
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

COMBINATORIAL AUCTIONS: 
THEORY, PRACTICE, AND EXPERIMENTS 
 

 

 

 

 

 

 

 

 

Bart Vangerven 

 

 

Supervisors:  

Prof. Dr. Dries R. Goossens, Prof. Dr. Frits C.R. Spieksma 
 

Dissertation presented to obtain the degree of Doctor in 

Business Economics at Ghent University and KU Leuven 

 

Academic year: 2016 – 2017 
 

 





Doctoral committee

Supervisors:
Prof. dr. Dries R. Goossens

Ghent University, Faculty of Economics and Business Administration

Prof. dr. Frits C.R. Spieksma
KU Leuven, Faculty of Economics and Business

Members:
Prof. dr. Martina Vandebroek

KU Leuven, Faculty of Economics and Business

Prof. dr. Tarik Aouam
Ghent University, Faculty of Economics and Business Administration

Prof. dr. Marion Ott
RWTH Aachen, School of Business and Economics

Copyright © 2017 by Bart Vangerven

All rights are reserved. No part of this publication may be reproduced or
transmitted in any form or by any means electronic or mechanical, including
photocopying, recording, or by any information storage and retrieval system,

without permission in writing from the author.

i





Acknowledgments

Knowledge is in the end based on
acknowledgement

Ludwig Wittgenstein

The proverb ‘the longest mile is the last mile home’ quite accu-
rately describes my feelings at the end of this PhD journey. As usual
at the end of your PhD, there is one thing left to do to complete
the doctoral dissertation: writing the only part of this behemoth
that people might actually read — the acknowledgements. Acknowl-
edgements are usually quite non-consequential, in the sense that
people are rarely evaluated on them (unlike, hopefully, the rest of
this work), yet they do matter. Amidst the celebration, the right
people require thanks in the right way.

As is tradition, the first paragraph is dedicated to the advisor.
Fun fact; while writing these acknowledgements, and going over
how some of my predecessors handled it before me, I noticed that
it is even tradition to mention that it is tradition to mention the
advisor first. Fortunately, I had the privilege of having not just one,
but two advisors. I would like to express my sincere gratitude to
my advisors Prof. Dr. Frits Spieksma and Prof. Dr. Dries Goossens
for the continuous support of my PhD study and related research,
for their patience, motivation, and immense knowledge. Their door
was - usually - open whenever I ran into a spot of trouble or had a
question. Their guidance and attention to detail helped me bring

iii



iv

my PhD journey to a good end. I could not have imagined having
better advisors and mentors for my PhD study.

Besides my advisors, I would like to thank the rest of my doc-
toral committee: Prof. Dr. Martina Vandebroek, Prof. Dr. Tarik
Aouam, and Prof. Dr. Marion Ott, for their insightful comments
and encouragement, but also for the questions which helped improve
this dissertation immensely.

PhD students often talk about loneliness during the course of
their study. That is something which I never experienced. In fact,
my time as a PhD student was characterized by many wonderful
colleagues, who all deserve some manner of thanks, e.g. for all the
stimulating discussions, (laughing at inappropriate) jokes, and for
all the fun we have had. I will mention the three musketeers first:
Bart Smeulders (II), Ward Passchyn (you put the “b” in subtle), and
Annette Ficker (you are an excellent rubber duck). That conference
and subsequent trip in Glasgow was amazing, and I am happy you
introduced me to the world of board games.

Also on the ‘fifth floor’. Starting with the OR of ORSTAT,
I thank Kris Coolen (perhaps we were too much like a couple
of fishwives), Daniel Kowalczyk (Łatwo przyszło, łatwo poszło),
Guopeng Song & Fan Yang (hopefully someday I can pronounce
your names correctly), Ben Hermans and Salim Rostami (brave
enough to drink something that smokes). The fifth floor also houses
the STAT part of ORSTAT: Viktoria Öllerer, Ines Wilms, Luca
Barbaglia & Ruben Crevits. An observation: coffee and cake, or
food in general, might be the secret to bringing OR and STAT
(closer) together.

Moving on the the ‘fourth floor’, I thank Hamed Jalali (or would
you rather I call you Prof. Dr. Hamed Jalali now?), Stef Lemmens
(without that one heads up years ago this work would have been
“Imposhibibble! Imposhibibble!”), Raïsa Carmen & Carla Van Riet
(please continue running and motivating people!), Joren I & II (you
decide which is which), Joeri Poppe and Morteza Davari (one day
you will beat me in ‘the only game that matters’), Michael Samudra
(hopefully I convinced you to switch to the “good stuff”), Sarah



v

Van der Auweraer (check out the Nerf Super Soaker Zombie Strike
Revenge Contaminator), Silvia Valeria Padilla Tinoco (pura vida!),
and Sebastian ‘speedy’ Gonzalez, Finally, the newcomers: Heletje
Van Staden, Laurens Deprez, and Kim De Boeck. It falls on you to
keep the cake traditions alive! Phew, I really hope I did not forget
anyone in that list. . .

A lifelong friend obviously deserves mentioning. Tommy Grain-
dourze, I like to think your philosophical ways kept me sane(r)
during my PhD journey. The computer and board game distractions
probably also helped.

Finally, this last paragraph is dedicated to family. Special thanks
go to my sister, her husband and their lovely daughter, my (first)
godchild. I also want to express my deep gratitude to my parents.
Both have instilled many admirable qualities in me, and have given
me a solid foundation in life. They provided me with unfailing
love, support and continuous encouragement throughout my years
of study and the process of researching and writing this thesis. This
accomplishment would not have been possible without them. The
clichéd ‘words cannot express’ is fitting. Still, I will try: mom and
dad, I profoundly thank you.

Bart Vangerven
Leuven, December 2017.





English summary

This doctoral dissertation contributes to theory, experiments, and
practice in combinatorial auctions. Combinatorial auctions are
multi-object auctions, that enable bidders to bid on packages of
items.

In Chapter 2, we theoretically investigate the classical winner
determination problem in geometrical settings. Specifically, we con-
sider combinatorial auctions of items that can be arranged in rows,
and the objective is, given bids on subsets of items, to find a subset
of bids that maximizes auction revenue. Possible practical applica-
tions include allocating pieces of land for real estate development,
or seats in a theater or stadium. We investigate several geometrical
structures and bid shapes, and provide either a polynomial dynamic
programming algorithm or an NP-hardness proof, filling in several
gaps in academic literature.

In Chapter 3, we combine theory with experiments, investigat-
ing coordination and threshold problems in combinatorial auctions.
Bidders on small packages of items are unable to outbid provi-
sionally winning bids on large packages alone; despite free-rider
incentives, both coordination and cooperation are required. Coor-
dination because smaller bidders need to bid on disjoint packages,
and cooperation because more than one bidder is required to outbid
a larger package bid. We propose indices quantifying both the
coordination and the threshold problem, that can be used in provid-
ing feedback or generating valuations for laboratory experiments.
Additionally, we develop coalitional feedback that is specifically
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aimed at helping bidders to overcome coordination and threshold
problems. We test this in an experimental setting using human
bidders, varying feedback from provisionally winning bids and prices,
to winning and deadness levels, and coalitional feedback. We find
that in situations where threshold problems are severe, coalitional
feedback increases economic efficiency, but in easy or insurmountable
threshold problems that is not always the case.

Finally, in Chapter 4, we combine theory with practice. Schedul-
ing a conference, based on preferences expressed by conference
participants, can be seen as a combinatorial auction with public
goods. In a situation with public goods, the utility of the final
selected goods (presentations scheduled in parallel) are “consumed”
by all bidders (conference participants). Constructing a good confer-
ence schedule is important: they are an essential part of academic
research and require significant investments (e.g. time and money)
from their participants. We provide computational complexity re-
sults, along with a combined approach of assigning talks to rooms
and time slots, grouping talks into sessions, and deciding on an
optimal itinerary for each participant. Our goal is to maximize
attendance, considering the common practice of session hopping.
On a secondary level, we accommodate presenters’ availabilities.
This personalized conference scheduling approach has been applied
to construct the schedule of the MathSport (2013), MAPSP (2015
and 2017) and ORBEL (2017) conferences.



Nederlandse
samenvatting

Dit doctoraal proefschrift draagt bij tot de theorie, experimenten,
en praktijk van combinatorische veilingen. Combinatorische veilin-
gen zijn veilingen met meerdere objecten, die bieders toelaten om
pakketbiedingen te plaatsen.

In Hoofdstuk 2 onderzoeken we het klassieke winnaar deter-
minatieprobleem in geometrische omgevingen. Meer specifiek, on-
derzoeken we combinatorische veilingen van objecten die in rijen
gesorteerd zijn. De doelfunctie is dan om, gegeven biedingen op
verzamelingen van objecten, de deelverzameling van objecten te
selecteren die de opbrengst voor de veilingmeester maximaliseert.
Potentiële praktische toepassingen zijn onder meer het toewijzen van
stukken grond, of zitjes in een theater of stadion. We onderzoeken
verschillende geometrische structuren en vormen van biedingen, en
geven ofwel een polynomiaal dynamisch programmeringsalgoritme of
een NP-moeilijkheidsbewijs. Op die manier vullen we verschillende
gaten in de academische literatuur op.

In Hoofdstuk 3 combineren we theorie met experimenten, en on-
derzoeken we coördinatie- en drempelproblemen. Bieders op kleine
pakketten van objecten kunnen voorlopig winnende biedingen op
grote pakketten niet alleen verslaan; niettegenstaande vrijbuiters-
incentieven, zijn zowel coördinatie als samenwerking nodig. Coör-
dinatie omdat kleinere bieders op niet overlappende pakketten van
objecten moeten bieden, en samenwerking omdat er meer dan één
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bieder nodig is om een groter pakketbod te overbieden. We stellen
indices voor, die zowel het coördinatie- als het drempelprobleem
kwantificeren, en die b.v. gebruikt kunnen worden om feedback aan
bieders te voorzien of om waarderingen voor labo experimenten te
genereren. Verder ontwikkelen we ook coalitiefeedback die specifiek
gericht is om bieders te helpen coördinatie- en drempelproblemen te
overkomen. We testen deze feedback in een experimentele omgeving
met menselijke bieders, waar we feedback variëren van feedback over
voorlopig winnende biedingen en prijzen, tot winning en deadness
levels, en coalitiefeedback. We vinden dat in situaties met moeilijke
drempelproblemen, coalitiefeedback economische efficiëntie verhoogt,
maar dat in gemakkelijke of onoverkomelijke drempelproblemen dat
niet altijd het geval is.

In Hoofdstuk 4 combineren we theorie met de praktijk. Het
plannen van een conferentie gebaseerd op geuite voorkeuren van
deelnemers, kan gezien worden als een combinatorische veiling met
publieke goederen. In een situatie met publieke goederen, wordt
het nut van de finaal geselecteerde goederen (presentaties in parallel
gepland) genuttigd door alle bieders (deelnemers aan de conferen-
tie). Een goed programmaschema opstellen is belangrijk, gezien
conferenties een essentieel onderdeel van wetenschappelijk onderzoek
vormen en significante investeringen (b.v. tijd en geld) vereisen van
de deelnemers. We geven een NP-moeilijkheidsbewijs, samen met
een alomvattende aanpak die presentaties aan lokalen en tijdstippen
toewijst, die praatjes in sessies indeelt, en die een optimaal traject
voor iedere deelnemer uitstippelt. Ons doel is om de aanwezigheid
te maximaliseren, rekening houdend met mensen die tussen pre-
sentaties door naar andere sessies gaan. Op een tweede niveau,
houden we rekening met de beschikbaarheden van de presentatoren.
Deze gepersonaliseerde conferentieplanningsaanpak is gebruikt om
de programmaschema’s van MathSport (2013), MAPSP (2015 and
2017) and ORBEL (2017) op te stellen.
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Chapter 1

Introduction

Begin - to begin is half the work,
let half still remain; again begin
this, and thou wilt have finished.

Marcus Aurelius

1.1 About combinatorial auctions

This doctoral dissertation contributes to theory, experiments and
practice in combinatorial auctions. Combinatorial auctions are a
special type of auction, because they allow bidders to place bids
on bundles (sometimes called combinations or packages) of items.
This property enables bidders to more fully express their preferences.
This is in stark contrast with the traditional (sequential) single item
auctions. Logically, it follows that combinatorial auctions make most
sense in environments where bidders might have complementary
values, i.e. synergies, that arise from the bundling of items. An often
used example to demonstrate complementarities is the following: a
pair of shoes is worth more than the value of a single left shoe and
a single right shoe. Both bidders and the auctioneer can benefit
from combinatorial auctions; economic efficiency as well as auction

1



2 CHAPTER 1. INTRODUCTION

revenue are often increased when bidders are allowed to enter pack-
age bids. Combinatorial auctions have a long list of (potential)
practical applications that account for millions of dollars of rev-
enues. Without a doubt, the most well-known application is that of
allocating spectrum licenses (Jackson, 1976; McMillan, 1994; Banks
et al., 2003; Plott and Salmon, 2004; Seifert and Ehrhart, 2005;
Günlük et al., 2005; Brunner et al., 2010; Scheffel et al., 2012; Fox
and Bajari, 2013; Bichler et al., 2013). Broadly speaking, spectrum
auctions seek to allocate licences to transmit signals over specific
bands of the electromagnetic spectrum. Spectrum resources being
scarce, it is important to allocate the spectrum licenses efficiently,
i.e. to parties that value them the most, preferably providing sig-
nificant revenues for governments as well. However, there are other
applications as well, ranging from the allocation of airport landing
slots (Rassenti et al., 1982) or harbor time slots (Ignatius et al.,
2014) (time slots that are closer together time-wise have a better
synergy than time slots that are further apart time-wise), and the
allocation of mineral/oil drilling rights (Cramton, 2007) (synergies
can be found if mineral/drilling right for several adjacent plots of
land are secured). It follows that combinatorial auctions are well
researched. In fact, there has been a surge of research in the last
two decades.

1.2 Dissertation structure
Combinatorial auctions bring with them a diverse set of challenges.
The work described in the following chapters attempts to tackle
some of those challenges. It is presented in such a way that they
can be read as stand-alone work.

Chapter 2 contains theoretical research on winner determination
problems. The winner determination problem is the following: given
a number of bids in a combinatorial auction, determine the alloca-
tion of items to bidders that maximizes the auctioneer’s revenue,
such that every item is sold at most once. Usually, in the academic
literature, special cases are investigated where the winner determi-



1.2. DISSERTATION STRUCTURE 3

nation problem can be solved efficiently (i.e. in polynomial time), or
can be approximated to some degree, see e.g. Rothkopf et al. (1998),
Sandholm et al. (2005), Xia et al. (2005), Günlük et al. (2005),
Babaioff and Blumrosen (2008), Mu’alem and Nisan (2008). Chap-
ter 2 is concerned with solving the winner determination problem
in a geometrical setting. Specifically, we consider auctions of items
that can be arranged in rows. Examples of such a setting appear
naturally in allocating pieces of land for real estate development,
or seats in a theater or stadium, as well as oil/mineral rights. In
chapter 2 the objective is, given bids on subsets of items, to find
a subset of bids that maximizes auction revenue in a pay-as-bid
auction (i.e. winning bidders pay the price of their bids). We de-
scribe a dynamic programming algorithm which for a problem with
k rows and so-called connected and gap-free bids, solves the winner
determination problem in polynomial time. In addition, we study
the complexity for bids in a grid, complementing known results in
the literature. We also study variants of the winner determination
problem in specific geometrical settings. We provide a NP-hardness
proof for the 2-row setting with gap-free bids. Finally, we end chap-
ter 2 with an extension of the dynamic programming algorithm to
solve the case where bidders submit connected, but not necessarily
gap-free bids in a 2-row and a 3-row problem.

Chapter 3 is about bidder support and combines theory with
experiments. Combinatorial auctions, by allowing bidders to enter
package bids, introduce both coordination and threshold problems.
Bidders on small packages of items are unable to individually outbid
provisionally winning bids on large packages; despite free-rider incen-
tives, both coordination and cooperation are required. Coordination
because smaller bidders need to bid on disjoint packages that are
present in an efficient outcome, and cooperation because more than
one bidder is required to outbid larger package bids that stand in
the way of such an efficient outcome.

We study such coordination and threshold problems in combina-
torial auctions and propose measures quantifying both the coordi-
nation and threshold problems. This is a novel contribution to the
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auction literature, where the coordination and threshold problems
are often not separately discussed, but mixed together.

Also in this chapter, we devise a type of feedback dubbed coali-
tional feedback. Although giant strides have been made in recent
years in the field of bidder support, there remains an open question
as to how effective bidder support, in the shape of feedback, can help
overcome coordination and threshold problems. Coalitional feedback
is specifically aimed at helping bidders to overcome coordination and
threshold problems. It follows that such feedback can be valuable in
supporting bidders in a combinatorial auction. Finally, to put the
theory to the (experimental) test, we test different levels of feedback
in an experimental setting using human bidders, varying feedback
from very basic information about provisionally winning bids and
corresponding prices, to more advanced concepts such as winning
and deadness levels, and coalitional feedback.

In Chapter 4 we present both theory and practice about confer-
ence scheduling. Scientific conferences have become an essential part
of academic research and require significant investments (e.g. time
and money) from their participants. It falls upon the organizers
to develop a schedule that allows the participants to attend the
talks of their interest, making their conference experience a good
one. Maximizing attendance is only possible once participant pref-
erences are known. Constructing a conference schedule based on
these preferences forms the theme of this chapter. One way to elicit
preferences of conference goers, is to give them a list of all talks
along with the question: “Dear participant, which talks would you
like to attend?” Participants are free to reveal their preferences this
way. Every participant then has the opportunity to check the talks
he or she wants to attend, resulting in a binary preference vector
with length equal to the number of talks in the conference.

However, all wells, when dug deep enough, lead to the same water
source. Indeed, we can think of our conference scheduling approach
as a special type of combinatorial auction. More concrete, we can
model preference based conference scheduling as a combinatorial auc-
tion with public goods. Observe that in a traditional combinatorial
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auction, the utility - an economic term referring to the satisfaction
from consuming a good or service - of the items is obtained privately.
That is: the utility of an item is acquired exclusively by the bidder
winning the item. In a situation with public goods, the utility of
the final selected goods are consumed by all bidders. We can model
preference based conference scheduling as a combinatorial auction
with public goods as follows. Each participant in the conference
corresponds to a bidder in the auction, and each combination of
talks that can take place in parallel correspond to an item. The
preference vector of the conference participants can be seen as the
valuation that a bidder expresses for a particular combination of
parallel talks. More precise, the number of missed attendances that
follows from a bidder’s preference vector for a tuple can be seen as
the bidder’s expressed cost for that tuple. Next, summing these costs
over the bidders, we arrive at the cost-coefficient for a combination
of parallel talks. The problem is then to select the combinations
of parallel talks in such a way that the selected cost coefficient is
minimized, subject to the constraint that every talk has to be in
exactly one selected combination of parallel talks. Equivalently, the
goal is to maximize total attendance, i.e. welfare. Summarizing,
in contrast to a combinatorial auction involving private goods, in
this combinatorial public goods auction (i) not every item will/can
be sold (not every combination of talks will be selected), and (ii)
the final product is the conference schedule, which corresponds to
a selected set of combinations of talks in parallel enjoyed by all
participants. In fact, the public good auction we describe here
is a variation of the closely related Combinatorial Public Project
Problem, which was introduced by Papadimitriou et al. (2008), and
further studied by Schapira and Singer (2008), Buchfuhrer et al.
(2010), Lucier et al. (2013), and Markakis and Telelis (2017). The
Combinatorial Public Project Problem consists of selecting k out
of m available items, while maximizing social welfare. Instead of
putting a constraint on the number of selected items, we constrain
the selected items such that every talk is selected exactly once.

Setting aside auction terminology, we present in Chapter 4 a
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combined approach of assigning talks to rooms and time slots, group-
ing talks into sessions, and deciding on an optimal itinerary for each
participant. Our primary goal is to maximize attendance, taking
into account the common practice of session hopping. Session hop-
ping is the phenomenon of participants switchings sessions between
consecutive talks, in order to attend a talk in another session. This is
often perceived as disturbing, yet session hopping is regular practice;
it makes sense to, after maximizing possible attendance, minimize
session hopping. On a secondary level, we accommodate presenters’
availabilities. Finally, if room capacities are a potential issue, we
also discuss how to assign sessions to rooms. We present theoretical
contributions regarding the computational complexity of maximiz-
ing attendance, and discuss a dynamic programming algorithm to
calculate the number of session hops exactly, as well as a heuristic
to approximate the number of session hops quickly. Finally, we turn
theory into practice and apply our conference scheduling approach
to construct the schedule of four medium-sized scientific conferences:
MathSport (2013), MAPSP (2015 and 2017) and ORBEL (2017).



Chapter 2

Winner Determination
Problems in Geometrical
Combinatorial Auctions

Simplicity is a great virtue but it
requires hard work to achieve it
and education to appreciate it.
And to make matters worse:
complexity sells better.

Edsger Wybe Dijkstra

2.1 Introduction

In combinatorial auctions, bidders can place bids on combinations
of items, called packages or bundles. Clearly, combinatorial auctions
allow bidders to better express their preferences compared to the
traditional auction formats, where bidders place bids on individual

This chapter is based on Vangerven et al. (2017b).

7
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items. In particular, it makes sense to use a combinatorial auc-
tion when complementarities or substitution effects exist between
different items.

Research on combinatorial auctions was triggered by applications
such as the FCC spectrum auction (Jackson, 1976) and auctions
for airport time slots (Rassenti et al., 1982). For an introduction
to combinatorial auctions, we refer to the book edited by Cramton
et al. (2006); for a survey of the literature, we refer to Abrache et al.
(2007) and de Vries and Vohra (2003).

One important challenge within this domain is, given the bids, to
decide which items should be allocated to which bidder, i.e., which
bids to accept. In general, this winner determination problem is
NP-hard (Van Hoesel and Müller, 2001), and does not allow good
approximation results (Sandholm, 2002).

We discuss a combinatorial auction in a restricted topology. In
this setting, an item corresponds to a rectangle, and all items are
arranged in (a limited number of) rows, see Figure 2.1 for an example.
Notice that the individual items (or rectangles) need not have the

Figure 2.1: An example of an instance with 3 rows and 5 bids.

same size. A bid consists of a set of items satisfying some restrictions
(see Section 2.2 for a precise problem definition), together with a
value. The objective is to select a set of bids that maximizes the
sum of the expressed values, while making sure that each item is
present at most once in a selected bid.

There are several situations in practice that motivate this specific
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geometric setting. We mention the following:

• Real estate. Goossens et al. (2014) describe how space in a
newly erected building, to be used for housing and commercial
purposes, is allocated using a combinatorial auction. The geo-
metric structure of each of the levels of the building features
the properties described here. Quan (1994) reports on empiri-
cal studies in real estate auctions. Several of these studies have
focused on verifying and quantifying the afternoon effect. This
afternoon effect describes similar items consistently selling
for significantly less in later rounds in multi-object sequential
auctions. Quan (1994) even reports on finding this effect in
a large real estate auction (122 lots) of vacant lots that are
geographically similar. The lots were formed in 23 groups
based on their geographical proximity. In 20 out of the 23
groups of properties, the afternoon effect was present with
the last bidder paying on average one-third less than the first
bidder for geographically similar lots. A combinatorial auction,
by selling all items simultaneously, can mitigate this effect.

• Mineral rights. Imagine a region that is partitioned into lots,
with the lots organized in rows. For sale is the right to extract
minerals, oil or gas found on or below the surface of the
lot. Clearly, having adjacent lots allows for exploration and
production efficiencies, a complementarity. For more about
this particular setting, we refer to Cramton (2007). Figure
2.2 shows an example of oil and gas leases neatly arranged in
rows.

• Seats in a grandstand, theater or stadium. In some of these
cases, one can even assume that a grid, consisting of rows and
columns, is given where each cell represents a seat. Typically,
demand exists for sets of adjacent seats - think of a family
of four going to a ball game, or a group of friends visiting
a concert. The complementarities that people perceive from
adjacent seats offer possibilities for combinatorial auctions.
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Figure 2.2: Oil and Gas Leases managed by the Texas General
Land Office. Taken from: http://www.glo.texas.gov/GLO/agency-
administration/gis/gis-data.html.

Although tickets are usually sold at a fixed price, there are
occasions where sports teams have auctioned off (part of) their
seat licenses1. Another, not unrealistic, example is the selling
of airline tickets2.

• Laboratory experiments. Scheffel et al. (2011) provide results
of laboratory experiments testing different auction formats in
five different value models. Their third value model has six
pieces of land arranged in two rows on a shoreline. Bidders are
interested in bundles that contain at least one lot at the shore.
Their fourth value model has nine pieces of land arranged in
three rows. In Scheffel et al. (2012) a local synergy value model
is used in which 18 items are arranged rectangularly in three
rows with bidders interested in adjacent items. Kazumori
(2010) ran experiments using 16 items arranged rectangularly

1For instance, the New York Jets (NFL) have earned
over $16 million in an online auction for seat licenses. See
http://www.nfl.com/news/story/09000d5d80c071a4/article/jets-earn-more-
than-16-million-in-online-psl-auction.

2For instance, the article found at the following URL describes how some
carriers require persons whose weight exceeds a given number to buy two
(adjacent) tickets: http://www.cheapair.com/blog/travel-tips/airline-policies-for-
overweight-passengers-traveling-this-summer/.
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in four rows. Each agent has a base value for each item and a
varying level of additional interest for adjacent items. These
laboratory experiments required solving very small instances
of the winner determination problem. In case one were to
increase the number of pieces of land, or one wants to run a
continuous auction, or one wants to give bidders all sorts of
feedback, an efficient algorithm for the winner determination
becomes a necessity.

In all these cases, it is clear that complementarities between adjacent
items exist; a combinatorial auction is best-placed to take these
effects into account.

The main goal of this chapter is to show how the specific geomet-
ric setting described above can be used to efficiently solve the winner
determination problem (which is hard in general), using dynamic
programming procedures. Additionally, we settle the complexity
of the winner determination problem for bidding in a grid. This
chapter does not address mechanism design or bidding strategy
issues.

Goossens et al. (2014) show that when a constraint is imposed
stating that a bidder can have at most one winning bid, the winner
determination problem is NP-hard even if all items are arranged on a
single row. Hence, to have any prospect of coming up with a positive
result, we allow bidders to win multiple bids. Notice however that,
under some conditions on the bids, an optimal solution where each
bidder has at most one winning bid is guaranteed to exist. This is
the case, for instance, if the bids placed by each bidder satisfy at
least one of the following conditions:

• every pair of bids of a bidder has a non-empty intersection

• all bids from the same bidder are super-additive, i.e. for any
two disjoint sets S and T it should hold that the bid expressed
on S ∪ T is at least as large as the sum of the expressed bids
on S and T .

