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Abstract

Background: The primary objective was to determine maximum tolerated radiation dose in patients with metastatic
renal cell carcinoma on pazopanib treatment.

Methods: Treatment-naïve patients received pazopanib according to standard of care. Stereotactic body radiotherapy
(SBRT) was delivered concurrently to the largest metastatic lesion at day 8, 10 and 12. SBRT doses were escalated in 3
dose levels (24 Gy/3, 30 Gy/3 and 36 Gy/3). Dose level was assigned using Time-to-Event Continual Reassessment
Method with the target dose-limiting toxicity rate set to 0.25.

Results: Thirteen patients were included. One patient experienced dose limiting toxicity (DLT) at dose level 3 (grade
4 hypoglycemia). Maximum tolerated dose was not reached with a recommended dose of 36 Gy/3 having a probability
of DLT of 11%. One-year local control was 83% (95% confidence interval 61–100) and 1-year progression-free survival was
28% (95% confidence interval 1–55).

Conclusions: SBRT in combination with pazopanib is well tolerated with good local control and response rates outside
the radiation field.

Trial registration: This trial was retrospectively registered on clinicaltrials.gov(NCT02334709) on January 6th, 2015.
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Background
Renal cell carcinoma (RCC) presents with metastatic dis-
ease in about 30% of patients, while another 30% of pa-
tients will ultimately develop metastases [1, 2]. Tyrosine
kinase inhibitors (TKIs) targeting vascular endothelial
growth factor receptor (VEGFR) are currently consid-
ered the mainstay treatment for metastatic patients in
first line [3]. Nevertheless, durable responses are rare
and most patients eventually develop progressive disease
[4, 5]. More recently, PD-1/PD-L1 (programmed cell
death ligand) targeting agents, especially nivolumab,
have shown durable responses, but only in a minority of

patients [6]. Therefore, new therapeutic approaches are
needed to improve the number of patients benefiting
from durable disease control. The combination of TKIs
with high-dose radiation is a promising approach to in-
crease response rate. Preclinical combination studies
suggest synergistic radio-sensitizing effects. In addition,
both treatments elicit antitumor immune responses
making the tumor more susceptible to efficient elimin-
ation by immune cells [7]. We hypothesized that the
combination of pazopanib (Votrient, Novartis), a first-
line TKI, and high-dose radiotherapy could demonstrate
superior efficacy compared to either treatment in mono-
therapy. Although high-dose radiotherapy can be deliv-
ered safely by making use of stereotactic body
radiotherapy (SBRT) and the safety profiles of TKIs are
well studied [8, 9], their concurrent administration may
potentially exacerbate adverse events (AEs).
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Our primary objective was to determine the maximum
tolerated dose (MTD) of SBRT in combination with a
fixed dose of pazopanib in patients with metastatic clear
cell RCC (ccRCC). Secondary end points included ob-
jective response of the non-irradiated lesions, local con-
trol, and progression-free survival (PFS). An exploratory
endpoint was to assess immunologic responses using
peripheral blood samples.

Methods
Patients
Patients diagnosed with metastatic ccRCC and having at
least 3 extracranial measurable lesions per Response
Evaluation Criteria in Solid Tumors (RECIST v1.1) [10]
for soft tissue disease or MD Anderson (MDA) criteria
[11] for bone lesions were enrolled. Patients were eligible
if they had histological confirmed ccRCC, and the pres-
ence of measureable disease on whole body imaging by
computed tomography (CT). All patients underwent a
cytoreductive nephrectomy at least 6 weeks prior to in-
clusion. Other key eligibility criteria included a Kar-
nofsky Performance Status >60, and adequate organ and
bone marrow function, which were defined as absolute
neutrophil count greater than 1.5 × 106/L, hemoglobin
greater than 9 g/dL, platelet count greater than
100 × 109/L, PT or INR less than 1.2 times the upper
limit of normal, aPTT less than 1.2 times the upper limit
of normal, total bilirubin less than 1.5 times the upper
limit of normal, alanine aminotransferase (ALT) and as-
partate aminotransferase (AST) less than 2.5 times the
upper limit of normal, and serum creatinine less than
1.5 mg/dL.
Patients were excluded if they had a history of prior

radiotherapy interfering with SBRT. Other key exclusion
criteria were uncontrolled central nervous system metasta-
ses at baseline, severe or active comorbidity likely to im-
pact on the advisability of dose intensified SBRT and
uncontrolled intercurrent illness defined as significant
gastrointestinal, cardiovascular or respiratory abnormal-
ities. All patients gave informed consent before enrollment.

