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Abstract

In this paper, we introduce the novel con-
cept of densely connected layers into re-
current neural networks. We evaluate
our proposed architecture on the Penn
Treebank language modeling task. We
show that we can obtain similar perplex-
ity scores with six times fewer parame-
ters compared to a standard stacked 2-
layer LSTM model trained with dropout
(Zaremba et al., 2014). In contrast with
the current usage of skip connections, we
show that densely connecting only a few
stacked layers with skip connections al-
ready yields significant perplexity reduc-
tions.

1 Introduction

Language modeling is a key task in Natural Lan-
guage Processing (NLP), lying at the root of many
NLP applications such as syntactic parsing (Ling
et al., 2015), machine translation (Sutskever et al.,
2014) and speech processing (Irie et al., 2016).

In Mikolov et al. (2010), recurrent neural net-
works were first introduced for language model-
ing. Since then, a number of improvements have
been proposed. Zaremba et al. (2014) used a
stack of Long Short-Term Memory (LSTM) lay-
ers trained with dropout applied on the outputs
of every layer, while Gal and Ghahramani (2016)
and Inan et al. (2017) further improved the per-
plexity score using variational dropout. Other im-
provements are more specific to language model-
ing, such as adding an extra memory component
(Merity et al., 2017) or tying the input and out-
put embeddings (Inan et al., 2017; Press and Wolf,
2016).

To be able to train larger stacks of LSTM lay-
ers, typically four layers or more (Wu et al., 2016),

skip or residual connections are needed. Wu et al.
(2016) used residual connections to train a ma-
chine translation model with eight LSTM layers,
while Van Den Oord et al. (2016) used both resid-
ual and skip connections to train a pixel recurrent
neural network with twelve LSTM layers. In both
cases, a limited amount of skip/residual connec-
tions was introduced to improve gradient flow.

In contrast, Huang et al. (2017) showed that
densely connecting more than 50 convolutional
layers substantially improves the image classifica-
tion accuracy over regular convolutional and resid-
ual neural networks. More specifically, they intro-
duced skip connections between every input and
every output of every layer.

Hence, this motivates us to densely connect all
layers within a stacked LSTM model using skip
connections between every pair of layers.

In this paper, we investigate the usage of skip
connections when stacking multiple LSTM layers
in the context of language modeling. When every
input of every layer is connected with every output
of every other layer, we get a densely connected
recurrent neural network. In contrast with the cur-
rent usage of skip connections, we demonstrate
that skip connections significantly improve perfor-
mance when stacking only a few layers. Moreover,
we show that densely connected LSTMs need
fewer parameters than stacked LSTMs to achieve
similar perplexity scores in language modeling.

2 Background: Language Modeling

A language model is a function, or an algo-
rithm for learning such a function, that captures
the salient statistical characteristics of sequences
of words in a natural language. It typically al-
lows one to make probabilistic predictions of the
next word, given preceding words (Bengio, 2008).
Hence, given a sequence of words [w1, ...wT ], the



goal is to estimate the following joint probability:

Pr(w1, ..., wT ) =
T∏
t=1

Pr(wt|wt−1, ..w1) (1)

In practice, we try to minimize the negative log-
likelihood of a sequence of words:

Lneg(θ) = −
T∑
t=1

log(Pr(wt|wt−1, ..w1)). (2)

Finally, perplexity is used to evaluate the perfor-
mance of the model:

Perplexity = exp

(
Lneg(θ)

T

)
(3)

3 Methodology

Language Models (LM) in which a Recur-
rent Neural Network (RNN) is used are called
Recurrent Neural Network Language Models
(RNNLMs) (Mikolov et al., 2010). Although there
are many types of RNNs, the recurrent step can
formally be written as:

ht = fθ(xt,ht−1) (4)

in which xt and ht are the input and the hidden
state at time step t, respectively. The function fθ
can be a basic recurrent cell, a Gated Recurrent
Unit (GRU), a Long Short Term Memory (LSTM)
cell, or a variant thereof.

The final prediction Pr(wt|wt−1, ..w1) is done
using a simple fully connected layer with a soft-
max activation function:

yt = softmax(Wht + b). (5)

Stacking multiple RNN layers To improve per-
formance, it is common to stack multiple recurrent
layers. To that end, the hidden state of a a layer l
is used as an input for the next layer l+ 1. Hence,
the hidden state hl,t at time step t of layer l is cal-
culated as:

xl,t = hl−1,t, (6)

hl,t = fθl(xl,t,hl,t−1). (7)

An example of a two-layer stacked recurrent neu-
ral network is illustrated in Figure 1a.