The first condition is satisfied if bidders place only one bid. Bids
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coming from (truthful) single-minded bidders, who are only inter-
ested in a specific set of items or a superset of these items, also
satisfy the first condition. Indeed, more formally, single-minded bid-
ders have a set of items S∗ and a value v∗ such that their valuation
v(S) = v∗ for all S ⊇ S∗, and v(S) = 0 for all other S (see Nisan
et al. (2007)). The second condition corresponds to the bids that
can be expressed using a bidding language consisting of OR-bids (see
Nisan (2000)). Summarizing, in these cases, our dynamic program
will result in an optimal solution where each bidder has at most one
winning bid.

2.1.1 Literature

Our problem is a special case of finding a maximum-weight indepen-
dent set in a geometric intersection graph. In such a graph, there is
a node for each bid (in our case: a (connected) set of rectangles),
and two nodes are connected if and only if the corresponding bids
overlap. Finding a maximum-weight independent set in a geometric
intersection graph is a well-studied problem for several types of
intersection graphs. For instance, in the work of Rothkopf et al.
(1998), it is shown that if all items are arranged in a single row,
and bids are only allowed for subsets of consecutive items, the
resulting winner determination problem is polynomially solvable.
These results follow from the equivalence of this problem to finding
a maximum-weight independent set in an interval graph. For an
overview on results for more general intersection graphs we refer to
Chan and Har-Peled (2012). Depending upon particular properties
of the geometric figures, different complexity results are known. We
restrict ourselves here to mentioning that for fat objects (like squares
and disks) polynomial time approximation schemes are known (see
Erlebach et al. (2001), Hochbaum and Maass (1985)). The impor-
tant special case of finding a maximum-weight independent set in
a rectangle intersection graph is considered in Chalermsook and
Chuzhoy (2009).

In the context of auctions, Babaioff and Blumrosen (2008) and



2.1. INTRODUCTION 13

Christodoulou et al. (2010) study mechanism designs for the setting
where geometric figures in the plane are the objects for sale. They
sketch applications in advertising, renting land for exhibitions and
licenses for location-based services. They show how to guarantee a
certain fraction of the optimal welfare for certain shapes of geometric
objects (e.g. convex figures). The geometric setting considered
here is different; also we do not devise payment schemes for the
bidders. This chapter addresses the question of how to solve the
winner determination problem, assuming bidders have placed bids
for subsets of items.

Our problem is also somewhat related to rectangle packing.
Given a set of rectangles, the rectangle packing problem is to find
a bounding box (i.e. an enclosing rectangle) of minimum area that
will contain the given rectangles without overlap. The optimization
problem is NP-hard, while the problem of deciding whether a set of
rectangles can be packed in a given bounding box is NP-complete
(Leung et al., 1990). This resembles a setting where bidders want
to acquire a set of seats in a theater, of given number and shape
(e.g. four seats next to each other, a 3 × 2 block of seats, etc.),
anywhere in the theater. This can be casted in our framework by
having a bid for each possible set of seats. In general however, this
problem is fundamentally different from our problem: in rectangle
packing, given rectangles can be placed anywhere in the bounding
box, whereas in our problem the position of the items are fixed and
the decision to be made is whether or not to select a particular bid.

If we allow bidders to express multiple bids, the problem is
NP-hard even in a setting where all items are arranged in a single
row. Indeed, this follows immediately from the fact that the Job
Interval Selection Problem (JISP) is MAX SNP-hard (Spieksma,
1999). In the JISP n pairs of intervals on the real line are given, and
the objective is to select as many intervals as possible such that no
two selected intervals intersect and at most one interval is selected
from each pair.
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2.1.2 Our Results

For the setting where items are arranged in rows, we show the
following:

• For connected and gap-free bids (see Section 2.2 for precise
definitions), the winner determination problem is easy when
the number of rows is fixed (see Section 2.3.1). We provide a
general polynomial time dynamic programming algorithm.

• For the setting where the bid space is a grid and both the
number of rows and columns are a part of the input, we show
that even when bids are constrained to be row bids or column
bids, the resulting winner determination problem is NP-hard
(see Section 2.3.3),

• For gap-free bids, the winner determination problem is NP-
hard, even on two rows (see Section 2.4.1).

• For connected bids, the winner determination problem is easy
on three rows or fewer (see Sections 2.4.2 and 2.4.3). We show
this by adapting and expanding upon the general dynamic
programming algorithm discussed in Section 2.3.1.

We point out that the complexity of the winner determination
problem with connected bids on a fixed number of rows k, with
k ≥ 4, is still an open problem. If the number of rows is part of
the input, a result in Rothkopf et al. (1998) implies the problem is
NP-hard. An overview can be found in Table 2.1.

2.2 Preliminaries
The geometric setting that we consider can be described as follows.
Given are k rows. Each row contains an (ordered) set of items (or
rectangles). If, on some row, an item a lies to the left of item b, then
we write a ≺ b. We use Xj = {0, 1, . . . ,mj} to denote the set of
items in row j, j = 1, . . . , k. The set of items that can be bid on is
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Rows Connected and
gap-free bids Connected bids Gap-free bids

1 O(m+ n)
2 O(m2 + nm) NP-hard

(Vialette, 2004)3 O(m3 + nm2) O(n2m3)
k : k ≥ 4 O(mk + nmk−1) Open problem

Table 2.1: Overview of results if the number of rows k is not part of
the input, m is the number of items and n is the number of bids.

⋃k
j=1Xj \ {0}; item 0 cannot be part of any bid, and is only present

for notational convenience. We assume that item ` lies directly to
the left of item `+ 1, for each ` ∈ Xj \ {mj}, j = 1, . . . , k.

Definition 2.1. We say that a pair of items are adjacent if and
only if they share a border with non-zero length.

Clearly, items ` and ` + 1 are adjacent. However, items on
different (but consecutive) rows can be adjacent as well. We use m
to denote the number of items in the instance, i.e., m = ∑k

j=1mj .
Figure 2.3 visualizes this.

m1

m2

m3

1

1

1

2

2

2

Row 1

Row 2

Row 3

0

0

0

Figure 2.3: An example of an instance with k = 3 (i.e. 3 rows) and
m1 = 6, m2 = 8, m3 = 7.

We investigate the following problem, called the winner deter-
mination problem (WDP). Given is a set of bids B on subsets of
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items, with v(b) denoting the value of bid b, for each b ∈ B. We
set n = |B|, i.e. there are n bids; specifying a bid implies specifying
a set of items, as well as a value v(b) > 0. The problem is to find
an allocation that maximizes the sum of the values of the accepted
bids, ensuring that each item is allocated at most once.

Given a bid b, consider the item graph, H(b), which has a node
for each item in bid b, and there is an edge between a pair of nodes
in H(b) if and only if the corresponding items are adjacent. There
are two main restrictions on the bids that we consider. We define
the concept of a connected bid.

Definition 2.2. We say that bid b is connected if the subgraph H(b)
induced by the items of bid b is connected. If bid b is not connected,
we say that it is disconnected.

Further, let us define the concept of a bid that is gap-free. A
formal definition of a bid having no gaps (i.e. being gap-free) is
formulated as follows.

Definition 2.3. We say that bid b is gap-free if no three items
u ≺ v ≺ w on a single row exist for which u ∈ b, v /∈ b, w ∈ b.

A bid that is not gap-free has at least one gap. Notice that it is
easy to exhibit examples of connected bids that are not gap-free (see
Figure 2.4), and gap-free bids that are not connected (see Figure
2.5). It is also easy to see that in the case of a single row, i.e. k = 1,
connectedness of a bid is equivalent to a bid being gap-free.

Finally, it is important to see that bids on identical sets of items
but with different values need not all be considered. Indeed, one
need only consider the bid with the highest value. If more than one
bid has the highest value, one could use the bid entry time as a
tie-breaker. Thus, all but the highest value bid on a specific set of
items can be eliminated and bids will be unique in the sense that
they are all for different sets of items.
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Figure 2.4: A bid that is connected and not gap-free.

Figure 2.5: A bid that is disconnected and gap-free.
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2.3 Connected and gap-free bids

In this section we assume that bids are connected and gap-free. In
Section 2.3.1 we describe a dynamic programming algorithm for the
winner determination problem, tailored to our geometric setting de-
scribed in Section 2.2, for the general case of k rows. This algorithm
has a polynomial running time if we assume that k is not part of
the input, or in other words, if we focus on problem instances with
a specific number of rows. Notice that this assumption is reasonable
for practical applications, as the auctioneer will typically be inter-
ested in a setting with one particular number of rows, namely that
number resulting from the specific geometric structure underlying
the items for sale.

In Section 2.3.3, we abandon this assumption, and study a
setting where problem instances can have any number of rows (i.e.
the number of rows is part of the input). We discuss a setting where
items are arranged in a grid, and show that this problem is difficult,
even when bids can cover only items in one row or one column.

2.3.1 A dynamic program for winner determination
for case of k rows

This section is divided as follows: first we describe the dynamic
programming algorithm for the case of k rows, then we proceed
to a numerical example, after which we will discuss the proof of
correctness.

The dynamic program for k rows
Here we describe a dynamic programming approach for the case of k
rows and bids that are both connected and gap-free. We show how
the winner determination problem for this setting can be solved as a
shortest path problem on a graph G = (V,A), which is constructed
as follows. There is a node in V for each element in the Cartesian
product of the sets X1,X2, . . . , Xk. We write V = ∏k

i=1Xi. Nodes
in V are k-tuples. We consider the k-tuple x = 〈x1, x2, . . . , xk〉,
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where x1 ∈ X1, x2 ∈ X2, . . . and xk ∈ Xk. This k-tuple represents
a state, i.e. a collection of assigned items. More specifically, the
k-tuple x represents a state where irrevocable decisions concerning
the items {0, . . . , x1}∪{0, . . . , x2}∪· · ·∪{0, . . . , xk} have been made,
i.e. for each row i all items from left to right up to and including
xi. As there is a node in V for every k-tuple, this leads to O(mk)
nodes.

The arc set A includes two types of arcs: the zero arcs and bid
arcs. The zero arcs have a weight of 0, and are used to handle
items not included in the set of winning bids. Consider some node
x = 〈x1, x2, . . . , xi, . . . , xk〉 ∈ V , with 1 ≤ i ≤ k and xi 6= mi. A
zero arc goes from node x to node 〈x1, . . . , xi + 1, . . . , xk〉 ∈ V , for
each 1 ≤ i ≤ k. Thus, up to k zero arcs emanate node x ∈ V , giving
rise to O(mk) zero arcs in the graph G.

The bid arcs correspond to actual bids and have a weight
equal to the value of the bid v(b). We represent a bid by list-
ing k pairs of elements; each pair represents the first element,
and the last element present in a bid on a particular row. For
a bid b that contains elements from each of the k rows, we write:
b = {(xb

1, y
b
1), (xb

2, y
b
2), . . . , (xb

k, y
b
k)}, where the element xb

j ∈ Xj

(1 ≤ j ≤ k) refers to the leftmost element of Xj present in bid b, and
the element yb

j ∈ Xj (1 ≤ j ≤ k) refers to the rightmost element of
Xj present in bid b. We use the symbol (∅,∅) to denote that a bid
does not include items from that row. Thus, as an example, when
we write b = {(∅,∅), (xb

2, y
b
2), (xb

3, y
b
3), (∅,∅)} this means that the

bid b does not include any items on the first row, it includes items
x2 up to and including y2 on the second row, it includes items x3
up to and including y3 on the third row, and it does not include any
items on the fourth row.

The bid arcs can be described as follows. Let us, for convenience,
first assume that bid b contains elements from each of the k rows.
To represent bid b in the graph G, we draw an arc from node
〈xb

1 − 1, xb
2 − 1, . . . , xb

k − 1〉 to node 〈yb
1, y

b
2, . . . , y

b
k〉 with weight v(b).

Consider now a bid b such that there are rows with no elements in b.
Observe that, due to connectedness of b, these rows can only have



20 CHAPTER 2. WDPS IN GEOMETRICAL CAS

indices 1, 2, . . . , s(b) and f(b), f(b)+1, . . . , k with 0 ≤ s(b) < f(b) ≤
k + 1. Note that if a bid b is present on the row 1 then s(b) = 0.
Similarly, if a bid b is present on row k then f(b) = k + 1. Now,
to represent bid b, for each x1 ∈ X1, x2 ∈ X2, . . . , xs(b) ∈ Xs(b),
xf(b) ∈ Xf(b), xf(b)+1 ∈ Xf(b)+1, . . . , xk ∈ Xk there is an arc from
node 〈x1, x2, . . . , xs(b), x

b
s(b)+1 − 1, . . . , xb

f(b)−1 − 1, xf(b), . . . , xk〉 to
node 〈x1, x2, . . . , xs(b), y

b
s(b)+1, . . . , y

b
f(b)−1, xf(b), . . . , xk〉 with weight

v(b). Notice that there are O(nmk−1) bid arcs (of course it is
conceivable that the number of bid arcs will be far less).

We now compute a longest path from node 0 = 〈0, . . . , 0〉 to
node m = 〈m1, . . . ,mk〉. The length of this path corresponds to
the optimal revenue of the auction, and the winning bids can be
derived from the arcs in the path. Notice that G = (V,A) is acyclic
by construction and consists of O(mk) nodes and O(mk−1(n+m))
arcs. Hence, a longest path can be found efficiently by solving a
shortest path problem in G = (V,A) with edge weights multiplied
by -1. Since Ahuja et al. (1993) show that shortest path problems
in directed acyclic graphs with p nodes and q arcs can be solved in
O(p+ q) time, our dynamic program requires O(mk + nmk−1) time.

Once a longest path is found, it is easy to see which bids are
accepted. Every arc that is not a zero arc in G = (V,A) corresponds
to exactly one bid. To find the set of winning bids, for every non-zero
arc in the longest path simply accept the bid corresponding to that
arc.

Note that when the shortest path problem in G = (V,A) is
solved, it is easy to get reduced costs (i.e. shadow prices) for all arcs.
The minimum of the reduced costs of all arcs corresponding to a
single bid, is the amount by which the bid needs to be improved (i.e.
increased) to be winning, if all other bids remain the same. This
amount by which a bid needs to be increased, ceteris paribus, to
become a winning bid has been termed the winning level of a bid
(Adomavicius and Gupta, 2005). Thus, in other words, the winning
levels of currently non-winning bids are easy to compute by using
our approach. This fact can be useful for providing feedback to
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bidders, helping bidders to better evaluate whether they should
revise previous bids (Adomavicius et al., 2012).

A numerical example
In this section we will use the layout found in Figure 2.6a to illustrate
how the graph G = (V,A) is created. As can be seen in Figure 2.6a,
the example has two rows. In the first row there are three items
and in the second row there are four items. Five bids are submitted,
see Figures 2.6b-2.6f. Bid 1, b1 with v(b1) = 12, is on the first item
in row 1 and on the first item in row 2. Bid 2, b2 with v(b2) = 14,
is on item 2 in row 1 and items 2 and 3 in row 2. Bid 3, b3 with
v(b3) = 13, is on the first item in row 1 and the first two items in
row 2. Bid 4, b4 with v(b4) = 9, is on the last two items in row 1.
Bid 5, b5 with v(b5) = 4, is on the last item in row 2. Given these
bids, now the winner determination problem needs to be solved.

Now let us construct the graph G = (V,A). First we construct
the nodes. There is a node in V for each element in X1×X2. In our
example: X1 = {0, 1, 2, 3} and X2 = {0, 1, 2, 3, 4}. The resulting
nodes are 2-tuples or pairs, each of which represent a state: the first
component denotes which items have already been handled on the
first row, the second component denotes which items have already
been assigned on the second row. For example, in the pair 〈1, 3〉 we
have already made decision regarding item 1 in row 1 and items 1,
2 and 3 in row 2. The appropriate nodes for the numerical example
can be found in Figure 2.7.

Bid 1 can be represented as b1 = {(1, 1), (1, 1)}. That means
that there is a single arc corresponding to bid 1 from 〈0, 0〉 to 〈1, 1〉.
Bid 2 can be represented as b2 = {(2, 2), (2, 3)}. That means that
there is an arc corresponding to bid 2 from 〈1, 1〉 to 〈2, 3〉. Bid 3
can be represented as b3 = {(1, 1), (1, 2)}. That means that there
is an arc corresponding to bid 3 from 〈0, 0〉 to 〈1, 2〉. Bid 4 can
be represented as b4 = {(2, 3), (∅,∅)}. This leads to multiple arcs:
from 〈1, 0〉 to 〈3, 0〉, from 〈1, 1〉 to 〈3, 1〉, from 〈1, 2〉 to 〈3, 2〉, from
〈1, 3〉 to 〈3, 3〉, and from 〈1, 4〉 to 〈3, 4〉. Bid 5 can be represented
as b5 = {(∅,∅), (4, 4)}. This also leads to multiple arcs: from 〈0, 3〉



22 CHAPTER 2. WDPS IN GEOMETRICAL CAS
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(a) Numerical example layout.

1 2 3

1 2 3 4

(b) Bid 1, b1, with v(b1) = 12.

1 2 3

1 2 3 4

(c) Bid 2, b2, with v(b2) = 14.

1 2 3

1 2 3 4

(d) Bid 3, b3, with v(b3) = 13.

1 2 3

1 2 3 4

(e) Bid 4, b4, with v(b4) = 9.

1 2 3

1 2 3 4

(f) Bid 5, b5, with v(b5) = 4.

Figure 2.6: The layout of the items, five bids.
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〈0, 0〉 〈1, 0〉 〈3, 0〉〈2, 0〉

〈0, 1〉 〈1, 1〉 〈3, 1〉〈2, 1〉

〈0, 2〉 〈1, 2〉 〈3, 2〉〈2, 2〉

〈0, 3〉 〈1, 3〉 〈3, 3〉〈2, 3〉

〈0, 4〉 〈1, 4〉 〈3, 4〉〈2, 4〉

12

14

13

9

9

9

9

4 4 4 4
9

Figure 2.7: The resulting graph. The dashed arcs represent the
zero-bids and as such have a value of zero. The other arcs are bid
arcs and have a weight corresponding to the value of the bid.
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to 〈0, 4〉, from 〈1, 3〉 to 〈1, 4〉, from 〈2, 3〉 to 〈2, 4〉 and from 〈3, 3〉 to
〈3, 4〉.

The longest path in the resulting graph from node 〈0, 0〉 to 〈3, 4〉
has a value of 30 and goes along the following arcs. First it goes
from 〈0, 0〉 to 〈1, 1〉, which means bid 1 is selected. Next it goes
from 〈1, 1〉 to 〈2, 3〉, meaning bid 2 is selected. Then there are two
alternative but equally good paths. The first alternative is to go
from 〈2, 3〉 to 〈2, 4〉, thus accepting bid 5 and then go from 〈2, 4〉
to 〈3, 4〉 by using the zero arc. The other alternative is to go from
〈2, 3〉 to 〈3, 3〉 by using the zero arc and then going from 〈3, 3〉 to
〈3, 4〉, thus accepting bid 5. The optimal solution of the winner
determination problem in this instance is thus to accept bids 1, 2
and 5. The corresponding value is 30.

Proof of correctness

Theorem 2.1. The WDP with n connected and gap-free bids on m
items that are arranged in k rows, can be solved by solving a shortest
path problem in an acyclic graph G = (V,A) with O(mk) nodes and
O(mk−1(n+m)) arcs for each k ≥ 1.

Proof. We show that the dynamic program for k rows, as described
in 2.3.1, solves the winner determination problem to optimality,
i.e. a longest path in G corresponds to a solution to the winner
determination problem with the same value, and vice versa. We
prove this by establishing a one-to-one correspondence between a
feasible set of bids and a path in the graph G from 0 = 〈0, . . . , 0〉
to m = 〈m1, . . . ,mk〉.

First, we show how a given set of non-overlapping bids corre-
sponds to a path in G. We order the given bids in a sequence such
that a bid containing item x ∈ Xj comes before a bid containing
item y ∈ Xj when x ≺ y (for each j ∈ {1, . . . , k}). Notice that the
bids being gap-free and connected implies that at least one such a
sequence exists. The path in G corresponding to this sequence of
bids consists of a single bid arc for each bid in the sequence, and
zero arcs in between the bid arcs. Let us assume a partial path in
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G starting at 0 going to node y = 〈y1, . . . , yk〉 has been found that
corresponds to the first u bids in the sequence. Thus, the first u
bids have allocated items up to y1 in row 1, . . . , and up to yk in
row k. We show how to extend this partial path to incorporate the
(u+ 1)-th bid.

Let b be the (u+ 1)-th bid. By definition xb
s(b)+1, . . . , x

b
f(b)−1 are

the leftmost items in the rows s(b) + 1, . . . , f(b)− 1 where bid b is
present. By construction of the sequence we have that yi ≺ xb

i for
i = s(b) + 1, . . . , f(b)− 1. Thus, we can use zero arcs starting in y
to bring us to node y′ = 〈y1, y2, . . . , ys(b), x

b
s(b)+1 − 1, . . . , xb

f(b)−1 −
1, yf(b), . . . , yk〉. Now we select the bid arc corresponding to bid b
that leaves node y′.

Second, given a path in G from 0 to m, it is obvious how a
feasible set of bids is chosen: simply take the bids corresponding
to the bid arcs in the path. There can be no overlap between any
pair of these bids, since there are no arcs in G from nodes x to y
for which any of the components of x succeeds a component of y.
The value of the set of bids coincides with the length of the path.

Finally, it is not difficult to verify that the graph G is acyclic, and
hence a longest path can be found efficiently by solving a shortest
path problem in G with edge weights multiplied by −1.

2.3.2 A generalization of the k row dynamic program

In Section 2.3.1, we described a dynamic programming algorithm
that works in a geometrical setting corresponding to k rows. Now
consider a situation more general than the geometric setting with k
consecutive rows. Let us assume we are given k rows that display
arbitrary adjacencies. We model this using a so-called layout graph,
which has a node for every row, and two nodes are connected if the
corresponding rows are incident to each other. Clearly, the setting
of the previous section boils down to the layout graph being a path
on k nodes, an example of which is given in Figure 2.8.

In this section, we allow any simple graph, i.e. an unweighted
and undirected graph containing no graph loops or multiple edges,
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Figure 2.8: Graph layout of a standard k-row problem.

on k nodes to be the layout graph. We give an example of a general
6-row problem in Figure 2.9. In that figure, the row corresponding
to node 2 is adjacent to the rows corresponding to nodes 1, 3, 4,
5, and 6. We also remark that this no longer corresponds to the
rows being in a two-dimensional plane. However, there can still
be practical application of generalized graph layouts. Consider for
example the situation depicted in Figure 2.10. That graph layout
corresponds to four rows of items that form a cylindrical shape,
which could e.g. represent an advertising column.

An item i ∈ ∪jXj is characterized by two things.

1. The row it belongs to, called r(i), with r(i) ∈ {1, . . . , k}.

2. The interval [si, fi] it occupies.

Given a layout graph G = (V,E), we now generalize Definition 2.1.

Definition 2.4. A pair of items i and j are adjacent if and only if
either r(i) = r(j) and [si, fi] ∩ [si, fi] 6= ∅, or (r(i), r(j)) ∈ E and
[si, fi] ∩ [si, fi] 6= ∅.



2.3. CONNECTED AND GAP-FREE BIDS 27

5

42

3

1

6

Figure 2.9: Graph layout of a general 6-row problem.

4

21

3

Figure 2.10: Graph layout of a 4-row problem.
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With this definition of adjacency, we observe that the dynamic
program still works for any arbitrary layout graph. Indeed, consider
two disjoint bids A and B, each seen as a set of items. If there is
no row that contains items from A and items from B, we say that
bids A and B are not comparable. If there is a row containing items
from both A and B, gap-freeness ensures that all items from A are
to the left (or to the right) from the items of B. Assume that on
this row A < B. We claim that connectedness implies that on each
row where items of A as well as items of B are present, we must
have A < B, meaning that A and B are comparable. Consequently,
a set of disjoint bids forms a partial order, implying the existence
of a sequence of these bids.

2.3.3 The complexity of winner determination for bids
in a grid

In this section we assume that a k× q grid is given, with m = k× q
items (for instance representing seats in a grandstand, or a theater),
and that connected bids are given. Naturally, the dynamic program
for k rows, as presented in Section 2.3.1, can also be used to solve
instances of a grid setting, as this is a special case of our geometric
setting described in Section 2.2. However, if we consider instances
for the grid setting with any number of rows (i.e. we consider k as
part of the input), the dynamic program of Section 2.3.1 can no
longer guarantee a polynomial running time as the graph consists of
O(mk) nodes and O(mk−1(n+m)) arcs. As mentioned in Section 2.1,
Rothkopf et al. (1998) find that if bids are allowed only on singletons,
full rows, and full columns, the problem is easy to solve.

Probably the simplest bids that use multiple rows and columns
are 2×2 bids (a 2×2 bid is a bid on cells (i, j), (i, j+1), (i+1, j), (i+
1, j + 1)) for some row i and column j. However, when each bid is
a 2 × 2 bid, the complexity of the winner determination problem
follows directly from the tile salvage problem. In this problem, an
k × k grid is given, together with a set of unit squares that have
been removed from this grid. The tile salvage problem is to find the
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maximum number of non-overlapping x×y tiled rectangles. Berman
et al. (1990) show that the tile salvage problem is NP-complete,
even for 2× 2 tiles. Hence, our problem is hard even if only bids on
2× 2 rectangles are allowed.

For connected bids in a k × q grid, the only setting whose
complexity is open is a setting where each bid is either a row bid or
a column bid. We say that a bid is a row bid (column bid) when it
consists of consecutive items on some single row (column). Note that
in this setting bids need not be on an entire row/column, but can be
on a part of a row or a column as well. Obviously, if, in a grid of size
k×q, all bids are row bids (or all bids are column bids), the problem
decomposes into k (q) independent single row (column) problems;
however, if the instance contains both row bids and column bids,
the complexity follows from the following observation.

Theorem 2.2. The winner determination problem in a grid where
each bid is a row bid or a column bid, is NP-hard.

Proof. The following question is known to be NP-complete (Rendl
and Woeginger, 1993). Given 2n distinct points in the plane, do there
exist n axis-aligned, non-overlapping line segments each connecting
a pair of points such that each point is connected to exactly one
other point? A segment is called axis-aligned when the two points
it connects either share an x-coordinate, or share a y-coordinate.
Like Rendl and Woeginger (1993), we will call this problem RDOS
(reconstruction of sets of disjoint orthogonal segments).

Let us now build an instance of the winner determination problem
in a grid. For each distinct y-coordinate in the instance of RDOS
there is a row in our problem, and for each distinct x-coordinate
there is a column in our problem. This specifies the grid. Every
cell of the grid corresponds to an item. An example can be seen
in Figure 2.11a and 2.11b. For each pair of points sharing a y-
coordinate (x-coordinate), there is a row (column) bid with value
1, containing all items in between the two points sharing the y-
coordinate (x-coordinate). This completely specifies an instance
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(a) Input of a RDOS instance: 16
points in the plane.

(b) Grid corresponding to the in-
put points.

(c) A solution connecting all 16
points with 8 non-overlapping line
segments.

(d) Black rectangles correspond to
bids in an optimal solution, grey
rectangles are other bids.

