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Abstract Many real-world engineering problems can

be represented and solved as classification problems.

These problems are typically encountered in design op-

timization and use expensive data, since the data are

often sourced from computationally expensive simula-

tions. It is therefore crucial to solve the classification

problem using as little data as possible. This necessi-

tates an iterative classifier construction procedure be-

ginning with a very small training set, which is supple-

mented in each iteration by a small batch of new data

points. The sequential sampling algorithm selects lo-

cations in the input space and the simulator calculates

the corresponding class label. This paper describes a se-

quential sampling algorithm for adaptive classification

of expensive data.

Keywords Adaptive Classification · Surrogate
Models · Sampling Methods · Simulations · Expensive

Data

1 Introduction

Machine learning techniques are widely used in every-

day life in applications such as computer vision, infor-

mation retrieval, e-commerce, medical diagnosis, nat-

ural language processing, recommender systems, web

search, etc. Many problems deal with identifying a group,
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a category or a class to which a given input pattern

belongs. Examples of such classification problems are

cancer diagnosis, financial risk assessment, handwriting

recognition, image scene classification, social network

analysis, etc.

The solution of such problems is obtained by fitting

a classification model, or a classifier, to a training set.

The training set consists of a number of training in-

stances or data points. Each instance has a number of

attribute values or features, and a corresponding class

label. The classifier is constructed using the training set,

and can be used to predict class labels of new input data

not present in the training set.

The training set often originates from existing data-

bases of precomputed or recorded data such as customer

data from businesses, medical records from hospitals,

social networking websites, web usage logs, etc. Data

are often generated as by-products of normal opera-

tions. However, in some cases data are generated on

demand, e.g., by performing computer experiments.

Computer experiments are widely used to under-

stand natural and man-made phenomena, solve engi-

neering design optimization problems, model economic

activities, etc. The need for such computer simulations

arises because conducting physical experiments can be

impractical and costly, or even impossible.

Computer simulations can offer a viable alterna-

tive, although they can be computationally expensive.

The magnitude of computational cost is illustrated by

Shan and Wang [2010] with examples of economic un-

certainty analysis performed by NASA, and automo-

tive crashworthiness analysis performed by Ford Motor

Company. A two-factor full factorial analysis of eco-

nomic uncertainty, for example, would take hundreds

of years on a typical workstation, given that millions

of analyses would be required to quantify the uncer-
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tainty. Similarly, it is estimated that a single execution

of a simulation for automotive crashworthiness analy-

sis takes on average 98 hours to complete. This scale

of computational expense would imply a duration of

12 years to pronounce crashworthiness of an example

(Shan and Wang [2010]). In order to alleviate the com-

putational burden in these cases, there is a need to train

regression and classification models using as few train-

ing instances as possible.

In this work, a sequential sampling strategy for adap-

tive classification is proposed. It begins with an initial

small set of training data, and iteratively adds more

training points at well-chosen locations in the input

space. The sampling algorithm picks additional points

in a sequential way based on existing data and total

data budget (E.g., number of allowed simulations). The

proposed adaptive classification algorithm is demon-

strated on an non-linear analytical example and a struc-

tural design problem.

The paper is organised as follows. Section 2 intro-

duces simulation-based engineering, and classification

models in the context of engineering. Section 3 explains

the proposed sequential sampling algorithm. The algo-

rithm is demonstrated on analytical examples in Sec-

tion 4. Section 5 concludes the paper.

2 Simulation-based Engineering

Simulation models are widely used in engineering de-

sign optimization. They can be used to analyze func-

tional dependencies between design variables, perform

what-if analyses, optimization, study uncertainty quan-

tification, etc.

Simulations can be expensive to perform. If so, it

can be useful to have a cheap(er) replacement known

as a surrogate model, which can be used in lieu of the

expensive simulation. This can help to speed-up the

optimization process.

The problems in the field of engineering are mostly

regression problems with a continuous response or out-

put of the simulations. Examples include the electrical

networks, magnetic and electric fields associated with

an electronic (sub)system, flutter speed of an aircraft

wing, etc. Popular surrogate model types used in this

context are Artificial Neural Networks (ANN) (Hagan

et al. [1996]), Kriging models (Sacks et al. [1989]), ra-

tional functions, splines and Support Vector Regression

(SVR) (Drucker et al. [1997]).