However, stacking too many layers obstructs
fluent backpropagation. Therefore, skip connec-
tions or residual connections are often added. The
latter is in most cases a way to avoid increasing the

size of the input of a certain layer (i.e., the inputs
are summed instead of concatenated).

A skip connection can be defined as:

xl,t = [hl−1,t;hl−2,t] (8)

while a residual connection is defined as:

xl,t = hl−1,t + hl−2,t. (9)

Here, xl,t is the input to the current layer as de-
fined in Equation 7.

Densely connecting multiple RNN layers In
analogy with DenseNets (Huang et al., 2017), a
densely connected set of layers has skip connec-
tions from every layer to every other layer. Hence,
the input to RNN layer l contains the hidden states
of all lower layers at the same time step t, includ-
ing the output of the embedding layer et:

xl,t = [hl−1,t; ...;h1,t; et]. (10)

Due to the limited number of RNN layers, there
is no need for compression layers, as introduced
for convolutional neural networks (Huang et al.,
2017). Moreover, allowing the final classification
layer to have direct access to the embedding layer
showed to be an important advantage. Hence, the
final classification layer is defined as:

yt = softmax(W [hL,t; ...;h1,t; et]+b). (11)

An example of a two-layer densely connected re-
current neural network is illustrated in Figure 1b.

4 Experimental Setup

We evaluate our proposed architecture on the Penn
Treebank (PTB) corpus. We adopt the standard
train, validation and test splits as described in
Mikolov and Zweig (2012), containing 930k train-
ing, 74k validation, and 82k test words. The
vocabulary is limited to 10,000 words. Out-of-
vocabulary words are replaced with an UNK to-
ken.

Our baseline is a stacked Long Short-Term
Memory (LSTM) network, trained with regular
dropout as introduced by Zaremba et al. (2014).
Both the stacked and densely connected LSTM
models consist of an embedding layer followed
by a variable number of LSTM layers and a sin-
gle fully connected output layer. While Zaremba
et al. (2014) only report results for two stacked
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Figure 1: Example architecture for a model with two recurrent layers.

LSTM layers, we also evaluate a model with three
stacked LSTM layers, and experiment with two,
three, four and five densely connected LSTM lay-
ers. The hidden state size of the densely connected
LSTM layers is either 200 or 650. The size of the
embedding layer is always 200.

We applied standard dropout on the output of
every layer. We used a dropout probability of
0.6 for models with size 200 and 0.75 for mod-
els with hidden state size 650 to avoid overfitting.
Additionally, we also experimented with Varia-
tional Dropout (VD) as implemented in Inan et al.
(2017). We initialized all our weights uniformly
in the interval [-0.05;0.05]. In addition, we used a
batch size of 20 and a sequence length of 35 dur-
ing training. We trained the weights using stan-
dard Stochastic Gradient Descent (SGD) with the
following learning rate scheme: training for six
epochs with a learning rate of one and then ap-
plying a decay factor of 0.95 every epoch. We
constrained the norm of the gradient to three. We
trained for 100 epochs and used early stopping.
The evaluation metric reported is perplexity as de-
fined in Equation 3. The number of parameters re-
ported is calculated as the sum of the total amount
of weights that reside in every layer.

Note that apart from the exact values of some
hyperparameters, the experimental setup is identi-
cal to Zaremba et al. (2014).

5 Discussion

The results of our experiments are depicted in Ta-
ble 1. The first three results, marked with stacked
LSTM (Zaremba et al., 2014), follow the setup of
Zaremba et al. (2014) while the other results are
obtained following the setup described in the pre-
vious section.

The smallest densely connected model which
only uses two LSTM layers and a hidden state size
of 200, already reduces the perplexity with 20%
compared to a two-layer stacked LSTM model
with a hidden state size of 200. Moreover, in-
creasing the hidden state size to 350 to match the
amount of parameters the two-layer densely con-
nected LSTM model contains, does not result in
a similar perplexity. The small densely connected
model still realizes a 9% perplexity reduction with
an equal amount of parameters.

When comparing with Zaremba et al. (2014),
the smallest densely connected model outperforms
the stacked LSTM model with a hidden state size
of 650. Moreover, adding one additional layer is
enough to obtain the same perplexity as the best
model used in Zaremba et al. (2014) with a hid-
den state size of 1500. However, our densely con-
nected LSTM model only uses 11M parameters
while the stacked LSTM model needs six times
more parameters, namely 66M. Adding a fourth
layer further reduces the perplexity to 76.8.