Figure 2.11: Transformation of a RDOS instance to an instance of
the winner determination problem in a grid with row and column
bids.
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of the winner determination problem in the grid. An example can
be seen in Figure 2.11c and 2.11d. Now, if total revenue of the
corresponding auction has a value of n, then apparently there are n
row and column bids that do not overlap. These n bids correspond
to n axis-aligned segments, and the answer to the question is yes.
Finally, if the answer to the question is yes, there exist n non-
overlapping row and column bids.

Notice that there is an easy 2-approximation algorithm for this
setting. The approximation goes as follows. First, consider only row
bids and solve the corresponding winner determination problem by
solving the problem for each row. Next, perform a similar procedure
for the sets of column bids. Finally, we take the best result of
these two feasible solutions. It is easy to see that this is in fact
a 2-approximation. Recall that solving the winner determination
problem for connected bids on a single row is polynomially solvable.

2.4 Variants

In this section, we take a more detailed look at the case of two rows,
showing the impact of each of the two assumptions (connected and
gap-free) on the computational complexity of the WDP. Finally, we
show how the dynamic program can be generalized to treat the case
of three rows and connected bids.

2.4.1 The case of two rows and gap-free bids

We relax here the condition of connectedness; we only assume that
bids are gap-free (we have two rows however). We claim that, in this
case, the WDP becomes a special case of the problem of finding a
maximum-weight independent set in a graph that is the edge-union
of two interval graphs. Indeed, observe that since a bid is gap-free
we can see each bid as the union of a set of consecutive items in row 1
and a set of consecutive items in row 2. By concatenating row 1 and
row 2 into a single row, one can view each each bid as consisting of



32 CHAPTER 2. WDPS IN GEOMETRICAL CAS

two intervals, a left and a right interval. The resulting intersection
graph has a node for each bid, and two nodes are connected if either
their left intervals, or their right intervals (or both) overlap; in
other words, the resulting intersection graph is a 2-union graph. It
is shown in Bar-Yehuda et al. (2006), that the maximum-weight
independent set problem is NP-hard on 2-union graphs, see also
van Bevern et al. (2015). Note however that the intersection graph
resulting from the 2-row problem we investigate is a special case of
2-union graphs. Indeed, in our special case all left intervals are to
the left of all right intervals, which is not necessarily the case in a
2-union graph. However in the context of computational biology
this precise special case has been studied by Vialette (2004).

Lemma 2.1. The WDP with n gap-free bids on m items that are
arranged in two rows, is NP-hard.

Proof. See the proof of Proposition 7 in Vialette (2004).

2.4.2 The case of two rows and connected bids

Consider the case where bids are still connected, but not necessarily
gap-free. Figure 2.12 shows an example of a bid that has 2 gaps.
Given a bid b, the set of items that are in gap(s) of this bid b is

Figure 2.12: A bid with 2 gaps in a 2-row problem.

given by G(b) = {x /∈ b : ∃u, v ∈ b with u ≺ x ≺ v}. In case G(b) is
empty, b is gap-free; otherwise G(b) consists of, say p(b) (p(b) < m),
connected itemsets, each representing a single gap. More precisely,
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let H(G(b)) be the item graph corresponding to the items in G(b);
each of the p(b) connected components of H(G(b)) corresponds to
items making up a single gap. We write G(b) = ⋃p(b)

`=1 G
`(b), where

G`(b) represents the items present in the `-th gap of bid b where
1 ≤ ` ≤ p(b).

Theorem 2.3. The WDP with n connected bids on m items that
are arranged in two rows, can be solved in polynomial time.

Proof. Observe that, for each ` = 1, . . . , p(b) and b ∈ B, the itemset
G`(b) consists of items on a single row (otherwise b would be discon-
nected). Let us now consider an instance defined by itemset G`(b),
and by all bids b′ ∈ B that are contained in this itemset. Since each
b′ is connected (by assumption) and since G`(b) consists of items
on a single row (see above), we can easily compute the value of this
instance (denoted by v(G`(b))) by using Theorem 2.1 with k = 1.
Given a bid b, we do this for each ` = 1, . . . , p(b) finding the values
v(G`(b)) by applying Theorem 2.1 for k = 1 O(m) times.

Finally, given an instance, we build a new instance where we
replace each bid b that is not gap-free by a combined bid on the
itemset b ∪G(b), with a value v(b) +∑p

`=1 v(G`(b)). The resulting
instance is created in polynomial time, is gap-free, and thus we can
use Theorem 2.1 to solve it.

2.4.3 The case of three rows and connected bids

Here, we show how the winner determination problem for the setting
with 3 rows and connected bids can be solved as a shortest path
problem, using a generalization of the approach described in Sec-
tion 2.3.1 that can handle bids with open gaps. The main challenge
in this case is how to deal with gaps that may be present in a bid.

Let us first define the concept of an instance graph H. The
instance graph H has a node for each item x ∈ (X1 \ {0}) ∪ (X2 \
{0})∪(X3\{0}). Two nodes corresponding to items that are adjacent
are connected; moreover, there is a node s in the graph which is
connected to the first item in each of the three rows, and there is



34 CHAPTER 2. WDPS IN GEOMETRICAL CAS

a node t connected to the last item in each of the three rows (see
Figure 2.13 for an example).

s t

Figure 2.13: The instance graph H.

Types of gaps and bids

We distinguish two kind of gaps. To that end, consider the instance
graph H, and a connected bid b, and suppose that bid b is not
gap-free. Thus, each of the p gaps in bid b is represented by itemset
G`(b), ` = 1, . . . , p.

Definition 2.5. We call a gap G`(b) an open gap if, in the graph
H \H(b), there is a path from each x ∈ G`(b) to either node s or
node t. Each gap that is not an open gap is called a closed gap.

Because there are only 3 rows, a closed gap contains items in at
most 2 rows (since a closed gap on 3 rows corresponds to a bid that
is not connected). Also notice that an open gap only has items in
the second row.

In Figure 2.14 there are 3 examples. In the top example, there
is one gap with items on the first and second row. However, since
there is no path in H \H(b) from any of the x ∈ G1(b) to either s
or t, it is a closed gap. In the middle example, there is a gap with
items on the second row. There exists a path in H \ H(b) from
each x ∈ G1(b) to s. Therefore, the gap in this bid is an open gap.
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In the bottom example of Figure 2.14 there are 4 gaps. The first
gap, G1(b) on the left has one item on the first row; the second
gap, G2(b), has one item on the third row; the third gap, G3(b), has
one item on the first row and one item on the second row. There
is no path in H \H(b) from any of the x ∈ G`(b) to either s or t
for ` = 1, 2, 3. This means that these three gaps are closed gaps.
Finally, the fourth gap G4(b), is on the right and has one item on
the second row. There is a path in H \H(b) from the item in G4(b)
to t, making this gap an open gap.

We now partition the class of connected bids in two disjoint
subclasses according to the following definition.

Definition 2.6. If a bid b has at least one open gap, it belongs to
the subclass called open bids. The set of open bids is Bopen. If b has
no open gaps, it belongs to the subclass of closed bids. The set of
closed bids is Bclosed.

Consider a bid and its closed gaps. For each such closed gap,
we solve the corresponding instance, yielding a value v. We then
replace the bid with a combined bid that has the closed gaps filled
and its original value increased by v. From Theorem 2.3 it follows
that this operation can be done in polynomial time (recall that a
closed gap contains items on at most two rows).

After this preprocessing of the bids, all closed gaps in all bids
are ‘filled’ optimally. See for example Figures 2.15, 2.16 and 2.17. In
Figure 2.15 there is a gap spanning the top and middle row, which
is then filled optimally by solving a subproblem. In this case, the
entire gap has been covered by other bids, but this is not necessarily
always true. In Figure 2.16, there is a gap only on the middle row.
It is filled optimally by solving a subproblem which in this case only
covers half the space in the gap. In Figure 2.17, there is both a
closed gap and an open gap. The closed gap has been filled optimally
by solving a subproblem.

After this preprocessing step we can ignore the gaps in closed
bids, because they are all filled optimally (replacing the closed bid
with a combined bid). In an open bid, all closed gaps have been filled
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s t

s t

s t

Figure 2.14: Examples of graphs H \H(b). Black nodes correspond
to items in a gap.
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Figure 2.15: A closed gap spanning two rows.

Figure 2.16: A closed gap spanning one row.

as well, however, there is always at least one open gap remaining.
Note that of course Bopen ∪Bclosed = B and Bopen ∩Bclosed = ∅ hold.

A polynomial-time algorithm

We show how the winner determination problem for the setting with
3 rows and connected bids can be solved as a shortest path problem.
We construct the graph G = (V,A) as follows.

The nodes We define 〈x1, x2, x3, b〉 (quadruples), where x1 ∈
X1, x2 ∈ X2, x3 ∈ X3, b ∈ (Bopen ∪ ∅). Every such quadruple
corresponds to a node in V where items {0, . . . , x1} ∪ {0, . . . , x2} ∪
{0, . . . , x3} have been allocated. If b = ∅, we are in a bid-independent
state (which corresponds to the states described in Section 2.3.1). If
b 6= ∅, then we are in a bid-dependent state where we have to take
into account one or more open gaps and have also assigned items
{x′b, . . . , x′′b} in the middle row with x2 ≺ x′b. Specifically, each open
bid b is characterized by x′b and x′′b , where x′b is the leftmost item of
the last contiguous set of items on the second row included in b and
x′′b is the rightmost item of the last contiguous set of items on the
second row included in b. Note that it is possible that x′b = x′′b .
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Figure 2.17: A closed gap spanning two rows and an open gap.

The arcs There are 2 types of arcs. The first type of arcs are zero
arcs, which are are used to handle items not included in the set of
winning bids. These arcs are not associated with any bid and thus
have length 0. We distinguish 3 different types of zero arcs:

• Arcs between two bid-independent nodes:

– from 〈x1, x, y,∅〉 to 〈x1 + 1, x, y,∅〉, ∀x1 ∈ X1 \ {m1},
x ∈ X2, y ∈ X3,

– from 〈x, x2, y,∅〉 to 〈x, x2 + 1, y,∅〉, ∀x ∈ X1, x2 ∈
X2 \ {m2}, y ∈ X3, and

– from 〈x, y, x3,∅〉 to 〈x, y, x3 + 1,∅〉, ∀x ∈ X1, y ∈ X2,
x3 ∈ X3 \ {m3}.

• Arcs between two bid-dependent nodes: from 〈x, x2 − 1, y, b〉
to 〈x, x2, y, b〉, ∀x ∈ X1, x2 ∈ X2 \ {0} : x2 ≺ x′b, y ∈ X3,
b ∈ Bopen.

• Arcs between bid-dependent and bid-independent nodes: from
〈x, x′b − 1, y, b〉 to 〈x, x′′b , y,∅〉, ∀x ∈ X1, y ∈ X3, b ∈ Bopen.

The second type of arcs are those which are associated with actual
bids. The lengths of these are equal to the value of the corre-
sponding (combined) bid. Note that there may be multiple arcs
corresponding to the same bid. We now describe the 4 components
of a node 〈x1, x2, x3, b

′〉 that make up a starting node for an arc
that corresponds to a connected bid b 6= b′:

• First tuple component x1: if b ∩ X1 6= ∅, then x1 = x − 1,
where x is the leftmost item in row 1 included in b. Otherwise
all elements in X1 are possible values for x1, i.e. multiple arcs
will need to be constructed.
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• Second tuple component x2: if b ∩X2 6= ∅, then x2 = x− 1,
where x is the leftmost item in row 2 included in b. Otherwise
all elements in X2 are possible values for x2, i.e. multiple arcs
will need to be constructed.

• Third tuple component x3: if b ∩X3 6= ∅, then x3 = x − 1,
where x is the leftmost item in row 3 included in b. Otherwise
all elements in X3 are possible values for x3, i.e. multiple arcs
will need to be constructed.

• Fourth tuple component b′: b′ = ∅ or b′ ∈ Bopen for which the
following holds:

– b ∩ b′ = ∅ (no overlap) and
– ∃x ∈ b ∩ X2, ∃x′ and x′′ ∈ b′ ∩ X2 : x′ ≺ x ≺ x′′ (b has

an item in an open gap of b′) and
– @x ∈ b ∩ X2, x

′ ∈ b′ ∩ X2 : x ≺ x′ (b does not have an
item to the left of b′ in the second row)

Now that we have determined all possible starting nodes for
every connected bid, we have to determine the end nodes. End
nodes for arcs depend on two things: the starting node and whether
the bid b to which the arc corresponds is a closed or an open bid.
We distinguish four cases.

• Case 1: bid-independent starting node, closed bid.

• Case 2: bid-independent starting node, open bid.

• Case 3: bid-dependent starting node, closed bid.

• Case 4: bid-dependent starting node, open bid.

We will now discuss how the end node is constructed from the
starting node in each case.

• Case 1: for every row for which there is an item x ∈ b, change
the corresponding tuple component to the rightmost item
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included in b in that row, otherwise keep the value of the
starting node. The fourth tuple component remains the same
as the starting node, which is ∅.

• Case 2: for the first and third row for which there is an
item x ∈ b, change the corresponding tuple component to
the rightmost item of that row included in b, otherwise keep
the value of the starting node. For the second row: find
the leftmost contiguous interval included in b and change the
second tuple component to the rightmost item in that interval.
The fourth tuple component will change to b.

• Case 3: for every row for which there is an item x ∈ b, change
the corresponding tuple component to the rightmost item
included in b in that row, otherwise keep the value of the
starting node. The fourth tuple component remains the same
as the starting node.

• Case 4: let b′ be an open bid with its leftmost item in row 2 to
the left of leftmost item of open bid b in row 2. Observe that
the itemset b′ ∪ b may contain a closed gap: indeed there are
two basic cases depending on whether the rightmost item in
row 2 in b precedes (Figure 2.18) or succeeds (Figure 2.19) the
rightmost item in row 2 in b′. In both cases, the value of the
arc will be increased with the optimal value of a subproblem
on the second row limited to the shaded area. In other words,
we construct a combined bid. In the case of Figure 2.18, the
first three tuple components are changed according to the
rightmost item included in b in that row, otherwise keeping
the value of the starting node. The fourth tuple component
will remain the same. In the example, the arc would go
from 〈x1 − 1, x2 − 1, y3, b

′〉 to 〈x1, x
′
2, y3, b

′〉. In the case of
Figure 2.19, the first three tuple components are changed
according to the rightmost item included in b in that row,
otherwise keep the value of the starting node. However, the
fourth tuple component will be changed to b. In the example,
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the arc would go from 〈x1 − 1, x2 − 1, y3, b
′〉 to 〈x1, y

′
2, y3, b〉.

b

b′

x2 x′2y2 y′2

x1

y3

Figure 2.18: Two open bids creating an extra gap: option 1.

b′

b

x2 y′2 x′2y2

x1

y3

Figure 2.19: Two open bids creating an extra gap: option 2.

Shortest path We now compute a longest path from node 〈0, 0, 0,∅〉
to node 〈m1,m2,m3,∅〉. The length of this path corresponds to
the optimal revenue of the auction, and the winning bids can be
derived from the arcs in the path. Notice that G = (V,A) is acyclic
by construction and consists of O(nm3) nodes and O(n2m3) arcs.
Hence, a longest path can be found efficiently by solving a shortest
path problem in G = (V,A) with edge weights multiplied by -1. In
the next section, we prove the correctness of this algorithm.
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Proof of correctness

In order to prove the correctness of the algorithm described in Sec-
tion 2.4.3, we show that (1) each path from node 〈0, 0, 0,∅〉 going
to node 〈m1,m2,m3,∅〉 corresponds to a feasible allocation for the
auction, and (2) vice-versa. Recall that after the preprocessing step
described in Section 2.4.3, all closed gaps have been filled, resulting
in combined bids and corresponding arcs in G. As the individual
bids corresponding to these arcs can easily be traced, we will ignore
closed gaps in the remainder of this proof.

(1) Intuitively, consider a path starting from node 〈0, 0, 0,∅〉
and going to node 〈m1,m2,m3,∅〉. This path corresponds to an
allocation for the auction by accepting the bids corresponding to the
arcs associated with bids (the zero arcs can obviously be ignored).
In order to show that this allocation is feasible, we need to argue
that no pair of bids has overlap. Notice that for all arcs in the
graph, when comparing the end node with the start node, none of
the first 3 tuple components decreases, and at least one increases.
This means that each arc represents moving to the right on at least
one row, and that moving (back) to the left is not possible. For arcs
with a bid-independent starting node, the start node corresponds
to the leftmost items on each row included in the bid. Hence, over-
lap between the bid corresponding to this arc and any of the bids
corresponding to previous arcs in the path is not possible. For arcs
with bid-dependent starting nodes, more care is needed. Consider
an arc whose starting node has b′ as the fourth tuple component.
By construction, for each such arc corresponding to a bid b, there is
no overlap between b′ and b. Furthermore, as the endpoint of this
arc determines to what extent the open gap(s) of b′ has been filled
by b, we also avoid overlap between b and the corresponding bid of
a possible next arc with value b′ in the fourth tuple component of
its starting node. The only way to move from a bid-dependent to
a bid-independent node is through a zero arc, which ensures that
the value for the second tuple corresponds with the rightmost item
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on the second row of the open bid b′, thereby excluding overlap
between this bid and bids corresponding to subsequent arcs.

(2) Consider a feasible solution for the winner determination
problem (i.e. no pair of bids in the allocation overlaps). By construc-
tion, for each (combined) bid in the allocation at least one arc in the
graph exists. We show how to identify a path in G that corresponds
with the bids in the allocation. We order the bids in a sequence
such that bid p comes before bid q if p contains an item x ∈ X2
for which x ≺ y for all y ∈ X2 contained in bid q. In other words,
we order the bids based on their leftmost item on the second row.
Since we assume that bids are connected, bids that do not contain
items on the second row have all items either on the first row or
on the third. These bids should be inserted in the order such that
a bid containing item x ∈ Xj comes before a bid containing item
y ∈ Xj when x ≺ y (for each j ∈ {1, 3}). Recall that these bids are
not used to fill closed gaps, as we handled this in the preprocessing
step. Hence, at least one such sequence exists.

The path in G corresponding to this sequence of bids has a
single bid arc for each (combined) bid in the sequence, and zero
arcs in between the bid arcs. Let us assume a partial path in G
starting at 〈0, 0, 0,∅〉 going to node 〈u1, v1, w1, b

′〉 has been found
that corresponds to the first k bids in the sequence. We show how
to extend this partial path to incorporate the (k + 1)-th bid, say
bid b. We discern 3 situations:

• b′ = ∅: if b has items on each row, we select the corresponding
arc starting at node 〈u2 − 1, v2 − 1, w2 − 1,∅〉, where u2, v2,
and w2 are the leftmost items in b. If b has no items on one or
more rows, we select the arc starting from the node with tuple
value u1, v1 and/or w1 for the respective row(s) on which b
has no items.

• b′ 6= ∅ and b is a closed bid: we select the corresponding arc
starting at node 〈x, y, z, b′〉, where x = u1 (y = v1,z = w1) if b
does not include an item on the first (second, third) row, and
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x = u2 − 1 (y = v2 − 1,z = w2 − 1) otherwise (where u2, v2,
and w2 are the leftmost items in b).

• b′ 6= ∅ and b is an open bid: we select the same arc as in
the previous case, however, in this case one or more bids on
items in row 2 may be enclosed between bids b and b′ (see
Figures 2.18 and 2.19). As the value of these bids in included
in the weight of the arc corresponding to b, we can remove
these bids from the sequence (observe that these bids succeed
b).

Notice that from all bid arcs that correspond to this bid b, we
select one, and that we can always reach the selected arc from
〈u1, v1, w1, b

′〉 using zero arcs. Next, we iteratively select the next
bid in the order, and proceed analogously. After having treated the
last bid in the order, if the end node of the corresponding arc is
not 〈m1,m2,m3,∅〉, we connect to this node using zero arcs. The
following result is now apparent.

Theorem 2.4. The WDP with n connected bids on m items that
are arranged in three rows can be solved by solving a shortest path
problem in a graph with O(nm3) nodes and O(n2m3) arcs.

2.5 Conclusion

We study the winner determination problem for a combinatorial
auction with a specific geometric structure. We argue that this
structure is relevant, as it occurs in real estate, plots of land, mineral
rights, and theaters and stadium seats. The complementarities
present in these situations offer great potential for combinatorial
auctions. We point out that the items need not be rectangular but
can be of any shape. In fact, if the itemset can be partitioned into
k ordered subsets (rows), such that the adjacency relations between
pairs of items on consecutive rows are consistent with the ordering
of the items in each row, our framework applies.
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With our dynamic programming algorithm, we present auction-
eers a tool that enables them, under some reasonable assumptions
on the bids and with a fixed number of rows, to efficiently compute
the winning bids. Next, we complement existing results by showing
that bidding in a grid is difficult, even when only row and column
bids are allowed, if the number of rows is part of the input. We
further investigate the precise impact of our assumptions.

Solving the winner determination problem efficiently is an essen-
tial component of mechanism design. As this chapter assumes the
bids are given, future research that focusses on determining accom-
panying auction rules, and studies their impact on bidding strategy,
efficiency and revenue would be valuable. Finally, our results may
also prove useful for experimental research: our dynamic program
will allow researchers to study bidder behavior in larger settings,
involving more items and bidders than considered so far.





Chapter 3

Threshold and
Coordination Problems in
Combinatorial Auctions

Any coalition has its troubles, as
every married man knows.

Arthur Hays Sulzberger

3.1 Introduction
Combinatorial auctions (CAs) are allocation mechanisms that en-
able selling and buying multiple (indivisible) items simultaneously.
In fact, CAs allow bidders to bid on packages of items and the
auctioneer can allocate any package only in its entirety to the cor-
responding bidder. CAs have established themselves as a viable
allocation mechanism in settings where (i) market prices are not
readily available (otherwise there is no need for an auction), and

This chapter is joint work with Prof. Dr. Dries R. Goossens and Prof. Dr.
Frits C.R. Spieksma.
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(ii) bidders have sub- or super-additive valuations (otherwise there
is no need for a combinatorial auction, since sequential single item
auctions would suffice). Combinatorial auctions offer the possibility
for a coalition of bids on small packages to jointly outbid a single
bidder’s claim on the complete set of items. However, two hurdles
need to be overcome before a coalition can become winning.

(i) The coordination problem. As each item can be allocated
at most once, bidders need to coordinate their bids and bid on com-
plementary (i.e. non-overlapping) sets of items. The coordination
challenge lies in bidders having to discover such a set of individually
profitable and collectively complementary packages, given that the
number of possible packages rises exponentially with the number
of items. This is complicated by the existence of cognitive limits
on the number of packages people can concentrate on during the
auction. For instance, experimental research by Scheffel et al. (2012)
has shown that bidders only bid on six to ten different packages,
independent of the auction format, although they had a multitude
of packages with positive valuations to choose from. Kagel et al.
(2010) also find that bidders only bid on a small number of pack-
ages, and that the majority of placed bids are on the myopically
profitable packages. Furthermore, coordination is hindered by the
assumption that a bidder only knows his/her private valuation for
these packages, and not the preferences of other bidders. In fact, in
order to mitigate collusion, it makes sense to restrict communication
between bidders (see e.g. Cramton and Schwartz (2000)).

(ii) The threshold problem. Even if the coordination problem
is overcome and a set of disjoint packages for which the combined
valuation exceeds the currently winning bid is somehow identified,
the task of determining appropriate bid prices to displace the cur-
rently winning bid still remains. A complicating factor is that each
bidder in a coalition has an interest not to increase his/her bid.
Indeed, the forgone revenue from unilaterally increasing one’s bid
falls entirely on the cooperating bidder while the benefits extend
to the non-cooperating bidders as well. Note that, as Bykowsky
et al. (2000) point out, the threshold problem is strictly speaking
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not a free-rider problem. In a true free-rider problem, the domi-
nant strategy is never to cooperate. However, in the context of the
threshold problem, coalition members may still have some incentive
to contribute to the effort to overcome the threshold, since being
the only bidder to cooperate will typically still be preferable to not
cooperating and winning nothing.

Both the coordination problem and the threshold problem are
solved in the well-known Vickrey-Clarke-Groves (VCG) auction.
Indeed, in the VCG auction, it is a dominant strategy for bidders to
report their valuations truthfully, which takes care of the threshold
problem, and hence to bid on all packages for which they have
a positive valuation, which deals with the coordination problem.
However, the VCG auction is rarely used in practice due to a
number of issues, such as very low auction revenues (see Ausubel
and Milgrom (2006)). Furthermore, there is still the issue of cognitive
limits, making it unrealistic that bidders would effectively bid on
each package they value.

In the literature on combinatorial auctions, as far as we are
aware, the term “threshold problem” was coined by Rothkopf et al.
(1998), although the problem itself was mentioned already in e.g.
Banks et al. (1989). Rothkopf et al. (1998) explain the problem by
means of an example with two items, where two bidders need to
increase their bids on individual items in order to outbid a third
bidder’s package bid. The coordination problem does not play a
role in this example. Bichler et al. (2017) interpret the coordination
problem in a very similar way as we do, and point out that this
problem has largely been ignored in the game-theoretical literature
on combinatorial auctions. Indeed, several authors do not seem to
make a clear distinction between the coordination and threshold
problem, or simply overlook the coordination problem. Day and
Raghavan (2008) define the threshold problem in a broad sense
as “the potential inability of an individual bidder to overturn an
inefficient bid for a larger package without the coordinated efforts
of other bidders”. Brunner et al. (2010) use a similar definition:
“Consider a situation in which a large bidder submits a package bid



50 CHAPTER 3. T&C PROBLEMS IN CAS

for several licences. If other bidders are interested in buying different
subsets of licenses contained in the package, they might find it hard to
coordinate their actions, even if the sum of their values is higher than
the value of the package to the large bidder (the threshold problem)”.
Further along this line, other authors use “threshold problem” for
both the coordination and the threshold problem. Scheffel et al.
(2012) write: “When some small bidders have to coordinate their bids
to outbid a bidder interested in a package covering many items, they
are confronted with the threshold problem”. Chernomaz and Levin
(2012) also seem to mix the coordination and threshold problem: “In
this situation, the single-item bidders face a coordination problem.
They have an incentive to free-ride as either of their bids could be
the one to push their sum above the threshold necessary to top the
package bid”.

A first contribution of this chapter is that it clarifies the hith-
erto vaguely used concepts of coordination and threshold problems.
Moreover, we develop a quantitative measure to express the severity
of both problems in Section 3.4. To the best of our knowledge, we are
the first to do this. Banks et al. (2003), however, touched upon the
topic by introducing two effects, intended to design an experimental
setting that could assess whether several auction mechanisms were
able to deal with the threshold problem. The gain effect measures
“the relative value of the optimal allocation, which is purposefully
composed of several small bidder packages, and the next highest value
allocation, which is constructed to be a single bidder’s value for the
large package covering an optimal set of packages”. The own effect
occurs when allocating the items to a coalition of small package
bids is optimal, but one of the bidders in this coalition also has a
bid on a large (overlapping) package. Hence this bidder must forego
his/her claim on the large package to be included in the coalition of
small package bids. Clearly, as the gain effect decreases, and with
the own effect present, it becomes more difficult for small bidders
to outbid the large bidder.

