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1. Introduction

The shift from centralized control to distributed and self-
organized control in artificial systems has been one of the
most significant trends in recent decades. This transition
can be seen in a broad spectrum of artificial systems
made of physical or virtual components. To fulfill their
purpose, these systems must exhibit collective behavior
that results from a combination of multiple individual
actions and interactions. For instance, a robot swarm can
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perform aggregation, collective motion, or resource gathering as a result of multiple individuals
autonomously taking decisions that are based on their local conditions—i.e. their direct
neighborhood and environment.

In nature, we find a large set of complex systems where collective behavior is observed. Such
behavior arises when parts of an organism coordinate to achieve a given function (e.g., cells self-
organizing within a multicellular organism) or when organisms coordinate within a group (e.g.,
birds self-organizing in a flock or fish in a school). According to Brambilla et al. [2013], these
systems are characterized by three properties that engineers would benefit from replicating in
decentralized designs: scalability, robustness and adaptivity. Robustness and scalability result
directly from having redundant large-scale systems that achieve collective objectives without
relying on global information. By contrast, achieving flexibility in artificial self-organizing
systems is still a challenge.

To confront the design challenges of robustness and adaptivity, much can be learned from
nature, since natural systems must be capable of achieving effective collective responses to a
variety of external conditions and environmental changes in order to survive. Regardless of the
specific mechanisms responsible for self-organization, a necessary condition for achieving such
collective response is having a strong integration in the behavior of the components of the self-
organized system. In many cases, this integration must not depend on the spatio-temporal scale
of the system, so that it can exhibit a collective integrated response to stimuli independently of
the size of the system or of a given stimulus. We refer to such emerging collective dynamics as
scale-invariant.

In this paper, we will review the scale-invariant properties exhibited by various systems
in different branches of science and their underlying mechanisms, focusing on their potential
application for the engineering design of flexible decentralized systems that respond coherently,
as a single unit, to environmental challenges at all scales. We will start by providing in Section 2
a mathematical framework and background materials on scale invariance. In Sections 3, 4 and
5 we will describe different types of scale invariance found in nature, classifying them by their
corresponding emergent scale-invariant features and by the underlying mechanisms responsible
for them. Section 3 will focus on scale-invariant spatial distributions, Section 4 on scale-invariant
interaction networks, and Section 5 on scale-invariant dynamics. For each type, we will present
various examples found in the literature, stemming from diverse scientific fields, including
physics, biology, and social sciences. In Section 6 we will discuss potential applications of these
examples from nature for engineering future artificial decentralized scale-invariant systems that
are scalable, robust, and flexible. Finally, Section 7 is our conclusion.

2. Background

The property of scale invariance describes situations where the essential structural and/or
dynamical properties remain unchanged (i.e. invariant) when considering the system at different
scales. In general mathematical terms, if we use f(z) to describe the structure or dynamics of any
system as a function of the (spatial or temporal) variable z, a scale-invariant system f(z) must
satisfy the condition

fx)=C) f(2). 2.1)

Hence, if we consider a scale that differs from the original one by a factor A, replacing f(x)
for f(Ax), the property described by f remains essentially unchanged; it is only multiplied by a
scaling factor C'(\) that does not depend on z. Although, in principle, C'(\) can be any function,
in practice, it is a power-law for all the natural systems reviewed in this paper. We distinguish
here two types of scale invariance, a continuous scale invariance where X can take any value and
a discrete scale invariance where it takes only discrete values, noting that the latter case may be in
dissonance with some definitions found in the literature. In this paper, we thus define as scale-
invariant any property that satisfies, for continuous or discrete values of A and for a given A € R,

0000000 89BLB1U| 008 'Y B10-BulysiandAIBIoos|EAoryiS)



Scale Invariance

Scale-invariant Scale-invariant Scale-invariant
structures interaction networks dynamics
Modified Scale-invariant Scale-invariant
Fractals ke wEl's node degree node distance
scale-free networks small-world networks;

Dynamics on Criticality Collective
networks modes

[Self—organized] [ Parameter- ]

criticality driven criticality

Figure 1: In this review paper, we identify three main types of scale invariance: (i) structures,
(ii) topologies, and (iii) dynamics, covered in Section 3, 4, and 5 respectively. Fractals and
modified random walks are examples of spatial and temporal structure that are scale-invariant.
Scale-invariant topologies can be scale-invariant either in their node degree (scale-free networks)
or in their intra-node distance (small-world networks). Scale-invariant dynamics can be induced
either by the underlying scale-invariant topology, or by a mechanism called criticality (which can
be either self-organized or induced by tuning an external parameter), or via collective modes.

the power-law expression
Frz) =22 f (). (2.2)

The continuous case is equivalent to stating that f is a homogeneous function. An example is
any power-law, since f(z) = ca® always satisfies Eq. (2.2) for A = p. The discrete case corresponds
to fractal-like, self-similar systems. We note, in addition, that some apparently discrete scale-
invariant systems can actually correspond to specific statistical samplings of a continuous
scale-invariant probability distribution. Therefore, if a discrete realization of a scale-invariant
system is observed, it does not necessarily imply that Eq. (2.2) is only satisfied for a discrete A,
but could instead mean that f(x) is a probability distribution and that we are observing a discrete
statistical sampling of its values.

Scale-invariant systems typically have no characteristic scale, since any specific scale that
defines them would have to appear in the function f(z), making the transformation in Eq. (2.2)
impossible. Such scale-invariant systems are thus often referred to as being scale-free. From a
system design perspective, this means that the property f(z) holds regardless of the spatial
or temporal scale. This also explains why power-laws commonly appear when describing
scale-invariant systems. Indeed, the argument in most other functions (such as exponential
or trigonometric functions) must have dimensionless units, and this can only be achieved by
dividing = by another dimensional variable that defines a characteristic scale. Finally, we note
that in real-world scale-invariant systems, this invariance can never cover all scales—there will
always be physical cut-offs at very large and very small scales—but must still be valid over a
broad range of scales.

All systems we review in this paper exhibit the above property of scale-invariance. An
important distinction that must be made is whether these systems are the result of biological
evolution and adaptation or not. If this is the case, we can argue that these systems are
"guaranteed” to be optimally responsive to the environmental conditions, and therefore robust
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and adaptive. If instead such systems are not under a biological evolutionary process (e.g., social
systems), robustness and flexibility is not necessarily guaranteed. Although this distinction is
very important, we will not use it as a unit of taxonomy, as for the sake of our review both these
systems deserve to be fully understood as they may contain insight that would allow to develop
useful engineering systems. In fact, although a social system, for instance, may not be behaving
in a robust and adaptable fashion under certain conditions, in an engineering context parameters
conditions are fully under control, so understanding the regime in which such systems behave
optimally is important. In the following, we define robustness and adaptability and clarify their
interplay in the context of collective engineering systems.

In works such as those of Young et al. [2017] and Kitano [2004], robustness is referred to
as the ability of the system to maintain its functionality when a system parameter changes. In
collective systems, this functionality is the global behavior that emerges from the individual
behaviors, which are formulated based on, both, the individual’s opinion and the interactions
with other individuals. Hence, the robustness of a collective system can be stated as the system’s
ability to maintain its global behavior under the presence of perturbation, changes or failures
in the individual behaviors and/or in the interaction. The impact of a failing component on the
robustness of a collective system must thus be studied in terms of the other affected components
and not by zooming in on the internal details of the failing component.

Adaptability in a collective system, on the other hand, can be defined as the ability of the
system to shift from one collective state to another in response to a stimulus. The new state
can be either better or worse than the old state. Example of collective state changes as stimuli
response are: the change in flying direction of a bird flock as a response to a predator attack; the
transformation of matter from liquid state to gas state as a response of rising temperature; the
selection of a new hive site by a honeybee colony as a response of unsuitability of the current nest
location. Adaptability is a fundamental feature in unpredictable and dynamic environments, in
which the stimuli are unknown a priori.

Robustness and adaptability may have synergistic or antagonistic interactions. In static
environments where the collective system response is not expected to change, having a high
degree of adaptability may have a detrimental effect on robustness, as an adaptive reaction
to noise, for example, may trigger an unneeded collective state change. On the other hand,
in dynamic environments adaptability is more likely to promote robustness, as changes will
most likely be triggered by environmental stimuli rather than by the noise, thus collective state
change will more likely keep the system functioning under the new environmental condition. The
adaptive response to stimuli must be efficient and coherent. One way to achieve this is via a quick
and wide enough propagation of information throughout the system, which again can be realized
via scale-invariant interaction networks as we will discuss across this review.

In this review, we will mainly focus on scale-invariant systems that involve space-like variables
(including physical positions in space, topological locations on networks, and dynamics on
different physical or virtual sites). This is because space-like scale invariance can often be achieved
by self-organizing systems, which are our main interest here since they can inspire distributed
solutions for future engineering, design and control applications. In the following, we will
describe three classes of scale-invariant systems, each associated to a different scale-invariant
physical property: spatial distributions (Section 3), connectivity (Section 4), and dynamical
correlations (Section 5).