The simulations typically used to source the data

for model construction are expensive. In such cases it

is useful to train the model using as few data samples

as possible. In the regression context, this problem is

known as adaptive sampling or sequential design (De-

schrijver et al. [2011], Gorissen et al. [2010], van der

Herten et al. [2015]).

2.1 Classification and Simulation-based Engineering

Some engineering problems have a discrete output and

require the solution of classification problems. Exam-

ples in literature of engineering problems solved us-

ing classification include solving constrained optimiza-

tion problems (Basudhar et al. [2012], Handoko et al.

[2008]), finding quasi-optimal regions (Singh et al. [2013]),

determining food quality (Cen and He [2007]), measur-

ing analog circuit performance (De Bernardinis et al.

[2003]), detecting faults in aircraft engines (Rausch et al.

[2004]), etc.

Therefore, there is a need for sequential sampling al-

gorithms in a classification context. Model building in a

sequential design context involves training a model with

a small set of samples chosen according to an initial

design, and iteratively selecting batches of new samples

to add to the training set using an adaptive sampling

algorithm. The goal of the sampling algorithm is to in-

telligently choose additional samples for training which

increase classifier accuracy. The initial design is a set

of points chosen according to a specific design (Latin

Hypercube (Husslage et al. [2011]), Factorial (Morris

[1991]), etc.) or even randomly.

2.2 Active Learning

Sequential sampling is closely related to the field of ac-

tive learning (Cohn et al. [1996]). However, there are

subtle differences. Active learning is semi-supervised

and assumes a fixed unlabeled dataset U, from which

the learning algorithm must sub-sample data points to

learn from. The learner can only select unlabelled data

points xi ∈ U. This is different from a typical engineer-

ing problem where the attributes are usually continu-

ous design parameters and the sampling algorithm has

the freedom to pick a data point anywhere in the de-

sign (input) space. Essentially, the choice in the case

of active learning involves choosing the next training

point(s) from a finite set of data points to learn from,

while in case of sequential sampling, the choice involves

picking the location in the design space where the next

training point(s) should be generated. This difference

necessitates a separate approach towards sampling al-

gorithms.
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2.3 Adaptive Classification

In the context of this work, the term adaptive classifi-

cation is intended to mean classifier construction us-

ing training data obtained sequentially from a sam-

pling algorithm. Consider a training set S in some input

space X ⊆ Rd spanning d attributes, and some output

space Y. The output space is Y = {0, 1} for a binary

classification problem and Y = {1..K} for a K-class

classification problem. The training set is denoted as

S = (X,Y ) ∈ X ×Y where X consists of n data points

represented as vectors {x1...xn} and Y consists of class

labels {y1...yn}. The classifier h : X → Y predicts the

class label of a given input pattern x̂ as ŷ = h(x̂). For

details of the classifier training process, the reader is

referred to Bousquet et al. [2004].
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Fig. 1: Adaptive classification flowchart.

The flowchart of the adaptive classification process

is shown in Figure 1. The initial training set S is ob-

tained by generating a set X of b points in the input

(or design) space, and evaluating X using the expen-

sive simulator to obtain the corresponding class labels

Y . Subsequently, S = (X,Y ) is used as the training set

to build a classification model. The focus of this work

is only on the sequential sampling process (the outlined

box in Figure 1), with the aim of obtaining an accurate

model. The model is assumed not to contribute to the

sequential sampling process, while the sampling algo-

rithm aims at selecting samples which offer maximal

training information for construction of the model.

Assuming that the total number of allowed function

evaluations is n, the sequential sampling algorithm se-

lects a new batch of informative samples Xδ of size δ at

well-chosen locations in the input space. The simulator

evaluates Xδ resulting in class labels Y δ. The training

set S is updated as:

Y δ := f(Xδ),

S := S ∪ (Xδ, Y δ).

The classifier is rebuilt using the updated training

set S. This process is iterated over bn−bδ c times until

the number of allowed simulations is exceeded, or one

of the stopping criteria (if specified) has been reached.

Stopping criteria may include: achieving desired accu-

racy, exceeding allowed time duration, etc.