Even though the coordination and threshold problem are also
relevant in single round combinatorial auctions, this chapter focusses
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on iterative combinatorial auctions. An iterative auction consists
of multiple rounds, such that bidders can repeatedly increase their
bids and/or introduce new bids. After each round, the auctioneer
can share information (i.e. feedback) with the bidders. A study on
how feedback can be used to overcome the coordination and the
threshold problem is the second contribution of this chapter. We
propose novel types of feedback, dubbed coalitional feedback, in
Section 3.5. We make use of experimental research to test the impact
of different levels of feedback on auction performance. In Section 3.6,
we discuss the details of the iterative combinatorial auction used
in our laboratory experiments, along with the experimental design;
the results are presented in Section 3.7.

3.2 Related literature

CAs are big business, having several practical applications ranging
from the allocation of airport landing slots (Rassenti et al., 1982) or
harbor time slots (Ignatius et al., 2014), the allocation of spectrum
licenses (Jackson, 1976; McMillan, 1994; Banks et al., 2003; Plott
and Salmon, 2004; Seifert and Ehrhart, 2005; Brunner et al., 2010;
Scheffel et al., 2012; Bichler et al., 2013), improving the procurement
of school meals (Epstein et al., 2002), the allocation of mineral/oil
drilling rights (Cramton, 2007), the allocation of bus routes (Cantil-
lon and Pesendorfer, 2006), and real estate (Goossens et al., 2014).
It follows that CAs are well researched. One could argue that be-
cause every iterative CA faces coordination or threshold problems
and involves some form of feedback, all papers on (experimental)
CA research are relevant for this chapter. Because of the abundance
of research, we were forced to make a selection. In Section 3.2.1, we
discuss contributions with respect to feedback; a survey of relevant
experimental research is presented in Section 3.2.2.
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3.2.1 Feedback

An early form of feedback is described by Banks et al. (1989). They
introduce a so-called “stand-by queue”, which allows bidders to
publicly announce their willingness to pay a certain price for a
specific package. Bidders can then use this information to express a
bid which, combined with one or more of the bids on the stand-by
queue, is able to outbid the currently winning bid. While a stand-by
queue can help to overcome the coordination problem, it is less
clear how it alleviates the threshold problem. Nevertheless, there
is some experimental evidence suggesting that bidders were indeed
able to coordinate their bids using the stand-by queue and displace
large package bids when the sum of the small bidders’ valuations
was higher than that of the large bidder (Bykowsky et al., 2000).
A disadvantage of the stand-by queue is that the computational
burden of finding a coalition that allows a bidder to become winning
is placed with the bidder. Furthermore, it offers the bidders a
communication and bid signaling tool that can also be used to
facilitate collusion.

Adomavicius and Gupta (2005) introduce several important
concepts concerning feedback: deadness and winning levels. In short,
the former is the price a bidder needs to bid to have any chance of
becoming winning, whereas the latter is the price that guarantees
the bidder to become winning if no other bids are increased (we refer
to Section 3.3.2 for a more detailed discussion). Their work serves
as a foundation for bidder support systems in CAs, as it provides
theoretical, algorithmic, and computational results on deadness and
winning levels. Their analysis, however, is limited to OR-bidding
languages, and does not hold for XOR-bidding languages. We briefly
remark that XOR-bids bidding languages impose a limit of at most
one winning bid per bidder, whereas this is not the case for OR-bids
bidding languages (see also 3.3).

Next, Adomavicius et al. (2012) study how bidders behave in
continuous CAs. Their main objective is to study how information
feedback affects bidding behavior leading to differences in the re-
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tained surplus of bidders. They used baseline feedback (all bids
displayed anonymously), outcome feedback (provisional winning
allocation) and price feedback (deadness and winning levels). They
find that price feedback leads to higher efficiencies, fewer dead bids
and a higher percentage of winning bids when compared to out-
come and baseline feedback. While they do not specifically look
at coordination or threshold problems, this paper is nonetheless
very interesting because it is the first one to employ deadness and
winning levels as feedback.

Petrakis et al. (2013) build on the work by Adomavicius and
Gupta (2005) and introduce deadness and winning levels for CAs
that allow for XOR-bids. They define and analyze computational
and game theoretical properties of deadness and winning levels. They
mention the threshold problem, and the fact that often winning
levels are too high for a single bidder to outbid a large bidder.
As a solution they briefly suggest coalitional winning levels, which
they introduce as personalized and non-linear ask prices in between
deadness and winning levels. The underlying idea is that the costs
to outbid the currently winning bid is shared among the bidders in
a losing coalition. However, they point out that coalitional winning
levels are computationally very challenging and do not change the
free-rider incentive, and as such they do not further expand on this
concept.

In a study related to ours, Bichler et al. (2017) introduce an as-
cending combinatorial auction which implements coalitional winning
levels, where the cost sharing is based on the well-known Shapley
value. It is important to realize an essential difference with this
chapter: the coalitional winning levels in Bichler et al. (2017) are
implemented as a price rule. This means that bidders either accept
the suggested price, or are forced to drop out. In our laboratory
experiment (see Section 3.6), we use coalitional winning levels as
feedback, i.e. purely informative (bidders can bid any price they
prefer). Besides numerical simulations, Bichler et al. (2017) perform
lab experiments with human participants on rather small auction
settings (6 items and 3 bidders). The results of their experiments
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indicate high economic efficiencies in ascending CAs with deadness
and winning level feedback, but even higher efficiencies if the price
rule based on coalitional winning levels is enforced, in addition to
giving deadness and winning levels. The price rule also appears to
lead to faster auctions.

3.2.2 Experimental Research

Quite some research focuses on experimentally testing CAs, either
using computational experiments or by letting human/computerized
bidders compete in auctions. Usually, this type of research intends
to compare different auction formats, auction rules, etc. We survey
those papers that deal (to some extent) with feedback and/or the
coordination/feedback problem.

Banks et al. (2003) report laboratory experiments to analyze
the Federal Communications Commission’s (FCC) eligibility rules
for spectrum auctions, and to compare the simultaneous multi-
round auction (SMR) to a combinatorial multi-round auction (CMA)
designed by Charles River and Associates. One of their results is that
in instances where they try to create threshold problems, economic
efficiency decreases notably for both the SMR and CMA auctions.
However, efficiencies are higher in the CMA auctions compared to
the SMR auctions, suggesting unsolved threshold problems. The
feedback in the SMR auction is basic — the current highest bid on
every item is given after every round. The feedback in the CMA
auction is similarly basic — only the winning bids were posted for
all bidders to see after every round.

Brunner et al. (2010) also report on laboratory experiments that
aim to evaluate the performance of several auction mechanisms.
They find that in RAD auctions (see Kwasnica et al. (2005) for
more information on this format) and SMRPB auctions (SMRPB
auctions are basically the FCC variant of RAD pricing, but include
an XOR-bidding rule) so-called small bidders do not bid up to their
values in periods in which they end up winning nothing. Coupled
with far from perfect efficiency results, this is an indication of the
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threshold problem. The feedback in these auctions consists of the
basic winning allocation feedback, along with a series of ask prices
for bundles. As a side note, the SMRPB auctions were the only
procedure Brunner et al. (2010) tested that had an XOR-bidding
rule. XOR-bidding may require bidders to enter bids on many
packages before bidders can find possible efficiency gains. While
this might explain the lower efficiencies in the SMRPB auctions,
this explanation is not valid for the RAD auctions.

Goeree and Holt (2010) propose a new multi-object auction
design: the Hierarchical Package Bidding (HPB) auction, in which
bidders can only bid on predefined packages. They compare HPB
to the Modified/Flexible Package Bidding auction (MPB; basically
MPB auctions are the FCC variant of RAD pricing, similar to the
SMRPB auctions used in Brunner et al. (2010)). Goeree and Holt
(2010) find that there were several MPB auctions in which a large
bidder won many items, while this was not efficient. It appears the
smaller bidders were unable to coordinate: they were bidding on
packages which were overlapping, leaving unsold licenses. Efficiencies
were lower in MPB auctions, which suffered from coordination
problems, compared to the HPB auctions, which did not suffer
from coordination problems. In the HPB auctions, the predefined
packages enabled better coordination amongst bidders, with positive
effects for both efficiencies and revenues, even if the predefined
packages do not perfectly fit the smaller bidders’ valuations. Goeree
and Holt (2010) are the first to clearly demonstrate the existence
of threshold problems for smaller bidders in auctions with flexible
package bidding.

Kazumori (2010) compares generalized Vickrey-Clarke-Groves
auctions, Simultaneous Ascending auctions and Clock-Proxy auc-
tions in a laboratory setting. Among other value structures, he
considers one value structure in which there is a special focus on
the threshold problem. Note that here, the term threshold problem
is assumed to contain the coordination problem. He finds that in
package auctions, bidders usually submit a limited number of bids,
leading to coordination becoming a critical issue: efficiencies are
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lower. This indicates that the coordination problem is correlated
with the cognitive complexity issue.

Kagel et al. (2010) experimentally examine the performance of
iterative ascending combinatorial clock auctions. They find that
bidders usually bid on only a small number of packages, and tend
to bid more often on their most profitable package than on their
less profitable packages. Additionally, they find evidence that in
‘hard’ auctions (i.e. auctions with more items and more profitable
packages) efficiency is lower than in ‘easy’ auctions (i.e. auctions with
fewer items and less profitable packages). They use price feedback,
and find evidence of the threshold problem: “losing bidders could
have possible obtained higher positive profits by continuing to bid”.
Kagel et al. (2010) also check whether human bidder behavior can be
simulated by automated bidders that bid myopically for the currently
most profitable package, and find that such a straightforward bid
simulator fares quite well in predicting auction outcomes. They
extend their research for different value profiles in Kagel et al. (2014).

Scheffel et al. (2011) compare a nonlinear discriminatory price
auction dubbed iBundle (for more information see Parkes and Ungar
(2000)) to the Vickrey-Clarke-Groves auction and combinatorial
auction formats with linear prices (ALPS and the combinatorial
clock auction) in laboratory experiments. Two of the five value
models that were used in their experimental design focus on what
they call a threshold problem (which seems to reflect both the
coordination and threshold problem). Scheffel et al. (2011) find no
significant difference in efficiency across the different value models.
However, the limited number of packages with positive private
valuations could be an important factor in explaining that result.

Chernomaz and Levin (2012) consider single-round sealed-bid
first price auctions with and without package bidding. They find
that synergies decrease the profits of smaller bidders and increase
profits of the large bidders. Furthermore, large bidders tend to bid
more aggressively than smaller bidders. When synergies are low and
package bidding is allowed, however, efficiencies go down due to the
threshold problem.
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Scheffel et al. (2012) study several combinatorial auction mecha-
nisms. Specifically, they consider the HPB auction, the combinato-
rial clock auction, and the pseudo-dual price auction. One of their
observations is that bidders select and evaluate most packages in the
first round (package pre-selection). This accounts for most of the ef-
ficiency losses in their local synergies value model. Bidders turn out
to select packages according to the relative valuations (i.e. the higher
the valuations of the items are, the higher the likelihood that the
bidders evaluate the package) and to evaluate only approximately
14 packages including two or more items (i.e. so-called satisficing
behavior). If the hierarchy in HPB auctions does not fit the smaller
bidders’ preferences well, this often leads to smaller bidders failing to
outbid a large bidder, which results in lower payoffs and efficiencies.
Scheffel et al. (2012) conclude that the limited number of packages
that bidders evaluate is a great barrier to efficiency, much more
so than auction formats. They state that bidder decision support
might play a big role in the design of large practical CAs research
and design.

3.3 Notation and Terminology

In this section we provide basic terminology concerning combinato-
rial auctions in Section 3.3.1 (see also de Vries and Vohra (2003)).
In Section 3.3.2, we describe so-called deadness and winning levels.

3.3.1 Basics

Consider a set I = {1, 2, . . . ,m} of indivisible items which are
auctioned using a first price (i.e. winning bidders pay the prices they
bid) iterative combinatorial auction, and a set A = {1, 2, . . . , n} of
bidders that participate in the combinatorial auction. Without loss
of generality we assume that there are no multiples for items, or,
equivalently, we assume that there is exactly one of each item. A
bid b consists of three components: the bidder a(b) ∈ A expressing
bid b, the itemset S(b) ⊆ I to which bid b applies, and the price
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that bidder a(b) is expressing to pay for itemset S(b) in bid b: p(b).
Hence, we see a bid b as a triple (a(b), S(b), p(b)), and we denote
the set of bids by B = {(a(b), S(b), p(b))| bidder a(b) has expressed
the willingness to pay p(b) for itemset S(b)}. Further, every bidder
a ∈ A has a nonnegative value va(S) for every subset S ⊆ I; this
value va(S) is referred to as the private valuation of bidder a for
the itemset S.

The well-known winner determination problem (WDP) is now
the following: given the set of bids B, determine the allocation
of items to bidders that maximizes the sum of the values of the
accepted bids, ensuring that each item is sold at most once. There is
a straightforward integer programming formulation of this problem,
that uses binary variables x(b) which are equal to one if and only
if bid b ∈ B is selected as a winning bid, meaning that bidder a(b)
receives itemset S(b) at price p(b).

(WDP) max
∑
b∈B

p(b)x(b)

s.t.
∑

b∈B: i∈S(b)
x(b) ≤ 1 ∀ i ∈ I

x(b) ∈ {0, 1} ∀ b ∈ B

Note that in this formulation of the WDP, a bidder can win
multiple bids. This is the version of the WDP that is suited for an
OR-bids bidding language (see e.g. Nisan (2000)). A well-known
alternative to OR-bidding is XOR-bidding. An XOR-bids bidding
language imposes a limit of at most one winning bid per bidder.
The WDP formulation we present is easily adapted to allow for
XOR-bids; one need only add an extra constraint for every bidder
a ∈ B, namely that ∑b∈B:a(b)=a x(b) ≤ 1.

Given all bids b ∈ B, we can solve the resulting instance of
WDP. This gives us optimal values for the decision variables, which
we denote by x(b)∗ (b ∈ B); the resulting optimum value is de-
noted by WDP (I) = ∑

b∈B p(b)x(b)∗. The values of the decision
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variables correspond to a selection of winning bids that we denote
by B∗ = {b ∈ B| x(b)∗ = 1}; in addition, we can identify a set
X = {(a(b), S(b))| b ∈ B∗}, and we will refer to such a set X as an
allocation.

The value of an allocation X depends on the private valuations
of the bidders, and is denoted by V (X) = ∑

b∈B∗ va(b)(S(b)). This
value can be seen as being distributed over the auctioneer on the one
hand, and the bidders on the other hand. We use the term auctioneer
surplus of an allocation X, denoted by AS(X), to represent the
revenue for the auctioneer: AS(X) = ∑

b∈B∗ p(b) = WDP (I) (which
indeed corresponds to the amount received by the auctioneer); we
use the term bidder’s surplus of an allocation X, denoted by BS(X),
as follows: BS(X) = ∑

b∈B∗(va(b)(S(b)) − p(b)). It is easy to see
that the total value of allocation is V (X) = AS(X) +BS(X).

A particular allocation, called XE , is found when each bidder
bids his/her private valuation on each possible itemset, i.e., when
each bidder a ∈ A expresses a bid b on each itemset S ⊆ I with
price p(b) = va(S). The value of this allocation, V (XE) is maximum
over all allocations, and we use this quantity to be able to define
the economic efficiency of any allocation X: E(X) = V (X)

V (XE) . Notice
that 0 ≤ E(X) ≤ 1.

In words, economic efficiency measures how ‘efficient’ an auction
is; it measures the total amount of achieved surplus relative to the
maximum obtainable surplus. It represents a measure of social
welfare. When efficiency is 100%, no participant in the auction,
whether they are a bidder or the auctioneer, can improve their
situation without making some other participant worse off. However,
when efficiency is below 100%, there is still ‘money left on the table’.

3.3.2 About deadness and winning levels

Observe that a bid b ∈ B in a combinatorial auction can be in
one of three states (Adomavicius and Gupta, 2005), as depicted in
Figure 3.1.
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• Winning state: bid b is currently winning.

• Live state: bid b is currently not winning. However, it could
become winning in a following round, depending upon the
presence of new bids.

• Dead state: the bid is currently not winning, and has no
chance of ever becoming a winning bid.

Deadness level

Winning level

Winning state

Live state

Dead state

Bid price

0
Figure 3.1: Bid states.

The state of a bid b depends on the corresponding price p(b).
Indeed, when we (imaginary) vary p(b) from a low value, say 0, to
a high value, the state of the bid will start in a dead state, next,
at a specific value for p(b) called the deadness level, the state will
become live, and finally, at another specific value called the winning
level, the state will become winning.
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Definition 3.1. The deadness level for a subset of items S ⊆ I,
called DL(S), is the minimum price, ceteris paribus, that some
bidder a ∈ A has to bid such that the resulting bid can become a
winning bid in some future round.

Deadness levels are calculated as follows. Consider a subset
of items S ⊆ I. The objective value of the WDP induced by S
(WDP-DL) corresponds to the deadness level of the itemset S:

(WDP-DL) max
∑

b∈B: S(b)⊆S

p(b)x(b)

s.t.
∑

b∈B: i∈S(b)
x(b) ≤ 1 ∀ i ∈ S

x(b) ∈ {0, 1} ∀ b ∈ B : S(b) ⊆ S

Thus, DL(S) = ∑
b∈B: S(b)⊆S p(b)x(b)∗ = WDP (S). Deadness

levels can be calculated after every round, for all subsets of items.
Notice that deadness levels will only be different from zero when a
set of bids is given, e.g. after a first round.

Definition 3.2. The winning level for a subset of items S ⊆ I,
called WL(S), is the minimum price, ceteris paribus, that some
bidder a ∈ A has to bid on itemset S in order for that bid to become
a winning bid in the next round.

Winning levels are calculated as follows. Consider a set of items
S ⊆ I, and consider the WDP restricted to itemset I \ S.

(WDP-WL) max
∑

b∈B: S(b)⊆(I\S)
p(b)x(b)

s.t.
∑

b∈B: S(b)⊆(I\S)
and i∈S(b)

x(b) ≤ 1 ∀ i ∈ (I \ S)

x(b) ∈ {0, 1} ∀ b ∈ B : S(b) ⊆ (I \ S)
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Thus, WL(S) = WDP (I) −WDP (I \ S) for any itemset S ⊆ I.
We denote the resulting set of winning bids by B∗(I \ S) = {b ∈
B| S(b) ⊆ (I \ S), x(b)∗ = 1}.

Finally, we point out that the deadness and winning levels
calculations as described in this section are suitable for OR-bids.
In case of XOR-bids, these deadness and winning levels must be
personalized. We refer to Petrakis et al. (2013) for information on
how to adapt these calculations to also allow for XOR-bids.

3.4 Measuring Coordination and Threshold
Problems

3.4.1 How to measure the coordination problem

In this section, we propose an index measuring the magnitude of the
coordination problem in a combinatorial auction with private values.
Recall from Section 1 that the coordination problem concerns the
difficulty of identifying coalitions of bids that have the potential
to become winning. Thus, we want to capture the difficulty that
an individual bidder faces in order to identify those bids whose
increase might lead to a larger bidder surplus. Let us first imagine
that each bidder a ∈ A identifies his/her most valuable itemset, i.e.
the bidder identifies S∗a = arg maxS⊆Iva(S). This is similar to a
“straightforward bidding” strategy, which is a myopic bidding strat-
egy in which bidders bid on the package that has the highest profit
potential (Ausubel and Milgrom, 2002). Further, let us imagine
that each bidder a ∈ A bids a single bid; his/her private valuation,
va(S∗a), on the itemset S∗a, and nothing else. We call the allocation
that is found after solving the corresponding WDP: X1. In fact,
generalizing, let us denote by Xk the allocation that results after
solving the WDP when each bidder bids his/her true valuation on
his/her k most valuable itemsets.

By construction, V (Xk) is nondecreasing in k, and reaches
V (XE) for a large enough value of k. Thus, an interesting value for
k is the minimum value for which V (Xk) = V (XE). We denote this
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value by kmax = min{k : V (Xk) = V (XE)}. This is an indication
of the number of itemsets that each bidder should be prepared to
bid on, starting from his/her most valuable itemset, to arrive at an
efficient allocation. However, we remark that this does not imply
that each bidder needs to express bids on his/her kmax most valuable
itemsets in order to reach V (XE). In extremum it is e.g. possible
that there is only one bidder that causes kmax to be greater than 1.
In fact, one could calculate for every bidder a ∈ A an individual ka

by looking at an efficient outcome and checking for every bidder how
many packages, sorted from highest to lowest value, that specific
bidder would have to consider to be able to arrive at an efficient
allocation. If a bidder has multiple itemsets present in an efficient
outcome, his/her ka is determined by the least valuable of those
itemsets. Then, as an alternative to kmax, it can be interesting to
examine the value of ∑a∈A ka.

We define the following index CI to measure the coordination
problem:
Definition 3.3.

CI =
∑kmax

k=1 (V (XE)− V (Xk))
V (XE) =

kmax∑
k=1

(1− E(Xk)).

A graphical interpretation of CI is depicted in Figure 3.2. Here,
E(Xk) is depicted for every value of k. For each k < kmax, by
definition, E(Xk) < 100%. The surface of the red shaded area
corresponds to the value of CI.

We give two examples to clarify index CI; one where there is
essentially no coordination challenge and one where there is a large
coordination challenge.
Example 1. Consider the situation in Table 3.1, where there are
three bidders (A, B and C) and two items (1 and 2). Clearly,
kmax = 1 in this case, and hence CI = 0.
Example 2. Consider the private valuations in Table 3.2, where
there are three bidders (A, B and C) and two items (1 and 2), and
where ε represents an arbitrarily small amount greater than 0.
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k
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Figure 3.2: E(Xk) graph.

Package
Bidder {1} {2} {1,2}

A 10 10 40
B 10 10 25
C 10 10 25

Table 3.1: Private valuations that lead to no coordination challenge.

Package
Bidder {1} {2} {1,2}

A 15 25 50+ε
B 35 50 50+ε
C 50-ε 50 50+ε

Table 3.2: Private valuations that lead to a difficult coordination
challenge.
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In this case, kmax = 3. In other words; there is a bidder that has
to bid on his/her three highest value packages in an auction where
there are a total of three possible packages. However, the private
valuations are such that a significant part of the possible surplus
will be missed in V (X1) and V (X2). Specifically, V (X1) = 50 + ε,
V (X2) = 50 + ε, and V (XE) = V (X3) = 100 − ε. This leads to
CI ≈ 1 when ε approaches 0.

Let us discuss some properties of CI.

• CI ≥ 0, and the larger CI, the larger the coordination challenge
present in that auction.

• CI is an index that corresponds to a set of valuations as a
whole. It does not depend on actual bids, nor on a particular
allocation. CI does require knowledge of the private valuations,
which on the one hand may be considered demanding in non-
experimental settings, but on the other hand seems necessary
knowledge in order to be able to quantify the coordination
problem at all.

• Items that do not have a positive marginal value to any bidder,
do not affect CI.

• CI takes the number of possible packages, the number of
bidders, and the diversity of their private valuations, into
account. Intuitively, one would expect the diversity of the
preferences to be present in any measure for the coordination
problem. The values V (Xk) achieve exactly this.

Concluding, a potential attractive use of index CI lies in the design
of a particular combinatorial auction. A relatively high value for CI
indicates that bidders may not have diverse preferences, and that
attention should be paid to relaxing the cognitive burden bidders
face, e.g. using bidder support in the shape of feedback. Alternatively,
if the index is estimated to be relatively low, no special attention
is necessary to guide the bidders. Finally, in many experiments
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on combinatorial auctions, the participants are equipped with a
particular private valuation. As a result, one can compute CI, and
explain the results in the light of the value found for CI. This
allows us to compare different auctions. As an example, we did the
calculations for the threshold value model found in Bichler et al.
(2017) on ten randomly generated instances, and found an average
CI of 0.42, an average kmax of 3.70, and an average ∑a∈A ka of 5.30.

3.4.2 How to measure the threshold problem

In this section, we propose an index measuring the severity of the
threshold problem. The threshold problem concerns the difficulty of
overcoming the gap for a particular itemset S between the current
(nonwinning) bid b on itemset S, and its winning level. Notice that
whereas the index CI applies to an auction, and is independent of
the particular bids, the index we propose for the threshold problem
depends on the bids, and applies to every itemset S, and any set of
bids B.

More concrete, consider a set of non-overlapping, non-winning
bids BL, and let S = ⋃

b∈BL

S(b). When computing the winning level

of itemset S by solving the corresponding IP, we find WL(S), and,
in addition, we find a new set of winning bids called B∗(I \ S). We
are interested in bids that are present in B∗(I \ S) and not present
in B∗. Indeed, these bids can be seen as the ‘newcomers’ in the best-
possible allocation that includes BL. We denote this set of newcomer
bids by N(BL) = (B∗(I \ S) ∪ BL) \ B∗. We propose the following
index to capture the threshold problem a set of non-overlapping,
non-winning bids BL faces.

Definition 3.4. The threshold index TI of a set of non-overlapping,
non-winning bids BL, and with S = ⋃

b∈BL

S(b), equals

TI(BL) =
WL(S)−∑b∈N(BL) p(b)∑
b∈N(BL) (va(b)(S(b))− p(b)) .
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An informal explanation of this index is that the burden of
reaching the winning level needed to turn bid b ∈ N(BL) into a
winning bid can be distributed over all bids that would profit from
this. These bids that profit are exactly the newcomers, i.e. N(BL),
and it is not difficult to see that the threshold index TI(BL∪N(BL))
is in fact equal to TI(BL). Clearly, if TI(BL) equals zero there
is no threshold to overcome. In that case, the current coalition
is equivalent to the winning one revenue-wise, but might not be
winning because of some auction rule. If TI(BL) is between zero
and one, there is a threshold to overcome. However, given the
existing private valuations that correspond to the non-winning bids,
this threshold can be overcome. The closer TI(BL) is to one, the
higher the losing coalition members need to bid in relation to their
respective private valuations and the more difficult it is to overcome
the threshold. If TI(BL) equals one, the current losing coalition can
at most ‘match’ the current winning one, and this can only happen
when they bid their private valuations. Finally, if TI(BL) is greater
than one, the threshold is too large to overcome. Thus, excepting
cases where bidders place bids that exceed their private valuations,
this coalition can never outbid the current one. Remark that the
denominator can equal zero if and only if all bidders in the losing
coalition entered bids equal to their respective private valuations.
If this is the case, then there is also an insurmountable threshold
problem. We give a comprehensive example of the TI below.
Example 3. Consider the private valuations in Table 3.1. Suppose
that in some round the following bids are made: (A, {1, 2}, 15),
(B, {1}, 5), and (C, {2}, 5). Clearly, the bid by bidder A becomes
winning and the bids by bidder B and C are losing. The TI value
for the coalition of non-winning and non-overlapping bids by bidders
B and C is then 15−5−5

5+5 = 0.5. Since TI < 1, the threshold problem
can still be overcome.

