topographical ERP variance associated with 134 

no-reward could be associated with this specific brain region in our study. In comparison, since 135 

positive/reward-related ERP activity during FB processing was previously linked to activation in more 136 

posterior parts of the cingulate cortex (Cohen et al., 2011; Fouragnan et al., 2015; Nieuwenhuis et al., 137 

2005), and/or specific regions of the basal ganglia (Foti et al., 2015, 2011), we hypothesized that these 138 

regions (especially the posterior cingulate cortex) could account for the reward-related activity during 139 

feedback processing in our study. Furthermore, we sought to explore whether these two spatial 140 

configurations of the electric field depending on FB outcome, if clearly dissociable from one another, 141 

could show a similar or instead different sensitivity to FB expectancy.  142 
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Methods 143 

Participants 144 

Existing EEG data from two previous (and separate) studies by Paul and Pourtois (2017 - 145 

Experiment 1) and Gheza et al. (submitted – Experiment 2), where the same gambling task was used, 146 

were pooled together. A total of forty-five undergraduate students from Ghent University (right-147 

handed, with normal or corrected-to-normal vision, and no history of neurological or psychiatric 148 

disorders) were included in the present study. They all gave written informed consent prior to the start 149 

of the experiment and were compensated about 30€ for their participation. The study by Paul and 150 

Pourtois (2017) had a between-groups design and involved a mood-induction paradigm. Only the 151 

control group (with a neutral-mood state, 25 participants) from this study and the whole sample (20 152 

participants) from Gheza et al. (submitted, where no specific mood induction was used) were merged 153 

together. One participant had to be excluded due to noisy EEG recording. Hence, the total sample 154 

included 44 participants (34 females, age: M = 22.0 years, SD = 2.6). Both studies were approved by 155 

the local ethics committee at Ghent University. A post hoc power analysis was conducted using GPower 156 

(Faul et al., 2007). The sample size of 44 was used for the statistical power analyses and the power to 157 

detect a small (η²=0.01), medium  (η²=0.06) or large  (η²=0.14) effect for the interaction between 158 

valence and expectancy was estimated. The alpha level used for this analysis was set to .05. The post 159 

hoc analyses revealed the statistical power for this study was .22 for detecting a small effect, .91 for 160 

detecting a medium effect size, and exceeded .99 for a large effect. Thus, this sample size was more 161 

than adequate to detect a moderate/large effect, but not a small one. 162 

Stimuli and task 163 

A previously validated gambling task (Hajcak et al., 2007) was adapted and administered in 164 

both studies. On each and every trial, participants had to choose one out of four doors by pressing 165 

with their right index finger the corresponding key on the response box. After a fixation dot (700 ms) 166 

this choice was followed by either positive FB (green “+”), indicating a win, or no-reward FB (red “o”) 167 
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(1000 ms). The two studies differed slightly in the amount of monetary reward, being either 8 cents 168 

(Paul and Pourtois, 2017) or 5 cents (Gheza et al., submitted). At the beginning of each trial, 169 

participants were informed about reward probability with a visual cue (600 ms), followed by a fixation 170 

dot (1500 ms). This cue was presented in the form of a small pie chart shown at fixation. Either one, 171 

two or three quarters were filled (black/white) corresponding to a reward probability of 25, 50 or 75 172 

%. A reward probability of 25% indicated that only one door contained the reward, two doors in the 173 

case of 50% reward probability and three doors for 75% reward probability. Unbeknown to 174 

participants, the outcome was actually only related to these objective probabilities (but not the actual 175 

choices made by them), ending up with a preset winning of €14.72 (Paul and Pourtois, 2017) or €12.40 176 

(Gheza et al., submitted). Inter trial interval was fixed and set to 1000 ms. Hence, by crossing the three 177 

possible reward probabilities with the two opposite outcomes, six trial types were included in a 178 

factorial design2. To ensure participants paid attention to the cue and outcome, catch trials were 179 

randomly interspersed in the trial series. In 24 trials, at the cue offset they were asked to report their 180 

winning chance (“how many doors contain a prize?”, allowing responses from 1 to 3). In 24 different 181 

trials, they were asked about the expectedness of the outcome at FB offset, and answers were 182 

collected by means of a visual analog scale (VAS) anchored with “very unexpected” and “very 183 

expected”.  184 

All stimuli were shown against a grey homogenous background on a 21-in CRT screen and 185 

controlled using E-Prime (V 2.0, Psychology Software Tools Inc., Sharpsburg, PA).  186 

Procedure 187 

In both studies, after reading the instructions, participants were first familiarized with the 188 

gambling task using 12 practice trials. The presentation of the 6 trial types (3 reward probabilities x 2 189 

outcomes) was randomized, and the same trial type could be presented consecutively. The main 190 

                                                           
2 Beside the conditions described above (“regular” trials), the task for Gheza et al. (in preparation) also 

included “special” trials, that were discarded from the analyses conducted in the present study.  
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experiment consisted of four blocks each comprising 92 (Exp. 1 – Paul and Pourtois, 2017) or 124 trials 191 

(Exp. 2 – Gheza et al., submitted). After each block, a short break was included and participants were 192 

informed about their current (cumulative) payoff.  193 

In Paul and Pourtois (2017), a total of 368 trials was presented (80 with 50%, 144 with 25% and 194 

144 with 75% reward probability). A neutral-mood induction procedure was applied before the task 195 

and repeated after each block to maintain the specific mood state (here neutral) throughout. In Gheza 196 

et al. (submitted), a total of 392 trials was used (104 with 50%, 144 with 25% and 144 with 75% reward 197 

probability). 198 

Recording and Preprocessing of Electrophysiological Data 199 

EEG was recorded using a 64-channel Biosemi Active Two system (http://www.biosemi.com) 200 

with four additional electrodes measuring horizontal and vertical eye movements. EEG was sampled 201 

at 512 Hz and referenced to the Common Mode Sense (CMS) active electrode and Driven Right Leg 202 

(DRL) passive electrode. The EEG was preprocessed offline with EEGLAB 13.5.4b (Delorme and Makeig, 203 

2004), implemented in Matlab R2012b. A 0.05/35 Hz high/low pass filter was applied after re-204 

referencing the EEG signal to the averaged mastoids. An independent component analysis was run on 205 

the continuous data to correct manually for eye artifacts and spatial or temporal discontinuities. 206 

