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ABSTRACT
Virtual Reality (VR) devices are becoming accessible to a large pub-
lic, which is going to increase the demand for 360° VR videos. VR
videos are often characterized by a poor quality of experience, due
to the high bandwidth required to stream the 360° video. To over-
come this issue, we spatially divide the VR video into tiles, so that
each temporal segment is composed of several spatial tiles. Only
the tiles belonging to the viewport, the region of the video watched
by the user, are streamed at the highest quality. The other tiles are
instead streamed at a lower quality. We also propose an algorithm
to predict the future viewport position and minimize quality tran-
sitions during viewport changes. The video is delivered using the
server push feature of the HTTP/2 protocol. Instead of retrieving
each tile individually, the client issues a single push request to the
server, so that all the required tiles are automatically pushed back
to back. This approach allows to increase the achieved throughput,
especially in mobile, high RTT networks. In this paper, we detail
the proposed framework and present a prototype developed to test
its performance using real-world 4G bandwidth traces. Particu-
larly, our approach can save bandwidth up to 35% without severely
impacting the quality viewed by the user, when compared to a
traditional non-tiled VR streaming solution. Moreover, in high RTT
conditions, our HTTP/2 approach can reach 3 times the throughput
of tiled streaming over HTTP/1.1, and consistently reduce freeze
time. These results represent a major improvement for the e�cient
delivery of 360° VR videos over the Internet.
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Figure 1: In tiled VR streaming, only tiles belonging to the
viewport (in green) are streamed at the highest quality.
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1 INTRODUCTION
Recent advancements in consumer electronics have made Virtual
Reality (VR) devices accessible to a large public. Consequently, the
demand for 360° VR video streaming is expected to grow exponen-
tially in the near future. Streaming VR videos over the best-e�ort
Internet is challenged today by the high bandwidth required to
stream the entire 360° video. This aspect is often responsible for
low video quality and bu�er starvations, two of the main factors
in�uencing users’ Quality of Experience (QoE). View-dependent so-
lutions are ideal in saving bandwidth for VR streaming, as only the
viewport, the portion of the video watched by the user, is streamed
at the highest quality, while the rest of the video is streamed at
a lower quality. Despite that, current solutions require to store
a di�erent version of the video for each possible position of the
viewport, entailing huge CDN costs [5]. Tiling the VR video allows
to obtain similar results in terms of bandwidth savings, without
additional storage compared to traditional streaming. In tiling, the
VR video is divided into spatial regions, each encoded at di�erent
quality levels. To save bandwidth, only tiles inside the viewport
are streamed at the highest quality (Figure 1). This approach can
be combined with the bandwidth adaptation of HTTP Adaptive
Streaming (HAS) techniques. In tiled HAS, the video is both tempo-
rally segmented and spatially tiled, so that each temporal segment
of the video is composed of several video tiles.
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Unfortunately, tiling the video causes a signi�cant increase in
the number of requests when HAS is used over HTTP/1.1. Each
tile has to be requested independently from the others in order
to create a complete temporal video segment, meaning that this
approach is susceptible to high RTTs, typical in mobile networks.
As an example, assuming the video is composed of 6 tiles and
the RTT is 100 ms, it would require at least 600 ms to download
each temporal segment. This behavior can consistently lower the
achieved throughput and limit the practical applicability of tiled
VR streaming. In this paper, we propose to overcome this drawback
using the server-push functionality of the HTTP/2 protocol [18].
Only a single HTTP GET request is sent from the client; all the tiles
are automatically pushed from the server. This approach allows to
overcome the main drawback introduced by tiling. HTTP/2 shares
the same methods, status codes and semantics with HTTP/1.1,
entailing a complete backward compatibility. Server push, and more
generally HTTP/2, is also completely cache- and CDN-friendly.

The main contributions of this paper are three-fold. First, we
propose a viewport-dependent HTTP/2-based streaming frame-
work, where the client decides the quality of each tile based on the
user viewport. The H.265 standard is used to tile the video [10],
as it allows to use a single decoder to decode the di�erent tiles,
which represents an important advantage on resource-constrained
devices, as smartphones and tablets. Moreover, the HTTP/2’s server
push can completely eliminate the overhead introduced by tiling
the video, as only one HTTP request specifying the quality of the
tiles is sent from the client to the server. Based on this request, the
server can push all the requested tiles back to back, consequently
reducing the impact of the network RTT. This approach does not
require any client status to be kept on the server. A push direc-
tive, as standardized by MPEG-DASH [11], embedded in the client
request speci�es the tiles qualities. By parsing this directive, the
server understands which tiles to push. Second, an algorithm is pro-
posed to predict the future viewport position, in order to minimize
quality transitions during viewport changes. An estimate of the
future viewport is computed based on the viewport speed, in order
to anticipate the user’s movements and request in advance the right
portion of the video at the highest quality. This approach allows to
provide a graceful viewport transition and maximize QoE. Third,
extensive experimental results are collected to quantify the gains of
the proposed framework using a prototype implemented on a Gear
VR and Samsung Galaxy S7. Particularly, we show that our HTTP/2
solution can reach better quality and lower freeze time compared
to standard tiled video over HTTP/1.1, in high RTT conditions.