3. Scale-invariant spatial and temporal distributions

We consider first situations where scale invariance is manifested in the structure of physical
objects, in the distribution of positions in space (i.e. the physical occupation of the space), or
in the signal left by the system over time. Although we will mainly focus on the scale-invariant
connectivity and dynamics discussed in Sections 4 and 5 (since they describe collective, rather
than individual, scale-invariant phenomena), for the sake of completeness, we also include below
a brief description of common ways in which scale-invariant spatial distributions may emerge in

0000000 89BLB1U| 008 'Y B10-BulysiandAIBIoos|EAoryiS)



nature. In contrast to the other two kinds of phenomena, these scale-invariant distributions could
be generated by the action of a single individual, or by the action of multiple individuals that are
not necessarily coordinated.

We start by discussing fractals, since they are a fundamental component of the study of scale-
invariant structures. We then illustrate several ways in which scale-invariant structures can also
be generated starting from a simple random walk. It is important to note that scale-invariant
spatial patterns can also emerge in other contexts, and due to very different processes. Self-
propelled microswimmers, for example, can form such patterns due to underlying fluid flows (as
further discussed in Subsection (b)). Elgeti et al. [2015] and Wysocki et al. [2014] have described
how such fluid flows contribute directly to long-range interactions at multiple scales.

(a) Fractal structures

Fractals are geometrical structures made of patterns that repeat themselves at all spatial or
temporal scales. The study of fractals has become a broad discipline in mathematics that includes:
how they are generated, the characterization of their geometry, examples in nature, and potential
applications. These different aspects of fractals have been well reviewed in the literature, e.g.,
by Briggs [1992], Falconer [2004], Mandelbrot and Pignoni [1983]. In what follows, we will only
describe briefly some examples of how fractals appear in biology and other natural systems, in
order to illustrate cases of both temporal and spatial scale invariance found in this context.

Prime examples of fractal time series in biology are given by Scafetta et al. [2007], namely the
physiological signals produced in response to stress and environmental changes, such as (i) beat-
to-beat intervals in the human heart (or heart rate variability), (ii) human stride intervals under
different conditions (e.g., different walking paces), and (iii) inter-breath intervals in patients with
different conditions. Also spatial fractals were found in physiological systems by West [1990]
and Goldberger et al. [2002] such as the arterial and venous trees, the branching of certain cardiac
muscle bundles, and the nervous system.

Some fascinating examples of fractal structures manifest themselves as morphogenic patterns
in a variety of living systems. These patterns naturally emerge as these systems grow, leaving
a trace on the design of the grown organism. Seashells, for example, often display geometric
structures that are fractal in nature. A set of underlying mechanisms that can produce such
patterns were investigated by Umulis and Othmer [2013]. This work describes the spatio-
temporal evolution of morphogen-mediated patterns by dividing the system into four models.
The first model generates the morphogen signal, the second one redistributes the morphogen,
the third one shapes the morphogen distribution, and the forth one detects and transduces the
corresponding signal. Umulis and Othmer [2013] then show how the combination of these models
lead to a scale-invariant morphogenic pattern.

Fractals have already been widely used in the analysis and engineering of artificial systems. In
the time domain, examples include the study of market dynamics by Peters [1989], who used a
rescaled range analysis to identify fractal characterizations of market fluctuations and risk factors
and to help predicting future dynamics. In the space domain, the detection of fractal structures in
images is an important enabler to efficiently compress data. Fractal compression has been applied
by Hramov et al. [2015] for neuro-images or by Liu et al. [2016] for images of agricultural fields
which indeed show some high degrees of repetition in their visual appearance.

(b) Modified random walks

A set of simple mechanisms used by nature to generate scale-invariant spatial structures can
be obtained by modifying the standard random walk dynamics. An example is given by self-
avoiding random walks, of which a simple physical example is given by polymer systems.
Polymers are large molecules composed by chains of monomers. These molecules form long
strands in space that can randomly bend in different directions and can thus be described by
a random walk. However, these chains cannot cross or touch themselves, so they are better
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characterized as self-avoiding chains or walks [Madras and Slade, 2013]. Such self-avoiding
random walks are scale-invariant (e.g., the history of the jumps as a set of temporal correlated
events.), and can thus be seen as a remarkable example of how simple individual interactions can
lead to the emergence of a scale invariance [Edwards, 1965].

An interesting aspect of self-avoiding random walks is that they are relatively simple
mathematical objects for which several properties have been studied. For example, one of their
well understood properties is how the mean squared end-to-end distance of a walk segment R%;
depends on its number of steps V. As N tends to infinite, it has been shown that this distance can
be approximated by Eq. 3.1.

R3 ~ N% (3.1)

Here, v is the critical exponent that was found by Nienhuis [1982] to be 3/4 for a random walk
on a two-dimensional Euclidean lattice.

Another well-studied property of self-avoiding random walks is the total number Cn of
distinct walks that can be performed with N steps, which is given by Eq. 3.2.

Cy ~plYNT~E (3.2)

The exponent v was found to be 43/32 by Nienhuis [1982] (also for a random walk on a two-
dimensional lattice), while 1 is a connectivity constant that depends on the specific structure of
the lattice.

An example of a self-avoiding walk process that generates scale-invariant structures which are
beneficial for survival can be found in the collective foraging of social insects. Collective foraging
is the process through which groups of insects search for food. In the case of ant colonies, for
example, pheromone trails could be used to generate scale-invariant search patterns. Indeed, ants
typically create and reinforce search routes using chemical pheromones [Couzin, 2009, Jackson
and Ratnieks, 2006, Labella et al., 2006, Leonhardt et al., 2016], which serve here as an implicit
means of communication. Since each ant deposits on its trail pheromones that evaporate over
time, favored routes will present a higher pheromone concentration than less used ones. It is
well known that this leads to emergent phenomena such as the selection of shortest routes, but
it was also suggested by Reynolds [2007] that pheromone trails can be used to avoid revisiting
locations. Ants could therefore use pheromone trails collectively to effectively generate a self-
avoiding random walk structure. This would result in a scale-invariant fractal-like search pattern
with power-law distribution of path lengths, thus providing an evolutionary advantage for the
colony by facilitating the collective exploration and foraging in terrains with features at all scales.
An equivalent mechanism that exploits chemical odor tagging to avoid particular locations is
used by phytophagous insects to control the distribution of positions where the eggs should be
laid [Doumbia et al., 1998] and by honeybees searching for flowers that have not already been
visited [Giurfa and Nunez, 1992].

Another type of a random walk that doesn’t intersect its own path is given by the loop-erased
random walk, which is sometimes considered a simpler version of the self-avoiding random walk.
A loop-erased random walk between two points is obtained by launching a simple random
walk process from the initial to the final point, and then erasing loops along the path, in order.
Algorithms based on this process, such as Wilson’s algorithm, are often used to create uniform
spanning trees, e.g. by Aldous [1990]. These trees are undirected subgraphs of a given network
that include all of its nodes, contain no loops, and are chosen randomly with equal probability.
As in the case of self-avoiding random walks, loop-erased random walks show their critical
properties when the number of steps N tends to infinity. Guttmann and Bursill [1990] have
shown, for example, that in the limit the mean squared end-to-end distance on a two-dimensional
Euclidean lattice is distributed following a power law with exponent v=4/5 (instead of the
v =3/4 obtained for self-avoiding walks). The sizes of the erased loops have also been shown
to follow a power-law distribution for large loops. In this limit, the probability for the perimeter
of an erased loop to have length [ is characterized using a power law [Dhar and Dhar, 1997].
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Lévy flights are a different type of modified random-walk process that can also be used
to generate scale-invariant spatial distributions [Reynolds, 2009]. They are defined as random
walks in which both the direction and the length of each step are chosen randomly. In this case,
scale invariance is directly imposed by picking the step length from a power-law distribution.
No additional self-avoidance constraint is therefore required. Note that this is an example of a
continuous statistical spatial invariance (in the step-length distribution) that results in a discrete
pathway structure in each realization, as mentioned in Section 2. Lévy flights are used by a
number of organisms in their search patterns. For example, soldier crabs use them in their
collective foraging and some social insects, such as bees or ants, use them during their nest
selection process [Pratt, 2005, Reynolds et al., 2007, Sumpter, 2006, Trianni et al., 2011].

4. Scale-invariant interaction networks

Scale-invariant structures in natural systems are not limited to the spatial distributions described
in Section 3. They can likewise appear in systems where space does not play an important role. For
example, the scale-invariant property can be given by topological distance rather than by physical
distance. Scale invariance is then related to the number of steps required to connect different parts
of the system via interaction links. In this case, the property of scale invariance describes the fact
that, regardless of the number of parts in a given system, a similar density of interactions between
them is enough to guarantee a certain level of connectivity that results in system integration and
coordinated collective response. Given that the focus here is on the links between parts of the
system (rather than on physical distances) these scale-invariant structures are best analyzed by
using the tools of network theory, which we briefly review below.