Individual epochs were extracted from -250 to 750 ms around the FB onset and a pre-feedback baseline 207 

was subtracted (-250 to 0). A semi-automatic artefact correction procedure was applied to eliminate 208 

trials with voltage values exceeding ± 90 µV or slow voltage drifts with a stronger slope than ± 90 µV, 209 

as well as based on visual inspection. For each subject separately, artefact-free epochs were grouped 210 

according to the six main experimental conditions: expected, no-expectations3 and unexpected FB 211 

associated with reward (deriving from 75%, 50%, 25% reward probability trials respectively), or 212 

expected, no-expectations and unexpected FB associated with no-reward (deriving from 25%, 50%, 213 

                                                           
3 The no-expectation term refers here to the objective reward probability and not the subjective 

expectation or uncertainty. The condition provides equal (objective) probability of reward or no-reward FB and 
therefore goes along with the highest uncertainty regarding feedback outcome during the experiment. 
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75% reward probability trials respectively). To avoid different signal to noise ratios between 214 

conditions, the same number of trials (randomly sampled) was used for all of them, being defined 215 

subject-wise based on the condition with the lowest trial count. 216 

Standard peak analysis 217 

FRN: peak to peak. The FRN and RewP were determined peak-to-peak at FCz (FRN-pp) as the 218 

difference between the most negative peak (N200: within 200 - 350 ms) and the preceding positive 219 

peak (P200: within 150 - 250 ms) assumed as the onset of the (relative) negativity (Holroyd et al., 2008, 220 

2003).  221 

FRN: mean amplitude. We also used an alternative scoring method for the FRN and RewP (FRN-222 

m), defined at FCz as the mean amplitude within the 213-263 ms interval post-feedback onset (i.e. the 223 

50 ms window surrounding the peak of the N200 for no-reward; Novak and Foti, 2015; see also 224 

Weinberg and Shankman, 2017 for the use of a mean-amplitude approach in a different time window). 225 

This time window and location were based on the FRN-pp maximal amplitude from the grand average 226 

of no-reward FB trials (merging all three expectancy levels; "collapsed localizer" approach, see Luck & 227 

Gaspelin, 2016). 228 

P2 and N2. Supplementary peak analyses on P200 and N200 components (when considered 229 

separately) were carried out in order to verify their relative sensitivity to FB expectancy and its 230 

interaction with FB valence. In accordance with the FRN-pp scoring method, P200 was defined as the 231 

maximum positivity occurring within the 150-250 ms interval post FB onset, while the N200 as the 232 

maximum negativity within the 200-350 ms interval post FB onset. 233 

Topographical ERP mapping analysis (TA) 234 

The dominant topographies accounting for the ERP data set under scrutiny were extracted 235 

using CARTOOL software (Version 3.60; developed by D. Brunet, Functional Brain Mapping Laboratory, 236 

Geneva, Switzerland). The basic principles of this method have been described extensively elsewhere 237 

(Brunet et al., 2011; Michel et al., 1999; Murray et al., 2008; Pourtois et al., 2008). In short, it is based 238 
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on two successive data analysis steps. First, the dominant topographical maps are isolated from the 239 

grand average ERP data by means of a clustering algorithm that takes into account the global 240 

dissimilarity, i.e. the difference in terms of spatial configuration between two normalized maps 241 

independent of the global strength of the ERP signal (Lehmann and Skrandies, 1980). Next, these main 242 

and dissociable topographical configurations are fitted back to the individual subject ERP data and a 243 

quantification of their representation across subjects and conditions is then provided, including the 244 

global explained variance (or goodness of fit), the correlation and the time point of the best fit. 245 

Parametric tests are eventually performed on these variables in order to compare different 246 

experimental conditions at the statistical level.   247 

TA: Segmentation. First, using a competitive T-AAHC cluster analysis (Topographic - Atomize 248 

and Agglomerate Hierarchical Clustering) (Brunet et al., 2011; Tibshirani and Walther, 2005) of the 249 

entire epoch (i.e. from -250 prior to and up to 750 ms following feedback onset, corresponding to 512 250 

time frames-TFs at a 512-Hz sampling rate), the dominant topographical maps were identified. The 251 

specific (and default) settings for the clustering method followed the recommendations implemented 252 

in CARTOOL and were the following. 1) Minimum and maximum number of clusters were predefined 253 

to one and nine, 2) a smoothing kernel (Besag factor 10), of three TFs was applied, and 3) segments 254 

shorter than three TFs were rejected. The choice of the best segmentation result was based on an 255 

objective meta criterion of 7 criteria proposed previously (see Charrad et al., 2014) and visual 256 

inspection of the results. 257 

TA: Fitting. The dominant topographies identified in the preceding step were then fitted back 258 

to the individual averages (n=6 per subject) to determine their expressions across participants and 259 

conditions. As the focus of the analysis was on reward processing (and expectancy), we mostly 260 

examined possible changes in the topography of the ERP signal as a function of reward and/or 261 

expectancy occurring 200-500 ms post-feedback onset, in keeping with many previous ERP studies 262 

(Foti et al., 2015; Hajcak et al., 2007; Sambrook and Goslin, 2015; Ullsperger et al., 2014b). Fitting 263 
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parameters also followed the recommendations implemented in CARTOOL and included 1) a 264 

smoothing kernel (Besag factor 10) of three TFs and 2) rejection of segments shorter than three 265 

consecutive TFs. The fitting procedure was done as a non-competitive process to validate that one of 266 

the topographic configurations fitted better than the other one depending on the condition (based on 267 

global explained variance - GEV - and the mean correlation of the map with the signal). Furthermore, 268 

the time course of these topographic maps could be evaluated, i.e. the TF of the best correlation could 269 

be compared between the maps and across conditions. If the last approach revealed a significant 270 

temporal difference between the dominant maps, the fitting procedure was repeated separately for 271 

the different time windows. 272 

Source Localization 273 

To estimate the configuration of the neural generators underlying the previously identified 274 

reward related topographical maps, a distributed linear inverse solution was used—namely, 275 

standardized low-resolution brain electromagnetic tomography (sLORETA; Pascual-Marqui, 2002). 276 

sLORETA solutions are computed within a three-shell spherical head model coregistered to the MNI152 277 

template (Mazziotta et al., 2001). LORETA estimates the 3-D intracerebral current density distribution 278 

within a 5-mm resolution. The 3-D solution space is restricted to the cortical gray matter and 279 

hippocampus. The head model uses the electric potential field computed with a boundary element 280 

method applied to the MNI152 template (Fuchs et al., 2002). Scalp electrode coordinates on the MNI 281 

brain are derived from the international 5% system (Jurcak et al., 2007). The calculation was based on 282 

the conditions specific average per subject in the time window of interest identified in the previous 283 

analysis.  284 

Statistical Analysis 285 

At the behavioral level, the subjective ratings related to catch trials after the FB (probing FB 286 

expectation) were first transformed to percentages, arbitrarily setting one anchor (‘very unexpected’) 287 

to 0 and the other one (‘very expected’) to 100. These evaluations were considered to be correct if 288 
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they fell within a ± 25% range around the correct response (see Paul and Pourtois, 2017 for a similar 289 

procedure). The amount of correct responses to these catch trials as well as catch trials corresponding 290 

to the cue (probing reward probability) were eventually reported as percentage of correct responses. 291 