Study design and treatment
This is a phase I, non-randomized study (ClinicalTrials.-
gov identifier: NCT02334709). From February 2014 until
April 2016 13 patients were enrolled. Dose escalation of
SBRT was performed while administrating a standard
fixed dose of pazopanib (800 mg orally once daily). Pazo-
panib doses could be modified at the treating physician’s
discretion, according to tolerance. SBRT was adminis-
tered to the largest metastatic lesion in 3 fractions on al-
ternate days concurrently with the second week of
pazopanib treatment (start day 8). A starting SBRT dose
level of 24 Gy in 3 fractions was chosen for the study
based on its safety profile [12]. The total dose was

delivered in 3 separated fractions (>48 h and <96 h be-
tween fractions). The total dose was escalated in 3 dose
levels: 24 Gy in 3 fractions of 8 Gy, 30 Gy in 3 fractions of
10 Gy and 36 Gy in 3 fractions of 12 Gy. No higher dose
escalation was planned. Dose escalation was designed with
use of the time-to-event continuous reassessment method
(TITE-CRM). Dose reassessment occurred for each pa-
tient that entered the trial. Additional file 1: Table S1
shows a general scheme of the trial.
All patients underwent a CT simulation in supine pos-

ition with 3 mm CT slice thickness through the meta-
static site to be treated. The planning CT covered the
target and all organs at risk. Support devices to increase
patient comfort were chosen depending on the target
localization. Lung and liver tumor sites were simulated
with 4D–CT, taking into account breathing. The gross
tumor volume (GTV) was defined as gross tumor on CT
and/or magnetic resonance imaging (MRI). No clinical
target volume (CTV) was delineated. Planning target
volume (PTV) was defined as an expansion from GTV
to account for organ motion and setup error. Margins
depended on the site irradiated with 2 mm margins for
bony lesions and 5 mm for other sites. In case of overlap
between organ at risk (OAR) and PTV, a PTV_optim
was created by subtracting the OAR from the PTV vol-
ume. This PTV_optim was used to prescribe the dose
instead of the PTV. A Planning Organ at Risk Volume
(PRV) expansion of 2 mm was added to OARs and dose
constraints applied to this PRV. Dose constraints for
OAR were in accordance with the recommendations
from the report of the American Association of Physi-
cists in Medicine (AAPM) task group 101 [13]. If a dose
constraint could not be achieved due to overlap of the
target with an OAR, the target coverage was compro-
mised in order to meet the OAR constraint.
Treatment was prescribed to the periphery of the tar-

get (80% of the dose covered 90% of the PTV). Treat-
ment was delivered with static or rotational IMRT with
6–18 MV photons of a linear accelerator using cone-
beam CT set-up at each fraction and on-line correction
of patient’s position.

End points and assessments
The primary objective was to assess the safety of the com-
bination of pazopanib and SBRT. Patients were monitored
for toxicity bi-weekly during the first 3 months of treat-
ment through physical examination and routine safety la-
boratory studies. AEs were based on assessments by
investigators of patients treated between the start of pazo-
panib and 90 days after the last radiotherapy fraction. AEs
and clinical laboratory tests were graded using the Na-
tional Cancer Institute Common Terminology Criteria for
Adverse Events (CTCAE), version 4.0. The MTD was de-
fined as the dose that was associated with dose-limiting
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toxicity (DLT) in 25% of patients. DLTs were defined as
any of the following treatment-related events that oc-
curred after the first fraction of SBRT: any grade 4–5
metabolic or hematologic toxicity and any grade 3–5 non-
hematologic toxicity possibly related to SBRT. Toxicities
observed before the start of SBRT were not considered
DLTs. Grade 3 metabolic or hematologic toxicities were
considered expected events with pazopanib and were not
considered SBRT related.
Secondary end points included objective response of