One of the earliest mathematical analyses of networks was introduced in Erdos and Rényi
[1960], where a theory of random mnetworks was developed based on the Erdés-Rényi (ER)
random graph model. Random networks resulting from this model (also called ER networks) are
constructed by considering a set of nodes that are pairwise connected with a given constant
probability Prr. One of the key results of this theory is that a connected network emerges
suddenly once Pgp exceeds a critical threshold. Another important prediction is that ER
networks have a narrow distribution of their node degree, where the node degree is defined
in network theory as the number of links per node. When networks were analyzed in the real
world, however, it was discovered that they do not follow the properties of ER networks. More
specifically, connected real-world networks do not emerge suddenly. Instead, they develop slowly
over time, and different nodes typically have very different degrees. The differences between ER
networks and real-world networks can be explained by noting that the probability of linking any
two nodes does not need to be constant in real-world networks. It can instead depend of various
other factors, in contrast to the assumption made by Erdos-Rényi. A series of alternative, more
realistic network growth processes have thus been proposed.

One of the most studied network growth algorithms that generates topologies that go beyond
ER random networks and can often be scale-invariant, is preferential attachment. In this process,
nodes are added to the network one by one, and newly added nodes tend to link with a higher
probability to nodes that have a higher connectivity degree. This algorithm was first introduced
by Yule [1925] to explain the power distribution that characterizes the number of species per
genus of flowering plants. It was then used by Barabasi and Albert [1999] to study the growth
of the World Wide Web (WWW) . They verified that this process is not equivalent to that
hypothesized for random networks [Albert et al., 1999].

Another well-studied network growth algorithm, which generates yet a different set of
topologies that can also be scale-invariant, is the model of Watts and Strogatz [1998]. As originally
introduced, this algorithm consists of first laying all nodes on a regular circular formation and
then connecting all first and second neighbors. This forms a regular network that is then modified
by randomly selecting a new destination node for a fraction p of the links, while keeping the
source node. For a range of values of p, such networks will satisfy the small-world property. That
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is: the topological distance between two randomly chosen nodes will grow proportionally to the
logarithm of the total number of nodes.

The two network growth processes described above produce networks with specific
topological properties. The preferential attachment process leads to what are known as scale-
free networks and the Watts-Strogatz model, to small-world networks. In the following two
subsections, we describe these two topologies and provide real-world examples, originating from
different fields, of both types of networks.

Although we limit the discussion in this review to scale invariant structures that are directly
related to only node degree or node distance, we should note that scale-invariance can also be
associated to larger network structures. For example, communities or modules (both defined
as groups of nodes that are more strongly connected among themselves than to others) can
organize into scale-invariant systems that involve substructures with multiple nodes. Community
structures have played recently an important role in facilitating the analysis of collective behavior
in different kinds of networks. Weng et al. [2013] have relied on community structure as their
model to predict the virality of disease spreading as a property of the collective behavior in social
networks. Another example is the work of Mosleh and Heydari [2017], who studied collective fair
behavior between different societies using the mode of community structures. On a microscopic
scale such as neuron networks, Crossley et al. [2013] have shown that community structure
represent the underlying topology over which a set of collective cognitive behaviors emerge such
as the activation of different brain regions.

As in the cases detailed below, growth algorithms that produce networks with a power-
law distribution of community sizes [Zhou et al., 2008] or that contain fractal-like embedded
structures (resulting from either deterministic [Ravasz et al., 2002] or stochastic [Pan and Sitabhra,
2008] processes) have also been developed. However, a detailed description of these algorithms
would require a deeper discussion of the large-scale structural network properties that goes
beyond the scope of this review paper. Thus, in the next subsections, we only focus on the scale
invariance associated to node degree and node distance.

(a) Networks with scale-invariant node degree

The type of networks that result from preferential attachment processes are called scale-free (SF)
networks, defined as networks in which the degree distribution follows a power-law. These can
thus be viewed as networks with a scale-invariant topological property, specifically their node
degree. In SF networks, most nodes thus have a low connectivity degree, but there is also a
small number of nodes—often referred to as hubs—with a very high connectivity degree. SF
networks often follow the “first mover advantage” dynamics, in which nodes that appear first
in the network have the time to obtain more links (i.e. gain a higher connectivity degree) and
will thus tend to become the hubs [Medo et al., 2011]. This is not always the case, however. For
example, in the case of real Internet systems, Google was a relatively late coming search engine
but it quickly emerged as one of the most used ones: it became a hub for search requests, and
many other websites started linking to the Google homepage. The rule of preferential attachment
can be modified to describe such cases by making the probability of a new link to attach to a node
proportional to the product of, both, the connectivity degree and a node fitness. This node fitness
describes the intrinsic ability of a given node to attract links [Bianconi and Barabasi, 2001a,b],
beyond its current connectivity properties. In the case of Google, this fitness was high from the
moment the site entered the Internet, due to its very effective search algorithm.

An essential property of SF networks that often makes them particularly useful in real-world
systems, is their robustness to random failures. This property refers to the ability of a network to
remain functional while a fraction of its nodes or links is removed at random. Functional networks
are defined here as those where the mean topological distance between nodes (i.e. the number of
steps required to connect two nodes via network links) does not grow strongly when more nodes
or links are removed. In the case of random networks (i.e. ER networks), random failures will
typically quickly lead to network fragmentation. Even if only a small fraction of nodes or links
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is removed, the network breaks into smaller, disconnected parts and the mean distance between
nodes becomes infinite. On the contrary, SF networks are very robust to random failures. In fact,
studies as those of Cohen et al. [2000] have shown that some SF networks can still function after
randomly removing 99% of the nodes. The reason is intuitive: when nodes are targeted at random,
it is more likely that the affected nodes will be low-connectivity nodes (since these are much
more common in SF networks), which have a small effect on the overall network connectivity.
However, when attackers are able to discover and disable the hubs in the collective system, the
system network will rapidly disintegrate. This is thus an important flaw in the robustness of
scale-invariant systems, as described by Albert et al. [2000] and Cohen et al. [2000]).

Given the robustness and the simplicity of the preferential attachment mechanism, we expect
SF networks to appear in a broad variety of systems, ranging from molecular interaction networks
to social networks. In the following, we provide a list of examples of SF networks found in nature
within various disciplines.

In the context of molecular biology, a series of technological breakthroughs in recent decades
have allowed us to look deeper into the inner workings of bio-molecular systems. This has
resulted in large datasets that can be used to construct underlying interaction networks.
Interactions in molecular systems can be physical, chemical, or functional. They can be modeled
as a network by defining the participating molecules (e.g., proteins, genes, etc.) as the nodes and
their corresponding interactions as the links, which could be directed or undirected [Vital-Lopez
et al., 2012]. Although the data available for most molecular networks is incomplete, Rzhetsky
and Gomez [2001a] have shown that the majority can be identified as SF networks. We describe
below some of the best studied molecular biological networks.

The first type of molecular networks that we consider are metabolic networks. These networks
describe all possible chemical reactions involved in maintaining life in cells and organisms.
They are constructed by associating the metabolites to nodes and their corresponding chemical
reactions (involving either reactants or catalysts) to links. Jeong et al. [2000] carried out a
mathematical analysis of the metabolic networks of 43 different organisms representing all three
domains of life: archae, bacterium, and eukaryote. They found that most of them display a power-
law degree distribution and are thus SF networks. They also showed a characteristic feature of
metabolic networks: their network diameter (defined as the shortest topological distance between
the two most distant nodes in a network) is similar, and relatively small, for all studied organisms.
This may provide an advantage for survival, since it allows living organisms to respond efficiently
to external or internal changes, i.e. to demonstrate a properly integrated collective response [Alam
et al., 2016, Ma and Zeng, 2003, Tanaka, 2005, Wagner and Fell, 2001].

The second type of molecular networks that we consider are protein-protein interaction (PPI)
networks. As the amount of data collected on molecular interactions increased, it became
possible to also deduce the underlying protein-protein interaction networks. Proteins are the
main building blocks of living systems and an essential part of every cell. PPI networks represent
how proteins bind to each other, and are thus represented by non-directed graphs. This binding
can lead to different collective responses, including inhibition, signaling, and the production
of macrostructures. PPI networks have also been found to be SF networks [Jeong et al., 2001,
Rzhetsky and Gomez, 2001b]. Some works have particularly focused on the PPI networks in yeast
[Albert, 2005, Kawakami et al., 2016, Schwikowski et al., 2000]. They have shown that yeast cells
rely on a variety of signaling and regulatory mechanisms to coordinate their collective response
to environmental changes such as temperature variations (often referred to as environmental
stressors), and that the networks used to achieve these collective responses are SF. Furthermore,
the important role of hubs has been investigated as well in these networks. He and Zhang [2006],
for example, have demonstrated that the PPI network hubs play an essential role for, both,
survival and reproduction. They also showed that hubs are involved in essential PPI functions
with high probability, since they are by definition highly connected proteins. This implies that
losing a hub protein can be lethal, which is often referred to as the centrality-lethality rule. More
in general, the role of hubs has also been analyzed in other SF molecular networks [Emmott and
Hiscox, 2009, Tsai et al., 2009, Zotenko et al., 2008].
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The third type of molecular networks that we consider are gene regulatory networks. These
networks regulate gene expression, which is the process of reading genetic information to
synthesize functional products (often resulting in the production of specific proteins). Gene
expression involves a set of steps that include (i) transcription, (ii) RNA splicing, and
(iii) translation. By regulating these steps, the cell can control its functions and cell differentiation
(i.e. the production of different cell types). Here, the nodes are the expressed proteins and mRNA,
while the (directed) links are the reactions through which the products of one gene affect those of
another. Gene regulatory networks have been shown to be approximately SF in multiple studies
[Balaji et al., 2006, Lopes et al., 2014, Van Noort et al., 2004]. In Lee et al. [2002], for example,
the transcription regulation maps for Saccharomyces Cerevisiae (one of the most studied species of
yeast) were investigated. The degree distribution of outgoing links in the resulting networks was
found to follow a power-law. Note that these are directed networks since regulatory interactions
are not bidirectional.