At the ERP level, repeated measures ANOVAs with FB expectancy (expected, no-expectations, 292 

unexpected) and outcome (reward vs. no-reward) as within-subject factors were performed (individual 293 

trial count, balanced across the six conditions: M = 27.4, SD = 4.3) separately for FRN-pp and FRN-m.  294 

At the topographical level, each of the three dependent variables gained by the fitting 295 

procedure (i.e., GEV, mean correlation, TF of best correlation) was entered in a 2 x 3 x 2 repeated 296 

measurement ANOVA with the within-subject factors map configuration (FRN vs. RewP-map), 297 

expectancy (unexpected, no-expectations, expected) and FB valence (reward vs. no-reward). If the 298 

previous analysis based on TF of best correlation hinted at a potentially interesting  difference in the 299 

time-course of the main maps, another ANOVA was run with the same within-subject factors, but 300 

adding a factor “time-window”(early vs. late).  301 

The inverse-solution results were compared between the two reward outcomes (reward vs. 302 

no-reward) using paired-sample t-tests performed on the log-transformed data. To reveal potential 303 

differences in the inverse-solution space through direct statistical comparison, a stringent 304 

nonparametric randomization test was used (relying on 5,000 iterations, see Nichols and Holmes, 305 

2001). 306 

For all analyses, significance alpha cutoff was 0.05.  307 

 308 

Results 309 

Behavioral Results 310 

The accuracy for the cue (Mcorrect= 88.1 %, SD = 8.0) and for the outcome evaluation (Mcorrect = 311 

60.7 %, SD = 25.3), as inferred from the catch trials, were high and well above chance level, suggesting 312 
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that participants correctly monitored reward probability (based on the visual cue) and outcome (based 313 

on the feedback).  314 

ERP Results 315 

FRN: peak to peak. The analysis performed on the FRN-pp amplitudes showed a significant 316 

main effect of FB valence (F(1, 43) = 16.78, p < .001, η² = .281) and an interaction between FB valence 317 

and FB expectancy (F(2, 86) = 12.49, p < .001, η² = .225). The FRN component was larger (more 318 

negative) for no-reward compared to reward FB (Mreward = -5.08, SE = 0.30, Mno-reward = -6.55, SE = 0.36). 319 

The multivariate simple effect of FB expectancy was significant for no-reward (F(2, 42) = 7.06, p = .002, 320 

η² = .252), but not for reward FB (F(2, 42) = 1.65, p = .203, η² = .073), confirming its sensitivity to RPE, 321 

when scored peak to peak4 (see Fig. 1).  322 

FRN: mean amplitude. The analysis performed on the FRN-m amplitudes showed a significant 323 

main effect of FB valence only (F(1, 43) = 62.39, p < .001, η² = .592), without a significant interaction 324 

between FB valence and FB expectancy, however (F(2, 86) = 2.19, p = .118 , η² = .048). The FRN-m was 325 

larger (more  negative) for no-reward compared to reward FB (Mreward = 2.42, SE = 0.51, Mno-reward = -326 

0.41, SE = 0.44). These results indicated that, on this critical time window and fronto-central channel, 327 

the FRN, when scored using a stringent mean amplitude measurement, was sensitive to FB valence 328 

only (reward being present or absent), without any significant modulation due to FB expectancy (see 329 

                                                           
4 In order to rule out that these neurophysiological effects were different between the two samples, we 

used a Bayesian factor analysis which is suited for estimating the amount of evidence in favor or against the null 
hypothesis (Rouder et al., 2017). More specifically, the data from the FRN-pp method was examined in a Bayesian 
repeated measure ANOVA in which the factors were FB outcome (reward or no-reward), FB expectancy 
(expected, no-expectations, or unexpected) and Group (Exp 1 or Exp 2). We used the JASP software package 
(JASP Team, 2017 - version 0.8.1.2) with default  prior settings. First, the likelihood for each alternative models 
(derived from the combination of the 3 factors) was tested against a Null model. The models that best explained 
the variance were the main effect of Outcome, followed by the one including the two main effect of Expectancy 
and Outcome and their interaction (BF10 for Outcome = 40266, BF10 for Expectancy + Outcome + Expectancy * 
Outcome = 9031). In order to rule out the Group factor effects, we then included the model terms Expectancy, 
Outcome and Expectancy * Outcome (i.e. flagged as Nuisance) in every model (including the Null model) and we 
looked at the BF01 (likelihood of the Null model over the others). The Null model (assumed probability of 1) was 
6.8 times more likely to be true compared to the model including the main effect of Group (BF10 = 0.145), and 
much more likely compared to any other model that included an interaction with Group (BF10 < 0.068). These 
results provide moderate to very strong evidence for the absence of a Group effect on these FRN-pp results. 
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Figure 1). Hence, these results suggest a qualitatively different outcome at the FRN level depending on 330 

the specific scoring method used.  331 

P2 and N2. Repeated measure ANOVAs were run on the two components separately, with FB 332 

valence and FB expectancy used as within subject factors. The analysis for the P200 revealed significant 333 

main effects of Valence (F(1, 43) = 9.23, p = .004, η² = .177) and Expectancy (F(2, 86) = 4.49, p = .014, 334 

η² = .095). The analysis on the N200 revealed a significant main effect of Valence (F(1, 43) = 47.64, p < 335 

.001, η² = .526) and crucially, a significant interaction between Valence and Expectancy (F(2, 86) = 6.45, 336 

p = .002, η² = .130). Thus, although the FRN-pp scoring method could potentially inflate the effect of 337 

Expectancy driven by the P200 (as opposed to N200) component, it is clear from the N200 only analysis 338 

that this deflection alone was significantly modulated by both factors concurrently in our study. 339 

Topographic Analysis 340 

Segmentation. Following the meta-criterion, a solution with sixteen different dominant maps 341 

was found to explain the ERP data set the best. The solution explained 93.71 % of the variance, see 342 