the non-irradiated lesions, local control, and PFS. Ob-
jective responses were assessed using RECIST v1.1 for
soft tissue disease on contrast enhanced CT-scans of
thorax and abdomen and were carried out on day 91
and every 3 months thereafter. For the evaluation of
bone lesions, the MDA criteria were used. Local failure
was defined as an increase in size by ≥20% according to
RECIST v1.1 or MDA criteria. PFS was defined as the
interval between the start of pazopanib and the earliest
date of disease progression or death due to any cause.
An exploratory endpoint was to assess immunologic re-
sponses using peripheral blood samples.

Peripheral blood mononuclear cells isolation
Venous blood was drawn using 9 mL EDTA tubes at
baseline, before the start of SBRT and at day 91. Periph-
eral blood mononuclear cells (PBMCs) were isolated by
centrifugation on a Ficoll-Hypaque gradient (GE Health-
care, Uppsala, Sweden) within 4 h. The PBMCs were
cryopreserved until analysis.

Flow cytometry
Myeloid derived suppressor cells (MDSCs) were charac-
terized by the CD45+ CD16- CD11b + phenotype,
monocytic MDSCs are CD14+ S100A9+ CD124+, gran-
ulocytic MDSCs are CD14-CD33 + CD15+. Dendritic
cells (DCs) were characterized by the CD45+ lineage-
phenotype, plasmacytoid DCs were CD123 + BDCA2+
BDCA3- BDCA1- and myeloid DCs were divided into
CD123- BDCA2- BDCA1+ and BDCA3+ cells. Regula-
tory T cells (Tregs) were defined as CD3+ CD4+ CD25+
FoxP3+ and cytotoxic T-cells as CD3+ CD8+ cells. T
helper (Th) subsets were divided into CD3+ CD4+
CD45R0+ memory and CD45RO- naïve Th cells. Th
cells were further divided into CXCR3+ Th1 cells,
CRTH2+ Th2 cells and CCR6+ Th17 cells. All anti-
bodies used in this study were fluorescently conjugated
mouse anti-human monoclonal antibodies. For intracel-
lular staining, PBMCs were fixed and permeabilized
using Live/dead® fixable aqua dead cell stain (BD Biosci-
ences) after surface staining, and then stained with
mouse anti-human monoclonal antibodies against
CTLA-4, PD-1 PE-Texas Red, Lag3 PE-Cy7, Tim3 FITC
and FoxP3 APC antibodies. Flow cytometry data were

analyzed using FlowJo software (Tree Star Inc., Ashland,
OR, USA). Thresholds for signal background were set
using isotype and fluorescence-minus-one (FMO) con-
trols, as appropriate. Additional file 1: Figures S2-S5 de-
pict the representative gating strategies.

Statistical considerations
A TITE-CRM [14] was used to locate the MTD. Dose
reassessment occurred for each patient that entered the
trial. By making use of weights, staggered entrance of
the patients in the trial was allowed. The target probabil-
ity for the MTD was set at 0.25. Based on simulations, a
sample size of 21 was set. Efficacy data were analyzed ac-
cording to the intention-to-treat principle. The Kaplan-
Meier method was used to estimate local control and
PFS. For immune monitoring, median values between 2
groups were compared by the Mann-Whitney U-test, be-
tween ≥2 groups with Kruskall-Wallis testing. For the
evaluation of immunological markers over time, the
Friedman test was used. To evaluate correlations, Spear-
man correlation coefficients were calculated. All statis-
tical analyses were performed using SPSS 24.0 (SPSS
Inc., Chicago, IL, USA) and a P-value less than 0.05 was
considered statistically significant.

Results
Patients
Thirteen patients were enrolled between February 2014
and April 2016. Table 1 summarizes patient and disease
characteristics at time of SBRT.