In other branches of biology, several interaction structures have also been characterized as
SF networks. In neurobiology, brain connectivity networks and functional networks have been
shown to have SF degree distribution [Bullmore and Sporns, 2009, Eguiluz et al., 2005, van den
Heuvel et al., 2008]. (See subsection (b) for definitions of these two types of networks identified in
the brain). In the context of ecology, predator-prey food webs were reported as SF networks with
power-law degree distribution in several works [Camacho et al., 2002, Montoya and Sol¢, 2002,
Sugihara et al., 1989]. These webs are defined as the networks formed by assigning a node to each
species and connecting two nodes with a directed link if one of the species eats the other.

We now turn our attention to what is perhaps today the most well-known example of SF
networks: human social interaction networks. Social media platforms, such as Facebook or
Twitter, have become one of the main means through which we interact. They define social
networks, in which nodes are individuals and the directed or undirected links between them
represent their “friendship” (e.g., on Facebook) or “following” (e.g., on Twitter) relationships.
These networks are continuously growing, as new users join these platforms. At a first
approximation, they tend to follow preferential attachment rules, since new users will connect
with a higher probability to users that have more connections. However, Javarone and Armano
[2013] found other fitness values driving the linking dynamics, such as the reputation of the
user or the similarity between individuals. An analysis of the different linking dynamics through
which social networks grow can be found in [Lymperopoulos and Lekakos, 2013].

Various online social networks have been shown to have SF properties. The large network
that reflects all friendship relationships in Facebook, for example, was found to have a power-
law degree distribution [Catanese et al., 2012]. Likewise, other socioeconomic networks such as
Bitcoin payment transactions were analyzed and their networks were found to have SF properties
[Baumann et al., 2014].

A large variety of other networks related to real-world human interactions and dynamics
display SF properties. We briefly describe some of these here. Most real-life social networks
between individuals present a SF structure similar to that found in online social networks. One
of the first examples examined from a network perspective was presented in the work of Liljeros
et al. [2001], which analyzed data gathered in a Swedish survey concerning the sexual behavior
of people ranging between 18 — 74 years old. In the network representation, nodes were defined
as individuals that were linked if they had had sexual relations. The resulting network was found
to be SF for, both, males and females. These results were explained by considering changes in the
social properties of individuals that depend on the number of current connections, all of which
can be mapped to preferential attachment mechanisms. Many other social interaction networks
have also been shown to be SF since this seminal study. The focus has often been on understanding
how to stop the spread of viruses or other contagious agents, either biological or computer based.
Dezs6 and Barabdsi [2002], for example, suggested ways to focus on immunizing the hubs, which
is an effective strategy because the underlying network is SF.
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The real structure of a variety of human interaction networks can be deduced from available
datasets. Phone numbers, for example, can be used to define networks where each node is a
number and a directed link is established from the caller to the receiver each time a call is made.
Aiello et al. [2000] have analyzed these networks and shown that both the outgoing and incoming
link distributions follow power-laws. Similarly, e-mail networks, in which each e-mail address is
anode and two nodes are linked if emails are sent between them, also display a power-law degree
distribution [Ebel et al., 2002]. Furthermore, traffic networks, which can be considered as proxies
for a type of human interaction networks, have been shown to be SF as well [Guimera et al., 2005].

Cities represent a straightforward manifestation of human interaction networks. Bettencourt
[2013] found power laws in respect to the population size with sub-linear exponent (< 1) for urban
properties that are related to the volume occupied by city infrastructure needed to transport,
goods and information, as well as power laws with super-linear exponent (>1) for social
properties such as the number of jobs, medical services, crimes and diseases. Schlédpfer et al.
[2014] formulates the underlying hypothesis that the sub-linear growing is related to the spatial
efficiency needed for the infrastructure, whereas the super-linear exponents are associated with
human interactions. A final type of real-world human interaction networks that we will describe
here is given by collaboration networks. Newman [2001], for example, analyzed the structure of
scientific collaboration networks, where scientists are the nodes and two scientists are connected
if they have authored a paper together. According to scientific databases, the resulting networks
are, both, SF and small-world. Other types of collaboration networks have also been studied. For
example, the IMDB database (containing information on all released movies) was used to build
a network in which each node is an actor and two nodes are linked if the corresponding actors
appear in the same movie. Barabdsi et al. [2003] found this network also to be SF. Similarly, a
network of Marvel comic characters was studied by Alberich et al. [2002], where each character
is a node and two nodes are linked if their corresponding characters appeared in the same comic
book, which also resulted in an SF network.

Finally, it is important to mention that many works claim networks with scale-free node

degree distribution without solid statistical analysis. The technique of estimating the power law
coefficient by a linear regression on a log-log histogram of the node degree in the empirical data
is inadequate. Clauset et al. [2009] indicate that this linear regression may lead to erroneous
parameter deviations, even when the underlying distribution is a power law.
Another critical issue while proving scale-free property is the sampling procedure used. Stumpf
et al. [2005] prove that random subnets samples from scale-free networks are not themselves scale-
free. The deviation is more pronounced with larger values of the power law exponent, with the
sampled subnets having many more nodes with relatively small node degree. This is an important
finding, as many empirical datasets only cover parts of the full network, e.g., depending on the
organism only 10 — 80 % of protein interactions has been surveyed. The work on subsample
scaling is an active domain of interest, e.g., early 2017 a novel methodology was presented by
Levina and Priesemann [2017].

(b) Networks with scale-invariant node distance

The type of networks that result from the Watts-Strogatz model are called small-world (SW)
networks. In a SW network, each node can reach any other node within a small number of
hops. More specifically, the topological distance L between two random nodes is proportional
to the logarithm of the total number of nodes N in the system, that is: L oclog N. Here, L can be
associated to the network diameter, defined in the previous section. When considering the SW
property in different types of networks, it is important to note that many real-world networks
can simultaneously have SF and SW properties. In fact, many of the systems initially analyzed
for their SF topology were later shown to also have SW behavior. The PPI networks discussed in
the previous subsection, for example, were also studied from this perspective. Giot et al. [2003],
Watts and Strogatz [1998], Yook et al. [2004] have shown that the distance between the hubs
of PPI networks is close to the typical SW network diameter. We point out, however, that the
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SF and SW properties are intrinsically different regarding the role of space. Indeed, whereas
the SF property is purely associated to topology (physical distances are not considered), SW
systems must have a combination of short-range interactions between adjacent parts in space
and long-range interactions that can link any two parts of the system.

The question of how short- and long-range network connections can develop in physical
space is easily answered in the context of biological systems, where interactions (links) between
components (nodes) can be of many different types. Indeed, biological interactions can be
mediated by biochemical signaling, mechanical forces, symbiotic dynamics, predator-prey
relations, etc., and in many cases some of these interactions are intrinsically short-range while
others are long-range. This produces a mixed topology, where some connections are influenced by
spatial constraints while others are not, much as in the Watts-Strogatz model. A good example of
this can be found in microorganisms immersed in a fluid, where diffusive signaling interactions
tend to be short range, but hydrodynamic couplings can be long-range. This was observed by,
both, Lushi et al. [2014] and Wioland et al. [2016], who have shown that the reaction to stimuli in
swimming bacterial colonies can result not only from the local chemical interactions, as expected,
but also from long-range hydrodynamic flows (see Figure 2). Similar results were presented by
Cisneros et al. [2007]. A full review of the different types of short- and long-range microbial
interaction, as well as approaches for modeling them, is presented by Faust and Raes [2012].

Figure 2: Self-organization of bacterial colonies in a fluid [source: Lushi et al. [2014]].
A-C: Simulation snapshots. D-F: experimental images. In A-C, each individual (bacterias) is
represented by a green line, with a black dot indicating its heading direction, and the blue arrows
show the fluid flow. The emerging structures result from long-range interactions mediated by
large-scale hydrodynamic flows.

An important area where the SW properties of interaction networks have been studied in detail
is neuroscience. In recent years, breakthrough brain probing technologies have allowed a deeper
investigation of the dynamics of neuronal activity and synaptic connectivity (i.e. the links between
neurons). Using these tools, two different types of networks have been identified: (i) the structural
network that describes the static neuronal architectures and (ii) the functional network that shows
the activity correlation between neurons that may or may not occur through these connections.
Both types of networks have shown scale-invariant properties. This was reasonable to expect,
since neurons in the brain need to be capable of developing coherent collective responses at
all scales to properly control the behavior of an organism. In addition to the scale-invariant
activity patterns that have been measured in the brain (which may or may not be related to
the underlying network topology), the review by Bullmore and Sporns [2009] of structural and
functional brain networks based on graph theory has shown that both display not only SF
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topology, but also SW properties. Achard and Bullmore [2007] have shown that the SW feature
in functional brain networks provides high efficiency (defined in terms of parallel information
processing capabilities) for a relatively low connection cost, and that this efficiency decays for
older age-groups, as the connection cost increases.