Next, suppose that in some round the following bids are made:
(A, {1, 2}, 20), (B, {1}, 5), and (C, {2}, 10). Clearly, the bid by bidder
A becomes winning and the bids by bidder B and C are losing. The
TI value for the coalition of non-winning and non-overlapping bids
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by bidders B and C is then 20−5−10
5+0 = 1.00. Since TI = 1, bidders B

and C can at most ‘match’ the current winning bid of 20 by bidder
A if they bid equal to their respective private valuations.

Finally, suppose that in some round the following bids are made:
(A, {1, 2}, 22.5), (B, {1}, 7.5), and (C, {2}, 7.5). Clearly, the bid by
bidder A becomes winning and the bids by bidder B and C are losing.
The TI value for the coalition of non-winning and non-overlapping
bids by bidders B and C is then 22.5−7.5−7.5

2.5+2.5 = 1.5. Since TI > 1,
the threshold problem becomes insurmountable; bidders B and C,
providing they bid rationally in the sense that they do not bid higher
than their respective private valuations, can never outbid bidder A.

We remark that this index can be seen as a generalization of
the ‘gain’ concept, as used in Banks et al. (2003). In Banks et al.
(2003) the gain effect measures “the relative value of the optimal
allocation (V ∗), which is purposefully composed of several small
bidder packages, and the next highest value allocation (V ), which
is constructed to be a single bidder’s value for the large package
covering an optimal set of packages.” The relation with our index
TI is as follows. Given a set of private valuations, first identify the
two highest value allocations, say X1 is the highest value allocation
and X2 is the second highest value allocation. Next, if the bidders
in X1 bid truthfully, i.e. a bid price equal to their private valuations,
and the bidders in X2 bid nothing, we can calculate TI(X2). It is
not difficult to see that the gain is now equal to the value of TI(X2).

Finally, we point out some other uses of TI. One significant
application lies in the possibility of creating feedback for a losing
coalition of bids. The numerator of TI can be calculated without
information on private values, and corresponds to the threshold
faced at a specific time by those losing bids. This number can be
used e.g. for concrete bid price suggestions of price rules. We apply
TI to that end in Section 3.5.2. Another application of TI lies in
the generation of private value sets for e.g. laboratory or simulation
experiments. Using TI in the gain-manner, it is possible to design
private values that induce a certain level of threshold problem. We
use TI in that way in Section 3.6.2. Finally, the ‘gain’-manner of
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using TI can also be used to compare expected threshold problems.
As an example, we did the calculations for the threshold value model
found in Bichler et al. (2017) on ten randomly generated instances,
and found gains varying from 1.013 to 1.203, with an average gain
of 1.099.

3.5 Coalitional Feedback

3.5.1 Factual Coalitional Feedback

Factual coalitional feedback (FCFB) is a new type of feedback that
is designed to help overcome coordination problems in CAs. As
stated earlier, in CAs bidders first face coordination problems that
can negatively impact efficiencies and revenues. The novelty of our
proposed coalitional feedback lies in the information we provide
regarding how many other bids can help each other to become
(provisionally) winning. This will give bidders an idea whether or
not the coordination problem, keeping in mind their own valuations,
can be overcome. It solves the question “are there other bids that
complement my bid?”

We now describe how to obtain factual coalitional feedback.
First, consider a non-winning bid b ∈ B. When calculating the
winning level for b, i.e. WL(S(b)), we also find a coalition of bids
that are ‘newcomers’, i.e. bids that were not winning before but
become winning together with b. This coalition is denoted by
N(b) = b∪B∗(I \S(b))\B∗, and the number of bids in that coalition
is |N(b)|. Next, if |N(b)| > 1, the following message goes out to
all bids in N(b): “If |N(b)| bids, including this one, are collectively
raised by (WL(S(b))−p(b)), these |N(b)| bids become winning.” It is
important to see that all bidders in |N(b)| face the same ‘increment’,
i.e. (WL(S(b))− p(b)). Factual coalitional feedback is most relevant
when there are multiple bids that can become winning together,
thus beating the currently winning bids, given that all bids outside
of the coalition remain the same. Note that it is possible to receive
multiple such messages for a single bid. A single bid receives such a
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feedback message each time it appears in an allocation that makes
some non-winning bid winning. Clearly, it is a potential remedy
against coordination problems, as bidders can now consider the
number of messages they receive, the suggested ‘increments’ for each
of those suggestions coupled with the size of the coalition, and their
own private valuation.

We illustrate this using an example.

Example 4. Consider an auction with 4 bidders and 3 items, and
the set of bids presented in Table 3.3. A * in the deadness level
column indicates the bid currently is not dead (i.e. the bid is live). A
* in the winning level column indicates the bid is currently winning.

b a(b) p(b) S(b) DL(S(b)) WL(S(b))
1 1 2 {2} 8 16
2 1 5 {1} 5* 13
3 1 25 {1,2,3} 25* 25*
4 2 4 {1} 5 13
5 2 4 {2} 8 16
6 2 10 {1,2} 13 21
7 3 8 {2} 8* 16
8 4 4 {3 } 4* 12

Table 3.3: A set of bids and their corresponding deadness levels and
winning levels.

Consider the bids in Table 3.3. Bid number 2 will receive the
following factual coalitional feedback: “If 3 bids, including this one,
are collectively raised by 8, these 3 bids become winning.” It is not
hard to see that the coalition induced by bid number 2 consists of bid
numbers 2, 7 and 8. In fact, bid numbers 7 and 8 will receive the
same message that bid number 2 will. Also note that the winning
level for bid 8 is 12, which might be too high for bidder 4. The
suggested coalition indicated that the increment, 8, could be split up
over a total of 3 bids.
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3.5.2 Suggestive Coalitional Feedback

Suggestive coalitional feedback (SCFB), goes one step further than
FCFB, and adds a concrete bid suggestion in addition to the feedback
given with FCFB. As such, SCFB is designed to combat both
coordination and threshold problems. With SCFB, similar to FCFB,
a bid b entered by bidder a(b) on a set of items S(b) will receive
feedback in the following manner: “If |N(b)| bids, including this
one, are collectively raised by (WL(S(b))− p(b)), these |N(b)| bids
become winning. We suggest you bid p(b) + (WL(S(b))−p(b))

|N(b)| .” The
same message also goes out to the other bidders in N(b). Suggestive
coalitional feedback can appear if there are multiple bids that can
become winning together, thus beating the currently winning bids,
given that all bids outside of the coalition remain the same. It solves
the questions “are there other bids that complement my bid?” and
“what price should I bid, so that I become winning instead of the
currently winning bid(s)?” There are many ways to give a concrete
bid suggestion and they all have advantages and disadvantages.
For example, one could look at the bid amounts and suggest an
amount proportional to that. The idea is then to suggest a higher
bid price to bids that are already higher. Large bidders, i.e. bidders
with relatively high private values, then get higher suggestions.
The disadvantage of this approach is that if smaller bidders, i.e.
bidders with a relatively low private values, that bid relatively high
compared to their private values, can get a suggestion that is too
high. Another approach is to take into account the number of
items in the bids, or even incorporate the Shapley value (Bichler
et al., 2017). However, these sort of technicalities often make it
unnecessarily difficult for bidders to understand what is going on in
the feedback. For that reason, we opted for a concrete suggestion
that is fair in the sense that the increment is divided equally among
the bidders in the coalition. Note that it is again possible to receive
multiple such messages for a single bid. A single bid receives such a
feedback message each time it appears in an allocation that makes
some non-winning bid winning. Also note that it is possible that
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the concrete bid suggestion exceeds a bidder’s private valuation
on a subset of items, i.e. p(b) + (WL(S(b))−p(b))

|N(b)|) > va(S). However,
in practice this is unavoidable; the auctioneer does not know the
private valuations.

Finally note that coalitional feedback, both the factual and the
suggestive variants, give no concrete suggestion as to which package
of items to bid on. Instead, it takes into account previously made
bids, and informs the bidder about coordination opportunities, and
in case of suggestive coalitional feedback adds a price suggestion.
In other words: bidders still need to find packages that are of
interest to them (where they can get a positive bidder surplus), but
coordination and cooperations with other bidders becomes easier.

Example 5. Consider again the bids in Table 3.3. Bid number
2 will receive the following factual coalitional feedback: “If 3 bids,
including this one, are collectively raised by 8, these 3 bids become
winning. We suggest you bid 8.” It is not hard to see that the
coalition induced by bid number 2 consists of bid numbers 2, 5 and
8.

3.6 Methodology

3.6.1 Experimental environment

To experimentally study the effect of feedback on the ability for
bidders to overcome coordination and threshold problems, we set
up iterative CAs in a lab1 using the z-Tree software (Fischbacher,
2007). In these auctions, bidders compete to acquire a number of
items, and are allowed to bid on any subset of the items. We impose
no limit on the number of bids that a bidder can submit, nor do
we impose any activity rules. We use a minimum bid increment of
1, and only allow bids lower than or equal to the relevant private
valuation. This eliminates gaming behavior; bidders can no longer

1The laboratory experiment has been approved by the Social and Societal
Ethics Committee (SMEC) of the KU Leuven.
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incur possible losses. More details on how the private valuations
were set are given in Section 3.6.2.

We opted for an OR-bids bidding language, which means that
given a number of bids from a bidder, the auctioneer can accept
any non-overlapping set of these bids and charge the sum of the
specified prices (see e.g. Nisan (2000)). The XOR-bidding language
would be a more expressive alternative, but, as stated in both
Brunner et al. (2010) and Scheffel et al. (2012), XOR-bidding can
lead to problems if bidders only submit few bids. Indeed, a limited
number of bids quickly leads to a number of unsold items, which
may have a considerable impact on efficiency. Since we use super-
additive valuations in our laboratory experiments, the OR-bids
bidding language is well suited.

The auction proceeds in rounds, until two consecutive rounds
occur in which the total auction revenue does not increase compared
to the previous round. In other words, if three consecutive auction
rounds lead to the same revenue, the auction closes. When that
happens, the provisionally winning allocation becomes the final
winning allocation. This closing rule effectively eliminates sniping
strategies, where bidders suddenly make (higher) bids in the last
round. Note that there is a potential tradeoff present between our
closing rule and the auction duration. However, in our experiments
we encountered no such adverse effects.

3.6.2 Experiment factors

In this section we discuss the different factors (independent variables)
in our experimental design. The experimental design is given in the
Appendix in Table C.1.

Item and bidder structure factor

We use four different item/bidder structures, as shown in Figures 3.3a
and 3.3b. The item structures are similar to settings in Kazumori
(2010), Scheffel et al. (2011), and Vangerven et al. (2017b). Note
that the structure corresponds to the geometrical setting discussed
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in Chapter 2, specifically to a 2- or 3-row problem. Bidders need
not bid on sets of adjacent items, however, their valuations (see
Section 3.6.2) are such that if complementarity effects exists, they
involve adjacent items.

Combining both the number of items and bidders, we obtain
what we refer to as the factor structure. The factor structure has
four levels: 3 items with 4 bidders (STR1), 3 items with 7 bidders
(STR2), 6 items with 7 bidders (STR3), and 6 items with 9 bidders
(STR4).

We remark that subjects are randomly assigned to an auction,
and stay in the same level of the factor structure during four con-
secutive auctions. In other words: four consecutive auctions in a
session with the same level of structure have the same subjects.

Feedback factor

The second factor in our laboratory experiments is feedback. Feed-
back is calculated by the auctioneer after each round and communi-
cated to the bidders. We use a hierarchy of feedback involving four
levels, as depicted in Figure 3.4. The first (i.e. lowest) level, out-
come feedback (FB1), consists of showing the (provisionally) winning
allocation along with the prices corresponding to that allocation.
Without this information, it would make little sense to hold an
iterative combinatorial auction. The second feedback level (FB2)
consists of the feedback given in FB1, but adds winning and dead-
ness levels for any set of items. We call this bid states feedback.
Another layer up the hierarchy (FB3), we add factual coalitional
feedback on top of the feedback given in FB2. The fourth feedback
level (FB4) adds a concrete bid suggestion, suggestive coalitional
feedback, in addition to the feedback given in FB2. Any feedback
regarding a particular subset of the items is only displayed if the
bidder clicks on that subset. Note that we are able to calculate all
feedback in a fraction of a second, even for the auctions with 6 items
and 9 bidders.

Our coalitional feedback bears some resemblance to the price
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Item 1 Item 2 Item 3

(a) 3 items and 4 bidders (top) or 7 bid-
ders (bottom).

Item 1 Item 2 Item 3

Item 4 Item 5 Item 6

(b) 6 items and 7 bidders (top) or 9 bid-
ders (bottom).

Figure 3.3: Item and bidder structure.
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FB1: outcome feedback
FB2: bid states
FB3: factual coalitional feedback

FB4: suggestive coalitional feedback

Figure 3.4: A combinatorial auction feedback hierarchy.

rule based on coalitional winning levels used in Bichler et al. (2017).
There are however a number of important differences on the imple-
mentation level. (i) In Bichler et al. (2017), the coalitional pricing
rule is calculated for currently losing bidders, but in their experi-
ments the price rule for a bid follows from one coalition, specifically
the coalition with the lowest price suggestion for that bid. In our
experiments, we allow for multiple messages to be displayed, be-
cause it is possible that the lowest suggested amount corresponds
to a coalition that faces an insurmountable threshold. Moreover,
we want to make sure that when one coalition member receives a
price suggestion, all other members whose collaboration is required
also receive this suggestion. (ii) Another difference is that in our
versions of coalitional feedback we only consider coalitions of live
bids for feedback. Disregarding coalitions that include dead bids has
the advantage of limiting the number of feedback suggestions, and
requiring bidders to first bid past their respective deadness levels. It
also encourages activity in the auction, without actually requiring
an explicit activity rule.

Coordination & threshold: CT factor

With the coordination & threshold (CT) factor, we aim to design
private valuations leading to specific settings for the coordination
and threshold problem2. However, it is not trivial to a priori create
instances that have a certain level of threshold difficulty. Indeed,

2The private valuations used in the experiment are available here:
https://feb.kuleuven.be/public/u0093797/Valuations/.
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contrary to the CI, which only depends on bidder valuations, the
TI is dependent on bidder behavior during the auction, which can
be steered through the valuations each bidder receives only to some
extent.

Each structure has a number of so-called small bidders who
are interested in different items and 1 large bidder who is mainly
interested in a package containing all items. Let us first discuss how
the valuations for ‘small bidders’ are generated. Each small bidder
has one favorite item: in all structures but STR2, this bidder’s
valuation tops the valuations of all other bidders for this item
(in STR2, every item has two small bidders who are specifically
interested in that item). The valuations of the other individual
items depend on how close they are to that item. In Figure 3.5 we
give an example of the single item valuations of a small bidders in
STR3, which has 6 items for sale. Clearly, that bidder is mainly
interested in item 1 (in the top left corner), for which he/she has a
valuation of 20. Valuations for adjacent items decrease by 50% with
each step they are further away from the item of main interest. The
valuations for the small bidders are purely additive. For example,
the bidder in Figure 3.5 would have a valuation of 30 for items 1
and 2 combined, and a valuation of 13 for items 4 and 6 combined.

20 10

10 5

5

3

Item 1 Item 2 Item 3

Item 4 Item 5 Item 6

Figure 3.5: Example of valuations of a small bidder in STR3.
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Now, the valuations for the large bidder can be generated. De-
pending on the ratio W of the sum of the highest individual val-
uations of the small bidders and the large bidder’s valuation for
the complete set of items, we discern three levels for the coordina-
tion/threshold factor.

• CT1: W ∈ [92%, 94%]. Since the highest valuation is that
of the large bidder for the complete itemset, it is logical that
kmax equals 1 and CI equals 0. In other words, there is no real
coordination problem in these instances. On the other hand,
we expect coalitions of small bidders to face an insurmountable
threshold problem. Still, it remains interesting to see how far
the small bidders will drive up the price for the large bidder.

• CT2: W ∈ [105%, 107%]. For these instances, CI values are
around 0.20 for STR1-2 and 3.93 for STR3-4. The values for
kmax vary around 4.5 for STR1-2 and around 42.38 for STR3-4.
In other words, CT2 represents an easy coordination problem.
Coalitions of smaller bidders have a small advantage over the
large bidder; we expect a difficult threshold problem.

• CT3: W ∈ [123%, 125%]. These instances have a more pro-
nounced coordination problem, with CI values around 0.63 for
STR1-2 and 7.73 for STR3-4. Values for kmax vary around
4.5 for STR1-2 and around 49.5 for STR3-4. However, as the
valuation of the optimal coalition amply exceeds the valuation
of the large bidder, we anticipate an easy threshold problem.

Given the large bidder’s valuation for the complete itemset, using
super-additivities of 20% for every additional adjacent item, we can
work backwards to find the valuations for all possible subsets of
items.

Note that STR4 is somewhat more complex, since there are 9
bidders participating in this structure level. Similar to STR3, we
have 6 small bidders, interested mainly in one single item, and 1
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large bidder, interested in the package containing all items. However,
there are also medium bidders, who are mainly interested in either
the top row (items 1, 2, and 3) or bottom row (items 4, 5, and 6)
and who have super-additivities only for adjacent items of specific
interest on that row. This adds an extra layer of competition and
complexity to the combinatorial auction.

We created two sets of private values for every combination of
the factors Structure and CT, leading to a total of 24 different sets
of private values.

Finally, we remark that participants are not told their roles (e.g.
small bidder), but rather have to discover each other’s valuations in
the auctions. The values are private, but participants are informed
that all values are at least additive. Participants take part in
consecutive auctions, but valuations (roles) rotate between these
auctions.

3.7 Results

In the following we report the results from laboratory experiments
that were carried out at KU Leuven. A total of 192 auctions were
held, and 324 subjects participated. Participants were students
at the Faculty of Economics and Business. A printout of the in-
structions was handed out to every participant in the beginning
of the experiment. All participants worked their way through the
instructions and filled in a set of test questions. Participants were
free to ask questions. Once all subjects were done filling in the test
questions, and when all those questions were answered correctly,
the auctions started. In every session, the same experimenter was
present, and all the experiments were held in the same room. Stu-
dents received a bonus point on the exam of a course they had
to take for showing up, and a monetary incentive that depended
on performance in the auctions. Performance is measured by the
difference between the private values and the prices paid for the
final winning bids. On average, the participants earned 9.62 euros.
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3.7.1 Validation

Before we start discussing the results of the experiment, it makes
sense to first validate whether the experimental design resulted in
what we thought it would. Hence, we first examine the realized TI
values, followed by an exploration of how often bidders followed the
suggestive coalitional feedback (FB4).

The realized TI values

In order to validate whether the private valuations generated for
the experiments indeed lead to the threshold problems we expect
them to, we first investigate the realized TI values. Recall that the
TI is not a single number for each auction. We calculate the TI
for specific coalitions. In STR1 and STR2, we look at the highest
value coalition of 3 small bidders versus the large package bidder.
In STR3, we look at the highest value coalition of 6 small bidders
versus the large package bidder. In STR4, we look at the highest
value coalition of small/medium bidders versus the medium/large
bidder(s). In other words, the TI values are calculated from the
perspective of a coalition of smaller bidders. We take the average for
every auction that has such a TI value (note that not all auctions
have TI values to compute if the coalitions mentioned above were not
present) for every level of CT, and present the results in Table 3.4.

CT Mean
1 0.98
2 0.25
3 0.11

Table 3.4: Mean TI values per level of CT.

Overall, it does appear that threshold problems we wanted to
create, were indeed present. For CT1, we see a TI value that, on
average, is almost equal to 1. Considering that there were auctions
in which the coalition of smaller bidders all bid up to their private
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valuation but did not win, and hence did not have a TI value, this
TI value indeed seems to correspond to insurmountable threshold
problems for a coalition of small bidders. For CT2, i.e. difficult
threshold problems, we find an average TI value of 0.25, and for
CT3, i.e. easy threshold problems, we find a value of 0.11. This
also looks to be in line with expectation; more difficult threshold
problems have a higher average TI value.

Do bidders follow FB4?

When introducing non-binding price suggestions, like we do with
our suggestive coalitional feedback, it is evident that it is interesting
to check whether bidders actually use those suggestions. To that
end, we compute a number of interesting statistics and present them
in Table 3.5. In that table, w corresponds to the average number
of rounds a bidder received at least one suggestion, x corresponds
to the average number of rounds where a bidder follows at least
one suggestion by bidding at least the suggested amount (provided
that the suggestion was below the relevant private valuation), and
y corresponds to the average number of rounds a bidder followed a
suggestion by bidding up to their private valuation (provided that
the suggestion was above the relevant private valuation).

CT1 CT2 CT3
w 4.15 3.95 4.20
x 0.85 1.61 1.16
y 0.93 1.62 1.30

(x+y)/w 0.43 0.82 0.59

Table 3.5: FB4 usage.

It becomes clear that on average there were quite a few rounds
where bidders received a suggestion (w), whatever level of CT is
applied. However, things become more interesting when looking at
the x and y statistics. This leads to the following observation.
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Observation 3.1. When confronted with difficult threshold prob-
lems (CT2), bidders follow bid price suggestions to a larger extent
than they do when confronted with easy (CT3) or insurmountable
(CT1) threshold problems.

A possible explanation for bidders being less inclined to follow
suggestions, is that the suggestions can go out to bidders that already
have a (provisionally) winning bid. In that case, bidders might not
follow the suggestions in hopes of winning at a low price. Bidding
on more packages might not be in the best interest of the bidder,
because that could also drive up prices for other preferred packages.
We remark here that, although it seems that bidders often bid in
line with the suggestions, this does not automatically need to lead to
higher efficiencies or revenues. Indeed, there is, e.g. still a possibility
that the coordination problem is not solved, or the threshold problem
is still not overcome (not all bidders follow the suggestions). Another
explanation, in the case of insurmountable threshold problems, is
that the suggestions coalitions of losing bids/bidders receive are
simply too high. In our experiment, the upper bound on the bid
price is the private value. With suggestions higher than private
valuations, bidders could just stop bidding altogether.

3.7.2 Market outcomes: efficiency (E(X)) and auc-
tion revenue (AS(X))

Efficiency results

Recall from Section 3.3 that economic efficiency is a measure of
social welfare: it measures how much of the total possible surplus
is obtained by the combinatorial auction. Tables 3.6a—3.6b con-
tain the mean efficiencies per level of STR, CT and FB. Overall,
efficiencies were quite high.

In addition to examining the means, we looked at the box plots3

3Not all software packages draw box plots in the same manner, e.g. R
has no less than 9 different quantile method variants. The quantiles in this
dissertation are calculated as follows: given a sorted sample of a distribution, say
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STR1 STR2 STR3 STR4
FB1 0.993 0.978 0.963 0.978
FB2 0.990 0.999 0.986 0.992
FB3 0.991 0.986 0.974 0.992
FB4 0.983 0.995 0.990 0.972

(a) Mean E(X) for factors FB and
STR.

CT1 CT2 CT3
FB1 0.986 0.977 0.968
FB2 0.999 0.982 0.998
FB3 0.986 0.989 0.980
FB4 0.991 0.985 0.978

(b) Mean E(X) for factors FB and
CT.

Table 3.6: Mean E(X).

of efficiency per level of feedback, see Figure 3.6. Here we see that
in the cases where only basic feedback is given (FB1) efficiencies
show the highest degree of dispersion. This indicates that simply
showing the (provisionally) winning allocation as feedback is often
insufficient for bidders to find an efficient outcome. The difference
between FB1 on the one hand, and FB2, FB3, and FB4 on the other
hand is striking: it seems deadness and winning levels are important
in guiding bidders to an efficient outcome. The FB2, FB3 and FB4
box plots look quite similar, though FB3 and FB4 show a couple of
outliers.

Our data is not normally distributed, so we use the non-parametric

X1 <. . .< XN , for any real number p with 0 ≤ p ≤ 1 the “p”-quantile is defined
as Xp = XN·p if N · p is an integer number, and Xp = 1

2 (xbN·pc+ xdN·pe) if N · p
is not an integer. For clarity, the box plots we use in this dissertation use the
0.25-quartile of the data as the lower quartile, the 0.5-quartile as the median,
the 0.75 quartile as the upper quartile, and use as a lower (higher) whisker the
smallest data value which is larger than the lower quartile - (+) 1.5 times the
interquartile distance.
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FB1 FB2 FB3 FB4
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Figure 3.6: Box plots of FB.

Wilcoxon-Mann-Whitney test to examine the differences in efficien-
cies. The notation ≺, ≺∗ and ≺∗∗ respectively denote a difference at
10%, 5% and 1% significance level, and ≈ denotes we cannot reject
the null hypothesis.

Observation 3.2. Efficiencies ranked by Wilcoxon-Mann-Whitney
tests:

FB1 ≺∗∗ (FB2 ≈ FB3 ≈ FB4)
At .01 significance level, we conclude that the efficiencies obtained
under FB1 are lower than those obtained under FB2, FB3, and
FB4. At .1 significance level, we cannot reject the hypothesis that
the efficiencies obtained under FB2, FB3, and FB4 come from the
same distribution.

Figure 3.7 depict the percentage of auctions that ended efficiently.
FB1 shows the highest percentage of non-efficient auctions. The
number of non-efficient auctions with FB2, FB3, and FB4 is lower
than FB1, but is not zero.

We now examine whether the factor structure has an impact on
efficiency. Since the separate box plots of STR1 and STR2 were
remarkably similar, we combined the STR1 and STR2 data. The
STR3 and STR4 box plots were almost identical as well, hence we
combined that data too. The resulting box plots can be found in
Figure 3.8. It appears that in STR1 and STR2, i.e. environments
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Figure 3.7: Percentage of efficient and non-efficient auctions.

with a limited number of items (three), efficiencies are quite high.
While there are a number of outliers, the degree of dispersion is
very limited. Looking at the more challenging environments, namely
STR3 and STR4 where there are 6 items on auction, the spread is
larger. However, efficiencies remain high.

Observation 3.3. Auctions with fewer items lead to higher effi-
ciencies.

STR1 & STR2 STR3 & STR4
0.88

0.9

0.92

0.94

0.96

0.98

1

E(
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)

Figure 3.8: Box plots of FB per level of structure.

While the structure does seem relevant for auction outcomes,
it is perhaps more interesting to see whether the level of the CT
factor has an impact. To that end, we constructed box plots for
efficiency per level of FB for the different levels of the CT factor in
Figure 3.9. In the insurmountable threshold case, CT1, we see that
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efficiencies are almost always 100%, i.e. the large bidders win when
they should win. In the difficult threshold case, CT2, we see that
the degree of dispersion for FB1 and FB2 is quite large. However,
FB3 and FB4 fare better than FB1 and FB2. We also see that there
is more variation in efficiency in the CT2 case compared to both
CT1 and CT3. This is an indication that the threshold problem
indeed manifests itself here; the efficient allocation is not always
reached. Even in the easy threshold case, CT3, we see that the
efficient allocation is not always reached. FB1 shows a large spread,
whereas FB2 shows no spread at all. FB3 and FB4 are situated in
between FB1 and FB2.

FB1 FB2 FB3 FB4 All FB
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CT1 box plots

FB1 FB2 FB3 FB4 All FB
0.88

0.9

0.92
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CT2 box plots
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CT3 box plots

Figure 3.9: Box plots of FB per level of threshold.
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Observation 3.4. Table 3.7 contains the efficiencies ranked by
Wilcoxon-Mann-Whitney tests.