The remainder of this paper is structured as follows. Section 2
presents the related work on 360° VR video streaming and HTTP/2-
based adaptive streaming. Section 3 describes in detail the proposed
framework, both from an architectural and algorithmic point of
view, while Section 4 reports the obtained results. Section 5 con-
cludes the paper.

2 RELATEDWORK
2.1 360° Video Streaming
There is a large body of literature addressing the high bandwidth re-
quirements of 360° videos, with tiling identi�ed as a good candidate
to alleviate this problem.

D’Acunto et al. propose an MPEG-DASH SRD client to optimize
the delivery of zoomable videos, which are a�ected by the same
bandwidth problem as 360° videos [4]. The video is spatially di-
vided in tiles: the low resolution tile, corresponding to the whole
zoomable video, is always downloaded to avoid a black screen in
case of viewpoint changes. The high resolution tiles, corresponding
to the zoomed part of the video, are downloaded afterwards. Wang
et al. deliver the tiles of a zoomable video using multicast [17].
An algorithm is proposed to decide the resolution of the tiles to
be multicasted and maximize the utility of all users. Lim et al. use
tiling to e�ciently deliver panoramic videos [9]. In these works, the
video is tiled using H.264, which does not natively support tiling.
This aspect complicates the synchronization of the tiles, as each tile
has to be decoded independently. Le Feuvre et al. propose to use
H.265 to spatially divide the 360° video [8]. They also propose a rate
allocation algorithm to decide the quality of each tile based on the
available bandwidth and the user viewport. The tiles are delivered
using HTTP/1.1 and no prediction is proposed to anticipate the
user’s movements. Gaddam et al. use tiling and viewport prediction
to stream interactive panoramic videos, where part of the panorama
can be used to extract a virtual view [6]. Also in this case, the video
is encoded in H.264 and transported over regular HTTP/1.1. Cuervo
et al. investigate the use of panoramic stereo video and likelihood-
based foveation to deliver the 360° video [3]. Any possible virtual
view can be extracted from the panoramic video, whose quality
gradually degrades based on the part of the video the user is most
likely to watch in the future. Qian et al. propose a framework where
only the portion of the 360° video watched by the user is actually
transmitted, to save bandwidth [13]. The developed viewport pre-
diction algorithm should therefore be extremely precise in order to
avoid stalling when the user changes viewport. Moreover, results
are only presented in a simulated environment. TaghaviNasrabadi
et al. use scalable video coding and tiling to stream the VR video
[15]. The video is divided in di�erent tiles, and each tile is encoded
at di�erent scalable layers. As the video is delivered over standard
HTTP/1.1, this approach is susceptible to high RTT’s. While all of
the above research is successful in addressing some of the problems
a�ecting 360° video streaming, there is no single solution to address
all problems. Our work is an attempt to provide a comprehensive
solution for VR streaming. By using H.265 to tile the video, we can
eliminate the synchronization issues at client side introduced by
tiling. The tiled video is transported using HTTP/2, which allows to
eliminate the signi�cant increase of GET requests due to the spatial
partitioning of the video. Finally, viewport prediction can success-
fully compensate the quality degradation introduced by assigning
lower qualities for tiles outside the viewport, by anticipating user’s
movements.

Budagavi et al. mainly focus on how to optimize the encoding
process to reduce the bit-rate of VR videos [1]. By gradually smooth-
ing the quality of the bottom and top part of an equirectangular
projection, they are able to reduce the bit-rate by 20%. Zare et al.
propose a modi�ed H.265 encoder to more e�ciently tile a 360°
video [20]. Hosseini et al. propose a new tiling structure of the 360°
video, which allows to save up to 30% of the bandwidth compared
to a non-tiled video [7]. The same tiling structure has also been
adopted in this paper, because of its e�ciency. Our approach can
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be considered complimentary to these works, as in our case we
mostly focus on the delivery of the video, rather than its encoding
and preparation.