Another area where SW effects have been measured is in Internet networks. In fact, one of
the first real-world networks that were shown to be simultaneously SF and SW was the WWW
network, where HTML pages are defined as the nodes and the hyperlinks between them as their
connections. The SW property of the WWW is confirmed by the fact that two WWW pages are,
on average, at a topological distance of only 19 hops (through hyperlinks) from each other.

Finally, various social networks have also been shown to have SW properties, in addition to a
SF degree distribution. This is the case, for example, for the particular online social network that
was studied by Wohlgemuth and Matache [2012], in which the nodes were representing Facebook
groups that are linked if the groups have common users. This is also the case for Twitter [Aparicio
etal., 2015] and in author collaboration networks [Newman, 2001], where nodes represent authors
that are linked if they have co-authored a paper.

5. Scale-invariant dynamics

The third scale-invariant feature that we will consider in this review is scale-invariant dynamics.
Systems with scale-invariant dynamics can be defined as having either local activity that displays
scale-invariant correlations in space, or global activity that displays scale-invariant correlations
in time. A formal example of scale-invariant dynamics in space can be described as follows.
Consider an extended system in space with individual parts that evolve in time according to
f(Z,t), where f describes a specific state at location Z and time ¢. We say that this system has
scale-invariant dynamics if the correlation function Corr [f(Z,t), f(Z + Z,t)] is a scale-invariant
function of Z. These spatial correlations are often related to temporal scale-invariant correlations
of the dynamics of the whole system. In our example, we say that a quantity F'(¢), that describes
the system dynamics and depends on the local activity f(Z,t), will display such temporal scale
invariance if Corr [F(t), F(t +t')] is a scale-invariant function of ¢'.

We identify in this review three different mechanisms for generating scale-invariant dynamics:
(i) the presence of an underlying scale-invariant interaction network, (ii) the development of
critical dynamics with divergent correlation lengths, and (iii) the selection of global collective
modes. We describe below the underlying mechanisms responsible for each of these types of
scale-invariant dynamics and provide examples for each.

(a) Dynamics on scale-invariant networks

A simple way to achieve scale-invariant dynamics is through scale-invariant interactions.
Simple mathematical models commonly used in statistical mechanics can develop scale-invariant
dynamics when SW interactions are included. For example, the XY and coupled oscillators models
have been shown to display scale-invariant dynamical correlations in their degree of global
polarization and synchronization, respectively, when SW interaction topologies are considered
[Arenas et al., 2008, Hong et al., 2002, Kim et al., 2001]. Similar results have been obtained when
using SF topologies in the works by Arenas et al. [2006], Dorogovtsev et al. [2008], Kwak et al.
[2007], Moreno and Pacheco [2004].

The emergence of scale-invariant dynamics as a consequence of scale-invariant interactions is
not only seen in models, but also in nature. Several works have shown, for example, that the gene-
regulatory networks discussed in Section 4 display collective behaviors, such as self-sustained
system-wide coherent oscillations, that result from the underlying SF connectivity [Goldbeter
and Gérard, 2014, Hasty et al., 2001, Klevecz et al., 2008, Palumbo et al., 2008, Pulimeno et al.,
2013]. In addition, other collective behaviors demonstrated in the genetic networks, such as the
functional clustering of related genes, have been found to emerge from the SF topology of gene
networks [Zivkovié et al., 2006]. In a specific example of this, it was explained by Brazhnik et al.
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[2002] how coherent cell-level responses emerge from the coordinated activities of groups of genes
that interact through a SF network. This work showed that hub genes were important for such
responses, that cell phenotypes result from collective gene dynamics, and that these dynamics
strongly depend on the structure of the underlying gene regulatory network. Inoue and Kaneko
[2013] focused on the case of the collective adaptivity of the cells in gene expression networks
and showed that such adaptive behavior results from the interplay of positive and negative
interactions between genes in a SF network.

A connection between scale-invariant interactions and scale-invariant dynamics can be found
in various types of biological systems and at different scales. For instance, for groups of
bacteria (which are expected to be scale-invariant since different colony sizes must still behave
collectively) it is known that the structure of the underlying interaction network can play an
essential role in achieving some types of collective behavior at any scale. For example, bacteria
populations use signaling to collectively coordinate and synchronize attacks against their hosts.
The interaction topology underlying this signaling process has been found to be SF [Hagouel and
Karafyllidis, 2014]. For organism-level responses, there is also evidence showing that integrated
behavior can be a consequence of the underlying interaction structure. Subramanian et al. [2015],
for example, studied the human immune system by describing immunity as a set of nonlinear
behaviors arising from dynamic and feedback-regulated interactions between components, and
when these interactions were mapped, they were shown to form SF networks.

It has been argued that the scale invariance of the human interaction topologies must
produce scale-invariant collective dynamics. This has been confirmed in recent years by analyzing
human interaction dynamics using on-line data. Such dynamics include collective decision-
making processes such as market choices [Bollen et al., 2011], political alignments [Conover
et al., 2011, Ratkiewicz et al., 2011], traveling decisions [Xiang and Gretzel, 2010], or news
aggregation [Lerman, 2007], among others. In all these cases, the emergent collective dynamics
has been shown to present scale-invariant temporal behavior, such as the self-similar, fractal-like
fluctuations displayed by a variety of market indicators.

In the context of animal groups, Rosenthal et al. [2015] studied the relevance of the underlying
interaction networks in producing collective behavior in fish schools. This behavior must be scale-
invariant to remain effective regardless of the group size. In this work, Rosenthal et al. [2015]
performed a set of experiments with Golden shiners (Notemigonus crysoleucas) to determine the
actual functional interactions between individuals during evasion (a collective response). Since
these interactions are mainly visual, they computed the visual field of view of each individual
in a series of experimental events in which initiators influenced responders to engage in evasive
behavior. They used these data to build a model that describes which individuals tend to influence
the response of other fish, and then used this model to build a functional interaction network.
While this network has some complex features and cannot be directly identified as a simple
SF or a SW network, it does contain a significant fraction of long-range connections, since its
linking probability only decays logarithmically with distance. It is therefore possible that the
scale-invariance required for collective evasive behavior to be effective is directly related to the
scale invariance of the underlying interaction network. However, as we will discuss below, in
highly sophisticated biological systems such as animal groups or the brain it is hard to know if
the origin of scale-invariant collective responses is in the connectivity structure or in the type of
self-organized critical dynamics described in the next section.

We complete this section by considering the scale-invariant dynamics observed in the brain.
It is clear that neurological activity must be more than the sum of parts and display multiple
levels of collective responses [Tkacik et al., 2014, 2015]. Direct experimental observation supports
this view. Indeed, a nested frequency analysis by He et al. [2010] to unveil the spatio-temporal
structure of functional brain activity, showed that the spatio-temporal structure of brain activity
follows scale-invariant dynamics with power-law exponents that vary across different brain
regions. A connection has also been established between exposure to scale-invariant stimuli
and normal brain functioning. Indeed, an analysis carried out on the occurrence of Alzheimer’s
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disease found that it was strongly correlated to the level of scale invariance in the degree of
activity fluctuations at different ages.

Although the underlying causes of the scale-invariant behavior observed in the brain are
still unknown, it is reasonable to hypothesize that it is related to properties of the underlying
interaction network between neurons. One way to test this hypothesis is to analyze the role of
the hubs identified in brain networks, given their SF structure identified in Section 4. Achard
et al. [2008] showed that these hubs are prominent when focusing on the low frequency (i.e.
large scale) functional connectivity of the human cortex, becoming hot spots of the macroscopic
states in experiments during high metabolic activity. It thus appears that hubs play an essential
role in organizing local dynamics into collective responses. Hubs even seem to play a role in the
emergence of cognitive functions, as suggested by Gu et al. [2015] after studying how to control
trajectories in the state space of brain functional networks. A network scale-invariant structure
with hubs appears to provide the correct structure to be able to quickly reach the different
collective states [Senden et al., 2014]. This allows the cortex (the part of the brain associated
with higher functions such as thought and behavior), for example, to quickly change state to
achieve a diversity of functional responses, as needed [Freeman, 2004, 2005]. Furthermore, at a
theoretical level, simple SF models of brain connectivity have helped investigate mechanisms
that may underlie various brain diseases. Batista et al. [2010] studied the synchronization of
bursting neurons that is observed in several neurological diseases (such as Parkinson’s disease).
Similarly, Stam [2014] tried to exploit the SW and SF properties of brain networks to gain a
deeper understanding of various brain disorders, using a combination of three different models
to describe the brain network, as illustrated in Figure 3.
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Figure 3: Organization of the brain network [source: Stam [2014]]. Its topology is described as a
combination of three different types of network models: (i) a locally connected network; (ii) a
random network; and (iii) a scale-free network.