Figure 2. During the time window corresponding to the FRN and RewP, two different dominant maps 343 

were clearly evidenced. One map, sharing similarities with the FRN ERP component, showed a fronto-344 

central negativity and started at a similar time point (i.e. 217 ms) regardless of feedback expectancy’s 345 

level, but only for negative FB. Moreover this distinctive map was immediately followed by a different 346 

map showing a broader central positivity. This RewP-map was present and lasted until the same time 347 

point for all six FB types (i.e. 386 ms). The spatial correlation between these two maps was 0.84.  348 

Fitting. The  extracted the GEV and the mean correlation, provided by the fitting of the two 349 

dominant maps in the time window of interest (217 – 386 ms) revealed a significant main effect of map 350 

(F(1, 43) ≥ 9.04, p ≤ .005, η2 = .17). Both variables showed a significant interaction between FB valence 351 

and map (F(1, 43) ≥ 34.47, p <.001, η2 ≥ .45) and FB expectancy and map (F(2, 86) ≥ 7.86, p ≤.001, η2 ≥ 352 

.16), see Figure 3. While the RewP-map explained more variance and showed a higher mean 353 

correlation for reward than no-reward FB (Mreward-meanCorr = .70, SE = .02, Mno-reward-meanCorr = .63, SE = .02, 354 
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p ≤ .002), the FRN map showed only a non-significant trend to fit better with the no-reward compared 355 

to the reward FB (Mreward-meanCorr = .57, SE = .03,  Mno-reward-meanCorr = .60, SE = .03, p ≥ 0.25). Regarding the 356 

GEV, both maps seemed to be sensitive to the expectancy manipulation as well. More variance was 357 

explained for the unexpected than the expected condition (FRN-map: Munexpected= .08, SE = .006,  358 

Mexpected= .06, SE = .005,  p ≤ 0.05). Especially the positivity map showed a steeper increase with 359 

unexpectedness (positivity map: Munexpected= .10, SE = .006,  Mexpected= .07, SE = .004,   p < .001). For the 360 

mean correlation, the RewP-map showed a similar pattern (Munexpected= .68, SE = .02,  Mexpected= .65, SE 361 

= .02,  p < .015), while the FRN-map did not differentiate between levels of expectancy (Munexpected= .58, 362 

SE = .03,  Mexpected= .58, SE = .03,  p ≥ 0.34). 363 

Importantly the TF of the best correlation for each map within this time large segment showed 364 

again a significant interaction between map and FB valence (F(1, 43) = 8.31, p =.006, η2 = .16), indicating 365 

that for reward FB, both maps fitted equally well at 306 ms (MFRN-map = 305 ms, SE = 7.69,  MRewP-map= 366 

307 ms, SE = 6.04, p = .81), while for no-reward FB, the FRN-map fitted the best much earlier than the 367 

RewP-map (MFRN-map = 277 ms, SE = 6.97, MRewP-map = 318 ms, SE = 5.79, p < .001). This result clearly 368 

indicated that the initial time window of interest (217 – 386 ms) was probably too broad and likely 369 

encompassed two dissociable processes in terms of spatial-temporal dynamic. To corroborate this 370 

assumption at the statistical level, we repeated the fitting within two short non-overlapping time 371 

windows lasting for 40 ms centered around 277 and 318 ms, respectively. The repeated measures 372 

ANOVA on the GEV values revealed, besides several significant main effects, two significant three way 373 

interactions between time-window, map and FB valence (F(1, 43) = 66.37, p <.001, η² = .61) and time-374 

window, map and FB expectancy (F(2, 86) = 5.01, p =.009, η² = .10), see Figure 4. Whereas the FRN-375 

map fitted the best in the early time window for no-reward FB (Mno-reward-early = .07, SE = .007, Mno-reward-376 

late = .06, SE = .006, p ≥ .139 ), the RewP-map fitted the best for reward FB in the later time window 377 

(Mreward-early = .07, SE = .006,  Mreward-late = .10, SE = .006, p ≤ .059). Furthermore, while the FRN-map did 378 

not vary with expectancy for none of the two time windows (Munexpected= .07, SE = .006, Mexpected= .06, 379 

SE = .006, p ≥ .139), the positivity map showed this effect, especially in the later time window 380 
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(Munexpected-late= .11, SE = .006, Mexpected-late= .08, SE = .005, p ≤ .003). Using the mean correlation as fitting 381 

parameter, as opposed to the GEV, led to a similar statistical outcome.  382 

Source Localization 383 

The statistical comparison in the inverse-solution space between reward an no-reward within 384 

the time window of the FRN- and RewP-map (217-386 ms) revealed two non-overlapping 385 

suprathreshold (t value > 4.13, corrected for multiple comparisons) clusters showing opposing reward-386 

related effects, see Figure 5. One cluster, being more active for no-reward than reward FB, was located 387 

within the dACC, including Brodmann area (BA) 32; (maximum at 15x, 25y, 40z, t(43) = -5.31, p < .001) 388 

and spreading to adjacent frontal areas, including BAs 6, 8 and 9. The other non-overlapping cluster 389 

showed the opposite pattern (more active for reward than no-reward FB) and was located in the 390 

posterior cingulate cortex (PCC; BA 23; maximum at -5x, -60y, 15z, t(43) = 5.85, p < .001), extending to 391 

adjacent (medial) parietal regions (such as the Precuneus or retrosplenial cortex; BA 31), as well as 392 

more ventrally to the posterior part of the Parahippocampal gyrus (BA 27). It also spread to the 393 

posterior part of the left insula (BA 13; max. at -30x, -40y, 20z, t(43) = 4.89, p < .001). 394 

 395 

 396 

Discussion 397 

RPE signals recorded at the electrophysiological level during PM are thought to provide an integration 398 

of expectancy and valence of the outcome, such that a differential response to rewarding vs non-399 

rewarding outcome increases as a function of its unpredictability (Holroyd and Coles, 2002; Schultz et 400 

al., 1997). If the evidence for a mismatch between expectation and outcome is motor based (e.g., clear 401 

response error), then such an effect can be tracked at the level of response-locked ERPs, such as the 402 

ERN. However, if the evidence cannot be computed at the response level (e.g., during gambling or 403 

probabilistic learning), then FB provides the main source of information to estimate RPE, with 404 

neurophysiological effects visible at the level of the FRN/RewP. The present study focussed on this 405 
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latter effect. More specifically, we aimed to characterize the topographical properties of the FRN 406 

component, when compared to the RewP, in order to assess whether they share common or instead 407 

dissociable topographic variance and neural generators. Importantly, we could compare the outcome 408 

of this data-driven method (taking into account all electrodes and time-frames) to two standard ERP 409 

scoring methods available in the literature, focussing on a circumscribed time-window and FCz 410 

electrode only. 411 

To this aim, 44 participants carried out a previously used gambling task  (Hajcak et al., 2007; Paul and 412 