3 Neighborhood-Voronoi Sequential Sampling

Algorithm

In this section, a new approach for sequential sam-

pling in a classification context is proposed. The term

sequential implies that the sampling algorithm is dy-

namic. The algorithm chooses additional samples in

each iteration based on certain criteria. These crite-

ria may be based on uncertainty, or accuracy of the

intermediate classification models, space-fillingness of

the input space, satisfaction of constraints, or other

problem-specific performance criteria. Each of the po-

tential goals described above will need a dedicated se-

quential sampling algorithm. The goal of the proposed

algorithm is to train an accurate classifier while mini-

mizing the number of training samples.

The algorithm presented in this work is solely data

driven. The data are collected, analysed, and new data

points are chosen in a sequential manner. No intermedi-

ate (classification) models are required during the sam-

pling process. Thus, the proposed algorithm is indepen-

dent of any particular classifier.

The Neighborhood-Voronoi algorithm is based on

the LOLA-Voronoi algorithm proposed by Crombecq

et al. [2011], with modifications made to handle classi-

fication problems instead of regression. The algorithm

aims to balance exploration of the input space and ex-

ploitation of regions near the class boundaries which

are prone to misclassification. In the following subsec-

tions, the Neighborhood-Voronoi sampling algorithm is

explained by separately discussing the Neighborhood

(exploitation) and Voronoi (exploration) components.

3.1 Exploitation

The difficult-to-learn regions for a classifier are often

near the class boundaries. The exploitation component

makes sure that samples are chosen more densely in
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these interesting areas. A local neighborhood N of size

m is computed for each instance xi,∀i ∈ 1, ..., n as:

N(xi) = {xi1,xi2, ...,xim} ⊂ Xr = {xij}mj=1,

where Xr = X \ {xi}. To ensure that all directions

around the instance xi are covered uniformly, N is cho-

sen according to optimal adhesion and cohesion.

– Cohesion makes sure that the neighbors are as close

to xi as possible. It is defined as the average min-

imum distance of neighboring points from xi. The

cohesion of a neighborhood N with respect to the

fixed instance xi is defined as:

C(N(xi)) =
1

m

m∑
j=1

‖xij − xi‖2.

– Adhesion ensures that the neighbors are as far away

from each other as possible. It is defined as the aver-

age minimum distance of neighbors from each other.

The adhesion of a neighborhood N with respect to

the fixed instance xi is defined as:

A(N(xi)) =
1

m

m∑
j=1

min
l 6=j
‖xij − xil‖2.

Ideally, a neighborhoodN should have a low value of

cohesion C(N(xi)) and a high value of adhesionA(N(xi)).

Finding such a neighborhood becomes a multi-objective

optimization problem involving minimising C(N(xi))

and maximising A(N(xi)) simultaneously, given a dis-

crete set of candidate neighborhoods. Ideally, if the

neighbors of the reference point xi could be chosen

freely, they will be chosen such that they have equal co-

hesion contribution and form a m−sided regular poly-

gon. The problem is extended to placing m points in

an ideal configuration on a d−dimensional hyper-sphere

such that the adhesion value A(N(xi)) of the reference

point xi is maximized. This is an open problem in math-

ematics (Croft et al. [1991]).

Since there is no optimal solution to the problem

of placing m points on a d−dimensional hypersphere

(Saff and Kuijlaars [1997]), a subproblem with a known

solution is considered. This concerns the special case

when m = 2d. Intuitively, for a one-dimensional case,

m = 2 and the configuration will involve placing one

point on either side of the reference point x. In the

two-dimensional case, m = 4 and the points will form a

square around the reference point. For d−dimensions,

the optimal configuration is a d−cross-polytope (Cohn

and Kumar [2007]) which contains all points obtained

by permuting the coordinates (±1, 0, 0, ..., 0). The cross-

polytope configuration maximizes adhesion (Cohn and

Kumar [2007]).

The cross-polytope ratio: Having established that

for points lying on a hyper-sphere, the cross-polytope

is the optimal configuration which maximizes adhesion,

it can be inferred that any given neighborhood with co-

hesion C(N(xi)) must always have an adhesion value

A(N(xi)) lower than that of the cross-polytope with

radius C(N(xi)). For a cross-polytope, the distance be-

tween points is
√

2 times the distance from the origin

(the reference point) for any dimension higher than 1.