Adverse events
After 13 patients were enrolled, an interim evaluation
was done, prompted by newly available TKIs, nivolumab
and competing trials with immunotherapeutic agents
likely to hamper further enrolment into this study. No
DLTs were noted at dose levels 1 or 2 (24 Gy and
30 Gy). Of 8 patients at dose level 3 (36 Gy), 1 patient
with a history of diabetes mellitus type 2, who was irra-
diated at a mediastinal lesion, experienced a DLT con-
sisting of grade 4 hypoglycemia. No increased toxicity
inside the radiation fields was seen. The grade
4 hypoglycemia resolved completely after adjusting insu-
lin treatment.
The interim evaluation estimated the probability of

having a DLT at 11%. Given this result, continuing to 21
patients, would yield an estimated DLT rate below 25%
and hence an unchanged conclusion as long as the final
number of DLTs stayed strictly below 5. The currently
estimated chance for this is >99%. The study was there-
fore closed after 13 patients. The MTD was therefore
not reached and 36 Gy/3, having a probability of DLT of
11%, was selected as the recommended dose for future
phase II trials (Table 2). The vast majority of AEs were
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grade 1 and grade 2 (Table 3). Grade 3 to 4 pazopanib-
related AEs occurred in 38% of patients. The most com-
mon grade 3 or 4 AEs were hypoglycemia, increased
ALT and increased AST in 1 of 13 patients and hyper-
tension in 3 of 13 patients. Six patients (46%) needed a

dose reduction of pazopanib due to AEs, 1 of 4 patients
in dose level 1 (reduced to 400 mg daily), 1 patient in
dose level 2 (reduced to 600 mg daily) and 4 of 8 pa-
tients in dose level 3 (reduced to 400 mg daily in 3 pa-
tients and to 600 mg daily in 1 patient). There were no
patients who discontinued neither pazopanib treatment
nor SBRT due to AEs. No fatal AEs were reported.

Efficacy
We noted a complete local response in 1 of 13 irradiated
lesions (8%), partial response (PR) in 6 of 13 irradiated

Table 1 Demographics and baseline characteristics

n (%)

Sex

Male 7 (54)

Female 6 (46)

Median age (y) 66 (range 48–72)

Karnofsky Performance Status

100 3 (23)

90 8 (62)

80 2 (15)

Heng criteria

0 6 (46)

1 4 (31)

2 2 (15)

Unknown 1 (8)

MSKCC criteria

0 4 (31)

1 7 (54)

2 0 (0)

Unknown 2 (15)

Prior radiotherapy

No 9 (69)

Yes 4 (31)

Number of organs involved

1 4 (31)

2 7 (54)

3 2 (15)

SBRT treatment site

Lung 5 (38)

Bone 2 (15)

Lymph node 2 (15)

Pancreas 1 (8)

Soft tissue mass 2 (15)

Liver 1 (8)

SBRT stereotactic body radiotherapy, MSKCC Memorial Sloan-Kettering
Cancer Center