2.2 HTTP/2-Based Adaptive Streaming
One of the new features introduced by HTTP/2 is the possibility for
the server to push resources that have not been requested directly
by the client. This mechanism was originally proposed to reduce
the latency in web delivery, but has also been applied in the delivery
of multimedia content. Wei et al. are the �rst to investigate how
server push can improve the delivery of HAS streams [18]. They
focus on the reduction of the camera-to-display delay, which is
obtained by reducing the segment duration and pushing k segments
after a single HTTP GET request is issued by the client. Xiao et
al. extend the k-push mechanism to optimize the battery lifetime
on mobile devices, by dynamically varying the value of k based
on network conditions and power e�ciency [19]. van der Hooft
et al. also investigate the merits of server push for H.265 videos
over 4G networks [16]. Segments with a sub-second duration are
continuously pushed from the server to the client, in order to reduce
the live delay compared to HTTP/1.1-based solutions. Cherif et
al. use server push in conjunction with WebSocket to reduce the
startup delay in a DASH streaming session [2]. In this work, we
exploit the server push functionality in order to reduce the network
overhead introduced by spatially dividing the video into separate
tiles. Instead of pushing the segments one after other, we use the
k-push mechanism to push the tiles composing a single temporal
segment back-to-back from the server to the client.

3 HTTP/2-BASED VR STREAMING
FRAMEWORK

In this section, we describe the proposed framework for VR stream-
ing. Our framework builds upon three components, which com-
bined overcome the main issues a�ecting current VR streaming
solutions, namely storage costs and bandwidth requirements. First,
the VR content is encoded using the H.265 standard and divided into
spatial tiles, each encoded at di�erent quality levels (Section 3.1).
Besides an encoding overhead introduced by the tiling process, this
approach requires the same amount of storage as in classical video
streaming. Second, the video client is equipped with an algorithm
that can select the best video quality for each tile based on informa-
tion as the current and predicted future viewport and the available
network bandwidth (Section 3.2). By dynamically changing the
viewport quality, the bandwidth required to stream the 360° video
can be consistently reduced. Third, the server-push functionality
of the HTTP/2 protocol allows to eliminate the signi�cant increase
of HTTP GET requests caused by tiling the video (Section 3.3), in
turn increasing the achieved throughput, especially in high RTT
networks.

3.1 H.265 Video Tiling
One of the innovations introduced by the H.265 standard is the
possibility to spatially divide the video into regions, called tiles
[10]. The tiles can be physically separated from each other and
reconstructed in a common stream that can be decoded by a single
decoder. This tiling process is extremely bene�cial in VR streaming,

where the user can only watch a fraction of the entire 360° video at
any given point in time. In fact, only the tiles inside the viewport are
streamed at the highest quality. This approach would still give the
same feeling of immersion as if the entire 360° video was streamed
at the highest quality, while requiring less bandwidth compared to
full quality VR streaming and less storage compared to viewport-
dependent non-tiled VR streaming. The storage savings can be
quanti�ed based on the underlying 2D projection used for the VR
video. We consider an equirectangular projection with width w
and height h, and viewport with width and height equal to wp and
hp , respectively. We assume the video is composed of two quality
levels, with bit-rates b1 ≥ b0. In our tiled approach, the total storage
required to stream a single video is given by:

St iled = d × (b1 + b0) × α (nt )

where d is the video duration and α (nt ) represents the encoding
overhead introduced by the tiling process, which depends on the
number of tiles nt . Conversely, in a non-tiled approach, a di�erent
copy of the video has to be encoded for each desired viewport
con�guration:

Snon−t iled = d ×

[
wp × hp

w × h
× b1 +

(
1 −

wp × hp

w × h

)
× b0

]
×

× N (w,h,wp ,hp , ξ )

The term in brackets represents the bit-rate necessary to stream
a single viewport con�guration and is given by the percentage of
the equirectangular projection occupied by the viewport at high
quality (�rst term) plus the remaining part of the video streamed
at a lower quality (second term). N (w,h,wp ,hp , ξ ) indicates the
number of di�erent viewport con�gurations to encode, with ξ being
the step separating the di�erent viewports:

N (w,h,wp ,hp , ξ ) = b
w −wp

ξ
c × b

h − hp

ξ
c

Consequently, the gain in terms of storage between a tiled and
non-tiled approach can be quanti�ed as follows:

G =
Snon−t iled
St iled

=
b1 − b0
b1 + b0

×
wp × hp

w × h
×
N (w,h,wp ,hp , ξ )

α (nt )
+

+
b0

b0 + b1
×
N (w,h,wp ,hp , ξ )

α (nt )

The previous equation can be generalized to the case where
Q quality levels are available, such that the quality is gradually
degraded outside the viewport:

G =
Snon−t iled
St iled

=
N (w,h,wp ,hp , ξ )

α (nt )
×

×

1
w×h ×

∑Q
q=1 bq ×

[
wi × hi −

∑q−1
j=1 w j × hj

]

∑Q
q=1 bq

As for the actual tiling structure, we used the same approach
from Hosseini et al. [7] (see Figure 1). In total, six tiles are created:
two polar tiles and 4 equatorial tiles. This tiling process allows to
reduce the bandwidth needed to stream the VR video by about 30%,
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when compared to a full quality non-tiled approach [7]. As in HEVC
tiling all columns must have the same number of rows, we simply
take the tiles belonging to the polar region and concatenate them
together, so that they can be requested as a single object by the
client.