This implies that
√

2C(N(xi)) is the absolute upper

bound for adhesion value of any neighborhood with

cohesion C(N(xi)). Therefore, the following measure

R(N(xi)) can be used to gauge how closely a neighbor-

hood resembles a cross-polytope:

R(N(xi)) =

{
A(N(xi))√
2C(N(xi))

, d > 1

1− |xi1+xi2|
|xi1|+|xi2|+|xi1−xi2| , d = 1.

The exception for the one-dimensional case is due to

the fact that the distance of the two points from each

other is twice the distance from the reference point

(Crombecq et al. [2011]).

A neighborhood score that combines adhesion and

cohesion can be used to assign scores to neighborhoods:

S(N(xi)) =
R(N(xi))

C(N(xi))
.

This measure will prefer neighborhoods that lie close to

the reference point xi and resemble a cross-polytope. S

can be used as a criterion to choose N for all instances.

After such a neighborhood is constructed, the class

disagreement χ corresponding to the sample xi belong-

ing to the neighborhood N is calculated according to

the formula:

χ(xi) =

{
1, α > 1,

0, α = 1.
(1)

where (1 ≤ α ≤ K) is the number of unique class la-

bels in N . An observation with a higher value of χ is

surrounded by samples having differing class labels, and

needs to be sampled more intensely as it is located along

the class boundaries.

Algorithm 1 describes the pseudocode for the ex-

ploitation component of the Neighborhood-Voronoi al-

gorithm. The algorithm begins by updating the state

of the samples selected by the algorithm in the pre-

vious iteration. Each new sample xδ is considered as

a candidate neighbor for each processed sample x and

vice-versa. The class disagreement scores for these sam-

ples are then updated according to Equation 1. After

processing all previously unprocessed samples, the met-

ric χ is calculated for each sample in X which reflects

the exploitation score of the sample in question. Finally,
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Algorithm 1 Pseudocode for the exploitation compo-

nent of the Neighborhood-Voronoi sequential sampling

algorithm. X consists of all points processed by the al-

gorithm previously. Xδ is the set of points selected by

the algorithm in the previous iteration which are yet

to be processed. δ is the number of new samples to be

selected by the algorithm.

for all xδ ∈ Xδ do
for all x ∈ X do

Evaluate membership of xδ for neighborhood N(x)
of x

Evaluate membership of x for neighborhood N(xδ)
Update class disagreement information for x and xδ

end for
X ← X ∪ xδ

end for

for all x ∈ X do
Calculate class disagreement score for x

end for

Identify neighborhoods corresponding to δ highest ranked
samples in X

Select new samples in these neighborhoods

each of the neighborhoods corresponding to the top δ

samples ranked according to χ are chosen to generate

a new sample in.

3.2 Exploration

The exploration component identifies regions in the in-

put space that are prone to under-sampling, or under-

representation. Such regions have a low density of points

and a mechanism to identify these regions is required.

A Voronoi tessellation is a well-known way to par-

tition a space based on density (Aurenhammer [1991]).

Assuming that our training set X ⊂ X in Euclidean

space, the Voronoi cell Ci ⊂ X of the point xi contains

all points in X which lie closer to xi than any other

point in X. The Voronoi tessellation corresponding to

X consists of all Voronoi cells {C1, C2, ..., Cn} which

tessellate the complete space X . To define Voronoi cells

formally, the notion of dominance (Aurenhammer [1991],

Crombecq et al. [2011]) is used.

Dominance: Given two distinct instances xi,xj ∈
X , the dominance of the instance xi over the instance

xj is defined as the subset of the plane being at least

as close to xi as it is to xj (Crombecq et al. [2011]):

dom(xi,xj) = {x ∈ X | ‖x− xi‖2 ≤ ‖x− xj‖2}.

The plane dom(xi,xj) is half-closed, bounded by the

perpendicular bisector of xi and xj . The bisector is

called the separator of xi and xj which separates all

points in X closer to xi as opposed to xj . The Voronoi

cell Ci corresponding to the instance xi is the part of

the design space X with is dominated by xi over all

other instances in X:

Ci =
⋂

xj∈X\{xi}

dom(xi,xj).
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Fig. 2: The bounded Voronoi tessellation of a set of

points {xi}10i=1. The test point p lying in the Voronoi

cell corresponding to x4 lies closer to x4 than any other

point.