The results discussed above favor the hypothesis that the brain’s scale-invariant dynamics is
a consequence of its scale-invariant connectivity. There is a long-standing alternative hypothesis,
however, that claims that complex biological system may achieve scale invariance by placing
their dynamics near a critical point. Indeed, as we discuss in the next subsection, it has been long
known that physical systems near a phase transition behave as scale-invariant systems.
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(b) Criticality-driven dynamics

The theory of critical phenomena was developed in the 1970’s to describe the properties of matter
in a critical system, that is, matter close to a phase transition [Wilson, 1975]. In thermodynamics,
phase transitions typically describe the transition between the solid, liquid and gaseous states of
matter (phases). In equilibrium and nonequilibrium statistical mechanics, they describe a broader
range of changes of collective state that occur in systems composed of multiple elements. The
theory of critical phenomena can be used to describe the behavior of the system that emerges
when the system is near any of these changes of state. This behavior produces scale-invariant
dynamics [Amit and Martin-Mayor, 2005, Binney et al., 1992, Kadanoff, 1993, Wilson, 1971, 1975].
The theory of critical phenomena was originally developed in the context of standard critical
phenomena (referred to here as parameter-driven criticality), in which the critical point is reached
by tuning the system’s control parameters (defined as any controllable external variable that
affects the state of the system, e.g., the temperature). It was later discovered that some non-
equilibrium systems can reach a critical point by relying on their own self-organizing dynamics,
without requiring any external adjustment of parameters. This phenomenon is known as self-
organized criticality. In this subsection, we will describe the underlying mechanisms that lead
to scale invariance in systems that present either parameter-driven criticality or self-organized
criticality, and provide examples of both.

(i) Parameter-driven Criticality

We begin by explaining standard parameter-driven criticality, and how it relates to scale invariance.
Scale invariant dynamics can be observed in a collective system near a critical point of a second
order phase transition. According to equilibrium statistical mechanics, a second-order phase
transition is a change in the collective state of a system where the second derivative of the
free energy is discontinuous with respect to a thermodynamic variable, but its first derivative
is continuous. In second order transitions, the phases at either side of the transition become
identical as the critical point is approached. For the system to be in this unique critical phase,
fluctuations must be correlated over all distances, so the correlation length becomes effectively
infinite [Domb, 2000, Stanley, 1971]. In nonequilibrium statistical mechanics, transitions that
display a discontinuity not in the order parameter but in its derivative (as a function of changes
of the control parameter) are usually also considered second order. They inherit most properties
from equilibrium systems, including their infinite correlation length. Scale invariance therefore
naturally emerges in such critical regimes since, in finite systems, an infinite correlation length
results in correlations that span a system of any size.

As a pedagogical example of parameter-driven Criticality, we will focus on the model of [Ising,
1925], a simple abstract model originally formulated to describe ferromagnetism. The Ising model
describes magnetic molecules within a metal as magnetic dipoles (referred to as spins) that can be
in one of two states: +1 or —1. Spins are typically placed in a square lattice configuration where
each spin interacts with its four nearest neighbors. Spins tend to align to their neighbors, that is,
each spin tends to match the state of the majority of its neighbors. This alignment is hindered by
noise, however, which tends to change the spin states randomly as the temperature is increased.
In two dimensions, the equilibrium state of the Ising model as a function of temperature can be
analytically solved. This has led to a thorough study of the 2D Ising model as a simple archetypal
example of a second order phase transition controlled by temperature [Dotsenko and Dotsenko,
1983, Onsager, 1944]. The temperature at which the transition between the disorder phase and the

order phase occurs is given (for a 2D Ising model) by T, = I?—q, where J is a positive coefficient
B

that represents the interaction strength between two spins, ¢ is the number of neighbors for
each spin (¢ =4 in the classical model), and Kp is the Boltzman constant. This temperature is
computed under the assumption of mean field approximation Kleman and Laverntovich [2007].
The changes of collective states associated with the Ising order-disorder phase transition can
be described as follows (see Fig 4). When the temperature 7" is much higher than the critical
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temperature T, (referred to as the Curie temperature), spins appear to be randomly oriented
(i.e. they have a random +1 or —1 spin value). As the temperature is lowered and the phase
transition is approached from above (keeping T > T¢), locally aligned regions emerge in the
form of “islands” (within which all spins have the same value) that are continually appearing
and disappearing, see Figure 4. Interestingly, for T~ T¢, scale-invariant features emerge: these
spin islands start displaying all possible characteristic sizes and duration time-scales, with both
following a power-law distribution. In this critical regime, long-range correlations and large-scale
behavior thus emerge, even though spins continue to interact only with nearest neighbors. Finally,
for T' <« T¢, most spins become aligned (they have the same spin value), which can be viewed as
a form of self organization.

Subcritical ritical

Figure 4: Two dimensional Ising model with its two possible spin states represented as black or
white dots [source: Chialvo [2010]]. The figure depicts snapshots of the spin configurations for
three different regimes: (i) subcritical, where the temperature 7' < T and the system is ordered
with the same spin value throughout, (ii) critical, where T'~ T¢. and the distribution of the sizes
of regions with the same spin value follows a power-law, and (iii) supercritical, where the state of
individual spins is purely random. Here, T is the critical temperature (see text).

Parameter-driven criticality has been applied as a controlling mechanism in the context of
collective systems. For example, Lucas and Lee [2013] have studied binary decision-making
processes based on parameter-driven criticality, where they have applied an external control
to influence the opinions of the individual nodes in the observed network. They have shown
how such networks can reach phase transitions and that these transitions are independent of the
network structure. Similarly, in social networks, parameter-driven criticality was used as model
to analyze different dynamic social and economic systems such as in [Weidlich and Huebner,
2008], where the inner inclination of the individuals towards some political selection is defined as
the order parameter. Parameter-driven criticality may represent an attractive technique to place a
collective system near criticality, especially in artificial engineering systems where controlling the
order parameters is feasible.

(i) Self-organized criticality

We now turn our attention to the more recently discovered type of critical behavior mentioned at
the beginning of this subsection: self-organized criticality as described by Per Bak and Wiesenfeld
[1987]. Systems that display self-organized criticality follow a nonequilibrium dynamical process
that drifts them spontaneously towards their critical regime, without requiring the adjustment of
any control parameter. The Abelian sandpile model, developed by Bak, Tang and Wiesenfeld, was
the first to reproduce this phenomenon. This idealized model describes a “sandpile" formed by
randomly dropping grains of sand that can either pile up or destabilize the pile where they fall
to start an avalanche. The model can be defined as an n-dimensional cellular automaton where
each cell is associated to a local pile of height h. Starting from a random initial distribution of
heights, grains are added one by one at a randomly selected site with index 4, so that: h; — h; + 1.
If the slope formed by the cell with respect to its nearest cells is greater than a threshold value k¢,
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a local "avalanche” occurs and the excess grains are moved to neighboring cells. This avalanche
can continue during multiple iterations if the local slope values of neighboring cells then become
greater than hc. In its original formulation, the model was defined on a two-dimensional lattice
(n = 2) with he = 4. The four excess grains were thus redistributed to the four nearest lattice cells
every time a local avalanche process occurred.

Simulations of the sandpile model show that, as grains are added, the overall slope of the
sandpile gradually increases and larger and larger avalanches start to occur. Eventually, the
system stabilizes to a critical mean slope value. The distribution of avalanche sizes and of
avalanche life-times both follow a power law, and therefore display no characteristic scale. This
corresponds to a self-organized critical state that can be understood as follows. As grains are
added, the system drives itself to the highest slope it can achieve until it reaches the edge of a
chaotic state, which corresponds here to an avalanche. If more grains are added after this slope is
reached, the chaotic regime will be briefly explored as the system quickly relaxes back to a static
sandpile state. The system is thus repeatedly pushing against the chaotic phase and falling back
to a stable phase, thus spontaneously placing itself in a collective state that is in a critical regime
between two phases. As in the parameter-driven criticality case, all characteristic scales are lost
in this regime and the system displays scale-invariant collective dynamics [Bak et al., 1988, Held
et al., 1990, Kadanoff et al., 1989].

Another well-known example of self-organized criticality is given by the forest fire model
of Drossel and Schwabl [1992]. In this model, a forest is described by a square lattice in which
each cell can be occupied or not by a single tree. The mean fraction of occupied cells (i.e. the
tree density) is defined at time ¢ by a function P(¢), which fluctuates as some trees multiply
while others burn. The model is updated using the following rules: (i) A cell becomes empty if
its corresponding tree burns; (ii) a tree burns if at least one of its nearest neighbors is burning;
(iii) a tree burns spontaneously at any occupied cell, with a given fixed probability, even if no
neighbor is burning; (iv) a tree grows spontaneously at any empty cell with a given probability.
As the model evolves, P(t) grows until a fire starts. The “chaotic” phase is then reached and
trees start burning, which reduces P(t) until the system is brought back to a stable state where it
starts growing again. The system thus spontaneously self-organizes by driving itself to the edge
of the chaotic phase until P(t) stabilizes at a critical level P, which corresponds to the percolation
threshold. As in the sandpile case, Pagnutti et al. [2005] revealed that the system then displays two
scale-invariant properties: the distribution of gap sizes between trees and the distribution of fire
lifetimes. Turcotte [1999] and Boer et al. [2008] have verified the power laws of both properties in
numerical simulations and by using real data from North American and Australian forest fires.