Table 2 Maximum tolerated dose

Level Dose Number treated Number of DLTs Probability of DLT

1 3 × 8 Gy 4 0 0.05

2 3 × 10 Gy 1 0 0.08

3 3 × 12 Gy 8 1 0.11

Table 3 Treatment-related adverse events

24 Gy 30 Gy 36 Gy ALL

n = 4 n = 1 n = 8 n = 13

Laboratory abnormalities, any grade

Anemia 1 0 2 3

Leucopenia 1 0 2 3

thrombocytopenia 2 0 7 9

Lymphocytopenia 3 1 4 8

Hypoglycemia 2 1 4 7

Increased alanine aminotransferase 4 1 4 9

Increased aspartate aminotransferase 3 1 4 8

Increased alkaline phosphatase 2 1 1 4

Increased creatinine 0 1 3 4

Hypothyroidism 1 0 4 5

Hyperkalemia 3 1 1 5

Adverse events, any grade

Fatigue 4 1 6 11

Insomnia 3 0 1 4

Anorexia 0 0 3 3

Weight loss 0 0 4 4

Dysgeusia 1 0 8 9

Dry mouth 1 1 2 4

Nausea 1 0 4 5

Vomiting 1 0 3 4

Dyspnea 1 0 6 7

Hypertension 3 1 5 9

Peripheral edema 2 0 1 3

Dry skin 1 0 2 3

Changes in hair color 0 1 2 3

Hand foot syndrome 1 0 2 3

Laboratory abnormalities, grade 3–4

Hypoglycemia 0 0 1 1

Increased alanine aminotransferase 0 0 1 1

Increased aspartate aminotransferase 0 0 1 1

Adverse events, grade 3–4

Hypertension 1 0 2 3
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lesions (46%), and stable disease (SD) in 6 of 13 irradi-
ated lesions (46%) as best response (Fig. 1a and Add-
itional file 1: Figure S1a). Median duration of local
control was not reached and 1-year local control was
83% (95% confidence interval (CI) 61–100). Assessment
of responses outside the radiation field revealed that 5 of
13 patients (38%) developed a PR, 7 patients (54%) had
SD and 1 patient (8%) had progressive disease (PD) as
best response (Fig. 1b and Additional file 1: Figure S1b),
making the objective response rate (ORR) 38%. Median
PFS was 6.7 months (95% CI 3–10) and 1-year PFS was
28% (95% CI 1–55). Median follow-up was 10.9 months.
No patients were lost to follow up.

Systemic immune changes during treatment
PBMCs from 11 of 13 patients were collected for im-
mune monitoring. We observed a decrease in the fre-
quencies of CD8+ lymphocytes (P = 0.027) and an
increase in CD4+ lymphocytes (P = 0.014) during treat-
ment (Fig. 2).

Link between T cell subsets and prognosis
Patients were divided into good responders and bad re-
sponders based on the median PFS of 8.4 months of pazo-
panib in monotherapy [8]. We compared PBMCs from
good responders and bad responders. We observed lower
frequencies of CD8+ lymphocytes after the first week of
pazopanib treatment in good responders as compared to
bad responders (P = 0.036). We also observed a shift in T
cell subsets. The frequency of memory Th17 cells after the
first week of pazopanib treatment was significantly higher
in good responders compared to bad responders
(P = 0.019). A similar though non-significant difference

was also observed for naive Th17 cells (P = 0.054) (Fig. 3).
We also observed a non-significant increase in CTLA-4
expression on Tregs after one week of pazopanib treat-
ment in patients with a good prognosis (P = 0.063).

Discussion
Until recently, radiotherapy in metastatic RCC was pri-
marily used to palliate symptomatic metastases [3] as
RCC has been traditionally considered a radiation-
resistant tumor. Although RCC might be resistant to
conventional fractionated radiation, recent evidence sug-
gested the opposite for high-dose radiotherapy [15]. By
making use of SBRT, it is possible to safely deliver high
radiation doses and SBRT for metastatic RCC has been
associated with impressive 1-year local control rates ran-
ging from 71% - 100% [15–22]. This may be due to ei-
ther the destruction of tumor microvasculature and/or
the induction of antitumor immune responses associated
with SBRT (6, 13). TKIs used as first-line therapy in
metastatic RCC also have the potential to interact with
the immune system. For example, sunitinib, the most-
studied TKI in the treatment of RCC, has important
immunostimulatory capacities [23, 24]. The immuno-
modulatory capacities of pazopanib are less well studied,
but the effects may be similar. Combined treatment of
SBRT and TKIs might therefore increase the antitumor
activity of both treatments [7]. We hypothesized that the
combination of pazopanib and SBRT could increase re-
sponse rates. The safety of the combination of pazopanib
with conventional radiotherapy has already been investi-
gated [25, 26]. However, there are only limited retro-
spective cases reported on SBRT and pazopanib [27].
Since their concurrent administration could potentially

Fig. 1 Local control of irradiated lesions and distant control of non-irradiated lesions. a: Greatest percentage change in irradiated tumor volume.
Complete response, partial response, stable disease and disease progression were assessed as per RECIST 1.1 or as per MDA criteria for bone lesions. Two
patients did not have any change in irradiated tumor volume. b: Greatest percentage change in tumor volume of non-irradiated target lesions. Complete
response, partial response, stable disease or disease progression were assessed as per RECIST 1.1 or as per MDA criteria for bone lesions. Three patients
did not have any change in non-irradiated target lesions, one patient had a decrease in non-irradiated tumor burden yet had progressive disease due to
a new lesion (this is not added to the tumor burden calculation as per RECIST 1.1)
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Fig. 3 Frequency of cells before the start of SBRT between good and bad responders. a Frequency of Memory Th17 cells, Naive Th17 cells and CD8+
lymphocytes before the start of SBRT in 1 bad responding study patient compared to 1 good responding study patient. b Boxplot comparing the
frequency of Memory Th17 cells, Naive Th17 cells and CD8+ lymphocytes before start of SBRT between bad responding and good
responding patients