Figure 2 shows the Voronoi tessellation of a set {xi}10i=1

of randomly generated instances. The test instance p is

closer to x4, and so are all points in X in the Voronoi

cell corresponding to x4. It is also apparent from Fig-

ure 2 that larger Voronoi cells correspond to regions

in the design space that are sampled more sparsely. To

fully explore the design space X , new samples should

be chosen in Voronoi cells with a large volume. For ex-

ample, generating a new sample point or instance in

the Voronoi cell corresponding to x3 will be more ben-

eficial in terms of space-fillingness as compared to sam-

pling the Voronoi cell corresponding to the instance

x8. Therefore, a way to compute the hypervolume of

Voronoi cells is required in order to compare them.

Voronoi tessellations are geometric duals of Delau-

nay triangulations. The Voronoi tessellation of a set

of points X can be obtained from the Delaunay tri-

angulation of X in O
(
n
)

time (Aurenhammer [1991]).

Computing the volume of Voronoi cells is harder, since

the Voronoi cells near the border of X are unbounded.

These Voronoi cells will therefore have infinite volume.

Hence, the border-lying Voronoi cells must first be bounded

before their volume can be computed.

As this is complex, the volume of Voronoi cells is

approximated using a Monte Carlo approach described

in Algorithm 2, since only the relative differences in vol-

ume of the Voronoi cells are important, and computing

the exact volume is computationally very expensive. A
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Algorithm 2 Pseudocode for the exploration compo-

nent of the Neighborhood-Voronoi sequential sampling

algorithm. X consists of all points that have to be

ranked by the algorithm according to their respective

Voronoi cell size.
T ← L random points ∈ X
V ← [0, 0, ..., 0]
for all t ∈ T do

d←∞
for all x ∈ X do

if ‖x− t‖ < d then

xclosest ← x
d← ‖x− t‖

end if

end for
V [xclosest]← V [xclosest] + 1

L
end for

large number of random uniformly distributed test sam-

ples T = {tl}Ll=1 are generated in X . The minimum dis-

tance between each test point tl and existing instance

xi is calculated. The test point is then assigned to the

instance closest to it. By having enough test points, it

is possible to estimate the volume of each Voronoi cell.

The reader is referred to Crombecq et al. [2011] for de-

tails of the algorithm to approximate the hypervolume

of each Voronoi cell.

The exploration metric ψ of an instance xi is defined

as the ratio of the estimated volume of Voronoi cell Ci
containing xi with respect to the combined volume of

all Voronoi cells in the design space X :

ψ(xi) =
Vol(Ci)

Vol(C1) + Vol(C2) + ...+ Vol(Cn)
.

A higher value of ψ(xi) implies that the correspond-

ing Voronoi cell Ci is large, whereas a smaller value of

ψ(xi) implies that Ci is smaller. The sampling algo-

rithm should focus on cells with a higher value of ψ

since they might be under-sampled.

3.3 Combining exploitation and exploration score

After obtaining the two metrics χ and ψ for exploitation

and exploration respectively, the algorithm (Algorithm

3) assigns a combined score Λ for each existing sample

x ∈ X as:

Λ(x) = χ(x) + ψ(x).

The algorithm ranks all samples in X in order of

how well each sample ranks in exploitation and explo-

ration according to the criterion Λ. The top δ samples in

X are then selected and a new point is generated near

each of these samples such that the generated point

is as far away from other existing samples as possible

Algorithm 3 Pseudocode for the Neighborhood-

Voronoi sequential sampling algorithm. δ is the number

of new samples to be selected by the algorithm.

for all x ∈ X do
Compute χ(x)
Compute ψ(x)
Compute final ranking Λ(x) = χ(x) + ψ(x)

end for

Sort X according to Λ
for i = 1 to δ do

xδ ← generate a sample near xi farthest from other
samples

Xδ ← Xδ ∪ xδ
end for

(maximizing the minimum distance to other existing

samples).

4 Examples

4.1 Example: Non-Linearly Separable Classification

Problem

A Gaussian function centered at (x′1, x
′
2) = (0, 0) having

a standard deviation σ = 5 is defined as:

f(x1, x2) =
(x1 − x′1)2 + (x2 − x′2)2

σ
,

dom(f(x1, x2)) = {x1, x2 ∈ [−5, 5]}.