Pourtois, 2017), where FB valence and expectancy were manipulated on a trial-by-trial basis, while 64-413 

channels EEG was recorded concurrently. This enabled us to estimate the contribution of these two 414 

independent variables to systematic changes in the ERP signal following FB onset, when it 415 

corresponded either to amplitude modulations recorded at FCz only, or alternatively, when 416 

considering the spatial configuration of the entire electric field (i.e., topography). A number of new 417 

results emerge from the current study. (i) When comparing two different, albeit standard, scoring 418 

methods for the FRN in the existing ERP literature, our results show that this component was reliably 419 

modulated by FB valence and expectancy when using a peak to peak measurement only (FRN-pp, i.e., 420 

measuring peak amplitude of the N200 relative to the preceding P200 at FCz component). Importantly, 421 

a similar outcome was reported when measuring the N200 alone. By comparison, when we used a 422 

more stringent mean amplitude measurement at the same lead (FCz) (FRN-m, i.e., measuring FRN as 423 

a mean ERP activity spanning from 213 to 263 ms interval centered around the N200 peak), it was 424 

modulated by valence without significant change by expectancy, suggesting in turn a dissociation 425 

between them. (ii) These somewhat inconsistent results were supplemented with a topographical 426 

pattern analysis that strongly reduced the number of priors in terms of location and latency for 427 

identifying reward-related effects following FB onset, and possible interactions with expectancy. This 428 

analysis unambiguously showed the existence of two dissociable topographies during the time-interval 429 

corresponding to the FRN and RewP. A main topography characterized by a short-lasting prefrontal 430 

negative component was generated relatively early after negative FB onset and was somehow 431 
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independent from its expectancy. Another one showed a broad positivity at more central and parietal 432 

sites during the same early time interval, and was generated in response to reward. Crucially, this latter 433 

reward-related topography lasted longer and best represented the variance of the ERP signal in a later 434 

time window, where it also varied systematically as a function of reward expectancy, accounting for 435 

more variance for unexpected than expected positive FB, in agreement with the tenets of the 436 

dominant RPE framework (Schultz, 2013). Given these specific electrophysiological properties and 437 

opposing sensitivity to FB valence, we tentatively linked the first one to the FRN and the second one 438 

to the RewP, when corresponding to local amplitude variations of specific deflections measured at a 439 

single scalp channel. Because different topographies necessarily denote non-overlapping intracranial 440 

generators (Lehmann and Skrandies, 1980; Michel and Murray, 2012; Vaughan, 1982), we estimated 441 

their sources using a linear inverse solution algorithm (sLoreta, see Pascual-Marqui, 2002). While the 442 

FRN-compatible topographical activity had a main cluster within the dACC, the RewP-one was source 443 

localized to a distributed and extended network, comprising primarily the PCC. Here below, we discuss 444 

the implications of these new results, and eventually formulate some recommendations for the 445 

definition and use of feedback-based reward-related ERP activities in future studies. 446 

At FCz scalp location, independently of the scoring method adopted and actual definition used 447 

for the ERP component of interest (either local amplitude changes or topography), we consistently 448 

found across these different methods used that the FRN amplitude varied reliably with valence, i.e. it 449 

was consistently larger for no-reward than reward FB, while conversely, the RewP amplitude was 450 

systematically larger for reward than no-reward FB. Noteworthy, the FRN component was sensitive to 451 

FB expectancy only when using a peak to peak analysis (FRN-pp). Thus the peak to peak scoring method 452 

was the only one with which the FRN was found to be coherent with the generation of a dopamine-453 

dependent RPE signal (Holroyd et al., 2003; Holroyd and Coles, 2002; Schultz et al., 1997; Ullsperger et 454 

al., 2014b). No such modulation was found for the RewP, no matter which ERP scoring method was 455 

actually adopted. In light of the existing debate in the ERP literature about the sensitivity of the FRN, 456 

or instead RewP to FB expectancy (bearing in mind that these two hypotheses are not necessarily 457 
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mutually exclusive and are both consistent with the original FRN-RL theory; see Holroyd et al., 2008; 458 

San Martín, 2012), our results lend support to the classical FRN hypothesis (Holroyd and Coles, 2002; 459 

Ullsperger et al., 2014b; Walsh and Anderson, 2012).  460 

When the FRN was scored as mean amplitude around the peak of the N200 (FRN-m), no reliable 461 

modulation by FB expectancy was found. This inconsistency across the two scoring methods might be 462 

explained by several factors. On one hand, the peak to peak measurement may have artificially inflated 463 

the component’s amplitude due to noise in the data (Luck and Gaspelin, 2017). On the other, scoring 464 

the FRN using the mean amplitude computed for a relatively long and pre-defined time window, albeit 465 

being a more conservative approach that is less sensitive to noise in the measurement, might have 466 

overshadowed an effect of expectancy due to inter-individual variability in the latency (and 467 

morphology) of the P200-N200-P300 complex, and/or to the possible temporal overlap of the N200 468 

with the preceding P200 and/or the following P300. The N200 is usually flanked by these two positive 469 

components, which usually do show amplitude modulations with stimulus frequency, and thus 470 

expectancy (Donchin and Coles, 1988; Polich et al., 1996), although with an affect going in the opposite 471 

direction compared to the N200. Neglecting these features of the ERP signal can in turn potentially 472 

smear amplitude effects which are small in size, such as the expectancy effect on the FRN.  Indeed, the 473 

peak to peak approach (FRN-pp, where preceding P200 is used as baseline peak for N200 peak 474 

measurement) was put forward as an alternative scoring method to control for this confounding effect 475 

(Holroyd et al., 2003; Sallet et al., 2013). Notably, by further exploring amplitude modulations brought 476 

about by FB expectancy (and valence) for each deflection separately (i.e., P200 and N200), we could 477 

confirm that the significant interaction effect between FB valence and FB expectancy at the N200 level 478 

(hence FRN) was not merely resulting from the preceding P200 (see Results). As a rule of thumb, 479 

depending on the experimenter’s goal and research interest, one of the two scoring methods could be 480 

preferred above the other one. For instance, if the focus is on reward itself, the use of the FRN-m 481 

appears warranted. By comparison, if more subtle influences of expectancy are explored at the FB (and 482 