CT Wilcoxon-Mann-Whitney tests
1 FB1 ≈ FB2 ≈ FB3 ≈ FB4
2 (FB1 ≈ FB2) ≺ (FB3 ≈ FB4)

3
FB1 ≺ FB2

FB1 ≈ FB3 ≈ FB4
FB4 ≺ FB2

Table 3.7: Ranked efficiencies per level of CT.

For CT1, we cannot reject the hypothesis that the efficiencies
obtained under FB1, FB2, FB3, and FB4 come from the same
distribution.

For CT2, at .1 significance level, we conclude that the efficiencies
obtained under FB1 and FB2 are lower than those obtained under
FB3 and FB4.

For CT3, at .1 significance level, we conclude that the efficiencies
obtained under FB2 are larger than those obtained under FB1 and
FB4. At .1 significance level, we cannot reject the hypothesis that
the efficiencies obtained under FB1, FB3 and FB4 come from the
same distribution.

Overall, FB1 leads to the lowest efficiencies. FB2 leads to the
highest efficiencies in CT3, where there is an easy threshold problem
and winning levels are not restrictively high compared to the private
valuations. FB3 and FB4 shine in CT2, where there are difficult
threshold problems and winning levels are much higher than the
private valuations. It seems the threshold problem manifests itself
in CT2 cases, i.e. in cases small bidders should win but have little
leeway to do so. It also manifests itself in CT3 cases, but in a
diminished fashion, and is, aside from some outliers, not present in
CT1 cases.

One would expect FB3 and FB4 to be most effective in cases
where the winning levels are restrictively high, i.e. greater than the
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private values of losing bidders, and hence the information is not of
much use to bidders. In such a case, FB3 and more so FB4 have the
largest potential effect because of the new information they provide.
Evidently, this conceivable happens more often in difficult threshold
cases. In cases where the winning level is not too high for losing
bidders, FB3 and FB4 do not bring a lot of extra information to the
table compared to bid states feedback. In easy or insurmountable
threshold cases, this is more likely to be the case.

Auction revenue results

Looking at efficiencies alone does not give a complete picture. Hence,
in addition to looking at economic efficiency, we examine auction
revenues, i.e. the auctioneer’s surplus. Tables 3.8a — 3.8b contain
the mean AS(X) data.

STR1 STR2 STR3 STR4
FB1 0.893 0.898 0.891 0.932
FB2 0.927 0.916 0.927 0.943
FB3 0.912 0.922 0.887 0.940
FB4 0.916 0.915 0.922 0.922

(a) Mean AS(X) for factors FB and
STR.

CT1 CT2 CT3
FB1 0.929 0.917 0.848
FB2 0.943 0.945 0.882
FB3 0.920 0.942 0.863
FB4 0.933 0.945 0.858

(b) Mean AS(X) for factors FB and
CT.

Table 3.8: Mean AS(X).

One first observation is that revenues in CT3 auctions are clearly
lower than in auctions with an easy threshold problem. Bidders
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have plenty of margin to outbid the package bidder, and need not
bid high compared to their private valuations in order to become
winning.

FB1 FB2 FB3 FB4
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)

Figure 3.10: Box plots of FB.

Observation 3.5. Auction revenues ranked by Wilcoxon-Mann-
Whitney tests:

FB1 ≺∗ (FB2 ≈ FB3 ≈ FB4)

At .05 significance level, we conclude that the auction revenues
obtained under FB1 are lower than those obtained under FB2, FB3,
and FB4. At .1 significance level, we cannot reject the hypothesis
that the revenues obtained under FB2, FB3, and FB4 come from
the same distribution.

Efficiency and revenue progression

It is important to note that E(X) and AS(X) are naturally correlated.
Looking at the measures separately does not paint a complete
picture. In Figure 3.11 we depict a unique way of looking at both
efficiency and revenue round-by-round progressions. That figure
shows, for every level of CT (corresponding to the rows), both the
average efficiency progression (left column) and the average revenue
progression (right column). The horizontal axis in Figure 3.11
depicts the auction progression, e.g. if progression is at 50%, half
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of the total post factum required rounds have passed. This way,
we can get an understanding of both average efficiency and average
revenue progressions. Our observations are as follows.

Observation 3.6. In CT1, FB3 quickly leads to higher efficiencies
and revenues compared to the other FB levels, whereas FB1 performs
the worst. In CT2, the progression starts similar for all FB levels,
but FB3 and FB4 end up in higher efficiencies. FB1 is worse
than the other FB levels. In CT3, we see that auctions with FB4,
on average, start with higher efficiencies and revenues, but in the
last half of the auction FB2 surpasses the other FB levels both in
efficiency and auction revenue. FB1 is again the worst.

3.7.3 Bid prices and bidder surplus BS(X)

Table 3.9 presents the average ratio of the bid prices to their private
valuations over all bids expressed in the auctions. In CT1 we see
that with more feedback, bidders on average bid a higher percentage
of their private valuations. Basically, the package bidder has a
harder time, because the competition with the smaller bidders -
even though they cannot win - is stronger, leading to the package
bidder having to bid higher prices, as is reflected in the higher
auctioneer revenue results. In CT2 cases, we see that when FB3-4 is
given, bidders on average bid higher compared to FB1-2 cases. The
coalitional feedback appears to convince bidders to bid higher, which,
as discussed in the previous section, leads to higher efficiencies. In
CT3 cases, when FB3-4 is given, average bid prices are lower. This
makes sense, as there is more room for smaller bidders to overcome
the threshold. Bidders do not overshoot their bid prices to win, but
can rely on the coalitional feedback to bid smarter (i.e. win at lower
prices).

Table 3.10 contains the percentage of available surplus that goes
to the bidders, i.e. BS(X)

V (XE) . We can see that the total bidder’s surplus
in the CT1 and CT3 cases is higher for FB3-4 cases compared to FB2.
This indicates that bidders make good use of the feedback in the
sense that their bids do not ‘overshoot’ deadness levels significantly.
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Figure 3.11: Average E(X) (left column) and AS(X) (right column)
progression, per level of CT.
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CT1 CT2 CT3
FB1 0.812 0.839 0.833
FB2 0.842 0.837 0.820
FB3 0.839 0.850 0.816
FB4 0.821 0.853 0.803

Table 3.9: Average bid as percentage of private valuations.

We see that in the CT2 case, if FB1 is applied the highest bidder
profits are obtained: this is an indication of the threshold problem.
When more feedback is given in CT2 cases, total bidder profits
lower, yet efficiencies rise as bidders are better able to coordinate
and compete with the large package bidder. The bidder surplus in
the FB1-CT2 case is rather high, but can in fact be explained by
the threshold problem: in cases where the efficiency is not 100%,
the large package bidders receive the total bidder surplus while it is
not economically efficient for them to receive any surplus at all.

CT1 CT2 CT3
FB1 0.057 0.060 0.121
FB2 0.056 0.038 0.116
FB3 0.067 0.046 0.118
FB4 0.060 0.040 0.120

Table 3.10: Average percentage of surplus obtained by the bidders
(BS(X)

V (XE)).

3.7.4 Cognitive limits

Figure 3.12 depicts the average number of different packages a bidder
bids on per round. This excludes the bids entered in the first round,
as bidders are then still discovering their private valuations and
enter a lot of bids.

This result confirms the findings of Kagel et al. (2010) and
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Figure 3.12: Average number bids entered per bidder per round
(excluding round 1) on unique packages.

Scheffel et al. (2012), who observe that bidders usually bid on a
limited number of different packages, independent of the auction
format.

Observation 3.7. Bidder support in the form of feedback reduces
the number of packages bidders bid on in an auction. Bidders can
focus on fewer packages, and still achieve higher efficiencies and
revenues compared to basic outcome feedback.

3.7.5 Auction Duration

Tables 3.11a—3.11b contain the mean number of auction rounds.
Auctions with FB2-3-4 seem to last a little longer on average than
auctions with FB1. When examining the duration in relation with
the threshold and feedback factors, we observe that in the CT2-3
cases, the number of rounds is higher compared to the CT1 case, for
all levels of feedback. It appears that when the threshold problem
manifests itself, bidders require more rounds to reach the final
auction outcome. However, in the FB1 cases, where not a lot of
coordination is possible between bidders, the number of auction
rounds is lower, compared to the FB2-3-4 cases.
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STR1 STR2 STR3 STR4
FB1 6.8 8.1 6.2 6.7
FB2 8.5 9.2 8.1 9.8
FB3 7.6 7.8 10.6 8.4
FB4 10.3 8.7 11.5 7.8

(a) Mean number of rounds by fac-
tors FB and STR.

CT1 CT2 CT3
FB1 6.4 7.3 7.1
FB2 8.5 9.3 8.7
FB3 6.7 9.8 9.0
FB4 6.8 9.8 13.0

(b) Mean number of rounds by fac-
tors FB and CT.

Table 3.11: Mean number of rounds.

We test the differences in number of rounds it takes to close an
auction.

Observation 3.8. Number of rounds ranked by Wilcoxon-Mann-
Whitney tests:

STR1 ≈ STR2 ≈ STR3 ≈ STR4

CT1 ≺∗∗ (CT2 ≈ CT3)

FB1 ≺∗ (FB2 ≈ FB3 ≈ FB4)

At .1 significance level we cannot reject the hypothesis that the
number of rounds obtained under the various structures come from
the same distribution. However, at .01 significance level, we conclude
that auctions where there are coordination or threshold challenges
(CT2-3), require more rounds than CT-1 auctions. We also find
that auctions with FB1 take fewer rounds compared to auctions with
FB2, FB3, and FB4.
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In addition to the number of rounds, we examine the average
round duration (in seconds) in Tables 3.12a-3.12b.

STR1 STR2 STR3 STR4
FB1 122 130 197 179
FB2 111 128 166 169
FB3 113 175 150 165
FB4 114 133 157 175

(a) Mean auction duration (sec-
onds) per round for factors FB and
STR.

CT1 CT2 CT3
FB1 154 168 143
FB2 138 151 139
FB3 184 136 131
FB4 170 149 105

(b) Mean auction duration (sec-
onds) per round for factors FB and
CT.

Table 3.12: Mean number of seconds per round.

The results of Wilcoxon-Mann-Whitney tests are as follows.

Observation 3.9. Round duration (in seconds) ranked by Wilcoxon-
Mann-Whitney tests:

STR1 ≺∗ STR2 ≺∗∗ (STR3 ≈ STR4)

CT3 ≺∗ (CT1 ≈ CT2)

FB1 ≈ FB2 ≈ FB3 ≈ FB4

We conclude that as the number of items and bidders increases,
auction rounds tend to take more time. Additionally, in cases where
there are easy threshold problems, auction rounds take less time.
Overall, feedback does not seem to increase the round duration.
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3.8 Conclusions

In situations where bidders have different additive or super-additive
private valuations, academic literature has shown that combinato-
rial auctions have the edge over (sequential) single item auctions.
However, combinatorial auctions introduce two problems: the co-
ordination problem and the threshold problem. The coordination
problem arises when bidders fail to identify bids that are individually
profitable and collectively complementary. The threshold problem
represents the next problem: even when individually profitable and
collectively complementary packages are identified, and the coordi-
nation problem is essentially overcome, the problem of determining
bid prices still remains. This is in fact complicated by free-rider
incentives. Naturally, these problems are of significant practical
interest.

In this chapter, we propose quantitative measures for both the
coordination problem and the threshold problem. Our measure for
the coordination problem is independent of auction formats and bids,
and can be calculated using information about the private valuations
of bidders. It can be used to compare different valuation designs and
determine which entails the greatest coordination challenge. Our
measure for the threshold problem takes a snapshot of an auction,
and looks at the margin for price increases a losing coalition of bids
still has compared to the current winning one. Additionally, these
measures can be used to design interesting sets of private valuations
for further experiments.

Keeping in mind the potential impact feedback can have in
reducing the complexity for bidders to understand what is going on
in a combinatorial auction, we also design new types of feedback
dubbed coalitional feedback, which are specifically designed to help
overcome coordination and threshold problems. With feedback that
can assist bidders in considering what packages to bid on, and at
what prices, bidders can bid more effectively. This is an advantage
both for the auctioneer, who prefers an efficient outcome with high
revenue, and the bidders, who prefer to win when they can, rather
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than lose because of a lack of information, coordination, or even
understanding of the intricacies of combinatorial bidding.

Finally, we put different types of feedback to the test in a lab-
oratory setting with human bidders, using iterative combinatorial
auctions. These have the advantage of being an intuitive generaliza-
tion of the traditional English auctions. In line with Adomavicius
et al. (2012), we find that bid state feedback is a big improvement
upon outcome feedback, both with respect to economic efficiency
and auction revenue. Building on that result, we find that coalitional
feedback can improve upon bid states feedback, leading to higher
efficiencies when threshold problems are difficult. Additionally, we
find that in difficult threshold cases, bidders are not insensitive to
bid price suggestions and tend to follow such suggestions readily.
This is interesting, as it appears that the free-rider aspect is at least
diminished by coalitional feedback. The closing rule for ascend-
ing combinatorial auctions then becomes crucial, as bidders need
enough time to react to coalitional feedback. In easy threshold cases,
bidders also benefit from coalitional feedback, as it allows bidders
to bid in a smarter fashion; they have a better idea of interesting
bid prices between the deadness and winning levels. This leads to
high efficiencies, but also to higher bidder profits compared to bid
states feedback.

The results regarding factual and coalitional feedback are in line
with Bichler et al. (2017), who find that coalitional winning levels -
implemented as a pricing rule - lead to better efficiencies in their
threshold value model. In both their mix value model and symmetry
value model, they find little difference. However, in our experiments
bid states feedback seems to lead to overall better efficiencies than
Bichler et al. (2017) report, making the distinction between bid
states feedback on the one hand and coalitional feedback on the
other hand more difficult in our experiments. There are a number
of possible explanations for this lack of clear distinction, which all
deserve and require further research. One explanation is that in our
experiments, only few situations occur where bid states feedback and
coalitional feedback could make a difference, e.g. where the winning
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level is restrictively high above the private valuations of bidders
while the coalitional feedback suggestion is obtainable. Another
explanation is that perhaps the price suggestions are not followed
enough in the rounds where it mattered, i.e. those where a coalition
of small bidders is not winning but could have won together, but
not all coalition members follow the suggestions. The question is
then how many bidders need to follow the price suggestions in order
for there to be an impact efficiency-wise. Yet another explanation
could be that the coordination and/or threshold problems present
in our experiments are not difficult enough for a difference between
bid states feedback and coalitional feedback to be able to manifest
itself.

In order to increase the penetration of combinatorial auctions
in (online) markets, further exploring coalitional feedback as a
bidder tool is a promising avenue of research, as it both reduces the
complexity bidders face with package bidding, and allows them to
focus more on relevant packages as well as adjust their bid prices
smartly, considering both the coalitional winning levels as well as a
number of coalitions.



Chapter 4

Conference Scheduling -
A Personalized Approach

The key is not to prioritize
what’s on your schedule, but to
schedule your priorities.

Stephen Covey

4.1 Introduction

Scientific conferences have become an essential aspect of (academic)
life. They allow researchers (i) to present their work and receive
feedback, (ii) to learn from attending talks, poster sessions, or
discussion panels, and (iii) to meet with colleagues, thereby inducing
new collaborations. However, attending a conferences requires a
considerable effort in terms of time (e.g. preparing talks, traveling
time) and money (e.g. registration fees, traveling expenses, hotels)
from their participants. Conferences also have a non-negligible

This chapter is based on Vangerven et al. (2017a).
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environmental impact (Gremillet, 2008). In fact, there is some
debate about the value of scientific conferences, see e.g. Grant (2014),
and how to lessen the carbon footprint of a conference ((Nathans
and Sterling, 2016)). Obtaining exact figures with respect to the
amount of money involved in organizing scientific conferences seems
difficult; it is written in Ioannidis (2012) that “an estimate of more
than 100.000 medical meetings per year may not be unrealistic . . . the
cumulative cost of these events worldwide is not possible to fathom”.
Note that this figure applies to medical conferences alone.

Given these considerations and investments, it is the responsi-
bility of the organizers to maximize the value of a conference as
much as possible. Here we focus on the construction of a conference
schedule that allows participants to maximally benefit from partici-
pating. Or, making this even more concrete, the schedule should
enable participants to attend the talks of their interest. This clearly
benefits speakers as well, potentially increasing both the size and the
level of interest of their audience. Typically, a conference schedule
groups talks into sessions (a set of talks taking place consecutively
in the same room); consecutive sessions are separated by a break.
Furthermore, the vast majority of conferences feature several sessions
taking place at the same moment in time, i.e. sessions are scheduled
in parallel. Consequently, a participant may be confronted with
times where several attractive talks compete for his/her attendance
(i.e. a scheduling conflict), while at other times (s)he finds nothing
of interest in the schedule. A small example is given in Figure 4.1,
which depicts two alternative conference schedules. In schedule 1,
the participant needs to choose between preferred talks A/C, and
J/L. In other words: that participant can only see half the talks he
or she actually wants to see. This is not the case in schedule 2.

One popular approach to schedule conferences is track segmenta-
tion Sampson (2004). The organizer groups talks that cover a similar
topic or method into tracks or clusters, which are then assigned to
a room and scheduled in parallel. Note that a track can consist
of multiple sessions. If a participant were only interested in talks
from a single track, then (s)he can stay in that track’s room for
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Figure 4.1: The impact of the schedule on attendance.

the duration of the conference without experiencing any scheduling
conflict. However, apart from difficulties in forming meaningful
clusters, track segmentation is not very effective if the participant’s
preferences are diverse, and not restricted to one particular topic.

In this work, a participant is expected to provide a list of pre-
ferred talks, which he or she would like to attend. Our goal is to
develop a conference schedule that maximizes the participants’ satis-
faction. Primarily, this means we want to avoid scheduling conflicts,
thereby maximizing total attendance. Next, as a secondary goal, we
want to minimize session hopping. Indeed, confronted with multiple
talks of interest scheduled in different sessions, a participant is forced
to move between several sessions in order to attend as many of his
or her preferred talks as possible. We call this phenomenon session
hopping, and its presence is a clear indication of the existence of
strong preferences of participants. Session hopping can be perceived
as disturbing by presenters and their audiences. Moreover, the
session hopper still tends to miss parts of the preferred talks, due to
the time it takes to switch rooms and presenters not always start-
ing at exactly the scheduled time. Finally, motivated by practical
considerations, we also take presenter availabilities into account.
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Our main contribution is the description of a method for the
planning of a (scientific) conference. Based on given preferences
of the participants, our method schedules individual talks in order
to maximize total attendance; this is in contrast to many other
approaches that work on the level of sessions or streams. As a
secondary, original criterion, we take session hopping into account,
aiming for schedules that allow participants to stay within the same
room during a session. We are the first to incorporate session hopping
in our scheduling approach, as session hopping is either assumed
to be forbidden or non-existing in the literature, as opposed to
regular participant practice. Our method has been used to schedule
four scientific conferences, namely MathSport 2013, MAPSP 2015,
MAPSP2017 and ORBEL2017 — we give a detailed account of our
experience with the method.

We provide an overview of related work in Section 4.2. A detailed
problem definition, is given in Section 4.3, followed by computational
complexity results in Section 4.4. Next, we describe our solution
method in Section 4.5. Finally, we present case studies on the
MathSport 2013, MAPSP 2015, MAPSP2017 and ORBEL 2017
conference in Section 4.6. We finish with conclusions in Section 4.7.

4.2 Literature review
Thompson (2002) discerns two approaches to conference scheduling:
a presenter-based perspective (PBP) and an attender-based perspec-
tive (ABP). With a PBP, the main goal is to meet time preferences
and availability restrictions of the presenters. On the other hand,
from an ABP, participants’ preferences are solicited, in order to
maximize their satisfaction. In the rest of this section, we will first
discuss contributions that focus on the PBP, continue with papers
that follow an ABP, and conclude with a few papers that solve
subproblems of conference scheduling. Although we focus here on
scheduling scientific conferences, there is also literature on schedul-
ing meetings that are based on preferences of the participants; we
mention Yingping et al. (2012), Ernst et al. (2003) and Ernst et al.
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(2008).

4.2.1 Presenter-based perspective

Potthoff and Munger (2003) discuss a problem where sessions need
to be assigned to time periods (rooms are ignored). The authors
assume that the clustering of talks into sessions has already been
done, in a way that each session belongs to a subject area. The goal
is to find a schedule that spreads the sessions for each subject area
among the time slots as evenly as possible, ensuring that no presenter
has other duties (e.g. being discussant) in simultaneous sessions.
An IP formulation is presented and applied to a problem instance
extracted from a past meeting of the Public Choice Society, including
96 sessions and over 300 participants. This problem is revisited by
Potthoff and Brams (2007), who extend the IP formulation to take
into account presenter availabilities. Furthermore, their method is
applied to schedule two Public Choice Society meetings, with 76
and 45 sessions.

Edis and Sancar Edis (2013) consider a very similar problem, but
at the level of talks instead of sessions. Each talk has a given topic,
and should be assigned to a session and a time period, such that all
talks in each session have the same topic, and the occurrence of si-
multaneous sessions with the same topic is minimized. Furthermore,
the number of talks in different sessions with same topic should
be balanced, and some talks cannot be scheduled simultaneously.
The authors also discuss an extended setting where presenters have
preferred and non-preferred days. An IP formulation is presented,
which is used to solve a hypothetical instance, including 170 talks
on one of 10 topics, to be scheduled into sessions of at most 5 talks,
over 12 time periods.

Nicholls (2007), like Potthoff and Munger (2003), also assumes
that papers have been assigned to sessions beforehand by the or-
ganizers, but includes room assignment. The problem at hand is
to assign each session to a room and a time period, such that no
presenter is scheduled at two sessions simultaneously. The goal is
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to maximize the number of presenter preferences (e.g. preferred day
or time slot) met. Participant preferences are not elicited, but can
be included implicitly by the program chair, for instance by allocat-
ing appropriate rooms to sessions based on expectations regarding
attendance. The author presents an algorithm, which is essentially
a step-wise constructive heuristic, complemented with a set of rules
to accommodate preferences and resolve conflicts. Nicholls (2007)
applied his method to schedule a Western Decision Sciences Insti-
tute annual conference. This conference had over 300 participants,
involving over 80 sessions and spanning 4 days.

4.2.2 Attender-based perspective

An early attempt to optimize participant satisfaction is by Eglese
and Rand (1987), who collect a list of 4 preferred sessions (and one
reserve session) from each participant. In their conference scheduling
problem, sessions need to be assigned to time periods and rooms
such that the sum of the weighted violations of session preferences
is minimized. Furthermore, sessions can be offered multiple times,
a decision which is also part of the problem. Although the number
of rooms is limited and some rooms are not equipped with the
right facilities for some sessions, room capacity is assumed to be
always sufficient. The paper reports the scheduling of the national
Tear Fund conference, including 15 distinct sessions, over 4 time
periods and 7 rooms. As an IP formulation for a problem of this
size was deemed intractable at the time, the problem was solved
using simulated annealing.

Sampson and Weiss (1995) extend the Eglese and Rand (1987)
setting as they consider rooms with finite seating capacities. They
present a heuristic procedure that simultaneously assigns session
offerings to time periods and rooms, and decides for each participant
which sessions to attend (assuming that session hopping is forbidden).
The procedure is tested on a number of randomly generated problem
instances. Sampson (2004) describes how an annual meeting of the
Decision Sciences Institute with 213 sessions to be scheduled over 10
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time slots was handled using this method. Nearly half of the 1086
registered participants submitted ranked preferences for talks, which
was used to rank the sessions. A post-conference survey revealed that
about one quarter of the participants found the resulting schedule
“much better” than in previous meetings. The method is also a part
of a simulation to numerically address other issues that might be
faced by a conference organizer. For instance, Sampson and Weiss
(1996) discuss tradeoffs between the length of the conference, the
number of offerings per session and participant satisfaction. They
also investigate how seating capacity, room availability, and the
utilization of time slots impact participant satisfaction.

Gulati and Sengupta (2004) enhance the problem description by
Sampson and Weiss (1995) by augmenting the objective function
with a prediction of the popularity of a talk, based on reviewers’
assessments of the submissions and linked with time slot preferences
of participants (e.g. late and last-day time slots are often poorly
attended). The overall goal is to maximize the total session atten-
dance. Gulati and Sengupta (2004) develop a solution method called
TRACS (TRActable Conference Scheduling), which is essentially
a greedy algorithm; no empirical results or computational analysis
are reported.

The conference scheduling problem discussed by Thompson
(2002) is also similar to that of Sampson and Weiss (1995). However,
in Thompson (2002), meeting rooms may have different capacities,
and may not always be available. He presents a method that em-
ploys a constructive heuristic followed by a simulated annealing
procedure. The author performs a number of computational ex-
periments, based on randomly generated data as well as data from
a real, yet unspecified, conference. The latter includes 47 distinct
sessions (some of which were to be offered 2 or 3 times), 8 time slots,
and 8 rooms with different capacities. Presenters present in 1 to 5
sessions and each of the 175 participants have provided between 0
and 8 preferred sessions (neither ranked nor weighted). The author
finds that his heuristic outperforms randomly as well as manually
generated schedules.
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Le Page (1996) assumes that each participant provides a list with
a given number of sessions he or she wishes to attend. This allows to
create a conflict matrix, where each matrix element ci,j represents
the number of participants that wish to attend both sessions i and
j. The problem is to assign the sessions to time slots and rooms
(with different capacities), such that the sum of conflicts between
simultaneous sessions is minimized. Furthermore, sessions with the
same topic must be assigned to the same room, and some sessions
need to be planned consecutively on the same day. The author
develops a semi-automated heuristic in four steps, which is used to
schedule a meeting of the American Crystallographic Association.
This meeting includes 35 sessions, to be assigned to 5 rooms and
7 time periods. Months before the conference, preferences were
solicited from the 1100 participants; about 10% of them provided a
list of 7 preferred sessions. Most popularity predictions based on
this input turned out to be accurate during the actual conference.

Ibrahim et al. (2008) focus on a conference scheduling problem
where talks need to be assigned to time slots (spread over a number
of days) in 3 parallel tracks. Each talk belongs to a field, and the
schedule should be such that talks of the same field do not occur
simultaneously. Furthermore, it should be avoided to schedule talks
belonging to the same pair of fields in parallel more than once on
the same day. The authors discuss construction methods, based on
results from combinatorial design theory, for 3 cases. One case is
based on data from the National Conference in Decision Science
and includes 73 sessions, belonging to 8 fields, to be scheduled over
26 time slots and 2 days. Note that this setting does not involve
grouping talks into sessions. Moreover, the sequence of the talks
within a track on one day is of no importance, and all talks from the
same field can be swapped without changing the solution quality.