In addition to the models introduced above, self-organized criticality has been used to
describe the potential underlying mechanisms of a number of complex collective behaviors
that gradually accumulate energy later released in catastrophic events with no predetermined
scale. Examples are found for earthquakes in the works of Olami et al. [1992] and Sornette and
Sornette [1989], for solar flares in the work of Boffetta et al. [1999], and in the work of Hergarten
and Neugebauer [1998] for landslides. These systems have demonstrated various scale-invariant
features. For example, both the earthquake sizes [Rundle, 1989] and the frequency of aftershocks
[Ito and Matsuzaki, 1990, Omori, 1894] can be described using power-law statistical distributions.
Similarly, the frequency and energy distributions of solar flares also follow power laws as shown
in the studies of Aschwanden et al. [2000], Baiesi et al. [2006], Lu et al. [1993].

Another important ecological example, for which self-organized criticality was used to
interpret the underlying dynamics, is population growth and extinction. Markov chains represent
a popular stochastic technique to model the lifetime of species, see e.g. Black and McKane
[2012]. The extinction times predicted by Markov chains approach asymptotically an exponential
distribution, which can be explained through species not adapting quickly enough to the
continuously-changing environment (an effect that was coined by Chr [1979] as the Red Queen
effect). This leads to the extinction probability being independent of time and hence the
exponential distribution emerges. However, it was revealed that exponential distributions are not
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always providing the best fitting to the empirical data obtained. In several works such as Drake
[2014], Sneppen et al. [1995], Sole and Bascompte [1996], instead power-law distributions were
found to offer the best fitting for lifetime data in large populations. In such cases, the ecosystem
was observed by Pigolotti et al. [2005] as a collective system of interacting species whose dynamics
converge near to a critical point. The extinction of specific species by placing the ecosystem near
criticality isn’t the result, in this case, of a response to an external parameter, but as a response
to the interactions and competition with the other species. Such an evolutionary behavior may
not advertise robustness in the specific species that went extincted. The robustness here is to be
observed on a higher level, i.e. the robustness of the whole ecosystem as a result of being adaptive
to the ever-changing environment.

As mentioned above, in many complex biological systems it is unclear if the emergence of
scale-invariant dynamics is a consequence of an underlying scale-invariant interaction network
or of being in a critical regime. In the previously discussed context of brain dynamics, for
example, the observation of SF correlations in brain activity has led to the growing popularity
of a hypothesis that claims that the brain must be near criticality [Mastromatteo and Marsili,
2011, Schuster et al., 2014]. Researchers have even discovered neuronal avalanches where the
fraction of active neurons involved follows a power-law distribution, just as in a sandpile
model. Furthermore, by establishing analogies with the Ising model, other groups have argued
that certain neuronal networks must operate near a phase transition [Chialvo, 2010, Hesse and
Gross, 2015], since systems in this regime have better information processing capabilities and
can more easily switch between different states of collective activity [Beggs and Timme, 2012].
However, given that a similar behavior can be achieved by having interactions that follow scale-
invariant topologies, it is still unclear to what extent the observed dynamics results from the brain
self-tuning into a critical state or from an underlying scale-invariant interaction network.

To end this section, we will discuss another system where the origin of the observed scale-
invariant dynamics is unclear: animal collective motion. In recent years, significant efforts have
been made to understand the underlying mechanisms used by different animal groups to achieve
collective motion. However, it is still unclear how large groups can maintain consensus in their
heading direction, despite the presence of noise and what appear to be only local interactions.
These systems are often described using a minimal flocking model, first described by Vicsek et al.
[1995], in which a set of self-propelled point particles advance at a fixed speed and tend to align
their heading direction with other particles within an interaction range. The Vicsek model has
been extended in multiple ways to describe a variety of collective motion systems [Baglietto
and Albano, 2008, 2009, Chaté et al., 2008, Chepizhko et al., 2009, Ginelli et al., 2010]. Animal
groups are expected to have scale-invariant behavior, since they must display coherent collective
dynamics regardless of the group size. This behavior has been observed experimentally. Fish
schools, for example, are known to react to external perturbations (such as predator sounds or an
artificial predator fish) as a coherent unit [Butail et al., 2013, Handegard et al., 2016, Kruusmaa
et al., 2016]. Furthermore, Cavagna et al. [2010] measured the three-dimensional trajectory of
every bird in multiple starling flocks, and analyzed their speed and velocity fluctuations (after
subtracting the motion of the center of mass), showing that the correlation length of these
fluctuations is linearly proportional to the system size and, therefore, scale-invariant. However,
the Vicsek model does not display such scale-invariant behavior, unless the noise level is tuned
to achieve a critical regime. This has led Attanasi et al. [2014], Bialek et al. [2014], Cavagna et al.
[2010] to claim that starling flocks must be in a critical regime, which would explain their scale-
invariant correlations. But there could be other underlying causes of scale invariance, such as
the long-range visual interactions identified in the experiments with Golden shiners described in
the previous subsection. We will describe in the next subsection yet another alternative cause for
this behavior, based on mode dynamics. Finally, we note that other studies, e.g., by Chen et al.
[2012], have also shown scale-invariant correlations in the dynamics of the collective motion of
microscopic biological systems such as bacteria. Nevertheless, it is also unclear if these result from
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Figure 5: A self-organized flocking process that starts in a disordered state (left) and eventually
converges to a parallel motion state [source: Ferrante et al. [2013]]. This system was shown to
exhibit scale-free correlations due to the propagation of collective modes in the work by Huepe
et al. [2014].

criticality or if they are the consequence of long-range (scale-invariant) interactions, which in this
case could result from the type of hydrodynamic flows discussed in Section (b).

(c) Collective mode dynamics

The final mechanism for achieving scale-invariant dynamics that we will discuss in this review
is related to the presence of collective modes that can propagate with almost no resistance
throughout the system, which can lead to persistent scale-invariant behavior when combined
with active matter dynamics.

It was discovered in the context of condensed matter and quantum field theory that infinite
correlations can spontaneously emerge in the dynamics of systems that are not in a critical regime
if they have gone through the spontaneous breaking of a continuous symmetry. This occurs when
equations that describe a symmetrical state produce asymmetrical solutions, which leads to a
degenerate ground state that poses no resistance when drifting from one of these solutions to
others. An example is given by a group of vectors that tend to align due to the interaction
between them (as in the XY-model for ferromagnetic materials). The alignment can be in any
arbitrary direction in space. The symmetry breaking occurs when a specific direction is picked,
but a simultaneous change in the pointing direction of all vectors costs no energy (there is no
resistance). The excitation that corresponds to this change is referred to as a Nambu-Goldstone
mode, and in the context of quantum field theory it is identified with a massless particle; the
Nambu-Goldstone boson Goldstone [1961], Goldstone et al. [1962], Leader and Predazzi [1996],
Nambu [1960].

The possibility of measuring scale-invariant correlations which result from dynamics
resembling that of massless Nambu-Goldstone modes has been recently considered in active
matter systems. These are systems where individual components inject mechanical energy at a
small scale, which must self-organize to achieve work at larger scales. They include the animal
groups displaying collective motion discussed in the previous subsection, but also include other
collective systems with self-driven components, such as bacterial colonies or skin tissue. Because
of the continuous injection of energy at small scales, massless (or low-mass) modes, which
typically span large spatial scales, correspond to system-wide coherent motion that follows scale-
invariant dynamics. This potential mechanism for scale-invariant dynamics was pointed out by
Cavagna et al. [2010] as an alternative explanation (that does not require a critical regime) for the
scale-invariant correlations observed in the orientation (flight angle) fluctuations of bird flocks.
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Indeed, since the rotational symmetry has been spontaneously broken in any group of birds that
align their velocities, bird rotation costs no energy and the massless Nambu-Goldstone mode of
rotational perturbation results in scale-invariant correlations of the orientation [Melfo, 2017].

Some works have considered active matter systems where scale-invariant dynamics in the
angular and speed fluctuations can emerge from massless or low-mass modes. Huepe et al.
[2014], for example, postulate this mechanism as the source of the SF correlations measured
for speed fluctuations.They proposed a simple position-based model that describes an idealized
active elastic system where large-scale collective oscillations (corresponding here to the low-
mass modes) dominate the dynamics [Ferrante et al., 2013] (see Figure 5 for an example of
possible dynamics induced by this system). They then showed in numerical simulations that the
presence of these collective oscillations of the fundamental elastic modes produces scale-invariant
correlations of, both, the angular and speed fluctuations in active systems.The presence of scale-
invariant correlations in bird flocks was also studied through simulations by Hemelrijk and
Hildenbrandt [2015]. In this paper, Hemelrijk and Hildenbrandt [2015] used a detailed model of
the motion rules of starlings and found that SF correlations were observed even when far from any
critical point. Their work did not focus on the causes of such correlations, but studied instead how
correlation lengths change as a function of the number of influential neighbors and of individual
speed control. Finally, a fundamental theoretical argument for the presence of scale-invariant
dynamical correlations in collective motion systems with position-based interactions was given
by Melfo [2017]. Nambu-Goldstone bosons are therefore expected to also appear in speed-
perturbations (associated to translational symmetry), and not only in angular perturbations.
This can thus lead to the emergence of scale-invariant dynamical correlations that include speed
perturbations [Leutwyler, 1997].