The problem involves finding the region in the input

space which corresponds to function values within 50%

of the highest possible function value (fmax = 1). The

classification problem is defined as:

yi =

{
1, f(xi) ∈ [0.5,∞),

0, f(xi) ∈ (−∞, 0.5).

A classifier is trained over instances obtained ac-

cording a Latin Hypercube design of b = 15 points

(including the corner points of the design space). The

Neighborhood-Voronoi sequential sampling algorithm is

used to select additional samples iteratively in batches

of δ = 10 each. The total number of function evalua-

tions allowed is n = 205. The classifier chosen for the

experiment is Support Vector Machine (SVM) classi-

fier (Chang and Lin [2011]), though the Neighborhood-

Voronoi algorithm is independent of the classifier used.

All experiments have been performed using the SUrro-

gate MOdeling (SUMO) toolbox (Gorissen et al. [2010])

for MATLAB R©1.

The results of applying the Neighborhood-Voronoi

algorithm can be seen in Figure 3. There is a large dis-

crepancy between true and learned class boundaries in

1 MATLAB, The MathWorks, Inc., Natick, Massachusetts,
United States.
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(a) Classifier built with 55 instances (b) Classifier built with 105 instances

(c) Classifier built with 155 instances (d) Classifier built with 205 instances

Fig. 3: Non-Linearly Separable Classification Problem: The sampling performed by the Neighborhood-Voronoi

algorithm for the Gaussian function. The black circle is the true class boundary. The learned positive class is

represented by the white region, while the learned negative class is represented by the grey region. The dots are

the instances in the training set for that particular iteration.

the initial iterations. In subsequent iterations, the clas-

sifier boundary is refined by selecting samples near the

boundary. The accuracy of the classifier over 200 ran-

domly generated test points was 99% with Precision

and Recall being 1 and 0.99 respectively. The evolution

of classifier accuracy with increasing number of training

instances over a static set of test instances can be seen

in Figure 4. The accuracy rises rapidly between 35 and

65 training samples, after which it begins to stabilise.

4.2 Example: Nowacki Beam Problem

A constrained multi-objective optimization problem de-

scribed by Nowacki [1980] is now considered. The aim is

to design a tip-loaded encastre cantilever beam (Fig. 5)

minimizing the cross-sectional area and bending stress

subject to certain constraints. The rectangular beam

has length l = 0.5 m and is subjected to a tip-load

F = 5 kN. The design variables are the height h and

breadth b of the beam. The optimization problem can

be formulated as:

Min
b,h

A, σB s.t. δ ≤ 5mm

σB ≤ σY
for 20 mm < h < 250 mm τ ≤ σY /2

10 mm < b < 50 mm h/b ≤ 10
FCRIT ≥ f × F

with A = b × h being the cross-sectional area of

the beam, σB = 6Fl/(bh2) the bending stress, δ =

Fl3/(3EIY ) the maximum tip deflection, σY the yield

stress of the material, τ = 3F/(2bh) the maximum
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Fig. 4: Non-Linearly Separable Classification Problem:

The evolution of classifier accuracy with respect to

number of training instances.

Fig. 5: The Nowacki Beam Problem.

allowable shear stress, h/b the height-to-breadth ra-

tio, and FCRIT = (4/l2)
√
GITEIZ/(1− ν2) the fail-

ure force of buckling. Here, IT = (b3h+ bh3)/12, IZ =

b3h/12, IY = bh3/12, and f is a safety factor of two.

The material under consideration is mild steel with

yield stress σY = 240 MPa, Young’s modulus E =

216.62 GPa, ν = 0.27 and shear modulus G = 86.65

GPa.

Instead of finding the optima, the problem of find-

ing the region of feasibility in the design space meeting

all constraints is considered. This can be also seen as

an inverse problem of finding a region (quasi-optimal

region) in the design space corresponding to desired

(known) output. For complex problems, a practitioner

might find it useful to find a small region in the design

space containing possible solutions first, and concen-

trating future efforts in only that region. This kind of

domain reduction can be very useful (Spaans and Luus

[1992]) while solving expensive constrained optimiza-

tion problems. Finding the feasible region efficiently will

save the practitioner a lot of time and effort.