FRN) level, then a FRN-pp scoring method appears more appropriate than the FRN-m. However, in light 483 
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of these slight discrepancies between the different scoring methods used, and for comparison 484 

purposes with previous work in the literature, it appears important to report and compare the 485 

outcome of these different scoring methods when it comes to assessing the sensitivity of an ERP 486 

component, like the FRN or RewP, to FB valence and expectancy.  487 

Although these classical peak analyses informed about the complex interplay between reward 488 

and expectancy during feedback-based PM, yet they are necessarily based on local amplitude 489 

variations only (here measured at FCz), and as such, they could therefore potentially overlook more 490 

global changes in the ERP signal occurring with these two factors, including topographical alterations. 491 

To explore this possibility, we supplemented these analyses with a topographical ERP mapping analysis 492 

that considered the FB-locked ERP signal when measured at all (64) electrodes concurrently, and 493 

during a large time interval following FB onset (hence, not restricted to local peaks or maxima only), 494 

reducing in turn strongly the number of priors. This analysis confirmed the presence of a clear 495 

topographical change depending on actual FB outcome during the time interval usually associated with 496 

the FRN or RewP. Whereas a main topography shared many similarities with the FRN component (no-497 

reward dominance), the other competing spatial configuration of the electric field closely resembled 498 

what is usually referred to as RewP in the existing ERP literature and showed enhanced activity for 499 

reward. Moreover, source estimation using sLoreta confirmed the presence of two non-overlapping 500 

networks accounting for these two dissociable maps. As predicted by many models and earlier ERP 501 

studies (Bush et al., 2000; Fouragnan et al., 2015; Gehring and Willoughby, 2002; Miltner et al., 1997; 502 

Shackman et al., 2011; Ullsperger et al., 2014b), we found that the dACC provided the main intracranial 503 

generator of this FRN-compatible map. In comparison, the RewP activity was source localized to more 504 

posterior regions, including the PPC, an area known to be involved in reward processing (Knutson et 505 

al., 2001; Liu et al., 2011; Luu et al., 2003; Nieuwenhuis et al., 2005). Even though some caution is 506 

needed in the interpretation of these source localization results (as they correspond to imperfect 507 

mathematical reconstructions of the intracranial sources), this dissociation along the cingulum 508 

depending on FB valence is not odd, but very much in line with the taxonomy of functionally-distinct 509 
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sub-regions composing it, as previously put forward by Vogt (2005). In this framework, the anterior 510 

midcingulate cortex (aMCC) is linked with the processing of negative emotions (and the need for 511 

cognitive control, see Shackman et al., 2011), especially fear, anxiety, and even pain. Conversely, the 512 

PCC is assumed to play a predominant role in attention control, especially in orienting to targets that 513 

are potentially of high motivational value for the individual, in integrating the history of rewards 514 

previously experienced, as well as in the assessment of personal relevance of incoming (emotional) 515 

information, and controlling the balance between internal and external attention (Leech and Sharp, 516 

2014). Using this neuro-anatomical framework, we could thus conjecture that the stronger aMCC 517 

response to no-reward FB in our study might reflect an (whole or none) alarm or alert signal in case 518 

the outcome turns out to be relatively “negative” (no-reward) (Shackman et al., 2011). In comparison, 519 

the stronger PCC activation to reward FB seems consistent with an attentional orienting effect towards 520 

an approach-related or motivationally significant event for the participant, namely getting a small  521 

financial reward after gambling in the present case. Similar interpretations of related findings have 522 

been drawn in the context of error monitoring (Paul et al., 2017) and reinforcement learning 523 

(Fouragnan et al., 2015).  524 

Turning to the possible changes of these global ERP activities with FB expectancy, our 525 

topographical analysis additionally showed a striking modulation that none of the two classical ERP 526 

analyses (using FCz only) could actually reveal. Not only was FB valence clearly modulating the 527 

expression of the global electric field, but FB expectancy influenced its expression as well and in a 528 

condition-specific manner. As our analysis revealed (see Figure 2), the RewP-related map appeared to 529 

be the default ERP activity somehow in this long interval (from 210 to 380 ms following FB onset), 530 

progressively building up across this specific interval and reaching its maximum at ~320 ms following 531 

FB onset. No-reward outcome turned out to “break up” this default processing at an early latency 532 

(~280 ms following FB onset), with the generation of a unique and distinctive topography (being also 533 

short-lived), namely the FRN map. This result supports the idea that in case of a “negative” event (here 534 

corresponding to the lack of reward), a phasic negative ERP activity similar to the N200-component 535 
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(Heydari and Holroyd, 2016; Shahnazian and Holroyd, 2017) is elicited, which temporarily overrides 536 

the standard (reward-driven) ERP response. Although remaining largely speculative, this break-up 537 

effect might be caused by a phasic dip or transient pausing in dopaminergic firing, as the RL-theory 538 

would suggest (Fiorillo et al., 2003; Schultz, 2013; Warren and Holroyd, 2012). At variance with this 539 

interpretation, a positivity associated with better than expected positive outcome (Proudfit, 2015) 540 

could have been overridden by a more generic brain response to salient events in general (Holroyd et 541 

al., 2008; Talmi et al., 2013). Importantly, in line with the FRN-m analysis, this FRN-compatible 542 

topographical map did not show however a systematic modulation (in explained variance) with 543 

expectancy. We may speculate that both the FRN-m and the topographic mapping for the FRN map 544 

overlook a phasic, short-lived, local modulation of expectancy that only the FRN-pp and the N200 peak 545 

analyses were able to capture. Such a modulation was well evidenced in our topographic ERP mapping 546 

analysis, but for the RewP-related topography and at a later time point, however. Accordingly, these 547 

topographical results inform about the actual spatio-temporal dynamic of reward processing, 548 

suggesting that early on following FB onset, FB valence mostly influenced the expression of the ERP 549 

signal (irrespective of expectancy). In the present case, this FB valence effect was characterized by the 550 

transient blocking of the (normal) reward-related activity and replacement for a short period of time 551 

by another, negative or loss-related, ERP activity sharing many similarities with the FRN. Because our 552 

ERP results suggest the existence of two separate and dissociable networks depending on actual FB 553 

valence (yet having both an early time-course following FB onset), they clearly speak against the use 554 

of difference waves, where a new and undefined ERP activity would likely be created as a result of this 555 

transformation, in case no-reward would be subtracted from reward FB for example. Such an 556 

approach, although possibly reducing the number of factors/variables included in the statistical 557 

analysis (Luck and Gaspelin, 2017), would nonetheless overlook and mitigate the existence of 558 

independent sources and effects that each contributes to both (local) amplitude as well as (global) 559 

topographical changes in the ERP signal following FB onset. Hence, a clear methodological implication 560 
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of our new ERP results is that the use of difference waves should not be recommended as it could blur 561 

or smear important differences between the processing of reward vs. no-reward outcome during PM.   562 