In the so-called preference conference optimization problem (PCOP)
as defined by Quesnelle and Steffy (2015), talks need to be assigned
to a time slot and a room, such that scheduling conflicts are mini-
mized. Furthermore, room and presenter availabilities need to be
taken into account, including the fact that some presenters are
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involved in more than one talk and must be able to attend each
one of them. Some talks are required to be offered multiple times.
Quesnelle and Steffy (2015) show that PCOP is NP-hard and discuss
an IP formulation, together with a number of performance consider-
ations such as symmetry reduction. They apply their method on a
problem instance, based on a PenguiCon conference with 253 talks.
As no individual participant preferences were available, the authors
have randomly generated this data from historical attendance data,
for various choices of the standard deviation of the number of pre-
ferred talks per participant. Notice that the issue of grouping talks
into sessions is not included in this problem, in fact, as in Ibrahim
et al. (2008), each talk could be seen as a session.

4.2.3 Related problems

The problem of grouping talks into coherent sessions, given one or
more keywords for each talk, is discussed by Tanaka et al. (2002)
and Tanaka and Mori (2002). The objective function is a non-linear
utility function of common keywords, with the underlying idea that
papers in the same session have as many common keywords as
possible, provided that the number of talks is balanced over the
sessions. This problem is tackled using Kohonen’s self-organizing
maps Tanaka et al. (2002) and a hybrid grouping genetic algorithm
Tanaka and Mori (2002). Both methods are tested on data from
a conference of the Institute of Systems, Control and Information
Engineers in Japan with 313 papers and 86 keywords.

Zulkipli et al. (2013) ignore session coherence as they attempt
to group talks into equally popular sessions. The underlying idea is
that in a setting with rooms of similar size and assuming that session
hopping is forbidden, this will maximize participants’ satisfaction
in terms of seating capacity. Given a weight for each talk, based
on preferences from the participants, the goal is to assign talks to
sessions, such that the sum of the talk weights is balanced over the
sessions. The authors present a goal programming method, which
is applied to one case, involving 60 talks to be grouped into 15
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sessions.
Martin (2005) elaborates on the sessions selection problem for the

participant, given the conference schedule. He develops a decision
support system for participants to determine their itinerary. Using a
web-based approach, keyword preferences are elicited and matched
with keywords supplied by talks, in order to produce an aggregate
rating for each talk. This approach, which does not involve an
optimization algorithm, has been used for a conference of the UK
Academy of Information Systems. About one third of the 118
participants made use of the decision support system, however, the
author was not able to predict session attendance based on the
keyword ratings.

4.3 Problem Description
There are a number of crucial ingredients in our problem. First,
there is a set of talks that needs to be scheduled; the set of talks is
denoted by X. Second there is a set of timeslots, denoted by T ; a
timeslot refers to a period in time during which a number of talks
are held in parallel — we assume that the number of talks that
are held in parallel (i.e. the number of parallel sessions) is given
and we denote that number by n. Further, we assume without loss
of generality that the number of talks |X| is a multiple of n (if
necessary, this can be achieved by adding dummy talks) – notice
that this means that |T | = |X|

n . A final ingredient of our problem
are the participants, denoted by the set P , and their profiles.

Definition 4.1. A profile of a participant p ∈ P is represented by
a binary vector q(p) where q(p)i equals 1 if and only if participant p
wishes to attend talk i ∈ X. A profile consisting of only 0 entries is
called a trivial profile.

In other words, a profile represents the preferences of a partici-
pant. All these ingredients allow us to formally state our problem.
We assume that talks that are held in parallel cannot both be at-
tended by the same participant, and that talks that are assigned
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to distinct timeslots can be attended by the same participant. The
attendance of a talk denotes the number of participants attending a
talk, and total attendance refers to the summed attendances over
the talks. We assume that a participant, when a preferred talk is
scheduled, will attend this talk, and in case multiple preferred talks
are presented at the same time, (s)he will arbitrarily choose one of
these talks to attend. Finally, we assume all participants attend the
entirety of the conference.

Definition 4.2. Given the participants’ profiles q(p), and given the
number of parallel sessions n, the Conference Scheduling Problem
with n parallel sessions (CSP-n) seeks to assign every talk to a times-
lot such that each timeslot receives exactly n talks, while maximizing
total attendance.

The profiles allow us to compute the parameter vi := ∑
p∈P q(p)i:

the number of participants who wish to attend talk i. Clearly, total
attendance is upper bounded by ∑i∈X vi; notice that this number
can be realized in case there are no parallel sessions, i.e. when n = 1.

From a computational complexity standpoint, CSP-n is an NP-
hard optimization problem, already in case of three parallel sessions.
We address this issue in more detail in Section 4.4.

It is clear that there will be several optimal solutions to CSP-n,
as the grouping of the parallel talks into sessions and their order
within a session do not impact attendance. Hence, as a secondary
goal, we aim to minimize the total number of session hops. To
describe this problem more precisely, let the length of a session be
the number of consecutive talks in the session. Typically, a session
consists of k consecutive talks, with k ∈ {2, 3, 4}. We use K to
denote the set of session lengths present in the conference. We
assume that sessions running in parallel must have the same length,
and we call a set of n parallel sessions of length k ∈ K, a k-block.
The format of a conference specifies, for each relevant session length
k ∈ K, the number of k-blocks in the conference; this number is
referred to as rk. Given the format of the conference, we settle the
composition of the sessions, taking into account the talks that are
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to be scheduled in parallel in order to maximize attendance.
However, the resulting schedule still leaves room to decide during

which timeslots these parallel sessions are scheduled. This gives
freedom to accommodate potential restrictions on the availabilities of
speakers. Thus, in a final phase, we assign the k-blocks to timeslots,
minimizing the number of violated presenter availabilities.

Concluding, the resulting conference scheduling problem has
three objectives: maximizing attendance (4.5.1), minimizing session
hopping (4.5.2), and satisfying presenter availabilities (4.5.3), which
are considered hierarchically in this order. Notice that we have not
taken room capacities into account; in Section 4.6 we describe how,
if necessary, this issue can still be dealt with.

4.4 Computational complexity of CSP-n
In the following two theorems, we respectively show that the CSP-2
is polynomially solvable, and that the CSP-n is NP-hard for n ≥ 3.

Theorem 4.1. CSP-2 is solvable in polynomial time.

Proof. We show that CSP-2 is a special case of the minimum weight
perfect matching problem, which is polynomially solvable Lovász
and Plummer (1986). Given a graph G = (V,E), a matching in
G is a set of pairwise non-adjacent edges. A perfect matching is a
matching which matches all nodes of G, i.e., every node is incident
to exactly one edge of the matching.

The reduction goes as follows. Given an instance of CSP-2, we
construct a complete, edge-weighted, graph G = (V,E) such that
each talk in CSP-2 corresponds to exactly one node in G; thus
V := X. For every distinct pair of talks i and j ∈ X, we calculate
a coefficient ci,j capturing how much attendance is missed if both
talks i and j are planned simultaneously, i.e., we set ci,j := |{p ∈ P :
q(p)i = q(p)j = 1}|. Since (i) any solution to CSP-2 can be regarded
as |X|2 pairs of talks, and hence is a perfect matching, and (ii) the
coefficient ci,j equals the missed attendance when talks i and j are
planned simultaneously, the result follows.



4.4. COMPUTATIONAL COMPLEXITY OF CSP-N 111

Observe that while the proof of Theorem 4.1 shows that CSP-2
is a special case of minimum weight perfect matching, the converse
is true as well. Indeed, when we interpret, in a given instance of
minimum weight perfect matching specified by a graph H = (W,F ),
each node in W as a talk, and the cost associated to an edge
e = (i, j) ∈ F as the number of participants wishing to see both
talks i and j, it is not difficult to see that a matching with a
certain cost corresponds to a schedule with that cost as the missed
attendance. All this essentially implies that CSP-2 cannot be solved
faster than minimum weight perfect matching.

Theorem 4.2. CSP-n is NP-hard for each fixed n ≥ 3.

Proof. We will prove that the decision variant of CSP-3, which asks
the question “Given a number of talks and a set of participants
with corresponding profiles, does a schedule consisting of 3 parallel
sessions exist such that no attendance is missed?”, is NP-complete.
To prove this, we will use the Triangle Partition Problem (TPP),
which is known to be NP-complete even for graphs with a maximal
degree of at most four van Rooij et al. (2012). An instance of the
TPP is a graph G = (V,E) with |V | = 3`, where ` ∈ N+

0 . A triangle
is a collection of three nodes in G such that each pair is connected
by an edge. The question that TPP asks is then: “Can the nodes of
G be partitioned into ` disjoint sets V1, V2, . . . , V` each containing
exactly 3 nodes, such that each of these Vi is the node set of a
triangle in G?”.

We transform an arbitrary instance of TPP into an instance of
the CSP-3. Each node in G will correspond to a talk in CSP-3, i.e.
X := V . We set P := {(i, j) : i, j ∈ V, i 6= j, (i, j) /∈ E}. Next, for
all p ∈ P , say p = (i, j), we have

q(p)x =
{

1 if x = i or x = j,

0 otherwise.

Informally, for every non-existing edge in the instance of TPP, we
have a participant in CSP-3 who wishes to see the corresponding
two talks. This completely specifies an instance of CSP-3.
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Suppose the instance of TPP is a yes-instance. Then, by defini-
tion, ` disjoint triangles must exist in G. The three vertices of each
triangle correspond to three talks that we schedule simultaneously,
i.e., in parallel. Next, the parallel talks are assigned to timeslots in
any order. Note that no participant misses a talk, since no partici-
pant exists that wishes to see two (or more) talks from the triple of
talks scheduled in parallel. Thus, the resulting instance of CSP-3
is a yes-instance. Conversely, suppose that we have a yes-instance
of the decision variant of CSP-3. Hence, we know which talks are
scheduled in parallel. From this, we easily find a partition into
triangles: simply select the nodes corresponding to the parallel talks
as the nodes of a triangle. These nodes must correspond to triangles
in G, because otherwise there would have been a missed attendance.
From this it follows that CSP-n is NP-hard for n ≥ 3.

This complexity result is tight, in the sense that CSP-n is NP-
hard even if each participant has only 2 preferred talks in his/her
profile (and the problem becomes trivial if each participant has at
most one preferred talk). Furthermore, our result strengthens the
result that the preference conference optimization problem (PCOP)
is NP-hard by Quesnelle and Steffy (2015). Indeed, their result is
based on the presence of room and presenter availabilities, while in
CSP-n every talk can be allocated to any timeslot.

4.5 Method

In this section we will explain a hierarchical three-phased approach
to scheduling conferences. In the first phase (see Section 4.5.1),
we maximize total attendance, based on the participants’ profiles,
i.e., we solve CSP-n. In the second phase, we seek to minimize
the number of session hops, given that total attendance is maximal
(see Section 4.5.2). Finally, in a third phase, we take into account
presenter availabilities. We do this by minimizing the number of
violated availability constraints, while fixing the total attendance
and number of session hops at the levels obtained in the previous
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two phases (see Section 4.5.3).

4.5.1 Phase 1: maximizing total attendance

It should be obvious that maximizing total attendance is equivalent
to minimizing total missed attendance. Informally, it is best to
avoid scheduling talks that are on a same profile in parallel, but we
still need to join talks together in a tuple.

Let H denote the set of all n-tuples consisting of distinct talks,
H ⊆ Xn. For each e ∈ H, we set ce := ∑

p∈P max{0,∑i∈e q(p)i − 1}.
In words: the coefficient ce denotes the total missed attendance if
the talks in the n-tuple e are scheduled in parallel. Notice that
the coefficients ce are in fact a generalization of the conflict matrix
used in Le Page (1996). Indeed, the conflict matrix indicates the
missed attendance at the level of a session if two talks are scheduled
in parallel sessions, while our coefficient does the same for any n
parallel talks.

Next, we set up an integer programming model using the binary
variable xe which is 1 if and only if all talks in n-tuple e are planned
in parallel.

min
∑
e∈H

cexe (4.1)

s.t.
∑

e∈H:i∈e

xe = 1 ∀ i ∈ X (4.2)

xe ∈ {0, 1} ∀ e ∈ H (4.3)

Clearly, the objective function, Equation 4.1, minimizes missed
attendance. The first set of constraints, Equation 4.2, ensures that
every talk is included in exactly one n-tuple. Finally, Equation 4.3
indicates that our decision variables xe are binary.

4.5.2 Phase 2: minimizing session hopping

Recall that an n-tuple refers to n talks that will take place in parallel.
Phase 1 gives us |T | = |X|

n such n-tuples; we use H∗ to denote the
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set of selected n-tuples from phase 1. Here, in phase 2, our goal is
to assemble these n-tuples into so-called k-blocks. Recall that, in
line with the terminology introduced in Section 4.3, a k-block can
be seen as an ordered set of k ordered n-tuples, thereby yielding n
parallel sessions, each session consisting of k consecutive talks.

Consider a set of k n-tuples found in phase 1, say e1, e2, . . . , ek.
Clearly, there are different ways to organize a set of k n-tuples into
a k-block: one can permute the sequence of n-tuples e1, e2, . . . ,
ek, as illustrated in Figure 4.2, and one can permute the n talks
within each n-tuple ei, as illustrated in Figure 4.3. In total this
gives k!(n!)k possibilities, i.e., given a set of k n-tuples, there are
k!(n!)k distinct k-blocks corresponding to that set.

Figure 4.2: Permuting two 3-tuples (rows) in a 3-block.

Figure 4.3: Permuting two talks in a 3-tuple.

We remark here that some permutations are equivalent with
respect to session hopping. Indeed, we need not consider permu-
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tations obtained by (i) reversing the order of the n-tuples, or (ii)
changing the order of the talks in the first n-tuple.

We now define the hopping number of a participant in a k-block
as the minimum number of session hops needed by that participant
to attend the maximum number of talks in this k-block (s)he is
interested in. We find the hop coefficient of a k-block by summing
the corresponding hopping numbers over all participants.

Session

Talk 1

Talk 2

Talk 3

Session

1 2 3

Talk 1

Talk 2

Talk 3

1 2 3

Talk 1

Talk 2

Talk 3

1 2 3

Talk 1

Talk 2

Talk 3

1 2 3

0 session hops

0 session hops

1 session hop

2 session hops

Figure 4.4: Four session hopping examples using 3-blocks.

Figure 4.4 illustrates this using a 3-block with three parallel
sessions, and a number of profiles as examples. The top left example
shows that the participant is interested in the first and last talk in
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session 1. The hopping number for this profile will therefore be 0, as
indicated by the full line; the participant can stay in session 1 and not
miss any of his/her preferred talks. The top right example shows the
profile of a participant interested in the first talk in session 2 and the
last talk in session 1. In order to attend both talks, this participant
will have to switch rooms exactly once, leading to a hopping number
of 1. There are two alternative ways this participant can switch,
one is indicated using the full line, the other using the dashed line.
Similarly, in the bottom left example, a participant with this profile
will have to switch exactly twice to attend all talks of his or her
interest, as indicated by the full line. The final example, on the
bottom right, shows a profile and a k-block where at a particular
moment in time, more than one talk of interest is planned. In that
case, we assume that the participant chooses talks such that (s)he
can attend the maximum number of talks of his/her interest, while
minimizing the number of required session switches. In the bottom
right example this means that the participant will choose to stay in
session 1 for the second talk, as indicated by the full line, instead of
switching to session 3 and then back to session 1.

In the following subsections, we describe two ways of actually
constructing the k-blocks from the given n-tuples from phase 1: an
exact approach and a heuristic approach. The exact approach refers
to the fact that, given the set H∗, a solution is computed for which
the sum of the hop coefficients is minimum. The heuristic approach
is an approach where an approximation of the hopping number is
used, and hence, no guarantee of optimality can be given. However,
the heuristic approach will be very efficient computationally.

Exact dynamic programming approach

For each block consisting of n parallel sessions of length k, we can
determine the minimum number of hops required by a participant p
using a dynamic programming algorithm.

We define the set N = {1, . . . , n} as the set of parallel sessions,
indexed by j, and we define the binary indicator A(t, j) which equals
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1 if the profile of participant p indicates that (s)he would like to
attend the talk in session j during the t’th timeslot of this block,
and zero otherwise. Let H(t, j) be the minimum number of hops
required by participant p in order to attend the talk in session
j during the t’th timeslot, while also attending a talk of his/her
preference during each of the timeslots 1, . . . , t− 1 for which at least
one talk is preferred by this participant. We can express the hopping
number for participant p in this block b as follows:

Hb
p = min

j∈N :
A(x,j)=1

H(x, j),

where x is the latest timeslot in the block for which this partici-
pant has at least one preferred talk. If a participant does not have
a preference for any of the talks in a block b, then Hb

p = 0.
It is trivial to see that H(1, j) = 0 for all j ∈ N . Furthermore,

it is not difficult to argue that a participant, in order to obtain a
minimum number of hops up to timeslot i, should not switch from
their current session (say j) to a different session (say j′) unless
in timeslot t (s)he has a preference for a talk in session j′, while
having no preference for the talk in session j. We use ∆j,j′ with
j, j′ ∈ N as a binary indicator, which is 0 if j′ = j and 1 if j′ 6= j.
More formally, the following recursion holds for i > 1:

H(t, j) =


H(t− 1, j) if

∑
j′∈N

A(t− 1, j′) = 0

min
j′∈N :

A(t−1,j′)=1

(H(t− 1, j′) + ∆j,j′) if
∑

j′∈N

A(t− 1, j′) 6= 0

The above implies that, for each participant p and for each
block b, the hopping number can be determined using a dynamic
programming algorithm. Thus, for each set of k n-tuples, we can
compute a k-block b that minimizes the hop coefficient. The resulting
value is denoted by wb and represents the total number of session
switches that will result from having this block b as part of the
conference schedule.
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We give an example that demonstrates how the recursion works
for a particular participant.

Example 6. Consider a 7-block with 4 parallel sessions. Suppose a
participant has preferences A(t, j) as depicted in the left of Figure 4.5.
First note that the last preference occurs in the row corresponding to

H(t, j)A(t, j)
1 2 3 4 1 2 3 4

1

2

3

4

5

6

7
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1

1
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1

0 0 0 0

0 0 0
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2
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3

3

2

2

3

3

2

2

0

0 0 0

0

00

0 0 0 0

000

0 0 0 0

t

j j

t

Figure 4.5: An example of the hop calculating recursion.

t = 6. This means that we can skip t = 7. Calculating the number
of hops for t = 1 is trivial: no hops are required since this is the
start of the 7-block. There are, however, three talks of interest to the
participant. At t = 2, there is exactly one talk of interest available.
Because there was at least one talk of interest at t = 1, we need to
check whether a hop is required. Indeed; no matter which talk of
interest is followed at t = 1, one hop is required. At t = 3, there
are three talks of interest. Note however, that at t = 2 there was
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exactly one talk of interest, hence that will be the starting point.
This results in an extra hop for the talks at j = 1 and j = 3, but
not for the talk at j = 2. Moving on to t = 4, we find two talks of
interest. Our starting point, however, is still j = 2 because it has
the lowest number of hops. This results in extra hops for the talks
of interest at t = 4. At t = 5 there are no talks of interest available.
The lowest number of hops at t = 4, where there is a talk of interest,
is 2. We keep this number of hops in the same column, but add a
hop to all different columns. At t = 6, there is again one talk of
interest. There was no talk of interest at t = 5, so we can copy the
numbers of the previous row.

The resulting path for the participant that minimizes the number
of required hops, while maximizing the number of talks of interest
that, is now as follows. At t = 1, the participant can choose between
the talks at j = 1, 2 or 3. At t = 2, the participant moves to j = 2,
which is the first hop. At t = 3, the participant stays at j = 2. Note
that, even though there are two other talks of interest at this time,
there is no other choice available. Next, at t = 4, the participant
moves to j = 1 or j = 4; both are equivalent with respect to the
number of hops. In fact, this will be the second hop. At t = 5, the
participant stays in the same room as t = 4. Finally, at t = 6 the
participant moves to j = 2, which is the last hop.

We now build an integer programming model to minimize the
number of session hops. We use B(k) to denote the set of k-blocks
(k ∈ K); recall from Section 4.3 that the format of the conference
(rk) is given. Let B = ∪k∈KB(k), further, we write e ∈ b to denote
that block b contains e as an n-tuple. The binary variable yb equals
1 if and only block b is included in the schedule.
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min
∑
b∈B

wbyb (4.4)

s.t.
∑

b∈B(k)
yb = rk ∀ k ∈ K (4.5)

∑
b∈B:e∈b

yb = 1 ∀ e ∈ H∗ (4.6)

yb ∈ {0, 1} ∀ b ∈ B (4.7)

The objective function minimizes the number of hops over all
k-blocks. The first set of constraints, Equation 4.5, ensure that we
select the proper number of each k-block, according to the conference
format. Equation 4.6 makes certain that every n-tuple (input from
phase 1) is used exactly once. The final constraint set enforces that
our decision variables yb are binary.

Heuristic Approach

We now give an informal description of a heuristic that we used to
construct the required k-blocks. For ease of exposition, we assume
first that we need only 2-blocks or only 4-blocks; later, we will
indicate how to modify the method when k-blocks with other values
of k are required as well. Recall that we are given |T | n-tuples from
phase 1. Let us now build a complete, undirected, edge-weighted
graph G = (V,E) as follows: there is a node in V for each e ∈ H∗.
The cost of a pair of nodes in V that correspond to, say, e1, e2 ∈ H∗,
is computed as follows. Consider a pair of talks i and j such that
talk i is from n-tuple e1, and talk j is from n-tuple e2. We count
the number of participants that (i) wish to attend talk i, and do
not wish to attend talk j but wish to attend some other talk from
n-tuple e2, and (ii) wish to attend talk j, and do not wish to attend
talk i but wish to attend some other talk from n-tuple e1. In this
way we have identified the number of participants that will incur a
hop when talks i and j are scheduled consecutively in a same session
- let us call this number di,j . We compute this number for every
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pair of talks, where one talk is from e1, and the other talk is from
e2, leading to n2 di,j numbers. To compute the cost for the edge
in G between nodes in V that correspond to e1 and e2, we solve
an assignment problem based on these di,j numbers. Indeed, the
resulting solution value of this assignment problem is the cost of
the edge in V between the n-tuples e1 and e2; in addition, there is
an optimal assignment of talks known in case this edge from G is
selected. Having built the graph G, we now compute a minimum
cost perfect matching in this graph, giving us pairs of n-tuples, i.e.,
2-blocks. Notice that in case the schedule would consist of 2-blocks
only, the heuristic could stop here. We now proceed by applying
the procedure recursively: we consider each pair of n-tuples as an
entity by itself. That is, we now build a graph, say G′, where each
pair of n-tuples just found corresponds to a node in V ′. Again, we
solve an assignment problem to find the cost of selecting a pair of
2-blocks in G′. More precise, given two pairs of 2-blocks (e1, e2) and
(e3, e4), there are exactly four ways in which we can concatenate
them: (e1, e2, e3, e4), (e1, e2, e4, e3), (e2, e1, e3, e4) and (e2, e1, e4, e3).
For each of these four ways, we solve an assignment problem based
on the (known) attendance in the second and third n-tuple. We keep
the solution which has the smallest cost as the cost of an edge in G′.
Now we compute a minimum cost perfect matching in G′, giving us
pairs of 2-blocks, i.e., 4-blocks, and we have found a solution.

It is clear that the cost that we base our computations on, is in
fact an approximation of the true hopping coefficients. This means
that the outcome of the heuristic is not necessarily leading to a
solution with a minimum number of hops. Observe that the method
is efficient: in order to compute all cost coefficients, we need to solve

O(
(
|T |
n

)
) assignment problems of size n× n (where, in practice, n

will be small), and two minimum cost matching problems.
Let us finally indicate how to modify the method when k-blocks

for other values of k need to be found – we assume that k ∈ {2, 3, 4},
as is the case for all conferences we encountered. First, we run the
heuristic as described. We select from the resulting solution the r4
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best 4-blocks. Next, we remove these n-tuples from the instance,
and run the first step of the heuristic to find a set of 2-blocks. We
select the best r2 blocks, and remove the corresponding n-tuples
from the instance. Then we add r3 dummy n-tuples to the instance,
where a dummy n-tuple corresponds to a node in V that has zero
cost to each non-dummy n-tuple, and a high cost to another dummy
node. Solving a minimum cost matching in G results in 2r3 2-blocks,
which we use to construct G′. However, we assign a high cost to
edges between two 2-blocks that both have a dummy n-tuple, and
of the four ways in which two pairs can be concatenated, we only
consider options where the dummy n-tuple is in the first or the last
position. Computing a minimum cost matching in G′ results in r3
4-blocks containing a single dummy n-tuple, which we can remove
to arrive at a solution with the prescribed number of 3-blocks.

4.5.3 Phase 3: presenter availabilities.

In this phase, we assign the blocks found in Phase 2 to timeslots
while minimizing the number of violated speaker availabilities. As
the order of the talks within a block has been settled, this phase
will assign each selected k-block, and hence each talk, to a timeslot.
We define TS ⊆ T as the set of timeslots that correspond to session
starting times. The number of violated availabilities if block b is
assigned to timeslot t ∈ TS is denoted by ub,t, and can easily be
computed from known presenters availabilities. We use an assign-
ment based integer programming formulation where zb,t = 1 if block
b is scheduled to start in timeslot t ∈ TS , and 0 otherwise.

min
∑

b

∑
t

ub,tzb,t (4.8)

s.t.
∑

b

zb,t = 1 ∀ t ∈ TS (4.9)∑
t

zb,t = 1 ∀ b ∈ B (4.10)

zb,t ∈ {0, 1} ∀ b ∈ B, t ∈ TS (4.11)
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The objective function minimizes the total number of violated
availabilities. The first set of constraints, Equation 4.9, ensures that
every timeslot at which sessions start gets assigned one block. The
second set of constraints, Equation 4.10, ensures that every block is
assigned exactly once. Finally, we enforce our variables zb,t to be
binary.

After phases 1, 2 and 3, we have composed the schedule for
the conference. Now it is easy to see how a personalized optimal
itinerary can be constructed for every participant. By constructing
the k-blocks for the second phase, we already know the maximum
number of preferred talks each participant can attend in every k-
block, as well as how many session hops are required in order to
actually attain that attendance. As a result, we can simply combine
this information with the timeslots that were chosen in Phase 3 to
present each participant with an individual itinerary.

4.6 Practical applications

In this section we will apply our three-phased conference scheduling
approach to four practical cases: MathSport International (2013),
MAPSP (2015 and 2017), and ORBEL (2017). These are medium-
sized conferences with 2, 3, and 4 parallel sessions respectively. For
each of these conferences, we sent an e-mail to all registered partici-
pants enquiring each participant for his/her profile. Figures 4.6 and
4.7 show boxplots of the number of preferences given per participant
and the number of preferences per talk respectively. One observation
is that for ORBEL, a conference with talks covering a wide variety of
topics, there were fewer preferences given by participants, and fewer
preferences per talk compared to MathSport and MAPSP, which
are more focused on specific topics. These (anonymous) profiles are
publicly available1. The schedule obtained by applying our method
was adopted by the conference organizers in each case. Furthermore,

1Data can be found at the following URL:
http://feb.kuleuven.be/public/u0093797/cspinstances.zip
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based on the profiles, we were able to select suitable session chairs for
each session. Indeed, for each session we selected chairs among the
participants that had expressed an interest for a maximal number
of talks in that session.