The problem of finding the feasible region is solved

using adaptive classification. The problem can be cast

as a classification problem with the class label yi as-

signed to instance xi = (b, h) as:

yi =


1, δ ≤ 5mm;σB ≤ σY ; τ ≤ σY /2;

h/b ≤ 10;FCRIT ≥ f × F,
0, otherwise.

This formulation aggregates all the constraints into

a single class definition. Regression approaches like Surrogate-

Based Optimization (SBO) involve construction of a re-

gression model (like Kriging) per objective and per con-

straint (Couckuyt et al. [2013]). Therefore, in this case

a typical SBO approach requires five regression models

for constraints, and two additional regression models for

the objectives. Adaptive classification allows us to have

a single classification model for all constraints instead

of five regression models.

An Artificial Neural Network (ANN) classifier avail-

able from the WEKA data mining software (Hall et al.

[2009]) was used to model the constrained problem. The

initial design was a Latin Hypercube of 20 instances.

The Neighborhood-Voronoi sequential sampling algo-

rithm was used to select 10 new samples in each itera-

tion and the total number of allowed function evalua-

tions was 200.

Number of training instances
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Fig. 7: Nowacki Beam Problem: The evolution of clas-

sifier accuracy with respect to number of training in-

stances.

The result can be seen in Figure 6. It is observed

that samples have been selected densely along the edge
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(a) Classifier built with 15 instances (b) Classifier built with 55 instances

(c) Classifier built with 105 instances (d) Classifier built with 155 instances

Fig. 6: Nowacki Beam Problem: The sampling performed by Neighborhood-Voronoi algorithm for the Nowacki

Beam Problem. Each figure depicts an Artificial Neural Network (ANN) model. The dark grey shaded region is

the actual feasible region. The blue region represents the feasible region learned by the classifier. The dots are the

instances in the training set for that particular iteration.

of the feasible region, which is desirable (Schoenauer

and Michalewicz [1996]). The true and learned class

boundaries are very close after training with only 155

instances. The final classifier built using 200 samples

has an accuracy of 98.45%, precision of 0.9899 and re-

call of 0.9732. Figure 7 shows the smooth evolution of

classifier accuracy with increasing number of training

instances. Although only binary classification problems

are discussed as examples for the purpose of exposi-

tion, the proposed algorithm functions as described for

multi-class classification problems as well.

5 Conclusion

Sequential sampling schemes are often used for minimis-

ing the number of data points used to train a regression

model. Minimising data points required for training the

model is essential as problems (e.g., from engineering

design optimization) often involve computationally ex-

pensive simulations. Many engineering problems also

involve training a classification model. A novel sequen-

tial sampling strategy for training classification models

is presented in this paper that minimizes the number

of training points needed to obtain an accurate clas-

sifier. The proposed sequential sampling algorithm is

illustrated on a non-linear analytical example and a

structural design problem.
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gosi. Introduction to statistical learning theory. In

Advanced Lectures on Machine Learning, pages 169–

207. Springer, 2004.

Haiyan Cen and Yong He. Theory and application of

near infrared reflectance spectroscopy in determina-

tion of food quality. Trends in Food Science & Tech-

nology, 18(2):72–83, 2007.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM:

A library for support vector machines. ACM

Transactions on Intelligent Systems and Technol-

ogy, 2:27:1–27:27, 2011. Software available at

http://www.csie.ntu.edu.tw/ cjlin/libsvm.

David A Cohn, Zoubin Ghahramani, and Michael I Jor-

dan. Active learning with statistical models. Journal

of Artificial Intelligence Research, 4:129–145, 1996.

Henry Cohn and Abhinav Kumar. Universally opti-

mal distribution of points on spheres. Journal of the

American Mathematical Society, 20(1):99–148, 2007.

Ivo Couckuyt, Dirk Deschrijver, and Tom Dhaene. Fast

calculation of multiobjective probability of improve-

ment and expected improvement criteria for pareto

optimization. Journal of Global Optimization, pages

1–20, 2013.

Hallard T Croft, Kenneth J Falconer, and Richard K

Guy. Unsolved problems in geometry. Springer, 1991.