As mentioned here above, we succeeded to evidence systematic modulations of the feedback-563 

locked ERP signal with expectancy with the elected topographic ERP mapping analysis. They were 564 

found for the RewP-related map exclusively, and became stable at the statistical level when 565 

considering a later time interval following FB onset (compared to the FRN map). Interestingly, the PCC 566 

and adjacent areas which are thought to give rise to this ERP activity, has previously been shown to be 567 

involved in detecting novel, or unpredicted events (Gabriel et al., 2002; Mccoy et al., 2003). Moreover, 568 

earlier ERP studies already clearly showed that during a comparable time window following FB onset, 569 

the amplitude of the RewP was modulated by expectancy and hence RPE (Sambrook and Goslin, 2015; 570 

Talmi et al., 2012). Accordingly, given this clear modulation of the ERP signal with expectancy for the 571 

RewP-related map, our novel results lend indirect support to earlier studies and models available in 572 

the ERP literature that posited that effects of expectancy on the FRN component might very well be 573 

driven in part by responses to unexpected reward as well (Holroyd et al., 2008; Walsh and Anderson, 574 

2012). Yet, this effect was found when considering the topography only, and a relatively late time 575 

interval (i.e., 298-338 ms following FB onset). Although we failed to find evidence of a systematic 576 

change in the explained variance of the FRN-compatible topography with FB expectancy, some 577 

cautious is needed in the interpretation of this “null” result. For example, it remains to be tested 578 

whether using monetary loss or punishment for the no-reward outcome might not yield stronger 579 

modulations of the FRN-compatible topography with expectancy, as this manipulation would 580 

necessarily increase the salience of the no-reward outcome (Esber and Haselgrove, 2011). Accordingly, 581 

whether or not the FRN-compatible topography varies (in explained variance) with expectancy awaits 582 

additional empirical work where other contrasts at the outcome level should be used and compared 583 

systematically using similar ERP methods (including loss-related ones and hence the activation of a 584 

defensive motivational system; Hajcak and Foti, 2008). Notwithstanding this caveat, our new 585 

topographical ERP results are important because they clearly suggest that the processing of FB valence 586 
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during gambling may obey a two-stage process: first FB valence is evaluated (with no-reward 587 

interfering with the default reward-related ERP activity apparently), before a strong expectancy effect 588 

comes into play during a later stage and dynamically shapes reward processing, selectively. 589 

Presumably, this modulation might reflect the assignment of a different motivational value to the 590 

reward-related FB depending on its expectancy. This interpretation aligns well with recent 591 

neurophysiological evidence that reveals a specific temporal sequence during evaluative FB processing 592 

(Fouragnan et al., 2015; Philiastides et al., 2010): the early (around 220ms post FB onset) categorical 593 

evaluation of the outcome (i.e. valence) is later followed (around 300ms) by the processing of its actual 594 

deviation relative to the expectation (i.e. salience). More generally, such rapid and fine-grained 595 

changes in the actual spatio-temporal dynamic of reward processing during PM could hardly be 596 

captured by means of a standard ERP data analysis. Hence, we contend that future ERP studies focused 597 

on reward processing and PM should better incorporate this important feature of any ERP component 598 

(FRN, RewP, P200, P300 or N200), namely the topography, as it carries relevant information about the 599 

complex interplay between FB valence and expectancy. This approach might also help to revise or 600 

amend some of the current models available in the field that directly use these specific ERP 601 

components to generate testable predictions about the neurophysiology of reward processing and PM 602 

(Ullsperger et al., 2014b).  603 

Despite its apparent strengths and added value, some limitations related to this topographic 604 

ERP mapping analysis warrant comment. Because this approach is based on an estimation (and 605 

clustering) of the dissimilarity in terms of spatial configuration of the electric field across successive 606 

TFs, it is not suited to reveal the contribution of putative independent components/sources that would 607 

be active and compete with one another at the exact same time, for which an ICA or PCA (Foti et al., 608 

2015, 2011; Proudfit, 2015) should preferably be used for example (Eichele et al., 2010). Previously 609 

published findings (Holroyd et al., 2008; Proudfit, 2015) suggested that the ERP responses to reward 610 

and loss mostly differ by means of a positivity that is unique to reward trials, as opposed to a negativity 611 

to no-reward ones. By comparison, the outcome of our ERP topographic mapping analysis suggests the 612 
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presence of a phasic FRN-map (characterized by a fronto-central negativity) generated in an early time 613 

window following no-reward (around 277ms), which seems to overlap and interfere with a longer-614 

lasting reward-related activity (characterized by a positivity showing a centro-parietal scalp 615 

distribution). Tentatively, this discrepancy between our current and these previous ERP studies could 616 

be related to the abovementioned methodological factors, as well as the actual incentive used to guide 617 

performance monitoring (being sometimes either primarily reward-related or instead loss-related). 618 

Presumably, for these reasons our topographic ERP mapping analysis failed to reveal a specific (short-619 

lived) topography associated with reward outcome that would mainly be characterised by a central 620 

positivity culminating when the N200 (no-reward) reached its maximum amplitude, as previously 621 

suggested for the RewP ERP component (Novak and Foti, 2015; Proudfit, 2015). The RewP 622 

topographical map revealed in our study showed instead a broader (central and posterior parietal) and 623 

longer-lasting positivity that presumably partly overlapped with the P300 component. Therefore, it 624 

remains to determine to which extent the RewP map found in our study corresponds to the RewP ERP 625 

component exclusively, or also encompasses the P300 component. Last, it would also be beneficial in 626 

future studies to assess whether these two different topographies identified here may also be related 627 

somehow to different variations in the spectral content of the EEG/ERP, as recently reward processing 628 

has been associated with systematic changes in the power of either theta or delta oscillations (Bernat 629 

and Nelson, 2008; Cohen et al., 2007; Marco-Pallares et al., 2008). Considering the ERP results obtained 630 

with the different scoring methods used in our study (FRN-m, FRN-pp, or N2 peak) and some 631 

dissociations found between them, it appears challenging to relate complex cognitive processes, such 632 

as expectancy or reward, to single and temporal-specific ERP deflection, such as the P2 or N2. In this 633 