Fig. 2 Frequency of CD8+ and CD4+ lymphocytes during treatment. a: Boxplot comparing the frequency of CD8+ lymphocytes at baseline, before
start of SBRT and at the first evaluation visit. b: Boxplot comparing the frequency of CD4+ lymphocytes at baseline, before start of SBRT and at the first
evaluation visit

De Wolf et al. Radiation Oncology  (2017) 12:157 Page 6 of 8



exacerbate AEs, a prospective phase I dose-escalation
trial was conducted. In our trial the MTD was not
reached. In dose level 3 (36 Gy), 1 DLT of grade
4 hypoglycemia was reported in a patient with a history
of diabetes mellitus type 2, who was irradiated on a me-
diastinal lesion. Importantly, no increase in radiation-
induced toxicity was observed. The grade 4 hypoglycemia
resolved completely after adjusting insulin treatment.
Because it was assumed that SBRT could also potentially
exacerbate pazopanib-related AEs [26, 27], all grade 4–5
metabolic or hematologic toxicities were defined as DLT,
regardless of the radiotherapy field. In retrospect, this
definition was possibly too strict. In the dose level 3
group, a slightly higher rate of thrombocytopenia was
observed, though not dose limiting. We investigated
whether a higher incidence of bony lesions or a higher
radiation dose on the bone marrow in this group could
be the cause, yet only 2 patients in dose level 3 and 1 pa-
tient in dose level 1 had bony lesions. In both groups
only 1 patient was irradiated on a bony lesion. There-
fore, the seemingly increase in thrombocytopenia in dose
level 3 was probably due to chance since the number of
patients in dose levels 1 and 2 were small.
This trial also provides evidence on antitumor activity

of the combination treatment. All patients in our trial
initially achieved local control and 1-year local control
rates were comparable to those of SBRT in monotherapy
[16–22]. However, these data are mostly derived from
patients with limited metastatic disease or inoperable lo-
calized disease, instead of patients with more extensive
metastatic disease enrolled in our study. Regarding re-
sponses outside the radiation field, the ORR was 38%
with 5 of 13 patients developing a PR. These data are
comparable to the ORR of pazopanib in monotherapy
[8]. To study the underlying immunomodulatory effects
of the combination treatment, we analyzed PBMCs de-
rived at fixed intervals during treatment. Since the num-
ber of patients in the trial was limited, the presented
data should be interpreted as exploratory. Frequencies of
memory Th17 cells were significantly higher in good re-
sponders as compared to bad responders. The role of
Th17 cells in cancer is controversial with both tumor
promoting and tumor suppressing functions being re-
ported [28–30]. This may rely on the existence of regu-
latory vs. pathogenic Th17 subpopulations, the latter
subset being involved in auto-immune tissue damage
and tumor rejection [31, 32]. Further contributing to the
tumor suppressing function of Th17 cells is the produc-
tion of the chemokines CXCL9 and CXCL10, which fa-
cilitates the recruitment of CD8+ T cells into the tumor
[33]. The present study also revealed that lower frequen-
cies of CD8+ T cells were associated with good progno-
sis, which may be due to the majority of CD8+ T cells
being recruited into the tumors.

Conclusion
In our phase I study, the MTD was not reached, resulting
in a recommended dose of 36Gy/3 for combination with
pazopanib. To the author’s knowledge, this is the first re-
port demonstrating that SBRT in combination with pazo-
panib is well tolerated. Local control and response rates
outside the radiation field were good but seemed not to
be superior when compared to SBRT or pazopanib in
monotherapy. The combination of SBRT with pazopanib
and investigation of CD8+ T cells and Th17 cells as a pre-
dictor of response warrant further study.
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