Karel Crombecq, Dirk Gorissen, Dirk Deschrijver, and

Tom Dhaene. A novel hybrid sequential design strat-

egy for global surrogate modeling of computer exper-

iments. SIAM Journal on Scientific Computing, 33

(4):1948–1974, 2011.

Fernando De Bernardinis, Michael I Jordan, and A San-

giovanniVincentelli. Support vector machines for

analog circuit performance representation. In Design

Automation Conference, 2003. Proceedings, pages

964–969. IEEE, 2003.

Dirk Deschrijver, Karel Crombecq, Huu Minh Nguyen,

and Tom Dhaene. Adaptive sampling algorithm

for macromodeling of parameterized-parameter re-

sponses. IEEE Transactions on Microwave Theory

and Techniques, 59(1):39–45, 2011.

Harris Drucker, Chris JC Burges, Linda Kaufman, Alex

Smola, Vladimir Vapnik, et al. Support vector re-

gression machines. Advances in neural information

processing systems, 9:155–161, 1997.

Dirk Gorissen, Ivo Couckuyt, Piet Demeester, Tom

Dhaene, and Karel Crombecq. A surrogate modeling

and adaptive sampling toolbox for computer based

design. The Journal of Machine Learning Research,

11:2051–2055, 2010.

Martin T Hagan, Howard B Demuth, Mark H Beale,

et al. Neural network design. Pws Pub. Boston, 1996.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard

Pfahringer, Peter Reutemann, and Ian H Witten.

The weka data mining software: an update. ACM

SIGKDD explorations newsletter, 11(1):10–18, 2009.

Stephanus Daniel Handoko, Kwoh Chee Keong, and

Ong Yew Soon. Using classification for constrained

memetic algorithm: A new paradigm. In IEEE In-

ternational Conference on Systems, Man and Cyber-

netics, 2008. SMC 2008, pages 547–552. IEEE, 2008.

Bart GM Husslage, Gijs Rennen, Edwin R van Dam,

and Dick den Hertog. Space-filling latin hypercube

designs for computer experiments. Optimization and

Engineering, 12(4):611–630, 2011.

Max D Morris. Factorial sampling plans for prelimi-

nary computational experiments. Technometrics, 33

(2):161–174, 1991.

Horst Nowacki. Modelling of design decisions for cad.

In Computer Aided Design Modelling, Systems En-

gineering, CAD-Systems, pages 177–223. Springer,

1980.

Randal Rausch, Daniel E Viassolo, Aditya Kumar, Kai

Goebel, Neil Eklund, Brent Brunell, and Pierino Bo-

nanni. Towards in-flight detection and accommoda-

tion of faults in aircraft engines. In AIAA 1st In-

telligent Systems Technical Conference, Chicago, IL,

September, pages 20–22, 2004.

Jerome Sacks, William J Welch, Toby J Mitchell, and

Henry P Wynn. Design and analysis of computer

experiments. Statistical science, pages 409–423, 1989.

Edward B Saff and A BJ Kuijlaars. Distributing many

points on a sphere. The Mathematical Intelligencer,

19(1):5–11, 1997.

Marc Schoenauer and Zbigniew Michalewicz. Evolu-

tionary computation at the edge of feasibility. In Par-

allel Problem Solving from NaturePPSN IV, pages

245–254. Springer, 1996.

Songqing Shan and G Gary Wang. Survey of mod-

eling and optimization strategies to solve high-

dimensional design problems with computationally-

expensive black-box functions. Structural and Multi-

disciplinary Optimization, 41(2):219–241, 2010.

Prashant Singh, Dirk Deschrijver, Davy Pissoort, and

Tom Dhaene. Adaptive classification algorithm for

emc-compliance testing of electronic devices. Elec-



A Seq. Sampling Strategy for Adaptive Classification of Comput. Expensive Data 11

tronics Letters, 49(24):1526–1528, 2013.

Robert Spaans and Rein Luus. Importance of search-

domain reduction in random optimization. Journal

of Optimization Theory and Applications, 75(3):635–

638, 1992.

Joachim van der Herten, Ivo Couckuyt, Dirk Deschri-

jver, and Tom Dhaene. A fuzzy hybrid sequential de-

sign strategy for global surrogate modeling of high-

dimensional computer experiments. SIAM Journal

on Scientific Computing, 37(2):A1020–A1039, 2015.