context, a better understanding of the actual neurophysiology of these complex cognitive processes 634 

could probably be achieved by supplementing classical ERP analyses with time/frequency methods 635 

that can inform about the actual spectral content of the P2-N2-P3 complex, its modulation by reward 636 

and expectancy (Cavanagh et al., 2012, 2010; Cohen et al., 2007; Cohen and Donner, 2013; Mas-637 

herrero and Marco-pallarés, 2014; Paul and Pourtois, 2017), and the relative role of phase locked 638 
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(captured by ERPs) and non-phase locked oscillatory activity in explaining these effects (see also Cohen 639 

and Donner, 2013; Hajihosseini and Holroyd, 2013). 640 

To sum up, the present ERP results advance our understanding of reward processing during 641 

gambling (in healthy adult participants) and more specifically how reward is actually shaped by 642 

expectancy when the topography, as opposed to amplitude measurements performed at a single scalp 643 

location, is carefully considered and properly analysed. Our new results lend support to the existence 644 

of two – spatially and temporally – dissociable networks during FB processing. One is driven by no-645 

reward and comprises the dACC, meeting many of the electrophysiological criteria used previously to 646 

define the FRN component in the extant ERP literature. The other one competes with the first one, 647 

and is primarily reward-related (as well as sensitive to expectancy), sharing in turn many similarities 648 

with the RewP.  Since abnormal reward processing (and anhedonia) is a cardinal diagnostic feature of 649 

several affective disorders, such as  major depression, addiction, schizophrenia or pathological 650 

gambling, the topographic ERP mapping analysis performed in this study, and meant to explore 651 

thoroughly the spatio-temporal dynamic of reward processing during PM, could be used more 652 

systematically in the future in clinical settings to elucidate which component of reward processing (in 653 

relation to expectancy) could be impaired in these patients, and whether depending on the actual 654 

affective disorder being diagnosed, some specific (and stable) topographical ERP anomalies could 655 

eventually be evidenced. 656 
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Figures 

 

Figure 1. (A) Grand average ERP waveforms computed at FCz for reward and no-reward 

separately, collapsing across the three levels of FB expectation each time. A conspicuous N200 (giving 

rise to the FRN component) was elicited for no-reward FB, compared to reward FB. The diamond 

symbol refers to the preceding P200 (see Figure 1D – left panel for analysis of this component only). 

The dot symbol refers to the N200 proper (see Figure 1D – right panel for analysis of this component 

only). The small horizontal black line depicts the fixed interval used when the FRN is measured as mean 

amplitude (see Figure 1E). The FRN was analyzed using either peak to peak (FRN-pp, using the 

preceding P200 as initial peak – baseline, see Figure 1C) or as a mean ERP activity (FRN-m, see Figure 

1E). (B) Grand average ERP waveforms computed at FCz for all six main conditions. At the N200 level, 

FB valence interacted with FB expectancy, whereby the N200 was the largest for unexpected negative 

FB. (C) Mean amplitudes of the FRN when computed peak to peak, showing a significant interaction 

between FB valence and FB expectancy. (D) Mean amplitudes for P200 (left panel) and N200 (right 

panel) alone. (E) Mean amplitudes of the FRN when computed using a mean amplitude measurement, 

showing a main effect of FB valence only. The error bar corresponds to 1 standard error of the mean. 
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Figure 2. (A) Topographies (voltage maps) of the main ERP activities of interest (irrespective of 

expectancy), showing the RewP topography (left inset) and the FRN topography (right inset). The circle 

superimposed of the topographies corresponds to FCz electrode location. Each map is computed as 

the mean ERP activity during a 50 ms time interval around the N200 peak elicited by no-reward (see 

Figure 1A). (B) Outcome of the spatio-temporal segmentation of the grand average ERP data (with the 

six main experimental conditions considered, and showing the entire epoch starting 250 ms prior to 

and ending 750 ms after feedback onset). A solution with 16 different topographical maps (where only 

7 are actually depicted here) was found to explain 93.71 % of the total variance. During the time 

interval corresponding to the FRN/RewP components, two dissociable activities were evidenced based 

on FB valence. These two maps had different properties, including a longer duration for the reward-

related one, and showed different sensitivity to FB expectancy (see Results section and Figure 3 for 

results after back fitting to individual subject ERP data). 
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Figure 3. (A-F) Results obtained after fitting back the two dominant maps (FRN and RewP, 

regardless of expectancy) identified during the clustering step (see Figure 2B) during the 217-386 ms 

time interval following FB onset to individual subject ERP data, separately for the three main 

dependent variables used in this analysis: global explained variance (GEV), mean correlation and time-

frame (TF) of best correlation. The error bar corresponds to 1 standard error of the mean. For each of 

them, a significant interaction effect between valence and map was found (A,B), explained by the 

generation of a reward-specific map for positive feedback, except for the TF of best correlation where 

a significant earlier time-course was found for the FRN-related map for negative feedback compared 

to the RewP map (C). (D-E-F) Results obtained after fitting showing differential effect of expectancy on 

the behavior of the two main maps. While the FRN-related map was weakly modulated by levels of 

expectancy, such an effect was clearly evidenced for the RewP map that showed a monotonic increase 

(in GEV or mean correlation) with increasing unexpectedness.  
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Figure 4. Fitting results (GEV only) shown separately for the early (left column) and late time-

window (right column) identified by the main analysis (see Results section for details). Whereas the 

FRN-map discriminated better no-reward from reward FB during the early time interval (A), the RewP-

map discriminated better reward from no-reward FB during the later time interval (B). (C) The FRN-

map did not vary with expectancy (in none of the two time intervals). (D) By comparison, the RewP-

map varied with expectancy, especially during the later time interval. The error bar corresponds to 1 

standard error of the mean. 
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Figure 5. Source localization results. Hot colors provide activations (corrected for multiple 

comparisons, see Results section for details) for the contrast between reward and no-reward FB, while 

cold colors provide suprathreshold activations for the reverse contrast. These statistical maps were 

generated for the mean ERP activity generated within the 217-386 ms time interval following FB onset. 

No-reward compared to reward yielded activation in the dACC (BA 32; see right inset), spreading to 

nearby frontal areas (BAs 6, 8, and 9). Conversely, reward compared to no-reward led to activations in 

the PPC (BA 23; see left inset), spreading to parietal and more ventral regions, including the Precuneus 

and Parahippocampal gyrus (BAs 23, 27, 29, 30, 13, and 18). It also extended to the left posterior insula 

(BA 13). 

 

 

 

 

 