3.2 Tiles Quality Selection
An important aspect of the proposed framework is the client-based
heuristic in charge of deciding the quality of the tiles. While in
classical HAS this decision is mainly based on network conditions,
in 360° VR streaming a new dimension is added, namely the user
viewport. In this work, we consider as viewport the region with
center the �xation point and 60-degrees in radius, known as the
mid-peripheral region. All tiles overlapping with the viewport re-
gion are considered viewport tiles. The quality of the tiles belonging
to the viewport should always be maximized in order to guarantee
an immersive experience to the user. The remaining tiles can be
streamed at a lower quality, to save bandwidth while guaranteeing
a fast transition when the viewport changes. In order to reduce
the transition time and maximize the viewed quality, our heuristic
can also predict the future viewport, based on the �xation point
speed. This way, the video client can request in advance the tiles be-
longing to the predicted viewport and therefore provide a seamless
transition.

As in classical HAS, a new decision about the tiles quality is
made by the client after a segment has been completely downloaded.
First, the client identi�es tiles belonging to the current and future
viewport. In order to compute the future viewport, we obtain the
positionp at instantk of the current �xation point on the underlying
2D projection of the VR video, for example, latitude and longitude
for an equirectangular projection. The future �xation point, which
de�nes the future viewport, is computed as:

p (k + ∆) = p (k ) + ∆ × p̂ (k )

p̂ (k ) =
p (k ) − p (k − δ )

δ

where ∆ is the future viewport prediction horizon, p̂ (k ) is the
speed of the �xation point and δ is the speed measurement interval.
In our work, ∆ is equal to the segment duration of the video. In
order to guarantee a �ne-grained monitoring of the viewport speed,
δ is �xed to 100 ms.

Once the future viewport is computed, the tiles are logically
divided into three categories: viewport, for tiles belonging to the
current and future viewport, adjacent, for tiles immediately outside
the viewport tiles and outside, for all the remaining ones. A design
choice is taken regarding the polar tiles (Figure 1). Particularly, a
polar tile always belongs to the outside group, unless it is part of
the tiles between the current and future viewport (i.e., a viewport
tile). The actual quality of the tiles is selected based on the available
bandwidth, as described in Algorithm 1. The algorithm takes as
inputs the available perceived bandwidth B, the bit-rates of the
video b (−) and the aforementioned tiles categories. First, the lowest
quality is assigned to all the tiles of the video (line 1). This initial
allocation guarantees that all the tiles of the video are streamed to
the user. Then, the available bandwidth budgetBbudдet is computed

Algorithm 1 Tiles quality selection heuristic.
Require:

B , available perceived bandwidth (in Mbps)
b , vector containing the bit-rates (in Mbps) of the available quality
levels, from 0 (lowest) to nq (highest)
viewport, adjacent, outside tiles groups
nT , the total number of video tiles

Ensure:
qt (−), vector of the assigned tiles quality

1: qt (t ) = 0 ∀t ∈ {viewpor t, ad jacent, outside }
2: Bbudдet = B − nT × b (0)
3: for t iles_cateдory in {viewpor t, ad jacent, outside } do
4: qt = maxq∈[1;nq ] q s .t . b (q ) ≤

Bbudдet
nt iles

5: Bbudдet = Bbudдet − nt iles × b (qt )
6: qt (t ) = qt ∀t ∈ t iles_cateдory
7: end for

(line 2) as the di�erence between the available bandwidth and the
total bit-rate allocated to the tiles. Next, the highest possible quality
is assigned to the tiles, given the bandwidth budget (lines 3-7),
starting from viewport tiles. We select the highest quality q such
that the corresponding bit-rate b (q) is lower than the ratio between
the current bandwidth budget and number of tiles nt iles belonging
to the analyzed category (line 4). We then update the bandwidth
budget (line 5) and repeat the allocation for the adjacent and outside
tiles, till we run out of bandwidth. This way, we mitigate the edge
e�ect between tiles at di�erent qualities by gradually reducing the
quality as we move out of the viewport.