Table 1: Evaluation of densely connected recurrent neural networks for the PTB language modeling task.

Name Hidden state size # Layers # Parameters Valid Test

Stacked LSTM
(Zaremba et al., 2014)1

200 2 5M 104.5 100.4
650 2 20M 86.2 82.7

1500 2 66M 82.2 78.4

Stacked LSTM
200 2 5M 105 100.9
200 3 5M 113 108.8
350 2 9M 91.5 87.9

Densely Connected LSTM

200 2 9M 83.4 80.4
200 3 11M 81.5 78.5
200 4 14M 79.2 76.8
200 5 17M 79.7 76.9

Densely Connected LSTM 650 2 23M 81.5 78.9
Dens. Con. LSTM + Var. Dropout 650 2 23M 81.3 78.3

Increasing the hidden state size is less beneficial
compared to adding an additional layer, in terms of
parameters used. Moreover, a dropout probabil-
ity of 0.75 was needed to reach similar perplexity
scores. Using variational dropout with a probabil-
ity of 0.5 allowed us to slightly improve the per-
plexity score, but did not yield significantly better
perplexity scores, as it does in the case of stacked
LSTMs (Inan et al., 2017).

In general, adding more parameters by in-
creasing the hidden state and performing subse-
quent regularization, did not improve the perplex-
ity score. While regularization techniques such
as variational dropout help improving the infor-
mation flow through the layers, densely connected
models solve this by adding skip connections. In-
deed, the higher LSTM layers and the final classi-
fication layer all have direct access to the current
input word and corresponding embedding. When
simply stacking layers, this embedding informa-
tion needs to flow through all stacked layers. This
poses the risk that embedding information will get
lost. Increasing the hidden state size of every layer
improves information flow. By densely connect-
ing all layers, this issue is mitigated. Outputs of
lower layers are directly connected with higher
layers, effectuating efficient information flow.

Comparison to other models In Table 2, we list
a number of closely related models. A densely

1There are no results reported in Zaremba et al. (2014)
for a small network with dropout. These are our own results,
following the exact same setup as for the medium-sized ar-
chitecture.

connected LSTM model with an equal number of
parameters outperforms a combination of RNN,
LDA and Kneser Ney (Mikolov and Zweig, 2012).
Applying Variational Dropout (VD) (Inan et al.,
2017) instead of regular dropout (Zaremba et al.,
2014) can further reduce the perplexity score of
stacked LSTMs, but does not yield satisfactory re-
sults for our densely connected LSTMs. How-
ever, a densely connected LSTM with four lay-
ers still outperforms a medium-sized VD-LSTM
while using fewer parameters. Inan et al. (2017)
also tie the input and output embedding together
(cf. model VD-LSTM+REAL). This is, however,
not possible in densely connected recurrent neural
networks, given that the input and output embed-
ding layer have different sizes.

6 Conclusions

In this paper, we demonstrated that, by simply
adding skip connections between all layer pairs of
a neural network, we are able to achieve similar
perplexity scores as a large stacked LSTM model
(Zaremba et al., 2014), with six times fewer pa-
rameters for the task of language modeling. The
simplicity of the skip connections allows them to
act as an easy add-on for many stacked recurrent
neural network architectures, significantly reduc-
ing the number of parameters. Increasing the size
of the hidden states and variational dropout did not
yield better results over small hidden states and
regular dropout. In future research, we would like
to investigate how to properly regularize larger
models to achieve similar perplexity reductions.



Table 2: Comparison to other language models evaluated on the PTB corpus.

Model # Parameters Perplexity Test

RNN (Mikolov and Zweig, 2012) 6M 124.7
RNN+LDA+KN-5+Cache (Mikolov and Zweig, 2012) 9M 92.0

Medium stacked LSTM (Zaremba et al., 2014) 20M 82.7
Densely Connected LSTM (small - 2 layers) 9M 80.4

Char-CNN (Kim et al., 2016) 19M 78.9
Densely Connected LSTM (small - 3 layers) 11M 78.5
Large stacked LSTM (Zaremba et al., 2014) 66M 78.4

Medium stacked VD-LSTM (Inan et al., 2017) 20M 77.7
Densely Connected LSTM (small - 4 layers) 14M 76.8
Large stacked VD-LSTM (Inan et al., 2017) 66M 72.5

Large stacked VD-LSTM + REAL (Inan et al., 2017) 51M 68.5
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Kazuki Irie, Zoltán Tüske, Tamer Alkhouli, Ralf
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