0 10 20 30 40 50 60

ORBEL 2017

MAPSP 2017

MAPSP 2015

MathSport 2013

Figure 4.6: Box plots of preferences/participant.

4.6.1 MathSport 2013

MathSport International is a biennial conference dedicated to all
topics where mathematics and sport meet. The fourth edition was
organized in Leuven (Belgium) on June 5-7, 2013 and attracted
76 talks (apart from 3 keynote talks) and 97 participants. The
conference featured two parallel sessions, and consisted of five 4-
blocks and six 3-blocks.

Our preference elicitation resulted in 68 nontrivial profiles (a
response rate of 70%), amounting to 1279 indicated preferences in
total.

The first phase of scheduling MathSport, maximizing attendance,
is an instance of CSP-2, which can be solved as a minimum weight
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Figure 4.7: Box plots of preferences/talk.

perfect matching problem (see Theorem 4.1). For each pair of talks,
the weight of an edge boils down to the number of participants
that want to attend both talks. However, we had 4 speakers pre-
senting two talks. These pairs of talks could obviously not be part
of the matching, which we enforced by giving them a very high
weight. We tackled this phase using a straightforward IP formula-
tion. The optimal solution involved 42 scheduling conflicts, allowing
the participants to attend 96.7% of the talks in their profile on
average.

The MathSport 2013 conference was characterized by several
presenter availability restrictions. Specifically, 10 talks could not
be scheduled on given days, and for 2 other talks only 1 particular
timeslot was acceptable. Hence, we gave priority to phase 3 over
phase 2, meaning that we first grouped the pairs of talks into
parallel sessions, for which the starting times were already set (using
a slightly modified version of formulation (4.8)-(4.11)). The result
was a timetable that did not violate any presenter unavailability.
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Finally, we needed to decide for each group of paired talks to
which session — the one in room A or the one in room B — the
talks should be assigned, and in what order. As the capacity of
both rooms was identical, minimizing session hopping was the only
concern. Since there are only 8 (4) ways to organize a group of 4(3)
pairs of talks into sessions, and 24 (6) different orders of these pairs
within a session of 4(3) talks, this step took near-zero computation
time.

4.6.2 MAPSP 2015 and MAPSP 2017

The workshop on Models and Algorithms for Planning and Schedul-
ing Problems (MAPSP) is a biennial conference dedicated to schedul-
ing, planning, and timetabling. The 12th edition of MAPSP was
held on June 8-12 2015 in La Roche-en-Ardenne (Belgium) and the
13th edition was held on June 12-16 in Seeon-Seebruck (Germany).
Both conferences featured three parallel series of sessions, spread
over five days.

Specifically for MAPSP 2015, there were eight 3-blocks and three
2-blocks available for scheduling talks, leading to a total capacity
for talks of 90. The MAPSP program committee accepted 88 talks,
to which we added 2 dummy talks (corresponding to empty spaces
in the conference schedule) in order to match the capacity. For
MAPSP 2017, there were 87 talks, to be scheduled in seven 3-blocks
and four 2-blocks.

We collected 78 nontrivial profiles for MAPSP 2015 and 58 for
MAPSP 2017. The total number of indicated preferences were 1576
and 1799 respectively for MAPSP 2015 and 2017.

The first phase of scheduling MAPSP, maximizing attendance,
is an instance of CSP-3. Remembering the coefficient ce, as defined
in Section 4.5.1, we have for each triple (3-tuple) of distinct talks
i, j, k ∈ X the number of missed attendance if talks i, j and k are
scheduled in parallel: ci,j,k. Note that this is easily computed using
the profiles, as indicated in Section 4.5.1.

We used formulation (4.1)-(4.3), which for MAPSP 2015 amounts
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to
(90

3
)

= 117480 variables and 90 constraints, and for MAPSP 2017
amounts to

(87
3
)

= 105995 variables and 87 constraints. For MAPSP
2015, we obtained an optimal objective value of 155. Equivalently,
the obtained triples allowed the participants to attend 1421 of the
1576 preferred talks according to the profiles. For MAPSP 2017,
the optimal objective value was 478.

In the second phase of scheduling MAPSP, our goal is to assemble
the triples into 3-blocks and 2-blocks such that session hopping is
minimized. Recall that a 3-block, as well as a 2-block, consists of
three parallel sessions, each taking place in a different room. The
optimal objective value of the second phase is 120 for MAPSP 2015,
which is the total number of hops for all participants. For MAPSP
2015, the minimum number of hops was 145.

Note that in order to arrive at a schedule, there is still freedom in
the allocation of sessions to rooms. Indeed, the allocation of sessions
to rooms does not influence the attendance or the number of session
hops. This allows us to take the room capacity into account to
some extent. In Section 4.5 we assumed that the rooms have infinite
capacity. The available rooms at the MAPSP 2015 conference each
had a different (and finite) capacity: these capacities equaled 170,
100 and 40 seats. So, with the three sessions of each 3- and 2-block
known, we used the following strategy to allocate sessions to rooms.
First, find in each session the talk with the largest number of votes,
i.e., the talk i with maximum vi. The session for which this number
is minimal goes to the smallest capacitated room. Next, for the two
remaining sessions, we sum the vi’s of the talks in each session, and
put the session with the largest sum in the largest room. This system
of allocation offers no hard guarantee that the room capacities are
respected. However, it turned out that, using the system described
above, room capacity was not an issue.

Finally, in the third phase, we need to identify a talk with a
speaker and take into account the various availabilities of speakers in
order to assign 2-blocks and 3-blocks to timeslots. For MAPSP 2015
a total of 13 speakers had availability restrictions (i.e. not being
available on certain days), whereas MAPSP 2017 only had 4 speaker
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restrictions. This phase was easily handled by solving formulation
(4.8)-(4.11). The solution resulted in schedules respecting all speaker
availabilities, which were then implemented for MAPSP 2015 and
2017.

4.6.3 ORBEL 2017

ORBEL is the annual conference of the Belgian Operational Research
Society, and serves as a meeting place for researchers working in
Operational Research, Statistics, Computer Science and related
fields. ORBEL 2017 took place February 2-3 2017 in Brussels
(Belgium), and was the 31st edition of ORBEL. It featured four
parallel series of sessions, spread over two days. Specifically, a total
of one 2-block, two 3-blocks, and three 4-blocks were available to
schedule talks, leading to a total capacity of 80 talks, which exactly
corresponds to the number of accepted talks.

We collected 101 non-trivial profiles from 140 participants, lead-
ing to a total of 1200 indicated preferences.

The first phase of scheduling ORBEL, which maximizes atten-
dance, corresponds to an instance of CSP-4. This leads to a total
of
(80

4
)

= 1581580 quadruples (4-tuples). However, not all these
quadruples were feasible and hence needed to be filtered out. 30 out
of 80 talks were classified as being ‘COMEX talks’. The organizing
committee requested that the schedule ensures sessions consisting
of only COMEX talks, such that the number of parallel COMEX
sessions is minimal. Hence, we kept quadruples that had exactly 1
or 2 COMEX talks in parallel. In addition, 4 particular talks were
to be grouped in an ‘ORBEL Award’ session. As they could not be
scheduled in parallel, we filtered out all quadruples containing 2 or
more such ORBEL Award talks. One of the jury members of the
ORBEL Award also gave a talk at ORBEL, and hence could not
be scheduled in parallel with ORBEL Award talks. Two presenters
each had two talks, which could consequently not be in the same
quadruple. Finally, 9 participants could not be present on Friday,
which was the day the ORBEL Award took place. In other words:
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the talks of these participants were not scheduled in parallel to the
ORBEL Award talks. In the end, we ended up with 889573 feasi-
ble quadruples, a significant reduction from the 1581580 possible
quadruples. We used formulation (1)-(3), and quickly found an opti-
mal solution with objective value 100. In other words: participants
could see 1100 of their 1200 preferred talks.

In the second phase of scheduling ORBEL, we assembled the 20
quadruples resulting from phase 1 into one 2-block, two 3-blocks and
three 4-blocks in a way that minimizes session hopping, that ensures
COMEX talks are together in 1 or 2 parallel sessions, and that groups
the ORBEL Award talks in a single session. This resulted in an
optimal solution of 281, the total number of hops for all participants,
such that they can attend the maximum number of preferred talks.
The most challenging aspect of exact approach of the second phase
is undoubtedly to determine a k-block with minimal session hopping
for each set of k quadruples (with k ∈ {2, 3, 4}), which took several
hours.

Finally, in the third phase, we needed to take into account
availabilities constraints in order to assign the various 2-, 3-, and 4-
blocks to specific time-slots. Using an assignment-based formulation,
similar to the one used for MAPSP, we found a schedule, respecting
all availability constraints.

4.6.4 Computation times and heuristic results

The computation times for solving the IP formulations in phase 1
and 2 for the different conferences are presented in Table 4.1. All
calculations are done using CPLEX 12.6.3 on a laptop with an Intel
Core i7-4800 MP CPU @ 2.70Ghz processor and 8 GB RAM.

The results of the exact and the heuristic approach to solve
phase 2 in terms of total number of hops are presented in Table 4.2.
Notice that the numbers reported for the heuristic are not based
on the approximated hop coefficients, but reflect the true number
of hops. The quality of the heuristic is acceptable, with solution
quality varying between 1 and 2.43 times the optimum. While the
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Phase 1 Phase 2
MathSport 2013 0.05 0.06
MAPSP 2015 3.89 0.12
MAPSP 2017 3.53 0.11
ORBEL 2017 61.03 0.03

Table 4.1: Computation times (in seconds).

dynamic programming approach does not scale well with the size of
the conference, the required computation times for the heuristic are
always 1 second or less.

Exact Heur Heur/Exact
MathSport 2013 141 141 1.00
MAPSP 2015 120 292 2.43
MAPSP 2017 145 207 1.43
ORBEL 2017 281 344 1.22

Table 4.2: Hop results for exact and heuristic approach.

4.7 Conclusions

In this chapter, we argue that conference scheduling is an important
and relevant problem. Indeed, conferences require significant invest-
ments (time, money) from participants, which strongly motivates
a good schedule. We identify the Conference Scheduling Problem,
where the goal is to maximize total attendance based on given pref-
erences of the speakers. This problem is shown to be easy in case
of two parallel sessions, and becomes NP-hard for three or more
parallel sessions. The main motivation for this research however,
comes from a pragmatic origin: scheduling actual conferences. We
describe how we applied our three phase scheduling method to four
different conferences, MathSport 2013, MAPSP 2015 & 2017 and
ORBEL 2017, and discuss these cases extensively.



4.7. CONCLUSIONS 131

A possible consequence of our method could be that the resulting
sessions are incoherent, since their composition is based solely on
participant preferences, and not on the topic of the talk. However,
as the profiles of the participants tend to contain talks on similar
topics, the resulting sessions are still relatively coherent.

Another concern is that the current approach does not treat all
participants equally. By preferring many talks, a participant may
have a larger impact on the conference schedule than a participant
with a small number of preferences. This can be remedied by giving
an appropriate weight to the preferences of each participant, or
limiting the number of preferences each participant can express to
e.g. the number of timeslots of the conference.

A final issue is the scalability of our approach. Although our
method has been developed for medium-size conferences, the ques-
tion arises to what extent it scales to much larger conferences. This
is relevant both when eliciting participants’ preferences, as well as
computationally. The latter can be accommodated by solving the
second phase using our heuristic approach, as the bottleneck appears
to be the computation of the hopping coefficient for all k-blocks,
rather than solving the IP formulations. In case preference elicita-
tion is unpractical due to the high amount of talks, our approach
could be applied on the level of streams or tracks. Indeed, talks in
large conferences are often from the beginning (i.e., when submitting
an abstract) assigned to streams, and the conference schedule is
typically based on track segmentation. As not all streams cover the
full length of the conference, there would be possibilities to minimize
overlap between pairs of streams that many participants would like
to attend. Furthermore, if overlap is unavoidable, the streams could
be allocated to rooms which are close to each other, facilitating
session hopping. In fact, eliciting stream preferences would provide
a good idea of the required room capacities for each stream.





Chapter 5

Conclusion

We live on an island surrounded
by a sea of ignorance. As our
island of knowledge grows, so
does the shore of our ignorance.

John Archibald Wheeler

Combinatorial auction: theory, experiments, and practice. In
this conclusion, we will go over these contributions, while highlight-
ing possible limitations and avenues for future research.

5.1 Theory

We contributed to the theory of combinatorial auctions in chapters
2, 3 and 4. In Chapter 2, we study the winner determination
problem for a combinatorial auction with a specific but relevant
geometric structure. We argue that this structure is relevant, as
it occurs in real estate, plots of land, mineral rights, and theaters
and stadium seats. We provide computational complexity proofs for
difficult cases and present a polynomial time dynamic programming
algorithm; a tool that enables auctioneers to efficiently compute the
winning bids in several geometrical settings. The potentially too

133
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long computing times for winner determination algorithms are often
used as an argument against using combinatorial auctions (Porter
et al., 2003). Hence, finding situations where such running times
do not present an issue is important. The managerial implication
is that (private) organisations in e.g. real-estate or governments
selling licenses for oil/gas/mineral tracts might quicker consider
using a combinatorial auction. However, our results may also prove
useful for experimental research: our dynamic program will allow
researchers to study bidder behavior in larger settings, involving
more items and bidders than considered so far.

The analyses in Chapter 2 are specifically for single-minded
bidders or bids entered using an OR-bids bidding language, in a
specific geometrical setting. While this is a limitation of Chapter 2, it
immediately presents several interesting avenues for future research
here; one could look for more (practical) geometrical settings and
investigate the computational complexity, or extend the dynamic
programming algorithm to allow for XOR-bids/sub-additive private
valuations.

In Chapter 3 we propose two quantitative measures; one that
measures the coordination problem and one that measures the
threshold problem. The coordination problem arises when bidders
fail to coordinate their bids, and fail to identify packages that
are individually profitable and collectively complementary. The
threshold problem represents the next step: when the coordination
problem is essentially overcome, the problem of determining bid
prices still remains, and is in fact complicated by free-rider incentives.
Naturally, these problems are of significant practical interest. These
measures can be used to design interesting sets of private valuations
that can be used in future experiments. Also in Chapter 3, we
design coalitional feedback, which aims at helping bidders overcome
coordination and threshold problems. With feedback that can assist
bidders in tactfully considering what packages to bid on, and at
what prices, bidders can bid more effectively. This is an advantage
both for the auctioneer, who prefers an outcome with high revenue,
and the bidders, who prefer to win when they can, rather than lose
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because of a lack of information, coordination, or even understanding
of the intricacies of combinatorial bidding.

Finally, in Chapter 4, we identify the Conference Scheduling
Problem, where the goal is to maximize total attendance based on
given preferences of the speakers. This problem is shown to be easy
in case of two parallel sessions, and becomes NP-hard for three or
more parallel sessions.

5.2 Experiments
We contribute to experiments in Chapter 3. We put different types of
feedback to the test in a laboratory setting with human bidders, and
opted for the intuitive ascending combinatorial auctions. These have
the advantage of being an intuitive generalization of the traditional
English auctions, and have the added advantage that bidders need
to enter bids on all possible packages as would be the case in
most sealed-bid formats (e.g. the generalized Vickrey-Clarke-Groves
combinatorial auction). In line with Adomavicius et al. (2012), we
find that bid state feedback is a big improvement upon outcome
feedback with respect to both economic efficiency and revenue.
Building on that result, we find that coalitional feedback can improve
upon bid state feedback, leading to higher efficiencies especially when
threshold problems are difficult. Additionally, we find that in difficult
threshold cases, bidders are not insensitive to bid price suggestions
and tend to follow such suggestions readily. This is interesting, as it
appears that the free-rider aspect is at least diminished by coalitional
feedback. The closing rule for combinatorial auctions then becomes
crucial, as bidders need enough time to react to coalitional feedback.
In insurmountable threshold cases, coalitional feedback creates a
more competitive environment for the dominant package bidder,
leading to higher prices paid. In easy threshold cases, bidders also
benefit from coalitional feedback, as it allows bidders to bid in a
smarter fashion; they have a better idea of interesting bid prices
between the deadness and winning levels. This leads to higher
efficiencies, but also higher bidder profits.
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In order to increase the penetration of combinatorial auction
in (online) markets, good bidder support is important. Iterative
combinatorial auctions are an attractive combinatorial auction for-
mat because they are a natural generalisation of the well-known
English auctions. They are intuitive, and as such require less effort
for bidders to understand. In addition, iterative combinatorial auc-
tions allow for feedback to be given to bidders in a very natural way.
Further exploring coalitional feedback as a bidder tool is a promising
avenue of research, as it both reduces the complexity bidders face
with package bidding, and allows them to focus more on relevant
packages as well as guide their pricing decisions, considering both
the deadness/winning levels as well as a number of coalitions.

One major hurdle in setting up laboratory experiments with
human bidders participating in combinatorial auctions, is a technical
one. The effort required to set up such an experiment is significant.
While the field of experimental economics is becoming increasingly
important, the effort barrier may be too large for many interested
researchers. The complexity of implementing such auctions far
exceeds that what is usually done in experimental economics, as
it requires knowledge of several fields (statistics, programming,
experimental economics, etc.). Luckily there is a fine software
package (freely) available for academic use: z-Tree. However, while
this package is flexible, it still requires a lot of programming to
be able to run an actual combinatorial auction. There is a need
for a similar toolbox to z-Tree, that can easily be adapted to the
experiments combinatorial auction needs.

5.3 Practice
We contribute to practice in Chapter 4, where we describe how we
apply our three phase scheduling method to create the schedules of
four different conferences, MathSport 2013, MAPSP 2015 & 2017
and ORBEL 2017.

A possible consequence of our method could be that the resulting
sessions are incoherent, since their composition is based solely on
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participant preferences, and not on the topic of the talk. However,
as the profiles of the participants tend to contain talks on similar
topics, the resulting sessions are still relatively coherent.

Another concern is that the current approach does not treat all
participants equally. By preferring many talks, a participant may
have a larger impact on the conference schedule than a participant
with a small number of preferences. This can be remedied by giving
an appropriate weight to the preferences of each participant, or
limiting the number of preferences each participant can express to
e.g. the number of time slots of the conference.

A final issue is the scalability of our approach. Although our
method has been developed for medium-size conferences, the ques-
tion arises to what extent it scales to much larger conferences. This
is relevant both when eliciting participants’ preferences, as well as
computationally. The latter can be accommodated by solving the
second phase using our heuristic approach, as the bottleneck appears
to be the computation of the hopping coefficient for all k-blocks,
rather than solving the IP formulations. In case preference elicita-
tion is unpractical due to the high amount of talks, our approach
could be applied on the level of streams or tracks. Indeed, talks in
large conferences are often from the beginning (i.e., when submitting
an abstract) assigned to streams, and the conference schedule is
typically based on track segmentation. As not all streams cover the
full length of the conference, there would be possibilities to minimize
overlap between pairs of streams that many participants would like
to attend. Furthermore, if overlap is unavoidable, the streams could
be allocated to rooms which are close to each other, facilitating
session hopping. In fact, eliciting stream preferences would provide
a good idea of the required room capacities for each stream.
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Appendices

A Experiment instructions

In this section we present the instructions used in the laboratory
experiments, which include screenshots showing the graphical user
interface subjects used during the experiments.

Introduction and goals of the study

This is an experiment in the economics of decision making. The
goal of this research is to experimentally study decision behavior in
strategic environments. The purpose is to apply the gained insights
to better design allocation mechanisms, improving social efficiency.

The instructions are simple, and if you follow them carefully,
you can, depending on your decisions, earn a considerable amount
of money. This amount will be paid to you in cash later; you will
be informed of the details by e-mail. It is very important that you
read these instructions with care.

Procedure

The procedure of this experimental session is as follows:

1. Reading of the instructions

2. Filling in the test questions

3. Participating in a series of auctions

4. Filling in a questionnaire

The auction environment

In this experiment, we will create auction environments consisting of
9 participants; yourself along with 8 other participants. You will act
as participants in a sequence of auctions. In each auction 6 items
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are put up for sale simultaneously, and participants may submit
bids on any combination of items they want (also called “package”).

There is no relation between consecutive auctions. In
other words, each auction will be completely independent
of the previous auction(s).

The values

Each participant will be assigned private values for all possible
combinations of items. These values represent the value of the (com-
bination of) item(s) to you. By clicking on a package, your private
value for this selection will appear on the screen (see screenshot).
You are not to reveal this information to any other participant. It
is your own private information.

It is possible the value of a package of items is greater than the
sum of the values of the items in the package separately. However,
this can only occur between adjacent items.

For example, suppose the value of item 1, on its own, is 20. The
value of item 2, on its own, is 40. It is possible that the value for
the package {1,2} is equal to 100. Here, the value of the package
(100) is larger than the sum of the values of the individual items
(20+40=60).

Bids:

Each participant can bid on any combination of items. Participants
are allowed to place multiple bids every round. You are free to bid
whatever you think will bring you the most earnings, as long as this
amount does not exceed your private valuation. There is a minimum
bid increment of 1 in place. For example, you may bid a price of 26,
but not of 26.3.

Once you press the ‘Enter Bid’-button, the bid is final-
ized; it can no longer be changed or retracted.
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Round structure:

Every auction consists of successive rounds in which participants
may place bids. A round ends when all bidders indicate that they
are done entering bids for that round, or when the time limit (in
seconds) is reached. Information on the round number and the
remaining time can be found at the top of the bidding screen.

Determination of winning bids:

The winning bids are selected in such a way that the total revenue
(sum of the prices of the winning bids) for the round is maximized,
while making sure every item is sold at most once. Note that this
means one participant could possibly win more than one bid. In
case of ties among the highest bids we will randomly pick a winner
of the item.

Closing rule:

The auction closes after three consecutive rounds in which the total
auction revenue does not increase. Only bids that are winning after
the auction has closed are used to calculate auction earnings.

Bidder earnings:

Participant earnings depend on the results of the auctions. Winning
any (combination of) item(s) at a price below the private value of
those items, results in a profit. The larger this difference, the bigger
the profit. After the auctions are completed, the bidder earnings
will be calculated in detail by the experimenter.

The interface:

Screenshots of the bidder interface, along extra information, are
given in the next 3 pages. Please examine them carefully. The first
two images are from during a bidding round: here bids can entered.
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The third image is from after a bidding round: it displays the results
of a bidding round.
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Figure A.1: GUI: the bid interface.
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Figure A.2: GUI: when bidders try to bid on a package they are
currently (provisionally) winning.
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Figure A.3: GUI: display of (provisional) winning bids after a round
has finished.
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Test questions:

After reading the instructions, please fill in the questions below. The
experimenter will go over the answers to the test questions before
starting the auctions.

• Suppose your valuation for some package of items is equal to 8.
What is the maximum price you can bid on this set of items?
. . .

• Suppose the revenue of round 4 was 30. Will there be a next
round if the revenue of round 5 will be 30?
. . .

• Suppose the revenue of round 4 was 30. The revenue of round
5 was 30. Will there be a next round if the revenue of round
6 will be 30?
. . .

• Suppose you enter a bid on the package {1,2}. Are you allowed
to also enter a bid on the package {2,3} in the same round?
. . .

• Suppose you did not enter a bid on the package {1,2} in round
1. Are you allowed to enter a bid on the package {1,2} in any
following round?
. . .

• Suppose you enter a bid on the package {2,3}. Are you allowed
to enter another bid on the package {2,3} in the same round?
. . .

• After a round, is it possible that you win multiple bids?
. . .
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B Feedback explanations

This section contains the explanation used in the laboratory experi-
ments for feedback level 4 (FB4).

Winning levels

After round 1, every unique combination of selected items will have
its own winning level. The winning level represents the price required
for a bid to win, given that all other bids remain the same. Note:
even if you are provisionally winning a bid, you will still get winning
level feedback.

Example 1: you select items 1 and 2 in round 5. The displayed
winning level is 50. If you bid 50 on items 1 and 2, and nobody else
makes a bid this round, you are sure to win items 1 and 2 for 50.

Example 2: you select items 2 and 3 in round 4. The displayed
winning level is 45. If you bid 40 on items 2 and 3, and nobody else
makes a bid this round, your bid of 40 on items 2 and 3 will not
become winning.

Example 3: you select items 1, 2, and 3 in round 6. The
displayed winning level is 100. Other bidders entered bids in round
6. Even if you bid more than 100 on items 1, 2, and 3, there is no
guarantee your bid will become winning.

Example 4: in round 3, you have a provisional winning bid
on item 1 with a price of 75. In round 4, if you select item 1, the
displayed winning level will be 75.

Deadness levels

After round 1, every unique combination of selected items will have
its own deadness level. The deadness level represents the minimum
price required for a bid to ever be able to become winning, given
that all other bids remain the same.

Example 1: you select items 1 and 2 in round 5. The displayed
deadness level is 50. If you bid 50 on items 1 and 2, and nobody
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else makes a bid this round, your bid could still become winning in
a future round.

Example 2: you select items 2 and 3 in round 4. The displayed
deadness level is 45. If you bid 40 on items 2 and 3, your bid of 40
on items 2 and 3 will not become winning.

Example 3: you select items 1, 2, and 3 in round 6. The
displayed deadness level is 100. Even if you bid more than 100 on
items 1, 2, and 3, there is no guarantee your bid will ever become
winning.

Coalitional feedback with suggestion

Coalitional feedback can appear if there are multiple bids that
can become winning together, thus beating the currently winning
bids, given that all bids outside of the coalition remain the same.
Coalitional feedback is, when available, given in the following format:

“If x bids, including this one, are collectively raised by
y, these x bids become winning. We suggest you bid z.”

The word collectively is important here: all x bids have to
increase their current bids by a total of y to beat the currently
winning allocation. If every bid is increased to z, as suggested, those
bids become winning together.

All bids in a coalition receive a similar message.
Note that it is possible to receive multiple such messages for a

single bid.

The interface

A screenshots of the bidder interface and where the feedback is
located is given on the following page.
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Figure B.1: GUI: FB4 message for a bid.
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C Design of experiment
The experimental design is presented in Table C.1. A total of 192
auctions were held. An experimental session consists of 4 groups,
one for every level of the factor Structure. Every group in an
experimental session is called an experimental unit. An experimental
unit consists of a series of 4 consecutive auctions with the same
participants, and there is 1 auction per unique feedback level. Every
session requires 27 subjects (one experimental unit consisting of 4
subjects, two experimental units consisting of 7 subjects, and one
experimental unit consisting of 9 subjects), hence the total number
of required participants for 12 sessions is 324.

The design is between-subject for the factor Structure, and
within-subject for the factors threshold and feedback. In addition,
all 24 permutations of the 4 feedback levels occur exactly twice, all
threshold levels occur at least once per experimental unit and any
two consecutive threshold levels within an experimental unit are
distinct. Unfortunately, due to a programming error the balance in
STR4 was lost. Specifically, in the STR4 experimental units, every
time a CT level of 3 occurs, in reality a private value set with a
CT value of 2 was used. In other words, we test more ‘difficult’
threshold cases, and less ‘easy’ threshold cases for STR4. These
occurrences are indicated in the table using boldface.
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