3.3 HTTP/2 Server Push for Tiled Videos
Once the tiles quality is decided, the client issues an HTTP GET
request to the server. In classical tiled streaming over HTTP/1.1,
nT HTTP GET requests have to be issued in order to retrieve a
single temporal segment, with nT equal to the number of tiles. This
aspect entails that nT RTTs are lost, which can lower the achieved
throughput in mobile, high RTT networks. We propose to solve
this issue by using the server push functionality of the HTTP/2
protocol and, particularly, the k-push approach proposed by Wei et
al. [18], with k set to nT . In this case, only one request is sent from
the client to the server, specifying the qualities of the video tiles,
decided as reported in Section 3.2. All the tiles are consequently
pushed from the server to the client using the HTTP/2 protocol.
This approach eliminates the request overhead due to tiling and
results in a better bandwidth utilization, even in high RTT networks.
It is worth stressing that the k-push mechanism does not require
any client status to be kept on the server. A push directive, as
standardized by part 6 of the MPEG-DASH standard [11], embedded
in the client request speci�es the tiles qualities. We extended the
urn:mpeg:dash:fdh:2016:push-next push directive in a compatible
way to allow the client specifying the tiles qualities. By parsing
this directive, the server understands which tiles to push. HTTP/2
server push is by design cache compatible, and several CDNs are
starting to deploy it1.

1https://blogs.akamai.com/2016/04/are-you-ready-for-http2-server-push.html

https://blogs.akamai.com/2016/04/are-you-ready-for-http2-server-push.html
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Figure 2: Illustrative diagram of the developed prototype.
Gray boxes indicate algorithmic components. In italics, the
names of the used libraries.

4 PERFORMANCE EVALUATION
4.1 Experimental Setup
The proposed framework has been implemented as a prototype on a
Samsung Galaxy S7 and a Gear VR [12]. A high-level description of
the prototype is given in Figure 2. The Gear VR Framework2 allows
to develop VR applications on Android devices and provides general
VR functionalities. The framework is mainly used in the Viewport
monitoring module, as it allows to capture where the user is watch-
ing and to enable viewport-awareness. The Tiles quality selection
module selects the quality of the tiles and takes as input: (i) the
bu�er level, (ii) the available bandwidth, (iii) the current viewport
and (iv) the predicted viewport, computed by the Viewport predic-
tion module. The tiles quality is then communicated to the Network
module, implemented using the okhttp3 library, which takes care of
the actual streaming of the video segments. Both regular HTTP/1.1
and HTTP/2 protocols are supported. We also extended the okhttp
library to support the server push functionality of HTTP/2. Once
the tiles are downloaded from the server, the Tiles repackaging mod-
ule, realized using the MP4Box4 library, pre-processes them before
they are actually played by the Video player. This step is necessary
because the ExoPlayer5, which implements the video playout, is not
able to directly play tiled videos. Particularly, tiles are concatenated
into a single mp4 �le using the cat command, and the raw HEVC
stream is extracted using the raw command. Future versions of the
ExoPlayer would allow to eliminate this step. Despite this process,
the latency added to the system is less than 100 ms.

The Jetty server has been used as HTTP server, which was ex-
tended to implement the k-push functionality [19]. In our frame-
work, k corresponds to the number of tiles the video is composed
of. The Samsung S7 is connected to the Jetty server, hosted on a
MacBook Pro Retina, via a 5GHz ad-hoc wireless network. The
wireless network presents an average RTT in idle conditions of
about 50ms (±33ms).

2https://resources.samsungdevelopers.com/Gear_VR/020_GearVR_Framework_
Project
3http://square.github.io/okhttp/
4https://gpac.wp.mines-telecom.fr/mp4box/
5https://developer.android.com/guide/topics/media/exoplayer.html

Table 1: VR video characteristics. The nominal average bit-
rate and its standard-deviation (in brackets) is reported. All
values are expressed in Mbps.

Tiled Non-tiled
1 sec 2 sec 4 sec 1 sec 2 sec 4 sec

High 9.5(1.34) 7.1(1.18) 5.6(1.05) 8.9(1.61) 6.7(.92) 5.2(1.05)
Medium 4.8(0.45) 3.2(0.34) 2.3(0.32) 4.3(0.61) 2.9(0.34) 2.1(0.32)
Low 2.5(0.19) 1.6(0.14) 1.1(0.11) 2.3(0.26) 1.4(0.13) 0.9(0.10)

The 60 seconds Alba 360° Timelapse, available on YouTube, is
used as video content. The raw 8K video was extracted from the
original clip and re-encoded using the HM encoder (version 16.4),
the reference software for H.265. Three quality levels have been
encoded in variable bit-rate, corresponding to QP values equal to
30, 25 and 20. The video is available in a 1, 2, 4 seconds segment
version, both non-tiled and tiled. Using shorter segments increases
the adaptability to viewport and bandwidth changes, at the cost of
an encoding overhead due to more frequent Instantaneous Decod-
ing Refresh (IDR) frames at the beginning of each segment. Table
1 reports the bit-rates of the di�erent video versions. As expected,
tiling the video introduces an overhead compared to the non-tiled
version, which varies between 6% and 22%.