6. Engineering scale-free systems

From an evolutionary perspective, the main reason why strong system integration is ubiquitous
in natural systems at all scales is because it improves the survival probability by enhancing
adaptivity and robustness to challenges and stimuli at different scales. By understanding the
underlying mechanisms that lead to these beneficial properties, we will be able to use them
through bioinspiration and biomimetics in artificial systems. In this section we will discuss the
type of engineered systems where scale invariance could be beneficial, and how the three different
scale-invariant features identified in this article (spatial, connectivity, and dynamics) could be
implemented.

The first type of scale-invariant systems presented in this paper are those that display
scale-invariant spatial features such as fractals or scale-invariant structures and trajectories. Scale-
invariant spatial features can have many different potential applications in artificial systems. We
describe here only a few. A prominent example can be found in the field of morphogenetic
engineering [Doursat et al., 2013], which studies systems endowed with information that
can create autonomous morphologies and functions. This field has already led to successful
applications, such as demonstrations showing that self-organizing robot swarms can build
different morphologies, each useful to tackle a different environmental situation [Christensen
et al., 2007, Gro83 et al., 2006, Mathews et al., 2012]. Despite their success, none of these works
have achieved scale-invariant structures so far. A different possible application, that can benefit
from scale-invariant spatial features, is collective construction, whereby different materials rather
than robots are used to build structures such as defense barriers, nests, bridges, etc. One of
the challenges in this task comes from the need to perfectly position and align construction
materials to the partially built structure and to have materials and hardware that facilitate this
task [Werfel et al., 2014]. More recently, a few studies focused on using more amorphous materials
in order to build structures whose shape depend on the self-organized process leading to their
construction [Soleymani et al., 2015]. We believe this is the right approach that may lead to the
same type of scale-invariant structures observed in nature. Two final examples of scale-invariant
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spatial features encountered in nature with direct potential applications are given by the fractal-
shaped pheromone trails and by the power-law distributed random walk trajectories, both used
to enhance exploration and foraging. Although depositing pheromone trails can be challenging
for artificial artifacts (despite some attempts that have already been made with robots, see Arvin
et al. [2015], Fujisawa et al. [2014]), the pheromone concept can be used to build scale-invariant
robot chains to facilitate exploration (so far, only non-scale-invariant chains have been considered,
see Nouyan and Dorigo [2006]). Additionally, some attempts to implement power-law distributed
random walks in robot swarms have already been made. Dimidov et al. [2016] implemented
Lévy-flight distributed random walks and compared them with traditional random walks (i.e.
non power-law distributed) considered in swarm robotics, showing that Lévy flights and a novel
random walk method they proposed (also power-law distributed) achieved better performance in
terms of resource localization and signaling. This appears to be an interesting research direction
that needs to be further pursued.

The second mechanism identified in this review paper for achieving scale-invariant integration
is the implementation of interaction networks that are either SF or SW. As discussed in Section 4,
SF networks have the advantage of being strongly robust to random failures, i.e. failures that
can occur to any component of the collective system with equal probability. On the other hand,
SW properties enhance collective response, since the small network diameter allows for the rapid
transmission of information throughout the system. Quick and coherent system responses can
be crucial for survival. From an engineering perspective, an advantage of SF networks (which
often also display SW properties) is that they can be easily implemented, at least in the static
topology of artificial systems that have no spatial restrictions. A simple example is given by the
possibility of setting up SF wireless sensor networks (WSNs), following a simple algorithm such
as preferential attachment. WSNss consist of a large number of nodes with limited sensing range
that are cooperating to achieve a global perception of the environment in which they are deployed.
Tasks performed by WSNs are routing [Farooq and Di Caro, 2008], chaining [Klempous, 2014],
aggregation of sensory data, and analysis of correlation in the data, among others. The latter
example, analyzing data correlations, can be helpful in avoiding redundant transmission and in
reducing node energy consumption, one of the main challenges in the field. Some of these tasks
have been optimized by exploiting the properties of SF and SW topologies [Pattem et al., 2008,
Zhang et al., 2014]. SF topologies can also be used to reduce energy consumption. Zhu et al. [2009],
for example, propose an energy-efficient model for WSNs that constructs the network, according
to the node-degree and the fitness value of the remaining energy of the node. The obtained
topology is SF, which is more tolerant to random node failures and demonstrates better energy-
saving. Similarly, Jian et al. [2013] introduced an energy-aware model based on SF topology to
balance the network connectivity and consequently the consumption of energy. Another example
of the use of SF topology for energy-saving purposes is given by Wang et al. [2015], who proposed
a new method referred to as the “flow-aware SF” model to balance energy consumption during a
network operation phase. Jian et al. [2015] analyzed the link between the logical topology and the
physical topology of WSNs and proposed a SF logical topology that helps optimize connectivity
and lifetime at the physical topology. Finally, Zhao et al. [2016] exploited SF topology to design a
WSN, on a 3D terrain, that is tolerant to random failures.

In addition to WSNSs, SF topologies could be leveraged for other potential applications. Besides
increased robustness, they could be used to implement collective systems on larger scales by
using modular units placed at distant locations. An example is given by robot swarms distributed
over the planet, whereby robots in the same geographical area would be interconnected through
local interactions, while hubs in each location are connected to hubs in distant locations (i.e. via
the Internet). Furthermore, given our discussion in Section 4 regarding the role of SF and SW
connectivities in the brain, another potential application of these types of connectivity could be
the realization of collective systems able to exhibit swarm cognition [Trianni et al., 2011], that
is, capable of achieving cognitive tasks (discrimination, decision making, planning, etc.) through
distributed self-organized processes.

0000000 89BLB1U| 008 'Y B10-BulysiandAIBIoos|EAoryiS)



Implementing SF or SW interaction networks are probably the simplest ways to achieve scale-
invariant properties. The main requirement for this, however, is to have controllable topology, which
is not always the case. Straightforward mechanisms for achieving SF node degree distributions
such as preferential attachment are easily implemented in systems of which all components can
be easily connected, but have not yet been extended to systems where spatial distances play an
important role, such as moving systems, where agents are continuously entering and leaving
the communication range of other agents. Examples of engineered systems where SF topology
would be hard to achieve include Mobile Ad-Hoc Networks (MANETs) [Camp et al., 2002]
(that is, WSNs equipped with mobility) and swarm robotics [Hamann et al., 2014, Khaluf and
Dorigo, 2016, Khaluf et al., 2016, Reina et al., 2017]. Within swarm robotics, an interesting research
direction could be to use virtual potential functions [Spears et al., 2004] that allow the control of
robot formations to achieve SF topologies. Another interesting direction could be to create hybrid
swarms in which a small proportion of the robots are equipped with long range interactions and
can thus operate as hubs, connecting portions of the swarm that are far from each other.

The final type of scale-invariant property considered in this article was SF dynamics. In natural
systems that display this property, effective collective responses to environmental stimuli is the
main advantage, as SF correlations effectively allow information perceived locally to reach other
parts of the collective system at any scale. This is important in many natural systems such as
fish schools or other animal groups. The example of animal groups can inspire a few engineering
applications in the fields of WSNs and swarm robotics. In WSNs, SF dynamics can enable locally
sensed information (e.g., the presence of an intruder in surveillance systems, or of survival in
disaster recovery) to spread effectively throughout the network. Analogously, in swarm robotics
it could be used to effectively identify and propagate information perceived locally by only a few
members of the swarms (e.g., the location where a specific signal was identified locally or the
location of a resource that requires the deployment of multiple robots).

The implementation of scale-invariant dynamics in artificial systems could benefit from tools
derived from statistical physics. We know, for example, that scale invariance emerges naturally in
critical regimes and when Nambu-Goldstone modes are present. If we understood how to design
local dynamics and interactions that develop these features, the implementation of self-organized
scale-invariant systems would be greatly simplified. The decentralized motion control swarm
robotic algorithm implemented experimentally by Ferrante et al. [2012], for example, appears
to robustly display scale-invariant correlations in its dynamics despite being far from a critical
regime. There are still almost no efforts in this direction, however, and more research is thus
needed.

7. Conclusion

We have reviewed in this paper examples from different fields of science that show how natural
systems achieve scale-invariant collective behavior characterized by a high degree of system-level
integration. We analyzed the main mechanisms that lead to natural systems that exhibit scale
invariance, while providing various examples of scale-invariant properties observed in different
biological systems at the molecular, cellular, and organism levels, as well as in neuroscience and
social networks.

When designing artificial collective systems, we may need them to display sensitivity and an
effective collective reaction to stimuli as a single unit, regardless of the scale of the system or
of the stimuli. This can be achieved by implementing scale-invariant features in our engineered
systems. The challenge is how to achieve this goal in a decentralized and self-organized way. As
we have discussed here, this challenge has been solved by many systems in the natural world.
We thus hope that the examples discussed in this review paper will help inspire the design of
artificial systems that display beneficial scale-invariant properties.
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