To provide an extensive benchmark of the proposed framework
(referred as to H2P pred in the results section), we compare its
performance with that obtained using a non-tiled solution (called
Non-tiled in the results section). Moreover, we also tested the per-
formance of a tiled solution over HTTP/1.1 and HTTP/2 server
push (referred as to H1 and H2P, respectively), without the view-
port prediction presented in Section 3.2. This way, it is possible
to clearly identify both the gains of the prediction algorithm and
those brought by server push.

To assess the performance of the viewport prediction, we recorded
10 di�erent viewport traces from real users using our prototype,
and arti�cially injected them during the experiments. We asked
10 users to watch the full high quality, non-tiled version of the
Alba 360° Timelapse on the developed prototype, and recorded the
viewport positions. The traces are divided in two groups, slow and
fast, representing the cases where the movements are rare and slow
or frequent and fast, respectively. Particularly, we characterize as
slow the traces whose average angular speed is less than 90 deg/sec
and fast otherwise. The tiling structure used in this paper is com-
posed of 2 polar tiles and 4 equatorial tiles (Figure 1), each covering
90 degrees of the 360-degree video. This aspect entails that in the
slow traces group, viewport tiles change at the same timescale as
the segment duration of the video. Therefore, even non-predictive
approaches should be able to adapt the tiles quality fast enough to
accommodate viewport changes.

The VR client is equipped with a video bu�er whose critical
threshold is 2 seconds, i.e., a new segment request is issued only
when the video bu�er drops below 2 seconds. This choice represents
a good trade-o� between avoiding bu�er starvations and provid-
ing a quick response to viewport changes. Each con�guration in
terms of segment duration, VR solution, viewport and network
con�guration has been repeated 10 times to guarantee statistical
signi�cance.

https://resources.samsungdevelopers.com/Gear_VR/020_GearVR_Framework_Project
https://resources.samsungdevelopers.com/Gear_VR/020_GearVR_Framework_Project
http://square.github.io/okhttp/
https://gpac.wp.mines-telecom.fr/mp4box/
https://developer.android.com/guide/topics/media/exoplayer.html
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Figure 3: Viewport prediction is generally able to increase
the time spent on the highest quality. Tiled solutions reach
similar or better performance than the non-tiled one, when
the bandwidth decreases.
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Figure 4: Tiled approaches have a higher e�ciency com-
pared to the non-tiled one, as only the viewport is streamed
at the highest quality. Results are reported for the 2 seconds
segments video.

4.2 Impact of Tiling and Prediction
In this section, we investigate the performance of the proposed
approach. We consider two di�erent network scenarios. In the �rst
one, we varied the available bandwidth based on traces collected on
a real 4G network [16], to assess the performance of the proposed
framework under realistic network conditions. The traces present
an average bandwidth equal to 21.8 Mbps (±12.3 Mbps), which is
often enough to stream the highest quality. In the second scenario,
the bandwidth is �xed to 5 Mbps, to clearly highlight the bene�ts
of the proposed approach, as a classical non-tiled approach will not
be able to stream the highest quality (see Table 1).

Results for the slow viewport traces are presented in Figure 3.
The graphs report the percentage of time spent by the viewport
on the three available quality levels, for each segment duration (1,
2, 4 seconds). The time spent on the highest quality has always to
be maximized, to guarantee the best immersion to the user watch-
ing the VR video. When the viewport slowly changes, di�erences
between a tiled and non-tiled approach are small (Figure 3a). View-
port prediction (H2P pred) can increase the quality by about 15%

compared to tiled approaches without prediction (H1 andH2P). Con-
sequently, the di�erence in terms of quality spent on the highest
quality is very small (about 10%) compared to a non-tiled solution.
The gains of tiling approaches are evident when bandwidth is lim-
ited (Figure 3b), as the non-tiled approach cannot stream the highest
quality. Conversely, tiled approaches can successfully stream the
highest quality of the video, up to 70% of the time in the 1 second
segments case (Figure 3b). Results for the 4 seconds segments are
caused by the slightly increased amount of data needed to stream
the video when prediction is used. In this case, both viewport and
predicted tiles are requested at higher qualities to minimize quality
transitions when the viewport changes. This aspect entails that
more data is needed to stream the video (about 10%) compared
to tiled non-predictive approaches. Therefore, when bandwidth is
limited and segment size is bigger, the client tends to request the
second highest quality instead of the highest one. Another impor-
tant metric to consider is the amount of data needed to transfer
the video. We therefore introduce an e�ciency metric vw, which
represents the ratio between the amount of data used to stream the
viewport at the highest quality, and the total amount of streamed
data, computed as in the following:

vw =

∑nS
s=1

∑
t ∈viewpor t bst∑nS

s=1
∑nT
t=1 bst

where nS and nT are the number of segments and tiles the video
is composed of, bst is the bit-rate of tile t belonging to segment
s and bst is the bit-rate of the highest quality if tile t is at the
highest quality, or zero otherwise. This metric quanti�es how much
bandwidth is wasted to stream tiles that are either at lower qualities
or outside the viewport. Figure 4 shows the values of vw, for the 2
seconds segments video. The x-axis reports the vw ratio, while the
y-axis the total amount of streamed data, to have an absolute scale
to compare the di�erent solutions. Tiled approaches reach a better
e�ciency when compared to the non-tiled one. Less data is needed,
as only the viewport is streamed at the highest quality. Particularly,
our solution is able to increase e�ciency from 25% to almost 40%
(Figure 4a). Despite the overhead introduced by tiling the video (see
Table 1), our tiled solution uses 35% less data to stream the video
than a non-tiled one. This condition entails that our solution can
better redistribute the data needed to stream the video, by giving
more importance to the portion of the video actually watched by
the user. When the bandwidth is �xed to 5 Mbps, the e�ciency of
the non-tiled solution drops to zero, as the highest quality cannot
be streamed.

A similar analysis can be repeated for the fast viewport (Figure
5). In this case, tiling the video reduces the amount of time spent on
the highest quality. If the user viewport is moving fast, the optimal
choice to provide the best immersion would be to download the
entire video at the highest quality. In the 4G network con�guration,
the non-predictive tiling approaches can provide only 25% of the
time at the highest quality, compared to 90% of the non-tiled solu-
tion (Figure 5a). Our predictive approach can consistently reduce
this di�erence to about 30%. These results clearly show the impor-
tance of viewport prediction when the VR video is tiled. Despite
these results, the non-tiled approach cannot provide the best QoE
when the bandwidth is limited (Figure 5b). As for the slow viewport
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Figure 5: When the viewport is highly dynamic, a tiled ap-
proach cannot reach the same quality as the non-tiled one.
Despite that, when the bandwidth drops, tiling outperforms
a traditional approach.

traces, streaming only the tiles watched by the user at the highest
quality consistently reduces the bandwidth required to stream the
VR video. Also the e�ciency metric vw drops when the viewport
is highly dynamic, as it becomes more di�cult to present the right
portion of the video at the highest quality. Compared to the slow
viewport case, the e�ciency for tiled solutions drops by about 25%.
Using prediction allows to limit this drop to only 15%. Nonetheless,
also in the fast viewport scenario, tiled approaches require far less
data (up to 35%) compared to the non-tiled solution. Moreover, tiled
approaches can still provide a better e�ciency than the non-tiled
one in the 5 Mbps scenario, as in this case the latter is never able
to stream the highest quality.

4.3 Impact of HTTP/2 Server Push
The aim of this section is to highlight the advantages of HTTP/2
server push compared to traditional HTTP/1.1. As explained in
Section 3.3, the proposed approach only needs to send a single GET
request specifying the tiles qualities, which are then pushed auto-
matically by the server. This solution is particularly bene�cial when
the total time to retrieve each tile individually, as with standard
HTTP/1.1, is comparable to the segment duration. This problem
can arise, for example, when the network RTT is high. We analyze
this scenario in the remainder of this section.

To better isolate the impact of the RTT only, we increase the
RTT of the wireless network connecting the server and the client
to 100 ms and �x the bandwidth to 35 Mbps. Moreover, the slow
viewport traces are used. Results of these experiments are presented
in Figure 6. A high RTT has a negative in�uence on the perceived
bandwidth of the HTTP/1.1 tiled approach (Figure 6a), as an RTT
is lost to retrieve each single tile. This behavior has a direct impact
on the total freeze time, which is extremely high in the HTTP/1.1
case (Figure 6a), for all video con�gurations. Pushing the tiles is
extremely bene�cial in this scenario. Particularly, we can still ob-
tain similar performance to a non-tiled approach (Figure 6a), while
keeping all the advantages described in Section 4.2. The perceived
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Figure 6: HTTP/1.1 cannot provide good performance when
the RTT is high, as each tile has to be retrieved indepen-
dently. HTTP/2 push can completely eliminate this prob-
lem.

bandwidth increases by more than 3 times compared to HTTP/1.1,
which allows to consistently reduce video freezes. From a network
point of view, retrieving a single non-tiled video segment is the
same as pushing the tiles using HTTP/2, as only one request has
to be sent in both cases. As expected, the perceived bandwidth
increases with the segment duration, as the impact of the RTT on
the total download time diminishes. These results have a direct
impact on the viewport quality (Figure 6b). Due to the low per-
ceived bandwidth, in HTTP/1.1 most of the time is spent on the
lowest quality. HTTP/2 solutions are instead able to provide a good
viewport quality. The quality drop in the non-tiled case is mainly
due to the varying bandwidth caused by a high RTT. As stated in
Section 4.1, the wireless network presents an average RTT of about
50ms (±33ms). Increasing the RTT to 100 ms causes the e�ective
available bandwidth to �uctuate. As explained in Section 4.2, a
non-tiled approach needs a higher bandwidth to stream the same
quality as for tiled approaches, and is therefore more susceptible to
varying bandwidth conditions.

Another situation where retrieving each tile individually instead
of pushing them can have a negative impact on the overall stream-
ing performance, is when the number of tiles increases. In all the
previous experiments, we used a 6 tiles con�guration, shown in
Figure 1, which is composed of 2 polar tiles and 4 equatorial tiles.
We re-encoded the content in order to have 14 tiles in total, 12 equa-
torial and 2 polar. Increasing the number of tiles provides a better
granularity in terms of viewport quality adaptation, as it is possible
to better match the portion of the video actually watched by the
user with the video tiles, but has a negative impact in terms of net-
work overhead. Figure 7 reports the results of this experiment, for
network bandwidth �xed to 5 Mbps and 1 and 2 seconds segments
video. As in the previous set of experiments, the slow viewport
traces have been used. In the HTTP/1.1 case, increasing the number
of tiles to 14 causes the bandwidth to drop by about 13% compared
to server push, due to the increased idle time between subsequent
HTTP GET requests. Despite this drop, bandwidth is su�ciently
high to provide both a good overall quality and few freezes in the 2
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Figure 7: In the 14 tiles video, HTTP/1.1 results in high
freeze time when the idle time due to the increased num-
ber of GET requests approaches the segment duration (i.e., 1
second segments video).

seconds segments video con�guration (Figures 7a and 7b). In the
1 second segment version instead, the decreased bandwidth and
the increased idle time introduced by the subsequent GET requests,
causes the HTTP/1.1 client to freeze (Figure 7b). HTTP/2 push solu-
tions are much less a�ected by the increased number of tiles, which
is actually bene�cial in terms of total freeze time, compared to the
6 tiles video. This behavior can be explained by looking at the total
amount of streamed data, which decreases with about 15% and 5%
on average, in the 2 seconds and 1 second segments video. In the
14 tiles scenario, it is possible to better match the user viewport
with the available tiles and stream a smaller portion of the video at
the highest quality, compared to the 6 tiles video. This aspect also
entails a disadvantage in terms of time spent on the highest quality
(Figure 7a), since it is more likely for the user to watch parts of the
video at lower qualities in case of viewport changes. Predicting the
user viewport becomes even more prominent in this scenario, as it
allows to limit the drop from 15%-20% in the non-predictive cases
to only 5%-10%.

5 CONCLUSIONS
In this paper, we presented a novel framework for the e�cient
streaming of VR videos over the Internet, which aims to reduce
the high bandwidth requirements and storage costs of current VR
streaming solutions. In our framework the video is spatially divided
in tiles using H.265, and only tiles belonging to the user viewport are
streamed at the highest quality. A viewport prediction algorithm has
been proposed to anticipate the user’s movements and download
in advance the part of the video that is likely going to be watched
in the future. To reduce the in�uence of the network RTT on tiled
streaming, our framework uses the server push functionality of
the HTTP/2 protocol. In the evaluated streaming scenarios and
in presence of slow viewport movements, our framework is able
to obtain similar quality as for a non-tiled solution, by using up
to 35% less data to stream the video. The gains brought by the

proposed approach represent an important step toward the e�cient
streaming of VR videos with consistent quality.

Future work will focus on a more extensive comparison of the
proposed approach with existing VR tiling solutions. Moreover, we
will investigate the applicability of video quality metrics, similarly
to the approach used by Alface et al. [14], to quantify the impact of
tiling on user perception. To this extent, a subjective user study will
be carried out to further analyze the trade-o� between bandwidth
savings and user experience in tiled VR streaming.
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